
CodingWithout Your Crystal Ball:
Unanticipated Object-Oriented Reuse

Donna Malayeri

CMU-CS-09-163

December 2009

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
Thesis Committee:

Jonathan Aldrich, Chair
William Scherlis

Karl Crary
Todd Millstein, UCLA

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2009 Donna Malayeri

This research was supported in part by Aldrich’s NSF CAREER award CCF-0546550, DARPA grant HR0011-
0710019, and Army Research O�ce grant DAAD19-02-1-0389 entitled “Perpetually Available and Secure
Information Systems.”



Keywords: Structural subtyping, nominal subtyping, external dispatch, multiple dispatch,
multiple inheritance, inheritance diamond



Abstract
In many ways, existing languages place unrealistic expectations on library and

framework designers, allowing some varieties of client reuse only if it is explicitly—
sometimes manually—supported. Instead, we should aim for the ideal: a language
design that reduces the amount of prognostication that is required on the part of
the original designers. In particular, I show that languages can and should support
a combination of structural and nominal subtyping, external dispatch, and a form
ofmultiple inheritance.

Structural subtyping, which allows new types to be added to an existing hier-
archy post-hoc, has been studied for decades, but a naïve combination of struc-
tural subtyping and external dispatch poses serious typechecking issues. Instead,
I present a novel combination of structural subtyping, nominal subtyping, and ex-
ternal dispatch—external dispatch allowing programmers to write new code that
dynamically dispatches on an existing hierarchy. In its absence, programmers will
often resort to writing manual dispatch code, which is tedious, error-prone, and
lacks extensibility.

External dispatch is also di�cult to combine with another useful language
feature—multiple inheritance. It so happens that any form of multiple inheritance
(even Java-style) makes modular typechecking of external methods extremely dif-
ficult; this is due to the so-called “diamond problem.” To sidestep these issues, I
propose a novel form of multiple inheritance which does not allow diamonds, but
recovers expressiveness through a generalized form of self-types.

Finally, since languages with structural subtyping are used mainly in the re-
search community, it had thus far remained unclear whether structural subtyping is
actually useful in practice. To answer this question, I performed a novel empirical
study of existing Java programs, which found that (a) even nominally-typed pro-
grams could benefit from structural subtyping, and (b) there is a potential synergy
between structural subtyping and external dispatch.
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Chapter 1

Introduction

“Where shall I begin, please your Majesty?” he asked.
“Begin at the beginning,” the King said gravely, “and go on till you
come to the end: then stop.”

Lewis Carroll (Alice’s Adventures in Wonderland)

1.1 Overview
Existing programming systems are often adequate for developing software, but can lack sup-
port for e�ectively evolving that software. For example, modifications to a programmay require
changing the source code of some library or framework, a library or framework whose main-
tainer is some other organization or team. Even if the library/framework is open-source, it is
evolving as well—for bug fixes, if nothing else. As a consequence, local modifications to this
source code must be manually updated when a new version of the library or framework is re-
leased. Unless both the local modifications and the changes in the new release are minor and
localized, this approach is impractical.

One way to improve this situation is to create additional programming language support for
software extensibility and code reuse. Using the wrong language can create obstacles for code
reuse; some varieties of changes are only possible if they are explicitly supported by the code’s
design. This in turn requires that the need for the change be anticipated, which is unrealistic.
Instead, a language design should aim to reduce the amount of prognostication that is required
on the part of the original designers.

Object-oriented languages provide many mechanisms for unanticipated code reuse; for in-
stance, programmers may code against an abstract interface (allowing new implementations to
be substituted) or may use inheritance to reuse existing code. However, existing languages place
restrictions on these constructs (or forgo static type safety), reducing their potential utility.

In particular, I argue that languages should support retroactive abstraction, external dis-
patch, and a form of multiple inheritance. The potential utility of each of these features is de-
scribed at a high level in this chapter and with more detail in each corresponding chapter. In
particular, Sect. 3.6 and Chapter 4 present real-world examples and empirical data, respectively,
as concrete evidence to support the claim.
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Assumptions and Definitions

Throughout this dissertation, Imake the key assumption thatmodularity (in particular, modular
typechecking) is essential to any sensible language design. A typechecking algorithm is modular
if no link-time typechecking is required.1 This property is critical in an runtime environment
that permits dynamic code loading (e.g., DLLs, dynamic classloading), as such a static linking
phase does not exist in these situations.

Additionally, I assume thatmore static checking is preferable to less; i.e., catching additional
errors at compile time is a good thing. In particular, I would not consider “dynamically-typed”
languages as providing a solution to the problems addressed in this dissertation.

In this document, I use the term interface to denote a set of methods along with their types.
Where such a distinction is relevant, I use the term nominal interface in reference to languages
with nominal subtyping. Note that this definition of “interface” di�ers from that of Java or C#,
where (nominal) interfaces also have an associated tag that can be used in dispatch (via instanceof
tests or reflection). We refer to such entities as “tagged interfaces” in cases where the distinction
is pertinent. Note that “tagged” interfaces are necessarily also nominal interfaces.

1.2 Limitations of Existing Languages
This section describes, through example, limitations of existing languages that can negatively
impact code reuse. Though the problems are not all directly related to one another, there are
interactions between them.

Retroactive Abstraction

Sometimes, programmers wish to code against a particular implicit interface that is shared by
two classes, so that objects of either class can be used. Unfortunately, the lack of retroactive
abstraction in traditional languages makes it di�cult accomplish this task.

Concretely, suppose we have a Java graphics drawing library with interface Drawable and
classes Circle and Icon (Figure 1.1). Circle implements Drawable, but Icon implements no inter-
faces. In particular, it does not implement Drawable, since it does not support setting an alpha
transparency.

Now, suppose we wish to write a method centerAndDraw that takes an object that supports
the setPosition and draw methods, and draws an item centered on the canvas. In principle, this
method should be applicable to either an Icon or a Circle. Unfortunately, no appropriate type
exists that would allow instances of either Icon or Circle to be passed to the method. The pro-
grammer’s only options are to use reflection (which is not statically type-safe), to create two
identical versions of centerAndDraw (one that applies to Icon and one that applies to Drawable),
or to use Object as the type of item and perform instanceof tests (also not statically type-safe).

1Obviously, there is a continuum of “modularity,” with my definition of “modular” at one end, and whole-
program analysis on the other. Millstein [Millstein and Chambers 2002; Millstein 2003] identifies several
interesting points in this design space, in the context of external methods and multimethods.
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interface Drawable {
void draw();
void setPosition(int x, int y);
void setAlpha(int alpha);

}

class Circle implements Drawable {
void draw() { ... }
void setPosition(int x, int y) { ... }
void setAlpha(int alpha) { ... }

}

class Icon {
void draw() { ... }
void setPosition(int x, int y) { ... }

}

void centerAndDraw(_____ item) { // what type to use here?
...
item.setPosition(xpos, ypos);
item.draw();

}

Figure 1.1: An appropriate type does not exist for the parameter to centerAndDraw.

Of course, if we did control all the code for the graphics library, there would be a simple
solution: we would simply create a type Bitmap containing the two methods in question, and
make Drawable extend Bitmap and Circle implement Bitmap. The type of centerAndDraw’s argu-
ment would then be Bitmap. Unfortunately, in our scenario, only the maintainer of the graphics
library would be able to make such a change.

The problem here is that Java does not support retroactive interface implementation, where
a class could be declared as implementing an interface (or an interface be declared as extending
another interface) after the point at which the class or interface was originally defined. This
problem is not confined to Java, however—it arises in any nominally-typed language that sup-
ports modular typechecking.2 Since modular typechecking is crucial for e�ective software de-
velopment (particularly in a team environment), a practical solution must not preclude its pos-
sibility.

In my empirical studies (Chapter 4), I found that the aforementioned situation does indeed
arise in practice: sometimes an appropriate type does not exist and programmers resort to code
duplication and instanceof tests. Not only does this cause problems when a change must be

2Some have proposed nominally-typed languages that support a form of retroactive abstraction, but these
designs are either awkward, have unusual semantics, or require non-modular typechecking [Wehr et al. 2007;
Ostermann 2008]. These designs are described further in Sections 2.6 and 5.1.
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+ scale(int)
Scalable

+ draw()
Drawable

+ rotate(int)
Rotatable

ScalableDrawable DrawableRotatable ScalableRotatable

ScalableRotatableDrawable

Figure 1.2: Manually composing interfaces using nominal subtyping

made to all of the code copies, the solution is not extensible; if a new type is later added that
supports the required interface, programmers must add new code to handle the new type.

Composing Interfaces

There is another limitation of nominal subtyping: it makes it di�cult to compose interfaces.
Concretely, suppose that in our graphics library we have three interfaces: Scalable, Drawable,
and Rotatable (Fig. 1.2). Now, if we wish to describe types that support some combination of
these interfaces, nominal subtyping would require us to create 4 new interfaces. Aside from
the tedious nature of this design, the programmer would also have to remember to use these
compound interfaces appropriately. That is, if we have the declaration

class Glyph implements Scalable, Drawable

then a Glyph could not be passed to a method that expected a ScalableDrawable object, since
Scalable, Drawable is not equivalent to ScalableDrawable. The root of the problem is that there
are no type equalities in a system with only nominal subtyping; each new type name is distinct
from all other types.

It would be possible to use intersection types to solve this particular problem [Coppo and
Dezani-Ciancaglini 1978; Coppo et al. 1979; Pottinger 1980; Büchi and Weck 1998]; program-
mers would never create the composition interfaces and would instead write code in terms of
e.g. Scalable ∧ Drawable. However, this is not a complete solution; without explicit support
for retroactive abstraction, programmers must still anticipate every possible “interesting” inter-
face. In other words, intersection types would not solve the problem we saw above with the
centerAndDrawmethod.

To solve both the problems of retroactive abstraction and composing interfaces, I propose
using structural subtyping, which I describe in detail below.

Adding Methods to Existing Classes

Just as it is useful to add new types to an existing hierarchy, it can also be useful to add new code
that operates on an existing hierarchy. Unfortunately, traditional languages make it di�cult
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static void readLine(Reader r) {
if (r instanceof BufferedReader)

... // look in bu�er first
else if (r instanceof StringReader)

... // search string directly
else if (r instance of InputStreamReader)

... // read an array of bytes
else

... // call read() in a loop
}

Figure 1.3: Manual dispatch using instanceof tests

either to retroactively add newmethods to existing classes, or to write new code that dispatches
on an existing class hierarchy.

Concretely, suppose we wish to add new functionality for objects of type java.io.Reader. This
class has a method for reading a byte at at time, but we would like to create a method that reads
an entire line at a time.

Depending on the type of Reader object that we have, this readLine method would be im-
plemented di�erently. A Bu�eredReader, for instance, can implement this method e�ciently by
searching for a newline character in the contents of the bu�er, while a StringReader can perform
an even more e�cient operation. For other types of readers, we may perhaps implement this
method by calling read(), which reads one byte at a time.

However, since Reader is part of the Java Standard Library, new methods cannot be added
to it. Consequently, the only way to write new code that dispatches on this hierarchy is to hand-
code dispatch using instanceof tests, as in Fig. 1.3. This design has several problems: it is tedious
and error-prone (for example, cases for subtypes must appear before cases for supertypes) and
it is not extensible. If another developer later adds a new subclass of Reader, a new case must be
added to readLine—posing problems if this developer cannot modify readLine.

Of course, if was expected that programmers would want to add new methods to this hier-
archy, the designers could have implemented the “Visitor” design pattern [Gamma et al. 1994].
However, as others have noted [Clifton et al. 2006; Millstein 2003], Visitor introduces its own
problems: 1) its need must be anticipated in advance; 2) adding new classes to the hierarchy be-
comes di�cult; 3) the visitXXXmethods must all have the same return type, and may only throw
unchecked exceptions (or only some particular checked exception); 4) inheritance among the
classes to be visited can pose design issues.3

3To illustrate the last problem, suppose we have a visitor defined on the Reader class hierarchy. With the
original visitor pattern [Gamma et al. 1994], the programmer would provide methods visitBu�eredReader,
visitStringReader, etc., but not visitReader. Unfortunately, this makes it impossible to put common function-
ality in a superclass case; each of the visitXXX methods must be overridden to perhaps call the same helper
method. A more advanced variant of Visitor solves this problem [Vlissides 1999], but some frameworks and
libraries still use the original pattern—even modern frameworks such as the Eclipse JDT.
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OutputStream

InputOutputStream

Stream

InputStream

Figure 1.4: A stream class hierarchy forming an inheritance diamond

To solve these problems, I propose using external methods (described further below), which
have been extensively studied in the literature (e.g., [Shalit 1997; Chambers 1992; Clifton et al.
2000; Allen et al. 2008]).

Reusing Code FromMultiple Classes

While structural subtyping and external dispatch are useful features, they do not provide com-
plete support for the kind of code reuse that is needed in practice [Ellis and Stroustrup 1990;
Bracha and Cook 1990; Flatt et al. 1998; Ducasse et al. 2006]. For instance, in a single inheri-
tance setting, there is no satisfactory solution when two or more classes need to share features
that are not contained in their (unique) common parent. These features must either be pushed
into the common parent (where it does not semantically belong) or they must be duplicated in
the classes in question [Ducasse et al. 2006].

Consequently, various alternatives to single inheritance been proposed, such as multiple
inheritance [Keene and Gerson 1989; Ellis and Stroustrup 1990; Meyer 1992], mixins [Bracha
and Cook 1990; Flatt et al. 1998; Ancona et al. 2003], and traits [Schärli et al. 2003; Smith and
Drossopoulou 2005; Flatt et al. 2006; Reppy and Turon 2007; Bergel et al. 2008]. Unfortunately,
each of these designs has its own drawbacks. Multiple inheritance su�ers from the diamond
problem (described below), mixins must be applied linearly and may not inherit from one an-
other, and traits may not contain state.

Diamond inheritance describes the situation when a class C inherits an ancestor A through
more than one path (e.g., InputOutputStream’s relationship to Stream in Fig. 1.4). This is par-
ticularly problematic when the class at the top of the diamond (e.g., Stream) has fields—should
classes like InputOutputStream inherit multiple copies of the fields or just one? Virtual inheri-
tance in C++ is designed as one solution for obtaining the latter semantics [Ellis and Strous-
trup 1990]. But with only one copy of Stream’s fields, object initializers are a problem: if
InputOutputStream transitively calls Streams’s constructor or initializer, how can we ensure that
it is called only once? Existing solutions either restrict the formof constructor definitions [Oder-
sky 2007] or ignore some constructor calls [Ellis and Stroustrup 1990].

There is another consequence of the diamond problem: it causes multiple inheritance to
interact poorly with modular typechecking of external and multiple dispatch—my proposed
solution to the problem of the previous subsection. In particular, in the presence of multiple
inheritance, ambiguous external method definitions are di�cult to detect in a modular manner.
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To illustrate this problem, suppose we have the inheritance diamond of Fig. 1.4. Now, if we
define external method m on both InputStream and OutputStream, there would be an ambiguity
if m were called on an object of type InputOutputStream, as neither definition of m is more
specific than the other. Detecting this situation would require either searching for subclasses
of InputStream and OutputStream when m is defined (a non-modular check), or searching for
external method definitions like m when InputOutputStream is defined (also non-modular).

Interestingly, this problem arises even with restricted forms of multiple inheritance, such as
traits or Java multiple interface inheritance. Previous work either disallows multiple inheritance
across module boundaries [Millstein and Chambers 2002], or burdens programmers by requir-
ing that they always provide (possibly numerous) disambiguating methods [Frost and Millstein
2006; Allen et al. 2007].

1.3 Unity
I propose a new language, Unity, to solve the aforementioned problems. In this section I describe
Unity at a high level and give an overview of how it can, in fact, solve these problems. Unity has
three key features: structural subtyping, external dispatch, and multiple inheritance.

Structural Subtyping

Structural subtyping provides a solution to both the problem of retroactive abstraction and that
of composing types. Structural subtyping is very popular in the research community, and has
been extensively studied in a formal setting [Cardelli 1988; Bruce et al. 2003; Fisher and Reppy
1999; Leroy et al. 2004; Malayeri 2009a]. In a language with nominal subtyping (such as all
mainstream statically-typed object-oriented languages), a type U is a subtype of T if and only
if it is declared to be. In a language with structural subtyping, on the other hand, a type U is
a subtype of T if its methods and fields are a superset of T ’s methods and fields (possibly with
refined types). The interface of a class is simply its public fields and methods; there is no need
to declare a separate interface type.

Structural subtyping o�ers a number of benefits, including the ability to create retroactive
abstractions—new types that have a supertype relationship to existing types. In our example
above, we would simply create a structural type Bitmap (with the setPosition and drawmethods)
and it would automatically be a supertype of both Drawable and Circle, without having to modify
those types. This is illustrated in Fig. 1.5. In Unity, a brand4 is similar to a class in Java-like
languages. The type Bitmap is now used as the argument to centerAndDraw, with the result that
either a Circle or an Iconmay be passed to it.

This design also has benefits for code evolution: if a new method m with type τ is
added to both Drawable and Circle, they are each subtypes of the structural type {m ∶ τ} (and
also Bitmap ∧ {m ∶ τ}). Finally, structural subtyping makes it trivial to compose types—the
type Bitmap is automatically equivalent to the combination of the types { setPosition() } and
{ draw() }.

4The name “brand” is borrowed from Strongtalk [Bracha and Griswold 1993], which in turn borrowed it
fromModula-3 [Nelson 1991].
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type Drawable = Object (
draw : unit→ unit,
setPosition : int * int→ unit,
setAlpha : int→ unit

)

brand Circle extends Object (
method draw() : unit = . . .
method setPosition(x : int, y : int) : unit = . . .
method setAlpha(alpha : int) : unit = . . .

)

brand Icon extends Object (
method draw() : unit = . . .
method setPosition(x : int, y : int) : unit = . . .

)

type Bitmap = Object (
draw : unit→ unit,
setPosition : int * int→ unit,

)

let centerAndDraw = fn item : Bitmap -->
. . .
item.setPosition(xpos, ypos);
item.draw()

. . .

centerAndDraw circle // typechecks
centerAndDraw icon // typechecks

Figure 1.5: Re-writing Fig. 1.1 using Unity’s structural types. A brand declaration is similar to
a class declaration in Java.

However, nominal subtyping has advantages as well, and a language that provides only struc-
tural subtyping would forgo these benefits [Pierce 2002; Ostermann 2008; Malayeri and Aldrich
2008a]. First, nominal subtyping allows the programmer to express and enforce design intent
explicitly. A programmer’s defined subtyping hierarchy serves as checked documentation that
specifies how the various parts of a program are intended to work together. As a consequence,
explicit specification has the advantage of preventing “accidental” subtyping relationships, such
as the standard example of Cowboy.draw() and Circle.draw() [Magnusson 1991]. Nominal sub-
typing also allows recursive types to be easily and transparently defined, since recursion can
simply go through the declared names. Third, error messages are usually much more compre-
hensible, since, for the most part, every type in a type error is one that the programmer has
defined explicitly. Finally, as mentioned by Ostermann, nominal subtyping has a useful default
of assigning blame to the definition of a type when a subtype relation does not hold. In contrast,
structural subtyping defers blame to the point at subsumption is applied.

For these reasons, as well as to support external methods—which allow programmers to
retroactively add new methods to existing classes—Unity provides both nominal and structural
subtyping.5 In the proposed design, a type has both a nominal and a structural component, and
subtyping takes both components into account.

5See Sect. 2.2.3 for an explanation of why some form of nominal subtyping is extremely advantageous for
supporting external dispatch.
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String BufferedReader.readLine() { ... } // look in bu�er first
String StringReader.readLine() { ... } // search string directly
String InputStreamReader.readLine() { ... } // read an array of bytes
String Reader.readLine() { ... } // call read() in a loop

Reader f = new FileReader("bar.txt");

String s = f.readLine(); // typechecks

Figure 1.6: Re-writing instanceof tests (Fig. 1.3) using MultiJava external methods

External Dispatch

External methods are like ordinary methods, but they can be added in a di�erent module than
the classes on which they perform dispatch.6 External dispatch can make code more flexible
and easier-to-evolve because the language no longer requires that the set of methods of a class
be fixed when it is defined. External dispatch (and multimethod dispatch, a related feature)
is supported by a number of languages, such as CLOS, Dylan, Cecil, MultiJava, and Fortress
[Paepcke 1993; Shalit 1997; Chambers 1992; Clifton et al. 2000; Allen et al. 2008].

External methods solve the problem of adding new code that dispatches on an existing hi-
erarchy. For instance, to add a new method to the Reader class, we simply write an external
method readLine in a new module. Figure 1.6 shows such an external method written in Multi-
Java [Clifton et al. 2000]. This new method can be called just like an ordinary method; readLine
can be called on any subclass of Reader, once the external method has been defined.

Unfortunately, while the new external method allows readLine to be called on Reader, it does
not change the interfaces that Reader implements. Fig. 1.7 shows a MultiJava example where
we would like to pass an object of type Reader to the method �ndString, which expects a first
argument of type Readable. Even though we have added a new method to Reader to make it
conform to Readable, without retroactive abstraction, the last line does not typecheck. Thus,
the need for retroactive abstraction is even more apparent when new methods can be added to
existing classes.

Fortunately, Unity provides a solution to this problemby including both structural subtyping
and external dispatch, while retaining themodular typechecking ofMultiJava. We could rewrite
this example in Unity as in Fig. 1.8.
Here, the function �ndString takes as its first argument any object that has a readLine method
that has only the receiver as an argument and that returns a string (i.e, type “()→ string”). Once
the external method readLine has been defined on Reader, all subtypes of Reader conform to this
structural type and the last line typechecks.

6This document uses a very minimal definition of “module”: a module is simply a set of definitions. The
interface of the module is the types of those definitions.
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interface Readable { String readLine(); }
boolean �ndString(Readable r, String s) { ... }
// find string s in stream r

String Reader.readLine() { ... } // new external method
f = new FileReader("bar.txt");
�ndString(f, foo); // fails to typecheck!

Figure 1.7: External methods in MultiJava highlight the need for retroactive abstraction. The
last line does not typecheck because Reader does not implement Readable, even though it has
a readLinemethod.

// takes any object with a readLinemethod
let �ndString = fn (r : Object (readLine : ()→ string) , s : string) --> . . .

// external method definitions
method Reader.readLine : ()⇒ string = . . . // external method defined on ‘Reader’
method Bu�eredReader.readLine : ()⇒ string = . . .
method StringReader.readLine : ()⇒ string = . . .
. . .

using readLine in
let f = new FileReader("bar.txt") in
�ndString (f, "foo") // typechecks!

Figure 1.8: Rewriting the code of Fig. 1.7 in Unity

Multiple Inheritance

As previously described, the root of the di�culty with multiple inheritance is the potential
for inheritance diamonds; other issues with multiple inheritance (such as inheriting features
with duplicate names) have been e�ectively solved by previous languages [Meyer 1992; Ellis and
Stroustrup 1990].

Following this observation, Unity takes a novel approach: while permitting multiple inheri-
tance, it disallows inheritance diamonds entirely. So that there is no loss of expressiveness, the
notion of inheritance is divided into two concepts: an inheritance dependency (expressed using
a requires clause, an extension of a Scala construct [Odersky and Zenger 2005; Odersky 2007])
and ordinary inheritance. Chapter 3 illustrates how programs that require diamond inheritance
can be translated to a hierarchy that uses a combination of requires and multiple inheritance,
without the presence of diamonds. As a result, Unity retains the expressiveness of diamond
inheritance while avoiding its problems.
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Stream

InputStream OutputStream

InputOutputStream

requiresrequires

ConcreteInputStream ConcreteOutputStream

Figure 1.9: The stream diamond of Fig. 1.4 re-written in Unity. The requires relationship pro-
vides subtyping without inheritance.

To provide a sense of this translation, Fig. 1.9 shows how the inheritance diamond of Fig. 1.4
is translated to Unity. Essentially, inheritance diamonds are converted to subtyping diamonds—
which are allowed by the language—using the requires construct. The details of the multiple
inheritance design, as well as a discussion of the revised streamhierarchy, are described inChap-
ter 3.

1.4 Statement of the Thesis
The thesis of this dissertation is:

An object-oriented programming language can provide integrated support for (a)
external dispatch, (b) nominal subtyping, (c) structural subtyping, and (d) multiple
inheritance—all without sacrificing modular typechecking. These richer structuring
mechanisms can serve to make code more reusable and adaptable.

The thesis is a�rmed through several hypothesis; each is described below along with a descrip-
tion of its supporting evidence.

Hypothesis I
A language with synergy between structural subtyping and external dispatch can be achieved
through a novel combination of structural and nominal subtyping.

Validation:
• Unity language design and type system (Section 2.5).
• Type safety proof for the core language (Section 3.7.4 and Appendix A).

Hypothesis II
By providing retroactive abstraction, structural subtyping can be used to improve the reusability
and maintainability of existing object-oriented programs.
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Validation:
• Quantitative and qualitative analyses of open-source Java programs chosen from a variety
of domains (Chapter 4):

1. Evidence suggesting that structural subtyping could help make method parameters
more general (Sect. 4.3).

2. High frequency of common methods—methods with the same name and signa-
ture, but that are not contained in a common supertype of the enclosing classes
(Sect 4.5.1).

3. Low frequency of common methods that represent an accidental name clash
(Sect 4.5.2).

4. Evidence that some cases of code duplication could be avoided with structural sub-
typing (Sect. 4.5.3).

Hypothesis III
Existing language designs can lead to coding patterns that defer errors to runtime; structural
subtyping could provide more static typechecking in these situations by allowing programmers
to encode more properties directly in the type system.

Validation:
• Quantitative and qualitative data showing that:

1. Some Java runtime exceptions (i.e., OperationUnsupportedException) can
be eliminated in a straightforward manner with a design that uses struc-
tural subtyping (Sect. 4.4).

2. Some uses of Java reflection can be converted to uses of structural sub-
typing (Sect. 4.7).

Hypothesis IV
The combination of structural subtyping and external dispatch has the synergistic e�ect of pro-
viding an expressive form of retroactive abstraction.

Validation:
• Examples illustrating the increase in expressiveness when these features are
combined (Sect. 2.2).

• Results from empirical study showing that many cases of cascading instanceof
tests in Java programs may be re-written using a combination of structural
subtyping and external methods (Sect. 4.6), thereby allowing an existing class
to be adapted to a new context.

Hypothesis V
Through the use of a novel multiple inheritance scheme, modular typechecking can be per-
formed in a language with multiple inheritance and external dispatch, without requiring
programmer-specified disambiguating methods.
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Validation:
• Type safety proof for the core language (Section 3.7.4 and Appendix A).
• Detailed argument describingmodularity of Unity type system (Section 3.7.3).

Hypothesis VI
A language can be designedwith a new formofmultiple inheritance—multiple inheritancewith-
out diamonds—a design that provides more opportunities for code reuse and that is more ex-
pressive than other proposed alternatives to full multiple inheritance (i.e., multiple interface
inheritance, mixins, and traits).

Validation:
• Unity multiple inheritance design (Chapter 3).
• Detailed comparison to the existing proposals in the context of an example in
Unity (Sect. 3.5).

Hypothesis VII
By converting inheritance diamonds to inheritance dependencies and subtyping among abstract
classes (via a requires clause), a programwith inheritance diamonds can be systematically trans-
lated into a program with multiple inheritance but without any inheritance diamonds.

Validation:
• Real-world examples showing howC++ inheritance diamonds can be system-
atically translated to Unity (Section 3.6).

Conventions

This document makes use of the following typographical conventions:
• monospace is used for Java code listings
• (proportional-width) sans serif 7 is used for Unity code listings, all inline code references,
and (in the formal system) keywords

• utopia italic is used for metavariables (e.g., B ,C ,D) and auxiliary functions (e.g., mtype)
• Small Caps is used to name inference rules
• boldface is used to name judgements (e.g., p ok)

7It is more visually pleasing than monospace.
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Chapter 2

Structural Subtyping and External
Dispatch

“Must a name mean something?” Alice asked doubtfully.
“Of course it must,” Humpty Dumpty said with a short laugh:
“my name means the shape I am—and a good handsome shape it is,
too. With a name like yours, you might be any shape, almost.”

Lewis Carroll (Through the Looking-Glass)

If it looks like a duck, and quacks like a duck, we have at least to
consider the possibility that we have a small aquatic bird of the family
Anatidae on our hands.

Douglas Adams (Dirk Gently’s Holistic Detective Agency)

This chapter describes one of the main contributions of Unity: the combination of structural
subtyping and external dispatch.1 A clean integration of these features is achieved using a com-
bination of nominal and structural subtyping. The chapter introduces Unity through a series of
examples, describes practical applications of the work (design patterns and optional methods),
and presents the full formalization of the Unity calculus. The multiple inheritance aspects of
the calculus are visually indicated and will be described in Chapter 3.

2.1 Overview of Unity
In Unity, an object type is a value (usually a record) tagged with a brand. Brands induce the
nominal subtyping relation, which I call “sub-branding.” Brands are nominal in that the user
defines the sub-brand relationship, like the subclass relation in languages like Java, Ei�el, and
C++.

1The main contributions of this chapter appeared in previous publications [Malayeri and Aldrich 2007;
2008a].
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The structural subtyping component of the system is used for subtyping the set of methods
of a brand (denoted by {mi ∶ τi

i∈1..n}). The usual structural depth andwidth subtyping rules apply
to this method set. If B has methods m ∶ τ and n ∶ σ, then an object o with brand B conforms
to the types B(m ∶ τ,n ∶ σ), B(m ∶ τ), B(), and B(n ∶ σ′) (where σ is a subtype of σ′).2 Also, since
Object is the root of the inheritance hierarchy, the object o also has type Object(m ∶ τ,n ∶σ). This
last relation is achieved through the combination of nominal and structural subtyping.

In particular, the system has the following rule for general subtyping (denoted by “≤”):

Definition 2.1 (General subtyping).
B(mi ∶ τi

i∈1..n) ≤C (n j ∶σ j
j∈1..x ) if and only if:

• B is a sub-brand of C , and
• {mi ∶ τi

i∈1..n} is a structural subtype of {n j ∶σ j
j∈1..x }

In turn, structural subtyping obeys the following rule:

Definition 2.2 (Structural subtyping).
{mi ∶ τi

i∈1..n} is a structural subtype of {n j ∶σ j
j∈1..x } if and only if:

• {n j
j∈1..x } ⊆ {mi

i∈1..n}, and
• mi = n j implies τi ≤σ j

In other words, the set of labels in the second structural type N must be a subset of the set of
labels in the first type M , and for identical labels mi and n j , the corresponding types must be in
the (general) subtype relation.

Unity has two kinds of method declarations: internal and external.3 Internal methods are
defined within a brand declaration, similar to methods in Java-like languages. External methods
in Unity are similar to those in MultiJava and related languages [Clifton et al. 2006; Millstein
2003]; they may be defined outside of a brand but perform dispatch and may be overridden.4

To support information hiding, MultiJava does not permit an external method defined on
class C to access C ’s private members. Similarly, in Unity, external methods may not access
any of the corresponding brand’s fields. Sub-brands, however, may access super-brand fields, so
fields in Unity are like C++ “protected” members.

2This is not strictly the case in the formal system, which distinguishes between simple and qualified
method names. Essentially, qualified method names are not included an object’s structural type, but may be
called using nominal method lookup. Structural method names are added to an object explicitly using map-
ping expression (which would not appear in the surface syntax). However, the examples that follow assume
that all of the methods of a brand appear in the structural type of its objects and do not make a distinction
between simple and qualified method names.

3To simplify the discussion, the remainder of this document abbreviates “internal method declaration” as
“internal method,” and analogously for “external method declaration.”

4This is in contrast to “extension methods” in C# 3.0, which are merely syntactic sugar for static methods
defined in a helper class.
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Note that externalmethods are closely related tomultimethods, which aremethods thatmay
dispatch on any subset of their arguments—not just the receiver. The formal system does not
include multimethods however, as there is a straightforward modular encoding of asymmetric
multimethods using external methods.5 Consequently, the same typechecking issues apply to
both external methods and asymmetric multimethods.6

2.2 Unity by Example
The section presents, by example, the intuition behind Unity and situations in which it can be
useful. The examples also demonstrate the synergy between structural subtyping and external
methods. I also provide a detailed comparison of Unity to other related designs, in the context
of the examples.

2.2.1 Example 1: Streams
The first example involves the use and implementation of character-based input and output
streams.

Defining a type. For input streams, we first wish to create a “Reader” abstraction, which rep-
resents any object that has read, skip, and closemethods (with appropriate types).

To define this abstraction, we use a type declaration (Fig. 2.1), which defines a type abbrevi-
ation. The nominal component (i.e., the brand) of Reader is Object and its structural component
consists of the methods read, skip and close, along with their types.

As in Java-like languages, the brandObject is the root of the inheritance hierarchy; all brands
directly or indirectly extendObject. Note that the code listings omit the extends clause for direct
sub-brands of Object (e.g., AbstractReader).

Reader contains two di�erent arrow types, “⇒” and “→.” The first, “⇒,” is used for method
types. To the left of this arrow is the receiver’s structural type. The nominal component is
omitted—it can always be inferred from context inwhich themethod type appears. For example,
Object is the nominal component of the method read in the type abbreviation Reader.

To simplify the formal system, methods take only one argument: the receiver (i.e., this).
If additional arguments are needed, ordinary first-class functions are used; these have types
containing the “→” arrow. Functions are defined using the “fn x: t --> e” syntax.

For example, skip has type “()⇒ long→ long.” Since the receiver’s structural type is empty,
this specifies that skip can be applied to any object with the appropriate (implicit) nominal type

5With asymmetric multimethods, the order of arguments a�ects dispatch, in contrast to symmetric dis-
patch. An asymmetric multimethod dispatching on brands B1, . . . ,Bn can be translated to external methods
defined on each Bi , where each method calls the method in brand Bi+1, with the actual code defined in the
method on Bn .

6Multimethods with symmetric dispatch semantics introduce a few orthogonal typechecking issues; see
[Millstein and Chambers 2002; Clifton et al. 2006; Millstein et al. 2004; Millstein 2003] for a more detailed
discussion.
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type Reader = Object (read: ()⇒ char,
skip: ()⇒ long→ long,
close: ()⇒ unit) // all methods take reciever of type Object()

brand AbstractReader ( . . .) // default implementation for methods in Reader

brand CharArrayReader extends AbstractReader (
array: char[ ]; // field
method read = . . .;method skip = . . .;method close = . . . // same types as in Reader
methodmark: ()⇒ unit = . . . // save current position
method reset: ()⇒ unit = . . . // reset to position saved by ‘mark’
method seek: ()⇒ long→ long = ( fn pos: long --> . . . ) // seek to ‘pos’

)

brand Bu�eredReader extends AbstractReader (
method read = . . .;method skip = . . .;method close = . . . // same types as in Reader
methodmark: ()⇒ unit = . . .
method reset: ()⇒ unit = . . .

)

// does not extend AbstractReader
brand SomeOtherReader ( . . . ) // implementation of all of the Readermethods

// define function that finds string ‘s’ in the ‘r’ stream
let �ndString = fn (r: Reader) (s: string) : long --> . . .

// all typecheck; each is a subtype of Reader
�ndString bufReader “foo”

�ndString charArrayReader “bar”

�ndString someOtherReader “baz”

Figure 2.1: Stream example illustrating brand extension and structural types

(here, Object). Since skip needs a additional argument (the number of bytes to skip), its return
type is a function that takes a long and returns a long.

In essence, the nominal type of the receiver is not specified in method types, as a method
type always appears with a surrounding brand. Therefore, in the type B(m ∶ ()⇒ τ), m’s receiver
has type B() (i.e., B with no additional structural constraints).7

7It would be possible to include the receiver in method types, but then the formal system would then have
to ensure consistency between receiver types and their enclosing brand type. This would serve only to add
unnecessary complexity.
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// external methods: add methods to AbstractReader and CharArrayReader,
// with (static) structural constraint that receiver must have ‘mark’ and ‘reset’ methods

method AbstractReader.parse: ( mark: ()⇒ unit, reset: ()⇒ unit )⇒ unit =
// ‘this’ has type AbstractReader(mark: . . ., reset: . . .)
A . . . // parse text using ‘mark’ and ‘reset’

method CharArrayReader.parse: ()⇒ unit =
B . . . // more e�cient parsing using method ‘seek’

Figure 2.2: Defining an external method (with structural constraints) on AbstractReader and
CharArrayReader

Defining brands. In Fig. 2.1, I have also defined a “reader” brand, AbstractReader, which
contains default implementations of the Reader methods. The brands CharArrayReader and
Bu�eredReader each extend AbstractReader and provide additional functionality. We may also
define reader brands that do not extend AbstractReader but still conform to the Reader type; the
brand SomeOtherReader is an example.

Now, if we write a function �ndString that operates on objects of type Reader, it may be used
on any of the brands we have defined, as they all conform to the Reader type. This is illustrated
by the last three lines of the code listing.

External methods. Thus far, we have used only internal methods and ordinary functions.
Since Unity also provides external methods, we can define new functionality in a new module.
That is, methods do not need to appear in the same module as that of the brands on which they
operate; Fig. 2.2 contains such a definition. Here, I have defined an external method parse with
two implementations—for each of AbstractReader and CharArrayReader. This second override
could perhaps perform more e�cient parsing using the seekmethod in CharArrayReader.

The external method defined on AbstractReader also defines an additional structural con-
straint on the receiver: it must contain the mark and reset methods, in addition to having
brand AbstractReader. Consequently, parse may only be called on objects that conform to the
type AbstractReader(mark: ..., reset: ... ). Note that the structural constraint is not needed for
CharArrayReader, since all objects of this type already have methodsmark and reset.

Internal methods may also specify structural constraints; Sect. 2.2.3 below describes how
this can be used to encode Java-style abstractmethods.

Note that the structural constraint is purely a static concept; there is no structural method
dispatch (described further in Sect. 2.2.3). That is, parse may only be called by objects that are
statically known to contain mark and reset methods. Consequently, it is a type error to define
two methods that di�er only in their structural constraints.

External methods can be overridden by internal methods in sub-brands. For example, sup-
pose we wish to define a type of reader that natively supports parse functionality. This is cap-
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brand ParseableReader extends Bu�eredReader (
. . . // implements all Bu�eredReadermethods

// overrides external method parse in Fig. 2.2
method parse: ()⇒ unit = C . . . // specialized parse algorithm for this type of stream

)

brand SimpleReader extends AbstractReader(. . . ) // contains only AbstractReadermethods

using parse in
bufReader.parse // typechecks; Bu�eredReader has methods ‘mark’ and ‘reset’. calls code (A)
charArrayReader.parse // typechecks. calls code (B)
simpleReader.parse // doesn’t typecheck: need methods ‘mark’ and ‘reset’
parseableReader.parse // calls code (C) above

let absReader: AbstractReader(parse: ()⇒ unit) = parseableReader in
absReader.parse // typechecks, calls code (C) above

// doesn’t need to be in using block, has its own implementation
parseableReader.parse // calls code (C) above

Figure 2.3: Overriding and using the external method parse

tured by the brand ParseableReader in Fig. 2.3. Assuming the external method definition of
Fig. 2.2 is in scope, ParseableReadermay provide its own version of parse.

However, to call the external method, it must be imported into a lexical scope via the
using expression, as illustrated at the end of the code listing. An external method behaves
just as an ordinary method; dynamic dispatch occurs for the expressions “bufReader.parse” and
“charArrayReader.parse.” However, since SimpleReader does not contain themark and resetmeth-
ods, the expression “simpleReader.parse” does not typecheck. (Below, we will see how external
methods can be used to make a brand conform to a particular structural constraint.) Note that
parse may be called on any ParseableReader object without it being in the using block, as the
override of AbstractReader.parse implicitly imports the method definition for objects of type
ParseableReader.

Adding “write” functionality. Next, we add code for writing to a character stream. The
typeWriter represents an object that supports basic write functionality; AbstractWriter provides
default implementations for these methods (Fig. 2.4). We define the brand StringStream, which
allows both reading and writing. Note however, without multiple inheritance (which will be
introduced in Chapter 3), StringStreammay only extend one of AbstractWriter and AbstractReader
(this second type is commented out in the extends clause).
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typeWriter = Object (append: ()⇒ char→Writer,
write: ()⇒ int→ unit,
�ush: ()⇒ unit,
close: ()⇒ unit)

brand AbstractWriter (. . .) // default implementation ofWritermethods

brand StringStream extends AbstractWriter //, AbstractReader [no multiple inheritance yet]
method read = . . .;method skip = . . .;method close = . . . // same types as in Reader
method append = . . .;methodwrite = . . .;method �ush = . . . // same types as inWriter
method seek: ()⇒ long→ long = . . .

)

// may use all methods in Reader,Writer and also seek
let readAndWrite = fn (stream: Reader ∧Writer ∧ seek: ()⇒ long→ long) -->

s.read; s.seek 10
s.write ‘f’; s.�ush

readAndWrite stringStream // typechecks

Figure 2.4: Adding “writer” definitions

Using intersection types (with the “∧” notation), we can easily combine type definitions. The
parameter to readAndWrite, for example, must be a subtype of both Reader and Writer and also
have a seek method. Since StringStream conforms to this type, it may be passed as a parameter
to readAndWrite.

Adding code to satisfy a structural constraint. I have described how function andmethod
arguments, including the receiver of internal and external methods, may specify structural
constraints—methods that must exist in addition to the brand’s defined methods. If a brand
does not conform to this structural constraint, external methods can be used to remedy this
situation.

Figure 2.5 shows such an example. Here, I have defined thewriteLine external method, which
is applicable to anyAbstractWriter that provides a newlinemethod. This lattermethod is expected
to return the newline string for the current platform.

Since AbstractWriter does not define newline, the expression writer.writeLine does not type-
check. But, once we have added newline as an external method and imported it into the current
scope (with a using expression), writeLinemay be called on any object of type AbstractWriter.

Figure 2.6 shows the subtyping relationships that hold as a result of the brand and external
method definitions. These relationships illustrate why the example code typechecks properly.
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// external method: add method to AbstractWriter,
// with constraint that receiver must have a ‘newline’ method
method AbstractWriter.writeLine: (newline: ()⇒ string)⇒ string→ unit =

fn s: string --> . . . // print out ‘s,’ using newLinemethod

new StringStream().writeLine “42” // doesn’t typecheck—no ‘newline’ method in StringStream

method AbstractWriter.newline: ()⇒ string = "\r\n"

using newline in
new StringStream().writeLine “42” // typechecks!

Figure 2.5: Adding external methods to conform to structural constraints

2.2.2 Example 2: Collections
The second example regards the definition and implementation of “collection” classes (e.g., a
map, set, etc.). This section illustrates how abstract methods can be encoded via structural
constraints and how nominal types can be used to enforce design intent.

Encoding abstract methods. Using structural constraints on a method’s receiver, we can
e�ectively encode abstract methods. The first benefit of this encoding is that it simplifies the
formal system; we need not include abstract methods or abstract classes.

To illustrate this encoding, consider the Java class definition at the top of Fig. 2.7, which is
based on a Java 1.5 Collections Library class.8

To translate this code to Unity, the abstract methods in the Java class are converted to struc-
tural constraints on the receiver of the relevant methods (bottom part of Fig. 2.7). For instance,
contains is implemented in terms of iterator, so it requires that its receiver have the lattermethod;
the same pattern is used for isEmpty and toString.

Not only does this encoding simplify the formal system, it increases the language’s flexibilty;
a structural constraint can be satisfied using either an internal or external method. Due to a
restriction on the definition of external methods, if iterator and size are introduced as abstract
internal methods, subclasses can only provide internalmethod implementations. With a struc-
tural constraint, however, one of a set of external methods definitions may be chosen to satisfy
it.

In particular, the restriction is that external methods may not override internal methods
(described further in Sect. 2.4.2). As a consequence, once a method is defined as an “abstract”
internal method, it can only be implemented with internal methods in sub-brands.

With structural constraints, on the other hand, in some module M1, we may define:

8Note that not I am not using parametric polymorphism here; an extension of Unity with this feature is
outlined in Sect. 2.5.3 and formalized in [Malayeri and Aldrich 2008b].
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AbstractReader ≤ Reader
CharArrayReader ≤ AbstractReader
Bu�eredReader ≤ AbstractReader
SomeOtherReader ≰ AbstractReader
SomeOtherReader ≤ Reader
CharArrayReader ≤ AbstractReader(mark: ..., reset: ... )

StringStream ≤ Reader
StringStream ≤Writer

Writer ∧ seek ≤Writer
StringStream ≤Writer ∧ Reader ∧ seek

// after a ‘using’ expression
new StringStream(): StringStream(newline: ... ) ≤ AbstractWriter(newline: ... )

Figure 2.6: Typing and subtyping induced by the brand declarations. Types of methods are
elided, and empty structural components (i.e., ()) are omited.

// ordinary iterator implementation
method iterator AbstractList(): Iterator = . . .
method iterator StoreBackedList(): Iterator = . . .

Now, suppose that in another module M2, we have a di�erent implementation for iterator (per-
haps one that caches the next element to be retrieved). Then, depending on which external
method is imported through the “using” expression (M1.iterator or M2.iterator), di�erent exter-
nal method definitions can be “plugged-in” to a particular context.9

This feature essentially allows di�erent external methods to be attached to existing objects.
This is reminiscent of mixins [Bracha and Cook 1990; Ancona and Zucca 1996], but here the
“mix-in” operation occurs at the object level. Sections 2.4.3 and 2.5 describe the formalization
of the “using” construct.

Combining structural and nominal types. Up to this point, we used brands to implement
(internal and external) methods. But, it is also possible to use brands to specify and enforce
design intent.

In particular, let us consider the types Collection and Set from the Java Collections library.
These types have identical interfaces, but are not necessarily used in the same way. In particular,
a Set does not have duplicate elements, while a Collectionmay.

Unity’s nominal typing component—brands—can be used to enforce the intent that an ob-
jects should have a particular inheritance path, in addition to having methods with the appro-

9To simplify the presentation, the “using” expression the code examples did not specify a module, but this
would be a straightforward extension.
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// Java class with abstract methods
abstract class AbstractCollection {

abstract Iterator iterator();
abstract int size();
boolean contains(Object o) { ... } // uses iterator
boolean isEmpty() { ... } // uses size
String toString() { ... } // uses iterator

}

// Unity translation
type Iterator = Object(next: ()⇒ Object(), hasNext: ()⇒ bool)

brand AbstractCollection (
method contains: (iterator: ()⇒ Iterator)⇒ Object()→ bool = . . .
method isEmpty: (size: ()⇒ int)⇒ bool = . . .
method toString: (iterator: ()⇒ Iterator)⇒ string = . . .

)

Figure 2.7: Translating Java abstract methods to Unity structural constraints

// same method types as in AbstractCollection
type Collection = Object(contains: . . . , isEmpty: . . . , toString: . . . , iterator: . . ., size: . . . )

brand SetBrand () // define a brand to distinguish Set from Collection
type Set = SetBrand(contains, isEmpty, toString, iterator, size) // same types as in Collection

// a concrete set implementation
brand HashSet extends SetBrand ( . . . ) // declare and implement Setmethods

typeMap = Object (
entrySet: ()⇒ Set
values: ()⇒ Collection
. . . )

let useMap = fn (m: Map) --> let set = m.entrySet in . . . // ‘set’ has brand SetBrand

Figure 2.8: Using nominal types to create constraints
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type Readable = Object(read: ()⇒ char)
typeWriteable = Object(write: ()⇒ char→ int)

method Readable.foo = . . . // (1)
methodWriteable.foo = . . . // (2)

readWritable.foo // ambiguous method call!

Figure 2.9: In Unity, dispatch is performed on brands, since structural method dispatch would
result in ambiguous method calls.

priate types. Figure 2.8 has an example of this. Here, in the useMap function, we know that the
variable set has brand SetBrand. Since an object cannot implicitly conform to this type (as its
brand must be a sub-brand of SetBrand), this can help prevent “accidental” subtyping.

Note that SetBrand has not defined any methods as it is conceptually an interface; any in-
cluded methods would be “abstract.” For this reason, the relevant methods have instead been
moved to the type Set.

I refer back to this code listing in Section 2.6 below, in the context of a comparison to “where”
clauses in Cecil.

2.2.3 Discussion and Summary
I this section, I discuss issues surrounding Unity’s dispatch semantics and summarize the key
features of the language.

Dispatch Semantics

In Unity, external dispatch may only be performed on brands; this restriction is necessary to
make ambiguity checking feasible. As a counter-example, suppose we were to allow dispatch
on structural types. If structural types Readable and Writeable were defined as in Fig. 2.9, we
could write a method foo that behaves di�erently depending on whether its receiver conforms
to the Readable type or theWriteable type (an admittedly contrived, though illustrative, method).
Aside from making it di�cult to e�ciently implement method dispatch (in the worst case, the
entire structure of the type would have to be examined at runtime), this definition is ambiguous:
what if foo is called on an object that is a subtype of both Readable andWriteable?

If dispatch were permitted on structural types, these kinds of ambiguities would continually
arise, due to the intrinsic properties of structural subtyping. To ensure type safety in such a case,
the typechecker would require that the programmer provide disambiguatingmethods whenever
there is any potential ambiguity (based on the static structure of the program); this is the only
way to statically prevent all runtime ambiguities in amodularmanner.10 However, this approach

10I am, of course, assuming that it is unacceptable for the runtime to arbitrarily choose one of the candidate
methods, or to choose a method based on the textual ordering of the definitions.
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is infeasible: for a particular external method, the number of required disambiguating methods
is exponential in the number of implementations dispatching on incomparable types (i.e., types
where neither is a subtype of the other). The need for disambiguating methods is discussed
further in Sect. 3.3, in the context of “diamond” multiple inheritance.

This design has another issue: it can magnify the problem of accidental subtyping. Suppose
we were to have the following declaration:

method Object.bar(x: τ1) = . . . A // called when receiver dynamically has method ‘x’
method Object.bar(x: τ1, y: τ2) = . . . B // called when receiver dynamically has methods ‘x’ and ‘y’

This definition is not ambiguous (in the sense of the previous example), but it can have an unex-
pected interaction with external methods. In particular, suppose an external method y (with the
appropriate type) is added to an object o of brand C , which previously had only an x method.
Now, calls to o.bar will change—code fragment (B) will be executed! This is the same sort of
problem as with accidental subtyping, but is even more subtle and di�cult to statically diag-
nose.

Summary

The examples illustrated the three main features in Unity: structural types, nominal types, and
external dispatch:

• Structural types can be used to create structural constraints. If method m has structural
constraints (m1 ∶ τ1, . . . ,mn ∶ τn), the expression o.m is valid only if o’s structural type
contains m1, . . . ,mn with types conforming to (i.e., subtypes of ) τ1, . . . ,τn .11

• Nominal types are used to create a new brand that can be used in dispatch; as a conse-
quence, programs can define new behavior for the newly defined brand. In the streams
example, CharArrayReader is defined as an extension of AbstractReader because (for exam-
ple) the behavior of parse is di�erent for each type.
The programmer can also use brands to preserve design intent; nominal types can
be used to distinguish between similarly-named methods that behave di�erently (e.g.,
Cowboy.draw() and Circle.draw()). This was shown in the collections example, with
SetBrand.

• External dispatch and structural subtyping have synergistic properties. Structural sub-
typing can be used to specify the constraints of a method, and external methods can be
used to make existing brands conform to those constraints. Additionally, the “using” ex-
pression, in conjunction with external methods, can be used to “plug-in” di�erent internal
method implementations to di�erent contexts.

11This is an over-generalization for the purposes of presentation. As we will see in the formal system
(Sect. 2.5), the expression o.m is also valid if o’s brand contains method m.
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2.3 Structural Subtyping and Design Patterns
In this section, I consider two potential applications of Unity: expressing three commonly-used
design patterns, and redesigning the Java Collections Library to remove “optional” methods.

2.3.1 GoF Patterns in Unity
Several design patterns identified by [Gamma et al. 1994] can be expressed more elegantly in
Unity versus mainstream object-oriented languages. These include Visitor, Proxy, and Decora-
tor.

The need for Visitor is in fact obviated in Unity, due to the presence of external methods.
To dispatch on an existing hierarchy, the programmer simply writes new external methods for
those brands [Clifton et al. 2006; Millstein 2003].

In some situations, the Proxy and Decorator patterns are easier to implement in a language
with structural subtyping. In order to e�ectively use these patterns in a nominally-typed lan-
guage, interfaces must be defined in advance for the classes for which we wish to define a proxy
or decorator. If no appropriate interface exists, these patterns may be impossible or unwieldy to
implement.

Proxy. The Proxy design pattern is used to create an intermediary to an object to be used
in the object’s place. The object in question may be expensive to create or should perhaps be
accessed in a particular manner. Examples include reference-counted pointers and local objects
that access remote resources.

Suppose we wish to create a proxy for the RealSubject class, which implements the Subject
interface. The typical implementation is to create a Proxy class that also implements Subject
and has a field of type RealSubject. Proxy can then forward method calls to the RealSubject field,
possibly performing additional operations before and after the method call.

This implementation depends on the existence of the Subject interface; without such an
interface, problems will arise. Concretely, suppose we have a class RasterImage that does not
implement any interfaces. If we were to use a traditional nominally-typed language, the new
RasterImageProxy class would have to extend RasterImage and re-implement the necessary
methods. Inheritance would be necessary here, in order to obtain the appropriate subtyping
relation. But, there is a problem if RasterImage loads the image into memory in the constructor,
since the RasterImageProxy constructor must call the RasterImage constructor. This would then
make it impossible for RasterImageProxy, for example, to perform lazy loading of the image file.

This problem does not occur with a language that separates inheritance and subtyping,
like Unity. In such languages, well-designed code would never mention the nominal type
RasterImage directly (except when creating an object), andwould instead use a typewhose struc-
tural component consisted of the methods of RasterImage. (Analogously, in a nominally-typed
language that separates inheritance and subtyping, the type, rather than the class, corresponding
to RasterImage would be used.) Then RasterImageProxy need not inherit from RasterImage, but
would instead have a field of type RasterImage—the usual implementation of the Proxy design
pattern.
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Decorator. A similar situation arises with the Decorator design pattern. Decorator is often
used when we wish to add new or additional behavior to an existing class. The pattern is imple-
mented by creating a new class that “wraps” the original class and forwards method calls to it.
To create a decorator for a ConcreteComponent class that implements the IComponent interface,
we would create a class Decorator containing a field of type IComponent. Similar to proxy, the
Decorator class can forward calls to this field, possibly performing additional behavior before or
after the method call. (Note that though the implementation of Proxy and Decorator is similar,
the decorated object often changes dynamically, whereas a proxy does not typically change its
subject object.) Decorators are often used to attach new behavior to GUI objects, such as adding
a scrollbar or border. The Java stream library also uses decorators to implement functionality
such as bu�ering and encryption.

As with Proxy, traditional languages can make it di�cult to implement Decorator when the
ConcreteComponent class does not implement a suitable interface. The workaround is to create
a class Decorator that inherits from ConcreteComponent (in order to obtain subtyping), and also
defines a ConcreteComponent field. But, this designwill only work if ConcreteComponent has not
been declared as �nal. Additionally, in this awkward design, unused resources may be created.
Programmersmust also take care to never callmethods inConcreteComponent on the this object,
but rather on the declared ConcreteComponent field.

Again, if inheritance and subtyping are distinct features, client code would use the type
ConcreteComponent (rather than the class), and Decorator would declare itself a subtype (but
not a subclass) of ConcreteComponent. With structural subtyping, the code is even simpler, as
Decorator need not declare a relationship to ConcreteComponent.

Concretely, the code for a typical Java Decorator implementation is:

interface IComponent { void doSomething(); }
class ConcreteComponent implements IComponent { void doSomething() { ... } }

class Decorator implements IComponent {
IComponent wrapped;

void doSomething() {
... // set−up code
wrapped.doSomething();
... // tear−down code

}
}

The corresponding code in Unity would be:
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brand ConcreteComponent (method doSomething(): unit = . . . )

brand Decorator (
wrapped: Object(doSomething: ()⇒ unit);
method doSomething(): unit =

. . . // set−up code
wrapped.doSomething
. . . // tear−down code

)

2.3.2 Optional Methods in the Java Collections Library
In this section, I describe the tradeo�s that a library designer must make when using a language
that has only nominal subtyping. The design of the Java collections library illustrates that de-
signers would rather circumvent the type system than have a proliferation of types. I believe this
situation can occur all too often in a language with only nominal subtyping. Chapter 4 presents
empirical evidence to support this claim.

In the Java collections library, the interface java.util.Collection has several “optional”
methods: add, addAll, clear, remove, removeAll, and retainAll. Many of the abstract
classes implementing Collection (e.g., AbstractCollection, AbstractList, AbstractSet) throw an
UnsupportedOperationException when those methods are called. There are a total of 30 op-
tional methods in java.util.*, and java.lang.Iterator has an additional optional method. The
methods were designed this way to avoid an explosion of interfaces such as MutableCollection,
ImmutableCollection, etc., and a corresponding increase in the number of sub-interfaces (e.g.,
MutableList, ImmutableList, etc.) [Sun Microsystems 2003].

Let us consider a Java collections framework without the optional methods. Figure 2.10
shows a relevant portion of the current Java collections hierarchy. Figure 2.11 show refactored
AbstractList andAbstractSet classeswith finer grain behavior, with new interfaces that capture the
distinction of modifiability directly in the hierarchy—doing away with optional operations. The
portions of AbstractList that pertained to mutability have been moved to AbstractModi�ableList;
the same for AbstractModi�ableSet. The interface Collection<E> represents a collection that is
possibly-modifiable, whileModi�ableCollection<E> represents a collection that can be modified.
Accordingly, its iterator() method returns a Modi�ableIterator. This new Iterator interface is
depicted in Figure 2.12. The Iterator<E> interface has been changed so that it no longer has a
remove() operation; this method has been moved toModi�ableIterator<E>. There are now two
new ListIterator interfaces, one for fixed-size lists, and one for variable-size lists. These cor-
respond to the Modi�ableFixedSizeList<E> and Modi�ableList<E> interfaces in Figure 2.11. The
hierarchy for Set is similar to that of List (though simpler, since there are no fixed-size sets, and
no set-specific iterator).

Figure 2.13 shows the refactored Map interface and related classes. The main interface here
isMap<K,V> which has a method entrySet(). In the original collections hierarchy, this returns a
Set<Map.Entry>, but the documentation states that the returned set supports only set removal
operations, not set addition operations. So, an additional interface is needed for a set that sup-
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ArrayList

AbstractList

LinkedList

AbstractSet

<<interface>>
Set<E>

EnumSet HashSet

AbstractMap

HashMap LinkedHashMap

iterator() : Iterator<E> 

<<interface>>
Iterable<E>

contains(Object o) : boolean
iterator() : Iterator<E>

<<interface>>
Collection<E>

listIterator() : ListIterator<E>

<<interface>>
List<E>

previous() : E
previousIndex() : int

<<interface>>
ListIterator<E>

hasNext() : boolean
next() : E
remove()

<<interface>>
Iterator<E>

getKey() : K
getValue() : V
setValue(value : V) : V

<<interface>>
Map.Entry<K, V>

entrySet() : Set<Map.Entry>

<<interface>>
Map<K, V>

Figure 2.10: A portion of the Java collections framework. Only a subset of an interface’s meth-
ods are listed. Type parameters are elided in classes.

ports modification only through remove operations; this is represented by RemovableSet in Fig-
ure 2.14. Another interface is needed for a general collection (as opposed to a set) that supports
element removal, since themethod values() returns an object of such a type. This is represented
by RemoveableCollection (also in Figure 2.14).

As noted, in the original design entrySet() returns type Set<Map.Entry>. This
translates into four possibilities in the refactored hierarchy: Set<Map.Entry> (a read-
only set with read-only entries), RemovableSet<Map.Entry> (a mutable set with read-
only entries), Set<Modi�ableMap.Entry> (a read-only set with mutable entries), and
RemovableSet<Modi�ableMap.Entry> (a mutable set with mutable entries). This is due to
the fact that Map.Entry.setValue is an optional method, and thus needs a new interface to
capture its behavior. Aside from this proliferation of interfaces, the class diagram for Map is
fairly straightforward.

Utility of structural subtyping. In a language with structural subtyping, such as Unity, not
all interesting combinations of types have to be declared in advance (though in a library setting
they might be, for consistency’s sake). However, the key idea is that a type alias would simply
be syntactic sugar for a set of methods, which could be given a di�erent type alias in a di�erent
part of the system. Additionally, the subtyping relationships between all the interfaces would
not need to be defined in advance. Finally, as a side note, the notational overhead in defining
type aliases would be potentially far lower than that of defining a Java interface, which has a
relatively high notational cost (due, in part to the nominal nature of interfaces).

In the FAQ for the Java collections API design [Sun Microsystems 2003], in explaining the
rationale for the optional methods, examples are given for additional interfaces that would be
useful. One example is that of logs, such as error logs and audit logs. As these are append-only
sequences, they should support all of the List operations except for remove() and set() (replace
value). For a Java implementation, this would require a new core interface, and a new iterator
interface.
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iterator() : Iterator<E> 

<<interface>>
Iterable<E>

ArrayList LinkedList

<<interface>>
Set<E>

EnumSet HashSet

iterator() : 
ModifiableIterator<E> 

<<interface>>
ModifiableIterable<E>

AbstractList

AbstractModifiableList

listIterator() : 
ListIterator<E>

<<interface>>
List<E>

listIterator() : 
ModifiableFixedSizeListIterator<E>

<<interface>>
ModifiableFixedSizeList<E> listIterator() : 

ModifiableListIterator<E>

<<interface>>
ModifiableList<E>

AbstractSet

AbstractModifiableSet

<<interface>>
ModifiableSet<E>

contains(Object o) : boolean
iterator() : Iterator<E>

<<interface>>
Collection<E>

add(E object) : boolean
iterator() : 
ModifiableIterator<E>

<<interface>>
ModifiableCollection<E>

Figure 2.11: Refactored AbstractList and AbstractSet classes, along with new interfaces to re-
move optional methods. Only a subset of an interface’s methods are listed. Type parameters
are elided in classes.

Another example given in the FAQ is that of immutable collections—ones that cannot be
modified by any client, not just through the current reference. This kind of type can be useful
because it doesn’t require synchronization. However, to support such invariants in the library,
4 additional core interfaces are need, plus additional iterator interfaces.

It is interesting to note that these two examples in the FAQ do not arise naturally from the
design of the collections library—they are design considerations thatmight be useful. This high-
lights the mindset of the Java developer: since everything must be defined in advance, any po-
tentially useful interface must be considered ahead of time and its advantages carefully weighed.

2.4 Methods in Unity
This section presents, at a high level, the properties of methods in the Unity formal system. I
describe the semantics of method dispatch, rules for typechecking external methods, and the
naming convention for internal and external methods.
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remove()

<<interface>>
ModifiableIterator<E>

set(object : E)

<<interface>>
ModifiableFixedSizeListIterator<E>

add(object : E)

<<interface>>
ModifiableListIterator<E>

hasNext() : boolean
next() : E

<<interface>>
Iterator<E>

nextIndex() : int
hasPrevious() : boolean
previous() : E
previousIndex() : int

<<interface>>
ListIterator<E>

Figure 2.12: Refactored iterator interfaces. All methods, except for inherited methods, are
shown.

AbstractMap

HashMap LinkedHashMap

AbstractModifiableMap

entrySet() : 
RemovableSet<ModifiableMap.Entry>
values() : RemovableCollection<V>

<<interface>>
ModifiableMap<K, V>

entrySet() : Set<? extends Map.Entry>
values() : Collection<V>

<<interface>>
Map<K, V>

entrySet() : 
Set<ModifiableMap.Entry>

<<interface>>
ModifiableFixedSizeMap<K, V>

setValue(value : V) : V

<<interface>>
ModifiableMap.Entry<K, V>

getKey() : K
getValue() : V

<<interface>>
Map.Entry<K, V>

entrySet() : 
RemovableSet<? extends Map.Entry>
values() : RemovableCollection<V>

<<interface>>
VariableSizeImmutableMap<K, V>

Figure 2.13: RefactoredAbstractMap class, alongwith new interfaces to remove optionalmeth-
ods. Only a subset of an interface’s methods are listed. Type parameters are elided in classes.

2.4.1 Dispatch Semantics

Methods may be defined with structural constraints, but these constraints are not used in
dispatch—only brands are used. Thus, it is invalid to define two methods with the same name
and that dispatch on the same brand, with di�ering structural constraints. Therefore, when
overriding a method m, a subclass may not add structural constraints to m’s receiver or its ar-
guments. Similarly, it is not possible to providde two definitions for an external method C .m.

2.4.2 External Method Definitions

Recall that in Unity, external methods may be overridden by other methods, either internal or
external. Typechecking an external method has two components: exhaustiveness checking (the
provided cases provide full coverage of the dispatch hierarchy) and ambiguity checking (when
executing a given method call, only one method is applicable).
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add(E object) : boolean
iterator() : ModifiableIterator<E>
remove(Object o) : boolean

<<interface>>
ModifiableCollection<E> <<interface>>

Set<E>

contains(Object o) : boolean
iterator() : Iterator<E>

<<interface>>
Collection<E> clear()

iterator() : ModifiableIterator<E>
remove(Object o) : boolean

<<interface>>
RemovableCollection<E>

clear()
iterator() : ModifiableIterator<E>
remove(Object o) : boolean

<<interface>>
RemovableSet<E>

<<interface>>
ModifiableSet<E>

Figure 2.14: RemovableCollection and RemovableSet. Interfaces have been repeated from other
figures to show subtyping relationships; these have been grayed out. Only a subset of an inter-
face’s methods are listed.

I have adapted the restrictions on external methods that were enforced by Millstein and
Chambers’ “System M” variant of the Dubious calculus [Millstein and Chambers 2002], and by
later extensions such as MultiJava [Clifton et al. 2000] and EML [Millstein et al. 2002; 2004].

In Unity, exhaustiveness of external methods is ensured because there are no abstract meth-
ods. If such a feature were present, external method definitions would not be permitted to be
abstract—just as in the aforementioned languages.

Additionally, to allowmodular ambiguity checking, Unity methods must obey the following
rules:

E1. All external method definitions of a method m must appear in the method block where the
method family m is introduced (using themethod declaration).

E2. An externalmethod definitionmay not override an internal one (though an internalmethod
may override an external one).

E3. When an external method family m is introduced, it must declare an owner brand C : this
specifies that the method family is rooted at C . C must be a proper subtype of Object, the
root of the inheritance hierarchy. An external method definition m for brand D is valid
only if D is a sub-brand of C .

Here, a method family is defined as a method and all of its overrides. For internal methods, the
overrides are spread acrossmultiple classes, but for external methods, condition E1 ensures that
the external declarations in the family appear in the same syntactic block.

Condition E1 is necessary because otherwise there could be two external method definitions
m defined for the same brandC , leading to an ambiguity. This ambiguity would be impossible to
detect in a modular manner, since when checking particular external method, the typechecker
would have to do a non-modular search for other external methods with the same name. (Note
that in the code examples, all external method definitions appeared together, though for brevity
amethod block was not used.)
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Condition E2 is required to avoid a situation where two external methods override the same
internal method. Since neither external method is “better” than the other, this would result in a
run-time method lookup ambiguity.

Finally, condition E3 is necessary for ambiguity checking in the presence of multiple inheri-
tance, and will be described further in Sect. 3.4.2. For this reason, the owner brand was omitted
from the previous examples.

2.4.3 Simple and Qualified Method Names
Until now, I have glossed over the details of method naming, but as it turns out, to correctly
implement condition E2 (in a modular fashion), the formal system must have a way of distin-
guishing between external and internal method names.

Concretely, suppose we have an external method m defined on brand A. Now, we add brand
B that extends A. Here, B is permitted to also define a method named m (with a di�erent type,
even) if the definition of A.m is not in scope. Next suppose than an object o tagged with B is
passed to a context where A.m has been imported, and we call o.m. Now, the runtime seman-
tics needs to be able to distinguish the external method from the internal method—otherwise
either method is equally applicable. One straightforward way to achieve this is to internally use
di�erent names for each method.

Consequently, the calculus distinguishes between qualified names (denoted by themetavari-
able q) and simple names (denoted by n). The qualified name of a method family (i.e., a method
and all of its overrides) is assumed to be globally unique. This can be easily implemented by
generating a qualified name that includes the brand where the method family is first introduced.
For example, an internal method m introduced in brand B (i.e., a new m declaration, rather
than an override) could have simple name m and qualified name B_m. For external methods,
the owner brand of an external method block can be used to generate the qualified name (e.g.,
C #m).12

In order for structural subtyping to be useful, we must use simple names for the structural
component of a type. That way, if two unrelated brands B andC each have methods with simple
name n and type τ (and corresponding qualified namesB_n andC_n), the simple name n should
be used in so that objects of each brand are subtypes of Object(n ∶ τ). In contrast, if the qualified
names were used, the only common supertype of B and C would be Object(). Simple names are
also needed for external methods, to support the pattern of adding a new external method n ∶ τ
so that objects of an existing brand D conform to type D(n ∶ τ). An example of this, the newline
method, was presented in Fig. 2.5.

Accordingly, in the calculus, each object contains amap from simple name to qualified name.
This mapping can be either specified when the object is created, or can be added to an existing
object via the with expression, described below.13

12This does not imply that owner brands are necessary formodular typechecking in the absence ofmultiple
inheritance; an “owner” can always be automatically generated by taking the least upper bound of the brands
on which the external method m is defined.

13Note that in the formal system, the simple and qualified names need not have any relation to one another,
while in an actual implementation, the simple name would probably be a sub-string of the qualified name.
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Only simple names appear in the structural component of a type; that is, types are of the form
B(n ∶ τ). If an object o has this type, the method call o.ni is a valid expression. Additionally, any
internal or external method defined on B may be called on o, using qualified names (i.e., o.q).

Note that qualified method lookup can be easily implemented e�ciently (e.g., using vta-
bles), whereas simple name lookup must use the aforementioned map (and is more di�cult to
implement e�ciently, due to depth and width subtyping). There is a benefit to this design: since
simple names are useful primarily for the structural subtyping aspect of the system, structural
subtyping becomes a “pay-as-you-go” feature. There is only a (potential) performance penalty
if and when it is used.

Only the formal system includes both names; in the surface syntax, the programmer would
only use the simple name and the qualified name would be automatically generated.14 An elab-
oration phase (described below) would substitute simple names for qualified names where pos-
sible, and would otherwise generate “with” expressions (or, when possible, set up the simple-to-
qualified mapping when objects are created). The using expression, which appears only in the
surface syntax of the examples, would be used to determine which external methods should be
used to generate the mapping.

A “with” expression must be generated whenever the typechecker must coerce an already-
created object to a structural type. For instance, in Fig. 2.1, a Bu�eredReader object is coerced
to Reader in order to call �ndString. The elaborator would report an error in the case where the
same simple name can be mapped to two (or more) di�erent qualified names.
Concretely, recall the highlighted lines of Fig. 2.1:

�ndString bufReader "foo"
�ndString charArrayReader "bar"
�ndString someOtherReader "baz"

Considering only the readmethod, this would be elaborated to:

�ndString (bufReaderwith read ,Ð→ AbstractReader_read, . . . ) "foo"
�ndString (charArrayReaderwith read ,Ð→ AbstractReader_read, . . . ) "bar"
�ndString (someOtherReaderwith read ,Ð→ SomeOtherReader_read, . . . ) "baz".

Note that the with clause for charArrayReader is identical to that of bufReader; this is because
read was introduced in AbstractReader.

Similarly, the highlighted line in Fig. 2.4,

readAndWrite stringStream

would be translated to

14Additionally, a scope qualifier construct would also be necessary to distinguish between two methods
with the same simple name (which can occur either through multiple inheritance or importing of external
method definitions). The explicit use of qualified names in the formal system sidesteps these issues.
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readAndWrite
(stringStreamwith

read ,Ð→ StringStream_read, . . . , // Readermethods
append ,Ð→ AbstractWriter_append, . . . , //Writermethods
seek ,Ð→ StringStream_seek

).

Finally, the highlighted line of Fig. 2.5,

new StringStream().writeLine ‘‘42’’

translates to
new StringStream(newline ,Ð→ AbstractWriter#newline).AbstractWriter#writeLine ‘‘42’’.

Finally, note that in a system with state (my formal system is purely functional), the “with” con-
struct would create awrapper containing the newmapping alongwith a pointer to the old object.
In such a system, there would be three notions of equality: wrapper equality (“==” in Java-like
languages), reference equality, and value equality (equals() in Java). Wrapper equality would
consider an object and its wrapped variant to be distinct, while reference equality would equate
two wrappers that point to the same object but that perhaps have di�erent simple-to-qualified
name mappings. (This latter notion should perhaps be called “equality,” as it does not preserve
contextual equivalence. That is, if o1 “unwrap-equals” o2, this does notmean that o1.m and o2.m
will call the same method m.15 Regardless, I believe there are situations in which such a notion
of “equality” could be useful.)

2.5 Formal System

TheUnity grammar is presented in Fig. 2.15. The language is a lambda calculuswith the addition
of values tagged with brands. Themetavariables B ,C , D , and E range over brand names, and the
overbar notation (e.g., B) denotes a sequence of items (e.g., names, types, labels, etc.) thatmay be
indexed by a variable. That is, B is equivalent to Bi

i∈1..x , where x is the length of the B sequence.
The metavariables n and q ranges over simple and qualified method names, respectively; m
ranges over both kinds of method names. M and N range over a sequence of (method : type)
pairs (with simple names). There is a slight abuse of notation by using the set inclusion operator
on lists (e.g., m ∈m), but the intended meaning should always be clear from context.

Portions of the formal system are highlighted —these are the aspects of the language per-
taining to multiple inheritance. These features will be described in Sect. 3.7.

To define a brand, the brand top-level declaration is used. When a brand is defined, it is
given a name, as well as the brand’s field type (usually a record); this is the type of the fields of
the brand. An object’s field value is initialized when the object is created.

15That is to say, all unwrap-equal objects are created (quote-unquote) “equal,” but some are more equal
than others.
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Programs p ∶∶=Σ ⊳ decl in p | e

Declarations decl ∶∶= brand-decl | method-decl

Brand declaration brand-decl ∶∶= brand B(τ;m-decl) extends C1, . . . ,Cn requires D

Method declaration m-decl ∶∶= q B(n ∶ ρ) ∶ τ= e

External method block method-decl ∶∶=method B .q(m-decl)

Expression types τ,σ ∶∶= unit | τ→ τ | τ∧τ | B(n ∶ ρ) | {` ∶ τ} | X |µX .τ

Method types ρ ∶∶= (n ∶ ρ)⇒ τ

Expressions e ∶∶= () | x |λx ∶τ. e | e e | B̂(e;n ,Ð→ q) | e with n ,Ð→ q | (`= e) | e.` |
| e.m | e.B .super.q | foldτ e | unfoldτ e

Values v ∶∶= () | B̂(v ;n ,Ð→ q) | (`= v) |λx ∶τ. e | foldτ v

Contexts Γ ∶∶= ⋅ | Γ, x ∶ τ | Γ, X ≤ Y

Σ ∶∶= ⋅ |Σ,decl-type

decl-type ∶∶= brand B(τ;q ∶ ρ) extends C requires D

| method B .q(C .q ∶ ρ)

∆ ∶∶= ⋅ |∆,B(q= e) extends C |method q(B.q= e)

Definitions

fieldTypeΣ(B)
def= τ where B(τ; . . . )⋯ ∈Σ

B
def= type corresponding to tag B̂

`,k range over record label names
B ,C ,D,E range over brand names
n ranges over “simple” (non-unique) method names
q ranges over qualified method names
m ranges over n,q
M , N range over n ∶ ρ

Q ranges over q ∶ ρ
r ranges over `,k,m

t ranges over τ,ρ

Figure 2.15: Unity grammar. The portions relating to multiple inheritance are highlighted and
will be discussed in Chapter 3.
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Methods can be defined on a brand either externally or internally and the usual object-
oriented method dispatch semantics apply.16 Like brand declarations, external method dec-
larations are top-level. Note that condition E1 is enforced syntactically—all external method
definitions must appear in the same block. To support multiple inheritance, method blocks also
contain an owner brand; the need for this is discussed further in Chapter 3.

It is important to note that top-level declarations decl (brand or external method) are each
declared with a context Σ. This is the context under which the brand or external method is to be
typechecked; it must contain all declarations on which decl statically depends. This context is
included for two reasons: first, in a real program, dependencies between modules are specified
by the user (or inferred by the module system). Next, this eases the modularity proof (described
in Sect. 3.7.3), which demonstrates that declarations can be separately typechecked under their
declared context and no additional checks (analogous to link-time checking) is necessary.2

As previously described, methods take only one argument: the receiver (i.e., the this param-
eter). Additional parameters may be specified using lambda expressions. When a method q is
defined for a brand B , the structural constraint M (a sequence of {method : type} pairs) is spec-
ified for the receiver: these are the methods that must exist as part of an object o’s structural
type in order for o.q to be well-typed.

The calculus distinguishs between expression types (denoted by τ and σ) and method types
(denoted by ρ). Method types use the arrow “⇒” while function types use arrow “→”.

The language includes a limited form of intersection types, which increase expressiveness
and simplify some aspects of the formal system. Section 2.5.1 describes intersection types in
more detail. Iso-recursive types are also included; these have the standard fold and unfold ex-
pressions with the usual static and dynamic semantics.

If B is a brand name, then B̂ is the tag value corresponding to B . Values also contain the
simple-to-qualifiedmapping described in the previous section. To create objects, the expression
form B̂(e,n ,Ð→ q) is used; this creates an object tagged with B̂ that has type B(n ∶ τ), where each
qi has type τi .

To modify an object’s mapping after it has been created, the with expression is used. This
adds mappings n ,Ð→ q to the object, replacing any existing mappings that have the same simple
name and are associated with the object value.

Σ is the brand context; it stores the declared brand andmethod types. ∆ is the corresponding
run-time context. ∆ retainsmethod bodies but discards all type information (with the exception
of brand tags). As in Featherweight Java [Igarashi et al. 1999], the system assumes the existence
of a special brand Object that is not defined in Σ or ∆, but that may be extended by user-defined
brands. Since every brand must have (at least) one super-brand, the brand subtype hierarchy is
rooted at Object.17

Note that the context Σ and∆ are sometimes omitted from the rules where it is obvious from
the manner in which they are used; in such cases, the required context is an unchanged “Σ” or

16Note that in the formal system, the syntax for internal method declarations mirrors that of external
method declaration; in constrast, in the code examples, internal methods have syntax “m ∶ ρ = e.”

17Note that an alternative design is also possible: classes that extend no other class form a forest with no
common ancestor. One advantage of this design is that then there would be no need for special-case rules for
Object (e.g., premise (1) of Tp-Ext-Method in Fig. 2.19).
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B1 ⊑Σ B2 Sub-brand judgement

(Sub-Brand-Refl)

B ⊑Σ B

(Sub-Brand-Trans)
B1 ⊑Σ B2 B2 ⊑Σ B3

B1 ⊑Σ B3

(Sub-Brand-Decl)
B(τ;Q) extends C1, . . . ,Cn ∈Σ

B ⊑Σ Ci

Γ ⊢Σ ra ∶ ta ⊴ rb ∶ tb Sub-row judgement

(Sub-Row-Perm)
ri ∶ ti

i∈1..n is a permutation of r j ∶ t j
j∈1..n

Γ ⊢ ri ∶ ti
i∈1..n ⊴ r j ∶ t j

j∈1..n

(Sub-Row-Width)
n > m

Γ ⊢ ri ∶ ti
i∈1..n ⊴ r j ∶ t j

j∈1..m

(Sub-Row-Depth)
Γ ⊢ ti ≤ t ′i (i ∈ 1..n)

Γ ⊢ ri ∶ ti
i∈1..n ⊴ ri ∶ t ′i

i∈1..n

(Sub-Row-Trans)
Γ ⊢ ra ∶ ta ⊴ rb ∶ tb Γ ⊢ rb ∶ tb ⊴ rc ∶ tc

Γ ⊢ ra ∶ ta ⊴ rc ∶ tc

Figure 2.16: Sub-brand and sub-row judgements

“∆”. Judgements that are also functions (such as mtypeΣ, mbody∆, etc.) are subscripted with the
appropriate context, while other judgements use a subscript on the turnstile symbol (i.e., “⊢Σ”).

Likemany other object calculi, Unity is purely functional so as to simplify the formal system.
State is orthogonal to the issues under consideration (with the exception of the with expression
on imperative objects, which was described in Sect. 2.4.3). There does not appear to be any
inherent reason why the language design could not be adapted to a language with imperative
features.

The static and dynamic semantics of Unity (excluding multiple inheritance features) are de-
scribed below; a discussion of the proof of type safety appears in Sect. 3.7.4 (with full proof inAp-
pendix A). Additionally, a proof of the modularity of the type system is presented in Sect. 3.7.3.

2.5.1 Static Semantics
In this section, the subtyping and typing judgements shown in Figs. 2.16, 2.17, 2.18 and 2.21 are
described. Auxiliary judgements are in Figs. 2.20 and 2.22.

Subtyping

Unity contains three distinct sub-“type” relations: sub-brand (⊑Σ), sub-row (⊴) and subtype (≤).
Sub-branding (Fig. 2.16) is not on types but rather brands, which are a component of an object
type. This relation is simply the reflexive, transitive closure of the declared extends relation.

The sub-row relation corresponds to Definition 2.2: it is the structural part of the system
and includes depth and width subtyping. This relation is used for both record subtyping and
method list subtyping: rules Sub-Record, Sub-Obj and Sub-Method of Fig. 2.17.
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Γ ⊢Σ τ1 ≤ τ2 Subtype judgement (expression types)

(Sub-Refl)

Γ ⊢τ ≤ τ

(Sub-Trans)
Γ ⊢τ1 ≤ τ2 Γ ⊢τ2 ≤ τ3

Γ ⊢τ1 ≤ τ3

(Sub-Func)
Γ ⊢σ1 ≤ τ1 Γ ⊢τ2 ≤σ2

Γ ⊢τ1→ τ2 ≤ σ1→σ2

(Sub-∧R)
Γ ⊢τ ≤σ1 Γ ⊢τ ≤σ2

Γ ⊢τ ≤σ1 ∧ σ2

(Sub-∧L1)

Γ ⊢τ1∧τ2 ≤ τ1

(Sub-∧L2)

Γ ⊢τ1∧τ2 ≤ τ2

(Sub-Record)
Γ ⊢` ∶ τ ⊴ k ∶σ

Γ ⊢ {` ∶ τ} ≤ {k ∶σ}

(Sub-Type-Var)
X ≤ Y ∈ Γ

Γ ⊢X ≤ Y

(Sub-Mu)
Γ, X ≤ Y ⊢τ1 ≤ τ2

Γ ⊢µX .τ1 ≤µY .τ2

(Sub-Obj)
B1 ⊑Σ B2 Γ ⊢M1 ⊴M2

Γ ⊢B1(M1) ≤B2(M2)

(Sub-Requires)
B(τ;Q) extends B requires C1, . . . ,Cn ∈Σ

Γ ⊢M1 ⊴M2

Γ ⊢B(M1) ≤Ci (M2)

Γ ⊢Σ ρ1 ≤ ρ2 Subtype judgement (method types)

(Sub-Method)
Γ ⊢M2 ⊴M1 Γ ⊢τ1 ≤ τ2

Γ ⊢M1⇒ τ1 ≤ M2⇒ τ2

Figure 2.17: Subtype judgements. The context Σ is omitted from the turnstile symbol in the
inference rules, as it does not change in the course of the derivation (i.e., the rules usewhichever
context was passed to the judgement)

The rule Sub-Record is straightforward; it simply uses the sub-row judgement directly. The
rule Sub-Obj corresponds to Definition 2.1 and uses both the sub-brand and sub-row judge-
ments. This rule specifies that an object type B1(M1) is a subtype of B2(M2) when B1 is a sub-
brand of B2 (B1 ⊑Σ B2) and M1 is a sub-row of M2 (M1 ⊴M2).

For subtyping onmethod types, the rule Sub-Method is a straightforward generalization of
function subtyping: it is contravariant in the argument position (the structural constraints on
the receiver) and covariant in the result.

The language also includes a limited form of intersection types, à la Davies and Pfenning
(i.e., no distributivity rule); the rules for subtyping intersection types are borrowed from their
work [Davies and Pfenning 2000].

Aside from Sub-Requires, which will be described in Sect. 3.7, the remaining subtyping
rules are standard.
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Typechecking Programs

Full typing rules for typechecking programs and expressions appear in Figs. 2.18 and 2.21, re-
spectively. Auxiliary judgements for typechecking programs are in Figures 2.19 and 2.20; other
auxiliary judgements appear in 2.22

There are two typing rules for checking programs; these appear in Fig. 2.18. When type-
checking a program, the type information corresponding to each contained declaration is added
to the main context Σ, which is used to typecheck subsequent declarations.

For checking a brand or external method declaration, the rule Tp-Decl-Ok is used. This
first uses the auxiliary judgement decl ∶ decl-type to extract the declaration’s declared type. Next,
premise (2) checks that the declaration name (either brand or external method) does not already
exist in the program context Σ. Premise (3) typechecks the types in the declaration under its
declared context Σ0, using the decl-type ok judgement described below. The method bodies in
the declaration (either internal or external methods) are next typechecked under Σ0,decl-type
(to allow recursive methods) using the body-okjudgement (also described below).

Here, it is of key importance that declarations and method bodies are typechecked under
Σ0 rather than Σ, as otherwise it would be very di�cult to prove that typechecking is modular.
(The details of the modularity proof are described in Sect. 3.7.3.)

The next check, premise (5), ensures that the main context contains at least all of the decla-
rations assumed by the declaration decl. Here, we use ordinary set inclusion.18 Finally, the rest
of the program is typechecked under Σ extended with the new declaration type.

Brand declarations. The rule Tp-Brand-Decl (Fig. 2.19) ensures that a brand declaration B
is well-formed. First, we check that the inheritance structure of B is correct, using the inherit-
okauxiliary judgement (Fig. 2.20), which is described in Sect. 3.7.

Premise (2) of Tp-Brand-Decl creates a new context extended with the current declaration,
and premise (3) checks that newly defined brand contains at least the fields of the supertype
(possibly with refined types), under this new context.19

Finally, premise (4) checks that there are no duplicate internal methods in B and premise
(5) checks that each method is a valid override of the same method in superclasses, should such
a method exists. This last premise uses the override-okjudgement in Fig. 2.20. The rule for
method overriding is a straightforward generalization of that of Featherweight Java; the over-
riding method type ρ must be a subtype of each of ρi , the types of the super-brand methods
being overridden (if such methods exist). This rule uses the mtype auxiliary judgement, which

18Note that it would not be sound to take into account some form of subtyping on the declarations con-
tained in Σ to perform this check. This is because the program may make either covariant or contravariant
uses of the declarations within Σ. For instance, whenmakingmethod calls on an object of a particular classC ,
it would be sound to substitute someC ′ whereC ⊑Σ C ′ for the purpose of typechecking; i.e., this is a covariant
use of C . In contrast, when extending a class, this corresponds to a contravariant usage. Since the type of us-
age of each declaration is not specified when declaring Σ0, we must assume either covariant or contravariant
uses may occur; therefore the subset relation must be invariant.

19As a consequence, if the field type is a record, sub-brands must list all the labels of the parent (and may
therefore access them). Aside from simplifying the calculus, this sidesteps issues of variable shadowing while
allowing subtypes to refine the type of a particular label.



42 Chapter 2. Structural Subtyping and External Dispatch

Σ1 ⊇Σ2 ⊇
def= standard set inclusion

Σ ⊢p ok

(Tp-Decl-Ok)
1 decl ∶ decl-type 2 decl-typename ∉Σ

3 Σ0 ⊢decl-type ok 4 Σ0,decl-type ⊢decl body-ok
5 Σ ⊇Σ0

6 Σ,decl-type ⊢p ok
Σ ⊢Σ0 ⊳ decl in p ok

(Tp-Expr-Ok)
⋅ ⊢Σ e ∶ τ

Σ ⊢e ok

decl ∶ decl-type

brand B(σ;qi B(Mi ) ∶ τi = ei
i∈1..n) extends C requires D ∶

brand B(σ;qi ∶Mi ⇒ τi
i∈1..n) extends C requires D

method B .q(q Ci (Mi ) ∶ τi = ei
i∈1..n) ∶ method B .q(Ci .q ∶Mi ⇒ τi

i∈1..n)

decl-typename

brand B(. . . ) . . . name = B method B.q(. . . )name = q

Figure 2.18: Typechecking programs

looks up the type of themethod (internal or external) defined or inherited in the specified brand.
(mtype appears in Fig. 2.22 and is described in a subsection below.)

For typechecking internal method bodies, the rule Brand-Decl-Body is used, which checks
that each method body has the correct type, when the special variables this and �elds are bound
to the appropriate types. Note that here the method’s structural constraints Mi are added to the
brand’s nominal type B by specifying the type B(Mi ) for the this variable. Any brand methods
(internal or external) can still be accessed by using a qualified name, in the case that a method
name in the structural constraint conflicts with an existing method name.

External method declarations. The rule Tp-Ext-Method (Fig. 2.19) checks external
method definitions. Premise (2) ensures that there are no duplicate external method defini-
tions (i.e., more than one method defined for the same brandC ). Premise (4) enforces condition
E2: an external method may not override an internal method. The B.q internal auxiliary judge-
ment is used here (Fig. 2.20); this simply searches for a method q that is either defined internally
in B or is inherited. Finally, as in the rule for brand declarations, premise (6) ensures that each
external method definition is a valid override of other (external) methods, using the override-
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Σ ⊢decl-type ok

(Tp-Brand-Decl)
1 ⊢Σ B extends C requires D inherit-ok

2 Σ′ =Σ,brand B(τ;q ∶ ρ) extends C requires D 3 ⊢Σ′ τ ≤ fieldTypeΣ(C )
4 q distinct 5 ⊢Σ′ B.q ∶ ρ override-ok

Σ ⊢brand B(τ;q ∶ ρ) extends C requires D ok

(Tp-Ext-Method)
1 B ≠Object 2 C distinct 3 Ci ⊑Σ B (∀i ∈ 1..n)

4 ⊬Σ C .q internal 5 Σ′ =Σ,method B .q(C .q ∶ ρ) 6 ⊢Σ′ C .q ∶ ρ override-ok

Σ ⊢method B .q(C .q ∶ ρ) ok

Σ ⊢decl body-ok

(Brand-Decl-Body)
fieldTypeΣ(D) =σ′ this ∶B(Mi ),�elds ∶σ ∧ σ′ ⊢Σ ei ∶ τi

brand B(σ;qi B(Mi ) ∶ τi = ei
i∈1..n) extends C requires D body-ok

(Ext-Method-Body)
this ∶Ci (Mi ) ⊢Σ ei ∶ τi (∀i ∈ 1..n)

Σ ⊢method B .q(q Ci (Mi ) ∶ τi = ei
i∈1..n) body-ok

Figure 2.19: Typechecking brand and method declarations

okjudgement.
For typechecking external method bodies, rule Ext-Method-Body applies, which is similar

to the rule for typechecking internal methods. The sole di�erence is that the �elds variable is
not bound in Γ and therefore cannot be accessed by themethod body, which e�ectively enforces
a form of information hiding.

Expressions. Typechecking expressions (Tp-Expr-Ok) simply defers to the judgement for
typechecking expressions (Fig. 2.21). Most of the rules are standard; the exceptions areTp-New-
Obj, Tp-With, Tp-Invoke-Struct, Tp-Invoke-Nom, and Tp-Invoke-Super. The first four are
described here; the last regards multiple inheritance and is described in Sect. 3.7.

The rule Tp-New-Obj checks the correctness of the object creation expression. First, we
check that the provided expression conforms to the field type of the brand. Next, we check
that the simple names provided in the mapping are distinct, then look up the method type ρi

of each qualified name (using the mtype judgement, described below). The resulting type has a
structural component that maps each ni to the corresponding ρi .
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⊢Σ B.q ∶ ρ override-ok

B extends C1, . . . ,Cn ∈Σ mtypeΣ(q,Ci ) = ρ′i implies ρ ≤ ρ′i (∀i ∈ 1..n)

⊢Σ B.q ∶ ρ override-ok

⊢Σ B inherit-ok

(Tp-Inherit)
1 C ∈Σ 2 D ∈Σ 3 Di ∉C (∀i ∈ 1..m)

4 ∀i , j . i ≠ j .ØD′.Ci ⊑Σ D′ and C j ⊑Σ D′ (D′ ≠Object)
5 Ci requires E ∈Σ implies ∃k. Ck ⊑Σ E or Dk ⊑Σ E (∀i ∈ 1..n)

6 Di requires E ′ ∈Σ implies ∃k. Ck ⊑Σ E ′ or Dk ⊑Σ E ′ (∀i ∈ 1..m)
7 ∀i , j .∀q. mtypeΣ(q,Ci ) = ρ and mtypeΣ(q,C j ) = ρ′ implies i = j

⊢Σ B extends C1, . . . ,Cn requires D1, . . . ,Dm ∈Σ inherit-ok

⊢Σ B.q internal

(Internal-Base)
brand B(τ; . . . ,q ∶ ρ, . . . ) ∈Σ

⊢Σ B.q internal

(Internal-Inh)
brand B(τ;Q) extends C ∈Σ q ∉Q

∃k.Ck .q internal
⊢Σ B.q internal

Figure 2.20: Auxiliary judgements for typechecking programs

The mtype auxiliary judgement (defined in Fig. 2.22) looks up the type of a qualified name
defined for a particular brand B . The judgement first checks for internal methods; if one does
not exist, the second rule searches for an external definition. If neither of these cases applies,
we perform a lookup using some super-brand of B .

The next rule, Tp-With, performs an operation similar to that of Tp-New-Obj. The names
in the specified map must not be contained in the expression’s structural type (n ∉ M) and must
be distinct. Then mtype is used to lookup the types of the corresponding qualified names. There
is one di�erence betweenTp-With andTp-New-Obj, involving required brands (premises 2 and
5). This di�erence is described further in Sect. 3.7.

It should be noted that the subsumption rule can always be used to “forget” methods in an
object’s structural type, so it is possible add a simple name mapping n ,Ð→ q that already existed
in the object’s map. That is, the situation depicted in Fig. 2.23 can occur. Since the subsumption
rule allows the typechecker to “forget” that e1 has method n, the “e1 with . . .” expression is still
well-typed. At runtime, the new mapping replaces the old one.

Typechecking method invocations (rules Tp-Invoke-Struct and Tp-Invoke-Nom) is fairly
straightforward, as the body of themethod was already checked when themethod was declared.
When invoking amethodwith a simple name (structuralmethod invocation), we ensure that the
method n exists in the structural part of the expression’s type (M) and has type N ⇒ τ. Finally, M
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Γ ⊢Σ e ∶ τ

(Tp-Var)
x ∶ τ ∈ Γ

Γ ⊢x ∶ τ

(Tp-Unit)

Γ ⊢ () ∶ unit

(Tp-Fun)
Γ, x ∶ τ1 ⊢e ∶ τ2

Γ ⊢λx ∶τ1. e ∶ τ1→ τ2

(Tp-App)
Γ ⊢e1 ∶ τ1→ τ2 Γ ⊢e2 ∶ τ1

Γ ⊢e1 e2 ∶ τ2

(Tp-Subs)
Γ ⊢e ∶σ ⊢Σ σ ≤ τ

Γ ⊢e ∶ τ

(Tp-New-Record)
Γ ⊢e ∶ τ

Γ ⊢ (`= e) ∶ {` ∶ τ}

(Tp-Proj)
Γ ⊢e ∶ {`i ∶ τi

i∈1..n}

Γ ⊢e.`k ∶ τk

(Tp-New-Obj)
B requires ● ∈Σ fieldTypeΣ(B) = τ Γ ⊢e ∶ τ

n distinct mtypeΣ(q,B) ∶ ρ

Γ ⊢ B̂(e;n ,Ð→ q) ∶B(n ∶ ρ)

(Tp-With)
Γ ⊢e ∶B(M) B requires D ∈Σ

n ∉ M n distinct
∃C ∈ {B , D }. mtypeΣ(qi ,C ) ∶ ρi (∀i ∈ 1..n)

Γ ⊢e with ni ,Ð→ qi
i∈1..n ∶ B(M ,ni ∶ ρi

i∈1..n)

(Tp-Invoke-Struct)
Γ ⊢e ∶B(M)

n ∶N ⇒ τ ∈ M M ⊴N

Γ ⊢e.n ∶ τ

(Tp-Invoke-Nom)
Γ ⊢e ∶B(M)

mtypeΣ(q,B) ∶N ⇒ τ M ⊴N

Γ ⊢e.q ∶ τ

(Tp-Invoke-Super)
Γ ⊢e ∶B(M) B requires C ∈Σ
mtypeΣ(q,C ) ∶N ⇒ τ M ⊴N

Γ ⊢e.C .super.q ∶ τ

(Tp-Fold)
Γ ⊢e ∶ [µX .τ/X ]τ

Γ ⊢ foldµX .τ e ∶µX .τ

(Tp-Unfold)
Γ ⊢e ∶µX .τ

Γ ⊢unfoldµX .τ e ∶ [µX .τ/X ]τ

Figure 2.21: Typechecking expressions. The context Σ is omitted from the turnstile symbol
in the inference rules, as it does not change in the course of the derivation (i.e., the rules use
whichever context was passed to the judgement)

must be a structural subtype ofn’s structural constraint (M ⊴N ). The entire expression therefore
has type τ.

For invoking a method with a qualified name (Tp-Invoke-Nom), the di�erence is that the
method type is not looked up within M , but rather on the brand B using mtype. As before, the
structural constraints must be satisfied (M ⊴N ).

2.5.2 Dynamic Semantics
The evaluation judgements for programs and expressions appear in Figures 2.24 and 2.25, re-
spectively. Auxiliary judgements for method lookup are in Fig. 2.26.

In evaluating programs (Fig. 2.24), the interesting rules are E-Brand-Decl and E-Ext-Decl,
which evaluate brand definitions and external method definitions, respectively. To evaluate a
brand definition, the method definitions are reduced to just the method name and body; the
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mtypeΣ(q,B) = ρ

(MType-Base)
brand B(τ; . . . ,q ∶ ρ, . . . ) ∈Σ

mtypeΣ(q,B) = ρ

(MType-Ext)
brand B(τ;Q) ∈Σ
extDef Σ(q,B) = ρ
mtypeΣ(q,B) = ρ

(MType-Inh)
brand B(τ;Q) extends C ∈Σ

q ∉Q Øρ′. extDef Σ(q,B) = ρ′
∃k. mtypeΣ(q,Ck ) = ρ

mtypeΣ(q,B) = ρ

extDef Σ(q,B) = q ∶ ρ

method C .q(. . . ,B.q ∶ ρ, . . . ) ∈Σ

extDef Σ(q,B) = ρ

Figure 2.22: Auxiliary functions for typechecking expressions

Program Types Values

brand B(⋅; q1 ∶ ()⇒ τ1,q2 ∶ ()⇒ τ2) ∈Σ

e1 = B̂(⋅,n ,Ð→ q1) e1 ∶B(n ∶ ()⇒ τ1) e1 = B̂(⋅,n ,Ð→ q1)

x1 = e1.q1 x1 ∶ τ1 x1 z→ v1

y1 = e1.n y1 ∶ τ1 y1 z→ v1

e2 = e1 with n ,Ð→ q2 e1 ∶B(n ∶ ()⇒ τ1) e2 = e1 with n ,Ð→ q2 z→ B̂(⋅,n ,Ð→ q2)
B(n ∶ ()⇒ τ1) ≤B()
e1 ∶B(n ∶ ()⇒ τ1)
e2 ∶B(n ∶ ()⇒ τ2)

x2 = e2.q2 x2 ∶ τ2 x2 z→ v2

y2 = e2.n y2 ∶ τ2 y2 z→ v2

Figure 2.23: Example: typechecking new object and “with” expressions

rest of the program is evaluated with the extended context. Similarly, E-Ext-Decl updates the
context with new external method definitions, then evaluates the rest of the program with the
new context. In both of these rules, method declarations are evaluated by discarding all type
information, leaving just the method name and body.

For evaluating expressions, the rules are are standard (or are congruence rules) except for
E-Invoke-Val, E-Super-Invk-Val (which will be described in Sect. 3.7), and E-With-Val.

E-Invoke-Val uses the auxiliary judgement mbody∆(m,B ,n ,Ð→ q). This latter judgement,
which I describe below, finds the appropriate method body e for a method m. The object is then
substituted for this and its fields are substituted for �elds within e.

The mbody judgement (Fig. 2.26) is itself straightforward; if we are performing qualified
method lookup, the lookup judgement is called directly, otherwise the appropriate qualified
name is found within the object’s map.
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Evaluating programs

p |∆ z→ p′ |∆′

(E-Brand-Decl)
m-decl z→ B.q= e

Σ ⊳ brand B(τ;m-decl) extends C requires D in p |∆ z→ p |∆, B(q= e) extends C

(E-Ext-Decl)
m-decl z→ C .q= e

Σ ⊳method B .q(m-decl) in p |∆ z→ p |∆, method q(C .q= e)

(E-Expr)
e z→∆ e′

Σ ⊳ e |∆ z→ e′ |∆

Auxiliary judgement

m-decl z→ q= e

q B(M) ∶ τ= e z→ B.q= e

Figure 2.24: Evaluation and auxiliary judgement for programs

The lookup judgement, in turn, is similar tombody in Featherweight Java, with the exception
that the rule Lookup-Ext is added (for external method lookup). The judgement first looks for
methods defined within the brand itself (Lookup-Base). If such a method does not exist, an
exactly matching external method (Lookup-Ext) is searched. If neither of these cases apply, we
perform lookup on the unique super-brand of B for which lookup is defined.

Returning to expression evaluation, the rule E-With-Val evaluates a “with” expression by
creating a new object with a combination of the new and oldmappings. Here, themerge function
is used (Fig. 2.26), which retains only only those old mappings na ,Ð→ qa that do not exist in the
new map nb ,Ð→ qb . We saw an example of this in Fig. 2.23; the expression e2 evaluated to an
object containing only the new mapping for n (i.e., dropping the mapping n ,Ð→ q).

2.5.3 Adding Polymorphism
The Unity formal system (as presented in this chapter) does not contain parametric polymor-
phism. This omission is intentional and is to simplify the formal system. Upon adding polymor-
phism to an earlier version of the calculus [Malayeri and Aldrich 2008a;b], I discovered that it
was orthogonal to Unity’s novel features.

This calculus, Unityα adds type variables to brand declarations and includes polymorphic
functions (defined the standardway, with theΛnotation). The calculus adds an additional judge-
ment that checks that types are well-formed (e.g., a type instantiation must have the same arity
as that of its corresponding type constructor). Unityα was a straightforward extension of Unity,
as there was not an interesting interaction between parametric polymorphism and either struc-
tural subtyping or external dispatch.
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e z→∆ e′

Computation

(E-App-Abs)

(λx ∶τ. e) v z→∆ {v/x}e

(E-Proj-Val)

(`i = vi
i∈1..n).`k z→∆ vk

(E-Invoke-Val)
∃ unique e. mbody∆(m,B ,n ,Ð→ q) = e

B̂(v ;n ,Ð→ q).m z→∆

{
B̂(v ;n ,Ð→ q)/this, v/�elds

}
e

(E-Super-Invk-Val)
∃ unique D. super∆(B as C ) = D ∃ unique e. lookup∆(q,D) = e

B̂(v ;n ,Ð→ q).C .super.q z→∆

{
B̂(v ;n ,Ð→ q)/this, v/�elds

}
e

(E-With-Val)

B̂
(
v ;na ,Ð→ qa

)
with nb ,Ð→ qb z→∆ B̂

(
v ; merge(nb ,Ð→ qb ,na ,Ð→ qa)

)
(E-Unfold-Fold)

unfoldτ (foldσ v) z→∆ v

Congruence

(E-App1)
e1 z→∆ e′1

e1 e2 z→∆ e′1 e2

(E-App2)
e2 z→∆ e′2

v1 e2 z→∆ v1 e′2

(E-Record)
ek z→∆ e′k

(`1 = v1, . . . ,`k−1 = vk−1,`k = ek , . . . ) z→∆ (. . . ,`k = e′k , . . . )

(E-Proj)
e z→∆ e′

e.` z→∆ e′.`

(E-Obj)
e z→∆ e′

B̂(e;n ,Ð→ q) z→∆ B̂(e′;n ,Ð→ q)

(E-Invoke)
e z→∆ e′

e.m z→∆ e′.m

(E-Super-Invk)
e z→∆ e′

e.B .super.q z→∆ e′.B .super.q

(E-With)
e z→∆ e′

e with n ,Ð→ q z→∆ e′ with n ,Ð→ q

(E-Fold)
e z→∆ e′

foldτ e z→∆ foldτ e′

(E-Unfold)
e z→∆ e′

unfoldτ e z→∆ unfoldτ e′

Figure 2.25: Evaluation judgement for expressions
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mbody∆(m,B) = e

(MBody-Qual)
lookup∆(q,B) = e0

mbody∆(q,B ,n ,Ð→ q) = e0

(MBody-Simple)
lookup∆(q,B) = e0

mbody∆
(
n,B , (. . . ,n ,Ð→ q, . . . )

)= e0

lookup∆(q,B) = e

(Lookup-Base)
B(. . . ,q= e, . . . ) extends C ∈∆

lookup∆(q,B) = e

(Lookup-Ext)
B(q= e) extends C ∈∆

method q(. . . ,B.q= e, . . . ) ∈∆

lookup∆(q,B) = e

(Lookup-Inh)
B(q= e) extends C ∈∆ q ∉ q

method q(D.q= e) ∈∆ implies B ∉ D ∃ unique k. lookup∆(q,Ck ) = e

lookup∆(q,B) = e

super∆(B as C ) = D

(Super-Base)
B extends D ∈∆ D ⊑∆ C

super∆(B as C ) = D

(Super-Inh)
ØD ′ ⊑∆ C . B extends D′ ∈∆ B extends E ∈∆

∃D. super∆(Ek as C ) = D

super∆(B as C ) = D

merge
(
nb ,Ð→ qb ,na ,Ð→ qa

)= n ,Ð→ q

merge
(
nb ,Ð→ qb ,na ,Ð→ qa

)= (nb ,Ð→ qb),
{
n ,Ð→ q | n ,Ð→ q ∈ na ,Ð→ qa and n ∉ nb

}

Figure 2.26: Auxiliary judgements for expression evaluation

2.6 RelatedWork
Here, using the stream examples from Sect. 2.2, Unity is compared to both mainstream lan-
guages and to closely related research languages. Other related work is presented in Sections 5.1
and 5.3. Note that for the purposes of this comparison, I assume that StringStream was defined
as a sub-brand of AbstractReader (rather than AbstractWriter as in Fig. 2.4).

Java-like languages. In Java-like languages, it would be awkward to implementmany aspects
of the examples. First, we would have to define a number of interfaces in order to obtain the
subtyping relationships displayed in Fig. 2.6 (p. 23). One plausible Java hierarchy is displayed
in Fig. 2.27; compare to the Unity hierarchy in Fig. 2.28. In particular, I have defined interfaces
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Reader, ResetableReader, Seekable, SeekableReader, and so on. In a real system, the situation
could be even worse: here I have included themethodmark in the ResetableReader interface, but
some streams may support reset but not mark (this is true of the streams in java.io.Reader, for
instance).

Additionally, since Java lacks intersection types, we must manually create compound in-
terfaces, such asWriteableSeekable and ReadableWritableSeekable. Further, we must take care to
use these interfaces rather than the interfaces they extend; for instance, StringStream implements
ReadableWriteableSeekable rather than Reader,Writer, and Seekable.

There are additional issues with the Java implementation. If the type SomeOtherReader is
defined in a library (independently of the Reader, etc., abstractions), we cannot write a �ndString
method that will accept either an AbstractReader or SomeOtherReader as an argument. This
is because of the lack of retroactive interface implementation: changing SomeOtherReader to
implement Reader requires access to its source.

One possible workaround is to use instanceof tests:
boolean �ndString(Object o) {

if (o instanceof AbstractReader)
. . . // can call ‘read’, ‘skip’, ‘mark’

else if (o instanceof SomeOtherReader)
. . . // same code as above

else
throw new UnsupportedOperationException("Unknown reader");

}

Aside from the potential for runtime errors, there are both code duplication and extensibility
problems. That is, if a new “reader” type is added (where an existing branch does not apply),
programmers must remember to add a new branch to the conditional. I would like to empha-
size that this is not a hypothetical problem: Sect. 4.5.3 provides examples of real code with this
pattern.

Another workaround is to use reflection, but this solution would forgo static type safety.
(One advantage of reflection over instanceof tests, however, is that the code is more extensible.)

We will also encounter a problem when trying to implement the parse method in Fig. 2.2
(p. 19). The Visitor design pattern ([Gamma et al. 1994]) is not appropriate here, since the need
for it must be anticipated and it also makes class extensibility very di�cult [Clifton et al. 2000].

A workaround is to again use instanceof tests, as below:
AST parse(ResetableReader reader) {

if (reader instanceof CharArrayReader)
... // parse using ‘seek’ method

else
... // use ‘mark’ and ‘reset’

}

Again there is an extensibility problem: if a new kind of ResetableReader is defined, the only
means of extension is to update this method [Malayeri 2009c].



2.6. Related Work 51

<<interface>>
Reader

<<interface>>
Writer

<<interface>>
ResetableReader

<<interface>>
Seekable

<<interface>>
ReadableWritableSeekable

AbstractReader

CharArrayReaderBufferedReader

StringStream

<<interface>>
SeekableReader

<<interface>>
WritableSeekable

Figure 2.27: The same example implemented in Java. Classes that correspond to the Unity
brands are shaded gray. Dashed lines indicate the implements relationship and solid lines in-
dicate extends.

AbstractReader

CharArrayReader BufferedReader StringStream

Figure 2.28: The streams example as implemented in Unity. Depicted here are the brands that
must be defined in order to obtain the desired subtyping relationships.

Since seekAndWrite and readAndWrite (Fig. 2.4, p. 21) are not external methods, they
can be implemented in Java using a static method that takes a WriteableSeekable and
ReadableWriteableSeekable as an argument. Of course, we will encounter problems when us-
ing classes that do not implement those interfaces (as we saw with the �ndStringmethod).

Finally, to implement the code in Fig. 2.5 (p. 22), a common solution is to use the Decorator
pattern to implement the newlinemethod. That is, we would define a classWriterDecorator with
a field of type writer that provided an implementation of newline. (In this example, newline does
not need require access to AbstractWritermethods for its implementation, but this is not the case
in general.) Finally, EnhancedWriter would extend WriterDecorator and provide an implementa-
tion for writeLine.

To use thewriteLine code, the method could not be called directly, as in Unity, but rather the
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pattern new EnhancedWriter(writer).writeLine() would have to be used. Aside from the awk-
wardness of this solution, there will also be problems with object identity: writer is not equal to
a wrapped writer, even though they are semantically equivalent.

Overall, this example shows the impracticality and unwieldiness of implementing the Unity
examples in a Java-like language.

Intersection types. In a language with nominal subtyping and intersection types [Coppo
and Dezani-Ciancaglini 1978; Coppo et al. 1979; Pottinger 1980; Büchi and Weck 1998],
some aspects of the Java design would be easier to express, but the same fundamental prob-
lems would remain. The benefit of intersection types is that the interfaces SeekableReader,
ReadableWriteableSeekable, and WriteableSeekable would not have to be defined, since they are
combinations of other interfaces.

However, the other aspects of the design would be the same as the Java design. In particular,
instanceof tests would be necessary to implement �ndString and parse, and newline would be
implemented using a decorator.

Of course, intersection types are a very useful language feature in their own right and have
been included in the Unity design (see Sect. 2.5).

Functional programming languages. If we attempt to express the examples of Figures 2.1,
2.2, and 2.3 (pages 18 and 2.2) in an ML-like language, we would also encounter di�culties.
In this case, it is due to the lack of support for typechecking extensible datatypes. In particular,
there is no explicit language support for modifying a case analysis expression post-hoc—but this
is precisely what would be needed to encode the Unity examples.

One approach for modeling an inheritance hierarchy in ML is to use datatypes and case
analysis. Fig. 2.29 shows such an encoding. Here, we define the datatype AbstractReader with a
constructor corresponding to each concrete stream class. The values carried by the constructors
are simply the internal representation of each of the corresponding Unity brands. For example,
the CharArrayReader constructor stores the internal character array. Methods become functions
defined on AbstractReader, with a case analysis to perform di�erent behavior for di�erent types
of streams.

However, using ML datatypes does not give us all the extensibility of Unity brands. In par-
ticular, ML-like languages have the following shortcomings:

1. Datatypes are closed to extension, unless exhaustiveness checking is sacrificed; and
2. There is no mechanism for adding new cases to existing functions without modifying

them directly.
Therefore, to encode the Reader type of Fig. 2.1, we will use a record of functions. This is

decidedly a more “object-oriented” style of programming and does create some awkwardness
when used in ML. The new code is displayed in Fig. 2.30.

Note that the programmer must manually manage the creation of these records of func-
tions for each subtype relation that is used. For instance, if we had a type EnhancedReader
that contained the mark and reset methods, we would have to create a record to convert the
CharArrayReader type to an EnhancedReader. Additionally, subtype properties such as transitiv-
ity must be encoded as functions which must be explicitly called.
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datatype AbstractReader =
CharArrayReader of ’{’ arr: char array ’}’

| Bu�eredReader of ’{’ (∗ implementation fields ∗) ’}’
| SimpleReader of ’{’ (∗ implementation fields ∗) ’}’

fun read (r: CharArrayReader) = . . . (∗ corresponds to method CharArrayReader.read ∗)
| read (r: Bu�eredReader) = . . . (∗ corresponds to method Bu�eredReader.read ∗)
| read (r: SimpleReader) = . . . (∗ corresponds to method SimpleReader.read ∗)

fun skip (r: CharArrayReader) (len: int) = . . .
| skip (r: Bu�eredReader) (len: int) = . . .
| skip (r: SimpleReader) (len: int) = . . .

fun close (r: . . . ) = . . .

funmark (r: CharArrayReader) = . . . (∗ non−exhaustive match ∗)

Figure 2.29: Encoding Fig. 2.1 in ML using datatypes

Up until this point, we have not encountered anymajor obstacles in ourML translation. How-
ever, this is no longer the case if we attempt to translate the code in Figures 2.2 and 2.3 (pages 19
and 20), as this code requires both brand extensibility and external dispatch.

Once we have encoded objects as records of functions, there is no way to write methods
that externally dispatch on these objects; there is no runtime tag associated with the record.
Accordingly, with this approach, it is not possible to encode the parse method of Fig 2.2 in the
functional setting. If we were to change our object representation to add tags of some sort,
encoding other aspects of the system would become di�cult. For instance, it is unclear how to
write internal methods that override external methods, as in Fig. 2.3.

As far as the author is aware, it would be impossible to encode the unique features of Unity
in ML (or current extensions thereof ) and alsomaintain the same static safety guarantees pro-
vided by Unity.20 For example, Unity ensures that an internal version of a method is called, if it
is more specific than an external method, and also ensures that method-not-found andmethod-
ambiguous errors do not occur at runtime (Sect. 3.7.4). Additionally, it would not be straight-
forward to implement the multiple inheritance (or even single inheritance) aspects of Unity
(described further in Chapter 3) in such a setting.

Finally, while there exist languages such as EML [Millstein et al. 2002; 2004], that aim to com-
bine the strengths of functional and object-oriented languages, these languages are su�ciently
di�erent fromML that it is not at all obvious how structural subtyping would be integrated into
them. Furthermore, as this dissertation is based upon the same foundations as EML, it would

20Certainly, it would be possible to encode Unity’s dynamic semantics using ref-cells and records of func-
tions, but this would amount to a dynamically-typed encoding. As described in Sect. 1.1, maintaining static
type safety is an explicit goal of this dissertation.
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datatype CharArrayReader = CharArrayReader of { arr: char array }
datatype Bu�eredReader = Bu�eredReader of { (∗ implementation fields ∗) }
datatype SimpleReader = SimpleReader of { (∗ implementation fields ∗) }

fun readCharArray(r: CharArrayReader) = . . .
fun readBu�ered(r: Bu�eredReader) = . . .
fun readSimpleReader(r: SimpleReader) = . . .

type ’a Reader = { read: ’a→ unit→ char, skip: ’a→ int→ int, close: ’a→ unit→ unit }

val charArrayFns = { read = readCharArray, skip = skipCharArray, close = closeCharArray }
val bufReaderFns = { read = readBu�ered, skip = skipBu�ered, close = closeBu�ered }

fun �ndString (obj: ’a) (r: ’a Reader) (s: string) : int = . . . r#read obj . . . (∗ find the string ∗)

�ndString charReader charArrayFns “bar”

�ndString bufReader bufReaderFns “foo”

(∗ add a new type of Reader, plus conversion to Reader ∗)
datatype SomeOtherReader = SomeOtherReader of { (∗ implementation fields ∗) }
val someOtherReaderFns = . . .

�ndString otherReader someOtherReaderFns “baz (∗ "findString" works on new object ∗)

Figure 2.30: Improved ML encoding of Fig. 2.1

appear that integrating structural subtyping into that setting would pose the same challenges
that are already addressed in this work.

Mixins, traits. Mixins [Bracha and Cook 1990; Ancona and Zucca 1996; Flatt et al. 1998;
Findler and Flatt 1999; Ancona et al. 2003; Bettini et al. 2004] and traits [Ducasse et al. 2006;
Fisher and Reppy 2004; Odersky and Zenger 2005] would allow the code to be structured some-
what di�erently, but the resulting design would still lack the extensibility of the Unity solution.
Though there are di�erences between mixins and traits, these di�erences are not relevant for
the comparison in this chapter.

To implement �ndString, a mixin or trait TFindStringUtil would be defined. This mixin/trait
would declare the methods of Reader as required members and the �ndString method could
therefore use these methods as in the Unity implementation. However, concrete classes that use
the mixin/trait must still be defined: one for each of AbstractReader and SomeOtherReader. That
is, we would have to create a class AbstractReaderFindString that inherited from AbstractReader
andmixed in TFindStringUtil, and similarly for SomeOtherReader. Aside from the awkwardness of
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this design, the �ndStringmethod could not be used directly on an object of type AbstractReader
(or SomeOtherReader), one of the new subclasses must be used instead.

However, with mixins or traits, the implementation of writeLine (Fig. 2.5) would be more
elegant than that of Java. We could define a mixin/trait TWriteLine that declared the methods
of AbstractWriter and also the newline method as required members. We would also define a
mixin/trait TNewLinewith themethods ofAbstractWriter as requiredmembers. Finally, wewould
have to create a concrete class EnhancedWriter that inherited from AbstractWriter and also mixed
in TWriteLine and TNewLine. Againwewould have the problem thatwriteLine could only be called
on instances of EnhancedWriter, rather than objects of the existing types.

Sections 3.8 and 3.5.4 provide additional comparisons to mixins and traits in the context of
the Unity multiple inheritance features.

Structural subtyping. Languages which support structural subtyping, such as PolyTOIL
[Bruce et al. 2003], Moby [Fisher and Reppy 1999], O’Caml [Leroy et al. 2004], Scala [Odersky
and Zenger 2005; Odersky 2007] andWhiteoak [Gil and Maman 2008] would elegantly express
all of the desired subtyping relationships, but these languages allow only internal dispatch—that
is, all methods must be defined inside the class definition. Therefore, to define a method such
as parse (Fig. 2.2), as in Java, some form of instanceof test must be used.

Of the aforementioned languages, only Scala allows a type to have both a nominal and struc-
tural component, which is achieved using intersection types. However, Scala does not allow
defining recursive structural types (such as Writer in Fig. 2.4). Consequently, Writer would have
to be a nominal type, and we would once again encounter the problems of retroactive interface
extension.

Additionally, these languages do not allow structural constraints to be placed on a method’s
receiver (such as the parsemethod in Fig. 2.2). While this is consistent with the single dispatch
semantics that gives special status to a method’s receiver, in a external or multiple dispatch set-
ting, the Unity design is more uniform.

ML-style and first-class modules. ML-style modules [Milner et al. 1997] use structural sig-
nature matching, and as such could be used to encode the subtype polymorphism aspect of a
structurally-typed object-oriented language. Such an encoding would not be as expressive as
Unity, however, as one would need the capability of dynamically selecting among types defined
in di�erent modules. With ordinary ML modules, this would require a global re-write of the
program. Additionally, this encoding would likely require a large degree of functorization.

A first-class module system (e.g., [Dreyer 2005; Dreyer et al. 2003; Dreyer and Rossberg
2008]) would solve these problems, but such designs do not directly address the problems con-
sidered in this dissertation (though they are quite useful in their own right). In particular, the
analogue to external dispatch in this setting is unclear: even first-class modules do not provide
a tagging (let alone sub-tagging) mechanism, so one would have to fall back on the datatype
encoding from above, which was shown to lack the desired properties.

Retroactive interface extension. Some languages, such as JavaGI [Wehr et al. 2007] and
Cecil [Chambers and the Cecil Group 2004] provide both external/multimethod dispatch and
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retroactive interface extension. That is, after a class has been defined, new external methods
can be defined for it, or it can be declared to extend a new interface, or both. However, Cecil
[Chambers and the Cecil Group 2004] requires whole-program typechecking. JavaGI [Wehr
et al. 2007] performs some modular typechecking, but defers some type checks to class-load
time, even when dynamic classloading is not used.

In fact, there appears to be a fundamental tension between retroactive (nominal) interface
extension andmodular compilation and typechecking. The situation is exacerbated with tagged
interfaces; such a feature would essentially allow adding new tags to existing objects. This poses
problems both for typechecking external methods and for program reasoning. The details of
these problems are described in Sect. 5.1.

One compromise is to use expanders, which allow typesafe, statically-scoped object adap-
tation [Warth et al. 2006]. Using expanders, programmers can non-invasively update existing
classes to add new fields and methods and to implement new interfaces. The statically scoped
nature of expanders is particularly appealing, as clients have flexible control over the visibility of
the adapted classes. However, expanders are not as flexible as full structural subtyping. Though
it is possible to use “expander overriding” to extend existing expanders, some forms of post-hoc
changes are still di�cult with expanders. For instance, if one expander E1 augments classC with
method m, it is not possible for another expander E2 to extend E1 and make C now implement
interface I (which requires method m). Accordingly, expanders are only a partial solution to the
problem of retroactive abstraction.

Scala “implicits” (formerly called views), allow programmers to easily define adapters from
one object to another [Odersky 2007] and are very useful as a workaround for the lack of retroac-
tive abstraction in Java-like languages. Among other things, implicits allow programmers to
specify specify method renamings. As implicits are lexically scoped, they are similar to Unity’s
“using ... in” expression (Sect. 2.4.3).

Type classes. Many aspects of the Unity examples can be quite elegantly encoded using type
classes, which provide a principled form of ad-hoc polymorphism [Wadler and Blott 1989; Hall
et al. 1996]. However, since type classes have no notion of subtyping, the encoding would lack
some of Unity’s expressiveness.

Fig. 2.1 can be readily encoded using type classes; Readerwould be defined as a type class and
the programmerwould provide “instance” declarations tomakeCharArrayReader, Bu�eredReader
and SomeOtherReader members of the Reader type class. Instance declarations can be defined
after a type has been defined, so in that regard they provide a form of retroactive abstraction.

The di�erence between the type class encoding and the Unity version is more apparent for
the listing in Fig. 2.4. StringStream does not have to be declared as an instance of the type class
consisting of the seek method, for instance—once all the method definitions have been pro-
vided, structural subtyping provides the necessary coercions. Since type classes do not provide
a hierarchy of any form, programmers would have to manually provide coercion functions to
convert from one type class to another. For example, suppose we have some function f de-
fined for values of the Equality type class (which contains an equals function). If integer is a
member of Comparable (which has both compares and equals functions), then one would need a
comparableToEquality coercion to pass an integer to f . Similarly, while in Unity we can define an
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forall MapType, SetType, CollectType, SetIterType, CollectIterType:

method useMap(m: MapType): void
where signature entrySet(MapType): SetType and
signature values(MapType): CollectType and

SetType <= SetBrand and
signature contains(SetType, Object): bool and
signature iterator(SetType): SetIterType and
. . . -- additional Setmethods

signature contains(CollectType, Object): bool and
signature iterator(CollectType): CollectIterType and
. . . -- additional Collectionmethods

signature next(SetIterType): Object and
signature hasNext(SetIterType): Object and

-- exact same lines as above
signature next(CollectIterType): Object and
signature hasNext(CollectIterType): Object

{ . . . }

Figure 2.31: Translating the structural types of Fig. 2.8 to Cecil “where” clause constraints.

external method and automatically widen the interface of the class on which it is defined, with
type classes we would have to provide a coercion manually.

Additionally, type classes do not provide any form of hierarchical dispatch, so an additional
language mechanism would be necessary for this functionality.

Note that type classes are often implemented in a manner similar to Unity’s simple-to-
qualified map. In particular, if a Haskell function f is defined for types that are members of
a particular type class C , then f is compiled to a function that takes an additional argument: a
dictionary implementing the methods of C [Hall et al. 1996]. This dictionary is similar in flavor
to the Unity name map that is carried along with each object value.

Cecil. Cecil fully supports external and multimethod dispatch [Chambers 1992; Chambers
and the Cecil Group 2004] and can also be used to encode some structural subtyping patterns
using constraint-bounded polymorphism (“where” clauses). Cecil’s powerful, but very complex,
type system can express most of the necessary relationships in my Collections example, but the
type constraints can be come verbose.

In particular, to translate thewriteLine function (Fig. 2.5), a programmer would use bounded
quantification and a “where” clause constraint, the latter being typechecked via a constraint
solver [Chambers and the Cecil Group 2004; Litvinov 2003]. That is, in psuedo-code, the argu-
ment to writeLine would have type:



58 Chapter 2. Structural Subtyping and External Dispatch

forall I: constraint Iterator = -- fictional abbreviation for a where clause constraint
signature next(I): Object and
signature hasNext(I): bool

forall C, I: constraint Collection =
signature contains(C, Object): bool and
signature iterator(C): I and
Iterator [I]

. . .

forall MapType, SetType, CollectType, SetIterType, CollectIterType:

method useMap(m: MapType): void
where signature entrySet(MapType): SetType and
signature values(MapType): CollectType and
Set [SetType, SetIterType] and Collection [CollectType, CollectIterType]

Figure 2.32: A possible syntactic sugar for the Cecil “where” clause constraints of Fig. 2.31.
Note that even with this syntax, useMap still needs five type parameters

forall T:methodwriteLine(t: T): void
where T <= AbstractReader and signaturemark(T): void and signature reset(T): void

Here there is not an excessive amount of user-specified constraints, but the problem is com-
pounded when translating nested structural types to “where” clauses.

For example, to achieve the expressiveness of the Unity code in Fig. 2.8, the method useMap
would require 5 type parameters and over 16 “where” constraints. A subset of these constraints
is shown in Fig. 2.31. Note the repetition in the constraints for the pair SetType and CollectType
and the pair SetIterType and CollectIterType. A distinct type parameter is needed for encoding
each nested structural type, since “where” clauses can only be specified on type parameters.

Of course, it would be possible to define syntactic sugar to simplify the definition of such a
method. For instance, the language could provide constraint abbreviations, such as those illus-
trated in Fig. 2.32.

However, there is still the overhead of having to add a type parameters wherever a where
clause is needed. As a consequence, every method call from the point where the type parameter
is instantiated to where the object is finally used, must also be parameterized and include the
constraint. That is, if we wish to write a function foo that calls useMap, it must either instantiate
the 5 type parameters or must itself be parameterized. This latter design would be necessary for
maximal reusability of foo. Essentially, requiring the use of parametric polymorphism means
that everything must be parameterized “all the way up” to the point where actual parameters
are provided.

Additionally, since only classes and methods may have type parameters, if we wish use a
structural type in the body of a method, we must added a corresponding type parameter to the
method.
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In contrast, in Unity, structural types are compositional (allowing them to be nested within
other types) and can occur at any level in the program (e.g., the first-class functions �ndString
and seekAndWrite).

It should be noted, however, that parameterization can be used to specifymore precise types,
since a subtype may only be substituted when explicitly allowed by the constraint (i.e., type pa-
rameters are invariant by default). By using type parameters, programmers may also specify a
relationship between type parameters, such as with the Subject/Observer design pattern [Litvi-
nov 2003].

In addition, I have developed a version of Unity with polymorphism [Malayeri and Aldrich
2008b] and it does not appear that adding (ordinary) bounded quantification would pose any
noteworthy complications. In Unity, additional type parameters would be necessary only when
this extra precision is needed. Thus, in the context of the features of this chapter, I argue that
Unity is strictly less verbose and more expressive than the corresponding Cecil encoding.

2.7 Conclusion
This chapter showed how a combination of nominal and structural subtyping has a number of
benefits, themost important of which is that it allows structural subtyping and externalmethods
to gracefully co-exist. I also showed that there is a synergy between these two features: structural
subtyping can be used to define an interface to which brands can retroactively conform. Then,
in the case where additional code is needed to provide this conformance, external methods can
be used. Thus, I have provided evidence that supports hypotheses I and IV.
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Chapter 3

Multiple Inheritance

I see young men, my townsmen, whose misfortune it is to have
inherited farms, houses, cattle, barns, and farming tools, for these are
more easily acquired than gotten rid of.

Henry David Thoreau (Walden)

This chapter details the multiple inheritance feature of Unity,1 starting with an overview of the
problem and previous solutions. I then present the details of the multiple inheritance design
(including the formalization) and provide an extended example and two real-world examples.

3.1 Overview
Single inheritance, mixins [Bracha and Cook 1990; Flatt et al. 1998], and traits [Ducasse et al.
2006; Odersky and Zenger 2005] each have disadvantages: single inheritance restricts expres-
siveness, mixins must be linearly applied, and traits do not allow state. Multiple inheritance
is one solution to these problems, as it allows code to be reused along multiple dimensions.
Unfortunately however, multiple inheritance poses challenges itself.

Asmentioned in Sect. 1.3, there are two well-known problems withmultiple inheritance: (a)
a class can inherit multiple features with the same name, and (b) a class can have more than one
path to a given ancestor, i.e., “diamond inheritance” [Sakkinen 1989; Singh 1994]. As the first
problem can be solved by allowing renaming (e.g., Ei�el [Meyer 1997]) or by linearizing the class
hierarchy [Snyder 1986; Singh 1994], I shall focus on problems caused by diamond inheritance.

Recall that diamond inheritance occurs when a class (or brand) C inherits an ancestor A
through more than one path. This is particularly problematic when A has fields—should C in-
herit multiple copies of the fields or just one? Virtual inheritance in C++ is designed as one
solution for C to inherit only one copy of A’s fields [Ellis and Stroustrup 1990]. But with only

1The primary technical contributions of this chapter appear in [Malayeri 2009a;b; Malayeri and Aldrich
2009a].
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one copy of A’s fields, object initializers are a problem: if C transitively calls A’s initializer, how
can we ensure that it is called only once? As we shall see in Sect. 3.3, existing solutions either
lack expressiveness or can cause semantic problems.

More importantly, however, diamond inheritances causes multiple inheritance to interact
poorly with modular typechecking of external dispatch. In fact, any form of multiple inheri-
tance—even Java-stylemultiple interface inheritance—su�ers from this problem. Previouswork
has not satisfactorily addressed this problem: existing solutions (described in Sect. 3.3) either
restrict expressiveness or require an exponential number of programmer-supplied disambiguat-
ing methods.

Unity takes a novel approach to this problem: while permitting multiple inheritance, it for-
bids inheritance diamonds. To ensure no loss of expressiveness, the notion of inheritance is
divided into two concepts: an inheritance dependency (expressed using a requires clause, an
extension of a Scala construct [Odersky and Zenger 2005; Odersky 2007]) and ordinary inher-
itance. Through examples, this chapter illustrates how Unity retains the expressiveness of dia-
mond inheritance: programs that require diamond inheritance can be systematically translated
to a hierarchy that uses a combination of requires and no-diamond multiple inheritance.

Additionally, I claim that a hierarchy with multiple inheritance is conceptually two or more
separate hierarchies. These hierarchies represent di�erent “dimensions” of the brand that ismul-
tiply inherited. Dependencies between these dimensions are expressed using requires; Sect. 3.5
presents an extended example of this technique.

The solution has two advantages: fields and multiple inheritance (including initializers) can
gracefully co-exist, and external/multiple dispatch and multiple inheritance can be combined.
To achieve the latter, I have made an incremental extension to existing techniques for modular
typechecking of external and multiple dispatch.2

An additional feature of the language is a dynamically-dispatched super call, modelled after
trait super calls [Ducasse et al. 2006]. When a call is made to A.super. f () on an object with
dynamic type D , the call proceeds to f defined within D ’s immediate super-brand along the A
path (i.e., some E where D extends E and E ⊑ A). The brand A must be specified because D may
have more than one parent. With dynamically-dispatched super calls and requires, Unity attains
the expressiveness of traits while still allowing brands to inherit state.3

3.2 The Problem
To start with, diamond inheritance raises a question of semantics: should class (or brand) C
with a repeated ancestor A have two copies of A’s instance variables or just one—i.e., do we
wish to have tree or graph [Carré and Geib 1990] inheritance semantics? As the former may
be modelled using composition and (method call) forwarding, the latter is the desirable seman-
tics, a semantics that is supported by Scala, Ei�el, and C++ virtual inheritance [Odersky 2007;

2Without loss of generality, recall that my formal system includes external methods rather than full mul-
timethods; multimethods can be encoded using external methods (Sect. 2.4.2).

3It would also be possible to add additional features present in traits, such as the “exclude” and “alias”
operators. These features will not be discussed further in this dissertation, as they are orthogonal to the
problems on which I have focused.
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« constructor »
Stream(int)

Stream

« constructor »
InputStream(int)

InputStream
« constructor »
OutputStream(int)

OutputStream

InputOutputStream

Stream.super(1024); Stream.super(2048);

Figure 3.1: Stream classes in an inheritance diamond. Italicized class names indicate abstract
classes.

Meyer 1997; Ellis and Stroustrup 1990]. Unity provides only graph inheritance semantics—an
intentional design choice.

Next, diamond inheritance leads to (at least) two major problems that have not been ad-
equately solved: (1) determining how and when the superclass constructor/initializer should
be called [Snyder 1986; Singh 1994], and (2) how to ensure non-ambiguity of multimethods in
a modular fashion [Millstein and Chambers 2002; Frost and Millstein 2006; Allen et al. 2007].
Note that the first problem only arises with graph inheritance semantics, while the second oc-
curs in either semantics (tree or graph).

Object Initialization

To illustrate the first problem, consider Figure 3.1, which shows a class hierarchy containing
a diamond. Suppose that the Stream superclass has a constructor taking an integer, to set the
size of a bu�er. InputStream and OutputStream call this constructor with di�erent values (1024
and 2048, respectively). But, when creating an InputOutputStream, with which value should the
Stream constructor be called? Moreover, InputStream andOutputStream could even call di�erent
constructors (with di�erent parameter types), making the situation even more uncertain.

Modular Multiple Dispatch

The second problem regards multiple dispatch, which I and others believe is more natural and
expressive than single dispatch [Chambers 1992; Clifton et al. 2000; Chambers and the Ce-
cil Group 2004]. However, typechecking multiple dispatch in a modular fashion becomes very
di�cult in the presence of multiple inheritance—precisely because of the diamond problem.

As previously noted, I focus on external methods (also known as open classes), which are es-
sentially multimethods that dispatch on the first argument only (corresponding to the receiver
of an ordinary method). As previously described in Section 2.4.2, multimethods with asym-
metric dispatching semantics (where the order of arguments a�ects dispatch) can be translated
to external methods in a straightforward manner. Thus, my language proposal is applicable to
languages with multimethods as well.4

4It happens that the Unity solution is applicable to languages with either asymmetric or symmetric dis-
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To see why diamond inheritance causes problems, consider the following definition of the
external method seek (defined externally for illustrative purposes):

method Stream.seek (
Stream.seek: ()⇒ long→ unit = fn _ --> () // default implementation: do nothing
InputStream.seek: ()⇒ long→ unit = . . . // seek if first arg <= eofPos
OutputStream.seek: ()⇒ long→ unit = . . . // if first arg > eofPos, fill with zeros

)

inOutStream.seek 10 // ambiguous!

In the context of our diamond hierarchy, this method definition is ambiguous—what if seek() is
called on an object of type InputOutputStream? Unfortunately, it is di�cult to performamodular
check to determine this fact. When typechecking the definition of seek(), we cannot search
for a potential sub-brand of both InputStream and OutputStream, as this analysis would not be
modular. And, when typechecking InputOutputStream, we cannot search for external methods
defined on both of its super-brands, as that check would not be modular, either. A detailed
description of the conditions for modularity is provided in Sect. 3.7.3.

Note that this problem is not confined to multiple (implementation) inheritance—it arises
in any scenario where an object can have multiple dynamic types (or tags) on which dispatch is
performed. For instance, the problem appears if dispatch is permitted on Java interfaces, as in
JPred [Frost and Millstein 2006].

3.3 Previous Solutions
Here, I describe previous solutions that specifically address the object initialization andmodular
multiple dispatch problems. Additional related work is described in Sect. 3.8.

Object Initialization

Languages that attempt to solve the object initialization problem include Ei�el [Meyer 1997],
C++ [Ellis and Stroustrup 1990], Scala [Odersky 2007] and Smalltalk with stateful traits [Bergel
et al. 2008].

In Ei�el, even though (by default) only one instance of a repeatedly inherited class is included
(e.g., Stream), when constructing an InputOutputStream, the Stream constructor is called twice.
This has the advantage of simplicity, but unfortunately it does not provide the proper seman-
tics; Stream’s constructor may perform a stateful operation (e.g., allocating a bu�er), and this
operation would occur twice.

In C++, if virtual inheritance is used (so that there is only one copy of Stream), the con-
structor problem is solved as follows: the calls to the Stream constructor from InputStream
and OutputStream are ignored, and InputOutputStreammust call the Stream constructor explic-
itly. (Since there is no default Stream constructor, this call cannot be automatically generated.)
Though the Stream constructor is called only once, this awkward design has the problem that

patch semantics—the latter introduces a few orthogonal typechecking issues. Millstein and others provide a
detailed discussion of the topic [Millstein et al. 2002; Millstein 2003].
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constructor calls are ignored. The semantics of InputStream may require that the Stream fields
be constructed in a particular manner, but C++ e�ectively ignores this dependency.

Scala provides a di�erent solution: trait constructors may not take arguments. (Scala traits
are abstract classes that may contain state and may be multiply inherited.) This ensures that
InputStream and OutputStream call the same super-trait constructor, causing no ambiguity for
InputOutputStream. Though this design is simple and elegant, it restricts expressiveness. (In
fact, for the next major release, the Scala designers wish to attain a solution that permits trait
constructor arguments [Washburn 2008].)

Smalltalk with stateful traits [Bergel et al. 2008] does not contain constructors, but by con-
vention, objects are initialized using an initializemessage. Unfortunately, this results in the same
semantics as Ei�el; here, the Stream constructor would be called twice [Bergel 2008]. The only
way to avoid this problem would be to always define a special initializer that does not call the
superclass initializer. Requiring that the programmer define such a method essentially means
that the C++ solution must be hand-coded. Aside from being tedious and error-prone, this has
the same drawbacks as the C++ semantics.

Mixins and (stateless) traits do not address the object initialization problem directly, but
instead restrict the language so that the problem does not arise in the first place. I compare
Unity to each of these designs in Sect. 3.8.

Modular Multiple Dispatch

There are two main solutions to the problem of modular typechecking of multiple dispatch (or
externalmethods) in the presence ofmultiple inheritance. The first solution is to simply disallow
multiple inheritance across module boundaries; this is the approach taken by the “System M”
variant of Dubious [Millstein and Chambers 2002]. Obviously, the disadvantage here is the loss
of expressiveness.

JPred [Frost and Millstein 2006] and Fortress [Allen et al. 2007] take a di�erent approach.
The diamond problem arises in these languages due to multiple interface inheritance and mul-
tiple trait inheritance, respectively. In these languages, the typechecker ensures that external
methods are unambiguous by requiring that the programmer always specify a method for the
case that an object is a subtype of two ormore incomparable interfaces (or traits). In our streams
example, the programmer would have to provide a method like the following (in JPred syntax):

void seek(Stream s, long pos)when s@InputStream && s@OutputStream { }

(In Fortress, the method would be specified using intersection types.) Note that in both lan-
guages, this method would have to be defined for every subset of incomparable types, regardless
of whether a type like InputOutputStream is ever defined. That is, even if two types will never
have a common subtype, the programmer must specify a disambiguating method, one that per-
haps throws an exception.5 Thus, the problem with this approach is that the programmer is
required to write numerous additional methods—exponential in the number of incomparable

5In Fortress, the programmer may specify that two traits are disjoint, meaning that there will never be a
subtype of both. To allow modular typechecking, this disjoint specification must appear on one of the two
trait definitions, which means that one must have knowledge of the other; consequently, this solution lacks
su�cient extensibility and scalability.
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types—some of whichmay never be called. JPred alleviates the problem somewhat by providing
syntax to specify that a particular branch should be preferred in the case of an ambiguity, but
it may not always be possible for programmers to know in advance which method should be
preferred.

Neither JPred interfaces nor Fortress traits may contain state and thus the languages do not
provide a solution to the object initialization problem; the language Dubious does not either, as
it does not contain constructors.

3.4 Multiple Inheritance in Unity
This section first gives an informal description of Unity’s multiple inheritance features, along
with an illustrative example. I show how Unity solves our two main problems (object initializa-
tion andmodularly typchecking external methods) and then provide a more detailed account of
the typechecking rules. This section also provides additional comparison to the relevant related
work.

3.4.1 Overview
Unity’smultiple inheritance design is based on the intuition that there are semantic relationships
between brands that are not captured by inheritance, and that if brand hierarchies could express
richer interconnections, inheritance diamonds need not exist. Suppose the concrete brand C
extends A. As noted by Schärli et al. [2003], it is beneficial to recognize that C serves two roles:
(1) it is a generator of instances; and (2) it is a unit of reuse, through sub-branding. In the first
role, inheritance is the implementation strategy and must be preserved (assuming extensive re-
design is not feasible). In the second role, however, it is possible to transform the brand hierarchy
to one where an inheritance dependency between C and A is declared and where sub-brands of
C inherit from both C and A. This notion of inheritance dependency is the key distinguishing
feature of multiple inheritance in Unity: while multiple inheritance is permitted, inheritance
diamonds are forbidden.

Consider the inheritance diamond of Fig. 3.1. To translate this hierarchy to Unity,
InputStream would be made abstract6 and its relationship to Stream would be changed from in-
heritance to an inheritance dependency, whichmeans that (concrete) sub-brands of InputStream
must also inherit from Stream. In other words, InputStream requires the presence of Stream in
the extends clause of concrete sub-brands, but it need not extend Stream itself. Since InputStream
is now abstract (making it serve only as a unit of reuse), it can be safely treated as a subtype of
Stream. However, any concrete sub-brands of InputStream (generators of instances), must also
inherit from Stream. Accordingly, InputOutputStreammust inherit from Stream directly.

This notion of an inheritance dependency is reified using the requires keyword, a generalized
form of a similar construct in Scala [Odersky and Zenger 2005; Odersky 2007].7

6While the calculus does not have a formal notion of “abstract” and “concrete,” it ensures that conceptually
“abstract” brands may not be instantiated.

7In Scala, requires is used to specify the type of amethod’s receiver (i.e., it is a selftype), and does not create
a subtype relationship. As far as the Scala team is aware, our proposed use of requires is novel [Washburn
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Stream

InputStream OutputStream

InputOutputStream

requiresrequires

ConcreteInputStream ConcreteOutputStream

EncryptedStream

EncryptedInputStream EncryptedOutputStream

requires

Figure 3.2: The stream hierarchy of Fig. 3.1, translated to Unity, with an encryption exten-
sion in gray. Italicized brand names indicate abstract brands, solid lines indicate extends, and
dashed lines indicate requires.

Definition 3.1 (Requires).
When a brand C requires a brand B , we have the following:

1. C objects may not be created (i.e., C is abstract)
2. C objects are subtypes of B objects (C () ≤B()), but C is not a sub-brand of B (C ⋢B)
3. Sub-brands of C must either require B themselves (making them abstract) or extend B

(allowing them to be concrete).8 This is achieved by including a requires B ′ or extends B ′

clause, where B ′ is a sub-brand of B .

In essence, “C requires B” defers the actual inheritance of B (i.e., sub-branding), but provides a
guarantee that C ’s concrete sub-brands will extend B (or one of its sub-brands).

The revised stream hierarchy is displayed in Fig. 3.2. In the original hierarchy, InputStream
served as both generator of instances and a unit of reuse. In the revised hierarchy, we di-
vide the brand in two—one for each role. The brand ConcreteInputStream is the gener-
ator of instances, and the abstract brand InputStream is the unit of reuse. Accordingly,
InputStream requires Stream, and ConcreteInputStream extends both InputStream and Stream.
The concrete brand InputOutputStream extends each of Stream, InputStream, andOutputStream,
creating a subtyping diamond, but not a sub-branding diamond.

The code for InputStreamwill be essentially the same as before, except for the call to its super
constructor (explained further below). Because InputStream is a subtype of Stream, it may use
all the fields and methods of Stream, without having to define them itself.

Programmers may add another dimension of stream behavior through additional abstract
brands, for instance EncryptedStream. EncryptedStream is a type of stream, but it need not extend
Stream, merely require it. Concrete sub-brands, such as EncryptedInputStreammust inherit from

2008].
8This propagation of the requires clause is not strictly necessary and could be inferred; however, it is in-

cluded by analogy with Scala as well as to simplify the calculus.
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Stream, which is achieved by extendingConcreteInputStream. (It would also be possible to extend
Stream and InputStream directly.)

The requires relationship can also be viewed as declaring a semantic “mixin”—if B requires
A, then B is e�ectively stating that it is an extension of A that can be “mixed-in” to clients. For
example, EncryptedStream is enhancing Stream by adding encryption. Because the relationship
is explicitly stated, it allows B to be substitutable for A.

Using requires is preferable to using extends because the two brands are more loosely
coupled. For example, we could modify EncryptedInputStream to require InputStream (rather
than extend ConcreteInputStream). A concrete sub-brand of EncryptedInputStream could then
also extend a sub-brand of InputStream, such as Bu�eredInputStream, rather than extending
InputStream directly. In this way, di�erent pieces of functionality can be combined in a flexible
manner while avoiding the complexity introduced by inheritance diamonds.

Object Initialization

Because there are no inheritance diamonds, the object initialization problem is trivially solved.
Note that if brand C requires A, it need not (and should not) call A’s constructor, since C does
not inherit from A.9 In our example, InputStream does not call the Stream constructor, while
ConcreteInputStream calls the constructors of its super-brands, InputStream and Stream. Thus,
a subtyping diamond does not cause problems for object initialization.

Thismay seem similar to theC++ solution; after all, in both designs, InputOutputStream calls
the Stream constructor. However, the Unity design is preferable for two reasons: a) there are no
constructor calls to non-direct super-brands, and, more importantly, b) constructor calls are
never ignored. In the C++ solution, InputStreammay expect a particular Stream constructor to
be called; as a result, itmay not be properly initializedwhen this call is omitted. Essentially, Unity
does not allow the programmer to create constructor dependencies that cannot be enforced.

Modular Multiple Dispatch

A similar principle solves the problem of modular multiple dispatch. In Unity, a method
may only override a method in a super-brand, not a required brand.10 So, the definitions of
InputStream.seek and OutputStream.seek cannot not override Stream.seek—methods defined in
an external method block must be a sub-brand of the method’s owner brand.

Let us suppose for a moment that all brands in Fig. 3.2 have been defined, except
InputOutputStream. Accordingly, we would re-write the seek methods as in Fig. 3.3. (Though
these definitions are slightly more verbose than before, syntactic sugar could be provided.) Note
that seekInput and seekOutput could just as easily have been ordinary functions (lambda expres-
sions) in this example, as there is no overriding here.

9While the formal system does not include constructors (fields are simply initialized directly when an
object is created), this would be quite a straightforward extension of the system.

10Note that it would be possible to remove this restriction for internal methods, as any ambiguity is easily
detected modularly. However, such a semantics unduly complicates the formal system and does not add any
expressiveness. This is due to the fact that Unity does not define any sort of linearization, so programmers
must define this manually anyway.
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// helper methods, could also use lambda expressions
method InputStream.seekInput: ()⇒ long→ unit = . . .
method OutputStream.seekOutput : ()⇒ long→ unit = . . .

method Stream.seek (
Stream.seek: ()⇒ long→ unit = fn _ --> () // default implementation: do nothing
ConcreteInputStream.seek: ()⇒ long→ unit =

fn pos: long --> this.seekInput pos
ConcreteOutputStream.seek: ()⇒ long→ unit =

fn pos: long --> this.seekOutput pos
)

Figure 3.3: Re-writing the seek method in Unity.

Note that the typechecker does not require that a disambiguating method be provided
for “InputStream && OutputStream”, unlike JPred and Fortress. If a programmer later defines
InputOutputStream, but does not re-define seek, the default implementation of Stream.seek will
be inherited. An external or internal method for InputOutputStream can then be implemented,
perhaps one that calls OutputStream.doSeek().

Here, it is of key importance that sub-brand diamonds are disallowed; because they cannot
occur, externalmethods can be easily checked for ambiguities. Subtyping diamonds donot cause
problems, as external method overriding is based on sub-branding.

Using requires

Introducing two kinds of brand relationships raises the question: when should programmers use
requires, rather than extends? A rule of thumb is that requires should be used when a brand is an
extension of another brand and is itself a unit of reuse. If necessary, a concrete brand extending
the required brand (such as ConcreteInputStream) could also be defined to allow object creation.
Note that this concrete brand definition would be trivial, likely containing only a constructor.
On the other hand, when a brand hierarchy contains multiple disjoint alternatives (such as in
the AST example in the next section), extends should be used; the no-diamond property is also
a semantic property of the brand hierarchy in question.

The above guideline may result in programmers defining more abstract brands (and corre-
sponding concrete brands) than they may have otherwise used. However, some argue that it is
good design to make a class (or brand) abstract whenever it can be a base class (or brand). This
is in accordance with the design of classes in Sather [Szyperski et al. 1993], traits in Scala and
Fortress [Odersky 2007; Allen et al. 2008; 2007], and the advice that “non-leaf” classes in C++
be abstract [Meyers 1992]. In Sather and Fortress, for example, only abstract classes may have
descendants; concrete classes (called “objects” in Fortress) form the leaves of the inheritance
hierarchy [Szyperski et al. 1993]. Futhermore, a language could define syntactic sugar to ease
the task of creating concrete brand definitions; such a design is sketched in Sect. 3.5.4.
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3.4.2 Typechecking Multiple Inheritance
Here, I describe the multiple inheritance typechecking rules at a high level, to provide an intu-
ition as to why typechecking is modular. Sect. 3.7 completes the discussion of Unity’s formalism
(i.e., the highlighted portions of Sect. 2.5) and also provides a detailed argument of its modular-
ity.

Brands

As mentioned, inheritance diamonds are forbidden in Unity. Concretely, we have the following
condition:

B1. If a brand B extends C1 and C2 then there must not exist some D , other than Object, such
that both C1 and C2 are sub-brands of D .

A special case is made for the brand Object—the root of the inheritance hierarchy, since every
brand directly or indirectly extends it. (Otherwise, a brand could never extend two unrelated
brands—the existence of Object would create a diamond.) Note that this does not result in the
object initialization problem, because Object has only a no-argument constructor. Also, this
condition does not preclude a brand from inheriting from two concrete brands if this does not
form a diamond.

Additionally, our convention of uniquemethod name introductions (Sect. 2.4.3) ensures that
ambiguities cannot arise when two unrelated brands A and B coincidentally have the same name
and a third brand inherits from both A and B .11

External Methods

The restrictions on external methods, conditions E1–E3, were enumerated in Sect. 2.4.2. While
all three conditions are the same as those in System M, that language did not allow multiple
inheritance across module boundaries. In Unity this restriction is removed by ensuring that
diamond inheritance does not occur—condition B1. (Note that in Unity, each brand and each
top-level method declaration is in its own “module.”)

Recall that the rationale for conditions E1 and E2 were described in Sect. 2.4.2, but the dis-
cussion of conditionE3was deferred. This condition is imposed formodular ambiguity checking
in the presence of multiple inheritance:

E3. When an external method family m is introduced, it must declare an owner brand C : this
specifies that the method family is rooted at C . C must be a proper subtype of Object, the
root of the inheritance hierarchy. An external method definition m for brand D is valid
only if D is a sub-brand of C .

Condition E3 ensures that diamonds with Object at the top (permitted by condition B1) do not
cause an ambiguity. Concretely, consider the following method definition:

11Incidentally, this is not the convention used in Java interfaces, but is that of C#.
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requires

+ eval() : ASTNode

ASTNode
# parent : ASTNode

+ eval() : ASTNode

DebugNode
# location : SourceRef

+ eval() : ASTNode
+ getLeft() : ASTNode
+ getRight() : ASTNode

# left : ASTNode
# right: ASTNode

Plus
+ eval() : ASTNode

Var
+ eval() : ASTNode

Num
+ eval() : ASTNode
DebugNum

+ eval() : ASTNode
DebugVar

+ eval() : ASTNode
+ getLeft() : DebugNode
+ getRight() : DebugNode

# left : DebugNode
# right: DebugNode

DebugPlus

DebugNode.super.eval()

print(this.toString();
ASTNode.super.eval()

Figure 3.4: The AST node example in Unity. Abstract brands and abstract methods are set in
italic. The visibility modifiers ‘+’, ‘-’ and ‘#’ indicate public, private and protected, respectively.

method Object.g ( // illegal definition−owner cannot be Object
Stream.g : ()⇒ unit = . . .
Foo.g : ()⇒ unit = . . .

)
brand Bar extends Stream, Foo ( . . . ) // problem! two versions of g()!

If this were valid code, there would exist a method definition g() for each of Stream and Foo.
In this case, Bar would inherit two equally legitimate definitions of g(). For typechecking to be
modular, when checking Bar, we should not have to check all definitions of external methods,
including g(). Note that not specifying an owner brand would have the same e�ect as using
Object as an owner.

Additionally, condition E3 ensures that diamond subtyping (as opposed to sub-branding)
does not result in a brand inheriting the same external method through more than one path.
If overriding were permitted based on subtyping, the problem described with diamond inheri-
tance (Sect. 3.2) would re-appear.

The owner brand is also useful for implementing unique qualified names, described in
Sect. 2.4.3. (A related issue, defining two external methods with the same name m, can be re-
solved by using a naming convention for modules.)

3.5 Example: Abstract Syntax Trees

Consider a simple type hierarchy for manipulating abstract syntax trees (ASTs), such as the
one in Fig. 3.4. The original hierarchy is the one on the left, which consists of ASTNode, Num,
Var, and Plus. An ASTNode contains a reference pointing to its parent node, as indicated in the
figure. Each of the concrete sub-brands of ASTNode implements its own version of the abstract
ASTNode.eval()method. For the sake of brevity, methods for accessing the state of Num and Var
have been omitted.
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Suppose that after we have defined these brands, we wish to add a newmethod that operates
over theAST. For instance, wemaywant to check that variables are declared before they are used
(assuming a variable declaration statement). Since Unity supports external methods, a method
defCheck() could be added externally as follows:

method ASTNode.defCheck ( // external method
ASTNode.defCheck : ()⇒ bool = . . .
Num.defCheck : ()⇒ bool = . . .
Var.defCheck : ()⇒ bool = . . .
Plus.defCheck : ()⇒ bool = . . .

)

Note that the programmer would only have to define cases for Num, Var and Plus; she need
not specify what method should be called when an object has a combination of these types—
such a situation cannot occur (as there are no diamonds).

Now, suppose we wish to add debugging support to our AST, after the original hierarchy is
defined. Each node now additionally has a source location field,DebugNode.location. Debugging
support, on the right side of the figure, is essentially a new dimension of AST nodes that has
a dependency on ASTNode. We express this using requires. Now, brands like DebugPlus can
multiply inherit from ASTNode and DebugNode without creating a sub-branding diamond. In
particular, DebugPlus does not inherit two copies of the parent field, because DebugNode is a
subtype, but not a sub-brand, of ASTNode. Thus, the no-diamond property allows fields and
multiple inheritance to co-exist gracefully.

In this example, each of these brands has a method eval() which evaluates that node of
the AST, as in the code in Fig. 3.5. Suppose we intend DebugNode to act as a generic wrapper
brand for each of the sub-brands of ASTNode. This can be implemented by using a dynamically-
dispatched super call of the form ASTNode.super.eval() after performing the debug-specific
functionality (in this case, printing the node’s string representation). The prefix ASTNode.super
means “find the first super-brand of this that implements ASTNode.” At runtime, when eval()
is called on an instance of DebugPlus, the chain of calls proceeds as follows: DebugPlus.eval()
z→ DebugNode.eval()z→ Plus.eval(). If the dynamically-dispatched super call behaved as an
ordinary super call, it would fail—DebugNode has no super-brand.

Each of the DebugNode sub-brands implements its own eval() method that calls
DebugNode.eval()with an ordinary super call. (This could be omitted if the language linearized
method overriding based on the order of inheritance declarations, as described below.) Dynamic
super calls are a generalization of ordinary super calls, when the qualifier brand is a required
brand.

3.5.1 Multiple Inheritance and Method Names
The AST example ignored the details of simple and qualified method names, but we will now
examine the e�ect of multiple inheritance on naming.

As mentioned in Sect. 3.4.1, method override is based on subclassing, rather than subtyp-
ing. Consequently, in the above example, DebugNode.eval is not in the same method family as
ASTNode.eval and it would therefore have a di�erent qualified name. Subclasses of DebugNode,
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brand DebugNode requires ASTNode (
method eval: ()⇒ ASTNode =

print(this.toString());
ASTNode.super.eval // dynamic super call

)

brand DebugPlus extends DebugNode, Plus (
method eval: ()⇒ ASTNode =

DebugNode.super.eval // ordinary super call
)

Figure 3.5: Implementing a mixin-like debug brand using dynamically-dispatched super calls.

such as DebugPlus, would inherit both ASTNode_eval and DebugNode_eval and would override
the former method to call the latter.

It would be interesting to extend Unity to allow DebugNode.eval to be in the same method
family as ASTNode.eval, particularly if the language also added some form of linearization se-
mantics. For example, if DebugPlus inherited from DebugNode, ASTNode, this could mean that
the DebugNode.eval definition is to take precedence. As this is largely an orthogonal issue, how-
ever, I have omitted linearization from the language.

3.5.2 Utility of requires

It may seem that the main benefit of requires is that it provides subtyping without sub-branding,
which has already been implemented in many languages (e.g. [Black et al. 1986; Hutchinson
1987; Raj et al. 1991; Cook et al. 1990; Szyperski et al. 1993; Liskov et al. 1994; Chambers and
the Cecil Group 2004; Johnsen et al. 2006]). In fact, Unity as described in the previous chap-
ter already separated the notion of subtype and sub-brand! So, if this were the only benefit of
requires, it would seem that it could be omitted from the language. But, as it turns out, the utility
of requires lies in the fact that it establishes a stronger relationship than mere subtyping—it en-
forces the requirement that subclasses use a particular inheritance path in order to implement
the required functionality. This in turn a�ects two seemingly orthogonal issues: dynamically-
dispatched super calls and brand-private state.

Dynamically-dispatched super calls. In the AST node example, we saw that it was possible
to implement mixin-like functionality using the dynamically-dispatched super call, where the
call was dispatched to the brand that eventually implemented the required functionality. In a
system without requires, however, designing a similar feature would be decidedly non-trivial (in
fact, it is possible that method calls could easily become ambiguous). Thus, I argue that a) this
is a useful feature (as illustrated in the example above) and b) a coherent language design would
need to capture some notion of inheritance dependency in order to implement such a feature.
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Brand-private state. In any language that separates sub-branding/subclassing and subtyp-
ing (using either nominal or structural subtyping), an interface cannot contain private mem-
bers. Otherwise, superclasses would be able to access private members defined in subclasses—a
violation of information hiding.

Unfortunately, this restriction can be problematic for defining binary methods such as the
equals method; its argument type must contain those private members for the method be able
to access them. But, for this type to contain privatemembers, it must be tied to a particular class
implementation, as only subclasses (as opposed to subtypes) should conform to this type.

Concretely, consider the following program (in a fictional Java-like syntax):

class A {
private int i;
boolean equals(A other) {

... // can access other.i?
}

}
class B subtypes A {

... // declare i?
}

Suppose that the subtypes keyword provides nominal subtyping without inheritance (but with-
out the additional constraints of requires). The question then arises: are private members con-
sidered when checking subtyping? If so, then Bmust declare a private field i. Unfortunately, this
also means that A.equals can access B.i, which violates information hiding; one class should not
be able to access private members defined in another class. On the other hand, if we assume
that subtyping does not include private members, then A.equals cannot access other.i, which is
problematic if the definition of equality depends on this field. An analogous problem occurs if
structural subtyping is used.12

The problem can be avoided if inheritance or requires is used for types that contain binary
methods. Since requires is tied to a particular class, if we change the above code to B requires A
(or B extends A), then A.equals(A other) may safely access other.i, even if an object of type B is
passed to thismethod. Note that an information hiding problemdoes not arise here—the private
state has not been redefined in B, but is rather (eventually) inherited from A in the concrete B
implementation that was passed in.

In summary, requires provides at least two benefits in addition to subtyping without sub-
branding: it makes it possible to define a straightforward semantics for a form of dynamically-
dispatched super call, and it makes possible the definition of brand-private state. The former is
useful for defining mixin-like classes, and the latter is important for defining binary methods,
such as equals.

12I am assuming here that brand-private state is the desirable semantics. If an object-private semantics
were used, no problems would arise, but it would also be impossible to define the appropriate equalsmethod.
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3.5.3 Comparison to Other Languages

In this section, the AST example is encoded in other languages (those with single inheritance,
mixins, or traits) and the resulting designs are compared to that in the example.

Single Inheritance

+ getParent() : IASTNode
+ setParent(IASTNode)

ASTNode
- parent : ASTNode + getParent() : IASTNode

+ setParent(IASTNode)
+ eval() : IASTNode
# getWrapped() : IASTNode

DebugNode
# location : SourceRef

+ eval() : ASTNode
Num

+ eval() : ASTNode
Var

+ getLeft() : IASTNode
+ getRight() : IASTNode
+ eval() : IASTNode

Plus

# getWrapped() : IVar
- wrapped : IVar

DebugVar

+ getParent() : IASTNode
+ setParent(IASTNode)
+ eval() : ASTNode

<<interface>>
IASTNode

+ getLeft() : IASTNode
+ getRight() : IASTNode

<<interface>>
IPlus

+ getLeft() : IASTNode
+ getRight() : IASTNode
# getWrapped() : IPlus

- wrapped : IPlus
DebugPlus

<<interface>>
IVar

<<interface>>
INum

# getWrapped() : INum
- wrapped : INum

DebugNum

return 
getWrapped().getParent()

print(this.toString());
return getWrapped().eval();

return wrapped.getLeft()

Figure 3.6: The example of Fig. 3.4 expressed in a Java-like language, resulting in a proliferation
of interfaces and boilerplate code. The visibility modifiers ‘+’, ‘-’ and ‘#’ indicate public, private
and protected, respectively. Dashed lines represent extends; solid lines represent implements.

This example would be more di�cult to express in a language with single inheritance. One
straightforward design in a Java-like language is presented in Fig. 3.6. Multiple inheritance is
simulated using interfaces for subtyping, and composition for dispatch. For instance, calls to
DebugPlus.getLeft() are delegated to the wrapped IPlus object. The template method design
pattern is used by DebugNode to implement eval() (subclasses override getWrapped()).

Note the addition of 4 new interfaces and the boilerplate code needed to implement getters,
setters and delegation. The problem would be even worse if another dimension of behavior
were to be added. Furthermore, the design has the problem that the getters and setters have to
be public, since they are defined in an interface. For instance, the “parent” field in ASTNode is
e�ectively fully visible, adversely a�ecting information hiding. Additionally, one would have to
implement the visitor design pattern (not shown) to allow external traversal of the AST.
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brand EnhancedDebugVar extends DebugVar (
defLocation : SourceRef;
method varLocToString: ()⇒ string = . . . // create user−readable string from defLocation

method eval: ()⇒ ASTNode =
print(this.varLocToString)
DebugNode.super.eval

)

Figure 3.7: Adding a new sub-brand of DebugVar

Mixins

This example would be also di�cult to express using mixins. Aside from the limitation that a
total ordering must be specified during mixin composition [Ducasse et al. 2006], other issues
arise. Suppose that in a variation of the previous example, we were to add a new sub-brand
of DebugVar, EnhancedDebugVar. The intended semantics is that DebugVar.eval() prints the
variable name, while EnhancedDebugVar.eval() prints the variable name and the location where
the variable was defined in the source program. To implement this, we put the functionality of
storing and printing a variable location into EnhancedDebugVar. Concretely, we would add the
code in Fig. 3.7.

A possible translation of this example into Jam (an extension of Java with mixins [An-
cona et al. 2003]) is shown in Fig. 3.8. First, we must create mixin equivalents of DebugNode
and DebugVar, which will be prefixed with M. Since mixins cannot inherit from one another,
MDebugVar would not be able to express an explicit relationship with MDebugNode (nor Var),
but would instead have to declare location and eval() (and left, right, etc.) as required members.

This, in turn, leads to two problems. First, MDebugVar cannot be treated as a subtype
of MDebugNode, which is a serious loss of expressiveness as compared to Unity. Second—
and more significantly—supposing that external methods were to be integrated with mix-
ins, it would be impossible to write an external method for MDebugNode and override it
for MDebugVar, because there is no relationship between the two mixins. That is, we may
wish to write methods MDebugNode.m and MDebugVar.m (its override), and have the mixin
MEnhancedDebugVar inherit this latter definition. Instead, the definition of m must be pushed
down to MEnhancedDebugVar, which creates problems for code reuse. In particular, suppose
that method m and MEnhancedDebugVar are independent extensions that have no knowledge
of each other. In amixin world, externalmethod definitions cannot be trulymodular extensions.

The heart of the problem is that mixins are defined in isolation—though they can be com-
posed, they cannot be subclasses (or even subtypes) of one another. Our proposed solution
does bear some similarity to mixins, but additionally provides subtyping, design intent (through
requires) and (no-diamond) multiple inheritance.
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mixin MDebugNode {
inherited ASTNode parent;
SourceRef location;
inherited ASTNode eval() {

println(this.toString());
return super.eval();

}
}
mixin MDebugVar {

inherited SourceRef location;
inherited ASTNode left, right;

inherited String toString() { ... } // use location, left and right fields
}
mixin MDebugVarEnhancer {

inherited ASTNode left, right;
defLocation : SourceRef;

inherited ASTNode eval() {
... // call super.eval and use defLocation to print out debug info

}
}

// psuedo−syntax; in Jam, would have to create intermediary classes
class EnhancedDebugVar =

MDebugVarEnhancer extends (MDebugVar extends (MDebugNode extends Var)) { }

Figure 3.8: Rewriting parts of the AST example using Jam-style mixins [Ancona et al. 2003].

Traits

Traits could be used to express this example, but their lack of state results in an information-
hiding problem with accessors, a problem similar to that of the single inheritance design. The
stateful traits design [Bergel et al. 2008] does not provide a mechanism for true information
hiding, as state can always be “unhidden” within classes composing the trait. In that design, all
state is e�ectively “protected” (in the C++ sense of the term).

A possible encoding of the AST example into a language with traits is shown in Fig. 3.9. Note
the duplication of accessor methods, and the fact that that traits such as T_ASTNode, may not
define “state” that is private to the trait—by definition, the composing class must implement the
associated accessor methods.

Scala traits

Scala traits are fusion of ordinary traits and mixins. Unlike ordinary traits, Scala traits may
contain state (thereby avoiding the information hiding problem), and unlike ordinary mixins,
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# getParent() : T_ASTNode
# setParent(T_ASTNode)
+ eval() : T_ASTNode

T_ASTNode
# getLocation() : SrcRef
# setLocation(SrcRef)
+ eval() : T_ASTNode

T_DebugNode

T_Num T_Var

+ getLeft() : T_ASTNode
+ getRight() : T_ASTNode
+ setLeft(T_ASTNode)
+ setRight(T_ASTNode)
+ eval() : T_IASTNode

T_Plus

# getLocation() : SrcRef
# setLocation(SrcRef)

- location : SrcRef
DebugVar

# getLocation() : SrcRef
# setLocation(SrcRef)

- location : SrcRef
DebugPlus

# getLocation() : SrcRef
# setLocation(SrcRef)

- location : SrcRef
DebugNum

# getParent(): T_ASTNode
# setParent(T_ASTNode)
+ eval() : ASTNode

- parent : T_ASTNode
Num

# getParent():T_ASTNode
# setParent(T_ASTNode)
+ eval() : ASTNode

- parent : T_ASTNode
Var

# getParent(): T_ASTNode
# setParent(T_ASTNode)
+ getLeft() : T_ASTNode
+ getRight() : T_ASTNode
+ setLeft(T_ASTNode)
+ setRight(T_ASTNode)
+ eval() : ASTNode

- parent : T_ASTNode
- left : T_ASTNode
- right : T_ASTNode

Plus

Figure 3.9: The example of Fig. 3.4 expressed in a language with traits (in the sense of [Schärli
et al. 2003]). The visibility modifiers ‘+’, ‘-’ and ‘#’ indicate public, private and protected, re-
spectively.

Scala traits may define inheritance relationships. Accordingly, this particular example could be
expressed quite elegantly in Scala. Unfortunately, the problems of diamond inheritance would
again arise. In particular, if Scala supported any form of multimethod or external method, then
a solution similar to that of Fortress or JPred would have to be employed for ensuring that mul-
timethods were unambiguious. Concretely, the definition of a method similar to the defCheck
external method would either be potentially ambiguious or unduly di�cult to implement. And,
as previously mentioned, to avoid the object initialization problem, Scala traits cannot have
constructor parameters—a serious limitation.

Note that Scala also has a feature similar to what I have called a dynamically-dispatched
super call. A method can be marked abstract override, which means that it is an override of a
yet-to-be-inheritedmethod. A super call within such amethod has the same dispatch semantics
as the Unity dynamic super call.

3.5.4 Discussion

Analogy to case analysis

The examples also illustrate that sub-branding, in addition to providing inheritance, defines
semantic alternatives that may not overlap (such as Num, Var and Plus in the example above).
Because they do not overlap, we can safely perform an unambiguous case analysis on them—that
is, external dispatch. In other words, external dispatch in Unity is analogous to case-analyzing
datatypes in functional programming.

Here, I discuss some additional design issues, such as encapsulation, comparison to traits,
and potential Unity extensions.
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Encapsulation and the Diamond Problem

As noted by Snyder, there are two possible ways to view inheritance: as an internal design deci-
sion chosen for convenience, or as a public declaration that a subclass is specializing its super-
class, thereby adhering to its semantics [Snyder 1986].

Though Snyder believes that it can be useful to use inheritance without it being part of the
external interface of a class, I argue that the second definition of inheritance ismore appropriate.
In fact, if inheritance is being used merely out of convenience (e.g., Vector extending Stack in
the Java standard library), then it is very likely that composition is a more appropriate design
[Bloch 2001]. For similar reasons, I do not believe a language should allow inheritance without
subtyping—e.g., C++ private inheritance—as this can always be implemented using a helper
class/brand whose visibility is restricted using the language’s module system.

Nevertheless, if one takes the view that inheritance choices should not be visible to sub-
brands (or subclasses), a form of the diamond problem can arise in Unity. In particular, suppose
brand D extends B and C , C extends A, and B extends Object—a valid hierarchy (recall that
condition B1makes a special exception for diamonds involving Object). Now suppose that B is
changed to extend A, and the maintainer of B is unaware that brand D exists. Now A, B and
C typecheck, but D does not. Thus, the use of inheritance can invalidate sub-brands, which
violates Snyder’s view of encapsulation.

This situation highlights the fact that, in general, requires should be favored over extends if
a brand is intended to be reused.

Extensions

It would be possible to combine the proposed solution with existing techniques for dealing with
the object initialization and modular multiple dispatch problems. A programmer could specify
that a brand C , whose constructor takes no arguments, may be the root of a diamond hierarchy.
Then, one would use the Scala solution for ensuring that C ’s constructor is called only once. To
solve the multiple dispatch problem, if C is the owner of a method family m, the typechecker
would ensure that m contained disambiguating definitions for the case of a diamond—the JPred
and Fortress solutions.

One could also generalize dynamically-dispatched super calls so that they are chained, as
in Scala [Odersky and Zenger 2005]. In Scala, a super call in a trait is dispatched to the next
type in the linearization. In this way, traits can call sibling methods, which is a very powerful
composition mechanism.

Finally, the language could include syntactic sugar to ease the definition of concrete brands.
If C requires B , and both C and B have no-argument constructors, the compiler could automat-
ically generate a brand C$concrete that extends both C and B ; programmers could then more
easily define external methods that dispatch on C$concrete.

Multiple Inheritance vs. Traits

As a motivation for the design of traits, Schärli et al. [Schärli et al. 2003] identified several
problems with multiple inheritance; I describe here how our proposed solution addresses these
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issues. The problems are: 1) conflicting features: methods or variables are inherited along two
di�erent paths, particularly in cases of diamond inheritance; 2) accessing overriding features: us-
ing a single keyword (such as super) is insu�cient to unambiguously identify inheritedmethods,
so onemust explicitly specify the superclass (or the language must linearize the class hierarchy);
and 3) factoring out generic wrappers: programmers cannot use multiple inheritance to write
reusable classes that wrap methods that will be implemented by future classes.

The first of these problems, conflicting features, is solved by B1 (no diamonds) and the prop-
erty of unique method names (described in Sect. 2.4.3). Problem (2) is a less important con-
cern in a statically typed language, as programmers are already accustomed to specifying brand
names for types. (This does indeed make it slightly more di�cult to move methods to other
brands, but refactoring tools make this task trivial.) Problem (3) is solved through dynamically-
dispatched super calls, outlined above and demonstrated in Sect. 3.5.

3.6 Real-World Examples
In this section, real-world examples (in both C++ and Java) are presented that suggest that mul-
tiple inheritance, and diamond inheritance in particular, can be useful for code reuse. I also
describe how these examples can be expressed in Unity.

3.6.1 C++ Examples
I examined several open-source C++ applications in a variety of domains and found many in-
stances of virtual inheritance and inheritance diamonds. Here inheritance diamonds in two
applications are described: Audacity13 and Guikachu.14

Audacity

Audacity is a cross-platform application for recording and editing sounds. One of its main stor-
age abstractions is the class BlockedSequence (not shown), which represents an array of au-
dio samples, supporting operations such as cut and paste. A BlockedSequence is composed
of smaller chunks; these are objects of type SeqBlock, depicted in Fig. 3.10 (a). One sub-
class of SeqBlock is SeqDataFileBlock, which stores the block data on disk. One superclass of
SeqDataFileBlock is ManagedFile, an abstraction for temporary files that are de-allocated based
on a reference-counting scheme. Since bothManagedFile and SeqBlock inherit from Storable (to
support serialization), this forms a diamond with Storable at the top.

This particular diamond can be easily re-written in Unity (Fig. 3.10 (b)), since the sides of
the diamond (SeqBlock and ManagedFile) are already abstract classes. (Compare to the exam-
ple in Fig. 3.2, where new concrete brands had to be defined for the sides of the diamond.)
Here, we would simply change the top two virtual inheritance edges to requires edges, andmake
SeqDataFileBlock inherit from Storable directly. This may even be a preferable abstraction; while

13http://audacity.sourceforge.net/
14http://cactus.rulez.org/projects/guikachu/

http://audacity.sourceforge.net/
http://cactus.rulez.org/projects/guikachu/
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Storable

SeqBlock ManagedFile

SeqDataFileBlock

virtualvirt
ua
l

virtual virt
ua
l

(a)

Storable

SeqBlock ManagedFile

SeqDataFileBlock

requiresreq
uire

s

(b)

Figure 3.10: An inheritance diamond (a) in the Audacity application, and (b) the re-written
class hierarchy in Unity. Abstract classes are set in italic.

CanvasItem

WidgetCanvasItem ResizeableCanvasItem

PopupTriggerCanvasItem

virtualvirt
ual

TextFieldCanvasItem

(a)

CanvasItem

WidgetCanvasItem ResizeableCanvasItem

PopupTriggerCanvasItem

requiresreq
uire

s

TextFieldCanvasItem

(b)

Figure 3.11: Two inheritance diamonds (a) in the Guikachu application and the classes re-
written in Unity (b). Abstract classes and brands are set in italic.

in the original hierarchy SeqDataFileBlock is serializable by virtue of the fact that SeqBlock is
serializable, in the new hierarchy we are making this relationship explicit.

Guikachu

Guikachu is a graphical resource editor for the GNU PalmOS SDK. It allows programmers to
graphically manipulate GUI elements for a Palm application in the GNOME desktop environ-
ment. In this application, I found 10 examples of diamonds that included the classes CanvasItem,
WidgetCanvasItem, and ResizeableCanvasItem. CanvasItem is an abstract base class that rep-
resents items that can be placed onto a canvas, while objects of type WidgetCanvasItem and
ResizeableCanvasItem are a type of widget or are resizeable, respectively.

Figure 3.11(a) shows two of these 10 diamonds, formed by TextFieldCanvasItem and
PopupTriggerCanvasItem, respectively. The hierarchy was likely designed this way because there
exist GUI elements that have only one of the two properties. For instance, Gra�tiCanvasItem
and LabelCanvasItem (not shown) are not resizeable, but they are widgets. In contrast, the class
FormCanvasItem (not shown) is resizeable, but is not a widget.

In this application, I also observed the use of the C++ virtual inheritance initializer invoca-
tion mechanism: TextFieldCanvasItem (for instance) directly calls the initializer of CanvasItem,



82 Chapter 3. Multiple Inheritance

its grandparent. As previously described, when initializing TextFieldCanvasItem, the initializer
calls fromWidgetCanvasItem and ResizeableCanvasItem to CanvasItem are ignored. In this appli-
cation, the initializers happen to all perform the same operation, but this invocation semantics
could introduce subtle bugs as the application evolves.

The corresponding Unity brand hierarchy is displayed in Fig. 3.11 (b); note its similar-
ity to that of Fig. 3.10 (b). Essentially, the virtual inheritance is replaced with requires and
each of the brands at the bottom of the diamond inherit from all three of WidgetCanvasItem,
ResizeableCanvasItem, and CanvasItem. The Unity design has the advantage that constructor
calls do not occur more than one level up the hierarchy, and no constructor calls are ignored.

This example illustrates how a program could be translated from C++-style multiple inher-
itance to Unity-style. In particular, virtual inheritance would be replaced by requires, and new
concrete brands would be defined as necessary (changing instantiations of the now-abstract
brand to instantiations of the new concrete brand). Note that constructor calls can be easily
generated for the new concrete brands, as C++ requires a call from the bottom of the diamond
to the top of the diamond when virtual inheritance is used (such a constructor call would be
necessary for the new concrete brand, as it would directly extend the brand at the top of the
diamond).

3.6.2 Java Example: Eclipse JDT
The Eclipse JDT (Java Development Tools) provides an example of where multiple inheritance
could be useful for Java programs. In the JDT, every AST node contains structural proper-
ties. A node’s structural properties allow uniform access to its components. For example,
DoStatement has two fields of type StructuralPropertyDescriptor: EXPRESSION_PROPERTY and
BODY_PROPERTY. To get the expression property of a DoStatement object, the programmer
may call ds.getExpression() or ds.getStructuralProperty(DoStatement.EXPRESSION_PROPERTY).
Structural property descriptors are often used to specify how AST nodes change when a refac-
toring is performed.

Through inspection of the JDT code, I found that there was a great deal of duplication
among the code for getting or setting a node property using the structural property descrip-
tors. For example, 19 AST classes (for instance, AssertStatement and ForStatement) have
getExpression/setExpression properties. As a result, in the method internalGetSetChildProperty
(an abstract method of ASTNode), there are 19 duplications of the following code:

if (property == EXPRESSION_PROPERTY) {
if (get) {

return getExpression();
} else {

setExpression((Expression) child);
return null;

}
} else if (property == BODY_PROPERTY) {

. . . // code for body property
}

}
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Additionally, there are duplicate, identical definitions of the EXPRESSION_PROPERTY field.
Without a form of multiple inheritance, however, it is di�cult to refactor this code into a
common location—DoStatement, for example, already has the superclass Statement. In Unity,
on the other hand, the programmer could create an abstract helper brand ExprPropertyHelper
that requires ASTNode. This new brand would contain the field definition and an override
of internalGetSetChildProperty. DoStatement would then inherit from both Statement and
ExprPropertyHelper and would have the following body for internalGetSetChildProperty:

if (property == BODY_PROPERTY)
. . . // code for body property

else
ExprPropertyHelper.super.internalGetSetChildProperty(property, get, child)

Finally, this is a scenariowheremulitple dispatchwould be beneficial. The framework defines
various visitors for traversing an AST; these could be omitted in favor of external methods or
multimethods, which are more extensible.

Discussion

Overall, the real-world examples suggest that multiple inheritance can be useful, and that even
diamond inheritance is used in practice. I have shown that the inheritance diamonds can be
easily translated to Unity and that the resulting designs o�er some benefits over the original
ones.

3.7 Formal System
In this section, I describe the highlighted portions of Sect. 2.5.

The grammar additions needed to support multiple inheritance are relatively minor
(Fig. 2.15, p. 37). Brand declarations additionally have a requires clause that is similar to the
extends clause:

brand-decl ∶∶= brand B(τ;m-decl) extends C1, . . . ,Cn requires D

External method blocks (method-decl) have an owner brand that is specified before the method
name. Finally, there is a new expression form that has already been described in the examples:

e ∶∶= . . . | e.B .super.q . . . |

This is the syntactic form for the dynamically-dispatched super call, which was illustrated in the
AST example.

3.7.1 Static Semantics
This section describes the multiple inheritance changes to the subtyping judgement, then those
regarding the typechecking of brands, external methods, and expressions.
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Subtyping. Only the subtype judgement (≤) has an additional rule:

B(τ;Q) extends B requires C1, . . . ,Cn ∈Σ
Γ ⊢M1 ⊴M2

Γ ⊢B(M1) ≤Ci (M2)
(Sub-Requires)

This rule provides property (2) of Def. 3.1; B branded objects are subtypes ofCi branded objects.
The rule is safe, due to properties (1) and (3) of the aforementioned definition.

Brand declarations. Recall the rules for typechecking top-level declarations: Tp-Brand-
Decl and Tp-Ext-Method (Fig. 2.18, p. 42). For typechecking brand declarations, the auxiliary
judgement inherit-ok was used:

(Tp-Inherit)
1 C ∈Σ 2 D ∈Σ 3 Di ∉C (∀i ∈ 1..m)

4 ∀i , j . i ≠ j .ØD′.Ci ⊑Σ D′ and C j ⊑Σ D ′ (D ′ ≠Object)
5 Ci requires E ∈Σ implies ∃k. Ck ⊑Σ E or Dk ⊑Σ E (∀i ∈ 1..n)

6 Di requires E ′ ∈Σ implies ∃k. Ck ⊑Σ E ′ or Dk ⊑Σ E ′ (∀i ∈ 1..m)
7 ∀i , j .∀q. mtypeΣ(q,Ci ) = ρ and mtypeΣ(q,C j ) = ρ′ implies i = j

⊢Σ B extends C1, . . . ,Cn requires D1, . . . ,Dm ∈Σ inherit-ok

That judgement ensures that the declared superclasses exist in Σ, that there are no inheritance
diamonds (premise 4), that requires is propagated down the inheritance hierarchy (premises 5
and 6), and that there are no methods with the same name in two inherited classes.15

For typechecking the bodies of internal methods (decl body-ok), the requires clause is taken
into account (Fig. 2.20, p. 44):

(Brand-Decl-Body)
fieldTypeΣ(D) =σ′ this ∶B(Mi ),�elds ∶σ∧ σ′ ⊢Σ ei ∶ τi

brand B(σ;qi B(Mi ) ∶ τi = ei
i∈1..n) extends C requires D body-ok

The second premise looks up the field type of B ’s required brands, naming them (the list) σ′.
Then, when typechecking the method body (the third premise), we can safely assume that the
fields of the receiver (the special variable �elds) actually contain these required-brand fields σ′.
This is sound for the same reason that the subtyping rule Sub-Requires is sound: property (1)
of Def. 3.1 ensures that objects cannot be instantiated from a brand that has a requires clause.
(This property is enforced when typechecking the object-instantiation expression, described in
a subsection below.)

15Note that this property will always hold if an elaboration of the form outlined in Sect. 2.4.3 is used.
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External method blocks. The rule Tp-Ext-Method (Fig. 2.18, p. 42) typechecks an external
method family:

(Tp-Ext-Method)
1 B ≠Object 2 C distinct 3 Ci ⊑Σ B (∀i ∈ 1..n)

4 ⊬Σ C .q internal 5 Σ′ =Σ,method B.q(C .q ∶ ρ) 6 ⊢Σ′ C .q ∶ ρ override-ok
Σ ⊢method B.q(C .q ∶ ρ) ok

Here, premise (1) enforces the first part of condition E3: the owner brand cannot be Object. The
second part of condition E3 (each method declaration is defined on a sub-brand of the owner
brand) is enforced by premise (3).

Expressions. The changes to the rules for typechecking expressions are fairly minor. The
first premise of Tp-New-Obj (Fig. 2.21, p. 45) enforces property (1) of Def. 3.1—brands with a
requires clause may not be instantiated.

The rule Tp-With adds new simple to qualified mappings after an object has been created.
To simplify the formal system, the mtype judgement does not consider required brands, only
extended brands. This does not cause any problems for expressiveness, however, as a brand can
always be coerced to its required brand via the subsumption rule.

But, when setting up the mapping, we may wish to add methods from both inherited and
required brands. Thus, the rule permits any mapping for which there exists mtype for the brand
itself or one of its required brands:

(Tp-With)
Γ ⊢e ∶B(M) B requires D ∈Σ n ∉ M n distinct

∃C ∈ {B ,D}. mtypeΣ(qi ,C ) ∶ ρi (∀i ∈ 1..n)

Γ ⊢e with ni ,Ð→ qi
i∈1..n ∶ B(M ,ni ∶ ρi

i∈1..n)

The final multiple inheritance addition is rule Tp-Invoke-Super (also in Fig. 2.21) which
typechecks the dynamically-dispatched super call. Here, we check that the brand qualifier C is
require’d by the object’s brand and perform an mtype lookup using C . Note the similarity of Tp-
Invoke-Super to Tp-Invoke-Nom, which typechecks (ordinary) qualified method invocation.

3.7.2 Dynamic Semantics
There are fewer changes to the dynamic semantics: there is a congruence and computation rule
for dynamically-dispatched super calls. (Fig. 2.25, p. 48). The congruence rule is standard; the
computation rule, E-Super-Invk-Val, is:

∃ unique C ′. super∆(B as C ) =C ′ lookup∆(q,C ′) = e

B̂(v ;n ,Ð→ q).C .super.q z→∆

{
B̂(v ;n ,Ð→ q)/this, v/�elds

}
e

Here, we use (the unique result of ) the super auxiliary judgement to find the appropriate class
C ′; the method q is then looked up within C ′. This auxiliary judgement is:



86 Chapter 3. Multiple Inheritance

B extends D ∈∆ D ⊑∆ C

super∆(B as C ) = D

ØD′ ⊑∆ C . B extends D ′ ∈∆ B extends E ∈∆
∃k. super∆(Ek as C ) = D

super∆(B as C ) = D

That is, super finds the first super-brand of B that is also a subtype of C (i.e., the first parent that
fulfills the requires C enforced by Tp-Invoke-Super). The judgement super uses the sub-brand
judgement on runtime contexts, ⊑∆, this latter judgement mirroring ⊑Σ with the exception that
∆ is used rather than Σ:

Definition 3.2 (⊑∆ judgement).
The judgement B ⊑∆ C is defined by inference rules identical to those of B ⊑Σ C (i.e., Sub-Brand-
Refl, Sub-Brand-Trans, and Sub-Brand-Decl in Fig. 2.16), except that the runtime context ∆
is used instead of Σ.

3.7.3 Modularity
As mentioned in Sect. 1.1, modular typechecking is an essential property for a practical lan-
guage. In its absence, scalability and extensibility issueswill immediately arise, particularly when
multiple developers are working on a project. With amodular type system, programmers can be
assured that their modules will typecheck when incorporated into a larger program and clients
of a module can be shielded from changes to a module’s internals, when those changes do not
a�ect its interface.

I define a typechecking algorithm as modular if each module in the program can be type-
checked using only the interfaces of the othermodules onwhich it statically depends. Moreover,
if a module typechecks in isolation, this fact should not change when it is combined with other
modules. From this it follows that the linker cannot perform any typechecking; it mainly per-
forms a consistency check to ensure that a definition is present for all modules that have been
assumed to exist in the program.

In the Unity calculus, each top-level declaration (i.e., brand or external method) is assumed
to be in its own module. Recall that top-level declarations contain a context Σ which include all
definitions on which the declaration statically depends. This context is of key importance for
the modularity proof, as Σ is precisely the interfaces of the other modules for which the module
in question assumes a definition exists.

From this it follows that typechecking is modular if each declaration is typechecked under
its declared context Σ and if the declaration will always typecheck under any context Σ′ that
contains at least all the declarations in Σ.

The calculus has been carefully designed so that the proof of modularity is straightforward:

Theorem 3.1. Typechecking top-level elements declarations decl is modular; i.e., typechecking
such elements only involves examining the signatures Σ on which decl statically depends.

Proof. Follows from the fact that top-level elements are typechecked under their declared con-
text Σ0. The only rules that examine the entire linearized program context Σ are Tp-Decl-Ok



3.7. Formal System 87

(Sigma-Wf-Base)

⋅ ok

(Sigma-Wf-Decl)
decl-typename ∉Σ Σ ok Σ ⊢decl-type ok

Σ,decl-type ok

Figure 3.12: Well-formed judgement for static context Σ

and Tp-Expr-Ok, in the premise Σ ⊇ Σ0. This step is analogous to a linking phase in which im-
ported declarations are resolved. Since checking set inclusion does not involve typechecking of
any kind, this check adheres to the definition of modular typechecking. ◻

3.7.4 Type Safety
The full proof of type safety is provided in Appendix A; the main results are summarized here.
First, we define the properties of well-formed context Σ (Fig. 3.12), which includes some of the
same properties checked by Tp-Decl-Ok. Declarations must have unique names, and each dec-
laration must be well-typed under the context of the types that precede it.

The type safety theorems assume a correspondence between the runtime context ∆ and the
brand and method context Σ. This ensures that the runtime context, which does not contain
type information, is consistent with the static typing context, which does not contain any code.
Formally, this correspondence is defined as follows:

Definition 3.3 (Context consistency relation).
The judgement ∆ ∶ Σ is defined by the following inference rules:

(Delta-Wf-Empty)

⋅ ∶ ⋅

(Delta-Wf-Brand)
Σ=Σ0,brand B(σ; {qi ∶B(Mi )⇒ τi

i∈1..n}) extends C requires D
∆0 ∶ Σ0 fieldTypeΣ(D) =σ

this ∶B(Mi ),�elds ∶σ∧σ ⊢Σ ei ∶ τi (∀i ∈ 1..n)

∆0,B(qi = ei
i∈1..n) extends C ∶ Σ

(Delta-Wf-Method)
Σ=Σ0,method q(q ∶Bi (Mi )⇒ τi

i∈1..n) ∆0 ∶ Σ0

this ∶Bi (Mi ) ⊢Σ ei ∶ τi (∀i ∈ 1..n)

∆0,method q(Bi .q= ei
i∈1..n) ∶ Σ

Type safety is proved using the standard progress and preservation theorems. These theo-
rems each depend on weakening properties of the various judgements under a larger context Σ.
For example, we have the following:

Lemma 3.1 (Weakening for sub-brand judgement).
If Σ0 ok and B ⊑Σ0 C and Σ ok and Σ ⊇Σ0 then B ⊑Σ C .



88 Chapter 3. Multiple Inheritance

Proof. See proof of Lemma A.3 (p. 130). ◻

A similar weakening property holds for the subtyping and typing relations. Additionally, the
decl-type ok judgement can be weakened so that we have the following:

Lemma 3.2 (Declarations are well-typed under their containing context).
If Σ ok and decl-type ∈Σ then Σ ⊢decl-type ok.

Proof. See proof of Lemma A.14 (p. 135). ◻

The proof of the above lemma makes use of condition E1—since external method definitions q
must all appear in the same block that the family q is introduced, extensions of the context Σ
cannot contain new (external) definitions for q.

An auxiliary lemma is used for the weakening lemmas, which allows us to conclude that
two brands B and C must have a common ancestor that is a strict subtype of Object if an mtype
derivation exists for both B and C for the same method q:

Lemma 3.3 (Common method implies common ancestor).
If Σ ok and mtypeΣ(q,B) and mtypeΣ(q,C ) then there exists some D ≠ Object such that B ⊑Σ D
and C ⊑Σ D .

Proof. See proof of Lemma A.2 (p. 130). ◻

Conditions E1–E3 are all used in the proof of this lemma.

Progress

For progress, we prove a lemma that states that if method q has type ρ in B (either declared
or inherited), then a runtime context ∆ consistent with the static context Σ contains a unique
method body for q:

Lemma 3.4 (lookup defined on well-typed objects).
If Σ ok and mtypeΣ(q,B) = ρ and ∆ ∶ Σ, then lookup∆(q,B) = e, for some unique e.

Proof. By induction on the derivation mtypeΣ(q,B). See proof of Lemma A.31 (p. 139). ◻

This lemma has several interesting cases. For internal and external methods, we use the fact that
an internal and external method cannot both exist for a particular brand—condition E2. For the
inductive step, we use the fact that a class cannot inherit a method with the same name from
two distinct classes—premise (7) of Tp-Inherit. For the inductive case MType-Inh, we use
condition E3 to show that at most one external method definition is inherited from superclasses
(i.e., the same external method cannot be defined for two di�erent superclasses of a class C ).
Finally, because of the no-diamond property (condition B1), the same internal method cannot
be inherited from two distinct superclasses.
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Now we are ready to prove the standard progess theorem. Note that this theorem has a cor-
responding lemma for expressions, Lemma A.35 (p. 141), where we prove the more interesting
cases. The most interesting case is method invocation, which simply uses the previous lemma.

Theorem 3.2 (Progress [programs]).
If Σ ok and Σ ⊢p ok, then one of the following cases holds:

1. p is a value; or
2. for any ∆ such that ∆ ∶ Σ, there exist p′ and ∆′ such that p |∆ z→ p′ |∆′.

Proof. See proof of Theorem A.1 (Sect. A.4, p. 143). ◻

Preservation

For proving preservation, we first prove standard inversion lemmas for subtyping and typing
(Lemmas A.28 and A.29). Next, we prove a lemma that states that the result of mtype is unique:

Lemma 3.5 (mtype is a function).
If Σ ok and mtypeΣ(q,B) = ρ1 and mtypeΣ(q,B) = ρ2, then ρ1 = ρ2.

Proof. By simultaneous induction on the two mtype derivations. See proof of Lemma A.39
(p. 143). ◻

The lemma is proved using conditions E1–E3, as well as the no-diamond property (condition
B1).

The next key preservation lemmaproves that the result of the lookup judgement is consistent
with the result of mtype:

Lemma 3.6 (Result of lookup is well-typed).
If Σ ok and ∆ ∶ Σ and mtypeΣ(q,C ) = N ⇒ τ and lookup∆(q,C ) = e0, then

this ∶σc ,�elds ∶σf ⊢Σ e0 ∶ τ.
for some σc and σf such that C (N ) ≤σc and fieldWithReqΣ(C ) ≤σf .

Proof. By induction on lookup∆(q,C ). See proof of Lemma A.40 (p. 144). ◻

The base cases are straightforward, but the inductive case (Lookup-Inh) makes use of the mtype
uniqueness lemma above (Lemma 3.5), to map a lookup derviation to a corresponding mtype
derivation.

Now we are ready to state the main preservation theorem:

Theorem 3.3 (Preservation [programs]).
If Σ ok and Σ ⊢p ok and ∆ ∶ Σ and p |∆ z→ p′ |∆′, then there exists a Σ′ such that (a) Σ′ ok;
and (b) ∆′ ∶ Σ′; and (c) Σ′ ⊢p′ ok.

Proof. See proof of Theorem A.2 (Sect. A.5, p. 149). ◻
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As with progress, preservation also has a lemma for of expressions (Lemma A.42, p. 145), where
most of the interesting reasoning lies, particularly the cases of method invocation.

3.8 RelatedWork
Here, I revisit the JPred and Fortress solutions and describe other closely related work: mixins,
traits, and stateful traits. Comparison to additional, less closely relatedwork appears in Sect. 5.4.

JPred and Fortress

As mentioned in Sect. 3.3, JPred [Frost and Millstein 2006] and Fortress [Allen et al. 2007] per-
formmodular multimethod typechecking by requiring that programmers provide disambiguat-
ing methods, some of which may never be called. However, the JPred and Fortress dispatch
semantics may be more expressive than that of Unity. In Unity, recall that in the class hierarchy
Fig. 3.2, the abstract class InputStream may not override a Stream method externally, because
it is not a subclass of Stream. In contrast, if this hierarchy were expressed in JPred or Fortress,
a multimethod defined on Stream could be overridden by either InputStream or OutputStream.
Note, however, that programmers can achieve a similar e�ect inUnity by having concrete classes
call helper methods (which can be defined externally) in the abstract classes.

Mixins

Mixins, also known as abstract subclasses, provide many of the reuse benefits of multiple in-
heritance while fitting into a single inheritance framework [Bracha and Cook 1990; Ancona and
Zucca 1996; Flatt et al. 1998; Findler and Flatt 1999; Ancona et al. 2003; Bettini et al. 2004]. While
mixins allow defining state, they have two drawbacks: they must be explicitly linearized by the
programmer and they cannot inherit from one another (though most systems allow expressing
implementation dependencies, such as abstract members). If mixin inheritance were allowed,
this would be essentially equivalent to Scala traits, which do have the object initialization prob-
lem. Additionally, the lack of inheritance has the consequence that mixins do not integrate well
with multiple dispatch; multiple dispatch requires an explicit inheritance hierarchy on which to
perform the dispatch.

Traits

Traits were proposed as amechanism for finer-grained reuse, to solve the reuse problems caused
by mixins and multiple inheritance [Ducasse et al. 2006; Fisher and Reppy 2004; Odersky and
Zenger 2005]. In particular, the linearization imposed by mixins can necessitate the definition
of numerous “glue” methods [Ducasse et al. 2006]. This design avoids many problems caused
by multiple inheritance since fields may not be defined in traits.

Unfortunately, this restriction results in other problems. In particular, non-private accessors
in a trait negatively impact information hiding: if a trait needs to use state, this is encoded using
abstract accessor methods, which must then be implemented by the class composed using the
trait. Consequently, it is impossible to define “state” that is private to a trait—by definition, all
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classes reusing the trait can access this state. (We will see an example of this in Sect. 3.5 below.)
Additionally, introducing new accessors in a trait results in a ripple e�ect, as all client classes
must now provide implementations for these methods [Bergel et al. 2008], even if there are no
other changes.

In contrast, Unity allows a brand to multiply inherit other brands, which may contain state.
In particular, a brand may extend other concrete brands, while in trait systems, only traits may
be multiply inherited.

Stateful Traits

Stateful traits [Bergel et al. 2008] were designed to address the aforementioned problems with
stateless traits. But, as previously mentioned, this language does not address the problem of a
correct semantics for object initialization in the presence of diamonds. Additionally, stateful
traits do not address the information hiding problem, as they have been designed for maximal
code reuse. In this design, state is hidden by default, but clients can “unhide” it, and may have to
resort to merging variables that are inherited from multiple traits. While this provides a great
deal of flexibility for trait clients, this design does not allow traits to define private state.

3.9 Conclusions
In this chapter, I have shown how a small modification to the rules of traditional multiple in-
heritance can reap great rewards in terms of program reasoning. In particular, the problems
of object initialization and modular typechecking of external methods disappear in a language
that disallows diamond inheritance. I have also shown that the expressiveness of diamond in-
heritance can be recovered through use of the requires construct, even in real-world examples.

The type safety of the language was summarized, a�rming hypothesis I. The modularity
proof in Sect. 3.7.3 is the evidence for hypothesis V. The multiple inheritance design and the
comparison to related systems (Java-style multiple interface inheritance, mixins and traits) il-
lustrated the expressiveness of the Unity design (Sect. 3.5), a design that satisfies hypothesis VI.
Finally, the C++ examples showed the feasibility of a systematic translation of diamond inheri-
tance into Unity multiple inheritance, which supports hypothesis VII.
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Chapter 4

Empirical Results

“Give your evidence,” said the King; “and don’t be nervous, or I’ll have
you executed on the spot.”

Lewis Carroll (Alice’s Adventures in Wonderland)

In this dissertation, I have proposed a combination of nominal and structural subtyping, in order
to obtain the flexibility and expressiveness benefits of the latter typing discipline. To support the
claim that structural subtyping is beneficial, I presented examples and applications to real-world
situations (Sections 2.2 and 2.3).

Many in the research community agree with this view; as mentioned in Chapter 1, structural
subtyping has been extensively studied in a formal setting (e.g., [Cardelli 1988; Bruce et al. 2003;
Fisher and Reppy 1999; Leroy et al. 2004; Malayeri 2009a]). And yet, structural subtyping is not
used in any mainstream object-oriented programming language—perhaps due in part to the
lack of evidence of its utility. Accordingly, I considered the following question: what empirical
evidence could show that structural subtyping can be beneficial?1

4.1 Empirical Criteria
Let us consider the characteristics that a nominally-typed program might exhibit that would
indicate that it could benefit from structural subtyping. First, the programmight systematically
make use of a subset of methods of a type, with no nominal type corresponding to this method
set. A particular such implicit type might be used repeatedly throughout the program. Struc-
tural subtyping would allow these types to be easily expressed, without requiring that the type
hierarchy of the program change. This is particularly beneficial when a nominal hierarchy can-
not be changed (due to lack of access to or control of the applicable source code), as changing a
nominal hierarchy generally requires changes to the intended subtypes. For example, in Java, to
express the fact that class C implements interface I , C ’s source must be modified.2

1The primary technical contributions of this chapter appeared in [Malayeri and Aldrich 2009b].
2This is no accident; fully-general retroactive subtyping leads to inherent modularity problems, particu-

larly when nominal types can be used in runtime dispatch. See Sect. 5.2 for a discussion of these issues.
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Second, there might be methods in two di�erent classes that share the same name and per-
form the same operation, but that are not contained in a common nominal supertype. There
are a number of reasons why such a situation might occur, such as oversight on the part of
the original designers. This is particularly likely when the original code did not need to make
use of the implicit interface induced by these common methods. Alternatively, perhaps such a
need did exist, but programmers resorted to code duplication rather than refactoring the type
hierarchy—possibly because the source code was not accessible or could not be changed. On
the other hand, with structural subtyping, the two classes in question would automatically share
a common supertype consisting of the shared methods.

Or, programs might use the Java reflection method Class.getMethod() to call a method with
a particular signature in a generic manner. For instance, we may wish to write a method m
that can be passed as an argument any object that contains a “String getName()” method. In
nominally typed languages, this can generally be achieved only through dynamic means such as
reflection; in contrast, structural subtyping provides such a capability in a statically-checkable
manner.

Finally, suppose a programmer is faced with the challenge of writing a class C that only
supports a subset of its declared interface I . But, such a super-interface does not exist and cannot
be defined, perhaps due to library use. One possible implementation strategy is simply throw
an exception (e.g., UnsupportedOperationException) when one of C ’s unimplemented methods
is called. In contrast, with structural subtyping, the intended structural super-interface could
simply be used.

With all of these characteristics in mind, I performed several manual and automated anal-
yses on (up to) 29 open-source Java programs. In the case of manual analyses, a subset of the
subject programs was considered. Each of these analyses aimed to answer one question: are
nominally-typed programs using implicit structural types? The result was that indeed theywere;
representing these types explicitly could therefore produce desirable characteristics, such as in-
creased code reuse and decreased maintenance e�ort.

In the empirical evaluation, answers to the following questions were sought:
1. Does the body of a method use only a subset of the methods of its parameters? If so,

structural types could ease the task of making the method more general. (Sect. 4.3)
2. If structural types are inferred for method parameters, do there exist inferred types that

are used repeatedly, suggesting that they represent a meaningful abstraction? (Sect. 4.3.3)
3. How many methods always throw “unsupported operation” exceptions? In such cases,

the enclosing classes support a structural supertype of the declared class type; the latter
contains all of the declared and inherited methods of the class (regardless of their imple-
mentation, or lack thereof ). (Sect. 4.4)

4. What is the nature and frequency of common methods? That is, sets of methods with
identical names and signatures, but that are not contained in any common supertype of
the enclosing classes. (Sect 4.5.1)

5. How many common methods represent an accidental name clash? (Sect 4.5.2)
6. Can structural subtyping reduce some types of code duplication? (Sect. 4.5.3)
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7. Is there empirical evidence of a potential synergy between structural subtyping and ex-
ternal methods? (Sect. 4.6)

8. Do programs use reflection where structural types would be preferable? (Sect. 4.7)
Thus, a variety of facets of existing programs were considered. While none of these aspects
is conclusive on its own, taken together, the answers to the above questions provide evidence
that even programs written with a nominal subtyping discipline could benefit from structural
subtyping. This study provides initial answers to the above questions; further study is needed to
fully examine all aspects of some questions, particularly questions 5 and 6. Additionally, asmen-
tioned in previous chapters, one must bear in mind that structural subtyping is not always the
appropriate solution; there do exist situations in which nominal subtyping is more appropriate
(Sect. 1.3).

To my knowledge, this is the first systematic corpus analysis to determine the benefits of
structural subtyping. The contribution of this chapter are: (1) identification of a number of
characteristics in a program that suggest the use of implicit structural types; and (2) results
from automated and manual analyses that measure the identified characteristics.

4.2 Corpus and Methodology
For this study, the source code of up to 29 open-source Java applications were examined (version
numbers of the applications are provided inAppendix B.1). The full set of subject programswere
used for the automated analyses, while (while for practical considerations)manual analyses were
performed on various subsets of these (ranging from 2 to 8 members). The applications were
chosen from the following sources: popular applications on SourceForge, Apache Foundation
applications, and the DaCapo benchmark suite.3

The full set of programs range from 12 kLOC to 161 kLOC, programs that were selected
based on size, type (library/framework vs. sealed applications4) and domain (selecting for va-
riety). For some of the manual analyses, I favored applications with which I was familiar (as
this aided analysis), but I also aimed for variety in both application type and domain. All of the
manual analyses, including the subjective analyses, were performed by one observer only—the
author. The methodology for each analysis is described in the corresponding section; further
details are available in Appendix B.2.

4.3 Inferring Structural Types for Method Parameters
It is considered good programming practice to make parameters as general as the program al-
lows. Bloch, for example, recommends favoring interfaces over classes in general—particularly
so in the case of parameter types [Bloch 2001]. An analogous situation arises in the generic
programming community, where it is recommended that generic algorithms and types place as

3http://dacapobench.org/
4Here I define a sealed application as a complete program that is not intended to be directly reused.

http://dacapobench.org/
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few requirements as possible on their type parameters (e.g., what methods they should support)
[Musser and Stepanov 1989].

Bloch acknowledges that sometimes an appropriate interface does not exist. For example,
class java.util.Random implements only one (empty) marker interface. In such a case the pro-
grammer is forced to use classes for parameter types—even though it is possible that multiple
implementations of the same functionality could exist [Bloch 2001]. This is a situation where
structural subtyping could be beneficial, as it allows programmers to create supertypes after-
the-fact.

As it is impossible to retroactively implement interfaces in Java, I hypothesized that method
parameter types are often overly specific, and sought to determine both (1) the degree and (2)
the character of over-specificity. To answer question (1), an automated whole-program analysis
to infer structural types for method parameters was performed. Methodology and quantitative
results are described in Sect. 4.3.1. To properly interpret this data, however, we must consider
question (2). Accordingly, the inferred structural types from the previous analysis were manu-
ally examined and the following qualitative question was considered: would changing a method
to have themost general structural type potentially improve themethod’s interface (Sect. 4.3.2)?
Across all applications, the occurrences of inferred structural types that were supertypes of
classes and interfaces of the Java Collections Library were enumerated. Of these, in Sect. 4.3.3
those structural types that a client might plausibly wish to implement while not simultaneously
implementing a more specific nominal type (e.g., Collection, Map, etc.) are presented.

4.3.1 Quantitative Results
The analysis infers structural types for method parameters, based on the methods that were
actually called on the parameters. (For example, a method may take a List as an argument, but
may only use the add and iterator methods.) The analysis, a simple inter-procedural dataflow
analysis, re-computes structural types for each parameter of amethod until a fixpoint is reached.
Structural types were not inferred for calls to library methods (for modularity purposes), nor
were they inferred for primitive types, common types such as String andObject, and cases where
the inferred structural type would have a non-public member. Finally, to simplify the analysis,
structural types were not inferred for objects on the left-hand side of an assignment expression.

The analysis is conservative; in the case where a parameter is not used (or only methods of
class Object are used), no structural type is inferred for it. A parameter may be unused because
(a) it is expected that overridingmethods will use the parameter, or (b) because themethodmay
make use of the parameter when the program evolves, or (c) because it is no longer needed, due
to changes in the program. In the case of method overriding, the analysis ensures that the same
structural types are inferred for corresponding parameters in the entire method family.

The first set of results appear in Table 4.1. In Ant, 9.7% of parameters were unused, 47.2% of
parameters had a primitive type, were String, or were Object. For 0.3% of parameters, a call was
made to a non-public method, which means that a structural type could not be used in this case
(as the visibility of allmembers of a structural interfacemust be public). 1.0%of parameters could
not have a structural type inferred due to the fact that the associated method was overriding a
method in a library. Finally, for 15.8% of parameters, a structural type could not be inferred, due
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LOC Unused Primitive Non-public Library Called Assigned % Inferrable % Inferrable
type call override library of total of candidates

Ant 62k 9.7% 47.2% 0.3% 1.0% 9.1% 15.8% 17.0% 40.5%
antlr 42k 16.7% 50.2% 0.4% 0.2% 8.1% 9.0% 15.5% 47.6%
Apache coll 26k 8.4% 55.0% 2.1% 6.0% 1.2% 16.4% 11.0% 38.4%
Areca 35k 9.7% 39.4% 0.1% 4.8% 9.3% 20.5% 16.1% 35.1%
Cayenne 95k 8.3% 47.0% 0.5% 3.1% 8.1% 11.2% 21.9% 53.2%
Columba 70k 11.6% 40.8% 0.6% 19.8% 5.5% 9.0% 12.6% 46.4%
Crystal 12k 18.0% 4.1% 0.2% 17.9% 7.4% 22.3% 30.1% 50.3%
DrJava 59k 13.5% 42.5% 0.8% 13.2% 7.8% 7.8% 14.3% 47.9%
Emma 23k 20.5% 42.3% 0.4% 0.9% 7.4% 8.8% 19.6% 54.6%
freecol 62k 8.7% 38.5% 0.0% 11.5% 3.9% 11.8% 25.5% 61.9%
hsqldb 62k 14.4% 61.3% 6.4% 3.9% 1.0% 4.8% 8.2% 58.5%
HttpClient 18k 14.3% 55.7% 0.1% 0.3% 5.7% 5.1% 18.8% 63.5%
jEdit 71k 11.8% 56.9% 1.0% 9.7% 4.9% 8.5% 7.2% 35.1%
JFreeChart 93k 8.1% 45.9% 0.4% 1.4% 14.3% 10.4% 19.6% 44.2%
JHotDraw 52k 18.3% 32.3% 0.0% 7.7% 11.1% 10.1% 20.5% 49.2%
jruby 86k 19.7% 27.2% 0.4% 0.8% 3.0% 16.0% 32.9% 63.4%
jung 26k 8.1% 33.8% 0.1% 4.8% 22.9% 12.0% 18.2% 34.3%
LimeWire 97k 13.7% 45.8% 1.4% 7.1% 7.9% 6.7% 17.5% 54.5%
log4j 13k 12.3% 46.8% 0.7% 4.7% 6.6% 10.0% 18.8% 53.1%
Lucene 24k 12.3% 58.3% 0.6% 0.1% 4.9% 14.8% 9.2% 31.8%
OpenFire 90k 14.0% 39.7% 0.2% 6.1% 7.6% 10.9% 21.4% 53.5%
plt collections 19k 15.8% 19.5% 0.3% 3.0% 6.8% 42.1% 12.4% 20.3%
pmd 38k 31.3% 32.7% 0.0% 1.3% 6.5% 8.4% 19.7% 56.9%
poi 50k 15.9% 69.8% 0.7% 3.3% 1.3% 2.1% 6.7% 66.2%
quartz 22k 15.4% 54.2% 0.0% 0.8% 5.9% 5.6% 18.2% 61.2%
Smack 40k 17.2% 45.3% 0.2% 1.6% 12.5% 8.1% 15.1% 42.2%
Struts 28k 6.3% 58.1% 0.1% 4.4% 5.1% 18.9% 7.1% 22.8%
Tomcat 126k 13.6% 54.6% 0.1% 3.2% 3.7% 11.0% 13.8% 48.3%
xalan 161k 10.5% 56.5% 1.3% 2.7% 2.5% 10.9% 15.7% 54.1%

Average 13.7% 44.9% 0.7% 5.0% 7.0% 12.0% 16.7% 47.9%

Table 4.1: Categories of method parameters when running structural type inference over 29
programs. “Unused” denotes the percentage of parameters that were not transitively used in
the program, “primitive type” is the percentage of parameters that were either a primitive type,
or were String or Object, “non-public call” is the percentage of parameters on which a non-
public method was called (in which case a structural type could not be inferred), and “library
override” is the percentage of paramters for which a structural type could not be inferred due to
the fact that the method was an override of a library method. “Called library” is the percentage
of parameters for which a structural type could not be inferred because a library method was
transitively called and “assigned” is the percentage of parameters that were assigned to a local
or member variable and did not have structural types computed. “Percent inferrable of total”
is the percentage of all parameters that could have a structural type inferred, while “percent
inferrable of candidates” is the percentage of inferrable parameters, when considering only
those parameters for which a structural type would be meaninful.
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to the fact that the parameter was assigned to a local variable or member variable (this was a
limitation of the analysis).

Considering all parameters, an average of 16.7% could have a structural type inferred. How-
ever, if we exclude parameters that fall into the categories in columns 3–6 (i.e., unused param-
eters, primitive types, non-public calls, and library overrides), then an average of 47.9% of pa-
rameters could have a structural type inferred. This second figure is more relevant, as it is not
meaningful to infer structural types for parameters that fall into the aforementioned categories.

The analysis also computed some characteristics of these structural types that were inferred;
results are displayed in Table 4.2. An average of 94.0% of parameters were declared with an
overly precise nominal type (i.e., the nominal type contained more methods than were actually
needed). For an average of 91.8% of the inferred parameters a corresponding nominal type did
not exist in the program that would make the parameter type as general as possible (i.e., a nom-
inal type that contained only those methods transitively called on the object). There were an
average of 3.7 methods in the inferred structural types, across all programs, while there were
an average of 41.7 methods in the corresponding nominal types. Finally, there was an average
median of 1.2 structural types inferred for each nominal type in the program, and an average
maximum of 23.4 structural types.

Note that the data shows that inferred structural types do not have many methods,5, while
the corresponding nominal types have quite a few methods. This shows that there is quite a
large degree of over specificity—more than a full order of magnitude—in addition to the large
percentage of overly specific parameters. This is likely due to the overhead of naming and defin-
ing nominal types, as well as the lack of retroactive interface implementation. The analysis also
showed that when nominal types were as general as possible, they had very few members—one
or two on average. This is in accordance with previous work which found that interfaces are
generally smaller than classes [Tempero et al. 2008].

Additional data. For a given nominal type, there were not many corresponding structural
types (2.5 on average, a median of 1.2). The data followed a power law distribution, with an
average maximum of 24; that is, small values were heavily represented, but there were also a
few large values. The low median suggests that the overhead of naming structural types is not
necessarily high; it is plausible that programmers would be able to name and use structural types
for around half of the nominal parameter types.

Finally, if we were to define new interfaces everywhere possible, the average increase in the
number of interfaces is 313%, the median is 287%, and the maximum is 1000%. This illustrates
the infeasibility of defining new nominal types for the inferred structural types. Note that only
those interfaces for which the implements clause of a class could bemodified (i.e., those classes in
the program’s source) were considered; in general, the situation is even worse, as programmers
may wish to define new supertypes for types contained in libraries.

5There is one outlier in the data; in pmd, inferred structural types had 29.5 methods on average. This is
due to the use of the visitor design pattern—all visitmethods are accessible from the top visitor acceptmethod,
since each override calls a specific visitmethod.
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LOC % Inferrable % Overly % Structural Avg methods/ Avg methods/ Struct types/nominal
specific needed structural type nominal type median max

Ant 62k 40.5% 98.6% 97.7% 2.1 36.0 1 27
antlr 42k 47.6% 100.0% 98.8% 2.2 14.0 2 9
Apache coll 26k 38.4% 89.5% 83.0% 2.0 16.0 1 11
Areca 35k 35.1% 99.1% 97.4% 2.8 35.9 1 35
Cayenne 95k 53.2% 96.3% 92.6% 2.4 31.3 2 27
Columba 70k 46.4% 99.6% 98.8% 1.9 51.6 1 19
Crystal 12k 50.3% 98.8% 96.6% 3.2 15.7 1 19
DrJava 59k 47.9% 89.5% 87.1% 3.2 56.3 1 20
Emma 23k 54.6% 88.2% 87.8% 3.4 17.1 1 9
freecol 62k 61.9% 98.6% 97.9% 2.6 84.8 1 57
hsqldb 62k 58.5% 99.4% 99.4% 1.7 48.9 2 34
HttpClient 18k 63.5% 96.3% 94.8% 3.5 27.0 1 17
jEdit 71k 35.1% 95.5% 95.5% 2.2 119.6 1 20
JFreeChart 93k 44.2% 97.7% 93.5% 3.3 53.9 1 35
JHotDraw 52k 49.2% 100.0% 97.2% 3.0 57.0 2 19
jruby 86k 63.4% 98.1% 97.5% 6.9 66.1 1 85
jung 26k 34.3% 96.3% 88.3% 1.8 32.1 1 15
LimeWire 97k 54.5% 98.5% 94.9% 2.1 34.6 1 21
log4j 13k 53.1% 96.5% 95.0% 2.3 56.7 1 6
Lucene 24k 31.8% 80.5% 77.4% 1.6 13.5 1.5 8
OpenFire 90k 53.5% 99.4% 96.7% 2.4 37.1 1 45
plt collections 19k 20.3% 58.2% 59.3% 1.5 39.8 1 25
pmd 38k 56.9% 72.9% 69.1% 29.5 48.2 2 23
poi 50k 66.2% 88.0% 87.0% 1.9 22.8 1 8
quartz 22k 61.2% 100.0% 99.1% 2.2 36.6 1 11
Smack 40k 42.2% 100.0% 91.6% 4.4 29.2 1 13
Struts 28k 22.8% 96.4% 96.4% 2.1 32.4 1 13
Tomcat 126k 48.3% 96.8% 96.3% 4.5 37.6 2 32
xalan 161k 54.1% 96.4% 96.0% 5.3 56.5 1 16

Average 47.9% 94.0% 91.8% 3.7 41.7 1.2 23.4

Table 4.2: Results of running structural type inference. Percent inferrable is the percentage of
candidate parameters that could have a structural type inferred (i.e., last column in Fig. 4.1),
percent overly specific is the percentage of the inferrable parameters that have an overly spe-
cific nominal type, percent structural needed is the percentage of the inferrable parameters for
which a most general nominal type does not exist, average methods per structural type is the
average number of methods in the inferred structural types, average methods per nominal type
is the average number of methods in nominal types that appear as parameter types (includ-
ing inherited methods), and median/maximum structural types per nominal are the median
and maximum, respectively, of the number of inferred structural types corresponding to each
nominal type.

4.3.2 Qualitative Results

Though the results show that many parameters are overly specific, it is not necessarily a good
design to make every parameter as general as possible. This is because a method might be cur-
rently only using a particular set of methods, but later codemodificationsmaymake it necessary
to use a larger set; amore general type could hinder program evolution. On the other hand,more
general types make methods more reusable, which aids program evolution. For this reason, a
refactoring to structural types (or even structural type inference) cannot be a fully automated



100 Chapter 4. Empirical Results

process—programmers must consider each type carefully, keeping in view the kinds of program
modifications that are likely to occur. Additionally, for some structural types, there may ever be
only one corresponding nominal type, in which case using a structural type is of limited utility.

Accordingly, an empirical question was considered: would changing a given method to have
the most general structural types for its parameters make the method more general in a way
that could improve the program? To determine this, I inspected each method and asked two
questions. First, does the inferred parameter type S generalize the abstract operation performed
by themethod, as determined by themethod name? Second, does it seem likely that there would
be multiple subtypes of S?

Two applications were studied: Apache Collections (a collections library) and Crystal (a
static analysis framework). Of methods for which a structural type was inferred on one or more
parameters, I found that 58% and 66%, respectively, would be generalized in a potentially useful
manner if the inferred types were used.

For example, in Apache Collections, in the class OnePredicate (a predicate class that
returns true only if one of its enclosing predicates returns true), the factory method
getInstance(Collection) had the structural type { iterator(); size(); } inferred for its parame-
ter. This would make the method applicable to any collection that supported only iteration and
retrieving the collection size, even if it didn’t support collection addition and removal methods.
There were 25 other methods in the library that used this structural type. Another example is
the method ListUtils.intersection which takes two List objects. However, the first List need only
have a contains method, and the second List need only have an iterator method (for this latter
parameter, the interface Iterable could be used). There were also 8methods that took an Iterator
as a parameter, but never called the removemethod. With a structural type for the method, the
type would clearly specify that a read-only iterator can be passed as an argument.

In Crystal, two methods took a Map parameter that used only the get and put methods.
Converting the method to use this structural type would make it applicable to a map that did
not support iteration (such a type exists in Apache Collections, for example). Also, there were
11 methods that use only the methods getModi�ers() and getName() on an IBinding object (an
interface in the Eclipse JDT). Replacing the nominal type with a structural type would allow the
program to substitute a di�erent “bindings” class that supported only those two methods.

Of course, for some of these structural types, there may not be a large number of classes
that implement its methods but not all of the methods of a more specific nominal type, e.g.,
Collection. However, I believe that all of the aforementioned types representmeaningful abstrac-
tions. Furthermore, since it is conceivable that a programmer may define a class implementing
that abstraction, using these more general types would increase the applications’ reusability.

Translation to Whiteoak

Using the inference algorithm, I also developed an automated translation of programs from Java
to Whiteoak [Gil and Maman 2008], a research language that extends Java with support for
structural subtyping. I performed this translation on two programs: Apache Collections and
Lucene, confirming the correctness of the analysis and demonstrating its practical use.
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Methods in type Uses Description

get(Object); containsKey(Object); 168 Read-only non-iterable map; for instance,
a read-only hashtable6

iterator(); isEmpty(); size(); 114 Read-only iterable collection that knows
its size; for instance, a read-only list

add(Object); addAll(Collection); 101 Write-only collection; for instance, a log
put(Object, Object); 55 Write-only map
hasNext(); next(); 28 Read-only iterator
contains(Object); 21 Read-only collection that does not support

iteration; for instance, a read-only hashset
get(Object); put(Object, Object); 15 Non-iterablemap; for instance, a hashtable
contains(Object); iterator(); size(); 11 Read-only iterable collection that knows

its size and can be polled for the exis-
tence of an element; for instance, an iter-
able hashset

add(Object); contains(Object); iterator(); size(); 10 Same as above, but that also supports
adding elements

iterator(); size(); toArray(Object[]); 8 Read-only collection that can be converted
to an array; for instance, a read-only array

Table 4.3: Uses of Java Collections classes across 29 programs, as inferred using the parameter
structural type inference. (Erasures are used in lieu of generic types.)

4.3.3 Uses of Java Collections Library
I next considered inferred structural types that were supertypes of interfaces and classes in the
Java Collections Library. Over all applications, there were 67 distinct types in total, though not
all appeared to express an important abstraction. I made a conservative subjective finding that
at least 10 of these types were potentially useful; these are displayed in Table 4.3, along with a
description of possible implementations. For instance, there were 168 inferred parameters that
used only the get() and containsKey() methods of Map. It would be useful to have a type cor-
responding to this abstraction, particularly if the map is immutable and must have its contents
set at creation-time. A type consisting of these twomethods would also be useful to support the
pattern that once a map is populated, clients should not make modifications.

The relatively high number of occurrences of each of these structural types suggests their
utility, even though the types contain few methods. It further shows that programs routinely
make use of types that the library designers either did not anticipate or chose not to support.

In summary, the data shows that programs make repeated use of many implicit structural
types. A language that would allow defining these types explicitly could be beneficial, as it can
help programmers make their methods more generally applicable.

4.3.4 Related work
Forster [Forster 2006] and Steimann [Steimann 2007] have described experience using the
Infer Type refactoring, which generates new interfaces for inferred types and replaces uses of
overly specific types with these interfaces. This analysis is more general than the one used
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here, because it considers all type references, not just parameter types. However, the refac-
toring is limited by the fact that classes in libraries cannot retroactively implement new inter-
faces. Steimann found that when applying this refactoring, the number of total interfaces almost
quadrupled—an increase of 369%.7 In his analysis, there were an average of 2.8 and 4.5 refer-
ence per inferred type, respectively, in the two studied applications, DrawSWF and JHotDraw.
By comparison, in DrawSWF, I found that structural types were used in an average of 2.7 param-
eters; for JHotDraw this value was 3.3, which di�ers from Steimann’s result. This discrepancy is
likely due to the fact that he considered types other than those of parameters. Additionally, both
Forster and Steimann found that the number of variables typed with each new inferred interface
followed a power law distribution, which is what I also found for parameters.

Summary of results

In summary, the parameter analysis suggests that there are many nominal types that could be
made more general using structural subtyping, and most of these were qualitatively determined
to be useful. Also, the inferred structural types had an order of magnitude fewer methods than
the corresponding nominal types. It is infeasible to define new nominal types to correct this,
due to the number of structural types inferred per nominal type and the resulting percentage
increase in interfaces.

4.4 Throwing “Unsupported Operation” Exceptions
In the Java Collections Library, there are a number of “optional” methods whose documentation
permits them to always throw an exception. This decision was due to the practical consideration
of avoiding an “explosion” of interfaces; the library designers mentioned that at least 25 new
interfaces would be otherwise required [Sun Microsystems 2003].

To determine if such super-interfaces would be useful in practice, the methods in the sub-
ject programs that unconditionally throw an UnsupportedOperationExceptionwere totalled. The
program that had the most suchmethods was Apache Collections: there were 148methods that
unconditionally throw the exception (out of 3669 total methods, corresponding to 4%). Next,
those methods that were overriding a method in the Java Collections Library were considered.
To encode these optional methods directly would require 18 additional interfaces. There are
only 27 interfaces defined in the library, so this represents a 67% increase. Note that this is a
conservative estimate, as interactions between classes (e.g., an Iterable returning a read-only
Iterator) were not considered. A selection of these structural super-interfaces is summarized in
Table 4.4. For instance, there were 50 iterator classes that did not support the remove() opera-
tion, and 19 subclasses of Collection that supported a read-only interface.

Note that, with the exception of the read-only iterator, the sets of interfaces in Tables 4.4 and
4.3 are distinct from one another (though some are subtypes). This is likely due to the fact that
di�erent applications use di�erent subsets of the methods of a class.

7This di�ers slightly from our average of 313%, though this di�erence is likely due to the fact that Steimann
considered only two applications.
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Number of classes

Read-only Iterator 50
Read-only Collection 19
Read-only Map 9
Read-only Map.Entry 6
Read-only ListIterator 6
Collection supporting everything but removal 5
Map supporting everything but removal 4
Collection supporting only read and removal methods 1
Collection supporting iteration, addition, and size only 1
ListIterator supporting read, add, and remove (but not set()) 1
ListIterator supporting only read and set() operation 1
Map supporting read, put, and size only 1
Map supporting read and put, but not size or removal 1
Map supporting everything but entrySet(), values() and containsValue() 1

Table 4.4: A selection of the structural interfaces “implemented” by classes in the subject
programs once methods unconditionally throwing an UnsupportedOperationException are re-
moved. (Actual method sets are omitted to conserve space.)

Structural subtyping could be helpful for statically ensuring that “unsupported operation”
exceptions cannot occur, as it would allow programmers to express these super-interfaces di-
rectly.

4.5 CommonMethods
Inmy experience, there are situations where two types share an implicit common supertype, but
this relationship is not encoded in the type hierarchy. For example, suppose two classes both
have a getName method with the same signature, but there does not exist a supertype of both
classes containing this method. I call getName, andmethods like it, commonmethods. Common
methods can occur when programmers do not anticipate the utility of a shared supertype or
when two methods have the same name, but perform di�erent operations; e.g., Cowboy.draw()
and Circle.draw() [Magnusson 1991].

Accordingly, this section aims to answer three questions: (1) howoften do commonmethods
occur, (2) howmany commonmethods represent an accidental name clash, and (3) do common
methods result in code clones?

4.5.1 Frequency
A simple whole-program analysis to count the number of commonmethods in each application
was performed. Only public instance methods were considered (resulting in slightly di�erent
data than that previously presented [Malayeri and Aldrich 2008a]). Results are in Table 4.5.
Overall, common methods comprise an average of 19% of all public instance methods. That is,
for 19% of methods, there existed another method with the same name and signature and the
method was not contained in a common supertype of the enclosing types.
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LOC Number of Types with >1 Percentage % common Avg # classes/
types common method methods common signature

Ant 62k 945 65 6.9% 31.3% 3.7
antlr 42k 226 26 11.5% 23.6% 2.7
Apache Collections 26k 550 19 3.5% 7.3% 2.7
Areca 35k 362 30 8.3% 15.4% 2.7
Cayenne 95k 1415 104 7.3% 18.1% 2.8
Columba 70k 1232 48 3.9% 17.3% 3.1
Crystal 12k 211 4 1.9% 5.1% 2.9
DrJava 59k 927 65 7.0% 12.1% 2.6
Emma 23k 443 22 5.0% 18.7% 3.4
freecol 62k 569 55 9.7% 20.6% 2.7
hsqldb 62k 355 31 8.7% 19.5% 2.6
HttpClient 18k 231 19 8.2% 15.0% 2.6
jEdit 71k 880 40 4.5% 11.7% 2.5
JFreeChart 93k 789 301 38.1% 39.5% 3.9
JHotDraw 52k 616 59 9.6% 19.0% 2.8
jruby 86k 997 83 8.3% 15.6% 3.1
jung 26k 531 24 4.5% 19.3% 2.4
LimeWire 97k 1689 88 5.2% 17.7% 3.1
log4j 13k 201 4 2.0% 13.6% 2.4
Lucene 24k 398 21 5.3% 13.4% 2.6
OpenFire 90k 1039 110 10.6% 19.0% 3.0
plt collections 19k 812 60 7.4% 7.5% 2.8
pmd 38k 478 24 5.0% 12.0% 2.7
poi 50k 539 62 11.5% 20.9% 2.6
quartz 22k 158 24 15.2% 20.0% 2.4
Smack 40k 847 115 13.6% 23.5% 3.3
Struts 28k 609 158 25.9% 45.2% 2.7
Tomcat 126k 1727 234 13.5% 32.6% 3.6
xalan 161k 1223 94 7.7% 16.1% 2.9

Average 9.3% 19.0% 2.9

Table 4.5: Commonmethods for each application. Number of types indicates the total number
of types in the application, types with greater than one common method is the number of types
that share more than one common method, percentage is the percentage of this compared
to the total number of types, percent common methods is the percentage of public instance
methods that is a commonmethod, and average number of classes per common signature is the
average number of classes for each common method signature.

The number of types that share at least two common methods with another type was also
computed; there were an average of 9% of such types. These are the cases in which a structural
supertype is most likely to be useful. This high percentage indicates that there are a number of
implicit structural types in most applications.

For example, in Apache Collections, Unmodi�ableSortedMap and OrderedMap share the
methods �rstKey() and lastKey(). And, AbstractLinkedList and SequencedHashMap share the
methods getFirst() and getLast(). Finally, BoundedMap and BoundedCollection have the com-
mon methods isFull() andmaxSize().

In Lucene, a document indexing and search library, RAMOutputStream and RAMInputStream
both support the seek(), close(), and getFilePointer()methods, which might be useful to move
to a supertype. Also, the classes PhraseQuery and MultiPhraseQuery both support the methods
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add(Term), getPositions(), getSlop(), and setSlop(int).

4.5.2 Accidental Name Clashes
Of course, to interpret this data, we must consider cases where the common methods have the
samemeaning, and where callers are likely to call themethods with the same purpose inmind. If
two methods have the same meaning, it might be useful to define a structural type consisting of
that method. Two methods are defined as “having the same meaning” if they perform the same
abstract operation, taking into account (a) the semantics of themethod, and (b) the semantics of
the enclosing types. This determination was made by examining the source code, using javadoc
where available.

Two applications were studied: Apache Collections and Lucene. In Collections, under con-
dition (a), there were no methods that had the same signature but performed di�erent abstract
operations. However, therewere 2 cases (1%of all commonmethods)where themethods had the
same meaning, but the enclosing classes did not appear to be semantic subtypes of some com-
mon supertype containing that method; i.e., condition (b) was not satisfied. For example, the
classes ChainedClosure and SwitchClosure both had a getClosures()method, but ChainedClosure
calls each of these closures in turn, while SwitchClosure calls that closurewhose predicate returns
true.

In Lucene, there were 42 instances of methods that had the same signature, but did not
have the same meaning (19% of all common methods). In 32 of these cases, the methods were
actually performing a di�erent abstract operation. For example, HitIterator.length() returned
the number of hits for a particular query, while Payload.length() returned the length of the
payload data. An additional 10 cases did not satisfy condition (b) above. For example, in a high-
level class IndexModi�er, there were several cases where amethodm performed some operation,
then called IndexWriter.m, the latter performing a lower-level operation. So, the semantics of
the methods were similar, but the semantics of each class was di�erent.

Overall, the data is promising, as it indicates that most common methods have the same
meaning and would benefit from being contained in a structural supertype—90% on average,
across both applications. Structural subtyping would allow these methods to be called in a
generic manner, without the need to create additional interfaces.

4.5.3 Code Clones
I hypothesized that common methods can lead to code clones, as there is a common structure
that is not expressed in the type system. To determine this, two applications were examined:
Eclipse JDT and Azureus.

In the Eclipse Java Development Tools (JDT), the classes FieldAccess and SuperFieldAccess
have no superclass other than Expression. The same problem occurs withMethodInvocation and
SuperMethodInvocation, and ConstructorInvocation and SuperConstructorInvocation. I found 44
code clones involving these types (though somewere only a few lines long). An example of a code
clone involvingMethodInvocation and SuperMethodInvocation appears in Fig. 4.1. Another code
clone involving SuperConstructorInvocation and ConstructorInvocation appears in Fig. 4.2.
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private InlineMethodRefactoring(ICompilationUnit unit,
MethodInvocation node, int offset, int length)

{
this(unit, (ASTNode)node, offset, length);

fTargetProvider= TargetProvider.create(unit, node);

fInitialMode= fCurrentMode= Mode.INLINE_SINGLE;

fDeleteSource= false;

}

private InlineMethodRefactoring(ICompilationUnit unit,
SuperMethodInvocation node, int offset, int length)

{
... // same method body as above

}

Figure 4.1: Example of code duplication in the Eclipse JDT. Structural subtyping could elimi-
nate this duplication.

Similarly, in the Eclipse SWT (Simple Windowing Toolkit), there are 13 classes (such as
Button, Label, and Link) with themethods getText and setText that get and set themain text for the
control. But, there is no common IText interface. Azureus, a BitTorrent client, is an application
that requires the ability to call these methods in a generic fashion. Azureus is localized for a
number of languages, which can be changed at runtime. Accordingly, there are several instances
of code similar to that of Fig. 4.3.

Note that some of this code duplication might be avoided if the class hierarchy were refac-
tored. Obviously, this is not always possible—e.g., Azureus cannot modify SWT.

The code duplication in these examples can be dramatically reduced by taking advantage of
structural type. For example, Fig. 4.4 shows how the code block of Fig. 4.3a could be re-written
with Unity structural types.

In summary, commonmethods can lead to undesirable code duplication. Structural subtyp-
ing can help eliminate this problem, without refactoring the class hierarchy.

4.6 Cascading instanceof Tests
I considered the question of whether structural subtyping could provide benefits if used in con-
junction with other language features—external methods in particular.

Since Java does not support any form of external dispatch, programmers often compensate
by using cascading instanceof tests in client code. This programming pattern is problematic
because it is tedious, error-prone, and lacks extensibility [Clifton et al. 2006]. Many instances
of this pattern could be re-written to use external methods, but a problem arises if an instanceof
test is performed on an expression of type Object.
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case ASTNode.SUPER_CONSTRUCTOR_INVOCATION: {
SuperConstructorInvocation superInvocation= (SuperConstructorInvocation) parent;

IMethodBinding superBinding= superInvocation.resolveConstructorBinding();
if (superBinding != null) {

return getParameterTypeBinding(node, superInvocation.arguments(), superBinding);
}
break;

}
case ASTNode.CONSTRUCTOR_INVOCATION: {

ConstructorInvocation constrInvocation= (ConstructorInvocation) parent;

IMethodBinding constrBinding= constrInvocation.resolveConstructorBinding();
if (constrBinding != null) {

return getParameterTypeBinding(node, constrInvocation.arguments(), constrBinding);
}
break;

}

Figure 4.2: Code duplication involving SuperConstructorInvocation and ConstructorInvocation.
Only the highlighted lines of code di�er in the two blocks.

To illustrate this, let us consider how instanceof tests would be translated to external meth-
ods. Suppose we have a cascaded instanceof, with each case of the form “[else] if expr instanceof
Ci { blocki }.” This would be translated to an external method f defined on expr’s class, and
overridden for each Ci by defining Ci . f { blocki }. The top part of Fig. 4.5b shows the exter-
nal methods translated from the instanceof tests in Fig. 4.5a (but without an external method
defined on Object, the type of query, which I will come to in a moment).

A problem arises when the target expression in the instanceof test is of type Object, as an ex-
ternal methodmust be defined on Object, then overridden for each type tested via an instanceof.
The problem with this solution is that it pollutes the interface of Object. In many cases, the
implementation of this method performs a generic fallback operation that does not make sense
for an object of arbitrary type—but this method becomes part of every class’s interface and im-
plementation. (While it is also possible to pollute the interface of an arbitrary class C , this is
generally less severe, and detecting such a situation requires application-specific knowledge.)

To determine the prevalence of this pattern, instanceof tests in 8 applications were manu-
ally examined. The result of this analysis was that 13% to 54% (with an average of 26%) were
performing a cascading instanceof test on an expression of type Object (see Table 4.6).

Structural subtyping provides one solution to this problem. The type of the expression on
which the instanceof is performed would be changed from Object to the structural type con-
sisting of the newly defined external method f . That is, instead of making the target operation
applicable to an arbitrary object, it would be applicable to only those objects that containmethod
f . Figure 4.5b defines an external method toQuery on String and Query, then uses the structural
type { toQuery(...) } as the type for the List elements. The advantage of using structural subtyping
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if (widget instanceof Label)

((Label) widget). setText(message);

else if (widget instanceof CLabel)

((CLabel) widget). setText(message);

else if (widget instanceof Group)

((Group) widget). setText(message);

... // 5 more items

if (widget instanceof CoolBar) {
CoolItem[] items = ((CoolBar)widget).getItems();

for(int i = 0; i < items.length; i++) {

Control control = items[i].getControl();

updateLanguageForControl(control);

}
} else if (widget instanceof TabFolder) {

... // same code as highlighted above
} else if (widget instanceof CTabFolder) {

... // same code as highlighted above
... // 5 more items

(a) (b)

Figure 4.3: Code excerpts fromAzureus, illustrating an awkward coding style and duplication.

let
widget: Widget(setText: ()⇒ string→ unit) = . . .

in
widget.setText message

Figure 4.4: Code block of Fig. 4.3a re-written in Unity.

is that the main code can call this method uniformly.8

Thus, for many applications, there is a potential benefit to using structural subtyping in a
language that supports external dispatch; an average of 26% of instanceof tests could be elimi-
nated.

Note that since we refined the element type of the List object, this obviates the need for the
error condition—an additional advantage. However, it is not always possible to refine types to a
structural type; an expression may simply have type Object, due to the loss of type information.
In such a case, it would be possible to re-write the code using a structural downcast. Though the
use of casts would not be eliminated, there are still several advantages to this implementation
style. First, the external methods could be changed without having to also modify the method
that uses them. Also, if subclasses are added, a new internal or external method could be defined
for them. Finally, since the proposed cast would use a structural type, it would be more general,
applying to any type for which the method were defined.

8Note that it would not be possible to make use of a nominal interface containing the method f to call the
method in a generic manner. Recall that for external methods to be modular, once a method is defined as an
internal method, it cannot be implemented with an external method; see Sect. 2.4.2.
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Original Java Code

List qlist = ...
Object query = qlist.get(i);
Query q = null;
if (query instanceof String)

q = parser.parse((String) query);
else if (query instanceof Query)

q = (Query) query;
else

System.err.println("Unsupported query type");

Unity Re-Write

method string.toQuery: ()⇒ QueryParser→ Query =
fun parser: QueryParser --> parser.parse this

method Query.toQuery: ()⇒ QueryParser→ Query =
fun _ --> this

. . .
using toQuery in

type QueryConvert = Object(toQuery: ()⇒ QueryParser→ Query)
List<QueryConvert> qlist = . . .
let q : Query = qlist.get(i).toQuery(parser)

Figure 4.5: Rewriting instanceof using structural subtyping and external dispatch. At the top is
the original code; below is the translated code, which defines the structural type QueryConvert
and external methods on Query and String. Note that the translated code eliminates the need
for the error condition.

4.7 Java Reflection Analysis
I aimed to answer the following question: do Java programs use reflectionwhere structural types
would be more appropriate? Uses of reflection likely fall into two categories: cases where dy-
namic class instantiation and classloading are used, and cases where the type system is not suf-
ficiently powerful to express the programming pattern used. It is di�cult to eliminate reflection
in the first category, as these uses represent an inherently dynamic operation. However, some
of the uses in the second category could potentially be rewritten using structural downcasts.
Reducing the uses of reflection is beneficial as it decreases the number of runtime errors and
can improve performance.

Across the 29 subject programs, an average of 32% of uses of the reflection method
Class.getMethod could be re-written using a structural downcast (see Table 4.7). A structural
downcast is preferable to reflection because type information is retained when later calling
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instanceof Expression of type Object Percentage

Apache collections 225 75 33%
Areca 77 10 13%
JHotDraw 229 50 22%
log4j 54 8 15%
Lucene 56 10 18%
PLT collections 119 64 54%
Smack 56 20 36%
Tomcat 959 158 16%

Average 26%

Table 4.6: Total instanceof tests, the number present in cascading if statements that perform
the test on an expression of type Object, and that number expressed as a percentage. Code
written using this pattern can be translated to a languagewith structural subtyping and external
dispatch.

methods, as opposed to Method.invoke, which is passed an Object array and must typecheck
the arguments at runtime. Additionally, it is easier to combine sets of methods in a downcast;
when using reflection, each method must be selected individually. There is also the potential to
makemethod callsmore e�cient, which is di�cult with reflection, due to the low-level nature of
the available operations. (For example, the languageWhiteoak [Gil and Maman 2008] supports
e�cient structural downcasts.)

In summary, the high percentage of reflection uses that can be translated to structural down-
casts suggests that programmersmay sometimes use reflection as aworkaround for lack of struc-
tural types.

4.8 Summary and Conclusions

In summary, I found that a number of di�erent aspects of Java programs suggest the potential
utility of structural subtyping. While some of the results are not as strong as others, taken to-
gether the data suggests that programs could benefit from the addition of structural subtyping,
even if they were written in a nominally-typed language. In particular, structural subtyping has
the potential be used to improve the reusability and maintainability of existing object-oriented
programs.

This chapter provided evidence to support hypothesis II. In particular, I presented evi-
dence suggesting that structural subtyping could help make method parameters more general
(Sect. 4.3). There was a high frequency of commonmethods (Sect 4.5.1), and a low frequency of
common methods representing an accidental name clash (Sect 4.5.2). Finally, we saw evidence
that some cases of code duplication could be avoided with structural subtyping (Sect. 4.5.3).

Additionally, I showed that existing language designs can lead to coding patterns that defer
errors to runtime, coding patterns that could be re-written with structural subtyping to pro-
vide more static typechecking in these situations. In particular, some Java runtime exceptions
(i.e., OperationUnsupportedException) can be eliminated in a straightforward manner with a de-
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Uses of getMethod() Could be rewritten Percentage

Ant 36 9 25%
Apache Collections 4 3 75%
Areca 1 0 0%
Azureus 27 6 22%
Cayenne 28 4 14%
columba 10 8 80%
DrJava 7 2 29%
emma 2 1 50%
freecol 1 1 100%
hsqldb 2 0 0%
HttpClient 8 6 75%
jedit 10 7 70%
jfreechart 1 1 100%
JHotDraw 26 1 4%
jruby 17 6 35%
jung 1 1 100%
log4j 4 1 25%
openfire 2 0 0%
pmd 2 2 100%
quartz 3 2 67%
struts 2 0 0%
tomcat 37 10 27%
xalan 28 11 39%

Totals 259 82 32%

Table 4.7: Uses of the reflection method Class.getMethod, and the number and percentage
that could be re-written using a structural downcast. Programs that did not call this method
are omitted. The percentage entry in the last row is calculated by dividing the total “could be
rewritten” by the total “uses of getMethod.”

sign that uses structural subtyping (Sect. 4.4). Additionally, some uses of Java reflection can be
converted to uses of structural subtyping (Sect. 4.7). Together, this data supports hypothesis III.

Finally, the study in Sect. 4.6 showed the synergy between structural subtyping and external
dispatch: hypothesis IV. The data showed that many cases of cascading instanceof tests in Java
programs can improved if re-written using a combination of structural subtyping and external
methods, a re-writing which allows an existing class to be adapted to a new context.

I hope that the results of this study will be used to inform designers of future programming
languages, aswell as serve as a starting point for further empirical studies in this area. Ultimately,
one must study the way structural subtyping is eventually used by mainstream programmers;
this work serves as a step in that direction.
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Chapter 5

Additional RelatedWork

I have discussed the most closely related work in each appropriate chapter (see Sections 2.6,
2.4.2, 3.3, 3.8, and 4.3). In this chapter, I provide further detail and describe additional related
work on the topics of structural subtyping, retroactive abstraction, external/multimethod dis-
patch, multiple inheritance, and related empirical studies.

5.1 Structural Subtyping
In Sect. 2.6, I showed that although languages with only nominal subtyping (such as Java) can
be extended to provide support for multiple dispatch, these languages do not have the flexibility
of languages with structural subtyping. In particular, such languages require programmers to
declare (in advance) all the types they wish to use as abstractions, regardless of whether those
types are required for dispatch.

Intersection types are useful for expressing combinations of types [Coppo and Dezani-
Ciancaglini 1978; Coppo et al. 1979; Pottinger 1980; Büchi and Weck 1998], but they do not
solve the problem of adding retroactive supertypes. Mixins and traits are designed mainly for
code reuse [Bracha and Cook 1990; Ancona and Zucca 1996; Ducasse et al. 2006; Fisher and
Reppy 2004], and therefore do not properly address the issues of retroactive abstraction and
multimethods. I will revisit the topic of both mixins and traits in the context of the multiple
inheritance features of Unity.

As previously mentioned, structural subtyping has been extensively studied in both formal
and applied settings [Cardelli 1988; Bruce et al. 2003; Fisher and Reppy 1999; Leroy et al. 2004],
but these formalisms and languages provide only internal dispatch. One of these languages,
Moby, has particular similarities to Unity, as it both supports structural subtyping and a form of
tag subtyping through its inheritance-based subtyping mechanism, this latter mechanism bear-
ing similarity to sub-branding in Unity [Fisher and Reppy 1999; 2002]. This allows expressing
many useful subtyping constraints, butMoby’s class types are not integrated with object types
in the same way as in Unity. For instance, in Moby, it is not possible to express the constraint
that an object should have a particular class and should have some particular methods (that are
not defined in the class itself ). Additionally, the object-oriented core of Moby supports only
internal dispatch. Moby does also include “tagtypes” that are very similar to brands in Unity.
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These can be used to support downcasts or to encode multimethods, but they are disjoint from
the object-oriented core of the system.

A more recent language design for structural subtyping is provided in Scala [Odersky and
Zenger 2005; Odersky 2007], through type refinements. Since Scala also includes nominal types,
intersection types allow combining the two components. However, Scala does not include gen-
eral external dispatch, does not allow structural constraints to be placed on the receiver, and does
not permit the definition of structural recursive types. Additionally, these aspects of Scala’s type
system have not yet been formalized (nor proved sound).

There has been a line of work that considers the question of how to add structural types to
existing languages, such as C++ and Java [Baumgartner and Russo 1997; Laufer et al. 2000; Gil
and Maman 2008]. The aforementioned work di�ers from Unity, however, in that it primarily
focuses on implementation and integration issues.

As previously mentioned (Sect. 2.6), Cecil contains “where” clauses that can model some
aspects of structural types, but they can only appear on top-level methods and can require ver-
bose parameterization, in contrast to languages with true structural subtyping. Cecil has the
most sophisticated form of “where” clause [Litvinov 1998; 2003; Chambers and the Cecil Group
2004], which originated in CLU [Liskov et al. 1977; Liskov 1983; Liskov and Wing 1993] and
also appear in Theta [Liskov et al. 1994; Day et al. 1995] and PolyJ [Bank et al. 1997]. Of these
languages, only Cecil supports external or multimethod dispatch.

Strongtalk presents a structural type system for Smalltalk and also supports named subtyp-
ing relationships through its “brand” mechanism [Bracha and Griswold 1993]. However, it is
not possible to define subtyping on brands. Additionally, since it is a type system for Smalltalk,
it supports only the single dispatch model.

TheModula-3 type system—fromwhere I borrowed the term “brand”—has structural types
with branding, but not structural subtyping [Nelson 1991]. That is, its type systemwill treat two
record types as equivalent if they have the same structure but di�erent type aliases, but does not
recognize one as a subtype of the other if it has additional fields. The object-oriented part of the
language solely uses nominal subtyping.

Other researchers have considered the problem of integrating nominal and structural sub-
typing. Reppy and Turon have addressed the problem in the context of typechecking traits
[Reppy and Turon 2007]. Their resulting type system is a hybrid of nominal and structural sub-
typing. However, in their system, structural types are second-class; they apply to trait functions
but not to expressions or ordinary functions. Consequently, there is less expressiveness as com-
pared with Unity: it is not possible to constrain the argument of a function to have particular
members, for example. Bono et al. have also proposed a type system that includes both nominal
and structural aspects, but their system does not fully integrate the two disciplines [Bono et al.
2007]. The system only uses structural typing when typechecking uses of the this variable within
a class, making their system considerably less expressive than Unity.

In the C++ concepts proposal, concepts can be either nominal or structural [Gregor et al.
2006]. However, concepts apply only to template constraints, not to the subtyping relation; in
this way they are similar to the “where”-clause constraint-based polymorphism described above.

ML signature matching [Milner et al. 1997] is structural (rather than nominal), and as noted
by Pierce andHarper [Pierce 2004], the design considerations of structural vs. nominalmatching
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are very similar to those that arise when comparing structural vs. nominal subtyping.
Various calculi representing the MLmodule system distinguish between external labels and

internal bound variables [Harper and Lillibridge 1994; Harper and Stone 2000]. This is some-
what analogous to the Unity distinction between simple and qualified names, though the mo-
tivation is di�erent. In ML, internal bound variables may be α-renamed, while external labels
may not. As this is purely a static concept, there is no notion of a runtime “mapping” from labels
to variables.

5.2 Retroactive Abstraction
Supporting retroactive abstraction in a nominally-typed language is a troublesome issue, par-
ticularly its interaction with modular typechecking and compilation.

Global analyses. The approach of some languages is to give up on modularity entirely, and
performwhole-program typechecking and compilation. This does provide some expressiveness
advantages, but I believe these are far outweighed by the inherent scalability issues.

Examples of such languages are Cecil [Chambers and the Cecil Group 2004] and AspectJ
[Kiczales et al. 2001]. Cecil has a clean separation of subtyping and inheritance and uses nom-
inal subtyping. New subtyping relationships can be declared post-hoc, as can inheritance rela-
tionships (via “extension declarations”). This essentially adds new tags to objects after-the-fact.
Such new inheritance relationships can a�ect the exhaustiveness and ambiguity checking of
multimethods, a problem that is made tractable in Cecil due to its whole-program approach.
Similarly, the whole-program analysis ensures that subtyping relationships (where there are no
runtime tags involved) are consistent throughout the program.

AspectJ allows inter-type declarations, which allow new subtyping relationships (either
extends or implements) to be added post-hoc [Kiczales et al. 2001]. This feature also allows
adding methods to existing objects, which is similar in spirit to external methods. However,
the added flexibility of these features comes at the cost of whole-program typechecking and
compilation, the later which is achieved by “weaving” aspect declarations into the classes they
extend.

Transitivity of subtyping. As modularity was an explicit design goal of this dissertation, I
shall focus on work that attempts to reconcile modularity and retroactive abstraction. Unfortu-
nately, it happens that there is a fundamental tension between retroactive (nominal) interface
extension and modular compilation and typechecking.

First, to retroactively change a nominal subtype hierarchy, onemust either abandonmodular
typechecking or change the subtype relation so that it is not transitive [Ostermann 2008]. To see
why, suppose thatwe have definitions of interfaces I , J , andK , eachwith no declared relationship
to the other. Now we add a retroactive declaration (outside of the definition of J) that J <∶ I , and
another declaration (outside of the definition of K ) that K <∶ J . With these declarations in place,
the transitivity of subtyping gives us that K <∶ I . But, to establish this fact, the typechecker must
know that 1) that it should use J as the intermediary type, 2) it should use the declaration K <∶ J ,
and 3) that it should use the declaration J <∶ I . But, the property to be proved, K <∶ I , does not
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mention J at all, nor is there any mention of J in the definitions of K and I . Since I may have
any number of retroactive subtypes, this means that the typechecker must know of all subtypes
of I—a global assumption. Put another way: to be modular, the typechecker cannot try to find
the relationship J <∶ I , but at the same type it must be able to use K <∶ J as the intermediary step
in establishing that K <∶ I .

This problem does not arise in Java-like languages, precisely because the type hierarchy can-
not be retroactively changed. To establish that K <∶ I , the typechecker simply follows the de-
clared subtyping relations from K up to I . At no point does the typechecker need to produce an
intermediary type that has not been explicitly declared as a supertype in the definition of some
type along the way.

If retroactive abstraction is limited in some way, it can be compatible with modular type-
checking. For example, Sather [Szyperski et al. 1993] allows a new interface to declare its imple-
menting classes, but, for the sake of modular typechecking, this interface cannot be declared as
extending some other interface [Stoutamire and Omohundro 1996].

The language FJ<∶ addresses this problem by allowing flexible retroactive abstraction but
changing the subtype relation so that it is not transitive [Ostermann 2008]. In particular, the
programmer must manually provide a set of “witness” types so that the typechecker can apply
subsumption. In this example, the programmer would have to first up-cast K to J then up-cast J
to I so that the typechecker would see the desired relationship betweenK and I . As transitivity is
very fundamental to subtyping, I believe this approach could be non-intuitive for programmers.

Tagged interfaces. The situation is exacerbated with tagged interfaces. Recall from Sect. 1.1
that I have defined an interface as a set of methods along with their types. Languages with
nominal subtyping have nominal interfaces; these are analogous to Unity “type” abbreviations—
with the additional restriction that a relationship between a class C and a nominal interface I
must be explicitly stated in order for objects of class C to conform to type I . “Interfaces” with
associated tags that can be used for dispatch (e.g., Java and C# interfaces) are termed “tagged
interfaces.”

Serious complications can arise when there is retroactive interface extension with tagged
interfaces, as this allows programs to dispatch on the generated tags. In Java, for instance, pro-
grammers may perform “instanceof” tests, and Java extensions allow other forms of interface
dispatch (e.g., predicate dispatch in JPred; multimethods in Nice [Bonniot 2007], Relaxed Mul-
tiJava [Millstein et al. 2003], and JavaGI [Wehr et al. 2007; Wehr and Thiemann 2009]). Of
these, only JavaGI permits both retroactive interface extension and multiple dispatch, but this
approach is inherently at odds with modular typechecking. In particular:

1. In the case where two nominal types have identical members, it would be useful to specify
that the types should be considered equivalent (i.e., each is a subtype of the other). Un-
fortunately, this is quite problematic, as it would make the subtyping relation cyclic. This,
in turn, causes problems for external/multimethod ambiguity checking.

2. It is unclear whether the retroactive extensions should have global or lexical scope. Nei-
ther approach is satisfactory. Suppose that classB implements I1. Inmodule M1, we define
a multimethod m that has a default case for class Object, a specialized case b1 for I1, and a
specialized case b2 for some other interface I2. At this point, the call m(new B()) would
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execute b1. Now, suppose that in a newmodule M2, we add the declaration B implements
I2.

• With globally-scoped retroactive extension, we must either perform global type-
checking, or allow some errors to be deferred to runtime (JavaGI takes the latter
approach). If the new implements declaration has global scope, the call to m(new
B()) is now ambiguous. Worse, in a new module M3, a programmer could define
I2 extends I1. Now the call is no longer ambiguous, but the behavior of the program
has changed—b2 is now executed!

• If retroactive extensions are locally scoped, this produces very odd subtyping seman-
tics. In particular, what should happen if a module N that imports both C1 and C2

and calls m with a B object? Within C1, B ≰ I2, but within D , B ≤ I2. If the intended
semantics is that b2 should be executed, then within b2, B ≤dynamic I2, but (statically),
B ≰ I2!

I believe the root of these problems is that here the tag hierarchy (on which dispatch can be per-
formed) and the typehierarchy (used for subtyping) have been conflated. If the intended purpose
of retroactive interface extension is to make a class compatible with a particular interface for the
purposes of code reuse (e.g., to pass objects of the class to a library method), then it is unclear
why there should be runtime tags associated with interfaces. On the other hand, if it is useful to
allow dispatch on a hierarchy supporting multiple inheritance, one wonders (a) why these two
concepts are not cleanly separated in these language designs and (b) if the added convenience
of retroactive tag extension is worth the increase in complexity and reasoning ability.

To my knowledge, there is no type system with modular typechecking, a transitive nomi-
nal subtype relation, and retroactive (tagged/untagged) interface extension (where new nomi-
nal super- and sub-interfaces can be retroactively added). Unity sidesteps these issues with a
clear separation between tag (i.e., brand) and type, and by disallowing dispatch on the structural
component of a type.

5.3 External and Multimethod Dispatch
External and multimethod dispatch has been extensively studied, but in the context of either
dynamically typed languages or languages with a purely nominal type system. Among the dy-
namically typed languages are Common Lisp [Steele, Jr. 1990; Paepcke 1993] and Dylan [Shalit
1997; Feinberg et al. 1997].

Some languages statically ensure thatmultimethod dispatch is exhaustive and unambiguous,
but require that the entire program be available at compile-time. Examples of such languages
include Cecil [Chambers 1992; Chambers and the Cecil Group 2004], Tuple [Leavens and Mill-
stein 1998], and the Java extension Nice [Bonniot 2007].

More recent work has focused on modular typechecking of external methods and multi-
methods, as well as the problem of integrating external methods into existing languages; this
includes the Dubious calculus (System M), MultiJava [Millstein and Chambers 2002; Clifton
et al. 2006] and EML [Millstein et al. 2002; 2004]. I have built on these existing techniques for
modular typechecking of external methods.
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The language λ& [Castagna et al. 1995] includes multimethod dispatch and includes struc-
tural subtyping on methods, similar to Unity. However, the subtyping relation for object types
(i.e., classes) uses only nominal subtyping, in contrast to Unity.

Case classes in Scala [Odersky 2007] can be used to obtain some of the benefits of external
dispatch, but they aremainly useful forML-style patternmatching. New functions can be added
that perform case analysis on a case class hierarchy, but the signatures of the case classes do not
change as with external methods. Scala case classes can either be sealed, in which case all cases
must appear in the same compilation unit; otherwise they are extensible.

Finally, it is worth noting that a language supporting only external or multimethod dispatch
(without structural subtyping or constraint-based polymorphism features) would lack the de-
sired expressiveness. That is, retroactive abstraction of some form is necessary to solve the
problems outlined in Chapter 1 (e.g., Fig. 1.7).

5.4 Multiple Inheritance
Here I describe related work that was not previously discussed in Sections 3.3 and 3.8.

Some uses ofmultiple inheritance can be encoded using virtual classes [Madsen andMoller-
Pedersen 1989; Thorup 1997] or nested inheritance [Nystrom et al. 2004; 2006]. (For the pur-
poses of this comparison, the di�erences between the two features are not particularly relevant;
I use the newer “nested inheritance” terminology, however.) In languages with such features
(e.g., Beta, Jx, J&), a class C may define one (or more) nested classes D . When a new class E
extends C , it inherits all of C ’s members, including the nested classes D . As with ordinary in-
heritance, the meaning of C ’s code is di�erent in the context of E , and E may override any of
C ’s members—including the nested classes D . When a nested class Di is overridden in the new
class E , the new definition enhances, rather than replaces, the old definition. Additionally, E .Di

is a subclass (and, in nested inheritance, a subtype) of C .Di .
As extensively detailed by Nystrom et al. [Nystrom et al. 2004; 2006], this latter feature

provides powerful code reuse capabilities that are analogous to, butmore powerful than, mixins.
A particular strength of virtual classes and nested inheritance is the ability to reuse code across
multiple related classes. Additionally, some uses of externalmethods can be encoded using these
language features, with the interesting di�erence that the original classes (to which the external
methods have been added) and the “new” classes induced by these additions can co-exist in the
same program in the virtual class/nested inheritance encoding. Depending on the context, such
a semantics could be useful. For these reasons, I view virtual classes and nested inheritance as
features that are complimentary to my multiple inheritance design, despite the fact that these
designs do aim to solve the common problem of code reuse). Additionally, to the best of my
knowledge, there is no language that combines virtual classes/nested inheritance and external
dispatch.

Cecil [Chambers 1992; Chambers and the Cecil Group 2004] also provides both multiple
inheritance and multimethod dispatch, but it does not include constructors (and therefore pro-
vides ordinary dispatch semantics for methods acting as constructors), and it performs whole-
program typechecking.
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JavaGI allows multiple dispatch on interfaces, but performs class-load-time checking to de-
tect any conflicts that may arise [Wehr et al. 2007; Wehr and Thiemann 2009].

Like JPred, the language Half & Half [Baumgartner et al. 2002] provides multimethod dis-
patch on Java interfaces. In this language, if there exist specialized method implementations for
two incomparable interfaces A and B , the visibility of one of the two interfaces must be package-
private. Like SystemM, this e�ectively disallows multiple (interface) inheritance across module
boundaries (where a package is amodule). Half &Half does not consider the problemofmultiple
inheritance with state.

Pirkelbauer et al have considered the problem of integrating multimethods into C++, which
is especially di�cult due to existing rules for overload resolution [Pirkelbauer et al. 2007]. How-
ever, this proposal is not modular; because of the potential for inheritance diamonds, the design
requires link-time typechecking.

Note that it is possible to modify the semantics of multimethod dispatch so that, by defini-
tions, ambiguities cannot arise in the presence ofmultiple inheritance. A languagemay linearize
the class hierarchy (e.g., CLOS [Bobrow et al. 1988], [Agrawal et al. 1991]) or choose the appro-
priatemethod based on textual ordering [Boyland andCastagna 1997]. However, such semantics
can be fragile and confusing for programmers.

5.5 Empirical Studies
As mentioned in Sect. 4.3, researchers have studied the problem of refactoring programs to use
most general nominal types where possible [Forster 2006; Steimann 2007]. Structural subtyping
would make such refactorings more feasible (since new types would not have to be defined) and
applicable to more type references in the program (since structural supertypes for library types
could be created, while new interfaces cannot).

Muschevici et al. measured the number of cascading instanceof tests in a number of Java pro-
grams, to determine how often multiple dispatch might be applicable [Muschevici et al. 2008].
They found that cascading instanceof tests were quite common, and that many cases could be
rewritten to use multimethods; this is consistent with my results.

Corpus analysis is commonly used in empirical software engineering research. For example,
it has been used to examine non-nullness [Chalin and James 2007], aspects [Baldi et al. 2008],
micro-patterns [Gil and Maman 2005], and inheritance [Tempero et al. 2008].
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Chapter 6

Conclusions

There was a point to this story, but it has temporarily escaped the
chronicler’s mind.

Douglas Adams (The Hitchhiker’s Guide to the Galaxy)

The previous chapters have each provided evidence to support the hypotheses listed in Sect. 1.4.
In this chapter, I describe in additional detail how each hypothesis has been validated, and how
the hypotheses, taken together, support the main thesis of this dissertation. Additionally, I dis-
cuss potential limitations of the work as well as directions for future work.

6.1 Validation
Recall the thesis statement of Sect. 1.4:

An object-oriented programming language can provide integrated support for (a)
external dispatch, (b) nominal subtyping, (c) structural subtyping, and (d) multiple
inheritance—all without sacrificing modular typechecking. These richer structuring
mechanisms can serve to make code more reusable and adaptable.

The main thesis is supported by seven hypotheses, each of which is directly testable. There are
two main types of hypothesis: those concerning modular typechecking and those concerning
the language’s expressiveness. The former type of hypothesis is supported through the Unity
language design and proof of type safety and the latter type is supported through a combination
of examples and empirical studies.

6.1.1 Modularity and Type Safety
As described in Chapters 2 and 3, the four main features of Unity, i.e, features (a)–(d), have
interesting interactions with one another. For instance, as illustrated in Sect. 2.2.3, a naïve com-
bination of structural subtyping and external dispatch would result in serious problems for am-
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biguity checking of external methods. Additionally, such a semantics could cause a program’s
behavior to be altered by the presence or absence of particular methods, which could in turn
produce subtle bugs related to accidental subtyping.

Similarly, if typechecking is to be modular, combining external dispatch and multiple inher-
itance is non-trivial, the heart of the issue being the so-called “diamond problem.” As described
in Sect. 3.3, previous languages that include both of these features either restrict expressiveness
or require that the programmer provide an exponential number of disambiguating methods.
Neither of these solutions is satisfactory.

Consequently, two hypotheses directly address type safety and modular typechecking:

Hypothesis I. A language with synergy between structural subtyping and external dispatch can
be achieved through a novel combination of structural and nominal subtyping.

Hypothesis V. Through the use of a novel multiple inheritance scheme, modular typecheck-
ing can be performed in a language with multiple inheritance and external dispatch, without
requiring programmer-specified disambiguating methods.

The evidence for these two hypotheses is the full Unity language design (presented in Sec-
tions 2.5 and 3.7), the proof of type safety of the formal system (outlined in Sect. 3.7.4 and pre-
sented in Appendix A), and the detailed argument ofmodularity of the formal system (presented
in Sect. 3.7.3).

6.1.2 Expressiveness
Designing a language is one matter, but designing a useful language is another matter entirely.
Thus, five of the seven hypotheses concern the expressiveness and potential utility of the pre-
sented language design.

Hypothesis II. By providing retroactive abstraction, structural subtyping can be used to im-
prove the reusability and maintainability of existing object-oriented programs.

This hypothesis is supported through the empirical studies described in Chapter 4. In particu-
lar, Sect. 4.3 presented evidence from a global analysis that inferred structural types for method
parameters in Java programs. Quantitative analysis determined that many method parameters
were overly precise, while qualitative analysis determined that, more often than not, it would be
useful to generalize such method parameters. Since nominal subtyping is at odds with retroac-
tively implementing/extending existing interfaces (described in Sect. 1.2 and in more detail in
Sect. 5.2) and such a capability would be necessary when using types defined in libraries, it
follows that structural subtyping would be beneficial in these situations. In particular, program-
mers could use structural types for method parameters, increasing their potential for reuse (as
any object with a structurally-conforming implementation could passed in as the actual parame-
ter). Additionally, the study showed that it is infeasible to define new (nominal) interfaces where
possible; this strategy would result in 4.1 times as many interfaces in the resulting program, as
compared to the original.
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The study in Sect 4.5.1 found a high frequency of commonmethods (methods with the same
name and signature, but that are not contained in a common supertype of the enclosing classes),
and a low frequency of common methods that represent an accidental name clash (Sect 4.5.2).
Having common methods between two classes may indicate a missed opportunity for abstrac-
tion, which could be solved using structural subtyping for retroactive abstraction. Finally, a
complementary study found that common methods could result in code clones of a particular
nature (Sect. 4.5.3).

Hypothesis III. Existing language designs can lead to coding patterns that defer errors to run-
time; structural subtyping could providemore static typechecking in these situations by allowing
programmers to encode more properties directly in the type system.

This hypothesis is again supported by empirical studies in Chapter 4. In particular, I pre-
sented quantitative and qualitative data showing that some Java runtime exceptions (i.e.,
OperationUnsupportedException) can be eliminated in a straightforward manner with a design
that uses structural subtyping (Sect. 4.4). Additionally, another study found that some uses of
Java reflection can be converted to uses of structural subtyping (Sect. 4.7).

Hypothesis IV. The combination of structural subtyping and external dispatch has the syner-
gistic e�ect of providing an expressive form of retroactive abstraction.

This hypothesis is supported in two ways, the first being a series of illustrative examples in
Sect. 2.2. In particular, the examples showed that structural subtyping allows defining abstract
interfaces and external dispatch allows programmers to add new methods in order to make ex-
isting brands conform to those interfaces.

Next, the empirical study described in Sect. 4.6 showed that many cases of cascading
instanceof tests in Java programs may be re-written using a combination of structural subtyping
and external methods. Such a re-writing has many code reuse benefits, as it allows an existing
class to be adapted to a new context.

Hypothesis VI. A language can be designed with a new form of multiple inheritance—multiple
inheritance without diamonds—a design that provides more opportunities for code reuse and
that is more expressive than other proposed alternatives to full multiple inheritance (i.e., multi-
ple interface inheritance, mixins, and traits).

This hypothesis is validated by the Unity’s multiple inheritance design (Chapter 3) as well as a
detailed comparison to other language designs in the context of the Unity AST nodes example
(Sect. 3.5). In particular, I showed that each of multiple interface inheritance, mixins, traits and
Scala traits are less expressive than Unity, along the dimensions I identified. Multiple interface
inheritance does not allowmultiple inheritance of code, mixins do not allow onemixin to inherit
from another, and (traditional) traits do not allow defining state.

Scala traits (which are a fusion of “ordinary” traits and mixins) are discussed in Sect. 3.3.
The limitation of Scala traits is that their constructors may not take parameters (because of the
potential for diamond inheritance), while Unity need not place such a restriction.1 Additionally,

1Though the core calculus does not explicitly include constructors, their formalization is straightforward
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if multiple dispatch or external dispatch were added to Scala, a strategy like that of JPred or
Fortress would be necessary for ensuring unambiguity of multimethods/external methods.

Hypothesis VII. By converting inheritance diamonds to inheritance dependencies and subtyp-
ing among abstract classes (via a requires clause), a program with inheritance diamonds can be
systematically translated into a program with multiple inheritance but without any inheritance
diamonds.

This hypothesis is supported by the real-world examples in Sect. 3.6, which shows how C++ in-
heritance diamonds can be systematically translated to Unity. While I have presented examples
from only two programs, I found at least 5 other (less interesting) inheritance diamonds in two
other applications.

With regard to supporting this hypothesis, I believe a more systematic study of inheritance
diamonds in C++ would not be especially worthwhile. Such a study could be interesting in
its own right, but its value would mostly lie in characterizing the nature of C++ inheritance
diamonds and quantifying how often concrete classes appear on the “sides” of the inheritance
diamond (as the corresponding Unity translation would require converting this to an abstract
class).

Instead, the real-world examples of Sect. 3.6 show that a) C++ programmers do make use
of diamond inheritance, b) there exist such uses that are “reasonable,” and (c) in some cases,
the Unity translation is particularly trivial (when new concrete classes are not needed). The
translation itself (outlined in Sect. 3.6.1) is so straightforward that I see little, if any, research
contribution in its implementation.

6.2 Future Directions
The Unity design is not without its limitations. In particular, since a full implementation does
not yet exist, it is quite conceivable that additional research problems could arise when imple-
menting Unity as a general-purpose language. In this section, I outline several directions for
future work.

6.2.1 E�ciency
It is unknown whether Unity code would be su�ciently e�cient. This is tempered somewhat by
the “pay-as-you-go” property of the language with regard to structural subtyping. That is, the
name mapping dictionary is created only when structural types are explicitly needed. But, as I
advocate a relatively high use of structural subtyping, the average execution overhead of method
invocation may be quite high, in the absence of appropriate optimizations.

Of course, one should not underestimate the cleverness of those creating compilers, includ-
ing “just-in-time” (JIT) compilers. The Whiteoak language, for example [Gil and Maman 2008]
has achieved an acceptable level of performance by using a wrapper-generation mechanism for
invoking structurally-typed methods. Additionally, Microsoft is actively supporting an e�ort to

and they are orthogonal to the issues under consideration.
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integrate Ruby and Python into .NET, which is partly achieved by implementing a dynamic lan-
guage runtime (DLR) on top of the regular common language runtime (CLR) [Microsoft 2009b].
The DLR, among other things, greatly eases the task of creating an e�cient compiler for such
dynamic languages, and includes functionality such as a shared dynamic type system and ef-
ficient generation of symbol tables [Chiles 2007]. C# 4.0 will also support a dynamic keyword
that allows tagging some objects as dynamically typed [Microsoft 2009a]. On such objects, the
typechecker will allow any method to be called and checking the existence of the method is de-
ferred to runtime. While the merits of such a feature are debatable (and are mostly related to
orthogonal issues such as importing dynamically linked libraries), its inclusion highlights the
need for e�cient dictionary-based method invocation.

In essence, I argue that it is quite conceivable that one could implement aUnity compiler that
targets the DLR and achieves acceptable performance for method invocation. Implementing
such a compiler, is, of course, relegated to future work.

Finally, it is quite possible that some applications will not have stringent performance de-
mands. Quite a large amount ofmodern code is written in dynamic languages such as JavaScript,
Ruby and Python, which are not known for their support of e�cient method invocations.

6.2.2 Structural Downcasts
With the availability of structural subtyping, programmers may also wish to have structural
downcasts. Such a feature can certainly be implemented, but it may be di�cult to implement
e�ciently. It remains an open question whether structurally typed code would require a large
number of structural downcasts, as well as how often themore e�cient nominal downcast could
be used instead.

6.2.3 Blame Assignment
As mentioned in Sect. 5.2, Ostermann has identified an important property of nominal sub-
typing: it allows a useful default blame assignment [Ostermann 2008]. In nominally typed lan-
guages, a class’s author is the one responsible for ensuring that the class is adheres to the sub-
typing relationships induce by its implements clause. In contrast, with structural subtyping, it is
always the client code’s “fault” when a subtype relationship does not hold, and the error message
will be noted at that point in the code. Ostermann argues that, instead, flexible blame assign-
ment is key, so that programmers may specify who is responsible for maintaining a subtype
relationship: either the user or the designer of a component. (Ostermann’s language FJ<∶ allows
such flexible blame assignment.)

As a concrete example, suppose it is intended that brand B always implement interface I .
Type abbreviations in a Unity implementation would allow I to be defined in a single location, if
desired, and used systematically throughout the program with the name I . Now, suppose a new
method m is added to this single type abbreviation I , a method m that does not exist in B . In
a nominally typed setting, the definition of B would be at fault, since it has declared an explicit
relationship to I . In contrast, in a structurally typed setting, errors would appear whenever
there was made an attempt to coerce an object with brand B to type I . In this example, the
error message has appeared in the “wrong” location; this could certainly pose serious software
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engineering issues. (In fact, the designers of Strongtalk, which originally had both nominal and
structural subtyping [Bracha and Griswold 1993], reverted to a purely nominal system in later
versions, precisely due to blame assignment in error messages [Bracha 2006].)

However, I do not believe these problems are insurmountable. In particular, a combination
of a methodology for type definitions and specialized IDE support could greatly minimize this
problem. It is possible that one couldmove to a system that is a hybrid of Unity andOstermann’s
FJ<∶, but the lack of transitive subtyping in that system is a worrisome issue.

6.2.4 Error messages
Related to the problem of blame assignment is that of producing readable errormessages, which
is generally much more di�cult when a type system includes any structural aspects (which in-
cludes designs such as Java-like generics). The problem is that a particular structural type may
have more than one corresponding user-defined type abbreviation, or—worse yet—it may have
no such abbreviation. Such “anonymous” types can result in particularly indecipherable error
messages, a problem of which (for example) users of C++ templates are painful aware.2

I believe this problem is an engineering issue at heart, as it is impossible to “prove” that a
particular error message algorithm is “better” than others, let alone that it is “good.” This is not
to downplay the di�culty of solving the problem, but rather to identify what I believe would be
a tractable approach. This problem is related to that of producing “good” type inference error
messages (e.g., [Wand 1986; Beaven and Stansifer 1993; Duggan and Bent 1996; Tip and Dinesh
2001; Stuckey et al. 2003]), and it is possible that some of the approaches to the latter problem
could inform a concrete solution to our error message problem.

6.2.5 IDE Support
The empirical study in Sect. 4.3 found that method parameters are often overly precise; I have
argued that structural subtyping would make it easier to generalize these parameters. However,
there is no reason to assume that users of a language with structural subtyping would use appro-
priately general types for parameters. Consequently, it could be quite useful to generalize the
algorithm of the Infer Type refactoring [Steimann 2007] to apply in a structural setting. Such a
refactoring would be even more powerful in a language with structural types, as the refactoring
would be able to suggest types that are supertypes of existing library types (which the current
refactoring cannot, as it applies to Java).

6.3 Broader Impact
The contributions of this thesis highlight the utility and importance of structural subtyping as a
typing discipline. I have shown the synergy between structural subtyping and external dispatch,

2The new C++0x concepts proposal would improve the situation; interestingly, part of the solution in-
volves introducing the notion of “nominal” vs. “structural” concepts [Gregor et al. 2006].
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but I expect that an analogous synergy can be achieved when integrating structural subtyping
and other language features.

In particular, the problem of accidental subtyping (discussed in Sections 2.2.2 and 4.5.2)
would be greatly minimized if a richer type system were used. For example, if one were to use a
lightweight form of pre- and post-conditions, such as typestates [Strom and Yemini 1986; Man-
delbaum et al. 2003; DeLine and Fähndrich 2004; Bierho� and Aldrich 2005; 2007; Kim et al.
2009], then similarly-named methods that perform di�erent tasks can be di�erentiated. Sub-
typing between typestates, such as that proposed by [Bierho� and Aldrich 2005; 2007], would
be particularly useful in this setting. This idea could be extended even further to systems that
check logical predicates, such as JML [Leavens et al. 2006] or Spec# [Barnett et al. 2004; 2005;
Leino 2007]. In such a setting, subtyping would be simply become logical entailment; i.e., type
A ≤B i� A implies B .

Another potential synergy could be harnessedwhenusing co- and contravariant declaration-
site type parameters along with structural subtyping.3 Suppose co- and contravariant type pa-
rameters were prefixed with “+” or “-,” respectively, such as in Scala [Odersky 2007]. Then, co-
variant (or contravariant) version of an interface would be a structural supertype of the invariant
version of that interface. In particular, the following Scala code is valid:

trait ReadableCell [ +T ] {
def get : T;

}
traitWriteableCell [ -T ] {

def set(x : T) : Unit;
}

class Cell [ T ] (init: T) extends ReadableCell[T]withWriteableCell[T] {
private var value: T = init
def get: T = value
def set(x: T): Unit = { value = x }

}

Here, the trait ReadableCell is a super-interface of Cell, and its type parameter T is covariant.
Similarly, WriteableCell’s type parameter is contravariant. Since invariant type parametrization
is more restrictive than either co- or contravariant, Cell’s type parameter is invariant.

Here, we have use nominal subtyping and set up explicit relationships between Cell,
ReadableCell, andWriteableCell. With structural subtyping, however, we could retroactively add
the types SReadableCell and SWriteableCell (making them structural types rather than traits) and
Cell would be a subtype of each of these.

3Special thanks to Nick Benton for this observation.
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Appendix A

Unity Type Safety

The proof of the pudding is the eating.

Miguel de Cervantes Saavedra (Don Quixote)

This section presents the full type safety proof that was outlined in Sect. 3.7.4. Definitions and
lemmas that were originally mentioned in Chapter 3 appear here with new numbering (with
backreferences to the previously stated versions).

A.1 Definitions
Note 1. The sequence C is shorthand for {C i∈1..#C }, where #C is the length of the sequence C .

Definition A.1 (Context consistency relation [Definition 3.3]).
The judgement ∆ ∶ Σ is defined by the following inference rules:

(Delta-Wf-Empty)

⋅ ∶ ⋅

(Delta-Wf-Brand)
Σ=Σ0,brand B(σ; {qi ∶B(Mi )⇒ τi

i∈1..n}) extends C requires D
∆0 ∶ Σ0 fieldTypeΣ(D) =σ

this ∶B(Mi ),�elds ∶σ∧σ ⊢Σ ei ∶ τi (∀i ∈ 1..n)

∆0,B(qi = ei
i∈1..n) extends C ∶ Σ

(Delta-Wf-Method)
Σ=Σ0,method q(q ∶Bi (Mi )⇒ τi

i∈1..n) ∆0 ∶ Σ0

this ∶Bi (Mi ) ⊢Σ ei ∶ τi (∀i ∈ 1..n)

∆0,method q(Bi .q= ei
i∈1..n) ∶ Σ

Definition A.2 (Well-formed static context judgement).
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The judgement Σ ok is defined by the following inference rules:

(Sigma-Wf-Base)

⋅ ok

(Sigma-Wf-Decl)
decl-typename ∉Σ Σ ok Σ ⊢decl-type ok

Σ,decl-type ok

Definition A.3 (Field type plus required field types).

fieldWithReqΣ(B)
def= fieldTypeΣ(B)∧τr , where C requires D ∈Σ and τr = fieldTypeΣ(D).

A.2 Signature Weakening Lemmas
This section contains lemmas that prove weakening of the static context Σ for various judge-
ments. These lemmas are used in both the progress and preservation proofs. Note that some
auxiliary strengthening lemmas are needed; this is because the negation of some judgements are
used (e.g., ⊬Σ B.q internal).

Lemma A.1 (No duplicate names in well-formed contexts).
If Σ ok then all brand declarations B ∈ Σ and all external method family declarations q ∈ Σ are
distinct from one another.

Proof. Straightforward induction on Σ ok. ◻

Lemma A.2 (Common method implies common ancestor [Lemma 3.3]).
If Σ ok and mtypeΣ(q,B) and mtypeΣ(q,C ) then there exists some D ≠ Object such that B ⊑Σ D
and C ⊑Σ D .

Proof. By simultaneous induction on the two mtypeΣ derivations, using the no-duplicate-
names lemma (Lemma A.1), the constraints on owner brands (premises (1) and (3) of Tp-Ext-
Method), and the fact that external methods cannot override internal methods (premise (4) of
Tp-Ext-Method). ◻

Lemma A.3 (Weakening for sub-brand judgement).
If Σ0 ok and B ⊑Σ0 C and Σ ok and Σ ⊇Σ0 then B ⊑Σ C .

Proof. By induction on B ⊑Σ0 C .

case Sub-Brand-Refl. Immediate.

case Sub-Brand-Trans. Straightforward induction.

case Sub-Brand-Decl. B(τ;Q) extends C1, . . . ,Cn ∈Σ0

By the definition of the superset relation, B ∈ Σ. By the non-duplicate entries lemma
(Lemma A.1), Σ has only one entry for B , therefore it is the same entry as that in Σ0. ◻
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Lemma A.4 (Weakening for subtype and sub-row judgements).
1. If Σ0 ok and ⊢Σ0 t ≤ t ′ and Σ ok and Σ ⊇Σ0, then ⊢Σ t ≤ t ′.
2. If Σ0 ok and ⊢Σ0 ra ∶ ta ⊴ rb ∶ tb and Σ ok and Σ ⊇Σ0, then ⊢Σ ra ∶ ta ⊴ rb ∶ tb .

Proof. By mutual induction on the subtype and sub-row derivations.
1. By case analysis on the last rule used in the derivation ⊢Σ0 t ≤ t ′:

case Sub-Refl, Sub-∧L1, Sub-∧L1, Sub-Type-Var. Immediate.
case Sub-Trans, Sub-Func, Sub-∧R, Sub-Mu. Straightforward, using induction hypoth-

esis (1).
case Sub-Record. Follows from induction hypothesis (2) and Sub-Record.
case Sub-Obj. Follows from sub-brand weakening (Lemma A.3), induction hypothesis

(2), and Sub-Obj.
case Sub-Requires. Follows from non-duplicate brand definitions (Lemma A.1), the

properties of set inclusion, induction hypothesis (2), and Sub-Requires.
case Sub-Method. Follows from induction hypothesis (2), induction hypothesis (1), and

Sub-Method.
2. By case analysis on the last rule used in the ⊴ derivation:

case Sub-Row-Perm, Sub-Row-Width. Immediate.
case Sub-Row-Depth. Follows from induction hypothesis (1) and Sub-Row-Depth.
case Sub-Row-Trans. Straightforward, using induction hypothesis (2). ◻

Lemma A.5 (Strengthening for sub-brand judgement).
If Σ ok and B ⊑Σ C and Σ0 ok and Σ ⊇Σ0 and B ∈Σ0, then B ⊑Σ0 C .

Proof. By induction on B ⊑Σ C .

case Sub-Brand-Refl. Immediate.

case Sub-Brand-Trans. Straightforward induction.

case Sub-Brand-Decl. brand B extends C ∈Σ.
By the non-duplicate entries lemma (Lemma A.1), Σ0 has only one entry for B , therefore
brand B extends C ∈Σ0. The result follows from Sub-Brand-Refl. ◻

Lemma A.6 (Weakening for inherit-ok judgement).
If Σ0 ok and ⊢Σ0 B extends C requires D inherit-ok and Σ ok and Σ ⊇Σ0 and B ∉Σ, then
⊢Σ B extends C requires D inherit-ok.

Proof. By inversion on ⊢Σ0 B ⋯ inherit-ok. We proceed by considering each premise of
inherit-ok and showing that the same premise holds under Σ.

1. C ∈Σ0. By the definition of set inclusion, C ∈Σ.
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2. D ∈Σ0. Similar to above.
3. Di ∉C (∀i ∈ 1..m). Immediate.
4. ∀i , j . i ≠ j .ØD ′.Ci ⊑Σ0 D ′ and C j ⊑Σ0 D′, where D′ ≠Object.

Suppose that for some i ≠ j , there exists D′ ≠ Object such that Ci ⊑Σ D ′ and C j ⊑Σ D ′.
But, by sub-brand strengthening (Lemma A.5), this implies that Ci ⊑Σ0 D′ and C j ⊑Σ0 D ′,
which is a contradiction of our initial assumption. Therefore, the no-diamond property
holds under Σ as well as Σ0.

5. Ci requires E ∈Σ0 implies ∃k. Ck ⊑Σ0 E or Dk ⊑Σ0 E (∀i ∈ 1..n).
Since C ∈ Σ and Σ does not contain duplicate brands (Lemma A.1), the declarations of C
in Σ are the same as those in Σ0. Next, by sub-brand weakening (Lemma A.3), if Ck ⊑Σ0 E ,
then Ck ⊑Σ E , and similarly for Dk .

6. Di requires E ′ ∈Σ0 implies ∃k. Ck ⊑Σ0 E ′ or Dk ⊑Σ0 E ′ (∀i ∈ 1..m). Similar to above.
7. ∀i , j .∀q. mtypeΣ0

(q,Ci ) = ρ and mtypeΣ0
(q,C j ) = ρ′ implies i = j .

From this it follows that for all i ≠ j , ØmtypeΣ0
(q,Ci ) or ØmtypeΣ0

(q,C j ). We must show
that the above holds under the larger context Σ. Suppose that for some i and j , i ≠ j and
mtypeΣ(q,Ci ) = ρ and mtypeΣ(q,C j ) = ρ′. By Lemma A.2, there exists D such D ≠ Object
and Ci ⊑Σ D and C j ⊑Σ D . But, this is a contradiction of the no-diamond property shown
above (item 4). Therefore, the required property holds under Σ as well as Σ0. ◻

Lemma A.7 (Weakening for internal judgement).
If Σ0 ok and ⊢Σ0 B.q internal and Σ ok and Σ ⊇Σ0 and, then ⊢Σ B.q internal.

Proof. Straightforward induction on ⊢Σ0 B.q internal. ◻

Lemma A.8 (Strengthening for internal judgement).
If Σ ok and ⊢Σ B.q internal and Σ0 ok and Σ ⊇Σ0 and B ∈Σ0, then ⊢Σ0 B.q internal

Proof. By induction ⊢Σ B.q internal.

case Internal-Base. Follows from the fact that B ∈Σ0 and that there is only one entry for B in
Σ (Lemma A.1).

case Internal-Inh. From the fact that B ∈ Σ0 and that there is only one entry for B in Σ

(Lemma A.1), it follows that brand B(τ;Q) extends C ∈ Σ0 and q ∉ Q . Since super-brands
of B are also in Σ (Lemma A.12), C ∈ Σ0. The result then follows from the induction hy-
pothesis and Internal-Inh. ◻

Lemma A.9. If Σ ok and mtypeΣ(q,B) = ρ andmethod C .q(⋯) ∉Σ, then ⊢Σ B.q internal.

Proof. Straightforward induction on the mtype derivation, using the fact thatMType-Ext can-
not apply. ◻
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Lemma A.10 (Weakening for mtype judgement).
If Σ0 ok and mtypeΣ0

(q,B) = ρ and Σ ok and Σ ⊇Σ0, then mtypeΣ(q,B) = ρ.

Proof. By induction on mtypeΣ0
(q,B) = ρ.

case MType-Base. By the definition of set inclusion and the fact that well-formed contexts do
not contain duplicate brands (Lemma A.1), brand B(τ; . . . ,q ∶ ρ, . . . ) ∈ Σ. The result then
follows fromMType-Base.

case MType-Ext. Similar to above.

case MType-Inh.
(1) brand B(τ;Q) extends C ∈Σ0

(2) q ∉Q
(3) ØextDef Σ0

(q,B)
(4) ∃k. mtypeΣ0

(q,Ck ) = ρ

By the definition of set inclusion and the property of no duplicate brands in a well-
formed context (Lemma A.1), the first two premises hold for Σ. It su�ces to show that
ØextDef Σ(q,B). Then, by the induction hypothesis, mtypeΣ(q,Ck ) = ρ and the result fol-
lows fromMType-Inh.

We are to show ØextDef Σ(q,B). Either (a) an external method family q exists in Σ0 or (b)
it does not:

subcase (a)method B.q(. . . ) ∈Σ0.
We have method q ∈ Σ (by the properties of set inclusion). Since we have
ØextDef Σ0

(q,B) and methods must be defined in a single block, this yields
ØextDef Σ(q,B).

subcase (b)method q ∉Σ0.
By Lemma A.9, ⊢Σ0 Ck internal. By Internal-Inh, ⊢Σ0 B.q internal. By
Lemma A.7, this implies (B) ⊢Σ B.q internal.
Again, there are two cases: either (i)method q ∉Σ or (ii)method q ∈Σ:

(i). Result follows from the definition of extDef .

(ii). Let decl-type = method D.q(B.q ∶ ρ, . . . ) and let Σ = Σ1,decl-type,Σ2. Inversion
on Σ1 ⊢decl-type ok yields premise (4) of Tp-Ext-Method: ⊬Σ1 B.q internal.
Since Σ ⊇ Σ1, we may use the contrapositive of strengthening for the internal
judgement (Lemma A.8), which yields ⊬Σ B.q internal. This is a contradiction
of (B), therefore, this case is vacuous. ◻

Lemma A.11 (Weakening for override-ok judgement).
If Σ0 ok and ⊢Σ0 B.q ∶ ρ override-ok and Σ ok and Σ ⊇Σ0, then ⊢Σ B.q ∶ ρ override-ok.
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Proof. Follows from mtype weakening (Lemma A.10) and subtype weakening (Lemma A.4). ◻

Lemma A.12 (Super-brands exist in well-formed contexts).
If B ⊑Σ C and Σ ok then C ∈Σ.

Proof. Straightforward induction on Σ ok, using inversion of decl-type ok and premises (1) and
(2) of inherit-ok in the base case. ◻

Lemma A.13 (Weakening of decl-type ok judgement).
If Σ0 ok and Σ0 ⊢decl-type ok and

Σ ok and Σ ⊇Σ0 and
decl-typename ∉Σ,

then Σ ⊢decl-type ok.

Proof. By inversion on Σ0 ⊢decl-type ok.

case Tp-Brand-Decl. We proceed by examining each premise and showing that it holds under
Σ; then, rule Tp-Brand-Decl can be used to derive Σ ⊢decl-type ok.

1. ⊢Σ0 B extends C requires D inherit-ok.
Follows from weakening on inherit-ok judgement (Lemma A.6).

2. Σ′0 =Σ0,decl-type.
Take Σ′ = Σ,decl-type. We have Σ′ ok since by assumption, Σ0 ok and
Σ0 ⊢decl-type ok; Sigma-Wf-Decl then applies.

3. ⊢Σ′0 τ ≤ fieldTypeΣ0
(C ).

Follows from weakening on subtype judgement (Lemma A.4).
4. q distinct. Immediate.
5. ⊢Σ′0 B.q ∶ ρ override-ok.

Follows from weakening on the override-ok judgement (Lemma A.11).
case Tp-Ext-Method. We proced as in the previous case, showing that each premise holds

under Σ.
1. B ≠Object. Immediate.
2. C distinct. Immediate.
3. Ci ⊑Σ0 B (∀i ∈ 1..n).

Follows from sub-brand weakening (Lemma A.3).
4. ⊬Σ0 C .q internal. Follows from the contrapositive form of strengthening for

internal (Lemma A.8).
5. Σ′0 =Σ0,decl-type. Take Σ′ =Σ0,decl-type.
6. ⊢Σ′0 C .q ∶ ρ override-ok.

Follows from weakening on the override-ok judgement (Lemma A.11). ◻
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Lemma A.14 (Declarations are well-typed under their containing context).
If Σ ok and decl-type ∈Σ then Σ ⊢decl-type ok.

Proof. Straighforward induction on Σ ok, using Lemma A.13 for the base case. ◻

Lemma A.15 (Weakening for typing judgement).
If Σ0 ok and Γ ⊢Σ0 e ∶ τ and Σ ok and Σ ⊇Σ0, then Γ ⊢Σ e ∶ τ.

Proof. By induction on ⊢Σ0 e ∶ τ.
case Tp-Var, Tp-Unit. Immediate.
case Tp-Fun, Tp-App, Tp-New-Record, Tp-Proj, Tp-Fold, Tp-Unfold. Straightforward in-

duction.
case Tp-Subs. Follows from weakening on the subtype relation (Lemma A.4).
case Tp-New-Obj. By the fact that declarations are distinct from one another (Lemma A.1)

and the properties of set inclusion, B requires ● and fieldTypeΣ(B) = τ. By the induction
hypothesis, Γ ⊢Σ e1 ∶ τ. By weakening on the mtype judgement, mtypeΣ(q,B) = ρ. The
result then follows from Tp-New-Obj.

case Tp-With. Similar to above.
case Tp-Invoke-Struct. Follows from the induction hypothesis on the first premise, weaken-

ing of the subrow judgement (Lemma A.4), and Tp-Invoke-Struct.
case Tp-Invoke-Nom. Follows from the induction hypothesis on the first premise, weakening

of the mtype judgement (Lemma A.10), weakening of subrow judgement (Lemma A.4)
and Tp-Invoke-Nom.

case Tp-Invoke-Super. Similar to above. ◻

A.3 Basic Lemmas
This section contains lemmas used by both progress and preservation proofs.

A.3.1 Miscellaneous Lemmas
Lemma A.16 (Consistency of static and dynamic sub-branding).
If Σ ok and ∆ ∶ Σ then B1 ⊑Σ B2 i� B1 ⊑∆ B2.

Proof. For the “if” direction, straightforward induction on B1 ⊑Σ B2. For the “only if” direction,
straightforward induction on B1 ⊑∆ B2, in both cases, using the definition of ∆ ∶ Σ (Def. 3.2). ◻

Lemma A.17 (Precisifying object types).
If Σ ok and Γ ⊢Σ Ĉ (e;n ,Ð→ q) ∶ τ and ⊢Σ τ ≤B(M), then

1. Γ ⊢Σ Ĉ (e;n ,Ð→ q) ∶C (n ∶ ρ), where mtypeΣ(q,C ) = ρ and ⊢Σ C (n ∶ ρ) ≤B(M), and
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2. n distinct, and
3. C requires ● ∈Σ.

Proof. By induction on the typing derivation.
case Tp-Subs. Follows from the induction hypothesis and Sub-Trans.
case Tp-Obj. Immediate from premises of rule. ◻

Lemma A.18 (Reflexivity of sub-row judgement).
The sub-row judgement is reflexive; i.e., Γ ⊢Σ r ∶ t ⊴ r ∶ t , for all Σ such that Σ ok.

Proof. Immediate from either Sub-Row-Perm or Sub-Row-Depth. ◻

Lemma A.19 (Reflexivity and transitivity of method subtyping).
The following rules are admissible:

ρ ≤ ρ

ρ1 ≤ ρ2 ρ2 ≤ ρ3

ρ1 ≤ ρ3

Proof. For the reflexivity property, result follows from Sub-Brand-Refl and reflexivity of sub-
row (Lemma A.18). Transitivity proof is straightforward. ◻

Lemma A.20 (Properties of valid overrides).
If Σ ok and ⊢Σ B.q ∶ ρ′ override-ok and B ⊑Σ C and mtypeΣ(q,C ) = ρ, then ρ′ ≤ ρ.

Proof. Straightforward induction on B ⊑Σ C , using inversion of the override-ok derivation in
the base case. ◻

Lemma A.21 (Sub-brands have mtypes that are subtypes).
If Σ ok and B ⊑Σ C and mtypeΣ(q,C ) = ρ, then mtypeΣ(q,B) = ρ′, where ⊢Σ ρ′ ≤ ρ.

Proof. By induction on B ⊑C .

case Sub-Brand-Refl. Result follows from reflexivity of method subtyping (Lemma A.19).

case Sub-Brand-Trans. Straightforward uses of induction hypothesis, followed by transitivity
of method subtyping (Lemma A.19).

case Sub-Brand-Decl. B extends C
There are four possible cases:

1. q is defined internally in B with type ρ′. By MType-Base, mtypeΣ(q,B) = ρ′. Since
Σ is well-formed, by Lemma A.14, the declaration of B is well-formed under Σ. By
inversion on decl-type ok, B.q ∶ ρ′ override-ok (premise (5) of Tp-Brand-Decl). By
the properties of a valid override (Lemma A.20), ρ′ ≤ ρ, which is the required result.
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2. q is defined externally for B with type ρ′. Similar to above.

3. q is not defined inB . ByMType-Inh,mtypeΣ(q,B) = ρ, which is the required result. ◻

Lemma A.22 (lookup implies mtype).
If Σ ok and ∆ ∶ Σ and lookup∆(q,B) = e, then there exists a derivation mtypeΣ(q,B) = ρ, for some
ρ.

Proof. By induction on the derivation of lookup∆.
case Lookup-Base. Follows from the definition of ∆ ∶ Σ andMType-Base.
case Lookup-Ext. Follows from the definition of ∆ ∶ Σ andMType-Ext.
case Lookup-Inh. We have lookup∆(q,Ck ) = e, where B extends Ck ∈∆. Also, by ∆ ∶ Σ, we have

Ck ∈ Σ. By the induction hypothesis, mtypeΣ(q,Ck ) = ρ. Applying MType-Inh yields the
required result. ◻

Lemma A.23 (Properties of super).
If Σ ok and ∆ ∶ Σ and super∆(B as C ) = D then B ⊑∆ D and D ⊑∆ C .

Proof. By induction on super∆(B as C ) = D .
case Super-Base. By Sub-Brand-Decl, B ⊑∆ D . D ⊑∆ C by premise of rule.
case Super-Inh. By the induction hypothesis, Ek ⊑∆ D (where B extends Ek ∈∆) and D ⊑∆ C . By

Sub-Brand-Decl and Sub-Brand-Trans, B ⊑∆ D , which is the required result. ◻

Lemma A.24 (No diamond inheritance).
If Σ ok and brand B extends C ∈ Σ, then there does not exist D (other than Object), such that
Ci ⊑Σ D and C j ⊑Σ D (for any i ≠ j ).

Proof. By Lemma A.14, Σ ⊢brand B ⋯ ok. By inversion on the decl-type ok judgement, we have
⊢Σ brand B ⋯ inherit-ok (premise (1) of Tp-Brand-Decl). Inverting this last judgement yields
premise (4) of Tp-Inherit, which is the required result. ◻

Lemma A.25 (Well-formed brands do not contain duplicate methods).
If Σ ok and brand B(τ;q ∶ ρ) ⋯ ∈Σ, then there are no duplicates in q.

Proof. Follows from Lemma A.14 and premise (4) of Tp-Brand-Decl. ◻

Lemma A.26 (Properties of well-formed external methods).
If Σ ok andmethod B.q(C .q ∶ ρ) ∈Σ, then we have all of the following:

1. B ≠Object
2. C distinct
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3. Ci ⊑Σ B (∀i ∈ 1..#C )
4. ⊬Σ C .q internal.

Proof. Straightforward induction on Σ ok, using the fact that ⊢Σ method . . . ok (by
Lemma A.36) and then applying inversion on this derivation. ◻

A.3.2 Inversion Lemmas
Lemma A.27 (Inversion of the sub-row judgement).
If Σ ok and Γ ⊢Σ {rai ∶ tai

i∈1..n} ⊴ {rb j ∶ tb j
j∈1..m}, then {rb j

j∈1..m} ⊆ {rai
i∈1..n} (r a includes at least

the labels in r b) and Γ ⊢Σ tai ≤ tb j for each common label rai = rb j .

Proof. Straightforward induction on the ⊴ derivation. ◻

Lemma A.28 (Inversion of subtyping [expression and method types]).
1. If Σ ok and Γ ⊢Σ τ1→ τ2 ≤σ1→σ2, then Γ ⊢Σ σ1 ≤ τ1 and Γ ⊢Σ τ2 ≤σ2.

2. If Σ ok and Γ ⊢Σ {` ∶ τ} ≤ {k ∶σ}, then Γ ⊢Σ {` ∶ τ} ⊴ {k ∶σ}

3. If Σ ok and Γ ⊢Σ µX .τ1 ≤µY .τ2, then Γ, X ≤ Y ⊢τ1 ≤ τ2.
4. If Σ ok and Γ ⊢Σ B1(M1) ≤ B2(M2), then Γ ⊢Σ M1 ⊴M2 and either (a) B1 ⊑Σ B2 or (b) there

exists some B ′

2 where B ′

2 ⊑Σ B2 and B1 requires B ′

2 ∈Σ.
5. If Σ ok and Γ ⊢Σ M1⇒ τ1 ≤ M2⇒ τ2 then Γ ⊢Σ M2 ⊴M1 and Γ ⊢Σ τ1 ≤ τ2.

Proof. Straightforward induction on each subtyping derivation. ◻

Lemma A.29 (Inversion of the typing judgement).

1. If Γ ⊢λx ∶τ1. e ∶σ and σ ≤σ1→σ2 then σ1 ≤ τ1 and Γ, x ∶ τ1 ⊢e ∶σ2.

2. If Γ ⊢ (`= e i∈1..n) ∶σ and σ ≤ {k ∶ τ j∈1..m}, then ei ∶ τ j for each common label `i = k j .
3. If Γ ⊢ foldµX .τ e ∶σ and σ ≤µX .τ, then Γ ⊢e ∶ [µX .τ/X ]τ.
4. If Γ ⊢ Ĉ (e;na ,Ð→ qa) ∶σ and σ ≤B(nb ∶ ρb) then:

(a) C ⊑B ;
(b) Γ ⊢e ∶ fieldTypeΣ(C ); and
(c) na ∶ ρa ⊴ nb ∶ ρb , where mtypeΣ(qa) = ρa .

Proof. By induction on each typing derivation. Note that for each case, the derivation ends in
exactly one of two rules, one of which is always Tp-Subs.

1. Functions. Straightforward, using the induction hypothesis for case Tp-Subs and the
subtyping inversion lemma (Lemma A.28) for case Tp-Fun.

2. Records. Straightforward induction, using the subtyping inversion lemma (LemmaA.28)
for the base case.
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3. Recursive types. Straightforward induction, using Lemma A.28 for the base case.
4. Object types. Ĉ (e;ni ,Ð→ qi

i∈1..n) ∶σ

case Tp-Subs. Result follows from the induction hypothesis and Sub-Trans.

case Tp-New-Obj. Follows from subtype inversion, sub-row inversion, and the rule’s
premise that C requires ● ∈Σ. ◻

A.4 Progress Lemmas and Theorem
Lemma A.30 (Canonical forms).
Suppose Σ ok and ⊢Σ v ∶σ and ⊢Σ σ ≤ τ.

1. If τ= unit then v = ().
2. If τ= τ1→ τ2 then v is of the form λx ∶τ′1. e.
3. If τ= B(n ∶ ρ) then v is of the form Ĉ (v ′;na ,Ð→ qa).
4. If τ= {` ∶ τ} then v is of the form (k = v).
5. If τ=µX .τ then v is of the form foldσ v ′.

Proof. Straightforward induction on typing derivations. ◻

Lemma A.31 (lookup defined on well-typed methods [Lemma 3.4]).
If Σ ok and mtypeΣ(q,B) = ρ and ∆ ∶ Σ, then lookup∆(q,B) = e, for some unique e.

Proof. By induction on mtypeΣ(q,B) = ρ.
case MType-Base. q is defined directly in B .

From the definition of ∆ ∶ Σ, the rule Lookup-Base applies. Since brands do not contain
duplicate methods (Lemma A.25), there is only one applicable q= e for B . It now su�ces
to show that the rule Lookup-Ext cannot apply, as Lookup-Inh is already excluded (its
second premise does not hold).
Suppose Lookup-Ext did apply. By the definition of ∆ ∶ Σ, there is a definition decl-type =
method D.q(. . . ,B.q ∶ ρ′, . . . ) ∈ Σ. By Lemma A.26, ⊬Σ B.q internal. But, by assumption,
q is defined in B and therefore rule Internal-Base applies, yielding ⊢Σ B.q internal—a
contradiction.

case MType-Ext. From the definition of ∆ ∶ Σ, the rule Lookup-Ext applies. Since there are no
duplicate method families q in Σ (Lemma A.1), inversion on ∆ ∶ Σ yields that is only one
such entry method q ⋯ ∈ ∆. Let decl-type = D.q(C .q ∶ ρ) be the definition of the method
family q in Σ. By Lemma A.26, C distinct. By inversion on ∆ ∶ Σ, there is not a duplicate
entry B.q = e′ in the method family q in ∆. Therefore, there is exactly one derivation of
Lookup-Ext.
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It now su�ces to show that Lookup-Base does not apply, as by inspection, Lookup-Inh
does not apply. The reasoning for this is similar to that above; Lemma A.26 yields ⊬Σ
B.q internal, from which it follows that Lookup-Base does not apply.

case MType-Inh. We havemtypeΣ(q,Ck ) = ρ, for someCk whereB extends Ck . By the induction
hypothesis, lookup∆(q,Ck ) = e, for a unique e. It now su�ces to show that there does not
exist j ≠ k such that B extends C j and lookup∆(q,C j ) = e′. Then, the rule Lookup-Inh
then uniquely applies, since its premises exclude the other two rules.

Suppose such a j did exist, i.e., B extends C j and lookup∆(q,C j ) = e′. By Lemma A.22
(lookup implies mtype), there exists ρ′ where mtypeΣ(q,C j ) = ρ′.
By Lemma A.36, Σ ⊢ (B(. . . ) extends C j ,Ck , . . . requires . . . ) ok. Inversion on decl-type ok
yields B extends C j ,Ck . . . inherit-ok; i.e., premise (1) of Tp-Brand-Decl. Inversion on
this last derivation yields premise (7) of Tp-Inherit, which assumes that j ≠ k . As this is
a contradiction of the assumption above, this yields the required result. ◻

Lemma A.32 (Well-typed objects have well-typed simple names).
If Γ ⊢ Ĉ (v ;n ,Ð→ q) ∶ τ and τ ≤ B(M) and na ∈M , then there exist qa and ρa such that na ,Ð→ qa ∈
n ,Ð→ q and mtype(qa ,C ) = ρa .

Proof. By induction on Ĉ (⋯) ∶ τ.
case Tp-Subs. Immediate from induction hypothesis.
case Tp-New-Obj. By the form of the rule, τ=C (n ∶ ρ), where mtype(q,C ) = ρ. Let M = nm ∶ ρm .

By subtype and sub-row inversion (Lemmas A.28 and A.27), nm ⊆ n. We have na ∈ nm . By
the properties of the subset relation, na ∈ n. Let k be the index of na in n. Finally, taking
ρk as ρa yields the required result. ◻

Lemma A.33 (Transitivity of the super judgement).
If Σ ok and ∆ ∶ Σ and:

1. B ⊑∆ A;
2. A ⊑∆ C and A ≠C ;
3. C ≠Object; and
4. super∆(A as C ) = D , for the unique result D ,

then super∆(B as C ) = D , for the unique result D .

Proof. By induction on B ⊑∆ A.
case Sub-Brand-Refl. Immediate.
case Sub-Brand-Trans. We haveB ⊑ A′ and A′ ⊑ A, for some A′. By Sub-Brand-Trans, A′ ⊑C .

Applying the induction hypothesis to the sub-derivation A′ ⊑ A yields super∆(A′ as C ) = D ,
for some unique D . Taking this fact and applying the induction hypothesis to B ⊑ A′ yields
the required result.
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case Sub-Brand-Decl. We have B extends A. First, we will show that there does not exist D ′

such that D ′ ⊑C and B extends D′ (this will satisfy the first premise of Super-Inh). Sup-
pose such a D ′ did exist. Then B extends A,D ′ where D ′ ⊑C . But, by assumption, A ⊑C
and C ≠Object, so this would violate the no-diamond property (Lemma. A.24). Therefore
such a D ′ cannot exist. Taking A as Ek , we have super∆(B as C ) = D by Super-Inh.

We must next show that there does not exist E j such that B extends E j and
super∆(E j as C ) = D ′′, then we will have shown that the result of super∆(B as C ) is unique.
Suppose such an E j did exist. By Lemma A.23, we have E j ⊑D′′ and D′′ ⊑C . From this it
follows that E j ⊑C (by Sub-Brand-Trans). But, this would again create a diamond (with
a brand other than Object at the top), as we have assumed B extends A,E j and E j ⊑C and
we have A ⊑C . ◻

Lemma A.34 (Conditions under which super is defined).
If Σ ok and ∆ ∶ Σ and B ⊑∆ C , where B ≠C and C ≠Object, then super∆(B as C ) = D , for a unique
result D .

Proof. By induction on B ⊑∆ C .

case Sub-Brand-Refl. Vacuous, as we have assumed B ≠C .

case Sub-Brand-Trans. B ⊑ A A ⊑C
There are two subcases:

1. B = A or A = C . Result follows from the induction hypothesis, as this gives a sub-
derivation B ⊑C .

2. B ≠ A and A ≠ C . By the induction hypothesis on A ⊑ C , super∆(A as C ) = D , for
unique D . Taking this along with the assumptions B ⊑ A and A ⊑ C , Lemma A.33
gives the required result.

case Sub-Brand-Decl. B extends C ∈∆
Take D as C . By Sub-Brand-Refl, C ⊑ C . The rule Super-Base then applies. It now
su�ces to show that there does not exist D ′ such that B extends D′ and D′ ⊑ C , as the
result of super∆(B as C ) is then unique. The non-existence of such a D′ follows from the
no-diamond property (Lemma A.24), since we have C ⊑C and we would have D ′ ⊑C . ◻

Lemma A.35 (Progress: expressions).
If Σ ok and ⋅ ⊢Σ e ∶ τ then either e is a value, or, for any ∆ such that ∆ ∶ Σ, there exists e′ such
that e z→∆ e′.

Proof. By induction on e ∶ τ, with case analysis of final rule used.

case Tp-Unit, Tp-Fun. Immediate.

case Tp-App. Straightforward.
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case Tp-Subs. Result follows from induction hypothesis.

case Tp-New-Record. e = (`= e)
By the induction hypothesis, each ei either steps to some e′i or is a value. If any ei steps,
then the rule E-Record applies. Otherwise, the entire expression is a value.

case Tp-Proj. e = e1.`k e1 ∶ {` ∶ τ}
By the induction hypothesis, either e1 steps to some e′1 or it is a value. If it steps to e′1, then
E-Proj1 applies. Otherwise, if it is a value, by canonical forms (Lemma A.30) e1 has the
form (k = v) and E-Proj-Val applies.

case Tp-New-Obj. e = B̂(e1;n ,Ð→ q)
By the induction hypothesis, e1 steps to some e′1 or it is a value. If it takes a step, then
E-Obj applies. If it is a value, then then e is also a value.

case Tp-With. e = e1 with n = q
By the induction hypothesis, either e1 is a value or it steps to some e′1. If it steps, then
the rule E-With applies. Otherwise, by canonical forms (Lemma A.30), e1 has the form
Ĉ (v ;n′ ,Ð→ q′). Then, the rule E-With-Val applies.

case Tp-Invoke-Struct, Tp-Invoke-Nom. e = e1.m e1 ∶B(M)
In either case, by the induction hypothesis, either e1 steps to some e′1 or it is a value. In
the first case, E-Invoke applies. Otherwise, by canonical forms (Lemma A.30), e1 has the
form Ĉ (v ;n ,Ð→ q). It su�ces to show that mbody∆(m,C ,n ,Ð→ q) is uniquely defined; the
rule E-Invoke-Val then applies.
case Tp-Invoke-Struct. m = n

By Lemma A.32, we have (a) n ,Ð→ q ∈ n ,Ð→ q and (b) mtypeΣ(q,C ) = ρ, for some q
and ρ. From (b), Lemma A.31 yields that lookup∆(q,C ) is uniquely defined. From
this and (a), the rule MBody-Simple applies. Since MBody-Qual is not applicable,
mbody is also uniquely defined.

case Tp-Invoke-Nom. By Lemma A.31, lookup∆(q,C ) is uniquely defined. The rule
MBody-Qual then applies and mbody is therefore uniquely defined.

case Tp-Invoke-Super. e = e1.C .super.q
Either e1 is a value or it evaluates to some e′1. If it evaluates, the rule E-Super-Invk applies.

Otherwise, by canonical forms (Lemma A.30), e1 has the form B̂ ′(v ;n ,Ð→ q). By
Lemma A.34, there exists a unique D such that super∆(B ′ as C ) = D . By Lemma A.23
B ′ ⊑Σ D . Precisifying the object type (Lemma A.17) gives us B̂ ′(⋯) ∶ B ′(M), and by Sub-
Obj, B̂ ′(⋯) ∶D(M).

From the premise of the Tp-Invoke-Super, we have mtypeΣ(q,C ) = ρ. Also, by
Lemma A.23, D ⊑Σ C . By Lemma A.21, mtypeΣ(q,D) = ρ′ (where ρ′ ≤ ρ). Taking this fact
together with B̂ ′(⋯) ∶ D(M), by Lemma A.31, lookup∆(q,D) is uniquely defined. Then,
E-Super-Invk-Val applies.

case Tp-Fold. e = foldτ e1
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By the induction hypothesis, either e1 takes a step or it is a value. If it takes a step, then
the rule E-Fold applies. Otherwise, e itself is a value.

case Tp-Unfold e = unfoldµX .τ e1

By the induction hypothesis, either e1 takes a step or it is a value. If it takes a step, then
the rule E-Unfold applies. Otherwise, it is a value v of type µX .τ. By canonical forms
(Lemma A.30), v has form foldµX .τ v1. so the rule E-Unfold-Fold applies. ◻

Theorem A.1 (Progress theorem for programs [Theorem 3.2]).
If Σ ok and Σ ⊢p ok, then one of the following cases holds:

1. p is a value; or
2. for any ∆ such that ∆ ∶ Σ, there exist p′ and ∆′ such that p |∆ z→ p′ |∆′.

Proof. By case analysis of the form of p .
case p =Σ ⊳ decl in p .

Either E-Brand-Decl or E-Ext-Decl applies.
case p =Σ ⊳ e.

The result follows from the progress lemma for expressions (LemmaA.35) and E-Expr. ◻

A.5 Preservation Lemmas and Theorem
Lemma A.36 (Weakening for Γ).
If Σ ok and Γ ⊢Σ e ∶ τ, then Γ, x ∶σ ⊢Σ e ∶ τ

Proof. Straightforward. ◻

Lemma A.37 (Substitution).
If Σ ok and Γ, x ∶σ ⊢Σ e1 ∶ τ and Γ ⊢Σ e2 ∶σ then Γ ⊢Σ {e2/x}e1 ∶ τ.

Proof. Straightforward induction on typing derivations. ◻

Lemma A.38. If Σ ok and C ⊑Σ D , then fieldWithReqΣ(C ) ≤ fieldWithReqΣ(D).

Proof. Straighforward induction on C ⊑ D . For the base case, by Lemma A.14, we have ⊢Σ
brand C extends D ok. Inversion on this judgement yields premises (1) and (3) of Tp-Brand-
Decl, which give the required result. ◻

Lemma A.39 (mtype is a function [Lemma 3.5]).
If Σ ok and mtypeΣ(q,B) = ρ1 and mtypeΣ(q,B) = ρ2, then ρ1 = ρ2.

Proof. By simultaneous induction on the two mtype derivations, making use of the fact that
MType-Inh excludesMType-Base andMType-Ext.
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case MType-Base, MType-Base. Immediate from the property of non-duplicate internal
method names (Lemma A.25).

case MType-Base, MType-Ext. Vacuous: external methods may not override internal meth-
ods. That is, Lemma A.26 gives ⊬Σ B.q internal, but MType-Base assumes q ∈ B , i.e.,
⊢Σ B.q internal.

case MType-Ext, MType-Ext. Immediate from the properties of unique method external
method families and non-duplicate external method definitions (Lemmas A.1 and A.26).

case MType-Inh, MType-Inh. We have B extends C1 ∈ Σ and B extends C2 ∈ Σ. Let
mtypeΣ(q,C1) = ρ1 and mtypeΣ(q,C2) = ρ2.
But, we will now show that C1 = C2. By Lemma A.36, Σ ⊢B ok. By inversion on this
derivation, we have premise (1) of Tp-Brand-Decl, i.e., ⊢Σ B inherit-ok. Finally, by
inversion on this last derivation, we have premise (7) of Tp-Inherit, which requires that
mtype(q) derivations do not exist for two distinct superclasses.
Now, by the induction hypothesis, ρ1 = ρ2. The result then follows fromMType-Inh. ◻

Lemma A.40 (Result of lookup is well-typed [Lemma 3.6]).
If Σ ok and ∆ ∶ Σ and mtypeΣ(q,C ) = N ⇒ τ and lookup∆(q,C ) = e0, then

this ∶σc ,�elds ∶σf ⊢Σ e0 ∶ τ.
for some σc and σf such that C (N ) ≤σc and fieldWithReqΣ(C ) ≤σf .

Proof. By induction on lookup∆(q,C ).

case Lookup-Base. By the definition of ∆ ∶ Σ, qmust be defined internally in C with some type
ρ = N ⇒ τ. By MType-Base, mtypeΣ(q,C ) = N ⇒ τ (for the unique result N ⇒ τ, since by
Lemma A.25, internal method names q are distinct from one another). Finally, from the
definition of ∆ ∶ Σ (Def. 3.3), we have:

this ∶C (N ),�elds ∶ fieldWithReqΣ(C ) ⊢Σ e0 ∶ τ,
which is the required result.

case Lookup-Ext. By the definition of ∆ ∶ Σ, q must be defined externally for C with some
type ρ = N ⇒ τ. By the properties of well-formed external methods (Lemma A.26),
⊬C .q internal. By the definition of internal, q is not defined internally in C , so the rule
MType-Base cannot apply. By inspection, the ruleMType-Ext applies and mtypeΣ(q,C ) =
N ⇒ τ. Finally, Lemmas A.1 and A.26, there is only onemethod family q and there cannot
be a duplicate entry for C ; therefore, the result N ⇒ τ is unique.
From the definition of ∆ ∶ Σ (Def. 3.3), we have:

this ∶C (N ) ⊢Σ e0 ∶ τ.
Applying weakening for Γ (Lemma A.36) gives the required result.

case Lookup-Inh. By the premises of the rule, q is not defined internally or externally on
C . Also, C extends D ∈ ∆ and lookup∆(q,D) = e0. By Lemma A.22, the derivation
lookup∆(q,D) implies that there exists a derivation D ∶∶mtypeΣ(q,D) = ρ, for some ρ and
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some D that does not contain MType-Req. By MType-Inh, D2 ∶∶mtypeΣ(q,C ) = ρ, where
D2 does not contain MType-Req. By Lemma A.39, ρ is the same as the result of the as-
sumed mtype derivation; that is, ρ = N ⇒ τ.
By the induction hypothesis, we have:

this ∶σd ,�elds ∶σf ⊢Σ e0 ∶ τ,
for σd such that D(N ) ≤σd and σf such that fieldWithReqΣ(D) ≤σf .
It remains to show that (a) C (N ) ≤ σd and (b) fieldWithReqΣ(C ) ≤ σf . Result (a) follows
from Sub-Brand-Decl, Sub-Obj, and Sub-Trans. Result (b) follows from Lemma A.38
(i.e., fieldWithReqΣ(C ) ≤ fieldWithReqΣ(D)) and Sub-Trans. ◻

Lemma A.41. If Σ ok and C ⊑Σ B and B requires D ∈ Σ, then either C ⊑Σ D or C requires D′, for
D ′ such that D ′ ⊑Σ D .

Proof. Straightforward induction on C ⊑Σ B , using Lemma A.14 and inversion of inherit-ok in
the base case. ◻

Lemma A.42 (Preservation: expressions).
If Σ ok and Γ ⊢Σ e ∶ τ and ∆ ∶ Σ and e z→∆ e′, then Γ ⊢Σ e′ ∶ τ.

Proof. By induction on e ∶ τ.

case Tp-Var, Tp-Unit, Tp-Fun. Vacuous; e does not evaluate.

case Tp-App. Straightforward, using Lemma A.37.

case Tp-Subs. e ∶σ σ ≤ τ e z→∆ e′

By the induction hypothesis, e′ ∶σ and the result follows from Tp-Subs.

case Tp-New-Record. The only evaluation rule that applies is E-Record. We have ek z→∆ e′k .
By the induction hypothesis, e′k ∶ τk . The result then follows from Tp-New-Record.

case Tp-Proj. e ∶ {ki ∶ τi
i∈1..n}

There are two possible evaluation rules that apply:
subcase E-Proj1. Result follows from the induction hypothesis and Tp-Proj.

subcase E-Proj2. (` j = v j
j∈1..m).`k z→∆ vk

By typing inversion (Lemma A.29), we have {` j ∶ τ j
j∈1..m} ≤ {ki ∶ τi

i∈1..n} and vk ∶ τk ,
which is the required result.

case Tp-New-Obj. e = B̂(e1;n ,Ð→ q) e1 ∶ τ
′ e1 z→∆ e′1

The only evaluation rule that is applicable is E-Obj. By the induction hypothesis, e′1 ∶ τ
′.

The result then follows from Tp-New-Obj.
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case Tp-With.

Γ ⊢e1 ∶B(M) B requires D ∈Σ

nb ∉ M nb distinct ∃C ′ ∈ {B ,D}. mtypeΣ(qbi
,C ′) ∶ ρbi (∀i ∈ 1..n)

Γ ⊢e1 with nbi ,Ð→ qbi
i∈1..n ∶ B(M ,nbi ∶ ρbi

i∈1..n)

There are two possible evaluation rules that apply:
subcase E-With. Result follows from the induction hypothesis and Tp-With.

subcase E-With-Val.

Ĉ
(
v ′;na ,Ð→ qa

)
with nb ,Ð→ qb z→∆ Ĉ

(
v ′; merge(nb ,Ð→ qb ,na ,Ð→ qa)

)
v1 = e1 = Ĉ (v ′;na ,Ð→ qa) v1 ∶B(nm ∶ ρm) M = nm ∶ ρm

Precisifying the type of v1 (Lemma A.17) yields:
(1) v1 ∶C (na ∶ ρa)
(2) C (na ∶ ρa) ≤B(nm ∶ ρm), where mtypeΣ(qa ,C ) = ρa , and
(3) C requires ● ∈Σ.

By inversion on the subtyping derivation (2) (Lemma A.28),
(i) C ⊑B and
(ii) na ∶ ρa ⊴ nm ∶ ρm

By sub-row inversion on (ii) (Lemma A.27):
ρa j ≤ ρmi for each commom label na j = nmi

nm ⊆ na

Let na′ be the set of labels that are in na but not in nb (that is, na′ = na − nb ,
where “−” is set di�erence). By the definition of merge, merge(nb ,Ð→ qb ,na ,Ð→ qa) =
nb ,Ð→ qb ,na′ ,Ð→ qa′ .

Let v = Ĉ
(
v ′; merge(nb ,Ð→ qb ,na ,Ð→ qa)

)
. Fromabove, v = Ĉ (v ′; nb ,Ð→ qb ,na′ ,Ð→ qa′).

We are to show that v ∶B(M ,nb ∶ ρb), i.e., v ∶B(nm ∶ ρm ,nb ∶ ρb).

By premise (5) of Tp-With, for all i ∈ 1..n, either (a) mtypeΣ(qbi
,B) ∶ ρbi or (b)

∃k. mtypeΣ(qbi
,Dk ) ∶ ρbi . By Lemma A.41, since C ⊑ B and C requires ●, C ⊑D . For

each i , in either case, by Lemma A.21, mtypeΣ(qbi
,C ) ∶ ρ′bi

, where ρ′bi
≤ ρbi .

Applying Tp-Obj, v ∶ C (nb ∶ ρ
′

b ,na′ ∶ ρa′) By premise (3) of Tp-With, nb ,nm are
disjoint. From this, we can conclude nm ⊆ n′a . Since we have ρa′j

≤ ρmi for
na′j

= nmi , by Sub-Row-Width and Sub-Row-Depth, na′ ∶ ρa′ ⊴ nm ∶ ρm . Also,

by Sub-Row-Depth, nb ∶ ρ
′

b ⊴ nb ∶ ρb . Finally, by Sub-Row-Perm, nb ∶ ρ
′

b ,na′ ∶ ρa′ ⊴
nm ∶ ρm ,nb ∶ ρb , which is the structural part of the required result. Finally, since
C ⊑B , the result follows from Sub-Obj and Tp-Subs.
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case Tp-Invoke-Struct.
Γ ⊢e1 ∶B(M) n ∶N ⇒ τ ∈ M M ⊴N

Γ ⊢e1.n ∶ τ

There are two possible evaluation rules that apply:
subcase E-Invoke. Result follows from the induction hypothesis and Tp-Invoke.

subcase E-Invoke-Val.
∃ unique e0. mbody∆(n,C ,n ,Ð→ q) = e0

Ĉ (v ′;n ,Ð→ q).n z→∆

{
Ĉ (v ′;n ,Ð→ q)/this, v ′/�elds

}
e0

e = v1.n e1 = v1 = Ĉ (v ′;n ,Ð→ q) v1 ∶B(M)

By precisifying v1 (Lemma A.17):
v1 ∶C (n ∶ ρ),

and C (n ∶ ρ) ≤ B(M) and C requires ●, where mtype(q) = ρ. Applying Lemma A.29
(inversion on the typing derivation) to v1 ∶C (n ∶ ρ), we have:

v ′ ∶ fieldTypeΣ(C ).

It su�ces to show that:
this ∶ τc ,�elds ∶ τ f ⊢e0 ∶ τ,

for some τc and τ f whereC (n ∶ ρ) ≤ τc and fieldTypeΣ(C ) ≤ τ f , the result then follows
from the substitution lemma (Lemma A.37).

By MBody-Simple, mbody∆(n,C ,n ,Ð→ q) = lookup∆(q,C ), where n ,Ð→ q ∈ n ,Ð→ q.
From above (result of Lemma A.17), mtypeΣ(q,C ) = ρ. Let ρ = N ′⇒ τ′.

Applying Lemma A.40, we have:
this ∶σc ,�elds ∶σf ⊢Σ e0 ∶ τ,

for some σc and σf such that C (N ′) ≤σc and fieldWithReqΣ(C ) ≤σf .

Recall from above that C requires ●. From this, it follows that fieldWithReqΣ(C ) =
fieldTypeΣ(C ) and we can take σf as τ f from above.

It now su�ces to show that (a) C (n ∶ ρ) ≤C (N ′) and (b) τ′ ≤ τ; then we may take σc

as τc and apply Tp-Subs. By subtype inversion (Lemma A.28) on C (n ∶ ρ) ≤ B(M)
we have n ∶ ρ ⊴M . By Tp-Sub-Row, n ∶ ρ ⊴N . Also, since we have n ∶ N ⇒ τ ∈M , by
subrow inversion (LemmaA.27) we also have N ′⇒ τ′ ≤N ⇒ τ. By subtype inversion
(Lemma A.28) on this last derivation, N ⊴N ′ and τ′ ≤ τ, the latter satisfying (b).

Finally, by Sub-Row-Trans, n ∶ ρ ≤ N ′. Tp-Obj yields C (n ∶ ρ) ≤ C (N ′) which is the
required result.

case Tp-Invoke-Nom. e = e1.q

Γ ⊢e1 ∶B(M) mtypeΣ(q,B) = N ⇒ τ M ⊴N

Γ ⊢e1.q ∶ τ
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There are two possible evaluation rules that apply:
subcase E-Invoke. Result follows from the induction hypothesis and Tp-Invoke.

subcase E-Invoke-Val.
∃ unique e0. mbody∆(q,C ,n ,Ð→ q) = e0

Ĉ (v ′;n ,Ð→ q).q z→∆

{
Ĉ (v ′;n ,Ð→ q)/this, v ′/�elds

}
e0

e = v1.q e1 = v1 = Ĉ (v ′;n ,Ð→ q) v1 ∶B(M)

This proof is very similar to that of case Tp-Invoke-Struct, E-Invoke-Val above.
The main di�erence is the reasoning for obtaining a derivation mtypeΣ(q,C ) = N ′⇒
τ′.

By precisifying v1 (Lemma A.17):
v1 ∶C (n ∶ ρ),

andC (n ∶ ρ) ≤B(M) andC requires ●. Applying LemmaA.29 (inversion on the typing
derivation) to v1 ∶C (n ∶ ρ), we have:

v ′ ∶ fieldTypeΣ(C ).

It su�ces to show that:
this ∶ τc ,�elds ∶ τ f ⊢e0 ∶ τ,

for some τc and τ f whereC (n ∶ ρ) ≤ τc and fieldTypeΣ(C ) ≤ τ f , the result then follows
from the substitution lemma (Lemma A.37).

By a straightforward inversion on the derivation mbody∆(q,C ,⋯), we have
lookup∆(q,C ) = e0. From this, LemmaA.22 there is a derivationmtypeΣ(q,C ) = N ′⇒
τ′, for some N ′⇒ τ′.

Applying Lemma A.40, we have:
this ∶σc ,�elds ∶σf ⊢Σ e0 ∶ τ,

for some σc and σf such that C (N ′) ≤σc and fieldWithReqΣ(C ) ≤σf .

Recall from above that C requires ●. From this, it follows that fieldWithReqΣ(C ) =
fieldTypeΣ(C ) and we can take σf as τ f from above.

It now su�ces to show that (a) C (n ∶ ρ) ≤C (N ′) and (b) τ′ ≤ τ; then we may take σc

as τc . By inversion on the subtype derivation C (n ∶ ρ) ≤ B(M) above (Lemma A.28),
we have n ∶ ρ ⊴M and C ⊑Σ B (since C requires ●). By Sub-Row-Trans, n ∶ ρ ⊴N .

Recall that mtypeΣ(q,B) = N ⇒ τ and mtypeΣ(q,C ) = N ′⇒ τ′. By Lemma A.21, N ⊴
N ′ and τ′ ≤ τ (the latter satisfying (b) above). Taking this together with n ∶ ρ ⊴N and
applying Sub-Row-Trans, Sub-Obj and Tp-Subs, we have C (n ∶ ρ) ∶C (N ′), which is
the required result.

case Tp-Invoke-Super. There are two possible evaluation rules that apply:
subcase E-Super-Invk. Result follows from the induction hypothesis and Tp-Invoke-

Super.
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subcase E-Super-Invk-Val.

∃ unique D. super∆(B as C ′) = D ∃ unique e0. lookup∆(q,D) = e0

Ĉ (v ′;n ,Ð→ q).C .super.q z→∆

{
Ĉ (v ;n ,Ð→ q)/this, v ′/�elds

}
e0

e z→∆ e′

e = v1.C ′.super.q v1 = Ĉ (v ′;n ,Ð→ q) v1 ∶B(M)
B requires C ′ ∈Σ mtypeΣ(q,C ′) = N ⇒ τ M ⊴N

By Lemma A.23, C ⊑D and D ⊑C ′.

By LemmaA.21, sinceD ⊑C ′, we havemtypeΣ(q,D) = N ′⇒ τ′, where N ′⇒ τ′ ≤N ⇒
τ. Again by Lemma A.21, since C ⊑ D , mtypeΣ(q,C ) = N ′′⇒ τ′′ where N ′′⇒ τ′′ ≤
N ′⇒ τ′. Applying subtyping inversion to these judgements (Lemma A.28), subrow
inversion and transitivity yield N ⊴N ′′ and τ′′ ≤ τ.

Recall that we have lookup∆(q,D) = e0 and mtypeΣ(q,D) = N ′ ⇒ τ′. Applying
Lemma A.40, we have this ∶ σc ,�elds ∶ σf ⊢Σ e0 ∶ τ, for some σc and σf such that
D(N ′) ≤σc and fieldWithReqΣ(D) ≤σf .

From C ⊑D and N ′′ ⊴N , Sub-Obj yields C (N ′′) ≤D(N ′); by transitivity, C (N ′′) ≤σc .
By Lemma A.38, fieldWithReqΣ(C ) ≤ fieldWithReqΣ(D), which by transitivity yields
fieldWithReqΣ(C ) ≤σf .

By the subsitution lemma (Lemma A.37), e ∶ τ. Finally, since τ′′ ≤ τ, Tp-Subs yields
the required result.

case Tp-Fold. The only evaluation rule that applies is E-Fold. The result follows from the
induction hypothesis and Tp-Fold.

case Tp-Unfold. There are two possible evaluation rules that apply:
subcase E-Unfold. The result follows from the induction hypothesis and Tp-Unfold.

subcase E-Unfold-Fold.
Straightforward, using typing inversion lemma (Lemma A.29). ◻

Theorem A.2 (Preservation theorem for programs [Theorem 3.3]).
If Σ ok and Σ ⊢p ok and ∆ ∶ Σ and p |∆ z→ p′ |∆′, then there exists a Σ′ such that (a) Σ′ ok
and (b) ∆′ ∶ Σ′ and (c) Σ′ ⊢p′ ok.

Proof. By case analysis on the derivation Σ ⊢p ok.

case Tp-Decl-Ok.
1 decl ∶ decl-type 2 decl-typename ∉Σ 3 Σ0 ⊢decl-type ok

4 Σ0,decl-type ⊢decl body-ok 5 Σ ⊇Σ0
6 Σ,decl-type ⊢p′ ok

Σ ⊢Σ0 ⊳ decl in p′ ok
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By E-Brand-Decl and E-Ext-Decl, p |∆ z→ p′ |∆′. Let Σ′ =Σ,decl-type.
By premises (3) and (5), Σ0 ⊢decl-type ok and Σ ⊇Σ0. By weakening on Σ0 (Lemma A.36),
Σ ⊢decl-type ok. This, together with premise (2), yields Σ′ ok, which is part (a) of the
required result.
Part (c) of the required result, Σ′ ⊢p′ ok is immediate from premise (6).
To prove part (b), ∆′ ∶ Σ′, we case analyze the form of decl-type.

subcase Brand declaration.
decl = brand B(σ;qi B(Mi ) ∶ τi = ei

i∈1..n) extends C requires D
decl-type = brand B(σ;q ∶M ⇒ τ) extends C requires D
∆′ =∆,B(q= e) extends C

Let Σ′0 = Σ0,decl-type. By assumption, Σ′0 ⊢decl body-ok. Inversion on this deriva-
tion yields (by Brand-Decl-Body):

(i) fieldTypeΣ′0
(D) =σ′

(ii) this ∶B(Mi ),�elds ∶σ∧ σ′ ⊢Σ′0
ei ∶ τi , for all i ∈ 1..n

It su�ces to show that derivations (i) and (ii) hold under the larger context Σ′, as
then Delta-Wf-Brand yields the required result.
By the properties of set inclusion, Σ ⊇Σ0 implies that Σ′ ⊇Σ′0.
Since Σ′ ok, there are no duplicate brands in Σ′ (LemmaA.1). Therefore, item (i) has
the same result under context Σ′ (i.e., σ′).
For item (ii), we use the fact that Σ′ ok (proved above for part (a) of the theorem)
and apply signature weakening for expression typing (Lemma A.15). This yields

this ∶B(Mi ),�elds ∶ fieldWithReqΣ(B) ⊢Σ ei ∶ τi , for all i ∈ 1..n,
which is the required result.

subcase External method declaration.
Similar to above; inversion on Σ′0decl-type body-ok yields the sole premise of Ext-
Method-Body (which is similar to (ii) above, except the special variable �elds is not
bound in Γ. The result follows from the properties of set inclusion and Delta-Wf-
Method.

case Tp-Expr-Ok.
The rule E-Expr is the only rule that applies, i.e., e z→∆ e′. By the preservation lemma
for expressions (Lemma A.42), ⊢Σ0 e′ ∶ τ. Since ∆′ =∆, take Σ′ =Σ; the result then follows
from Tp-Expr-Ok. ◻

Theorem A.3 (Type safety).
If Σ ok and Σ ⊢p ok and ∆ ∶ Σ, then either (1) p is a value or (2) p | ∆ z→ p′ | ∆′, for some p′

and ∆′ where ∆′ ∶ Σ′ and Σ′ ok and Σ′ ⊢p′ ok.
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Proof. Follows from progress and preservation theorems (Theorems A.1 and A.2). ◻

Corollary A.1 (Method lookup always succeeds in well-typed expressions).
If Σ ok and ⊢Σ v.m ∶ τ and ∆ ∶ Σ then v.m z→∆ e′, for some unique e′.

Proof. Follows from progress lemma on expressions (Lemma A.35) and the sole premise of the
method evaluation rule E-Invoke-Val, which requires that the result of method body lookup
(mbody) be uniquely defined. ◻

Theorem A.4 (Typechecking is modular [Theorem 3.1]).
Typechecking top-level elements declarations decl is modular. That is, typechecking such ele-
ments only involves examining the signatures on which decl statically depends.

Proof. Follows from the fact that top-level elements are typechecked under their declared con-
text Σ0. The only rules that examine the entire linearized program context Σ are Tp-Decl-Ok
and Tp-Expr-Ok, in the premise Σ ⊇ Σ0. This step is analogous to a linking phase in which im-
ported declarations are resolved. Since checking set inclusion does not involve typechecking of
any kind, this check adheres to the definition of modular typechecking. ◻
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Appendix B

Empirical Study Details

B.1 Subject Programs

Program Version

Ant 1.7.0
antlr 2.7.6
Apache collections 3.2
Areca 5.5.3
Cayenne 2.0.4
Columba 1.0RC1
Crystal 3.3.0
DrJava 20080904-r4668
Emma 2.0.5312
freecol 0.7.3
hsqldb 1.8.0.4
HttpClient 3.1
jEdit 4.2
JFreeChart 1.0.0-rc1
JHotDraw 7.0.9
jruby 1.0.1
jung 1.7.6
LimeWire 4.13.0
log4j 1.2.15
Lucene 1.4
OpenFire 3.4.2
plt collections 20080904-r4668
pmd 3.3
poi 2.5.1
quartz 1.5.2
Smack 3.0.4
Struts 2.0.11
Tomcat 6.0.14
xalan 2.7.0

Table B.1: Version numbers of empirical study subject programs
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B.2 Subjective Criteria
In Section 4.3.2, I enumerated the number of cases where it could be “useful” to general-
ize the parameter types of a particular method. To determine this, I asked two questions.
First, does the inferred parameter type S generalize the abstract operation performed by the
method (as determined by the method name)? For example, generalizing the List parameters in
ListUtils.intersection does appear to generalize the abstract operation of taking the intersection
of two sequences. Second, does it seem likely that there would be multiple subtypes of S? For
example, in Crystal I found that there were twomethods of the IBinding interface that were often
used, and I was informed by the developers that it was conceivable that they would replace the
use of Eclipse binding objects with an application-specific representation.

In Section 4.5.2, I tabulated the number ofmethods in a commonmethod group that had “the
same meaning.” To determine this, I used javadoc when available; when it was not, I examined
the body of the method to determine the operation being performed.
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