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Abstract

Symbolic Model Checking [3, 14] has proven to be a powerful technique for the verification of
reactive systems. BDDs [2] have tiadnally been used as a symbolic representation of the sys-
tem. In this paper we show how boolean decision procedures, ia&ték's Method [16] or the

Davis & Putnam Procedure [7], can replace BDDs. This new technique avoids the space blow up
of BDDs, generates counterexamples much faster, and sometimes speeds up the verification. In
addition, it produces counterexamples of minimal length. We introdimeiaded model check-

ing procedure for LTL which reduces model checking to pratiasal satisfiability. We show that
bounded LTL model checking can be done without a tableau construction. We have implemented
amodel checkdBMC, based on bounded model checking, and preliminary results are presented.






1 Introduction

Model checking [4] is a powerful technique for verifying reactive systems. Able to find
subtle errors in real commercial designs, it is gaining wide indusiciz¢ptance. Com-
pared to other formal verification techniques (e.g. theorem proving) model checking is
largely automatic.

In model checking, the specification is expressed in temporal logic and the sys-
tem is modeled as a finite state machine. For realistic designs, the number of states of
the system can be very large and the explicit traversal of the state space becomes in-
feasible. Symbolic model checking [3, 14], with boolean encoding of the finite state
machine, can handle more than’4@tates. BDDs [2], a canonical form for boolean
expressions, have traditionally been used as the underlying representation for symbolic
model checkers [14]. Model checkers based on BDDs are usually able to handle sys-
tems with hundreds of state variables. However, for larger systems the BDDs generated
during model checking become too large for currently available computers. In addition,
selecting the right ordering of BDD variables is very important. The generation of a
variable ordering that results in small BDDs is often time consuming or needs manual
intervention. For many examples no space efficient variable ordering exists.

Propositional decision procedures (SAT) [7] also operate on boolean expressions
but do not use canonical forms. They do not suffer from the potential space explosion
of BDDs and can handle propositional satisfiability problems with thousands of vari-
ables. SAT based techniques have been successfully applied in various domains, such
as hardware verification [17], modal logics [9], formal verification of railway control
systems [1], and Al planning systems [11]. A number of efficient implementations are
available. Some notable examples are the PROVE tool [1] basedbmastk’s Method
[16], and SATO [18] based on the Davis & Putnam Procedure [7].

In this paper we present a symbolic model checking technique based on SAT pro-
cedures. The basic idea is to consider counterexamples of a particular keagth
generate a propositional formula that is satisfiable iff such a counterexample exists. In
particular, we introduce the notion bbunded model checking/here the bound is the
maximal length of a counterexample. We show that bounded model checking for lin-
ear temporal logic (LTL) can be reduced to propositional satisfiability in polynomial
time. To prove the correctness and completeness of our technique, we establish a cor-
respondence between bounded model checking and model checking in general. Unlike
previous approaches to LTL model checking, our method does not require a tableau or
automaton construction.

The main advantages of our technique are the following. First, bounded model
checking finds counterexamples very fast. This is due to the depth first nature of SAT
search procedures. Finding counterexamples is arguably the most important feature of
model checking. Second, it finds counterexamples of minimal length. This feature helps
the user to understand a counterexample more easily. Third, bounded model check-
ing uses much less space than BDD based approaches. Finally, unlike BDD based ap-
proaches, bounded model checking does not need a manually selected variable order or
time consuming dynamic reordering. Default splitting heuristics are usually sufficient.

To evaluate our ideas we have implemented a BMC based on bounded model
checking. We give examples in which SAT based model checking significantly out-



performs BDD based model checking. In some cases bounded model checking detects
errors instantly, while the BDDs for the initial state cannot be built.

The paper is organized as follows. In the following section we explain the basic
idea of bounded model checking with an example. In Section 3 we give the semantics
for bounded model checking. Section 4 explains the translation of a bounded model
checking problem into a propositional satisfiability problem. In Section 5 we discuss
bounds on the length of counterexamples. In Section 6 our experimental results are
presented, and Section 7 describes some directions for future research.

2 Example

Consider the following simple state machidethat consists of a three bit shift register
x with the individual bits denoted b¥{0], x[1], andx[2]. The predicatd (x,X) denotes
the transition relation between current state valuesd next state values and is
equivalent to:

(X[ =x1) A (X[1] =X2A) A (X[2] = 1)

In the initial state the content of the registecan be arbitrary. The predicalté) that
denotes the set of initial statestise.

This shift register is meant to be empty (all bits set to zero) after three consecu-
tive shifts. But we introduced an error in the transition relation for the next state value
of X[2], where an incorrect value 1 is used instead of 0. Therefore, the property, that
eventually the register will be empty (writtenxas- 0) after a sufficiently large number
of steps is not valid. This property can be formulated as the LTL forrfke= 0).

We translate the “universal” model checking problaf(x = 0) into the “existential”
model checking problerBG(x # 0) by negating the formula. Then, we check if there
is an execution sequence that fulfi@x # 0). Instead of searching for an arbitrary
path, we restrict ourselves to paths that have at kedt states, for instance we choose
k= 2. Call the first three states of this pathx; andx, and letxg be the initial state (see
Figure 1). Since the initial content @&fcan be arbitrary, we do not have any restriction
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Fig. 1. Unrolling the transition relation twice and adding a bamég.

on Xy. We unroll the transition relation twice and derive the propositional fornfiyla
defined as(xo) A T (X0, X1) A T (X1, X2). We expand the definition df andl, and get the



following formula.

(x1[0] = xo[1]) A (xa[1] =X0[2]) A (
([0 = xa[1]) A (1] =xa[2]) A (

(2] =
2]
Any path with three states that is a “witness” 8(x # 0) must contain a loop. Thus,

we require that there is a transition frognback to the initial state, to the second state,

or to itself (see also Figure 1). We represent this transitiob; atefined asT (xz, %)
which is equivalent to the following formula.

([0 =x2[1]) A (%[ =%([2]) A (x[2] = 1)

) A 1st step

X1 1
X2 1) 2nd step

Finally, we have to make sure that this path will fulfill the constraints imposed by the
formulaG(x # 0). In this case the property defined as; # 0 has to hold at each state.
S is equivalent to the following formula.

%[0 =1 vx[=1vx[2=1)

Putting this all together we derive the following propositional formula.

2 2
fm/\\/Li/\/\S (1)

i=0 i=0

This formula is satisfiable iff there is a counterexample of length 2 for the original
formulaF(x = 0). In our example we find a satisfying assignment (foy by setting
x[j]:=1foralli,j=0,1,2.

3 Semantics

ACTL* is defined as the subset of formulas of CTL* [8] that are in negation normal
form and contain only universal path quantifiers. A formula isnegation normal

form (NNF) if negations only occur in front of atomic propositions. ECTL* is de-
fined in the same way, but only existential path quantifiers are allowed. We consider
thenext timeoperator X', the eventualityoperator F’, the globally operator G’, and
theuntil operator U’'. We assume that formulas are in NNF. We can always transform

a formula in NNF without increasing its size by including tiebeaseoperator R’

(f Rgiff =(=f U=g)). Inan LTL formula no path quantifier&(r A) are allowed. In

this paper we concentrate on LTL model checking. Our technique can be extended to
handle full ACTL* (resp. ECTLY).

Definition 1. A Kripke structurds a tuple M= (S, T, ¢) with a finite set of states S,
the set of initial states € S, a transition relation between statesTTSx S, and the
labeling of the state& S— P (A) with atomic propositioné\.

We use Kripke structures as models in order to give the semantics of the logic. For
the rest of the paper we consider only Kripke structures for which we hiagelaan en-
coding We require thab= {0, 1}", and that each state can be represented by a vector of



state variables= (s(1), ...,s(n)) wheres(i) fori = 1,...,nare propositional variables.

We define propositional formula(s), fr(s,t) and fp(s) as: fi(s) iff se |, fr(st) iff

(st) e T,andfp(s) iff p & (s). For the rest of the paper we simply UBgs, t) instead

of fr(st) etc. In addition, we require that every state has a successor state. That is, for
all se Sthere is & € Swith (s,t) € T. For(s,t) € T we also writes— t. For an infinite
sequence of statgs= (o, sy, . ..) we definert(i) = § and™ = (s,541,...) fori € IN.

An infinite sequence of statesis apathif (i) — (i + 1) forall i € IN.

Definition 2 (Semantics).Let M be a Kripke structurert be a path in M and f be an
LTL formula. Thermt|= f (f is valid alongm) is defined as follows.

T p iff  pe(n(0)) nE-piff pg ((m(0))
nEfAag iff mEfandmniEg nE fvg iff mEformEg
= Gf iff  Vi.m|=f e Ff iff Ji.mf

= Xf iff T f
niEfUg iff Ji[nl=g and Vj, j<i. T | f]
nifRg iff Vi[nlg or 3j,j<i.tlEf]

Definition 3 (Validity). An LTL formula f isuniversally validin a Kripke structure M
(in symbols M= Af) iff t}= f for all pathsttin M with 1i(0) € |. An LTL formula f is
existentially validin a Kripke structure M (in symbols M Ef) iff there exists a path
min M withtl= f and(0) € 1.

Determining whether an LTL formul&is existentially (resp. universally) valid in a
given Kripke structure is called axistentiaresp.universa) model checking problem

In conformance to the semantics of CTL* [8], it is clear that an LTL formila
universally valid in a Kripke structurl! iff =f is not existentially valid. In order to
solve the universal model checking problem, we negate the formula and show that the
existential model checking problem for the negated formula has no solution. Intuitively,
we are trying to find a counterexample, and if we do naiceed then the formula
is universally valid. Therefore, in the theory part of the paper we only consider the
existential model checking problem.

The basic idea dbounded model checkingto consider only &nite prefixof a path
that may be a solution to an existential model checking problem. We restrict the length
of the prefix by a certain bounkl In practice we progressively increase the bound,
looking for longer and longer possible counterexamples.

A crucial observation is that, though the prefix of a path is finite, it still might repre-
sent an infinite path if there iskaack loopfrom the last state of the prefix to any of the
previous states (see Figure 2(b)). If there is no such back loop (see Figure 2(a)), then
the prefix does not say anything about the infinite behavior of the path. For instance,
only a prefix with a back loop can represent a withessXpr Even if p holds along all
the states frongg to ¢, but there is no back loop from to a previous state, then we
cannot conclude that we have found a witness3pr sincep might not hold ats 1.

Definition 4. For | < k we call a pathrta (k,1)-loopif (k) — (1) andmt= u- v* with
u=(1(0),..., (I 1)) and v= (1(l), ..., T(K)). We callrt simply a kloop if there is
anl e IN with | <k for whichttis a (k, 1)-loop.



(@ noloop (b) (k,1)-loop

Fig. 2. The two cases for boundedpath.

We give aboundedsemantics that is an approximation to the unbounded semantics
of Definition 2. It allows us to define the bounded model checking problem and in the
next section we will give a translation of a bounded model checking problem into a
satisfiability problem.

In the bounded semantics we only consider a finite prefix of a path. In particular,
we only use the firsk+ 1 states &, ...,s) of a path to determine the validity of a
formula along that path. If a path iskdoop then we simply maintain the original LTL
semantics, since all the information about this (infinite) path is contained in the prefix
of lengthk.

Definition 5 (Bounded Semantics for a Loop)Let ke IN andttbe a k-loop. Then an
LTL formula f isvalid along the pattm with boundk (in symbolst = f) iff tj= f.

Assume thattis not ak-loop. Then the formuld := Fp is valid alongrtin the
unbounded semantics if we can find an indexiN such thatp is valid along the suffix
T of 7L In the bounded semantics thie+ 1)-th staterik) does not have a successor.
Therefore, we cannot define the bounded semantics recursivelgufiieege.g.1t) of
1. We keep the originatinstead but add a parameten the definition of the bounded
semantics and use the notatjes). The parameteris the current position in the prefix
of Tt In Lemma 7 we will show thait =, f impliestt |= f.

Definition 6 (Bounded Semantics without a Loop)Let ke IN, and lettt be a path
that isnota k-loop. Then an LTL formula f igalid alongr with boundk (in symbols
n= f) iff TP f where

mEp iff  pe(mn(i)) mE-piff pg (i)
nEl fag  iff mE, fandniElg R, fvg iff mEL formpEg
nEL Gf  isalways false ml Ffiff 3ji<j<kmElf

e Xfiff i <kandmEttf
nEl, fUg iff 3j,i<j<k[mErg and ¥n,i<n< j. TR f]
nEl, fRg iff 3j,i<j<k[mEyf and Vni<n<j. mERg]
Note that ifrtis not ak-loop, then we say th& f is not valid alongtin the bounded

semantics with bounkisincef might not hold alongt**. Similarly, the case fof R g
whereg always holds and is never fulfilled has to be excluded. These constraints



imply that for the bounded semantics the duality®fandF (-Ff = G—f) and the
duality ofR andU (—=(f U g) = (—f) R (—g)) no longer hold.

The existential and universal bounded model checking problems are defined in the
same manner as in Definition 3. Now we describe how the existential model checking
problem M = Ef) can be reduced to laoundedexistential model checking problem
(M [« Ef).

Lemma 7. Let h be an LTL formula antta path, themj=¢ch = nEh

Proof. If Ttis ak-loop then the conclusion follows by definition. In the other case we
assume thattis not a loop. Then we prove by induction over the structuré ahd

i < kthe stronger propertgt =} h = T = h. We only consider the most complicated
caseh=fRg.

nE fRg © 3ji<j<k[mE=lfandvn i<n<j mElg]
= 3j,i<j<k[mfandyni<n<j mk=g]
= 3j,i<j[WEfandV¥ni<n<j m=g]
Letj = j<iandn = nai
= 3j[Mt'=f andvn, 0 <j. Tt =g
= 3j[(M)f andvn n< . ()" £ g]
= Yn[(M)"kEgor3j, j<n (M) |f]
= nlEfRg
In the next-to-last step we used the following fact:
Im[mM"=fandvl, I<mmEg] = vn[mkE=gordj,j<ntdfEf]

Assume thamis the smallest number such th#ét |= f andrt |= g for all | with | <m.
In the first case we considar> m. Based on the assumption, there exists n such
thattt |= f (choosej = m). The second case iis< m. Becausat = g forall | < mwe
haver |= g for all n < m. Thus, for alln we have proven that the disjunction on the
right hand side is fulfilled. a

Lemma 8. Let f be an LTL formula f and M a Kripke structure. If M Ef then there
exists ke IN with M = Ef

Proof. In [3, 5, 12] it is shown that an existential model checking problem for an LTL
formula f can be reduced to FairCTL model checking of the forniaGtrue in a
certain product Kripke structure. This Kripke structure is the product of the original
Kripke structure and a “tableau” that is exponential in the size of the forridathe
worst case. If the LTL formuld is existentially valid inM then there exists a path

in the product structure that starts with an initial state and ends with a cycle in the
strongly connected component of fair states. This path can be chosen tk-loe@
with k bounded byS - 2Tl which is the size of the product structure. If we project this
path onto its first component, the original Kripke structure, then we get arpthidt is
ak-loop and in addition fulfillst|= f. By definition of the bounded semantics this also
impliesttj= f. O



The main theorem of this section states that, if we take all possible bounds into
account, then the bounded and unbounded semantics are equivalent.

Theorem 9. Let f be an LTL formula, M a Kripke structure. Then MEf iff there
exists ke IN with M = Ef.

4 Translation

In the previous section, we defined the semantics for bounded model checking. We now
reduce bounded model checking to propositional satisfiability. This reduction enables
us to use efficient propositional decision procedures to perform model checking.

Given a Kripke structur#!, an LTL formulaf and a bound, we will construct a
propositional formuld M, f ],. The variablesy, ..., sc in [ M, f , denote a finite se-
quence of states on a pathEachs is a vector of state variables. The form{ilist, f [,
essentially represents constraintssan . ., s such thaf] M, f ], is satisfiable ifff is
valid alongrt.

The size of M, f ], is polynomial in the size of if common subformulas are
shared (as in our to®@MC). It is quadratic irk and linear in the size of the propositional
formulas forT, | and thep € A. Thus, existential bounded model checking can be
reduced in polynomial time to propositional satisfiability.

To construcf M, f ], we first define a propositional formufaM ], that constrains
%, - - -, to be on avalid patttin M. Second, we give the translation of an LTL formula
f to a propositional formula that constraingo satisfyf.

Definition 10 (Unfolding the Transition Relation). For a Kripke structure M, k& IN

k—1

IMI:=1(s0) A A\ T(S,S+1)
i=0

Depending on whether a path igdoop or not (see Figure 2), we have two different
translations of the temporal formufa In Definition 11 we describe the translation if

[

the path is not a loop [ ]|,”). The more technical translation where the path is a loop
¢“,[- 1) is given in Definition 13.

Consider the formula:= p U q and a pathtthat is not &-loop for a giverk € IN
(see Figure 2(a)). Starting &tfor i € IN with i < k the formulah is valid alongrt with
respect to the bounded semantics iff there is a positiaith i < j < k andq holds
att(j). In addition, for all statest(n) with n € IN starting atr(i) up tor(j <1) the
propositionp has to be fulfilled. Therefore the translation is simply a disjunction over
all possible positiong at whichq eventually might hold. For each of these pians
a conjunction is added that ensures thdtolds along the path fromyi) to (] <1).
Similar reasoning leads to the translation of the other temporal operators.

The translation ff - ], maps an LTL formula into a propositional formula. The
parametek is the length of the prefix of the path that we consider iaisd¢he current
position in this prefix (see Figure 2(a)). When we recursively process subformulas,
changes buk stays the same. Note that we define the translation of any for@Giiks
false. This translation is consistent with the bounded semantics.



Definition 11 (Translation of an LTL Formula without a Loop). Foran LTL formula
fandkiec IN, withi<k

[plk = p(s) [-plk = —p(s)
[frglk = [fIAlolk  [fvale = [fLvIglk
[Gf], := false [FfD, = VI
[XfJL = ifi<kthenf]* else false

[fuglk = V& ([olin AZTITR)
[fRoT = Vii(IfIAALLal)

Now we consider the case where the pathksi@op. The translation, - ], of an
LTL formula depends on the current positioand on the length of the prefk It also
depends on the position where the loop starts (see Figure 2(b)). This position is denoted
by for loop.

Definition 12 (Successor in a Loop)Letk I, i € IN, with |,i < k. Define the successor
sucgi) ofiina (k,1)-loop assucdi) := i+ 1fori < k andsucdi) := | fori = k.

Definition 13 (Translation of an LTL Formula for a Loop). Let f be an LTL formula,
k,1,ie N, withli<Kk.

Ipli = p(s) [-pli = -p(s)
[frgl = m‘k Qolk  [fvalk = m‘k ([ alk
I[[Gf]]:( = jmlr‘(ll [[f]]k I[[Ff]]:( = jmlr‘(ll [[f]]k
IXf = [[f]]S“C‘"

LfUglic = VG (Lol A A LFTR) v
,:.(.ﬂgﬂkAAnzi.[[f]]kAAn;.l.mﬂ)
[fRgl = /\Ij(zmir‘(i,l) Lali v

VIS (FDE A A TOTR ) v
(DA NS TOTR A Aby 1T9TR)

The translation of the formula depends on the shape of the path (whether itis a loop
or not). We now define a loop condition to distinguish these cases.

Definition 14 (Loop Condition). For k,I € IN, let|Ly := T (s, ), Lk := VK o 1Lk

Definition 15 (General Translation).Let f be an LTL formula, M a Kripke structure
and ke IN

[M, f D= [M DA ((ﬂLkAME) Y (.LkA.[[f]]‘k’))

1=0



The left side of the disjunction is the case where there is no back loop and the
translation without a loop is used. On the right side all possible starts loop are
tried and the translation for @&, | )-loop is conjuncted with the correspondilg loop
condition.

Theorem 16. [ M, f ], is satisfiable iff M=y Ef.

Corollary 17. M = A=f iff [ M, f ], is unsatisfiable for all ke IN.

5 Determining the bound

In Section 3 we have shown that the unbounded semantics is equivalent to the bounded
semantics if we consider all possible bounds. This equivalence leads to a straightfor-
ward LTL model checking procedure. To check whetidee E f, the procedure checks

M EEf fork=0,1,2,.... If M ¢ Ef, then the procedure proves thdt= Ef and
produces a witness of lengkhIf M [~ Ef, we have to increment the valueloindefi-

nitely, and the procedure does not terminate. In this section we establish several bounds
onk. If M [£¢ Ef for all k within the bound, we conclude thist |~ Ef.

51 ECTL

ECTL is a subset of ECTL* where each temporal operator is preceded by one existential
path quantifier. We have extended bounded model checking to handle ECTL formulas.
Semantics and translation for ECTL formulas can be found in the full version of this
paper. In general, better bounds can be derived for ECTL formulas than for LTL formu-
las. The intersection of the two sets of formulas includes many temporal properties of
practical interest (e.d=Fp andEGp). Therefore, we include the discussion of bounds
for ECTL formulas in this section.

Theorem 18. Given an ECTL formula f and a Kripke structure M. L&t| be the
number of states in M, then M Ef iff there exists k |[M| with M = Ef.

In symbolic model checking, the number of states in a Kripke structure is bounded
by 2", wheren is the number of boolean variables to encode the Kripke structure.
Typical model checking problems involve Kripke structures with tens or hundreds of
boolean variables. The bound given in Theorem 18 is often too large for practical prob-
lems.

Definition 19 (Diameter).Given a Kripke structure M, thdiameterof M is the mini-
mal number c& IN with the following property. For every sequence of stages s, Sq+1
with (s,s+1) € T fori < d, there exists a sequence of statgs.t,t; where 1< d such
thatty = o, t = Sy+1 and(tj,tj11) € T for j < I. In other words, if a state v is reachable
from a state u, then v is reachable from u via a path of length d or less.

Theorem 20. Given an ECTL formula f= EFp and a Kripke structure M with diam-
eter d, M= EFp iff there exists k d with M |=¢ EFp.



Theorem 21. Given a Kripke structure M, its diameter d is the minimal number that
satisfies the following formula.

d d-1 d
VS0, ..., Sa41- o, - o ta. A T(S,842) = (to=s0A A\ Tt tix) A\ ti = sa41)
i=0 i=0 i=0

For a Kripke structure with explicit state representation, well-known graph algo-
rithms can be used to determine its diameter. For a Kripke strubtuséith a boolean
encoding, one may verify thatis indeed a diameter d¥l by evaluating a quantified
boolean formula (QBF), shown in Theorem 21. We conjecture that a quantified boolean
formula is necessary to express the propertydhatthe diameter oM. Unfortunately,
we do not know of an efficient decision procedure for QBF.

Definition 22 (Recurrence Diameter).Given a Kripke structure M, iteecurrence di-
ameteris the minimal number & IN with the following property. For every sequence
of states g, ...,S4+1 With (s,541) € T fori <d, there exists £ d such that g1 =s;.

Theorem 23. Given an ECTL formula f and a Kripke structure M with recurrence
diameter d, M= Ef iff there exists ki d with M |=¢ Ef.

Theorem 24. Given any Kripke structure M, its recurrence diameter d is the minimal
number that satisfies the following formula

d d
Vso, .., Sa+1- AT(s,511) = /S =su41
i=0 i=0

The recurrence diameter in Definition 22 is a bounddor bounded model check-
ing that is applicable for all ECTL formulas. The property of a recurrence diameter can
be expressed as a propositional formula as shown in Theorem 24. We may use a propo-
sitional decision procedure to determine whether a numliethe recurrence diameter
of a Kripke structure. The bound based on recurrence diameter is not as tight as that
based on the diameter. For example, in a fully connected Kripke structure, the graph
diameter is 1 while the recurrence diameter equals the number of states.

5.2 LTL

LTL model checking is known to be PSPACE-complete [15]. In section 4, we reduced
bounded LTL model checking to propositional satisfiability and thus showed that it is in
NP. Therefore, a polynomial bound &with respect to the size &l and f for which

M Ex Ef & M [ Ef is unlikely to be found. Otherwise, there would be a polyno-
mial reduction of LTL model checking problems to propositional satisfiability and thus
PSPACE = NP.

Theorem 25. Given an LTL formula f and a Kripke structure M, |&1| be the number
of states in M, then Ni= Ef iff there exists k< M| x 2/flwith M =y Ef.

For the subset of LTL formulas that involves only temporal operd&asdG, LTL
model checking is NP-complete [15]. For this subset of LTL formulas, it can be shown
that there exists a bound @&dinear in the number of states and the size of the formula.



Definition 26 (Loop Diameter). We say a Kripke structure M lasso shapei every
path p starting from an initial state is of the formpf, where  and , are finite
sequences of length less or equal to u and v, respectively. We defiloephdiameter
of M as(u,v).

Theorem 27. Given an LTL formula f and a lasso-shaped Kripke structure M, let the
loop diameter of M béu, v), then M= Ef iff there exists k& u+ v with M = Ef.

Theorem 27 shows that for a restricted class of Kripke structures, small bounds on
k exist. In particular, if a Kripke structure is lasso shageid,bounded by + v, where
(u,V) is the loop diameter dfl.

6 Experimental Results

We have implemented a model checlBMC based on bounded model checking. Its
input language is a subset of the SMV language [14]. It outputs a SMV program or
a propositional formula. For the propositional output mode, two different formats are
supported. The first format is the DIMACS format [10] for satisfiability problems. The
SATO tool [18] is a very efficient implementation of the Davis & Putnam Procedure [7]
and it uses the DIMACS format. We also support the input format of the PROVE Tool
[1] which is based on &tfarck’s Method [16].

As benchmarks we chose examples where BDDs are known to behave badly. First
we investigated a sequential multiplier, the sequential shift and add multiplier of [6].
We formulated asnodel checkingroblem the following property: when the sequential
multiplier is finished its output is the same as the output of a combinational multiplier
(the C6288 circuit from the ISCAS’'85 benchmarks) applied to the same input words.
These multipliers are 16x16 bit multipliers but we only allowed 16 output bits as in [6]
together with an overflow bit. We proved the property for each output bit individually
and the results are shown in Table 1. For SATO we conducted two experiments to study
the effect of the ‘-g’ parameter that controls the maximal size of cached clauses. We
picked a very small value (-g 5’) and a very large value (‘-g 50"). Note that the overflow
bit depends on all the bits of the sequential multiplier and occurs in the specification.
Thus, cone of influence reduction could not remove anything.

In the columnSMV; of Table 1 the official version of the CMU model checker
SMV was usedSMV;, is a version by Bwolen Yang from CMU with improved support
for conjunctive partitioning. We used a manually chosen variable ordering where the
bits of registers are interleaved. Dynamic reordering failed to find a considerably better
ordering in a reasonable amount of time.

We used a barrel shifter as another example. It rotates the contents of a register file
b with each step by one pibi®n. The model also contains another registertfitbat is
related tab in the following way. If a register im and one irb have the same contents
then their neighbors also have the same contents. This property holds in the initial state
of the model, and we proved that it is valid in all successor states. The results of this
experiment can be found in Table 2. The width of the registers is choser togér | |
where|r| is the number of registers in the register fildn this case we were also able



SMV¢ SMV> SATO -g5| SATO -g50 PROVE
bit | sec MB| sec MB | sec MB| sec MB| sec MB
0| 919 13| 25 79 0 0 0 1 0 1
1 ]1978 13| 25 79 0 0 0 1 0 1
2 | 2916 13| 26 80 0 0 0 2 0 1
3 | 4744 13| 27 82 0 0 0 3 1 2
4 | 6580 15| 33 92 2 0 3 4 1 2
5 110803 25| 67 102| 12 0| 36 7 1 2
6 |43983 73| 258 172| 55 0| 208 10| 2 2
7 |>17h 1741 492| 209 0| 642 13| 7 3
8 >1GB| 473 01198 16| 29 3
9 856 1|2413 20| 58 3
10 1837 1|2055 20| 91 3
11 2367 1|1667 19|125 3
12 3830 1| 976 117|156 4
13 5128 14363 25|186 4
14 4752 1|2170 23|226 4
15 4449 1|6847 311|183 5
sum| 71923 2202 23970 22578 1066

Table 1.16x16 bit sequential shift and add ftiplier with overflow flag and 16 output bits (sec
= seconds, MB = Mega Byte).

to prove the recurrence diameter (see Definition 22) tiy b&his took only very little
time compared to the total verification time and is shown in the column “diameter”.

In [13] an asynchronous circuit for distributed mutual exclusion is described. It con-
sists ofn cells forn users that want to have exclusive access to a shared resource. We
proved the liveness property that a request for using the resource will eventually be
acknowledged. This liveness property is only true if each asymgius gate does not
delay execution indefinitely. We model this assumption by a fairness constraint for each
individual gate. Each cell has exactly 18 gates and therefore the modelltfairness
constraints whera is the number of cells. Since we do not have a bound for the max-
imal length of a counterexample for the verification of this circuit we could not verify
the liveness property completely. We only showed that there are no counterexamples of
particular lengttk. To illustrate the performance of bounded model checking we have
choserk = 5,10. The results can be found in Table 3.

We repeated the experiment with a buggy design. For the liveness property we sim-
ply removed several fairness constraints. Both PROVE and SATO generate a counterex-
ample (a 2-loop) instantly (see Table 4).

7 Conclusion

This work is the first step in applying SAT procedures to symbolic model checking.
We believe that our technique has the potential to handle much larger designs than
what is currently possible. Towards this goal, we propose several promising directions



of research. We would like to investigate how to use domain knowledge to guide the
search in SAT procedures. New techniques are needed to determine the diameter of a
system. In particular, it would be interesting to study efficient decision procedures for
QBF. Combining bounded model checking with other state space reduction techniques
presents another interesting problem.

SMV;, | SATO -g10Q SATO -g20 PROVE| PROVE
diameter diamete

Ir||sec MB |sec MB | sec MB|sec MB|sec MB
3|1 49 |0 1 0 0|0 1|0 1
411 49 |0 1 0 1/0 1|0 1
513 83 |0 2 60 2 |0 1|1 2
6 (509 447 | 1 4 364 4 |0 1 |2 3
7 >1GB| 3 6 1252 6 |0 2 |2 4
8 5 8 2160 9|0 2 |7 5
9 25 14 |>21h 0 3 (16 9
10 42 19 1 4 |5 11

Table 2.Barrel shifter {r| = number of registers, sec = seconds, MB = Mega Bytes).

SMV¢ SMV> SATO | PROVE| SATO | PROVE
k=5| k=5 | k=10| k=10

cells; sec MB| sec MB |sec MB|sec MB|sec MB| sec MB
4 846 11|159 2170 3|1 3 3 6|54 5
5 (2166 15/530 703|0 4|2 3|9 8|9 5
6 | 4857 181762 703| 0 4|3 3|7 9149 6
7 | 9985 24/6563 833| 0 5|4 4 |15 10|224 8
8 (19595 31 >1GB|1 6|6 5 |16 12|323 8
9 | >10h 1 6|9 5 (24 13|444 9
10 1 7]10 5|36 15|614 10
11 1 8|13 6 |38 16|820 11
12 1 9|16 6 |40 18|1044 11
13 1 9|19 8 (107 191317 12
14 1 10|22 8 |70 21|1634 14
15 1 11|27 8 [168 22|1992 15

Table 3. Liveness for one user in the DME (sec = seconds, MB = Mega Bytes).



SMV¢ SMV, | SATO | PROVE
cells) sec MB | sec MB|sec MB|sec MB
4 | 799 11 14 44| 0 1|0 2
5 |1661 14 24 570 1|0 2
6 (3155 21 | 40 76|{0 1|0 2
7 |5622 38 74 13770 1|0 2
8 (9449 73 |118 2170 1|0 2
9 |segmentationl72 2240 0 1|1 2
10 fault 244 702 0 1|0 3
11 413 702 0 1|0 3
12 719 702 0 2|1 3
13 843 702 0 2|1 3
14 1060702 0 2|1 3
15 1429702 0 2|1 3

Table 4.Counterexample for liveness in a buggy DME (sec = seconds, MB = Mega Bytes).
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