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Abstract. Algebraic Data Types (ADTs) are an increasingly common feature in

modern programming languages. We explore various optimizations to ADT rep-

resentations in Virgil, a systems-level programming language that compiles to

x86, x86-64, Wasm and the Java Virtual Machine. In Virgil, programmers can

now annotate ADTs as unboxed to eliminate the overhead of heap allocation, and

we have extended the language to enable programmer-expressed bit-layouts for

varying levels of control on memory layout. The performance impact of these

representation changes was evaluated on a variety of workloads in terms of exe-

cution time and memory usage.

1 Introduction

1.1 Algebraic Data Types

Algebraic Data Types (ADTs), also known as variants or sum types, are compos-

ite types that allow values of that type to take on one of several component types.

Typically, ADTs are used together with pattern matching, a succinct method of

consuming values of that type that ensuresmatches are exhaustive and type safe.

Once a feature found mainly in functional languages such as Standard ML,

OCaml and Haskell, ADTs and pattern matching are an increasingly common

feature in modern multi-paradigm languages, such as Rust, Scala and Swift.

1.2 The Virgil Language

Virgil1 is a fully self-hosted systems-level programming language that compiles 1 Virgil is fully open source; the source code,

including changes implemented for ADT un-

boxing can be found at https://github.

com/titzer/virgil/.

to multiple targets: WebAssembly (Wasm), x86, x86-64 (Linux and Darwin),

and the Java Virtual Machine (JVM).

Virgil comes equipped with an interpreter that runs on an internal SSA IR.

Values in components are computed at compile time using this interpreter, and

their values are encoded into a heap image so that they do not incur a cost at

run-time. Virgil also features automatic memory management using a precise

tracing, Cheney-style copy collector for garbage collection (GC). The runtime

distinguishes between references and non-references during stack-walking by

consulting a stackmap, and uses bitmaps when tracing objects.

Virgil provides higher-level features such as classes, first-class functions and

closures [15]. The two largest programs written in Virgil at present are the Virgil

compiler itself, and the Wizard Engine, a Wasm engine built for research.

https://github.com/titzer/virgil/
https://github.com/titzer/virgil/
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1.3 ADTs in Virgil

Virgil provides support for ADTs and pattern matching. As in most functional

languages, ADTs in Virgil are immutable and equality over them is structural,

not referential. One difference is that eachADTdefinition is not only associated

with one type; each of the child types can be used as their respective product

types, and may have their own associated methods.

type Option<T> {

case None;

case Some(val: T);

def val() -> T { return Some<T>.!(this).val; }

def isNone() -> bool { return None.?(this); }

def isSome() -> bool { return tag == 1; }

}

Figure 1: An generic option type written in

Virgil, showcasing features of Virgil ADTs.

An illustration of the syntax of ADTs in Virgil can be found in Figure 1. They

nay be generic over type parameters. They can be casted (e.g. Some<T>.!(),

which may throw a TypeCheckException) and queried (e.g., None.?()). For

convenience, they also have an integer tag (and a string name) which can be

accessed using .tag and .name. ADTs in Virgil also have a default value2: it is 2 A variable takes on its type’s default value

when it is not explicitly initialized.the first case with all fields set to their respective default values.

1.4 Problem Statement

ADTvalues inVirgil are represented in differentways, depending on their num-

ber of cases and fields. At present, the representational options are:

• A single unsigned integer, if all cases have no fields. This degenerates ADTs

into enums when possible.

• Individual scalars3, for explicitly unboxed4 single-case ADTs. Such ADTs are 3 We use scalar to refer to values that will not

be split further at lower levels of the compiler,

with the exception of numeric lowering on 32-

bit targets. A rough approximation of a scalar

would be a register value on x86 or a variable

in the JVM.
4 There is a compiler flag to unbox all non-

recursive single-case ADTs that normalize to

fewer than a given number of fields. Other-

wise, unboxing is done for single-case ADTs

with the #unboxed annotation.

represented as multiple separate values without a tag.

• Allocated classes. This is the default for boxed ADTs, which are desugared

into classes at the AST level, and use the same record infrastructure to rep-

resent ordinary classes.

Thedesugaring of variants into classes reduces the amount of variant-specific

logic during compilation (Figure 2). However, this limits the efficiency of ADT

representations, as it means that all non-empty, multiple-case ADTsmust incur

a heap allocation on initialization and an indirection on field access. This can

hurt performance, not only due to the overhead of allocation, but also due to

the increase in garbage collection pressure. Hence, our focus is to be able to
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represent ADTs as scalars efficiently, using a generalizable but target-sensitive

algorithm.
type T {

    case A(x: u32);

    case B(y: float);

}


class T.A {

    def x: u32;

    new(x) {}

}



class T.B {

    def y: float;

    new(y) {}

}

Variant Desugaring

Figure 2: An illustration of desugaring vari-

ants into classes.

2 Prior Work

Work has been done on unboxing ADTs through automated monomorphiza-

tion and specialization in Haskell [7]. MLTon implements ADT unboxing for

Standard ML and can also specialize as it is a whole-program compiler [16].

However, it does not provide a mechanism for programmer annotations.

Rust, which compiles to LLVM IR, represents ADTs as tagged values. For

unboxed ADTs, they become an LLVM structure type with a tag and an array of

associated bytes (the size of the largest enum case). This is feasible because Rust

is a non-garbage-collected language and does not need to differentiate between

reference and non-reference types at runtime. Virgil’s JVM target means that

it is also not possible to efficiently represent ADTs as raw bytes of data at this

phase of the compiler.5 5 Representing ADTs as raw, packed bytes

without consideration for scalars wouldmean

fields may be inadvertently split across vari-

ables, making their access costly.

There is an open RFC on unboxing ADTs in OCaml [6] with annotations.

There are certain limitations that limit the power of this optimization. OCaml

requires a uniform representation of values because it must compile generic

code without concrete types. Virgil is a whole-program compiler and can per-

form a monomorphization pass, so concrete types of all values are known dur-

ing normalization.

Rust performs bit-level tag packing using niche optimization. Previously,

Rust would only perform niche optimizations on ADTs with multiple nullary

cases and a single non-null variant containing a ‘niche’ [4]. Recent improve-

ments in Rust have allowed for non-nullary cases that start or end with data,

as long as they do not interfere with the niche [14]. Swift supports a similar

optimization, also enabling multiple non-nullary cases [3].

Zig supports packed structs and packed unions, which enable the expression

of bit-level layouts butwithout flexibility on tag location [1]. A proposed feature,

though with no current plans for implementation, would enable user-specified

tagging for packed unions [8].

Ribbit is a domain-specific language for memory layouts that targets LLVM

IR [5]. It is flexible enough to express the default compiler representations for

OCaml and Rust ADTs. Dargent is a description and refinement language for

memory layouts in Cogent [12]. It allows for programmer-specified memory

layouts of boxed values living on the heap.

Virgil supports byte-level layouts that act as views over byte arrays [2]. C#

supports a similar feature for control over a struct’s memory layout, using the

FieldOffset annotation [10]. A recent update to Odin adds support for bit-

level layouts, which it calls bit fields, backed by a user-specified type [11]. Odin’s

bit fields also supports specifying the endianness of fields.
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3 The Virgil Compiler

The Virgil compiler undergoes several phases to lower programs into machine

code (Figure 3).

1. Parsing and Verification: Source to AST;

2. SSA Generation: AST to Polymorphic SSA;

3. Reachability and Normalization: Polymorphic SSA to Normalized SSA;

4. Machine Lowering: Normalized SSA to Machine SSA;

5. Code Generation: Machine SSA to Machine Code.

The phases differ somewhat between different targets; for instance, the JVM

target uses its own phase to generate JVM bytecode directly from normalized

SSA. Numeric lowering occurs at the machine lowering phase: integer or float

values wider than 32 bits, and their arithmetic operations, are decomposed into

two 32-bit values, done only for 32-bit targets.

Source Code

AST

Polymorphic SSA

Reachability+

Codegen

Normalization

Parsing+
Verification

SSA Generation

Optimization Machine Lowering

JVMNormalized SSA

Machine SSA x86

Wasm

Figure 3: A diagram of the Virgil compiler’s

phases. Biggest changes from this thesis are

in purple.

3.1 Reachability and Normalization

During reachability, the live variables, fields and instructions are determined by

a recursive search over the program. Here, wemark if fields always take on con-

stant values, or are never used; this information is used during normalization

to simplify the code.

The Static Single-Assignment (SSA) IR of Virgil contains type information.

Normalization of this SSA is directed by this type information. At this phase,

complex types such as tuples and closures are translated away.

3.2 What needs to change?

The introduction of unboxedADTs involves awide range of changes throughout

the compiler’s phases.

• Parsing. The parser has to be modified to accommodate the bit-level layout

syntax and the new annotations.

• Verification. The verifier must now verify that the packing declarations are

semantically possible. This is described in Section 4.2.

• Normalization. This is where the biggest changes have to take place; code

has to be rewritten to account for the new representations that we are sup-

porting. Variant solving takes place here, because monomorphization has

taken place and all types are concretely known.

• Machine Lowering. This phase has to be aware of the new packed represen-

tation of types in order to generate precise stackmaps.
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• Runtime. With the addition of tagged pointers, the garbage collector must

be changed in tandemwith the compiler. The target specifies the bit patterns

for reference and non-reference tagged pointers, and the GC must be mod-

ified to handle tagged pointers, distinguishing between reference and non-

reference values, and masking out the correct bits to extract the underlying

reference.

4 A Language for Bit-Level Layouts

In the process of enabling programmers control over how they want their ADTs

to be laid out inmemory, we have designed a simple language embedded within

Virgil to specify bit-level layouts.

4.1 Syntax

In the specification of a bit pattern, the first character of a field name is used to

identify that field.6 Packing expressions can include the concatenation of other 6 If this is ambiguous, such as when two fields

share the first character, an error is reported

during verification.
packing expressions using #concat and the application of packing declarations.

packing Float16(sign: 1, exp: 5, frac: 10): 16 = 0b_seeeeeff_ffffffff;

packing Float32(sign: 1, exp: 8, frac: 23): 32 = 0b_seeeeeee_efffffff_ffffffff_ffffffff;

packing TwoFloat16s(s1: 1, e1: 5, f1: 10, s2: 1, e2: 5, f2: 10): 32

= #concat(Float16(s1, e1, f1), Float16(s2, e2, f2));

Figure 4: A representation of IEEE 754

floating-point numbers using our packing

declaration syntax, followed by an example of

packing application and concatenation.

⟨packing-expr⟩ ∶∶= є ∣ ⟨bit-layout⟩ ∣ ⟨const⟩ ∣ ⟨ident⟩ ( ⟨packing-expr-list⟩ )
#concat ( ⟨packing-expr-list⟩ ) ∣ #solve( ⟨packing-expr-list⟩ )

⟨packing-expr-list⟩ ∶∶= є ∣ ⟨packing-expr⟩ ∣ ⟨packing-expr⟩ , ⟨packing-expr-list⟩
⟨packing-decl⟩ ∶∶= packing ⟨ident⟩ ( ⟨param-list⟩ ) : ⟨int⟩ = ⟨packing-expr⟩ ;
⟨param-list⟩ ∶∶= є ∣ ⟨ident⟩ : ⟨int⟩ ∣ ⟨ident⟩ : ⟨int⟩ , ⟨param-list⟩

⟨packing-annot⟩ ∶∶= #packing ( ⟨packing-expr-list⟩ ) ∣ #packing ⟨packing-expr⟩
⟨bit-layout⟩ ∶∶= 0b ⟨packing-bits⟩

⟨packing-bits⟩ ∶∶= є ∣ ⟨packing-bit⟩ ⟨packing-bits⟩
⟨packing-bit⟩ ∶∶= 0 ∣ 1 ∣ ⟨char⟩ ∣ ?

Figure 5: Syntax for packing expressions and

declarations, in Backus-Naur form.
Lastly, packing expressions can appear in ADT declarations as annotations.

In this context, #solve expressions can also appear that tell the compiler to
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figure out a way to pack the contained fields. #solve expressions cannot appear

in packing declarations, which must be fully specified. A full description of the

syntax of packing expressions can be found in Figure 5.

4.2 Static Verification

During semantic analysis, the compiler verifies that packing declarations are

well-formed by checking the sizes of packing expressions. Define the judgment

∆, Γ ⊢ e ∶ n to be that packing expression e has size at most n ∈ N in the

contexts Γ and ∆. ∆ is the context containing the packing declarations defined

in the program. Expressions that are too short will be padded with zeros. We

restrict n to be the size of the largest possible scalar (64 bits on 64-bit targets).

∆, Γ ⊢ e ∶ n n ≤ n′

∆, Γ ⊢ e ∶ n′
∣b∣ = n

∆, Γ ⊢ b ∶ n
Γ( f ) = n
∆, Γ ⊢ f ∶ n

∆, Γ ⊢ e i ∶ n i
∆, Γ ⊢ concat(e i) ∶ ∑ n i

∆,{x i ↦ n i} ⊢ e ∶ n
packing p(x i ∶ n i) ∶ n = e ok

packing p(x i ∶ n i) ∶ n = e ∈ ∆ ∆, Γ ⊢ e i ∶ n i
∆, Γ ⊢ p(e i) ∶ n

Figure 6: A subset of the static rules for pack-

ing expressions.
Packing annotations on variants are not verified until normalization, since

the concrete types of fields are not yet known at this stage before monomor-

phization.

5 Solving the Unboxing Problem

5.1 Conditions for Unboxing

We provide the #unboxed annotation for the programmer to annotate a variant

as unboxed. Single-case variants that normalize to a small number of scalars

are also automatically unboxed.

However, there are two situations in which variants are never unboxed:

• If a variant is recursive (or mutually recursive), we do not unbox it.7 7 This is more restrictive than necessary; it

should be possible to unbox recursive variants

if all the recursive mentions of that type are

boxed.
• If a variant is closed over (for example, a method T.f is referred to without

being called), we force the compiler to box T, as Virgil represents closures as

fat pointers (a code pointer and environment pointer pair).

5.2 Scalar and Interval Assignment

Wecan think of the unboxing problemas twodifferent problems: an assignment

of normalized fields to scalars (scalar assignment), and an assignment of fields

to bits in those scalars (interval assignment). However, these two problems are

deeply intertwined – it is not possible to determine if a scalar assignment is valid
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without trying to find an interval assignment on those scalar assignments – and

so they must be solved in tandem.

One benefit of performing an explicit scalar and interval assignment, as op-

posed to just performing interval assignment on one long bit layout, is that fields

are now layed out in a way that is sensitive to scalar boundaries. Thus, it will

never be possible for a single field to straddle multiple scalars (i.e., multiple reg-

isters after code generation), and that field will not need to be reassembled from

multiple scalars.

T

A

B

C

i30

f32

i64

tag
i32 string

string

( ), ,B64 R64 B64type T {



    case A(t: (i30, i32), a: string);



    case B(x: f32, a: string);



    case C(y: i64);



} scalar assignment

interval assignment

A.0 A.1

B.0

C.0

Figure 7: An illustration of scalar and interval

assignment.
Our approach to solving the unboxing problem is to use recursive backtrack-

ing, sped upwith various heuristics, tominimize the number of scalars and cost

of field access.

5.3 Scalar Classes

We introduce the idea of a scalar class. At present, the valid scalar classes are

B32, B64, R32, R64, Ref, F32 and F64. These are the union of scalar classes over

all supported targets.8 8 In the future, we may include B128 as a

scalar class to support XMM registers on x86-

64 with SIMD.
During normalization, the target specifies a mapping GetScalar between

normalized types and sets of scalar classes. This set represents the types of

scalars that a value of that type can inhabit. For instance, on the x86-64 target, a

value of type u2 could inhabit a B64, F64, or R64 register.9 For the JVM target, 9 If we enable packed references and tagged

pointers, integers can appear in bits 2 and 3

of reference values on 64-bit targets due to 8-

byte alignment, or after the second bit if the

value is not a reference.

a string can only occupy a Ref scalar, since references in Java are opaque.

These scalar classes help the target express the unifications that are possible

between different fields. They also allow us to express which scalar classes are

preferential: for instance, mapping int’s to {B32} and float’s to {B32,F32}
will have their merged value live in a integer register, since the intersection is

{B32}.
The distinction between the reference and non-reference scalar classes also

guide the compiler in later phases, when it builds the stackmap for garbage col-

lection.
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5.4 Recursive Backtracking

In order to create an assignment of fields to scalars, we perform recursive back-

tracking on the assignment of each scalar. As we iterate over the fields present

in the variant, we build up a representation. When all fields from all cases have

been assigned, we check if the assignments have a valid packing that is also

distinguishable. In order to limit the time taken to find a good solution, the

number of solving steps is bounded.

5.5 Distinguishability: Explicit and Implicit Tagging

It is insufficient merely to pack the fields for each case; for multi-case ADTs, we

need enough information in the packed representation to distinguish between

cases. After interval assignment, we have the unassigned bits in the scalar that

we can use for this purpose. We have two options here.

• Explicit Tagging. If there are sufficientlymany aligned, unassigned and con-

tiguous bits after interval assignment, we can encode the case’s tag as a field

in that interval. If this isn’t possible, we can append a new scalar that acts as

the case’s tag.

• Implicit Tagging. There may be sufficiently many unassigned bits for us to

use to distinguish between cases, but they are not all correctly aligned. If

this is true, we can distinguish between the various cases by constructing a

decision tree; each node in the decision tree represents sets of cases that have

yet to be distinguished; each node splits on a specific bit position. 10 10 Implicit tagging is not yet implemented,

only verifying the distinguishability of scalars.

5.6 Heuristics

The aforementioned recursive backtracking algorithm is extremely inefficient

on its own; we need the use of heuristics in order to make the packing problem

tractable. Additionally, we need someway to score solutions, so that the solver is
able to pick between multiple valid solutions. Our score is a function of several

parameters:

• Number of scalars. We penalize solutions that use more parameters, as we

would like to encourage more aggressive packing.

• Access cost. When possible, we would also like fields to be unpacked, as

access cost is reduced. This factor helps distribute fields across scalars, espe-

cially for variants with one large case.11 11 One additional contributor to access cost is

casting cost on the JVM: if references are rep-

resented as java.lang.Objects, then their

casting incurs a bytecode instruction. We

don’t yet consider this as a cost in the current

implementation.

• Presence of explicit tag. This is essentially the access cost of a variant’s tag.

5.7 Flattening Packing Annotations

Given a #packing annotation, we must convert it into a series of scalars and

interval assignments that is recognized by the solver. Each flattened packing
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expression is a pair containing a bit pattern12 and a list of interval assignments. 12 Each packing bit is either 0, 1, assigned (●)

or unassigned (?).This flattening takes place according to the rules in Figure 8. The context Γ

stores a mapping of parameters or fields to bit widths; we assume an ambient

context ∆ containing all packing declarations in the program.

• The rule for flattening bit layouts is omitted, but is as expected: for example,

flattening the pattern 0b_00aa_bb11 becomes ({a ↦ 4, b ↦ 2}, 00●●●●11).

• The rule for application states that we flatten the packing declaration’s ex-

pression with placeholder fields representing parameters. We flatten all the

arguments, and insert the arguments’ patterns into the appropriate spots,

and shift the assignments by their positions in the full expression.

Field

∆, Γ ⊢ flatten( f ) = ({ f ↦ 0}, ●⋯●
±
Γ( f )
)

Literal

∆, Γ ⊢ flatten(c) = (∅,bits(c))

Concat

∆, Γ ⊢ flatten(e i) = (A i ,B i)
∆, Γ ⊢ flatten(concat(e i)) = (⋃

i
A i ,B i)

Application

packing p(x i ∶ n i) ∶ n = e ∈ ∆ ∆, Γ ⊢ flatten(e i) = (A i ,B i) ∆,{x i ↦ n i} ⊢ flatten(e) = (A,B)
∆, Γ ⊢ flatten(p(e i)) = (⋃

i
{ f ↦ s + A(x i) ∣ f ↦ s ∈ A i},B[A i⋯A i + n i ↦ B i])

Figure 8: Rules for flattening packing expres-

sions into patterns and assignments.

6 Code Normalization

After solving for a good unboxing and packing solution, the SSA IR must be

rewritten in order to make use of this new representation (Figure 9). This takes

place during the normalization phase.

In the front-end of the Virgil compiler, ADTs are desugared to classes, so

they share some of the same SSA operations with classes. There are several SSA

operations that can operate or create these ADT values:

• ClassAlloc, which creates a value of the specified ADT case from its con-

stituent fields;

• VariantGetField, which extracts a specific field from an ADT value;

• VariantGetTag, which extracts a numeric tag from an ADT value;

• VariantReplaceNull, which replaces a possibly null reference with the de-

fault value of that variant. This is necessary as the default value of a class is

null, but ADTs are non-nullable.
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ClassAlloc<T.A>( )

(12, 34)

0
VariantGetTag<T>( )

IntEq( , )

TypeSubsume<T, T.A>( )

GetField[x]<T.A>( )

TupleGetElem[0]( )

IntAdd( , )

1

IntEq( , )

IntAdd( , )

0
12 34 null 0

1

Heap Allocation

Dereference

Dereference

match (T.A((12,34))) {

    A(x, y) => return x + 1;

    ...

unboxed as

scalars

no deref

SSA

Generation

no deref

Figure 9: An illustration of SSA rebuilding.

6.1 ADT Operations

Wepresent a simplified but illustrative example of the normalization process for

ADTs. Suppose our pre-normalization typed SSA supports the following types:

τ ∶∶= int ∣ (τ i) ∣ class(τ)

while the post-normalization typed SSA expects the types

ρ ∶∶= int ∣ class(ρ) ∣ (ρ i).

Consider an ADT of the form τ = adt(c i ↪ τ i), in which the desugaring

process has synthesized the associated types τc i = class(τ i) and τc = class(⋅).
Operations on the variant τ have been generated as typed SSA operations on

class types.

As described in the previous section, we create a variant norm for τ that

contains information about how the fields and tag are represented (ρfield and

ρtag). We normalize types as in Figure 10.

int↝ int

τ i ↝ ρ i
(τ i) ↝ (ρ i)

class(τ) boxed τ ↝ ρ

class(τ) ↝ class(ρ)
class(τ) unboxed variant

class(τ) ↝ (ρfield, ρtag)

Figure 10: Normalization of types.
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Given a pre-normalization typed SSA with instructions

p ∶∶= ⋯ ∣ x = Const(v)
∣ x = ClassAlloc⟨τ⟩(y)
∣ x = GetContents⟨τ⟩(y)
∣ x = GetTag⟨τ⟩(y)

and a post-normalization typed SSA with instructions

q ∶∶= ⋯ ∣ x = Const(w)
∣ x = ClassAlloc⟨ρ⟩(y)
∣ x = GetContents⟨ρ⟩(y)
∣ x = (y i)
∣ x = y[i]

we can express instruction normalization rules as in Figure 11.

y ↝ y′

x = ClassAlloc⟨τc i ⟩(y) ↝ x = (z,Const(i))
y ↝ y′

x = ClassAlloc⟨τ⟩(y) ↝ x = ClassAlloc⟨τ⟩(y′)

y ↝ (y′0, y′1)
x = GetContents⟨τ⟩(y) ↝ x = y′0

y ↝ (y′0, y′1)
x = GetTag⟨τ⟩(y) ↝ x = y′1

Figure 11: Normalization of SSA Instructions.

6.2 Variant Equality

Variants in Virgil exhibit structural equality. For unboxed variants, equality is

normalized as a switch over the variant’s tag. For each case, we perform a field-

by-field comparison for equality.

6.3 Packed Values

For variant allocation, we assemble packed scalars by performing bitwise left

shifts and ors based on the calculated intervals of each field. Field access is

normalized as bitwise right shifts and a masking operation.

We have to be more careful when assembling scalars containing packed ref-

erences. In order to represent packed references, we introduce a new value

type IntRepType in the IR for bits backed by an integer, representing a spe-

cific scalar. For instance, on a 64-bit target, a packed reference would be an

IntRepType backed by u64, representing an R64 scalar. Since the scalar is

known, the machine lowering phase can tell if a value of IntRepType repre-

sents a reference, in order to generate accurate bitmaps or stackmaps.
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6.4 Live Records

Due to the compile-time execution of code in components that are encoded into

the heap image, the interpreter generates live records at compile time before

normalization. Their representation still rely on their pre-normalization type

(with fields that could include complex types).

Instead of having a separate method that normalizes and packs scalars for

live records, we use the SSA interpreter to normalize these records, by running

them through ClassAlloc. Conveniently, this reduces code duplication and

guarantees that ADT value representation is identical at compile-time (on the

heap image) and run-time.

Although this approach is convenient, it is not the fastest as it involves in-

stantiating an interpreter to execute value normalization. Themost performant

option would be to create the requisite values directly from the variant normal-

ization at the host level.

7 Experiments

There are several dimensions on which we can measure the impact of these

changes.

• ExecutionTime. There are several contrasting factors at play here that influ-

ence program execution time. Packed scalars can increase field access cost,

as bitwise operations have to be performed to extract values. Unboxing also

increases register pressure, which may result in poorer register allocation.

Simultaneously, forgoing the need for heap allocation could save the cost of

dereference and ADT value creation.

• Memory Usage. With the elimination of heap allocation for unboxed vari-

ants, we would expect less GC pressure and lower memory usage. We can

also measure the space savings from packing multiple fields into scalars on

real-world type declarations.

7.1 Microbenchmarks

We have written a series of microbenchmarks to test the performance impact

of these changes. These microbenchmarks have different characteristics:

• Allocations and Field Access. Execution time for ADT-heavy programs is

sensitive to the number of allocations if their ADT representations are boxed.

Each allocation incurs a runtime cost and could trigger additional GC cycles.

Unboxed ADTs do not require any allocations. Field access is also slower for

boxed representations due to the cost of an indirection.

• Movement. Several of the benchmarks move ADT values around (e.g. by

shuffling their position in an array or passing them to functions). Boxed
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ADTs should perform better here, as they only involve the movement of one

reference value rather than the movement of multiple scalars.

The execution time of these microbenchmarks was assessed on the x86-64-

darwin target by averaging over 10 runs.

7.2 Big Programs: Wizard Engine and Virgil Compiler

We compile a version of the Wizard Wasm engine with unboxed and boxed

versions of Value. The two versions of Wizard are run against several bench-

marks (Polybench [13] and Ostrich [9]) inWizard’s interpreter mode, and their

execution time is recorded. Since the Value datatype is used heavily by the in-

terpreter, we would expect some performance impact here. As only Linux is

supported for Wizard’s native targets, these changes were assessed on the x86

-64-linux target.

Lastly, we measure the time taken for the Virgil compiler to compile itself

(bootstrapping) with unboxed and boxed versions of Operand, which is used

during machine code generation.

8 Results

8.1 Microbenchmarks
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Figure 12: A comparison of execution times

for boxed, unboxed and packed ADTs on sev-

eral microbenchmarks.
In Figure 12, we see that for most of the microbenchmarks, execution time

is reduced, sometimes substantially. Memory usage is also reduced for most

benchmarks.

For one of the microbenchmarks (Figure 13), execution time is significantly

degraded. This microbenchmark tests the passing of an unboxed ADT with

many scalars as a function parameter. This confirms our hypothesis that aggres-
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sive unboxing can degrade performance when ADT values are moved around

a lot during execution.
type T #unboxed {

case A(x: int, y: int, z: int,...

case B(x: int, y: int, z: int,...

case C(x: int, y: int, z: int,...

case D(x: int, y: int, z: int,...

}

def shuffle(m: T, n: T, o: T, p: T,

q: T) -> Array<T> {

return [m, n, o, p, q];

}

Figure 13: A benchmark with degraded per-

formance on unboxed representations.

Several benchmarks have increased memory usage for packed representa-

tions over unpacked representations. This is due to inefficiency in the backing

types of packed scalars (a packed scalar containing a u2 becomes a u64 by de-

fault). This problem can be solved by always picking the shortest integer repre-

sentation possible.

8.2 Big Programs: Wizard Engine and Virgil Compiler

FormostWasm benchmarks, unboxing yieldedmodest execution performance

benefits of 0.5-5% (Figure 14).

One notable exception was the heat-3d benchmark, which saw a perfor-

mance degradation of 5%. We suspect that this is due to its heavy use of floats,

which are encoded as B64s in the representation of Value. Thus, access to the

fields of Value.F32 or Value.F64 require movq instructions to floating point

registers and back, negating the benefits of unboxing.
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Figure 14: A comparison of execution times in

the boxed and unboxed versions of Wizard.
The time for bootstrapping the compiler was improved with unboxing by

about 1%. We do not expect the performance improvement to be too large here,

since Virgil compiles itself without triggering a GC cycle, and code generation

is only one part of multiple phases.

9 Conclusion and Future Work

The work that we have done in improving Virgil’s representation of ADTs pro-

vides an unparalleled level of control and ergonomics, with a combination of

features not found in any existing language. Nonetheless, there are a number of

improvements to the variant packing algorithm and other future directions we

would like to explore.
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9.1 Better Bit-Level Layouts

Although the creation of the language of packing expressions and declarations

were intended for programmer specification ofADT layouts, this system ismore

general. A few potential language features include:

• Pattern matching on bit layouts. Figure 15 illustrates an example of extending

the match syntax to support matching over bit layouts. Here, type annota-

tions must be provided in the parameters of the case arm.

• Bit extraction. It is frequently necessary tomanipulate rawbitswhenworking

in certain domains, e.g. when writing an assembler. The necessary machin-

ery to support this is already present, used to flatten packing expressions into

patterns and intervals.

match(z) {

MyPacking(x: u2) => return x;

OtherPacking(x: u2, y: u2) => return x + y;

}

Figure 15: An example of a possible syntax for

bit pattern matching.

9.2 Non-Contiguous Intervals and Mixed Endianness

At present, the current implementation only allows for fields to be represented

by contiguous bits in the scalar. Certain encodingsmake use of non-contiguous

intervals. Non-contiguous intervals will also enable a larger set of packing prob-

lems to be solved.

Additionally, we do not support splitting fields across multiple scalars. Ac-

cess cost for these fields would be larger, but the space savings could be worth-

while under certain circumstances. Thus, we’d like for this to be something

programmer-annotated to inform the compiler that the splitting is necessary.

Our current syntax for packing expressions can be readily extended to ex-

press these new concepts (Figure 16).

packing P(x: u2) = #reverse(x);

type T {

case A(x: u64, y: u64) #packing (#concat(x[0:32], y[0:32]), #concat(x[32:64], y[32:64]));

Figure 16: An example of a possible syntax for

field reversal and field splitting.

9.3 SAT-Based Solving and Profile-Guided Unpacking

Weplan on creating a separate SAT encoding of the packing problem. An exter-

nal utility would take Virgil ADT declarations, convert them into the equivalent
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SAT problem, find a solution (or declares that no solution is possible), and re-

encode the solution into a Virgil packing annotation. This has the benefit of no

compile-time overhead in solving, and enables us to leverage the performance

strides that have been achieved in the field of SAT solving.

With a SAT-based encoding, we can also assign a cost function to the various

configurations in order to find a minimum-cost configuration. Additionally, a

profile of the program running on a representative input can be taken, counting

the number of variant allocations and field accesses. This profile can be fed into

the cost function to derive a representation that best suits the characteristics of

the program.

9.4 Cycle-Breaking Recursive ADTs

We do not unbox any ADTs that are recursive (or mutually recursive). Ideally,

it should be possible for the compiler to selectively box an ADT, provided that

all recursive instances are boxed.

More generally, ADT declarations induce a directed graph where each node

represents a type, and each edge represents a field. This problem reduces to

removing edges from this graph to break all cycles.

type T {

    case A(l: U);

    case B(r: T);

}

type X {

    case A(l: T);

    case B(r: U);

}

type U {

    case A(x: T);

    case B(y: X);

}

T

T.A.l

U.A.x

U.B.y

X.A.l

X.B.r
T.B.r

X

U

Figure 17: An example of a possible syntax for

field reversal and field splitting.
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