An Authorization Logic with Explicit Time!

Henry DeYoung Deepak Garg Frank Pfenning

February 2, 2008
CMU-CS-07-166

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We present an authorization logic that permits reasoning with explicit time. Following a proof-
theoretic approach, we study the meta-theory of the logic, including cut elimination. We also
demonstrate formal connections to proof-carrying authorization’s existing approach for handling
time and comment on the enforceability of our logic in the same framework. Finally, we illustrate
the expressiveness of the logic through examples, including those with complex interactions between
time, authorization, and mutable state.

!This research was sponsored by the Air Force Research Laboratory under grant no. FA87500720028. The views
and conclusions contained in this document are those of the authors and should not be interpreted as representing
official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: access control logic, hybrid logic, temporal logic, proof-carrying authorization

1 Introduction

Most secure systems restrict operations that users, machines, and other principals can perform on
files and other resources. A reference monitor authorizes (or denies) requests to access resources,
in consultation with a set of rules called the security policy. Time is central to most policies. A
student, for instance, may be allowed to access course related material only during the specific
semester that she is registered for the class.

In practice, security policies are often large and complicated, necessitating formal mecha-
nisms for both their enforcement and their analysis. Although several trust management frame-
works [8, 9, 24, 27-29, 32], languages [7, 14], and access control logics [1, 2,12, 18, 19, 25, 26] have been
proposed for enforcing and sometimes for reasoning about access control policies, these proposals
rarely handle time explicitly, either omitting it altogether, or leaving it to an external enforcement
mechanism. As a result, policies with complex time-dependent relationships cannot be expressed,
and, in other cases, reasoning accurately about time is extremely difficult.

The purpose of this report is to bridge this gap between using time in practice and reasoning
about it; we propose an authorization logic that allows explicit mention of time, making it easier
to reason about the time-dependent consequences of policies. This logic combines ideas from an
existing authorization logic [18, 19] with ideas from both hybrid logics [11, 33] and constraint-based
logics [23, 34] to allow formulas of the form A@ I where A is a proposition and [is the time interval
on which it holds. Following earlier proposals, we make the logic constructive to keep evidence
as direct as possible. We also include linearity to model consumable authorizations; their use is
illustrated in our examples. We call the logic 7-logic (pronounced eta logic for Explicitly Timed
Authorization logic).

n-logic is strictly more expressive than existing logics for access control, because policies with
complex time-dependent relationships can be expressed in it, which is impossible in logics proposed
hitherto. For instance, the following policy can be expressed in n-logic: “If an employee requests a
parking space before the end of a month, she will be given a parking permit valid throughout the
next month.” It is difficult to imagine how such a policy could be expressed unless time is allowed
explicitly in formulas. The policies described in section 4 illustrate similar complex time-based
relationships.

Our principal interest in designing 7)-logic is its deployment with proof-carrying authorization
(PCA) [3-5]. In the PCA paradigm, security policies are formalized in a logic, and each access
request is accompanied by a formal proof establishing that authorization for the request follows
logically from the policies. The reference monitor verifies the correctness of the proof, and allows
or denies access accordingly. PCA provides a flexible mechanism for access control in distributed
systems. In existing approaches the proof presented to the reference monitor establishes that the
requester is allowed to access the resource in question, leaving the validity of the proof at the time
of request to a separate enforcement check. With 7)-logic, the proof itself can be refined to mention
that access is allowed at the time of the request. We make a formal connection between the two
approaches in section 3.4.

In addition to its applications with PCA, we expect that n-logic can be used in specifying the
behavior of systems with time-dependent authorization policies. In such cases, the logic can be used
to formally establish correctness properties of the system, as in [18]. The first example in section 4
illustrates this approach. Linearity plays a crucial role in this setting, facilitating accurate models
of mutable state.

In the spirit of Gentzen’s pioneering work on proof theory [20], we abstain from model-theoretic

semantics, instead presenting n-logic as a sequent calculus. This brings the logic closer to realization
in tools like theorem provers and proof verifiers, and facilitates a detailed study of its meta-theory,
which is central to our work. We establish several properties, including consistency and cut elimi-
nation, which increase confidence in the logic’s foundations. Cut elimination also implies that the
meanings of connectives in the logic are independent of each other. This makes the logic open
to extension with new connectives. Establishing these properties is non-trivial, involving a deep
interplay between inference rules and constraints.

In summary, this work makes several contributions. First, it introduces explicit time into
reasoning about authorization. In contrast to existing approaches, this makes it possible to express
and reason robustly about time-dependent policies.

Second, it formalizes implementations of PCA that deal with time in an extra-logical manner
and rely only on validity intervals of embedded digitally signed certificates. We further show that
policy enforcement in PCA (at least for a fragment) is no more difficult than in the logics that have
been proposed previously.

Third, our system integrates explicit time and linearity. This represents a non-trivial challenge,
because both time intervals and single-use assumptions restrict availability of hypotheses during
reasoning, but in entirely different ways. Our meta-theorems, specifically the cut elimination and
identity properties, show that these concepts are indeed compatible, at least in a constructive set-
ting. The key is a novel combination of ideas from hybrid logic with constraints. The examples
demonstrate that the combination allows logical expression and enforcement of a wide range of
practically occurring policies which were previously intractable.

Related Work. Our work draws upon ideas from several kinds of logics. Most closely related
are works on constructive authorization logic [18, 19], from which we borrow linearity, affirmation,
and our style of presentation. The “says” construct in our logic was first introduced by Abadi et
al. [2,25], and adopted by almost all subsequent proposals.

The formalization of time in our presentation combines ideas from both hybrid logics [11, 33] and
constraint-based logics [23, 34]. Such a combination has been studied to a limited extent in Temporal
Annotated Constraint Logic Programming (TACLP) [17]. This work, done in the context of logic
programming without authorizations, allows interval annotations on atomic formulas, similar to our
A @ I construct. Besides TACLP, we are unaware of any work that uses hybrid logic for modeling
time.

Linearity, which is important for modeling consumable resources, was introduced in a logic by
Girard [21]. The judgmental form of linear logic was first studied by Chang et al. [13]. The use of
linearity in conjunction with authorization was first proposed by two of the present authors and
others [18]. Some enforcement mechanisms in the distributed setting have also been described [10].

More broadly, this work relates to languages and logics for expressing and enforcing access
control policies [1,2,7-9,12, 14,18, 19, 24-29, 32]. With the exception of the policy language Sec-
PAL [7], we are not aware of explicit use of time in any of these proposals. SecPAL’s enforcement
of time is external to the language, based on a constraint system that is not reasoned about within
the formal semantics. In contrast, our logic permits direct reasoning with validity of formulas. It
would be interesting to study the potential formal connections between the two approaches.

The principal target of our design is proof-carrying authorization (PCA) [3-5]. In existing work
on PCA, validity of certificates plays an integral part, but it is not included in the logic. Rather,
it is enforced by a separate check. In n-logic, this check becomes part of proof-verification.

An alternate approach to reasoning about time is based on temporal logics [15]. Here, one
reasons about events relative in time to others. Although sometimes useful in reasoning about
security protocols, the approach appears to be ineffective in the context of security policies and
PCA, which rely heavily on absolute time.

Another related line of work is interval temporal logic [31], where one reasons about sequences
of states in an evolving system. Like temporal logic, the method seems inadequate for reasoning
about authorization policies.

Organization of the Report. In section 2, we introduce our logic and its proof system, and
study its meta-theory. Section 3 describes 7-logic’s application to PCA. Section 4 illustrates the
expressiveness of the logic by showing examples that contain complex time-dependent relationships.
Section 5 concludes the report.

2 p-logic: Authorization with Explicit Time

At its core, n-logic is a first-order intuitionistic logic. It integrates several other constructs: affir-
mations, linearity, hybrid worlds representing time, and constraints. While these constructs have
been studied separately in the past, their interaction with each other is deep and non-trivial. In
particular, the hybrid nature of 7)-logic interacts with all the other components, making it impos-
sible to construct m-logic as an extension of either linear logic or a logic of affirmation without
changing the nature of the underlying judgments.

Following Per Martin-Lof [30], we use a judgmental approach in describing the logic. We
separate formulas from judgments, making the latter the objects of reasoning. In the interest of
readability, we describe the logic in several steps. We begin by briefly describing the structure
of first-order terms and sorts. Next, we describe the judgments that capture time, linearity, and
affirmation. We then discuss constraints, and finally present the logic’s connectives and proof rules.

2.1 First-order Terms and Sorts

We assume that the quantifiable terms can be typed into different sorts (denoted by the meta-
variable s). We stipulate at least two sorts: a sort of principals (principal) and a sort of intervals of
time (interval). If ¢ is a term and ¥ assigns sorts to all constants occurring in ¢, we write X F ¢:s to
mean that the term ¢ has sort s. We write [t/z]A to denote the formula obtained by substituting
the term ¢ for all free occurrences of = in A.

Principals, denoted by the letter K, represent machines, users, or programs that make access re-
quests or issue policies. Concretely, they may be simple bit strings that represent names, identifiers,
or keys.

Intervals, denoted by the letter I, represent sets of time points over which formulas are true.
Borrowing terminology from hybrid logic, they are worlds which qualify formulas. We do not fix
structures for either time points or their sets, but postulate necessary conditions that must hold
on them. These are described in section 2.3. Intuitively, one may think of time points as points on
the real line, and sets I as closed intervals on the real line. However, it should be noted that the
term interval is really a misnomer here; we could work with other kinds of sets as well. In many
natural scenarios, the sets are intervals, and we therefore continue to use this nomenclature.

2.2 Judgments

Ordinarily, logic is concerned with the truth of formulas without reference to time. However, in ac-
cess control, the truth of formulas changes with time. For instance, if the formula
may_enter(Alice, Bob) means that Alice is allowed to enter Bob’s office, then this formula may
be true during Bob’s office hours and untrue at other times.

Hence, in order to reason accurately about time in access control, the logic should reason about
truth of formulas at specific times. This leads us to the basic judgment of our logic: “formula A is
true at all time points in the set I,” written A[I].

Following prior work on security logics [18], we would like to go a step further by adding
linearity to the logic for modeling state and single-use authorizations. Accordingly, we add a
second judgment: “formula A is true exactly once in the set I,” written A[I]. This does not mean
that A holds at exactly one time point in I, but rather that the authorization implied by A must
be used at one time point in the interval.

For example, may_enter(Alice, Bob)[/] means that Alice may enter Bob’s office any number of
times during interval I, while may_enter(Alice, Bob)[I| means that Alice must enter Bob’s office
exactly once during interval 1.

Next, in order to allow reasoning from assumptions, a feature central to all logics, we introduce
a hypothetical judgment (sequent). It takes the following form:

X, U A = A[l]

3, ¥, T, A have the syntax listed below:

Y on= | Xxs
v o= |0, DT
r == -|TI,A[I]
A = | AA[T

> assigns sorts to all first-order parameters occurring in the remaining sequent. ¥ records superset
constraints on intervals mentioned in the formulas in the sequent. I' contains assumptions that
are true on specific intervals, and A represents assumptions that are true exactly once on specific
intervals. I" and A are often called unrestricted hypotheses and linear hypotheses, respectively.

The meaning of the entire sequent is: “For each solution to the constraints ¥ in the variables
3. we can prove that A is true exactly once during interval I, using each hypothesis in A exactly
once and each hypothesis in I" zero or more times.”

The judgment A[I] on the right side of = is often called the consequent of the sequent. Se-
quents cannot have consequents of the form A[I]. This restriction is inherited from linear logic [13],
but does not limit the expressiveness of the deductive system.

Affirmations. In order to model security policies issued by distinct principals, we need to reason
about statements made by principals. We call such statements affirmations. Due to the hybrid
nature of the logic, we have to associate time with affirmations. Accordingly, we introduce a new
judgment: “during interval I it is true that principal K affirms that formula A is true,” written
(K affirms A) at I.

There are two important points here. First, the phrase “K affirms that formula A is true”
is broadly construed: K may not directly state that A is true; instead, A may follow from other

statements that K has made. Second, I is the interval over which the affirmation itself is true, not
K’s intention of the interval on which A is true. If required, the latter may be encoded within A
using the @ connective. For example, suppose that Bob creates the policy “Alice may enter Bob’s
office between 9 AM and 5 PM” and that this policy is valid from 2007 to 2008. Then, this fact
is represented by the judgment (Bob affirms (may_enter(Alice, Bob) @ [9AM, 5P M])) at [2007, 2008].
Observe that here the interval I is [2007,2008], whereas the intended validity of the policy that
Bob makes is [9AM, 5P M].
Next, we add a new form of sequent to reason hypothetically about affirmations.

2,0, T A = (K affirms A) at [

The meaning of this sequent is: “For each solution to the constraints ¥ in the variables 3 we can
prove that K affirms A exactly once during interval I, using each hypothesis in A exactly once and
each hypothesis in I" zero or more times.”

2.3 Constraints

Superset constraints of the form I O I’ are an integral part of n-logic. Formally, they are incorpo-
rated in the proof system using the following judgment:

S U =TD T

This judgment means that the constraints in W entail that I is a superset of I’, parametrically
in the constants mentioned in . We do not fix the exact rules governing this judgment because
we do not stipulate a concrete structure for intervals. We expect that, in practice, this judgment
would be implemented using a constraint solving procedure. The details of such a procedure would,
of course, depend on the representation chosen for intervals. However, to obtain meta-theoretic
results about the logic (section 2.5), we require the following properties. Here, C' denotes arbitrary
superset constraints.

1. (Hypothesis) X; ¥, C = C.

2. (Weakening) If 3; ¥ = C, then X, %, 0, ¥/ = C.

3. (Cut) If ;¥ = C and 3;¥,C | €', then ;¥ E .

4. (Substitution) If ¥ F ¢:s and X, z:s; U |= C, then 3; [t/z]¥ = [t/x]C.

5. (Reflexivity) ;¥ =1 D 1.

6. (Transitivity) f S; @ =1 2D I'and 39 =1’ D 1", then ;¥ =1 D 1",

In the case where intervals are represented by closed intervals on the real line, such a constraint
solver can be constructed in a straightforward manner.

2.4 Formulas and Proof Rules

Having described the basic judgments and constraints in 7-logic, we now turn to the connectives
allowed in formulas and the proof rules for sequents. We allow all connectives of intuitionistic linear
logic, although, for the sake of brevity, we limit our discussion here to only a subset. (Rules for the
remaining connectives can be found in Appendix A.) In addition, we introduce a new connective
A @ to internalize the judgment A[I] as a formula, include the connective (K)A (read “K says
A7) [18,19] to internalize the affirmation judgment, and add the connective I D I’ to represent

superset constraints as formulas. Although we use the same notation I O I’ for denoting both
formulas and constraints, this should not cause confusion since the intended meaning should be
clear from the context.

The syntax of formulas is shown below. P denotes atomic formulas.

AB = P|A®B|ADB|A—B |VzsA|AQI | (K)A|IDTI

A® B means that A and B are true simultaneously. We have two forms of implication: unrestricted
(AD B) and linear (A — B). They differ in that the pre-condition A in A D B can be satisfied only
if A can be established without the use of linear hypotheses, while there is no such restriction on
the pre-condition of A — B. Conversely, to prove A D B we may use A arbitrarily many times to
prove B, while A must be used exactly once in a proof of B to establish A — B.

The proof rules for the sequent calculus are summarized in Figure 1. ~ denotes an arbitrary
consequent, either A[I] or (K affirms A) at I. The meanings of connectives in 7)-logic are described
entirely by these proof rules, without any additional semantics. This ensures that the intended
reading of formulas coincides with the available formal proofs, which is desirable for PCA.

The init and copy rules capture the nature of linear and unrestricted hypotheses. If we assume
that formula A is true once during interval I, and if I D I’, then we should certainly be able to
conclude that A may be true once during the interval I’. For atomic formulas, this is captured by
the init rule; for others, we prove it as a theorem (Theorem 2). The init rule also highlights the
interaction between linearity, time, and constraints: its premise contains a constraint, and the fact
that no other linear hypothesis besides P[I] is allowed to occur captures linearity. The copy rule
permits copying of an unrestricted hypothesis A[I] into the set of linear hypotheses. This may be
repeated, thus allowing the unrestricted hypothesis to be used multiple times.

The remaining rules (with the exception of affirms) are related to the logic’s connectives. Each
rule is classified as either right or left, depending on whether it acts on the right side or the left
side of =>. We start with the new connective: A @ I.

AQT captures the essence of the judgment A[I] as a formula. This permits us to associate time
intervals with formulas nested inside other formulas. The right rule @R means that A[I] entails
AQII']. The left rule QL states that the assumption AQI[I'] is stronger than the assumption A[I].
Together they imply that, as judgments, A[I] and A @ I[I'] entail each other. This is intuitive: if a
formula A is true during interval I, then this fact is true over all intervals I’. Or equivalently, once
the truth of a formula has been qualified by an interval, a subsequent qualification is meaningless.

By its nature, interval containment is independent of time. Thus, we should be allowed to
establish the judgment I O I'[I"”] whenever the constraint I O I’ holds. This is captured by the
right rule, DR. Dually, if we assume the judgment I O I'[I”], then we should also be justified in
assuming that the constraint I O I’ holds. This is captured by the left rule, DL.

Next, we examine affirmation. The affirms rule relates affirmation to truth. It states that if it
is provable that formula A is true during interval I, then it is provable that every principal affirms
its truth during interval I. This is based on the idea that a proof is irrefutable evidence; if A has
a proof, then every principal must be willing to affirm A.

The connective (K)A (read “K says A”) internalizes affirmation as a formula. Its right rule
() R means that the judgment ((K)A)[I] holds whenever (K affirms A) at I holds. The left rule ()L
means that if we are trying to establish that K affirms B during I’, and we know both K says A
during I and I D I’, then we are justified in assuming that A is true during I. This rule captures
the idea that principals are accountable for their statements; having stated A, K cannot refute it,

AQlT

U121 (P atomic) S, U T AT AVA[I = copy
YU Pl — P[] S 0T, AT A —
50T A = Al 50T AVAl = v
QR QL

0 TA = AQ[[I'] U AAQ I =

Y, WEIDTI ;U IDIT;A = v
ANl QR 1 QL
U = I D I'[I"] YU A I DT =

Affirmation and (K)A ‘

50 A = Al 5,0 A = (K affirms A) at 1

5,0 A = (K affirms A) at I

affirms S 0T A = (K)A[T] (7

0 TA Al = (K affrms B)atI” 5,9 =121
Y0 A (K)A[I] = (K affirms B) at I

‘ Other Connectives ‘

50T A = Alll %, 0;T; Ay = BJ[I] 0T A AT B[l = v

X U:Ty A, Ay = A® B oh 50T A A B = v wL

Y, azinterval; U, 1 D ;1 A, Ali] = BYi]
XU A = A —o BII]

—oR

YU A = A[l') ;9 =121 30T A, BlI' = v
0T Ay, Ag, A — Bl =

—oL

Y, ¢:interval; W, I D i; T, A[i]; A = BJi]
0T A = AD BJ[I]

OR

Uil = A[l'l ;9 EIDI XS0 T;A B[l = v
YU AAD Bl =

DL

Ya:s; U T A = [a/z] Al 50T A t/z]Alll =y Xk tis

50T A = Vais. A[I] vE 50T A Vs All] = v vL

Figure 1: Sequent calculus for n-logic

and hence, while reasoning about another affirmation by K, we can assume A. It is instructive to
observe the interaction between time and affirmation in this rule.

Finally, we describe the rules for connectives borrowed from linear logic: ®, —, D, and V.
Although these rules may appear similar to corresponding rules in linear logic (without time), the
meanings of the connectives must be reinterpreted because truth is always qualified with time in
n-logic. The presence of time opens the possibility of choosing from many different kinds of rules,
with each choice resulting in a different interaction between the connectives and @Q. For instance,
our rules imply that @ distributes over ® — that (A ® B) @ I is equivalent to (AQI)® (BQ1I).
However, this choice is not forced, and one may conceive logics that do not validate this equivalence.
The proof rules shown here describe what we believe to be an elegant, useful, and simple possibility.

The right rule ® R states that in order to show that A ® B is true on I, it suffices to partition
the linear hypotheses disjointly into two parts, using one part to establish that A holds on I and
the other to show that B holds on I. The left rule ®L is dual, stating that the assumption A ® B
on interval [is stronger than the pair of assumptions A, B, both on the interval I. Together with
the rules for @, these rules imply the equivalence mentioned earlier.

The right rule —oR means that in order to establish that A — B holds on interval I, it suffices
to show that for every interval ¢ such that I D 4, BJ[i| follows from the linear hypothesis A[i]. The
left rule —oL is dual, stating that if A — B is assumed to hold on I and A holds on any smaller
interval I’; then B holds on I’. Together these mean that (A — B) @ I represents a method of
obtaining B from A on any subset of I.

The rule DR is similar to —oR, except that in this case A is assumed to be unrestricted.
Correspondingly, in the left rule DL, one must establish A without any linear hypotheses.

We can establish the formula Va:s. A if we can establish [a/z]A for every fresh constant a of sort
s. This is captured by the right rule VR. The left rule VL states that if we assume Vz:s.A, then we
can also assume [t/x]A for any term t of sort s.

This completes our presentation of the proof rules of the sequent calculus. We now turn to the
meta-theory of 7-logic.

2.5 Meta-theory

Meta-theoretic properties are important for a logic of authorization because they not only provide
assurance of a strong foundation for the logic, but are also useful in analysis of policies. Cut
elimination, for example, implies that all proofs can be normalized, i.e., reduced to a canonical
form. This canonical form often provides far more insight into the reasons why access was granted
as compared to the original proof.

In our logic, meta-theoretic properties are important from yet another perspective. Since con-
nectives are described entirely by the rules of the sequent calculus, it is absolutely essential that
the basic meaning of hypothetical judgments (sequents) be respected by the rules. Formally, this is
expressed by two properties: admissibility of cut and identity. Admissibility of cut states that if a
judgment such as A[I] can be established, and assuming this judgment, we can establish a second
judgment, then the second judgment can be established directly. Identity states that whenever we
assume a judgment, we can conclude it. We prove both properties for our logic. To establish the
admissibility of cut, it must be stated in a more general form.

Theorem 1 (Admissibility of Cut).
1. If 30,1 A = A[I] and X;U;T; A A[I] = v, then Z; ;T AV A = .

2. If 2;U: T - = A[I] and X;9; T, A[I]; A = ~, then 2;U; T A/ = ~.
3. If B, U:T; A = (K affirms A) at I and X; ;T A/ A[l] = (K affirms C) at I’ and ;¥ |=
ID U, then ¥;¥;T; A/, A = (K affirms C) at I'.

Proof. See Appendix B.3. O
Theorem 2 (Identity). For any proposition A, ¥;W:T'; Al = A[I'] if 39 =12 1.
Proof. See Appendix B.1. O

Cut elimination usually refers to the explicit elimination of cut as a rule of inference from the
sequent calculus. It follows by a simple structural induction from the admissibility of cut, and is
therefore omitted here.

In a hybrid logic like n-logic, we expect another important property: if we can establish A[l],
then we should be able to establish A[I'] for every subset I’ of I. This property, called subsumption,
is formally captured by the following theorem.

Theorem 3 (Subsumption). If ;U =1 D I’ then the following hold:

1. If ;9,15 A = A[I], then X; ;T A = A[I'].
2. If 3, W; T; A = (K affirms A) at I, then X;U;T; A = (K affirms A) at I'.

Proof. See Appendix B.2. O

We now state some simple theorems that hold in the logic. Equally important are properties
that cannot be established in their full generality. We write - A to mean -;-;-;- = A and I/ A to
mean that F A cannot be derived in full generality. Similarly =T O I’ means that ;- =12 I'.

1. i/ ((AQI) —o (A@ I'))[I"]

2. F(AQI) - (AQI)I"if=IDI

3. - (AQTQI') —o (AQI))[I"]

4. F((AQT) - (AQI@)]

5. - (A®B)QI) —o (AQI)® (B QI

6. F (AQI)® (BQI)) — (A® B)@)l

7. i A[l]

The first property states that, in general, A @ I does not imply A @ I’. In the special case where
I is a superset of I’, this is true (second property). The next two properties capture the nature of
nested @ connectives: A @ @ [’ and A @ [are equivalent. Properties (5) and (6) imply that @
distributes over ®. The last property states consistency — not every formula is provable a priori
in the logic.

The says connective (K)A is similar to a lax modality [16]. It satisfies the following theorems:

= (A — (K)A)[I]
2. F ((K)(K)A) — (K) A)[]

3. F ((K)(A — B)) — ((K)A) — ((K)B)))[I]
4. 7 ((K)A) — A)]

As a general design decision, we have kept the interaction between temporal constraints and
logical reasoning as simple as possible. In particular, we do not permit splitting of intervals into
sub-intervals during logical reasoning. For example, even if I UI’ = I” we can not prove in general
that AQJ and AQI’" imply A@Q["”. For proof-carrying authorization (discussed in the next section),
this means in order to demonstrate continuous right to access a resource over a given interval there
must be a uniform proof over the whole interval, unless special policy axioms are introduced. The
logic can easily be generalized to permit the splitting of intervals, but the theorem proving problem
becomes significantly more difficult. Jia [23] provides an analysis of this trade-off in the setting of
reasoning about imperative programs using a heap.

3 Proof-Carrying Authorization with n-logic

In this section, we describe applications of 7-logic to PCA. The main merit of using 7-logic for
PCA is that the temporal validity of policies and credentials is reflected in the formulas of the
logic, thus bringing the formalized policies closer to their intended meaning. We review the Grey
system [5, 6] in section 3.1 and use it as an example to illustrate our PCA approach in section 3.2.
In section 3.3, we comment on the feasibility of using 7-logic in PCA. Finally, we formalize some
of our claims about enforcement in section 3.4.

3.1 Review of the Grey System

The Grey system is an architecture for universal access control using proof-carrying authorization
with smartphones. The Grey testbed is an implementation of keyless access control on office doors
and computers, developed and currently deployed on one floor in the Collaborative Innovation
Center at Carnegie Mellon University. Each office door is equipped with a processor that runs
a proof-checking engine based on a logical framework. The processor controls an electronic relay
which can unlock the door.

Enforcement of access control follows the standard PCA approach: a person desiring access to
an office uses her cellphone to communicate with the office’s door, sending it a proof that she is
allowed access. This proof is checked by the proof-checking engine in the door, and if the proof is
correct, the processor unlocks the door through the relay.

Two simple policies in Grey are the following:

1. A person may enter her own office.
2. A person may enter an office not belonging to her, if authorized to do so by the owner of the
office.

In addition to policies, authorization in Grey relies on credentials issued by individual users that
authorize other users to enter their offices. They are used in conjunction with the second policy.
Physically, these credentials are digitally signed X.509 certificates. For pragmatic reasons, most of
these credentials are time-bound: they are not valid forever because one usually does not want to
allow another person to access her office indefinitely.

10

Each policy statement and each available credential is converted to a formula in Grey’s logic.
An individual wanting access must not only provide the door with a proof, but also any credentials
used in the proof that the door may be unaware of. In addition to checking the proof, the door
also checks the new credentials. If both checks succeed, the door opens. Otherwise, it does not.

Grey’s current logic is oblivious to time. As a result, the validity bound on a credential is ignored
when the credential is imported into the logic. For example, suppose Bob signs the credential “Allow
Alice to enter my door (valid from 1/1/08 to 1/31/08).” If the predicate may_enter(K7, K3) means
that K is allowed to enter K»’s office, then this credential may be imported into Grey’s logic as the
formula (Bob)may_enter(Alice, Bob). The validity bound of the credential is ignored in the logic.
Policies are treated similarly — their validity, if any, is ignored. Consequently, proofs are ignorant
of time, and it is possible to obtain a seemingly correct proof in the logic depending on formulas
derived from expired credentials.

In order to rectify this problem and correctly enforce the time bounds in credentials, Grey uses
an extra-logical mechanism. In addition to checking that a submitted proof and credentials are
correct, a door also checks that all credentials used in the proof are valid at the time of access.
Although secure and efficient in practice, this method divorces time from the logic, making reasoning
in the logic inaccurate with respect to time. In particular, proof construction has to be augmented
with a similar external time check. Otherwise, correct but expired proofs may be constructed.
Furthermore, any meta-level analysis of the policies using the logic will be inaccurate with respect
to time.

3.2 Grey in 7-logic

In m-logic, we can model time-bounded credentials accurately. We illustrate this using policies
from the Grey system. As before, let the predicate may_enter(K;, K2) mean that K is allowed to
enter K5’s office. We assume the existence of an administrating principal, admin, who dictates all
policies. For this example and all subsequent ones, we assume that time is represented by points
on the real line, and intervals in the logic are intervals on the real line.

To open Ks’s door at time ¢, K1 must submit a proof showing that the following judgment is
derivable from the available policies and credentials: (admin)may_enter(K, K2)[t,t]. [t,t] represents
the closed point interval for time ¢. Observe that the judgment that must be established to gain
access directly incorporates time. This is in sharp contrast to Grey’s existing approach, where time
is external to the logic.

Grey’s policies described earlier can be imported as the following unrestricted hypotheses in
n-logic.

1. (admin)VK. may_enter(K, K)[(—o0, 00)]
2. (admin)VK;. VKs. ((K2)may_enter(K, K2) — may_enter(K1, K2))[(—o0, 00)]

Here we have assumed that both policies are valid indefinitely, i.e., on the interval (—oo, 00). If the
policies are valid for only a finite duration of time, one may replace (—o0, c0) with the appropriate
interval.

A critical observation is that we assume that these formulas are unrestricted hypotheses because
they may be used many times. This does not apply to credentials issued by individuals to allow
others to enter their offices. For example, Bob may allow Alice to enter his office once between
1/1/08 and 1/31/08 by issuing a certificate that is imported as the linear hypothesis:

11

3. (Bob)may_enter(Alice, Bob)[1/1/08,1/31/08]

It is instructive to check that, using the unrestricted hypotheses (1) and (2) and the linear hy-
pothesis (3), it is possible to derive (admin)may_enter(Alice, Bob)[t,¢] for any ¢ in the time interval
[1/1/08,1/31/08]. Also, it is impossible to derive the same judgment if ¢ does not lie in this interval.
Thus, qualifying formulas explicitly with intervals on which they are true makes proof construction
in the logic accurate with respect to the time bounds on credentials.

3.3 Implementing PCA with 7-logic

As described above, allowing explicit time in a logic bridges the gap between time-dependent
credentials and their representation in the logic. The question then is whether this approach offers
any advantages over traditional implementations of PCA.

The primary issue is efficiency. At first, one might think that adding time to the logic would
slow proof-checking. While a comprehensive assessment of the efficiency of proof-checking can only
be made with a real implementation, we show in section 3.4 that a reasonable fragment of the
logic (namely, one in which there are no nested @ and DO connectives), can be implemented using
the same method that Grey uses to enforce time-dependence of credentials: proof-checking and
proof construction are done in oblivion to time, and validity of certificates at the time of access
is ascertained separately. This fragment is large enough to express all policies of Grey, and other
existing PCA based systems.

Thus, existing PCA systems can be implemented in 7)-logic without loss of efficiency. At the
same time, there are several merits in making time explicit in the logic. First, policies and creden-
tials are reflected more accurately in the logic. They therefore become amenable to more accurate
meta-level policy analysis, such as an analysis for security loopholes. Second, leveraging the exist-
ing constraint-solving mechanism, one can model complex policies, policies that are intractable in
previously proposed logics. Examples in section 4 include such policies. Third, with time-aware
formulas, one cannot, even accidentally, construct a proof that is invalid due to a time-dependence.
This reduces the risk of unanticipated access denials.

We anticipate new challenges if PCA is implemented using a fragment of 1-logic larger than the
one described above. An important issue that arises in proof search is certificate chain discovery:
determining which credentials are relevant for a proof. In a time-aware logic, this problem is
exacerbated, since this process has to incorporate temporal validity of certificates. However, there is
a trade-off here: at the cost of more work, the final proof is guaranteed to be accurate. Alternatively,
one may choose to ignore time during proof search. In that case, certificate chain discovery would
revert to its usual complexity (and time-dependent inaccuracy).

An essential component that must be built into any realistic implementation of 7-logic is a
constraint solver. For simple constraints such as I D I’ that we have seen so far, this appears to be
relatively straightforward. Furthermore, most policies arising in practice do not require parameters
in constraints. This trivializes the constraint solving problem to checking containment over ground
intervals. Even if one wished to be more ambitious by allowing other kinds of constraints for use
in policies, previous work in constraint logic programming suggests that a large number of useful
constraint domains are tractable in practice (see [22] for a survey).

An interesting, open problem in implementing PCA with 7-logic is the treatment of linearity.
Since linear hypotheses and the corresponding credentials must be consumed only once, a mecha-
nism for tracking their use is required. If all linear credentials are maintained in a central database,

12

this is relatively straightforward. It is less clear, however, whether there is a uniform way of doing
this in a completely distributed setting. Some initial ideas using contract signing protocols have
been described earlier [10].

3.4 Enforcement for a Fragment of n-logic

The objective of this section is to show that Grey’s method of checking credential validity at the
time of request as a separate step after proof-checking can also be used for the fragment of 7-logic
without the connectives @ and D. This fragment does not preclude intervals in top-level judgments
such as A[I] and A[I]. It covers all systems in which time is used only to bound the validity of
credentials, but not inside the text of credentials, including all policies of the Grey system.

In order to formally describe our result we need a logic without time which is otherwise similar
to n-logic. We choose the logic of [18], since our logic is derived from it. For the lack of a better
name, we call this logic (-logic ((being the predecessor of 7 in the Greek alphabet). (-logic
may be understood as the simplification of 7-logic obtained by erasing intervals and constraints
from formulas, judgments, sequents, and proof rules. The uninitiated reader may skip this section
without affecting readability of the remaining report.

Let I denote formulas which do not contain the connectives @ and O. Such formulas are in
the syntax of (-logic. Let © and A denote multisets of such formulas representing unrestricted
hypotheses and linear hypotheses in C logic, respectlvely Let I denote a list of ground intervals.
Furthermore, if © = Fy, ..., Fy, and I=1I 1yeoos Iy, let (9[[[] denote the set of unrestricted hypothe-
ses Fi[I1],..., Fo[l,] in n—logic. Define A[I] smularly. Also, let = be the same as X except for the
absence of interval parameters.

All sequents in this fragment of n-logic have one of the forms X; W; @[[I_]];A[f’] — F[I"] or
5 0; O[1]; A[l') = (K affirms F) at I”.

Our idea for implementing PCA with this fragment of n-logic is the following. Whenever a
principal needs to prove X; ; @[[f]];A[I_;] = F[I"], she instead proves that ¥;0;A = F in (-
logic. The proof checker verifies this proof in (-logic, and checks that each interval in Tand I’ is
a superset of I”. As the following theorem shows, the success of these two checks implies that the
original sequent is provable in 1-logic.

(A priori, this result was not obvious to us because intervals mentioned in the last sequent of
a proof interact with subformulas in other sequents of the proof. It seemed entirely possible that
some subtle consequence of these interactions would not be captured by simply checking that each
interval in I and I’ is a superset of I”.)

Theorem 4. Suppose ;W = 1" D I" for each I" € I and for each I"" € I'. Then,

1 If2;0; A = F in (-logic, then ;U; O[I]; A[I'] = F[I"] in n-logic.
2. If 2;0; A = K affirms F in C-logic, then ;¥; O[I]; A[I'] = (K affirms F) at I in n-logic.

Proof. See Appendix C.1. O

Thus, on the fragment without @ and D, proof-checking in a logic without time, together with
simple containment checking for intervals soundly approximates proof-checking in 7-logic. One
might also expect the converse to hold, namely that whenever X; U; @[[f]]; A[I_; | = F[I"] holds in n-
logic, Z; ©; A = F holds in (-logic and for each interval I"” € I and each I"’ € I, ©; U EI"2>T1".
This is partially correct: given that the n-logic sequent is provable, the former holds as the following

13

theorem shows, but the latter may not. The reason is quite straightforward: the consequent of
the sequent may not depend on some assumptions in ©, and the intervals associated with such
assumptions may have no relation to I”.

Theorem 5.

1. If ;¥; @[[:]];A[I:’] = F[I"], then Z;0; A = F in (-logic.
2. If 5, ¥;O[I]; A[I') = (K affirms F) at I”, then Z;0; A = K affirms F' in (-logic.
Proof. See Appendix C.2. O

4 Expressiveness of n-logic: More Examples

Besides modeling time-bounded credentials, 1-logic, through its combination of explicit time and
constraints, can also be used to express very complicated policies. We illustrate this expressive-
ness through two hypothetical examples. The first example describes the policies of a homework
assignment administration system at a university. In addition to time, this example uses linearity
to model changes of state. The second example describes the policies of a peer review publication
process.

A Homework Assignment Administration System. We consider the policy of a hypothetical
homework administration system in a university. Time is used to explicitly encode the release and
due dates of each assignment. The policies allow professors to create assignments for the courses
they teach and adjust their release and due dates. Students can view an assignment after the
release date and submit it before the due date. Modeling this policy creates complex interactions
between time and authorization that cannot be captured without either a connective like @ or
constraints.

We use the meta-variable A to denote assignments, C' for courses, P for professors, and S
for students. The predicates (with their intuitive meanings) and policies used in this example
are summarized in Figure 2. As a syntactic convention, we assume that ®, —o, and D are right
associative and that the binding precedences are, in decreasing order: (); @Q; ®; — and D; V. We
write ¢ € I as an abbreviation for I D [t,t], and t > ¢’ as an abbreviation for ¢ € [/, c0).

As may be expected, all policy rules are unrestricted hypotheses that are valid forever. This is
indicated by the annotation [(—o0,00)] on each policy rule.

We assume an administrating principal, admin. At the beginning of each semester, this principal
issues credentials to students registered for courses and professors teaching courses. These must
be presented later (perhaps many times) to view, submit, and change assignments. As a result,
they are unrestricted hypotheses. They have the logical forms (admin)is_student(S, C)[Sem] and
(admin)is_professor (P, C')[Sem] respectively, where Sem denotes the semester under consideration.

A professor P can create an assignment A in a course C by issuing a credential stating
(P)is_assignment(A, C)[t,, tg]. The time points ¢, and t; stand for the release and due dates of
the assignment, respectively. [t,,t4] denotes the closed interval between these time points. We
require that such credentials be linear hypotheses. If instead they were unrestricted, then there
would be no logical mechanism to change the release and due dates after creating an assignment.

To view an assignment A in course C' at time ¢, a student S must be able to prove the judgment
(admin)ymay_view(S, A, C')[t, t]. The policy rule named view allows students to do this. We assume

14

request_view(A, C) A request to view assignment A of course C.
request_submit(A, C) A request to submit answers for assignment A of course C.
is_professor (P, C') P is a professor for course C.

is_student(S, C) S is a student enrolled in course C.

is_assignment(A, C) A is an assignment for the students in course C.
may_view(S, A, C) S may view assignment A of course C.

may_submit(S, A, C) S may submit answers for assignment A of course C.

change_date(A, C,t.,t/) A request to change the release and due dates for assignment
A of course C to t. and t/;, respectively.

view : ({S)request_view(A,C) Q [t, t] —
(admin)is_student(S,C) @ [t,t] D
(P)is_assignment(A,C) Q [t,, t4] —
(admin)is_professor (P, C) Q [t,, t4] D
(t>1t)D
(admin)may_view(S, A,C) Q [¢,t] ®
(P)is_assignment(A, C') Q [t,, t4])[(—00, 00)]

submit : ((S)request_submit(A, C) Q [t,t] —o
(admin)is_student(S,C) @Q [t,t] D
(P)is_assignment(A,C) Q [t,,t4] —
(admin)is_professor (P, C') Q [t,, t4] D
(t € tr 1)

(admin)may_submit(S, A,C) Q [¢,t] ®
(P)is_assignment(A, C') Q [t,, t4])[(—00, 00)]

change : ((P)change_date(A, C,t.., /) —
(P)is_assignment(A,C) Q [t,, tq] —
(admin)is_professor (P, C') D

(P)is_assignment(A, C') Q [t1., t/,])[(—o0, 00)]

Figure 2: Predicates and policies for a homework assignment administration system

an implicit universal quantification over the variables S, A, C, t, P, t,, and t4. Intuitively, this rule
states that a student S may view an assignment A in course C' at time ¢ by issuing a credential

(SYrequest_view(A, C') valid at the time of request, [t,t], if the following can be established:

1. (admin)is_student(S, C)Q[t,¢], i.e., the student is registered for the course at the time of
request. To establish this, the student must use the credential she received from admin at

the beginning of the semester.

2. (P)is_assignment(A,C) Q [t,, 4], i.e., a professor P states that A is an assignment of course

C with release date ¢, and due date 4.

15

3. (admin)is_professor(P, C) Q [t,, t4], i.e., P is a professor teaching the course C for the entire
duration of the assignment. This can be established using the credential issued by admin to
the professor.

4. t > t,, i.e., the time of request is after the release of the assignment. This preempts attempts
to read the assignment before it is officially released.

If each of these four conditions are satisfied, then the student may view the assignment. There are
two important observations to be made here. First, the linear hypothesis (P)is_assignment(A, C) @
[tr,tq] consumed in condition 2 is regenerated at the end. Second, explicit time is crucial for
modeling the constraint ¢ > ¢,. Such a policy rule cannot be modeled using only time bounds on
credentials.

Similarly, the submit policy rule allows a student S to submit an assignment between its release
and due dates by issuing a credential of the form (S)request_submit(A,C)[t,t]. In this case the
objective is to establish that (admin)may_submit(S, A, C) @ [t,¢], where t is the time at which the
submission is made.

Our final policy rule, change, illustrates the use of linearity in modeling change of state. It
allows a professor P to change the release and due dates of an assignment A in a course C he is
teaching by issuing the credential (P)change_date(4, C,t.,t),), where ¢, and t/, are the new release
and due dates of the assignment. The policy consumes the earlier hypothesis defining the release
and due dates of the assignment and replaces it with a new one. For this to work properly, it is
essential that such hypotheses be linear, not unrestricted. Failure to ensure this would result in
two hypotheses defining the release and due dates of the same assignment after application of the
rule.

A Peer Review Publication Process. We further illustrate the expressiveness of our logic by
describing the policies of a hypothetical peer review and publication process of an academic journal.
This example differs slightly from the previous example in that the policies are not fixed. Instead,
they are created by principals using templates.

We use the meta-variable A to range over articles considered for publication, R and K for
reviewers, J for journals, and E for editors. The predicates and policies used in this example are
summarized in Figure 3. An important point to observe is that the policies are not issued by fixed
principals; instead, each editor and each journal issues credentials containing the policies.

We stipulate that each journal J appoint an editor F during time period I by issuing the
credential (J)is_editor(E, J)[I]. The editor E can then declare R a reviewer for article A from time
t onward by issuing the credential (E)is_reviewer(R, A, J)[[t, 00)].

In addition, E can start accepting reviews by issuing a credential that establishes the accept
policy. While issuing the credential, the editor should instantiate Ir to the interval over which
reviews may be accepted. All variables other than F and [g are assumed to be universally quan-
tified. Once established, the policy allows an appointed reviewer R to submit a review on article
A at time t, by signing the credential (R)is_approved(A, R, J)[tq,tq]. If to € Ig the policy can be
used to conclude that the editor considers the article approved.

In an analogous manner, each journal J can establish a publishing policy by issuing a credential
following the form of publish. In issuing this credential, I; should be instantiated to the interval
during which articles are accepted for publication. All variables other than J and [; are assumed
to be universally quantified. Once established, the policy states that if an editor E says at time ¢,
that an article A has been approved, and t, is in I;, then the article is considered published from

16

is_approved(A, K, J) Article A is approved by principal K for publication in journal J.
is_reviewer(R, A, J) R is the reviewer for article A submitted to journal J.
is_editor(E, J) E is an editor for journal J.

is_published(A, J) Article A is published in journal J.

Policies

approve : (E)((R)is_approved(A, R, J) Q [t,, t,] —
is_reviewer(R, A, J) Q [ty,tq] D
(ta € IE) D
is_approved(A, E, J) Q [t,, 00))[(—00, 00)]

publish : (J)((E)is_approved(A, E, J) Q [t,, t)] —o
is_editor(E, J) Q [t4, t4] D
(ta €17)D
is_published (A4, J) Q [t,, 00))[(—o0, 0)]

Figure 3: Predicates and policies for a peer review publication process
time ¢, onward.

5 Conclusion

This report has presented a logic that combines time, linearity, hybrid worlds, and authorization
in a novel way. Our proof-theoretic approach resulted in a clean meta-theory. Among other
properties, we established cut elimination. We also showed that a reasonably expressive fragment
of our logic can be enforced in a PCA architecture in a straightforward manner. Through examples,
we illustrated the expressiveness of the logic and demonstrated scenarios which cannot be modeled
in earlier proposals.

An important topic that remains open is the analysis of policies written in the logic. We expect
that work from prior logics, particularly non-interference theorems [19], will carry over to 7-logic.
It will be interesting to study how these theorems interact with time.

References

[1] Martin Abadi. Access control in a core calculus of dependency. In ICFP ’06: Proceedings
of the eleventh ACM SIGPLAN international conference on Functional programming, pages
263-273, New York, NY, USA, 2006. ACM Press.

[2] Martin Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A calculus for access

control in distributed systems. ACM Transactions on Programming Languages and Systems,
15(4):706-734, 1993.

17

[3]

Andrew W. Appel and Edward W. Felten. Proof-carrying authentication. In G. Tsudik, editor,
Proceedings of the 6th Conference on Computer and Communications Security, pages 52—62,
Singapore, November 1999. ACM Press.

Lujo Bauer. Access Control for the Web via Proof-Carrying Authorization. PhD thesis, Prince-
ton University, November 2003.

Lujo Bauer, Scott Garriss, Jonathan M. McCune, Michael K. Reiter, Jason Rouse, and Pe-
ter Rutenbar. Device-enabled authorization in the Grey system. In Information Security:
8th International Conference (ISC ’05), Lecture Notes in Computer Science, pages 431-445,
September 2005.

Lujo Bauer, Scott Garriss, and Michael K. Reiter. Distributed proving in access-control sys-
tems. In Proceedings of the 2005 Symposium on Security and Privacy, pages 81-95, May
2005.

Moritz Y. Becker, Cédric Fournet, and Andrew D. Gordon. Design and semantics of a decen-
tralized authorization language. In 20th IEEE Computer Security Foundations Symposium,
pages 3-15, 2007.

Moritz Y. Becker and Peter Sewell. Cassandra: Flexible trust management applied to health
records. In Proceedings of IEEE Computer Security Foundations Workshop, pages 139 — 154,
2004.

Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A logical framework for
reasoning about access control models. ACM Trans. Inf. Syst. Secur., 6(1):71-127, 2003.

Kevin D. Bowers, Lujo Bauer, Deepak Garg, Frank Pfenning, and Michael K. Reiter. Consum-
able credentials in logic-based access-control systems. In Proceedings of the 1/th Annual Net-
work and Distributed System Security Symposium (NDSS ’07), San Diego, California, February
2007.

Torben Braiiner and Valeria de Paiva. Towards constructive hybrid logic. In Electronic Pro-
ceedings of Methods for Modalities 3 (M4M3), 2003.

J. G. Cederquist, R. Corin, M. A. C. Dekker, S. Etalle, J. I. den Hartog, and G. Lenzini.
Audit-based compliance control. Int. J. Inf. Secur., 6(2):133-151, 2007.

Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A judgmental analysis of
linear logic. Technical Report CMU-CS-03-131R, Carnegie Mellon University, 2003.

John DeTreville. Binder, a logic-based security language. In M.Abadi and S.Bellovin, edi-
tors, Proceedings of the 2002 Symposium on Security and Privacy (SE&P’02), pages 105-113,
Berkeley, California, May 2002. IEEE Computer Society Press.

E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical Computer Science.
The MIT Press, 1990.

M. Fairtlough and M.V. Mendler. Propositional lax logic. Information and Computation,
137(1):1-33, August 1997.

18

[17]

[18]

Thom Frihwirth. Temporal annotated constraint logic programming. Journal of Symbolic
Computation, 22(5-6):555-583, 1996.

Deepak Garg, Lujo Bauer, Kevin Bowers, Frank Pfenning, and Michael Reiter. A linear logic
of affirmation and knowledge. In D. Gollman, J. Meier, and A. Sabelfeld, editors, Proceedings
of the 11th European Symposium on Research in Computer Security (ESORICS ’06), pages
297-312, Hamburg, Germany, September 2006. Springer LNCS 4189.

Deepak Garg and Frank Pfenning. Non-interference in constructive authorization logic. In
J. Guttman, editor, Proceedings of the 19th Computer Security Foundations Workshop (CSFW
'06), pages 283-293, Venice, Italy, July 2006. IEEE Computer Society Press.

Gerhard Gentzen. Untersuchungen tiber das logische Schlieffen. Mathematische Zeitschrift,
39:176-210, 405431, 1935. English translation in M. E. Szabo, editor, The Collected Papers
of Gerhard Gentzen, pages 68-131, North-Holland, 1969.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1-102, 1987.

Joxan Jaffar and Michael J. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19/20:503-581, 1994.

Limin Jia. Linear Logic and Imperative Programming. PhD thesis, Department of Computer
Science, Princeton University, November 2007.

Trevor Jim. SD3: A trust management system with certified evaluation. In Proceedings of
IEEE Symposium on Security and Privacy, 2001.

Butler Lampson, Martin Abadi, Michael Burrows, and Edward Wobber. Authentication in dis-
tributed systems: Theory and practice. ACM Transactions on Computer Systems, 10(4):265—
310, November 1992.

Christopher Lesniewski-Laas, Bryan Ford, Jacob Strauss, M. Frans Kaashoek, and Robert
Morris. Alpaca: extensible authorization for distributed services. In 14th ACM Conference on
Computer and Communications Security, 2007. To appear.

Ninghui Li, Benjamin N. Grosof, and Joan Feigenbaum. Delegation logic: A logic-based
approach to distributed authorization. ACM Trans. Inf. Syst. Secur., 6(1):128-171, 2003.

Ninghui Li and John C. Mitchell. Datalog with constraints: A foundation for trust management
languages. In PADL ’03: Proceedings of the 5th International Symposium on Practical Aspects
of Declarative Languages, pages 58—73. Springer-Verlag, 2003.

Ninghui Li, John C. Mitchell, and W.H. Winsborough. Design of a role-based trust-
management framework. In Proceedings of the 2002 IEEE Symposium on Security and Privacy,
pages 114 — 130, 2002.

Per Martin-L6f. On the meanings of the logical constants and the justifications of the logical
laws. Nordic Journal of Philosophical Logic, 1(1):11-60, 1996.

19

[31] Ben Moszkowski and Zohar Manna. Reasoning in interval temporal logic. In Edmund Clarke
and Dexter Kozen, editors, Proceedings of the Workshop on Logics of Programs, volume 164
of Lecture Notes in Computer Science, pages 371-382. Springer Verlag, June 1983.

[32] Andrew Pimlott and Oleg Kiselyov. Soutei, a logic based trust-management system. In
Proceedings of the Eighth International Symposium on Functional and Logic Programming,
2006.

[33] Jason Reed. Hybridizing a logical framework. In International Workshop on Hybrid Logic
2006 (HyLo 2006), Electronic Notes in Computer Science, August 2006.

[34] Ulug Saranli and Frank Pfenning. Using constrained intuitionistic linear logic for hybrid robotic
planning problems. In Proceedings of the International Conference on Robotics and Automation
(ICRA 07), Rome, Italy, April 2007. IEEE Computer Society Press.

A Complete 7-logic Sequent Calculus

The complete set of inference rules of n-logic are summarized below. We extend the formulas of
the logic to include all of the standard formulas of intuitionistic linear logic, with the exception of
additive falsehood, 0. 0 is not included in the logic because we believe it to be a security risk: from
the assumption 0 @ I’, one can conclude any fact. The syntax of formulas is:

AB u= P|A®B|1|A&B|T|A®B|A—B|ADB|Vais.A|AQI|(K)A|IDT

The new formulas do not interact with time in interesting ways: they follow the pattern by which
the ® connective interacts with time. The proofs given in subsequent appendices include these
formulas.

Y, WEIDI' (P atomic) S, U AT AV Al = copy
> Pl — P[] ™ S 0T, A A — o
AQT
50T A = Al QR 50T AVAl = al
0 TA = AQ[[I'] YU AAQ I =
IDr
Y, WEIDTI U IDIT;A = v
R 2L
XU = I 2 I'[1"] S, A I DT =y
‘Afﬁrmation and <K>A‘
YU T A = Al _ YU T A = (K affirms A) at [
affirms OR

YU I A = (K affirms A) at [YU A = (K)A[T

0 TA Al = (K affrms B)atI” ;9 =121
Y0 A (K)A[I] = (K affirms B) at I

0L

20

| Other Connectives |

YU A = A[I] X, 05T Ay = B B S, U Ty AVA[IL Bl =
¥, 0T A, A = A® B[] ®© U AA® B[l = v

®L

YU A=~y
U T AL =y

1R 1L

XUl = 1]1]

YU A = Al %91 A = BJ[I]
YU T A = A& B[

&R

0T A Al = o
50T A A& Bl =

%W T A Bl =y
50T A A& B[l =

&Ly

&Ly

50T A = T[] TR

50T A = Al R 0T A = BII]
S UTA — A B M S UT:A — Aa B[]

DRy

ST AVA[ll =y 50T A B[l =
YU AA@ Bl =

®L

Y, @:interval; U, I D ;T A, Ali] = BJi]
XU A = A —o BII]

—oR

LU A = A[l'l ;9 EIDI X0, Aq, Bll'| =~
50T Ay, Ag, A — Bll] =

—oL

50T = Al E;W;F,A[[I]];A:yl

|
U T = LA[]] R ST ANA[= v

Y, s:interval; W, I D i; T, A[i]; A = BJi]
0T A = A D B[]

DR

LU= A[l'l ;9 EIDI %0 T;A B[l = v
50T AAD B[l =

DL

Y,a:59; 1A = [a/z]All] VR STy AE/x]All =y Xk tis
XU T A = Vais Al YU T A Vs Al = v

B Meta-theoretic Proofs

B.1 Identity Principle
Theorem 2. If ;¥ =1 D I, then X;W; T'; A[I] = A[I'].

Proof. By structural induction on the proposition A. We name the given derivation D.

21

Case: A=P
¥, ;I PlI] = P[I']
Case: A=A, ® A,

S0 TG Al] = Ag[I']
W T Ao[I] = Ao[I']
50T A1), Ag[I] = Ay @ Aq[1]
YU A AQ[[] = A ®A2[I/]

Case: A=1

XU = 1]
0511 = 1[1]

Case: A=A, & Ay

N0 A1) = A4[1']
E;\I’;F;Al&AQ[I] :>A1[I/]
W T Ao[I] = Ao[I']
E;\I’;F;Al&AQ[I] :>A2[I/]
Z;\P;F;Al&AQ[I] :>A1&A2[I/]

Case: A=T
50T = T
Case: A=A, D A,

YW Ts Ay (1] = AqI']
S0 TG Al] = Ay @ Ao[I']
W Ag[I] = Ao|I']

50T Agll] = Ay @ A[I']
XU AP AQ[[] = A EBAQ[I/]

Case: A=A — A

Y, dinterval; O, I' D' =4 D'
Y, :interval; W, I' D i'; T Ay [i'] = Aq[i']
Y, :interval; W, I' D i';T; Aq[i'] = Agli']
Y, dinterval; O ' D' =12 T
Y, :interval; O, I' D' =124
Y, dinterval; O, ' D' =127

E;W;F;Al —o Ag[[] - Al —o AQ[[/]

init Rule on D

I.H. on A; and D

I.H. on Ay and D

®R Rule on previous lines
®L Rule on previous line

1R Rule
1L Rule on previous line

I.H. on Ay and D

& L1 Rule on previous line

I.H. on Ay and D

& Lo Rule on previous line

&R Rule on second and fourth lines

TR Rule

I.H. on Ay and D

@ R; Rule on previous line

I.H. on Ay and D

@Ry Rule on previous line

@®L Rule on second and fourth lines

Reflexivity Property of =

IL.H. on A; and previous line
I.H. on A, and first line
Weakening Property of = on D
Hypothesis Property of =

Transitivity Property of = on fourth and fifth lines
Y, iinterval; W, I' D ¢/; T Ay —o Ag[I], A1[i'] = As[i']

—o L Rule on second, sixth,
and third lines
—o R Rule on previous line

Case: A =14,
YW T, Ay [1]; Ay (1] = Aq[T]
W T, A I = Al[T]
YW T, Ay [I]; - = 1AL (]
Y0 A [= 1A [T]
Case: A=A;D Ay

Y, dinterval; O, ' D' =4/ D'

Y, iinterval; W, I' D ;T Ay []); Ar[i] = Ax[?]

Y, interval; W, I' D s T, Aq[i']; - = Axld]

Y, tinterval; W, I' D i'; T, Aq[i']; Aoli'] = Aqli']

Y, :interval; O, I' D =121
Y, dtinterval; O ' D' =1 D
Y, :interval; O, I' D' =124

> \I’;F;Al D AQ[I] = A1 D AQ[I,]
Case: A =Vux:s.4;

Yoxiskaxs

Y, ais; W T A [I] = Ay [T]
Y, Ty Vs A [1] = Aq[T]
¥, I Vs . Ay [I] = Vais. Aq ']

Case: A=A4,Q]1"

S = [D I

XU T A [= A1)

50 A = Ay QI'[T)
0T A QI = Ay QI

Case: A= (K)A;
1] = A1)
1[I] = (K affirms A;y) at I
i (K)A1[I] = (K affirms Ay) at I
(K)Ail] = (K)Au[I']
Case: A=1,D 13
W, I, D13 =12 I3

N0, 2 Ins Ty = Ir D I3[I']
XU I O Ig[[] = Iy D 13[1/]

23

I.H. on Ay and D

copy Rule on previous line
!R Rule on previous line
!L Rule on previous line

Reflexivity Property of |=

I.H. on A; and previous line
copy Rule on previous line

I.H. on A5 and first line
Weakening Property of = on D
Hypothesis Property of =

Transitivity Property of = on fifth and sixth lines
Y, interval; W, I D /s T, Aq[i']; A1 D As[l] = As]i]

DL Rule on third, seventh,
and fourth lines
DR Rule on previous line

I.H. on Ay and D
VL Rule on previous lines
VR Rule on previous line

Reflexivity Property of |=
I.H. on Ay and previous line
@R Rule on previous line
@L Rule on previous line

I.H. on Ay and D

affirms Rule on previous line
()L Rule on previous line and D
()R Rule on previous line

Hypothesis Property of =
DR Rule on previous line
DL Rule on previous line

O

B.2 Subsumption

Before we can prove the subsumption theorem, we must prove two lemmata.

B.2.1 Transitivity for Constraint Hypotheses in the Constraint Domain
Lemma 1. f ;0 I D" ECand ;0 =121/, then 3,0, I' D 1" = C.
Proof. Let D=0, IDI"E=Cand E=S; YV =TD .

YU I'D2I"EIDT Weakening Property of = on &
S I'D2I1"EI DI Hypothesis Property of =
YU I'DI"EIDI" Transitivity Property of = on previous lines
S 100" I'D>I"EC Weakening Property of = on D
LU I'D2I"EC Cut Property of = on third and fourth lines

O

B.2.2 Transitivity for Constraint Hypotheses
Lemma 2. f ;¥ I D I"; T A= ~vand ;¥ =1 D I’ then Z; ¥, I' D I";T; A = .

Proof. By structural induction on the first given derivation.

Case:
Dl
D— S0, 101" EI3 D 1y .
S0, 1D 1" Pl — P[Iy] ™
S, 0. ' DI"EI3 D1 Lemma 1 on D’ and &
X, W,I' D I"; P[I3] = P[l4] init Rule on previous line
Case:
Dl
. . 7/ .
p_ I DI ALEA AL =
5,0, 1 DI T Al A =~
50, DI T A[L]; A A[ls] = v ILH. on D' and &
50,0 DI T AL A = v copy Rule on previous line
Case:

24

Dl D2
_ ;W I D I”;F;Al - Al[lg] X0, I D I”;F;AQ - AQ[Ig]

b 7 @R
2;\1’,[D I ;P;Al,AQ —— Al ®A2[Ig]
0. I' D17 T A = Aq[l3] ILH. on Dy and &
> \I/,I/ D) I”;F; Ay = Ag[[g] I.H. on Dy and &£
U I DI T AL Ay = A @ Ag[l] ®R Rule on previous lines
Case:
D/
p SV I 21T Ay, A[l5), Ao[ls] = v I
oW, I DI T A, Ay ® Ag[l3] =~ @
S0, I D17 T Ay, Ay[15], Ag[I3) = ILH. on D' and &
0, DI T A, A @ As[ls) = ®L Rule on previous line
Case:
D—
X0, 1 D11 = 1[135] LR
50, ' D211 = 1[I3] 1R Rule
Case:
D/
YU, I DT A =
D= = L—7 1
S0, I 2 I T Ay 1[I = v
.U, ' DI T AL = ILH. on D' and &
U I' DI T AL 1] = o 1L Rule on previous line
Case:
Dl D2
DY, 12 I"T; A = A[I3] ;9,1 D1"T;A = Ay[ls] R
;W I D I”;F;A = A &AQ[Ig]
50,0 D17 T A = Ay[15] ILH. on D; and &
0. I D1 T A = Ag[l3) ILH. on Dy and &
50,0 DI T A = Ay & AylTs] &R Rule on previous lines

25

Case:

/

p— DU IDIMT AL A (] =y

= L
S0, 1 D I" T A, Ay & As[ls] = v el
U I DI T AL A (] = ILH. on D' and &
0, DI T A, Ay & As[ls) = &Ly Rule on previous line
Case:
D/
p_ DU IDIMIA Al =+
- m &Lg
YW, I 21T Ar, Ay & Ag[l3] =
U I DI T A Al = ILH. on D' and &
0, DI T A, Ay & As[ls) = &Ly Rule on previous line
Case:
D =
S0, I DI T A = T3] TR
0. I' 21T A = T3] TR Rule
Case:
/
oW, I DI A = Ayl
D= — 1lfs] SRy
S0 I DT A = Ay @ Aol
0. I D1 T A = Aq[3) ILH. on D' and &
50, DI T A = Ay @ Ayls] ®R; Rule on previous line
Case:
D/
oW, I DI A = Asll
D= - 2l L] DRy

S U T DI A = A @ Ag[l3]

26

50,0 D17 T A = Ay[ls] ILH. on D' and &
YU ' D1 T A = Ay & As[l3] ®Rs Rule on previous line

Case:

Dl D2
p_ S I A Ay[ls] =y 50,1 D 1" T Ay, Ag[ls] = v
YW IDI"T A, A @ Aoll3] =~

®L

50,0 DI T Ay, A = ILH. on D; and &
U I DI T A Al = ILH. on Dy and &
S0, I DI T AL AL @ As[l]) = @ L Rule on previous lines
Case:
Dl
D— >, ig:interval; U, I D I”,Ig D I A A [’Lg] — AQ[Zg] oR
W, 1D I//;P;A = A —o AQ[[g]
Y, ig:interval; U I3 Digs =1 D T Weakening Property of = on &
Y igiinterval; W I' D 17 I3 Dig; Ty A, Aqlis] = Aslis] I.H. on D’ and previous line
0, DI T A = Ay —o As[l3] —oR Rule on previous line
Case: The last rule in D is —oL, and D has the form:
D1 D, Dy
E;W,IQI//;F;A1:>A1[[4] 2;\11,]2]//):[32[4 2;\1’,[2[//;P;A2,A2[[4]:>’y I
S0, T D175 AL, Ay, Ay —o Ag[I3] — ~ -
0. I D17 T A1 = Aq[l4] ILH. on Dy and &
U, ' D2I"EI3 D1y Lemma 1 on Dy and &
YU I DI A, Agly] = ILH. on D3 and &
YU, I D17 T A1, Ay, Ay —o Agll3] = —oL Rule on previous lines

Case:

Dl
_ %0, 1D 1" = All3]
X0, I D11 = 1A[I3]

D

27

50, ' D171 = All3] ILH. on D' and &

0, ' D17 T = A[3] 'R Rule on previous line

Case:
D/
Do S I D IMT AL A = v -
YU I DI A AL = v

50, DI T, Al A1 =y ILH. on D' and &

0,0 D171 A A[L] = 'L Rule on previous line
Case:

/
D— > dg:interval; W, 1 O I”,Ig Dig; I Al[[igﬂ; A= Ag[ig] R
S 0,12 1", A — A, > As[l] =

Y, ig:interval; W I3 Digs =121’ Weakening Property of = on £

Y, ig:interval; U, I D 1" I3 Dis; Ty Ay [is]; A = Aslis] LLH. on D’ and previous line

50, D171 A = Ay D Ayls] DR Rule on previous line

Case: The last rule in D is DL, and D has the form:

Dl D2 D3
2;\1’,[2[//;P;':>A1[[4] 2;\11,]2]//):[32]4 E;\I’,IQI//;P;ALAQ[[4]:>’}/ I
S0, 12 I"iT; Ay, AL D As[l3] — ~ -
0. I' D171 = Aq[l4] ILH. on Dy and &
S0, I' 21" EI3 D1y Lemma 1 on Dy and &
S0 I DI T A ALy = ILH. on D3 and &
0, ' D171 A, A D Aslls) = DL Rule on previous lines
Case:
Dl
D— Yoo U, I DI T A = All] VR
0,1 DI A = Va:s. A[l3]
Yos;WEIDT Weakening Property of = on £
Y, 0, I D 17T A = All3] ILH. on D’ and previous line
50,0 D171 A = Vais. All3] VR Rule on previous line

28

Case:

D1 Dy
DSV I DI Ay [t/a]Alls] = v Ykt
XU, 1 DI T Ay, Vais. Alls) = vy
X0, DI T Ay, [t/x)Allz] = ILH. on D; and &
X0, D171 Ay, Vas All3] = v VL Rule on previous line and Dy
Case:
Dl
p— SV, 12 I'";T; A = Al[l3]
= - QR
S0 I DI A = AQ [3]14]
50, D17 T A = Alls] ILH. on D' and &
S0 D1 T, A = AQ I3[y @R Rule on previous line
Case:
D/
p— SU I DIMI Ay Alls] = v QL
U, ID I//;P;Al,A Q@ 13[14] =Y
U I DI T AL AL = v ILH. on D' and &
50, DI T A, AQ I3[1y] = v @QL Rule on previous line
Case:
Dl
D— U, I DI T A = All3) .
= i - affirms
0,1 21" T A = (K affirms A) at I3
50,0 D17 T A = Alls] ILH. on D' and &
0, I' D1 T;A = (K affirms A) at I3 affirms Rule on previous line
Case:
/
D5V, I2 I";T; A = (K affirms A) at I3

0, I DI A = (K)A[I3) R

29

0, ' DI T; A = (K affirms A) at I3 ILH. on D' and &

50, D1 T A = (K)A[I3] ()R Rule on previous line

Case:
Dy D,
b _ S U I DT AL Al = (K affrms A)at Iy, ;0,121 EI; D 4
0,1 DI T A, (K)A[l3) = (K affirms A) at Iy

X0, D171 Ay, Alls] = (K affirms A) at I ILH. on D; and &

YU I'D2I"EI3 DI Lemma 1 on Dy and &

5,0, I' DI T Ay, (K)A[I3] = (K affirms A) at Iy ()L Rule on previous line
Case:

Dl
po_ WWIDIELOL
S, U, I DTy = I3 2D Iy[ls] —

S, 0. ' DI"EI3 D1 Lemma 1 on D' and &

S,0, 0 D 1" = I3 2 Iy[I5] DR Rule on previous line
Case:

D/
po SV IDI" I3 DI A =~y ST
S;W, I DI T Ay I3 D In[Is]) ==y —

YU 3oL EIDT Weakening Property of = on &

o, ' DI I3 D Iy A1 = ILH. on D' and &

YU I DI T A, I3 D L[] = v DL Rule on previous line

O

B.2.3 Subsumption Proof

Theorem 3.
I XU ;A = A[l] and 3; % =1 D I, then 3, U; T A = A[I'].
2. UX;U:T; A = (K affirms A) at [and ;¥ =1 D I, then 3; ¥; T; A = (K affirms A) at I'.

Proof. By simultaneous structural induction on the first given derivation, D.
Part 1:

30

Case:

/

_ SwEI"D>I
> Pl — Pl ™
Y5O =—1"DT Transitivity Property of = on D’ and &
¥, ;I PI"] = P[I'] init Rule on previous line
Case:
Dl
. T n. 1
p_ ST BILA B = Al
0T, B[I"]; A = A[l]
T, B[I"]; A, B[I"] = A[l'] LH.(1) on D" and &
;0 17, B[I"]; A = A[l'] copy Rule on previous line
Case:
Dl D2
p_ 5 TA = Al] 50T Ay = As[]] R
S Ui T; Ay, Ay — A; © Ag]] ®
Y0 A = Ay[I] [.LH.(1) on D; and &
Y0 Ay = AgI'] [.LH.(1) on Dy and &
LU AL Ay = Ay ® Ag[T] ®R Rule on previous lines
Case:
D/
p = 50 Ay B [I7], Bo[I"] = A[l]
¥, Ay, By @ Bo[I"] = A[l]
S T: Ay, By (17, Bo[I") = A[I') LH.(1) on D' and &
Y UiT; Ay, By @ Bo[I"] = A[T'] ®L Rule on previous line
Case:

a XU T = 1]1] 1R

31

0T = 1[0
Case:
/

D XU T A = Al
0T A, 17 = Al

1L

YU Ay = A[I]
Y0 AL 1] = AT

Case:

D D

1 2
,D:E;\I’;F;A:>A1[I] 50T A = Al

YU A = Ay & Ag[

YU A = Ay[1]
YU A = Ao[I]
YU T A = Ay & AgI]

Case:
Dl

po SWT AL B [I"] = All]
;05T Ay, By & Bo[I"] = Al

&Ly

0T Ay, B[] = Al
E;\I’;F;Al,Bl &BQ[I”] - A[I’]

Case:
Dl

p_ SWTIALB[I"] = All]
XU Ay, By &BQ[I”] — A[I]

& Lo
30T Ay, Bo[I'] = Al
DAV I Al, B & BQ[I//] - A[I/]

Case:

32

1R Rule

LH.(1) on D" and &
1L Rule on previous line

LLH.(1) on D; and &
ILH.(1) on Dy and &
&R Rule on previous lines

LH.(1) on D" and &
& L1 Rule on previous line

LH.(1) on D" and &
&Ly Rule on previous line

D

N 50U A = T[] TR
X0 TA = T[]
Case:
D'
YU T A = Ayl ©R,

ST A = Ay & Af]]

YU A = Ay[1]
YU, A = Ay @ Ag[T]

Case:
D/

D YU A = Agl]
YU A = Ay @ Ag[I]

©Ry

YU T A = Ao[I]
YU T A = Ay & AgI]

Case:

Dy
D

_ ST A Bi[I"] = A[l] 50T Ay, Bo[1"] = A[l]

TR Rule

LH.(1) on D" and &
@ R; Rule on previous line

LH.(1) on D" and &
@Ry Rule on previous line

;0T Ay, By @ Bo[I"] = A[l]

30T Ay, B [T = A[T]
;005 Ay, Bo[I"] = A[I']
YU T Ay, By @ Bo[l"] = A[l']

Case:

D/

p — 5 tsinterval; W, 1 2 4; T A, A i) = Asld]

YU A = Ay —o Agll]

Y, isinterval; U, I' D ;T A, Aq[i] = Asli]
YU T A = A —o Ag[I]

33

®L

ILH.(1) on D; and &
LLH.(1) on Dy and &
@®L Rule on previous lines

Lemma 2 on D' and £
—o R Rule on previous line

Case:

D, Dy Dy
DZE;\II;F;Al :>Bl[[3] v l:IQ D13 E;W;F;AQ,BQ[[g] :>A[I]
YW 5 Ay, Ag, By —o Byllo] = A[l]

—oL

DRV I Ag, BQ[[g] - A[I/] IH(l) on D3 and &£
DIAUES - Al, AQ, B —o BQ[IQ] - A[I’]
—o L Rule on D1, Ds, and previous line

Case:
D/
p_ 50T = Al R
50T = 1A (1]
50T = Ay [l'] LH.(1) on D" and &
NUiT; - = LA [I] 'R Rule on previous line
Case:
D/
p - 5T BI"]; Ay = A[l] 5
¥, A Bl = AlI]
0T, B[I"]; Ay = A[T] LH.(1) on D" and &
Ui T AL B[] = Al 'L Rule on previous line
Case:
/
D— Y, :interval; W, I D 4T, Aqi]; A = Agli]
U A = Ay D Ag[l]
Y, einterval; W, I D 4T, Aq[i]; A = Asli] Lemma 2 on D’ and &
U5 A = Ay D AgI] DR Rule on previous line
Case:

Dy (2 Dy
D— XUl — Bl[fg] v): I; D13 E;W;F;Al,BQ[[g] - A[I]

2; \I/;F; Al, Bl D) BQ[IQ] = A[[]

DL

34

3,015 Ay, B[] = A[I']
X, T5 Ay, By D Ba[lo]) = A[I']

Case:
/

D— Yoxs U T A = Al
YU T A = Vais Al

Yos;OWEIDT
Yoas; U T A = Al
0T A = Vais. Al

LLH.(1) on D3 and &
DL Rule on Dy, Dy, and previous line

Weakening Property of = on £
L.H.(1) on D’ and previous line
VR Rule on previous line

Case:
Dl DQ
p— 5 U THA, [t/z|B[I"] = A[I] X} ts VI
Y0 T A Vais. B[] = A[I
WA [t/2] BT = A[l'] ILH.(1) on D; and &
YU T A Va:s. Bl = A[l'] VL Rule on previous line and Do
Case:

D/
YU A = Ay (1]
0T A = Ay QT[]

D=

QR

0T A = A QT[T
Case:
/

U Ay, B[Is) = Al
¥, W T; Ay, B Q [I] = A[l]

D=

Y05 Ay, B3] = A[I]
YW T Ay, BQ L[] = A[I']

Case:

35

@R Rule on D’

QL

LH.(1) on D" and &
@L Rule on previous line

Dl
D— 5,01 A = (K affirms Ap) at [

S A — (KA 08

Ui A = (K affirms Ap) at I’ ILLH.(2) on D" and &

50 A = (K)A] ()R Rule on previous line
Case:

/
. i "
p_ LUEIDI -
U= I"2I1"[I) ~

Ui = 1" D I"[I] DR Rule on D’

Case:
Dl
po 59,52 I3 A = All] ST
Uy A, I D 13[14] — A[I] -

S, U, L2312 Weakening Property of = on £

XU, 1, D 13T A = A[l] I.H.(1) on D" and previous line

U5 Ay, I O I3[1y]) = All'] DL Rule on previous line

Part 2:
Case:
/
D ¥, 0T, B[I"]; A, B[I"] = (K affirms A) at I copy
¥, IV, B[I"]; A = (K affirms A) at I

0T, B[I"]; A, B[I"] = (K affirms A) at I ILLH.(2) on D" and &

;T B[I"]; A = (K affirms A) at I’ copy Rule on previous line
Case:

/
p = 5T AL B [I"], Bo[I"] = (K affirms 4) at [

YU Ay, By @ Bo[I"] = (K affirms A) at [

36

¥, 0T Aq, B[], Bo[l"] = (K affirms A) at I LLH.(2) on D" and &
Y U:T; Ay, By ® B[l = (K affirms A) at I’ ®L Rule on previous line

Case:
D/

_ XU Ay = (K affirms A) at [
¥, A, 11" = (K affirms A) at T

¥, Ay = (K affirms A) at I LLH.(2) on D" and &
YU Ay, 1[I = (K affirms A) at I’ 1L Rule on previous line
Case:
D/
D Y UiT; Ay, Bi[I"] = (K affirms A) at T &L
S Ui T Ay, By & Bo[I"] = (K affirms A)at1 = '
¥, Ay, B[] = (K affirms A) at I’ LLH.(2) on D" and &
Y U:T; Ay, By & Byl = (K affirms A) at I’ &Ly Rule on previous line
Case:
D/
D Y UiT; Ay, Bo[I"] = (K affirms A) at T &L
S Ui T Ay, By & Bo[l"] = (K affirms A)atl = 2
¥, Ay, B[l = (K affirms A) at I’ LH.(2) on D" and &
Y U:T; Ay, By & Byl = (K affirms A) at I’ &Ly Rule on previous line
Case:
D, Dy
_ XU A B[] = (K affirms A)at I X935 Ay, Bo[l”] = (K affirms A) at T
D= oL
YT A1, By @ Bo[l'] = (K affirms A) at I
¥, Ay, B[] = (K affirms A) at I’ [.LH.(2) on D; and &
YW T5 Ay, Bo[I"] = (K affirms A) at I’ I.LH.(2) on Dy and &
YW T Ay, By @ Bo[l"] = (K affirms A) at I’ ®L Rule on previous lines

37

Case:

Dl DQ D3
D— XU I A = Bl[lg] v ’: I 213 ;0T AQ,BQ[Ig] — (K affirms A) atl

XU Ay, Asg, By —o BQ[IQ] — (K affirms A) at/

—o

YW T Ag, Bo[I3] = (K affirms A) at I’ I.LH.(2) on D3 and &
¥, W5 Ay, Ag, By —o Bs[Iy] = (K affirms A) at I’ —oL Rule on Dy, Ds, and previous line

Case:
D/
p— 5T, BI"]; Ay = (K affirms A) at 1 "
Y, U:T; Ay, IB[I"] = (K affirms A) at T
¥, ;T B[I"]; Ay = (K affirms A) at I’ LLH.(2) on D" and &
YU T; Ay, B[I"] = (K affirms A) at I 'L Rule on previous line
Case:

D Dy Ds
D_E;\P;F;':Bl[lg] 27\If’:[22]3 E;\I’;F;Al,Bg[Ig] :>(KaffirmsA) atl I
- D

U I A, B D BQ[IQ] — (K affirms A) at/

YW T5 Ay, Bo[I3] = (K affirms A) at I’ I.LH.(2) on D3 and &
¥, T Ay, By D Bo[lo] = (K affirms A) at I DL Rule on Dy, Dy, and previous line
Case:

Dl Dg
p- S BA, [t/z]B[I"] = (K affirms A)atI X+ t:s
¥ 0T A Vais. B[] = (K affirms A) at I
¥, W A, [t/2] B[l = (K affirms A) at I [.LH.(2) on D; and &
YU T A Vais. B[l = (K affirms A) at I’ VL Rule on previous line and Dy

Case:

D/
p— S WAy, B[l3] = (K affirms A) at [ar
Y, 0T Ay, BQ I3[ls]) = (K affirms A) at I

38

¥, ;T Ay, B[Is] = (K affirms A) at I LLH.(2) on D" and &

Y U:T; Ay, BQ I3[15]) = (K affirms A) at I’ @L Rule on previous line
Case:
Dy Dy
p - SV AL B[] = (Kaffrms A)at I S5V =1, 211)
X0 Ay, (K)B[I] = (K affirms A) at I
¥, ;T Ay, B[Iy] = (K affirms A) at I ILH.(2) on D; and &
SZWUWELDI Transitivity Property of = on Dy and £
¥, ;T Ay, (K)B[Io) = (K affirms A) at I’ ()L Rule on previous lines
Case
D/
D 50T A = Al

T SUiT A — (K affirms A)at 7 21TMS

0T A = A[l] LH.(1) on D" and &
YU T A = (K affirms A) at I’ affirms Rule on previous line
Case:
D/

_ XU, I, D I5; T A1 = (K affirms A) at I
D= oL
XU AL, LD 13[14] — (K affirms A) atl —

S, U, L2312 Weakening Property of = on £
XU, I, D I5;T; Ay = (K affirms A) at I’ [.H.(2) on D" and previous line
¥, W5 Ay, I O I3[ly]) = (K affirms A) at I’ DL Rule on previous line

O

B.3 Admissibility of Cut

Before we can prove the admissibility of cut, we must prove a few lemmas.

39

B.3.1 Constraint Cut Lemma
Lemma 3. If ;¥ = C and X; U, C;T; A = ~, then X; U; T, A = .

Proof. By structural induction on the second given derivation, &£.

Case:
g/
_ S CEIDT -
&= init
¥, 0, C;T; PlI] = P[I']
Y U= 12T Cut Property of = on D and &’
Y, T; P[I] = PI[I'] init Rule on previous line
Case:
g/
E = 30, C; F/>A[[I]]7A7A[I] = copy
50, O5 T AT A =
U T AT AV Al = I.H. on D and &'
50T A A =y copy Rule on previous line
Case:
51 52
eSO A = Ai[l] 550, 05T Ay = Ap[l] R
%0, CiT5 Ay, Ay —> Ay ® Ay[]] ®
50T A = Aq[l) LLH. on D and &
0T Ay = Ag[] ILH. on D and &
S0 T A Ay = Ay ® AT ®R Rule on previous lines
Case:
g/
g=SV.CGLiA A Ll =x
50,01 A1, Ay @ Ao[l] =
50T A AT, Aol = I.H. on D and &’
ST A Ay @ Ao[l] = vy ®L Rule on previous line

40

Case:

a 0,01 = 1[1] 1R
50T = 1]1] 1R Rule
Case:
/
c= N V.OCTA =« 1L
S0, O AL 1] =y
S0 T Ay = oy I.H. on D and &'
YU T AL L[] = y 1L Rule on previous line
Case:
51 52
£ — U0 A = A[I] 5;9,C;T A = Aq[l] %
0,0 T A = Ay & Aol R
50T A = Al LLH. on D and &
50T A = Aol ILH. on D and &
YU A = Ay & As[&R Rule on previous lines
Case:
5/
e— SVCT AL Al =~y
- &Ll
%0, C T A, Ay & Agl] =
0T AL AT =y ILH. on D and &’
YUy A A & Aol = & L1 Rule on previous line
Case:
g/
XU, O T Ay, Al =
1, Az (] g &Ly

S, O T AL A & Ayl] — o

41

;W5 A, Al =
E;\I’;F;Al,Al &AQ[I] =7

Case:

£

- 0,01 A = T[] TR

U A = T
Case:
g/

_ LU0 A = A
50,0 T A = Ay @ Aqll]

SRy

50T A = Al
YU A = Ay @ As[]

Case:

g/
_ LU0 A = Ay[I] R
S0, O ;A = Ay @ Ag[]] Bl
YU A = Aol
U A = Ay & Ag[l]
Case:
51 52

g SV CNAL Al =y 55U, O Ay Ao[l] = o

ILLH. on D and &’
& L9 Rule on previous line

TR Rule

ILLH. on D and &’
@ R; Rule on previous line

I.H. on D and &'
@Ry Rule on previous line

0,0, A1, A1 @ Al =

ST AL A =y
S0 T A Ag[l] =
YU A A @ Al =

Case:

42

®L

I.H. on D and &;
I.LH. on D and &
@ L Rule on previous lines

g/

£ — Y, a:interval; W, C, I D ;T A, Ay [i] = Asli]

YU, 0T A — A — Ay[]] R

Y, é:interval; U, I D i = C Weakening Property of = on D

Y, ainterval; U, T D 4, T A, A [i] = As]i] I.H. on previous line and &’

YU A = Ay —o Al —oR Rule on previous line
Case:

51 82 83
eV, 0T A = Al S0, CEIDI %9,0;T;Aq, Aol = v o
W, 515 A1, Ag, Ay — Ag[l] =

T A = Ay (1] ILH. on D and &

U EIDT Cut Property of = on D and &

YW Ag, Aol = IL.H. on D and &3

S0 T A, Agy Ay — Al = —o L Rule on previous lines
Case:

5/
£ — 0,05 = A[l
= 'R
50,05 - = A[I]

50T = Al I.H. on D and &’

XU = 1A[]] !R Rule on previous line
Case:

g/
g=SVOGLAI M =y
0,0 A Al =y

U AT A = I.H. on D and &'

YU T AAT = !L Rule on previous line
Case:

g/
£— Y, a:interval; W, C, I D 4; T, A1 [i]; A = As]i]
50,0, T A = Ay D Aq[l]

DR

43

Y, i:interval; U, I D i = C Weakening Property of = on D

Y, ainterval; U, T D 4; T A [i]; A = Ag]i] I.H. on previous line and &’
YU A = Ay D Aq[l] DR Rule on previous line
Case:
81 52 53
eSO = A 59,CEIDI 50,01 A ALl = vy I
0,05 A, A D Al = -
X UiT; - = Aq[I'] ILLH. on D and &;
S WEIDT Cut Property of = on D and &
YU Ay, Ag[l] = ILH. on D and &
YUy A AL D Al = DL Rule on previous lines
Case:
g/
- Y50, 0Ty A = Al
= VR
50,0 T A = Vas. A[I]
Y,osV EC Weakening Property of = on D
Y,xs U T A = Al I.H. on previous line and &’
YU T A = Vais Al VR Rule on previous line
Case:
& &
e =5V, O A [t/2]All] =7 Xk tis VI
0,0 Ay Vs All] = v
S0 AL [t/z]All] = v I.LH. on D and &;
YU T Ay Vs Al = VL Rule on previous line and &
Case:
5/
€= 50,0, A = A[I]
= - QR
0,0 A = AQ[I')
50T A = Al I.H. on D and &’
U TA = AQI[I] @R Rule on previous line

44

Case:

g/
_ N0, C T A Al =y ar
0,04, AQ T =
U A Al = ILLH. on D and &’
YU A AQI = v @QL Rule on previous line
Case:
g/
£ = 50, 0T, A = Al

TS0, CiT5 A — (K affirms A)at 2™

50T A = Al I.H. on D and &’
XU A = (K affirms A) at 1 affirms Rule on previous line
Case:
g/
£ — 50,0 A = (K affirms A) at 1 OR
0,0 T A = (K)A[I]
0T A = (K affirms A) at T I.H. on D and &'
50U A = (K)A[I ()R Rule on previous line
Case:
51 52
£— 0,0 A, Al = (K affirms B)atI! S, 0. C =121 0L
¥, 0,05 Ay, (K)A[I] = (K affirms B) at I’
YT A, Al = (K affirms B) at I’ ILH. on D and &;
S, WEIDI Cut Property of = on D and &
YT A, (K)A[I) = (K affirms B) at I’ ()L Rule on previous lines
Case:

g/
. D) !
eo_ LWCORIDI
0,01 = I D I'[1"]

45

5/

SV, C I I A =y

Cut Property of = on D and &’
DR Rule on previous line

X0, C T AL I D[] =

B.3.2 Substitution Lemma

oL

Weakening Property of = on D
I.H. on previous line and &’
DL Rule on previous line

O

Lemma 4. If ¥, 2:5; U;T; A = v and X t:s, then X; [t/x|V; [t/z]T; [t/2]A = [t/x]y.

Proof. By structural induction on the given derivation.
Case:
Dl

D Yos; W EIDT
¥, x:s; ;T P[I] = P[I']

X [t/x|V = [t/](1 2 1)
3 [t/x]W; [t /=]L; [t/x](P{I]) = [t/x](P[I'])

init

Substitution Property of = on D’
init Rule and definition of substitution
on previous line

Case:
Dl
e T)
D— Y,xs; U T AL A Al = copy
Yoo U T AT A = v
S5 /2] [t} (T, ALTD): [t/2)(A, ALT)) = [t/aly LH. on D/
Y [t/x]W; [t/x) (T, A[L]); [t/x]A = [t/x]y copy Rule and definition of substitution
on previous line
Case:

46

Dl D2
p = 2 w8 W TG Ay = A[I] 3,250, Ay = As[]]

Yoxs; U T Ay Ag = A @ Ag|T] R
s [t/ 2] [t/x]T [t/ 2] Ay = [t/z](A1[1)) LH. on Dy
S5 [t/ /4]0 [t/2]1 0 —> [t/2](Aol1]) LH. on D,
5 [t/ 2] [t/x]T; [t/ 2] (A1, Ag) = [t/x](A1 @ As[I]) ®@R Rule and definition of

substitution on previous lines

Case:

Dl
p = Sas; WD Ay Ay, Ao [T] = v
U, Ui T A, Ay @ Ao[l] =

®L

z U [t/ [t)x] (A1, AL[I], A2ll]) = [t/z]y LH. on D’
X[t/ 2] [t/x]T; [t/ 2] (A1, Ay @ As[l]) = [t/x]y ®L Rule and definition of substitution
on previous line

Case:
D—
Y80 T = 1][1] LR

S [t)x| s [t/ - = [t/x|(1[1]) 1R Rule and definition of substitution

on previous line
Case:

/
D— Yors; Ui A =y 1L
Y,xs; U T AL 1[I =

X[t/ 2] [t/x]T; [t/ 2] Ay = [t/x]y ILLH. on D’

S [t)x] Vs [t/ |0 [t/ x] (A1, 1[I]) = [t/x]y 1L Rule and definition of substitution

on previous line
Case:

Dl D2
D Yoo U T A = A[I] X, ais U T A = Aol

Yoas U T A = Ay & Ag[

&R

47

s [t/ 2] [t/x]T [t/ 2] A = [t/x](A1[1]) LLH. on Dy
S [t/ x] s [t/x]Ts [t/ 2] A = [t/z](A2[I]) LH. on Dy
s [t/ x)Ws [t/x]T; [t/ 2] A = [t/x](A1 & As[I]) &R Rule and definition of substitution

on previous lines

Case:

/
po SwsUTAL A =y
Yoas; U T A A & Aol =

&Ly

3 U [t/ [t/x] (A1, AL[I]) = [t/x]y LH. on D’
X [t/x)Ws [t/x]T; [t/ x] (A1, Ay & As[I]) = [t/z]y &L; Rule and definition of substitution

on previous line

Case:
/
po Das WAL Al =y &Ly
Yoas; U T A A & Aol =
S5 /2] s /)T /2] (A, As[1)) = [t/a]y LH. on D
S [t)x] Vs [t)x]0; [t/ x] (A1, Ay & Ag[I]) = [t/x]y &Lo Rule and definition of substitution
on previous line
Case:
D=
Y80 T A = T TR
S [t/x] W [t)x]0; [t/ 2] A = [t/x](T[I]) TR Rule and definition of substitution
on previous line
Case:
Dl
D— Yoo U T A = Ay[]]
- B R;
Y,xs; U T A = A @ As[l]
s [t/x)W; [t/x]T [t/ 2] A = [t/x](A1[1]) LH. on D/
3o [t/x] W [t)x]T; [t/ 2] A = [t/x] (A1 & As[I)) @®R; Rule and definition of substitution

on previous line

48

Case:

/
D— Yz U T A = Aol
Y, U T A = Ay @ Ag[I]

@® Ry

s [t/ 2] [t/x]T [t/ 2] A = [t/x](A2[I]) LH. on D’
Si[t/x] s [t)x]T; [t/ 2] A = [t/x] (A1 & As[I)) @®Rs Rule and definition of substitution
on previous line
Case:
Dl D2
poSwsi AL] =7 o501 A Apll] = o I
3,2, U T Ay, Ay 6 Ag[T] — 7 ®
5[t/ 2] [t/ x)Ts [t/ x] (A1, AL[I]) = [t/x]y LLH. on D,
X[t/ 2] [t/x]T [t/ 2] (A, As[I]) = [t/x]y L.H. on Dy
S [t)x] Vs [t)x]0; [t/ x] (A1, Ay @ Ag[I]) = [t/x]y &L Rule and definition of substitution
on previous lines
Case:
D/
p — Z, s, dinterval; W, 1 2 45 I A, A[i] = Aqld] R
Y,xs U T A = Ay —o Aol
Y, a:interval; [t/x] (W, I D i); [t/z]T; [t/z](A, A1 [i]) = [t/z](Az2[i]) LLH. on previous line
and D’
Y, a:interval; [t/x] W, [t/x]I D i; [t/x]L; [t/x]A, [t/x] A1 [i] = [t/x] Aald] Definition of
substitution and ¢ is fresh
o [t)x| s [t/ [t/ 2] A = [t/z](A1 —o Asl]) —oR Rule and definition of substitution
on previous line
Case:

Dl D2 D3
p = Sws; WA — A [I'] S0 =121 X a:s;U;T; Ay, Ao[I'] =~
X wis U Ay, Ag, Ay — Agll] =

—oL

49

Y [t/x]¥; [t/x]T; [t/ 2] Ay = [t/x](A1[T']) LH. on Dy
¥ [t/x] s [t/xT E [t/z)(I 2 1) Substitution Property of = on Do
Y [t/x]W; [t/x]T; [t/ x](Ag, As[I']) = [t/x]y LH. on D3
X [t/ x] s [t)x)Ts [t/ x] (A1, Ag, Ay —o Ag[I]) = [t/x]y —oL Rule and definition of

substitution on previous lines

Case:

D/
p- Sl = AlI]
= 'R
Y, xs; T = 1A[T]
S [t/x) s [t/x)T; - = [t/x](A[I]) LH. on D’
X[t/)W [t/x]T; - = [t/x](VA[T]) 'R Rule and definition of substitution

on previous line

Case:
D/
D— Yo U T AL AL =y "
Yoas; U T ALA[=y

s [t/x) s [t/x)(T, A[L]); [t/z] A = [t/x]y LH. on D’

X[t/ 2| [t/ 2|0 [t/ x] (A1, TA[I]) = [t/x]y !L Rule and definition of substitution

on previous line
Case:

D/
p — S, s, @interval; W, 1 2 4 T Aq[i]; A = Asli]
Y, U T A = Ay D Ag|I]

Y, é:interval; [t/

(9,1 2 0); t/2)(T, Ay D) [t/2]A = [t/)(Asi) LH. on D
Y, i:interval; [t/x] ¥

12
1V, [t/=]I 2 i [t/]L, [t/x] AL [i]; [t/ 2] A = [t/x] Asli]
Definition of substitution and i is fresh
i [t/ x)Ws [t/x]T; [t/ 2] A = [t/x](A1 D Ag[I]) DR Rule and
definition of substitution on previous line

X
x

Case:

Dy D, Ds
D:Z‘,,x:s;\II;F;-:>A1[I’] Yos;WEITIDTD Y s UT; A Aol = v
Yoais; U T A A D Aol =

DL

50

Y [t/x]W; [t/2]T; - = [t/x](A1[L']) L.H. on D,
X [t/x]V E [t/z)(I 2 1) Substitution Property of = on Do
Y [t/x]W; [t/x]T; [t/ x](Ay, As[I']) = [t/z]y LLH. on D3
S [t/x] Vs [t/ x]0; [t/ x] (A1, Ay D Ag[I]) = [t/x]y DL Rule and definition of substitution

on previous lines

Case:
/
D— Yo, xlis ;T A = Al
Yozis; U T A = Va':s' Al
X, a8y [t/ 2] [t/ 2]Ts [t/ 2] A = [t/z](A[I)) LH. on D’ and 2’ is fresh
Y [t/x]¥; [t/x]T; [t/ 2] A = [t/z](Va':s' . A[I]) VR Rule and definition of substitution

on previous line

Case: There are two cases for the VL rule. The substituted term may be = or it may not be.

Subcase:
Dl Dg
p— S ws; T A, [z/2'|A[l] = v X,x:sF x:s VI
Y, xis; U T A, Valis Al = v
X [t/x]W; [t/ 2T [t/ 2] (A, [2/2"]A[T]) = [t/a]y LH. on Dy
s [t/ 2] s [t/x)Ts [t/ x] (Aq, [t/2'|A]T]) = [t/z]y Definition of substitution
on previous line
Y [t/ 2] W [t/x]T; [t/ 2] (A1, Va':s. AT)) = [t/z]y VL Rule on previous line
Subcase:
Dl D2
p - S w5 U T A, [t/ |A]l] = ~v X,x:skts VL
Y, xs; U1 Ay, Vs Al = v
Yt
X [t /2] [t/ 2T [t/ 2] (A, [t /2] A[T]) = [t/x]y LH. on Dy
s [t/x] s [t/x]T; [t/ x] (A, Va':s" A[l]) = [t/x]y VL Rule on previous lines
Case:

D/
D— Yoxs; U T A = Al
Yors; U A = AQI[I]

QR

o1

s [t/x)W; [t/x]T [t/ 2] A = [t/x](A[I]) LH. on D’
b U: [t/2z|T; [t/2]A = [t/x](A Q@ I[I']) @R Rule and definition of substitution
on previous line

Case:
D/
Yoxs; U AL Al =
D= 1, AlI] : Y ar,
Y,os; U T AL AQ T =

So[t/x| s [t/2]0; [t/ x] (A, A[I]) = [t/x]y LLH. on D/

i [t/2) W [t/x]T; [t/ 2] (A, AQ I[I]) = [t/z]y QL Rule and definition of substitution

on previous line
Case:

D/
D— Yoxs U T A = Al o
Y280 T A = (K affirms A) at [atirms

[t/ x] s [t/x)Ts [t/ 2] A = [t/z](A[I]) LH. on D’

X[t/ x]) s [t/x)Ts [t/ 2] A = [t/z]((K affirms A) at) affirms Rule and definition of

substitution on previous line
Case:

Dl
D— Y,V I A = (K affirms A) at ['R
YU T A = (K) AT

5[t/] W [t/x]T; [t/ 2] A = [t/x]((K affirms A) at) ILLH. on D’

X[t/ 2]V [t)]0; [t/ 2] A = [t/x]((K)A[I]) ()R Rule and definition of substitution

on previous line
Case:

Dl D2
D— Y, x:8;W; T Ay, B[l = (K affirms A) at I’ X, x:; 0 =121

Y, x:8; ;5 Ay, (K)B[I] = (K affirms A) at I’

52

X [t/x] U

X[tz v

X [t/x] U
Case:

X [t/x] U

X[tz v
Case:

% [¢/=] (¥

5 [t/x]¥;

s [t/z]0, 5 [t/z) (A, BlI]) = [t/x]((K affirms A) at I") L.H. on Dy
Et/z)(I2T1) Substitution Property of = on Do
s [t/z|Ts [t/ 2] (Aq, (K)B[I]) = [t/x]((K affirms A) at I') ()L Rule and
definition of substitution on previous lines
Dl
D Yo WEITIDT R
Yoo U= 12I'1"] —
Et/z)(I 21 Substitution Property of = on D’
i [t/x|T; - = [t/x](I 2 I'[I"]) DR Rule and definition of substitution
on previous line
D/
po Sas;W I DI A =+ 5
Yoo U AL ID T =y —
I DI [t/z0s [t/ 2] Ay = [t/x]y ILH. on D’
[t/x]T [t/:p](Al, ID01") = [t/x]y DL Rule and definition of substitution

on previous line

O

B.3.3 Admissibility of Cut Proof

Theorem 1.

1. XU T A = A[I] and 3; ;T A/, A[I] = v, then ;U T A A = 7.
2. It ;T - = A[I] and X; ¥; T, A[I]; A’ = v, then 3; U; T A = 4.

3. I X U:I'; A = (KaffirmsA)atl and 3; W; T; A’ A[I] = (KaffirmsB)atl’ and ;¥ =12 I,

then X; ¥; T; A/, A = (K affirms B) at I'.

Proof. By simultaneous induction. Part 1 is proven by nested induction on the size of the cut
formula, A, and on the size of the given derivations. Part 2 is proven by structural induction on
the second given derivation, where we may appeal to part 1 even on larger derivations. Part 3 is

proven by structural induction on the first given derivation.
Part 1:

Case: Initial Cut

Subcase:

93

g/

EZE;\I'):IQI’ (P atomic)

S Pl — P ™
XU T A = P[I] Theorem 3 on D and &’
Case: Principal Cuts
Subcase:
Dl D2
p S UDA = A4 [I] T;W T Ay = Ao[l] R
ST AL A — A @Al
and
!
YU AL AL © Aol =
YU T A A AT = IL.H.(1) on Ay, Dy, and &’
YU T AL AL Ay =y I.H.(1) on As, Dy, and previous line
Subcase:
D —
U T = 1[1) LR
and
5/
£ YU A =y 11
YU AN = y
WA =y &
Subcase:
Dl D2
_N U A = A [I] LU A = Ay[l]
D= &R
YU A = Ay & Ag[
and
/
U AL AT =
E = j 1 1] g &Ly
ST AL A & Aol =
U T AA =y L.H.(1) on Ay, Dy, and &’

54

Subcase:

D Dy

1
D— U A = A1 20T A = Aq[)

50T A = Ay & Ag|T]
and

/
_ S WA Al =y
YUy A A & AT =

&Loy

U T AA =y

Subcase:
D/
MU T A = A1
D= 1[] DR
YU A = Ay @ Aq[]
and
51 82

e S TA Al = S WA, Al =

&R

LH.(1) on Ag, Do, and &’

0T, A A @ Aol =y

U AA =y

Subcase:
D/
XU A = Aol
D= 2(1] DR
S0 T A = Ay @ Aol
and
51 52

gL WLA Al =y SWHA Al =y

®L

L.H.(1) on Ay, D/, and &

YU A AL @ Aol =
U T AA =y
Subcase:

D/

p — 5, @interval; W, I 2 4; T A, Aqi] = Asli]

YU A = Ay —o Al

and

95

®L

LH.(1) on Ag, D', and &

—R

& & &3
522;\1’;F;A’1:>A1[I’] L0 E=IDI XU AL Al =

YU T AL AL Ay — Al =

—oL

51 Ji)(W, 1 2) (1) (1A, Aylil) = (/i) (Asli) Lemma 4 on T/
XU, I DI A A [I'] = Ag[I] Definition of Substitution and i is fresh

on previous line
T AL A1 = As[I] Lemma 3 on & and previous line
XU AA = AT LLH.(1) on Ay, &, and previous line
S0 AL A A =y I.H.(1) on As, previous line, and &3

Subcase:

/
p_ Sl = Ay[]]
50T = 1A []]

and

'R

g/
g=SGLAA =y
U A A =y

U A =y L.LH.(2) on Ay, D', and &’

Subcase:

D/
p = X, cinterval; W, 1 2 4; T Aq[i]; A = Asqli]
50T A = Ay D Aq[l

and

81 52 53
522;\II;F;-:>A1[I/] S, EID0 S0 AL Al =
YUy A AL D Al =

DL

(U, I Dd);[I')i](T, A1 [i]); [I' 1] A = [I' /i) (A2[i]) Lemma 4 on D’
DIIT, A [I']; A = Aqll']

Definition of Substitution and ¢ is fresh on previous line
50T, A [I]; A = Ag[I] Lemma 3 on & and previous line
YU A = Ao[I] LLH.(2) on Ay, &, and previous line
U A A =y I.H.(1) on As, previous line, and &3

¥ [I'/i]
S0, T

Subcase:

D/
D Yoas U T A = Ay[]]
YU A = Vais. Ay (1]

VR

o6

and
51 52
g =Wl Atz Al =y Y Ets
YU A Vs A [= v

0T A = [t/x] A1) Lemma 4 on & and D’
U A A =y I.H.(1) on [t/xz]A1, previous line, and &;
Subcase:
Dl
_ SW A = A1)
D= QR
0T A = A QT[]
and
g/
= _SELA Al =y .
YU A A QI =y
U A A =y L.H.(1) on Ay, D', and &’
Subcase:
/
p = 2T A = (K affirms Ay) at I OR
50T A = (K) A [1]
and
51 52
£ — 0 AY A 1] = (K affirms B)at I ;0 =121 0L
¥, 0T A (K)Y A [I) = (K affirms B) at I’
Ui Ty A A = (K affirms B) at I’ LH.(3) on A1, D', &1, and &
Subcase:
/
. /D 14
po_ BVEIDI
500 =1 e I"[]]
and
5/
_ LU I DI A =y
S0 A T DI =y T
U A =y Lemma 3 on D’ and &’

o7

Case: Left Commutative Cuts
Subcase:
D/

_ %W T, B[I']; A, B[I'] = A[l]
IV, B[I']; A = A[l]

D

copy
0T, B[I']; A, A, B[I'] = v
U T, BI'; AN A =y
Subcase:
Dl
p = S WAy Bi[I'], B[] = A[l]
;005 Ay, By @ Bo[l'] = A[l]

YWD A A B[], Bo[I') = v
0T A A, By @ Bo[l'] = v

Subcase:

/
D YUy A = Al
0T A, 1[I = Al

1L
0T A A =y
YU A AL L[] =y

Subcase:

D/
p— S WT AL B[] = A[l]
;0T Ay, By & Bo[I'] = A[l]

&Ly
S;W T A Ay B[] =
DIAUEN - A,,Al,Bl & BQ[I,] 7

Subcase:

D/
_ ST Ay, Byl = Al
ST Ay, By & Bo[l'] = A[l]

&Loy

;W T AL Ay, Bo[I') =
E;W;F;A/,Al,Bl &BQ[I/] =Y

o8

LLH.(1) on A, D', and &
copy Rule on previous line

LH.(1) on A, D', and &
®L Rule on previous line

LH.(1) on A, D', and &
1L Rule on previous line

ILLH.(1) on A, D', and &
& L1 Rule on previous line

LH.(1) on A, D', and &
&Ly Rule on previous line

Subcase:

D, Dy
p=2¥TAL B[l = All] SWTAL B = Al]
S Ui T Ay Br @ Boll'] — A[l] ©
YU A AL B = y LH.(1) on A, Dy, and &
0T A A B[l = LLH.(1) on A, Do, and &
YU A VAL By @ B[l = @ L Rule on previous lines

Subcase:

p-5 A = Bi[I"] S0 I D17 %;U:T;Ag, Bo[I"] = A[I]

Wi T; Ay, Ay, By — Bo[l'] = A[l] B

YU A Ag, Bo[l'] = LLH.(1) on A, D3, and &

U5 A1, A Ay, By — Bo[l'] = —oL Rule on Dy, D, and previous line
Subcase:

D/
D— 0T, B[I']; Ay = A[I] 5
YW AL B = AlI]

S, U T, B[I']; A Al = Weakening on &

50T, B[I'; A Ay =y LH.(1) on A, D', and previous line

0T A AL B =y 'L Rule on previous line
Subcase:

Dy Dy D3
p_5 ¥l = Bi[I"] S0 I D17 ST A, Bo[I"] = A[I] I
S0 T Ay, By 5 Bo[l'] — A[l] -

YU T A A B[l = LH.(1) on A, D3, and &

0T A A, By D B[l = v DL Rule on Dy, Dy, and previous line
Subcase:

D4 D,
p - 5T AL /2B = A[l] Yt VI
¥, 0T A, Vais. B[I') = Al
WA A [t/2] B[] = IL.H.(1) on A, Dy, and &
YU A AL Vas. Bl = o VL Rule on previous line and Dy

99

Subcase:

/

¥, Aq, B[I') = Al

TS wn AL Bar] — g *F
YU T A A B = y LH.(1) on A, D', and &
U A AL, BQI] = y @QL Rule on previous line
Subcase:
Dl
_ S0 I' DI A = Al
D B ! "nrrm QL
STy AL T D T[T = Al
50,0 D11, A AL =y Weakening on &
S0 DI A A =y LH.(1) on A, D', and previous line
YU AAL T DT = y DL Rule on previous line

Case: Right Commutative Cuts

Subcase:
5/
. el 7. / !/
£ — 5, U I B[], A AL B[I') = v copy
¥, 0T, B[I']; A Al = v
0T, B[I']; A, A, B[I'] = v L.LH.(1) on A, D, and &’
50T, B[I'; A, A =~ copy Rule on previous line

Subcase: The last inference of £ is the ® R rule. There are two subsubcases; the resource
A[I] may be sent to the derivation of the left premise, or it may be sent to the derivation
of the right premise.

Subsubcase:
51 82
e - S WTAL Al = Bi[I'] ST A) = By[I']
Y0 I AL AL Al = By @ Bo[!l]
0T AL A = B[] LLH.(1) on A, D, and &
50T AL A AL = By @ B[] ®R Rule on previous line and &

Subsubcase:

®R

& &
eV TA = Bil'] 59T A5, All] — B[]
Y0 T AL AL Al = By @ Ba[!l]

®R

60

Y0 AL A = Bo[l] IL.H.(1) on A, D, and &
I AL AL A = By @ By[I'] ®R Rule on & and previous line

Subcase:

/

g = 5T AL B[], Bo[I'], All] = v

®L
30T A, By @ Bo[I'], A[l] =
0 AL B[], Bo[I'], A = v L.LH.(1) on A, D, and &’
0T AL B @ B[], A = v ®L Rule on previous line

Note: There is no case here for the 1R rule. This rule requires the linear context in the
conclusion to be empty. But, the derivation £ must have the cut formula A[I] as an
assumption in the linear context. So, it is impossible for £ to end with the 1R rule.

Subcase:
5/
_ LU AL AL =y 1L
SWs T AL LI Al =

YU ALA =y L.LH.(1) on A, D, and &’

5w AL, A =~ 1L Rule on previous line
Subcase:

51 82
=W LA Al = B[l %A A= B[l o
¥, 0 A Al = By & Byl

0T A A = B[l LLH.(1) on A, D, and &

YU A A = Byl LH.(1) on A, D, and &,

0T AN A = By & Bo[I] &R Rule on previous lines
Subcase:

/
__SULAL BN All =y
;W AL By & Bo[I'], Al =~ &

50T AL B[], A =y L.LH.(1) on A, D, and &’

XU AL B & B[], A = v &Ly Rule on previous line
Subcase:

/
_ XU T AL B[l All] = v
3, U5 AL By & Bo[I'), Al = v

&Loy

61

5,0 AL B[, A = v L.LH.(1) on A, D, and &’
L0 AL B & B[, A = v &Ly Rule on previous line

Subcase:

£ =
S U A, AL = T
U ANA = T TR Rule
Subcase:
g/
_ S WAL Al = Bi[I'] OR
S U A Al = By @ B[]
YU AYA = B[] LLH.(1) on A, D, and &'
0T A A = By @ Bo[I] ®R; Rule on previous line
Subcase:
g/
_ S WAL Al = Boll'] OR
;Ui A Al = By @ Bo[l] 2
0T A A = Bo[I] L.LH.(1) on A, D, and &’
YU A A = By @ Bo[I'] ®Rs Rule on previous line
Subcase:
51 52
e = S IAY B All] = v S0 T3 AL Bo[I'], All] = v oL
YU AL By @ Bo[I'], Al =
50T AL B[], A =y LLH.(1) on A, D, and &
50T AL B[, A =~ LH.(1) on A, D, and &,
WAL B @ B[l A =~ @ L Rule on previous lines
Subcase:
g/
£ = Y, :interval; W, I' D i';T; A/ A[I], B1[i'] = Ba[i'] R
;Wi I A A[l] = By — Ba[I'] -
Y, :interval; W, I' D i/ T A = A[] Weakening on D
Y, dinterval; W, I’ D d';T; A/ A By[i'] = Boli'] I.LH.(1) on A, previous line, and &’
0T A A = By —o By[I'] —oR Rule on previous line

62

Subcase: The last inference of £ is the —L rule. There are two subsubcases; the resource
A[I] may be sent to the derivation of the left premise, or it may be sent to the derivation
of the right premise.

Subsubcase:
& & &3
€= 500 AL Al = Bi[I"] 59 =T 21" 5,0, TAL, B[l = v I
% W;T; A, Ab, By — By[I'], All] = v -
0T AL A = B[] LLH.(1) on A, D, and &
XU AL A AL By — B[l = —o L Rule on previous line, &, and &3
Subsubcase:
51 52 83
522;\I/;I’;A’1:>Bl[l”] S, I 21" BT AL Al Bo[I"] = v I
;Wi T; AL, A), By —o B[], A[I] = ~ -
0T AL A By I = LH.(1) on A, D, and &3
¥, AL ALY By — Bo[I', A = v —o[L Rule on &1, &, and previous line

Note: There is no case here for the !R rule. This rule requires the linear context in the
conclusion to be empty. But, the derivation £ must have the cut formula A[I] as an
assumption in the linear context. So, it is impossible for £ to end with the !R rule.

Subcase:
g/
g=ZWLBIE A All =
ST AL B Alll =y
0T, B[I']; A = A[I Weakening on D
W B[I'; AL A = v I.H.(1) on A, previous line, and &’
;I AL B, A = !L rule on previous line
Subcase:
/
£ = Y, tinterval; W, I' D i1, B1[i']; A', A[I] = Bsli'] R
S0 T A, A[l] — By 5 Bo[l'] -
Y, :interval; O, I' D /s T, B1[i']; A = A[I] Weakening on D
Y, tinterval; W, I D i';T, B1[i']; A', A = Bsli'| I.H.(1) on A, previous line, and &’
0T A A = By D Bo[I] DR Rule on previous line
Subcase:
51 52 53
e ST = Bi[I"] S I D1" SWT AL Al Byl = o .

S, W5 AL By D Bo[I'], Alll = v

63

WAL A Byl = L.H.(1) on A, D, and &;
0 AL B D B[l A =~ DL Rule on &1, & and previous line

Subcase:

!
£ = ¥, U T A Al = B[]
0T A Al = Vais. B[I]

Y,xs U T A = Al Weakening on D
¥, a8 0T A A = B[I'] L.LH.(1) on A, D, and &’
YU T AV A = Vais. B[] VR Rule on previous line
Subcase:
51 82
e - BTN BB Al =0 BEts
Y0 T AL Vais. B[], Al = v
0T AL /2] BI'], A =~ ILH.(1) on A, D, and &
¥, 0 AL Vs B, A = v VL Rule on previous line and &;
Subcase:
/
£ = ¥, A Al = B[I'] aR
0T, A Al = BQ T[]
0T AV A = B[I] L.LH.(1) on A, D, and &’
YU A A = BQ T[] @R Rule on previous line
Subcase:
g/
g=_ZWLALBILAll =y
XU AL BQII], Al =
0T AL BT, A = v L.LH.(1) on A, D, and &’
50, ALBQIIY,A =~ @QL Rule on previous line
Subcase:
g/
e ST A’ Al = (K affirms B) at I OR
;Wi A Al = (K) B[]
Ui T3 A A = (K affirms B) at I’ LH.(1) on A, D, and &'
50 AVA = (K)B[I) ()R Rule on previous line

64

Subcase:

51 52
e S WAL BT, Al = (K affirms D) at I” S50 = 1' O 1

¥, 0T AL (K) B[], A[l] = (K affirms D) at I”

¥, ;T AL, B[], A = (K affirms D) at I” LH.(1) on A, D, and &
Y, ;I AL (K)BI'], A = (K affirms D) at I"” ()L Rule on previous line and &;
Subcase:
/
£ 50T A, All] = B[I'] .
- 7 . 7 affirms
0T A Al = (K affirms B) at I
0T A A = B[I] L.LH.(1) on A, D, and &’
Ui A A = (K affirms B) at I’ affirms Rule on previous line

Note: There is no case here for the DR rule. This rule requires the linear context in the
conclusion to be empty. But, the derivation £ must have the cut formula A[I] as an
assumption in the linear context. So, it is impossible for £ to end with the DR rule.

Subcase:
/
_ SU IO IMT AL A =y 5
U DAL DI ALl =y T
0. I' D1 T A = Al Weakening on D
U, ' DI T ALA = [.H.(1) on A, previous line, and &’
50T ALT DI, A =y DL Rule on previous line

This ends the proof of Part 1.

Part 2:

Case: Initial Cut

Subcase:
g/
e SV I' > 1" (P atomic) |
=0T AL PO = PO ™
¥, ;I Pl = P[I"] init Rule on &’

Case: Copy Cut

65

Subcase:

g/
g =S A[A All] =
50T AL AT =y

copy

50T AL AL =y L.LH.(2) on D and &’
U A =y I.H.(1) on A, D, and previous line

Case: Right Commutative Cuts

Subcase:
g/
. TV !/ . / !
£ — S, w Y B[], A[I]; A, B[I') = ~ copy
0T, B[], A[I]; A = ~

IV, B[I']; A, B[I'l =~ [.LH.(2) on D and &’

0T, B[I']; AN =~ copy Rule on previous line
Subcase:

51 52
£ = 0T AL A = B[] 30T, A[I]; Ay, = Bo[I'] R
0T, A[I]; AL, Ay = By ® Byl N

0T Al = B[] I.H.(2) on D and &;

Y, AL = By[I] I.LH.(2) on D and &,

¥, AL ALY = By @ Bo[l'] ®R Rule on previous lines
Subcase:

/
o - ST AL AL BT Ball) =
UL, AL AL B @ Bl — 7

0T AL B[], Bo[l'] = L.LH.(2) on D and &’

WAL B @ Byll'l = v ®L Rule on previous line
Subcase:

=
T, AL =]
0T = 1[0 1R Rule

66

Subcase:

g/
g=_ZWLAUA =y
ST, AL O 1] = 5
U A =y ILH.(2) on D and &’
0T AL =y 1L Rule on previous line
Subcase:
51 52
&= 50T AL A" = B[] 20T, A[I]; A = Bs[I'] %R
YW A[I]; AY = By & BoI]
50 A = By[l] I.LH.(2) on D and &
0T AN = By[I] I.H.(2) on D and &
¥, 0T A = By & By[I'] &R Rule on previous lines
Subcase:
/
_ DELANEM B =
S WD AL AL B & B[l =7 =
500 AL B[=y [.LH.(2) on D and &’
0T AL B & B[l = &Ly Rule on previous line
Subcase:
5/
= DULAULAL Byl =~ o
S0 T, A[I]; AL By & Bo[I'] = &2
0T AL B[l = L.LH.(2) on D and &’
WAL B & Byl = &Ly Rule on previous line
Subcase:
E =
ST AL A — 1] &
XU A = T[] TR Rule
Subcase:

67

!/

50T, Al A" = By[!)

S0, A[I; A = By @ By[I'] B
50 A= By[l'] [.LH.(2) on D and &’
YU A" = By @ Bo[I'] @®R; Rule on previous line
Subcase:
5/
_ S W A[I A" = Bo[I] OR
ST, A A = By @ B[] 2
0T A = By[I] I.LH.(2) on D and &’
¥, 0T A = By @ By[I'] ®Rs Rule on previous line
Subcase:
51 52
e ST A AL B[l = v ST AT Ay, By[I'] = oL
X \II;F7A[[I]];A/17BI S B2[I,] =7
S0 AL B[=y I.H.(2) on D and &
0 AL B[l = v I.H.(2) on D and &
WAL By @ Byl = ®L Rule on previous lines
Subcase:
/
£ — Y, sinterval; W, I' D i'; T, A[I]; A, B1[i'] = Bsli'] R
% T, A[I[; A = By —o By[T'] B
Y, dinterval; U, I’ D ;T - = A[I] Weakening on D
Y, :interval; W, I' D /T A/, By [i'] = Bali'] I.H.(2) on previous line and &’
¥, 0T A" = By — By[l] —oR Rule on previous line

Subcase: The last rule of D is —oL, and D has the form:

& & &s
50T AL A = B[l"]) 59 = I' 21" 30T, A[I]; A, Bo[I"] = v

ST, A[I]; A, Ab, By —o B[] — ~ —L
Y0 A = B[] I.H.(2) on D and &
0T AL B[] = I.H.(2) on D and &
¥, AL AL By — Byl = v —oL Rule on first line, &, and second line

Subcase:

68

g/
_ 5 WAl - = BlIT
¥, 0T, A[I];- = '\B[I']

¥, T;- = BI[I'] L.LH.(2) on D and &’
0T - = |B[I'] 'R Rule on previous line
Subcase:
g/

5w T AL BI'[; A = v

&€= 'L
YW T A[L]; AL B =
¥, T, B[I'];- = A[l] Weakening on D
;0T B[[I’]] A=~ I.H.(2) on previous line and &’
X, I AL IB[T i | =7 !L Rule on previous line
Subcase:
5/
£— Y, i:interval; O, I' D i'; T, A[I], B1[{']; A" = Bal?'| R
S0 T, A[]; A — By S Bs[l'] =
Y, :interval; O, I' D /s T, B1[i']; - = A[[] Weakening on D
Y, :interval; W, I' D /s T, B1[i']; A" = Ba[i’] ILH.(2) on previous line and &’
¥, 0T A" = By D By[I'] DR Rule on previous line
Subcase:
&1 & &
&= 50T AL = B[] S5v=1"D 1 ;U T, A[I]; A}, Bo[I"] = v I
% ;T A[I]; A7, By o Bo[l'] — ~ .
0T = By[I”] I.LH.(2) on D and &
XU AL B[] = I.H.(2) on D and &
Y, WAL By D Byl = DL Rule on first line, &, and second line
Subcase:
5/
£ = Y, x50 T, A[I]; A" = B[I']
YW A[I]; A = Vas. BT
Y80 T = Al Weakening on D
¥, 28,0 Ty A" = B[l I.H.(2) on D, and &’
¥, 0T A" = Vais.B[I'] VR Rule on previous line

69

Subcase:

51 52
g = ST AL AL [t/2]BI') =y Y =tis
0T, A[I]; A, Va:s. B[I') = v

YT AL [t/2) B = v I.H.(2) on D and &;
Y, AL Vs B[I') = VL Rule on previous line and &
Subcase:

!/

£ = ¥, 0T, A[I]; A = B[I']

ST, AL N — Ba] ¢

¥, ;T A" = BII'] [.LH.(2) on D and &’

YU A" = B@ I'[1"] @R Rule on previous line
Subcase:

/
_ N WT A AL B =y ol
5 U A A, BQ 'Y = v

0T AL B[N = y L.LH.(2) on D and &’

U ;AL BQI] = y @QL Rule on previous line
Subcase:

g/
£ = ¥, 0T, A[I]; A’ = (K affirms B) at I’)
0T A[I]; AY = (K)B[!I']

Y0 I A = (K affirms B) at I’ [.LH.(2) on D and &’

0T A" = (K)B[I'] ()R Rule on previous line
Subcase:

51 52
g = B AU AL BIIY = (Kaffims D)at I Y0 121"
XU, A[I]; A}, (K)B[I'] = (K affirms D) at I”

Y, ¥ I A, B[I') = (K affirms D) at I” I.H.(2) on D and &;

¥, ;I AL (K)B[I'] = (K affirms D) at I” ()L Rule on previous line and &
Subcase:

70

/
_ ¥, 0T, A[I]; A = B[I']
¥, 0T, A[I]; AY = (K affirms B) at I

; affirms

Ui A = B[I] ILH.(2) on D and &’
0T A" = (K affirms B) at I’ affirms Rule on previous line
Subcase:
g/
. / 7
o SU =T D .
50T A, = I' 211" —
XU = I' D I"[1"] DR Rule on &’
Subcase:
/
£ = 50,0 D17 T, A[l] = v
WD A AL T D I =y —
0, ' D171 = A[l] Weakening on D
50U D1 T A =y ILH.(2) on previous line and &’
U AL DT =y DL Rule on previous line

This ends the proof of Part 2.
Part 3:

Case: “Initial” Cut

Subcase:
D/
_ 50T A = A[l] .
= . affirms
5,0 A = (K affirms A) at I
Ui Ty A A = (K affirms B) at I’ ILH.(1) on A, D', and &

Case: Left Commutative Cuts

Subcase:
/
D= U: TV, D[I"]; A, D[1"] = (K affirms A) at [copy
Y9IV, D[I"]; A = (K affirms A) at I
¥, T, D[I"]; A, A, D[I"] = (K affirms B) at I ILH.(3) on A, D', £, and F
¥, T, D[I"]; A, A = (K affirms B) at I’ copy Rule on previous line

71

Subcase:

/

_ YW T5 Ay, Di[I"], Do[I"] = (K affirms A) at 1

D
¥, W A, Dy @ Do[I"] = (K affirms A) at I
YW1 A Ay, Dy 7], Do[I"] = (K affirms B) at I’ LH.(3) on A, D/, £, and F
XUy AV A, Dy @ Do[I"] = (K affirms B) at I ®L Rule on previous line
Subcase:
/
_ %W A = (K affirms A) at [1
¥ 0T A, 11" = (K affirms A) at 1
0T A Ay = (K affirms B) at I’ LH.(3) on A, D/, £, and F
XU Ty A AL 1[I = (K affirms B) at I’ 1L Rule on previous line
Subcase:
Dl
D U:T; Ay, D1[I"] = (K affirms A) at I &L
S 0;T; Ay, Dy & Dy[I"] = (K affirms A)at I = !
Y015 A A, Dy [I"] = (K affirms B) at I’ LH.(3) on A, D/, £, and F
Ui Ty A A, Dy & Do[I"] = (K affirms B) at I’ &Ly Rule on previous line
Subcase:
Dl
D U:T; Ay, Do[I"] = (K affirms A) at I &L
S0 T; Ay, Dy & Do[I"] = (K affirms A)at1 = >
Uiy A A, Do[I"] = (K affirms B) at I’ LH.(3) on A, D', &, and F
¥, A Ay, Dy & Do[I"] = (K affirms B) at I &Ly Rule on previous line

Subcase: The last rule of D is @ L, and D has the form:

Dy D,
YUy Ay, D[l = (K affirms A) at I 35 0; 15 Ay, Do[I"] = (K affirms A) at T oL

Y015 A1, D1 @ Do[I"] = (K affirms A) at [

Y05 A A, Dy [I"] = (K affirms B) at I’ LH.(3) on A, Dy, &, and F
Ui Ty A Ay, Do[I"] = (K affirms B) at I LH.(3) on A, Dy, £, and F
Y015 A Ay, Dy @ Dy[I"] = (K affirms B) at I ®L Rule on previous lines

72

Subcase: The last rule of D is —oL, and D has the form:
Dl DQ D3
U A = Dl[lg] v ’: I 213 ;0T AQ,D2[13] - (K affirms A) atl
YU A, Ay, Dy —o DQ[IQ] — (K affirms A) atl

—o

Y015 A Ag, Do[I3] = (K affirms B) at I’ LH.(3) on A, D3, &, and F
Y UiT; Ay, A'J Ay, Dy —o Do[I3] = (K affirms B) at I’ —oL Rule on Dy, Do,

and previous line

Subcase:
/
D ¥, T, D[I"]); Ay = (K affirms A) at [i
Y015 A, D[] = (K affirms A) at T

¥, T, D[I"]; A, A[I] = (K affirms B) at I Weakening on £
;U T, D[I"]; A’ Ay = (K affirms B) at I’ I.H.(3) on A, D/, previous line, and F
XUy A AL D[] = (K affirms B) at I’ 'L Rule on previous line

Subcase: The last of rule of D is DL, and D has the form:

Dy Dy Ds
XUy — Dl[Ig] v ’: I 213 ;0T Al,Dg[Ig] — (K affirms A) at/l

U A, Dy D DQ[IQ] — (K affirms A) at/

DL

YW T A Ay, Do[ls) = (K affirms B) at I’ LLH.(3) on A, D3, &, and F
YU Ty A Ay, Dy D Dyl = (K affirms B) at I DL Rule on Dy, Do,
and previous line

Subcase:

Dy Dy
_ XU T Ay [t/2] B[] = (K affirms A)at I ¥ = tis
YT Aq,Vais. B[I") = (K affirms A) at [

D

VL
0T A A, [t/2) B[l = (K affirms B) at I’ LLH.(3) on A, Dy, &, and F
¥, T A Ay, Vais. B[I"] = (K affirms B) at I’ VL Rule on previous line and Dy
Subcase:

D/
p- 5 WI; A1, D[I3] = (K affirms A) at I al
0T A, D QIh[I3] = (K affirms A) at [

Ui Ty A Aq, D[] = (K affirms B) at I’ LH.(3) on A, D', &, and F
Y015 A Ay, D @ I[I3]) = (K affirms B) at I @QL Rule on previous line

73

Subcase:

Dy (2
b SiW T3 AL D) = (K affirms A)at] S0 T D1
Y015 A, (K)D[I"] = (K affirms A) at [

Y015 A Ay, D[] = (K affirms B) at I’ LH.(3) on A, D/, &, and F
S UpEI"Dr Transitivity Property of = on Dy and F
0T A AL (KD = (K affirms B) at I’ ()L Rule on previous lines
Subcase:
D/

p- SV, 12 I3;T; Ay = (K affirms A) at I 5

XU AL I D [3[[4] — (K affirms A) atl —
YW, I O I3; T A A[l] = (K affirms B) at I’ Weakening on £
XU, I, D I5;T; A, Ay = (K affirms B)at I’ 1.H.(3) on A, D/, previous line, and F
U5 A Ay, I D Is[ly) = (K affirms B) at I’ DL Rule on previous line

This ends the proof of part 3.
O

C Enforcement of a Fragment of 7-logic in (-logic

C.1 Translation From (-logic to n-logic

Theorem 4. Suppose 3; W (= I D I” for each I"” € I and for each I" € I’. Then,

1. If 2;0; A = F in (-logic, then X; U; @[[f]];A[f’] = F[I"] in n-logic.
2. If 2;0; A = K affirms F' in (-logic, then X; ¥; O[I]; A[I'] = (K affirms F') at I” in n-logic.

Proof. By simultaneous structural induction on the first given derivation, Z;0;A =— A or
=Z:0; A = K affirms A.

Part 1:

Case:

PTzea=ant
Let I’ = {I'}.
SZUEIDI Containment assumption for I’ and previous line
X U O[I]; A[l'] = A[1"] init Rule on previous line

74

Case:

/
pD=501,B,A,B= A
=:01,B; A=A

copy

Let I =1, U{I}.

Y, UE=I121" Containment assumption for I and previous line
SiU = I" DI forall I € I' U {1} Containment assumption for I’ and previous line
S W; 04[], B[I]; A[l"), B[I] = A[I"] LH.(1) on D', containment assumption for I,
and previous line
S W; 0[], B[I]; All") = A[I"] copy Rule on previous line
Case:
Dy Dy

D:E;@;A1:>A1 E;@;A2:>A2

50 A — A dy O
Let I' = I U I,
;U =1" 21" for all I" € I Containment assumption for I’ and previous line
¥ 0; O[1]; Ay [I]] = Ay[I"] L.H.(1) on Dy, containment assumption for I,
and previous line
L0 E=I"21" forall I € 1, Containment assumption for I’ and first line
¥ W; O[1]; Ag[I}] = Ao[I"] LH.(1) on Dy, containment assumption for I,
and previous line
S W; O[] AL 1], Aol = Ay @ Ag[I”)] ®R Rule on third and fifth lines
Case:
D/
D = Ea®7AlyBlyB2:>A L
57@,/\1,31 Q@ By =— A
Let I' = I U {I'}.
S0 O[] Ay (I1], B1[I'], Bo[I') = A[I"] I.H.(1) on D" and containment assumptions
for I and I’
¥ W; O[1]; A1[I]], By ® By[I'] = A[I"] ®@L Rule on previous line

Case:

75

S0 O[] - = 1[1"] 1R Rule
Case:

/
D= E;@;A1:>A
=20, 1= A

1L

Let I' = Il U {I'}.

SO ET"DIforal I € f{ Containment assumption for I’ and previous line

S W; O[] A [I]] = A[I"] LH.(1) on D/, containment assumption for I,

and previous line

¥ 0; O[1]; Ay [1]],1[I'] = A[I"] 1L Rule on previous line
Case:

Dy Do
D:E;@;A:>A1 Z0:A = A R
=;0; A= A & A,

S0 O[] Al = Ay[1”] L.H.(1) on D; and containment assumptions for I and I’

503 O[] AllT] = Ao[I”] I.H.(1) on D, and containment assumptions for I and I’

S O[] Al = Ay & Ay[I”] &R Rule on previous lines
Case:

/
D= Z60;A,B= A
ZOA B LB — A Y
Let I' = I, T'.

¥ 0; O[1]; A [1]], B1[I'] = A[I"] I.H.(1) on D" and containment assumptions

for I and I

¥ W; O[1]; A [11], By & Bo[I'] = A[I"] &L; Rule on previous line
Case:

76

Dl
E;@;Al,Bg — A

D=
E;@;Al,Bl&B2:>A

&Loy

Let I_;:IZ,I’.

U 0[] Ay [IZ],Bg [I'l = A[I"] I.H.(1) on D" and containment assumptions

for I and I’

;0[] A [IZ], By & Bs|I') = A[I"] &Ly Rule on previous line

Case:

Tyt
S U O[] A[l] = T[] TR Rule
Case:
D
P==5 i;ii;gal@ e
DIRVE @[[I:]]; A[Ij] = Ay[I"] LH.(1) on D’ and containment assumptions for I and I’
5,001 All] = Ay @ Aq[1”] @ R; Rule on previous line
Case:
D'
P==5 i;ij;g;@ N
503 O[] AllT] = As[I”] LH.(1) on D’ and containment assumptions for I and I’
S0 O] Al = Ay @ As[I1”) ®R2 Rule on previous line
Case:

Dy Dy
D:E;@;A1731:>A E;@;A1732:>A I
Z0:A,B1 G By — A @

7

Let I_;:IZ,I’.

S0 O[] Ay [IZ],Bl [I'l = A[I"] I.H.(1) on D; and containment assumptions

for I and I’

;0[] Ay [IZ], By[I'l = A[l"] I.H.(1) on Dy and containment assumptions

for I and I’

>0 0[] A [IZ], By @ Bo|I')| = A[I"] @®L Rule on previous lines
Case:

/

D= ;A4 = Ay

E;@;A = A; — Ay R
SO I DI forall I" e T Containment assumption for I’
s, interval; W, I D" = 1" D 1" for all I" € T Weakening Property of = on previous
line
Y, " :interval; @, 1" D" =1" 20" Hypothesis Property of =
S, interval; W, I” D i" = 1" 24" for all I € T Transitivity Property of = on second
and third lines
Y, WEI" DI forall I € I Containment assumption for I’
s, interval; W, I D" = 1" D I" for all I" € T’ Weakening Property of = on previous
line
S, interval; W, I” D" = 1" D for all I € I’ Transitivity Property of = on sixth
and third lines
Y, " :interval; @, 1" D" Ei" D4 Reflexivity Property of =
S, ¢ sinterval; W, I” D i = I" D¢ for all I € I' U {i"} Seventh and eighth lines
5, i"sinterval; U, 17 D i O[I]; A[I'], A1 [i"] = Asi"] I.H.(1) on D', fourth line,
and ninth line
S0 O[] AllT] = A —o Ag[I”] —oR Rule on previous line
Case:
Dy Dy
D= E;@;Al = B E;@;AQ,BQ = A
E;@;Al,Ag,Bl—OBgﬁA e

Let I' = I} U T, U {I'}.
Y, WEI" DI forall I € IZ Containment assumption for I’
and previous line
S0 O[] Ay [IZ] — By [I"] LH.(1) on Dy, containment assumption for I,
and previous line
Y, WEI" DI forall I e Iz Containment assumption for I and first line

78

S UEI"DI Reflexivity Property of =
S0 =1" 21" for all I € ILU{I"} Fourth and fifth lines
¥ W; O[1]; Ag[1}], Bo[I"] = A[I"] LH.(1) on Dy, containment assumption for I,

and previous line

U 0[] Ay [IZ],A2 [fé], By — By[I'l = A[I"] —L Rule on third, fifth, and seventh lines

Case:
D/
p=E50;-= 4 'R
5,0 =14,
3 0[I); - = Ay[l"] LH.(1) on D’ and containment assumption for I’
%0 0[I]); - = 1A[1"] 'R Rule on previous line
Case:
D/
D= E;@,B;Al = A I
Z0;M0,!B= A"
Let I' = I U {I'}.
SZUEIDI Containment assumption for I’ and previous line
SiU I DI forall I” € TU{I'} Containment assumption for I and previous line
L0 E=I" 21" forall I € I Containment assumption for I’ and first line
DIRAE @[[I_]],B[[I’]];Al[lﬂ = A[I"] LLH.(1) on D', third line, and previous line
> W; O[1]; Ay [11], ' B[I') = A[I"] L Rule on previous line
Case:
D/
D = E7(97“41;*A :>A2
Z0;A = A; D A,
SiW = I" D1 forall I €T Containment assumption for I
s, sinterval; W, 17 D" = 1" D 1" for all I" € T Weakening Property of = on previous
line
Y, " :interval; @, 1" D" E=1" 20" Hypothesis Property of =
S, interval; W, I” D i" = 1" D¢ for all I € T Transitivity Property of |= on second
and third lines
Y, " :interval; @, 1" D" 4" D" Reflexivity Property of =
5, " :interval; U, I” D i" = I 24" for all I € T U {i"} Fourth and fifth lines

79

Y, WEI" DI forall I € I Containment assumption for I’
s, interval; W, I” D" = 1" D I" for all I" € I’ Weakening Property of = on previous
line

s, interval; W, 17 D" = 1" D" for all I € I’ Transitivity Property of = on eighth
and third lines

¥, i":interval; W, I"” D i"; @[[I_]],Al [[z'”]];A[f’] = Ay[i"] LH.(1) on D, sixth line, and third

line
S0 OI]; All'] = A1 D Aq[1”] DR Rule on previous line
Case:
Dy Dy
D:E;@;-:>Bl E;@;A1732:>A I
5;0;A, B 0B, — A -
Let I' = I U {I'}.
¥ U;0[I];- = Bi[I"] L.H.(1) on D; and containment assumption for I
S0 1" 21" for all I" € I Containment assumption for I’ and first line
SZUEI"DI Reflexivity Property of =
S0 =I"21" forall I e I[U{I"} Third and fourth lines
¥ 0; O[1]; Ay [1]], Bo[I"] = A[I"] LH.(1) on Dy, containment assumption for I,
and previous line
S W; O[1]; A [11], By D By[I'] = A[I”] DL Rule on second, fourth, and sixth lines
Case:
/
D= 1860, = A VR
E0;A = Vr:s. Ay
S,z 0 =T D1 forall I" e T Weakening Property of = on containment
assumption for I
S, x50 = I DI forall I € T Weakening Property of = on containment
assumption for I
S, x5 0; O] A[I] = A[1"] I.H.(1) on D" and previous lines
S W O[] A[l] = Vais. Ay [I"] VR Rule on previous line
Case:
Dy Dy

D5 60;A,[t/a]B= A Etts
=2:0;A,Vr:s.B=— A

80

Let I_;:IZ,I’.

S0 O[] Ay [IZ], [t/x|B[I'| = A[I"] I.H.(1) on D; and containment assumption

for I and I’

¥ W; O[1]; Ay [I]], Vas. B[I') = A[I"] VL Rule on previous line and Dy
Case:

/

D=5 (E;A = K affirms A; OR
=2 0;A = (K)A;
S ;O[] A[l'] = (K affirms A) at I” I.H.(2) on D' and containment assumptions
for I and I’
S0 O[] A[l] = (K)A[I"] ()R Rule on previous line
Part 2:
Case:
D/
D = Z;01,B;A, B= K affirms A
- copy
=;01,B;A = K affirms A
Let I =1, U{I}.
SUEIDI Containment assumption for I and previous line
S0 I D1 forall I'" € I' U{I} Containment assumption for I’ and previous line
3 ;0,1 [11], B[I]; A[I"], B[I] = (K affirms A) at I” L.H.(1) on D', containment
assumption for f, and previous line
S W; 01[11], B[I]; AlI") = (K affirms A) at I copy Rule on previous line
Case:
/
D= =Z;0;A1, By, Bo = K affirms A
Z0:A,,B8, 0By — K affirms 4 ©

Let I' = I] U {I'}.
¥ W; O[1]; A1 [1]], Bi[I'], Bo|I') = (K affirms A) at I [.LH.(1) on D" and containment
assumptions for Tand I’
¥ W; O[1]; A1 [I]], By ® Bo[I') = (K affirms A) at I” ®L Rule on previous line

81

Case:

/

p— E;60;A = Kaffirms A

Z.0:A,,1 — Kaffirms A F

Let I' = I U {I'}.

YU EIT"DIforal I € IZ Containment assumption for I’ and previous line
¥ W; O[1]; A1 [I]] = (K affirms A) at I” LH.(1) on D', containment assumption for I,

=

;W O[I]; A [I]], 1[I'] = (K affirms A) at I”

Case:

/

D= E; @; Al, Bl — K affirms A

=:0; A1, B1 & By = K affirms A

Let I' =17, I'.

;W O[I]; A [1]]), B1[I']) = (K affirms A) at I”

;W3 O[I]; A [I}], By & Bo[I') = (K affirms A) at I”

Case:

/

D— Z0;A1, By = K affirms A

=; @; Al, By & By = K affirms A

Let I' = I, T'.

;W3 O[I]; Ay [I]), Bo[I') = (K affirms A) at I”

X, O[1]; A 1], By & Bs[I')| = (K affirms A) at I”

Case:

Dy

and previous line

1L Rule on previous line

&4
L.LH.(1) on D" and containment
assumptions for I and I’
& L1 Rule on previous line

&Lo
[.H.(1) on D" and containment
assumptions for Tand I
& L9 Rule on previous line

D,

D ==;0;M, B = Kaffirms A E;0;A, By = K affirms A
=:0;A1, B & By = K affirms A @

82

L

Let I_;:IZ,I’.

S0 O[] Ay [I_{], B1[l') = (K affirms A) at I I.H.(1) on D; and containment
assumptions for I and I’
¥ W; O[1]; Ay [I1], Bo[I') = (K affirms A) at I” I.H.(1) on D and containment
assumptions for I and I’
¥ W; O[1]; A1 [I]], B1 ® Bo[I') = (K affirms A) at I” @®L Rule on previous lines
Case:
Dl D2

D:E;Q;Al — B E;@;AQ,BQ = K affirms A

Z;0; A1, Ay, B] — By — K affirms A °

Let I' = Il UIL U {I'}.

S0 1" 21" for all I" € I Containment assumption for I and previous line

¥ 0; O[1]; Ay [I]] = By[I"] LH.(1) on Dy, containment assumption for I,
and previous line

L0 E=I"21" forall I" € 1, Containment assumption for I’ and first line

SUEI"DI Reflexivity Property of |=

S0 1" 21" for all I € ILU{I"} Fourth and fifth lines

% ; O[1]; Ag[[é], By[I"] = (K affirms A) at I” I.H.(1) on Dy, containment assumption
for f, and previous line

S W3 O[1]; A1 [11], Ao[T})], By —o Bo[I') = (K affirms A) at I” —oL Rule on third, fifth,
and seventh lines

Case:
D/

:0,B; A1 — K affirms A L
O;A1,!B — K affirms A °

—_
—
—
—
—
—

Let I' = Il U {I'}.

RVESN N i Containment assumption for I and previous line

SiU I DI forall I” e TU{I'} Containment assumption for I and previous line

Y0 E=I"D1" forall I € I Containment assumption for I’ and first line

PIRAE @[[I_]],B[[I’]];Al[lﬂ — (K affirms A) at I” 1.H.(1) on D', third line, and previous line

¥ W; O[1]; Ay [I1],'B[I'] = (K affirms A) at I” L Rule on previous line
Case:

83

Dl D2
D=5;0;-= B E;0;A1, By = K affirms A
=:0;A1,B1 D By = K affirms A

Let I' = I U {I'}.

¥ U;0[I];- = Bi[l"] L.H.(1) on D; and containment assumption for I
Y, WEI" DI forall I € I_{ Containment assumption for I and first line
SZUEI"DI Reflexivity Property of |=
S, WEI"DI" foral I € IZ u{I"} Third and fourth lines

—

0001 A [IZ], By[I"] = (K affirms A) at I” I.H.(1) on Dy, containment assumption
for f, and previous line

;0[] A [IZ], By D Bs|I')| = (K affirms A) at I” DL Rule on second, fourth,
and sixth lines

Case:

D, Dy
D —E50;A,[t/2]B = K affrms A =} t:s
Z;0;Aq,Vr:5.B = K affirms A

Let I_;:I—{,I’.

S0 O[] A [I_{], [t/2]B[I'| = (K affirms A) at I"” I.H.(1) on D; and containment
assumption for Tand I’
¥ W; O[1]; Ay [I]], Va:s. B[I') = (K affirms A) at I VL Rule on previous line and Dy
Case:
D/
D— Z0A= A .
affirms

=:0; A = K affirms A

S ;O[] A[I] = A[I”] LH.(1) on D’ and containment assumptions for I and I’
S 0; O[1]; All') = (K affirms A) at I” affirms Rule on previous line
Case:
D/

_ Z;0;A,B= K affirms A (
2;,0;A1,(K)B = K affirms A

84

C.2
Theo

Let I' = I U {I'}.

S0 O[] A [I_{], B[I'| = (K affirms A) at I” I.LH.(2) on D" and containment
assumptions for I and I’

SUpEI'DI" Containment assumption for I’ and first line
¥ W; O[1]; Ay []], (K)B[I') = (K affirms A) at I” ()L Rule on second and third lines
U

Translation From a Fragment of 7-logic to (-logic

rem 5.

1. If ;9 @[[I_]];A[f’] — F[I"], then Z;0; A = F in (-logic.
2. If ;¥;0[I]; A[l'] = (K affirms F') at I”, then Z;0; A = K affirms F' in (-logic.

Proof. By simultaneous structural induction on the first given derivation, D.
Part 1:
Case:
D/
SZUEIDI -
= = ini
S0 O[] All'] = A[1"]
50, A=A init Rule
Case:
D/
¥ W; O[], B[I]; AlI"), B[I] = A[I"
D:7ﬂ1[[1]]7_;[[]]7[]7_’[] []copy
¥, W; 04[], B[I]; A[l'] = A[I"]
=,01,B;A,B=— A LH.(1) on D’
=Z0,B A=A copy Rule on previous line
Case:
Dy D,

L S O[] M[I]] = A [I"] S W; O[I]; Ao[I}] = Ay[I"]

— ®R
S 03 O[] A [11], As[T] = Ay @ As[I”]

85

mm

Case:

[

Case:

A1 [[1]

;N = Ay LLH.(1) on Dy
7@; Ao — Ay IH(l) on Dy
©

A1, A = AL @ A ®@R Rule on previous lines

D/
S ;O[] A [L], Bi[I'], Bo[I'] = A[I”]
;W3 O[I]; Ay [I], By @ Bo[I') = A[I"]
;©;A1,B1,By = A LH.(1) on D’
;0;A1,B1 ® By = A ®L Rule on previous line
D - 1R
¥, 0[I);- = 1[1"]
10 —=1 1R Rule
D/
U Oll MIf) = A
W O[] A [T, 11 = A[T]
O;A = A LLH.(1) on D'
O;A, 1= A 1L Rule on previous line
Dl D2
p_ S OI]; A[l'] = AL[I"] %;0;0[I]; A[I'] = As[I"] R
S0 O] Al = Ay & As[I”]
@ A— Al IH(l) on Dl
@ A— A2 IH(l) on Dy
1A = A1 & Ay & R Rule on previous lines

86

Case:

Dl
S W O[] A [I], By[I'] = A[I"]

S0 O[T A1), By & BolI'] = A[I”]

=; @; Al, By = A IH(l) on D’
2:0:;M,B1 & By=— A & L1 Rule on previous line
Case:
D/
;W3 O[I]; A [I], Bo[I') = A[I”] L
= - = 2
X, O[1]; A [11], By & Ba[I') = A[I"]
=Z,0;A,By = A LH.(1) on D’
Z0;M,B1&B,— A &Ly Rule on previous line
Case:
D= — TR
WO Al = T[]
Z0,A=1 TR Rule
Case:
D/
SO A[l] = A1)
S0 O] Al = A & Ag[I”)
=0,A = A LH.(1) on D'
Z0;A = A1 P Ay @ R; Rule on previous line
Case:

D/
D 55 W; O[1]; All"] = A1)
S0 O A[I] = Ay @ Ay[I”]

87

E0;A = Ay LLH.(1) on D'
Z0;A = A1 p Ay @Ry Rule on previous line
Case:
Dy D,
b VO ML B — Al %W 017 M(f), Ball] — AIT)
S W3 O[I]; Ay [I], By @ Bo[I') = A[I"]
20:M, B = A LH.(1) on Dy
=; @; Al, By, =— A IH(l) on Dy
2:0:;M,Bi®dBy=— A @®L Rule on previous lines
Case:

Dl
p_ Siiinterval; U, 1" 2 i O[I]; All'), A [i"] = As[i"] "
S0 O] A[I] = Ay —o Ay[I”]
=; @; A, Ay = Ao IH(l) on D’
=;0; A= A} — Ay

—oR Rule on previous line

Case: The last rule of D is —oL, and D has the form:

LD D, . DB
LU0 M = Bi[I"] S0 =1 21" %,9;0[1); A2|Lh)], Bo[I"] = A[I"]

-

S W3 O[1]; A1 [1], Ao[IL), By —o By[I') = A[I"]

E; @; Al - Bl IH(l) on Dl
=2:0:A0, By = A LLH.(1) on D3
Z0;A1,A0, By —oBy,— A —o L Rule on previous lines
Case:
D/
p_ SOl = A"
S O[] = 1A 1]
20— A LH.(1) on D'
=20 =14,

!R Rule on previous line

88

Case:

D/
o WOl B AlT] = AlI"]

= - = 1L
YU O[I]; A [11],!B[I'] = A[I"]

=0,B;A = A LH.(1) on D’

=00, B= A !L Rule on previous line
Case:

D/
p_ Shiinterval; W, 1" D i O[], AL[i"]; AlI') = Asi"] "
= " oy D)
0[] Al = Ay D Ag[1”]

=204, A = A LH.(1) on D’

Z0;A = A; D Ay DR Rule on previous line
Case:

_’Dl D2 . _’Dg
D L0 0[];- = Bi[I"] L9 E=I'DI1" %,U;0[I]; A 1], Bo[I"] = A[l"]

;U O[I]; Aq[11], Br D Ba[I'] = A[I"]
5,0;- = B LLH.(1) on Dy
2:0:MN,By= A LH.(1) on D3
Z0;A,BiD B, = A DL Rule on previous lines
Case:
Dl
p_ S O[I]; A[I'] = A[I"]
S W O[] A[l'] = Vais. Ay [1"]
2r:80; A = Ay LH.(1) on D’
=0, A = Vais. Ay VR Rule on previous line
Case:

89

D, Dy
Y 0; O[I]; A (1], [t/2)BI') = Ai[I"] S+t
Do [1]; M (1], [t/2] B[I] 1[1"] S or

—

;W3 O[I]; Ay [I]], Va:s. B[I') = A[I"]

Z0;A,[t/x]B = A LH.(1) on Dy
=k ts Dy with s that is not interval
Z0;A,Vx:s.B—= A VL Rule on previous lines

Case:

D/
R O[I]; A[I'] = (K affirms A;) at I”

P S0 O A[l"] = (K) A [1"]

OR

—
—
—
—_
— o
—

;A = K affirms A; LLH.(2) on D'
A= (K)A; ()R Rule on previous line

Part 2:
Case:
Dl

X 0;04[0], BI]; A[l'], B[I] = (K affirms A) at I” .
¥ W; 0[], B[I]; All') = (K affirms A) at I”

D

opy
=;01,B;A, B = K affirms A LH.(2) on D’
=Z;01, B;A = K affirms A copy Rule on previous line

Case:
D/

o SOl Ay [17), B,[I'), Bo[I') = (K affirms A) at I”
S W O[] A1), By ® By[I') = (K affirms A) at I”

1,B1, By = K affirms A LH.(2) on D’
1,B1 ® By =— K affirms A ®L Rule on previous line

[11 [1]

;05 A
;O A

Case:

90

D/
%000 M (1] = (K affirms A) at I” -
S W3 O[1]; A [I]], 1[I'] = (K affirms A) at I”

=;0;A; = K affirms A L.LH.(2) on D'
=Z:0;A1,1 = K affirms A 1L Rule on previous line
Case:
D/
;W O[I]; Ay [I]], By [I') = (K affirms A) at "
;W O[I]; A [I]], By & Bo[I') = (K affirms A) at I”"
=;0;A1, B| = K affirms A LLH.(2) on D'
=:0;A1, B & B, = K affirms A & L1 Rule on previous line
Case:
D/
;W3 O[I]; Ay [I]], Bo[I') = (K affirms A) at I” L
= - = 2
X, O[1]; A [I1], By & Ba[I') = (K affirms A) at I"”
=;0; A1, By = K affirms A LH.(2) on D’
=:0;A1, B & By = K affirms A &Ly Rule on previous line
Case: The last rule of D is &L, and D has the form:
Dy D,

=

S W O[I]; A [I]], B1[I'] = (K affirms A) at I” 5 W; O[I]; A [I}], Bo[I'] = (K affirms A) at I”
;W3 O[I]; A [I]], By @ Bo[I') = (K affirms A) at I

=Z:0;A1,B) = K affirms A LLH.(2) on Dy
=:0;A, By = K affirms A LLH.(2) on Dy
=:0;A1, B & By = K affirms A @®L Rule on previous lines

Case: The last rule in D is — L, and D has the following form:

91

Dl D2 Dg

— —

LU0 M = Bi[I"] ¢ EI'DI" E;\I’;@[[f]];Aﬂf;],Bg[I”’] — (K affirms A) at I

-

;W3 O[1]; A1 [I], Ao[IL), By —o By[I') = (K affirms A) at I”

Case:

=0, = By LLH.(2) on Dy

=;0; Ay, B = K affirms A [LH.(2) on D3

=:0;A1,As, By —0 By — K affirms A —oL Rule on previous lines
D/

5 S U O[], B[I']; My [I]] = (K affirms A) at I” '

= = L
X, O[I]; A [11],!B[I' = (K affirms A) at I”

10, B; Ay = K affirms A L.LH.(2) on D'
:0:;A1,!B — K affirms A !L Rule on previous line

[1] [1]

Case: The last rule in D is DL and D has the form:

Dl ’D2 D3
S0 0[] = Bi[I”] S0 =1 21" %,9;0[]; A [[]], Bo[I"] = (K affirms A) at I

S W3 O[1]; Ay [I]], By D Bo[I') => (K affirms A) at I

Case:

E,0;- = B ILH.(2) on Dy
=:0;A, By = K affirms A LLH.(2) on D3
=;0;A1,B1 D By = K affirms A DL Rule on previous lines
. _ D Dy
B UOUl ML) [t/2]BI'] = A[I"] X tis VL
W3 O[I]; Ay [I}], Va:s. B[I') = (K affirms A) at I”
=k ts Dy with s that is not interval
=;0;A4,[t/z]B = K affirms A I.H.(2) on D
=Z;0;A,Vx:s.B — K affirms A VL Rule on previous lines

92

Case:

D/
B 5 %; O[1]; Al = Al1"]
3 W OI]; A[I'] = (K affirms A) at I

affirms

[11 [1]

;O = A LH.(1) on D'
:0; A — K affirms A affirms Rule on previous line

Case:

D1 Dy
D S W; O[1]; Ay [I]], B[I') = (K affirms A)at I ;0 =1' D 1"

;W3 O[I]; A L], (K)B[I') = (K affirms A) at I

=Z:0;A, B= K affirms A LLH.(2) on Dy
=Z;0; A1, (K)B = K affirms A ()L Rule on previous line
O

93

