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Abstract
Transfer learning is a machine learning (ML) paradigm where performance on a

desired end task1 is improved by exploiting ”knowledge” from other tasks. The tech-
nique has become a critical workhorse driving many of the advances on the envelope
of capabilities of machine learning models. The current formula is relatively simple
– train a large model on large amounts of data from the transfer task(s); then apply
the learned model either zero-shot or adapted to the desired downstream task(s).

This thesis recognizes that these powerful models are not developed in-vacuo
but rather require non-trivial resources to train and deploy. As such, there are a wide
range of salient problems and communities of researchers that the status-quo leaves
behind. In the first part of this thesis, we will focus on the training time problem
of data-efficient transfer learning. We will begin by making a case for exploiting
advanced knowledge of the desired downstream task(s) – which is commonly the
case in many ML settings – to inform different dimensions of transfer learning. We
dub this end task aware transfer learning. Next, we will present a set of novel end
task aware optimization algorithms that bias the learning trajectory towards data-
efficient solutions with strong generalization on the end task. We will close this part
by providing an automated approach to constructing and searching over task-relevant
transfer objectives when only end task data is available and in limited amounts.

For the second section of this thesis, we will develop algorithms for compute
and memory efficient transfer learning. Our goal will be to deliver a small and
efficient yet performant task specific model for deployment seeded from a large,
generalist model that has already been pre-trained on a transfer task (or set of tasks).
Focusing on structured pruning as the technique for making models smaller, we
will investigate pruning under two resource constrained settings: (1) limited task
data, where we will exploit extra transfer tasks to learn pruning structures that, at
the same task performance, lead to more compute and memory efficient models (2)
settings of limited memory, where many of the classical pruning techniques break
down because they require gradient-based optimization which can have prohibitive
memory overhead.

This thesis concludes by presenting more avenues for future work on resource ef-
ficient transfer learning by building on our past work and suggesting novel branches
of investigation.

1end task here may encompass an aggregated suite of tasks
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Chapter 1

Introduction

Machine learning (ML) models are becoming increasingly more powerful, resulting in their
widespread adoption across many task domains (Gururangan et al., 2020a; Liu et al., 2022), data
modalities (Team et al., 2023; McKinzie et al., 2024) and end-user applications (Bommasani
et al., 2021; Maslej et al., 2023). Arguably one of the key driving forces of this staggering pace
of growth is transfer learning. In transfer learning, we seek to improve performance on a de-
sired end task (or set of tasks) by leveraging knowledge from a different, hopefully related task
(Bozinovski and Fulgosi, 1976; Pratt, 1992; Ruder et al., 2019). Many end-tasks we wish to
solve have limited data or are too complex to directly specify or learn with a practical number of
supervised samples. Transfer learning enables us to tackle such problems by not only providing
proxy data but by also enabling efficient learning of complex tasks by exploiting their structural
relationships with chosen transfer tasks (Thrun and Schwartz, 1994; Baxter, 2000).

Despite its successes, transfer learning in its modern realization can be prohibitively resource
intensive. Take for instance the ubiquitous pretrain-then-adapt paradigm 1. With this approach,
increasingly larger models are first trained on increasing larger piles of data, with these models
eventually being adapted to a wide swath of down-stream tasks (Liang et al., 2022) by finetuning
(Devlin et al., 2018; Abnar et al., 2021), prompting (Brown et al., 2020a; Liu et al., 2023) or
reinforcement learning from human feedback (RLHF) (Christiano et al., 2017). GPT-4 (Achiam
et al., 2023), a popular model under this paradigm which is rumored to be over 1.7 trillion
parameters in size 2, is estimated to have been trained on over 10 trillion tokens; a total of over
1e25 flops of compute (∼ $100M at the time). Though these colossal training costs are typically
justified as amortized over many future end-tasks, the size of such models present a significant
memory, latency, compute and energy burden upon deployment and thus beg the question of the
true degree of resource savings.

This thesis is dedicated to the exploration of techniques for resource efficient transfer learn-
ing. We recognize that there not only exists a broad swath of ML practitioners who are resource
constrained but also that there are many tasks that have built-in resource limits at both training
and deployment time (e.g. tasks performed on edge devices tend to be memory bound). Even for
institutions with the means to train and use large models, resource efficient transfer learning can
bring significant financial savings and limit the strain placed on the environment through CO2

1we will discuss different kinds of transfer learning in Chapter 2
2See here
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emissions (Ligozat et al., 2022).
This thesis is concerned with three main resource dimensions: data, compute and memory

at both training and deployment time. Our goal is to produce performant (encompassing tasks
specific metrics like accuracy or F1) models whilst being aware of resource efficiency require-
ments at train and test times. A foundational insight we will exploit to achieve the above goal is
that ML practitioners usually have some degree of apriori awareness of the end-task(s) that their
models will be used for. This end task awareness, allows us to make informed design decisions
that result in efficient yet strong models produced in a resource-conscious manner. Succinctly,
this thesis is grounded in the following problem statement :

Given a particular end task T∗, how can we produce models that satisfy various performance
criteria on T∗ in a resource efficient manner by leveraging a set of transfer tasks Taux.

The idea of end task aware transfer learning is in itself not new. Previous work has explored
asymmetrical transfer in the settings of solving complex planning problems (Stone and Veloso,
1994), improving the performance of support vector machines (Wu and Dietterich, 2004) and
constructing priors for bayesian linear regression (Raina et al., 2006). We are interested in ex-
panding upon the existing literature and developing novel approaches that are tailored to the new,
deep-learning dominated era (LeCun et al., 2015; Goodfellow et al., 2016). Unlike past work, we
are not only focused on improving task metrics like accuracy or perplexity, we are also interested
in achieving these improvements in a resource efficient manner. Below, we provide a high level
overview of the different pieces of work featured in this thesis and how they relate to our defined
goal.

1.1 Thesis Overview and Contributions

This thesis consist of three main parts. Figure 1.1 provides a pictorial summary of the works
featured in this thesis.

PART I - Introduction and background Part I of this thesis (which includes this introduc-
tion) sets the stage for understanding transfer learning, end task awareness and how we thread
these together when thinking about resource efficiency. In chapter 2 we provide some back-
ground on transfer learning and contextualize this thesis with respect to prior work.

PART II - Data efficient transfer learning We begin this part by making a case for end-
task awareness in the transfer learning pipeline as a means of achieving the various forms of
resource efficiency we are interested in. The contents of Chapter 3, which make this case, were
published as Dery et al. (2021a) at ICLR 20223. Continuing this part, we propose various ap-
proaches for improving data-efficiency not only with respect to the end task, T∗, but also the
set of auxiliary tasks Taux. To achieve more data-efficient transfer learning, we exploit end task

3https://openreview.net/forum?id=2bO2x8NAIMB
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awareness both when considering how to construct the set of transfer tasks Taux and how to
optimize over this set to achieve improved performance on T∗.

1. Optimizing over Taux (Chapter 4): Tasks with smaller training sets often resort to pre-
training or multitask learning to leverage data from other tasks. In this case, careful con-
sideration is needed to select tasks and model parameterizations such that updates from
the auxiliary tasks actually help the primary task. We seek to alleviate this burden by
formulating a model-agnostic framework that performs fine-grained manipulation of the
auxiliary task gradients. We propose to decompose auxiliary updates into directions which
help, damage or leave the primary task loss unchanged. This allows weighting the update
directions differently depending on their impact on the problem of interest. Our novel opti-
mization algorithm allows us to improve data-efficiency by achieving higher performance
at a fixed amount of end task data compared to strong baselines. This work was published
as Dery et al. (2021b) at ICLR 20214.

2. Constructing Taux (Chapter 5): Past work has generally assumed that the set Taux is pro-
vided a-priori, and has focused on algorithms for using Taux to improve T∗. We present
an approach for automatically generating a suite of auxiliary tasks. We achieve this by de-
constructing existing objectives within a novel unified taxonomy, identifying connections
between them, and generating new ones based on the uncovered structure. Our approach
allows us to construct Taux directly from end task data without having to introduce exter-
nal data. This improves performance on T∗ by using task data only, resulting in improved
data-efficiency. This work was published as Dery et al. (2022) at ICLR 2023 5.

PART III - Compute and memory efficient transfer learning As is the current status-quo,
there exists a plethora of large models that have been pre-trained on massive datasets. The large
size of these models prevent them from being applicable to tasks that are deployed in compute
and memory constrained settings. For such tasks to benefit from transfer learning, these large
models have to be pruned or compressed to desirably sizes. In lieu of compressing large models
to smaller, task-agnostic models, we exploit end task awareness to achieve more drastic levels
of compression. We concern ourselves not only with the compute and memory efficiency of
the final target model, but also with the resource efficiency of the pruning process itself. This
is different from most other end task aware compression methods that assume a resource rich
setting during the pruning process itself.

1. Structured pruning of large pre-trained models when T∗ is data-constrained (Chapter 6):
While existing pruning algorithms can be efficient, the common practical setting where
task-specific data is limited is yet to be addressed. To alleviate the data scarcity problem,
we propose a structured pruning strategy that leverages transfer learning. Detailed analyses
of simple transfer learning based remedies lead us to a simple, flexible formulation of what,
how and when to transfer, resulting in pruned models with improved generalization over
strong baselines under limited data for T∗. This work was published as Dery et al. (2023)
at ENLSP-III Workshop at NeurIPS 20236.

4https://openreview.net/forum?id=1GTma8HwlYp
5https://openreview.net/forum?id=vtVDI3w BLL
6https://arxiv.org/pdf/2311.06382
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2. Structured pruning of large pre-trained models when memory is constrained (Chapter 7):
In this work, we consider the setting of pruning large pre-trained models under limited
memory. This setting makes it infeasible to use existing structured pruning approaches
that learn pruning variables via backward passes. We present a zeroth-order, bayesian-
optimization inspired method for structured pruning that has significantly lower memory
overhead. This allows a wider swath of practitioners to perform pruning of large pre-
trained models on their own, memory-constrained hardware. This work is under submis-
sion at the time of handing in this thesis.
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Chapter 2

Preliminaries and Background on Transfer
Learning

In this chapter, we will paint the sub-field of transfer learning in broad strokes, with the goal of
setting the stage for understanding the specific problem of interest that this thesis tackles. We
will focus on transfer learning in the context of deep neural networks since they are currently
the de facto model class used in machine learning. Throughout this section, we will underline
categories to denote settings that we will focus on in this thesis.

2.1 Setup and Definitions

Consider a dataset D = {(xi, yi)i∈[m]} consisting of m data points sampled from some joint
distribution Pdata : X × Y → (0, 1)

∣∣ ∫
Pdata(x, y)dxdy = 1. In supervised machine learning

yi would correspond to a label whilst for unsupervised learning yi would in general be some
transformed version of xi. As a concrete example, a dataset for product sentiment analysis would
have xi corresponding to a product review text whilst yi is the customer sentiment expressed
in the particular review. Informally, the goal of most of machine learning is to learn a model
Mθ parameterized by θ, using D, that is able to map a given xk to an appropriate ỹk such that
Pdata(xk, ỹk) is maximized.

We define a task as an objective function and dataset pair: T = {L(·), D}. The objective
function L(yi,Mθ(xi)) evaluates how well a model prediction Mθ(xi) fits the true label yi, such
as cross-entropy loss in the case of classification or ℓ2 in regression. Note that the task dataset, D,
is typically decomposed into the sets (Dtrain, Dval, Dtest). Dtrain is the set of examples used for
model training whilst Dtest is used for final task evaluation. The validation set, Dval, is typically
used for model selection but it is also frequently used in meta-learning (Schmidhuber, 1987;
Naik and Mammone, 1992) to define the meta-objective – Lval. How well a model performs on
a task is usually measured by the loss on the test set (generalization error):

Ltest =
1

|Dtest|
∑

(xi,yi) ∈ Dtest

L
(
yi,Mθ(xi)

)
9



2.2 Transfer Learning at a glance

Transfer learning typically involves learning a model, Mθ
1, not just from a single task but a set of

tasks T = {T1, . . . , Tℓ}. This set is either decided by the constraints of the practitioner setting, or
selected for by the practitioner themselves based on an a-priori belief that this set of tasks can be
mutually beneficial. Moving from a single task to learning from multiple has several advantages,
including but not limited to:

1. providing proxy data. Some, or all of the tasks in T may be data starved. By pooling and
learning from T instead of individually, transfer learning effectively expands the amount
of data available for learning any individual task Ti (Baxter, 2000; Hutchinson et al., 2017;
Khanuja et al., 2023).

2. regularizing / biasing training. Whilst there may be many models that achieve low loss
on the training data of any target task Ti, there are other properties like generalization to
unseen examples and robustness to worst case group error that we would like our final task
model to possess. As shown in works like Caruana (1997a); Sener and Koltun (2018);
Kulkarni et al. (2023), transfer learning can constrain/regularize the solution space during
neural network training so that surfaced solution satisfies other desirable criteria.

3. improving learnability. Some task are hard to learn due to the twin difficulties of uncover-
ing key features and discerning their complex relationship with the task output. Transfer
learning makes it easier to learn such tasks when they are paired with other tasks where
discovering said key features are easier. Ruder (2017) call this eavesdropping.

2.2.1 Broad categorizations of transfer learning problems

There are many ways to describe the landscape of transfer learning problems. One axis for cate-
gorizing problems is to consider the practitioner end-goal with respect to T.

Symmetric / Multitasking Learning (MTL): In MTL, the practioner cares about delivering
a model that performs well across an aggregation of all the tasks in T: Ltotal =

∑
{Ti ∈ T} αiLTi

test

is minimized under Mθ. {αi} are either chosen by the practitioner or learned in some settings
like in Distributionally Robust Optimization (Duchi and Namkoong, 2021). The objective is to
obtain a single model that outperforms models trained in a single task fashion.

Asymmetric / Auxiliary Learning: In this setting, not all the tasks in T are created equal.
Specifically, there is a proper, non-empty subset T∗ ⊂ T, we call the target set, that the practi-
tioner cares about and all other tasks in Taux = {T \T∗} are solely in service of achieving good
performance on the target set. The metric of concern is therefore Ltotal =

∑
{Tj ∈ T∗} αjLTj

test.
{αi} can be treated as discussed under MTL. This thesis will primarily focus on this asymmet-
rical learning setting. We will exploit advanced knowledge of T∗ during learning to achieve
resource efficiency in transfer learning. We will discuss this further in Chapter 3.

1maybe even a set of models but for simplicity, and based on what has most coverage in practice, we will focus
on the single model case.
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Another common way of categorizing transfer learning problems is based on the relationship
between the input and output spaces of the tasks in T (Zhuang et al., 2020; Bao et al., 2023).

Homogeneous Transfer: When the input spaces and output spaces of the tasks satisfy
{X1 = . . . = Xℓ} and {Y1 = . . . = Yℓ} respectively, the transfer learning problem is classified
as homogeneous. An example of such a transfer problem is an image digit classification problem
where each task has images from different domains eg. CIFAR (Krizhevsky and Hinton, 2010)
and MNIST (LeCun et al., 1995).

Heterogeneous Transfer: If ∃ (i, j) ∈ [ℓ], s.t i ̸= j && Yi ̸= Yj (or similarly for any
pair of input spaces), we refer to this as heterogeneous transfer. An example problem of this type
would be sentiment classification using both audio and text reviews of the same product.

The problems we explore in this thesis will have homogeneous input spaces but flexible
(both heterogeneous and homogeneous) output spaces. Note that in general, it is possible to con-
vert a problem with heterogeneous input spaces into a homogeneous one by learning a shared,
intermediate representation space — for example as is done in cross-modal transfer learning
(Shen et al., 2023).

2.3 Design Choices during Transfer Learning
There are myriad design choices to consider when performing transfer learning. An overarching
theme of this thesis is that certain design choices made during transfer learning can allow the
practitioner to be efficient with respect to desired choices of resources. One way of making sure
that the appropriate choice is made – which this thesis strongly advocates for – is by leveraging
advanced knowledge of the desired end-task(s). Below, we discuss some of the options available
to practitioners along a subset of relevant design dimensions.

2.3.1 What tasks are in T

As already mentioned, when T is not induced by the setting, selecting the tasks that make up
T, usually involves practitioner intuition. We will see in Chapters 4 and 5, that they can be
wrong about which sets of tasks are mutually beneficial, and in such cases data-efficiency and
generalization can be harmed. Unfortunately, there is no single, universally accepted notion of
task relatedness that practitioners can mechanistically follow, given their desired objectives, to
construct T. We can however categorize attempts at defining task relatedness into two camps:
axiomatic and empirical.

Empirical approaches as in (Zamir et al., 2018; Wang et al., 2018a) seek to build graphs
of the relationships between classes of tasks by experimentally verifying whether task pairings
(or orderings) result in positive, neutral or negative outcomes with respect to the performance
of final model. Whilst these graphs enjoy the advantage of being re-usable across different
transfer problem instances, they are computationally prohibitive to construct. Axiomatic ap-
proaches tend to propose a (typically) problem conducive definition of task relatedness based
on formal mathematical measures. For example, an information-theoretic choice of measure of
relatedness is the Kullback-Leibler divergence (or any other suitable choice of distance measure)
DKL(PTi

data∥P
Tj

data) between the data generating distributions, whilst one optimization inspired
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measure is ∥∇θL
(
DTi ,Mθ

)
− ∇θL

(
DTj ,Mθ

)
∥ which we will use in Chapter 5. When cho-

sen carefully, such measures can be easy to compute and dynamic – capturing the evolving task
relationships throughout model training.

2.3.2 The order of Transfer
Given the tasks in T, practitioners need to decide on how to train Mθ: whether all together or in
a chosen order. In Sequential training, tasks are trained in an order that is predetermined by the
practitioner. The popular pretraining-then-finetune paradigm (Devlin et al., 2018; Abnar et al.,
2021) is an example of this setting where we first train on the pre-training task and the resulting
model is further adapted to the downstream task. Sequential training can be beneficial in the
case of tasks that conflict when trained together. However, the more tasks in T, the more choices
there exist for task orderings (Zamir et al., 2018) which increases the depth of design choices.

For joint training, the model Mθ is trained on all the tasks in T in tandem, with with training
biased towards the overall objective – the problem may be symmetric or asymmetric amongst the
tasks. Joint training has the advantage of avoiding having to make task ordering decisions, and
allowing task information to interact throughout training and not just sequentially which can
yield more performant models (Chen et al., 2021; Kulkarni et al., 2023).

2.3.3 What to share or transfer
Practitioners have a choice of what information to share between the tasks in T. Some of these
choices include the following:

Features: As previously mentioned, some features are difficult to compute for certain tasks
either due to limited data or complex relationships between said features and task outputs. Learn-
ing from multiple tasks is an avenue for sharing features between tasks (Peters et al., 2018a; Ku-
mar et al., 2022). Joint training in particular can also serves to constraint feature spaces, allowing
models to focus on those feature sets that enable good performance across several tasks and are
thus more likely to be the truly causal set of task features instead spurious ones (Arjovsky et al.,
2019; Rosenfeld et al., 2020; Huh et al., 2024).

Model weights: Learned model weights for one task can serve as a strong initialization
for another task as common in the pretrain-then-finetune paradigm. Many works have shown
that transferring model weights can result in improved generalization (Abnar et al., 2021), more
robust solutions (Hendrycks et al., 2019) and data-efficiency (Gururangan et al., 2020a) with
respect to downstream task.

Model architecture / structure: Works in the sub-fields of structured pruning (Xia et al.,
2023) and neural architecture search (Gao et al., 2020, 2024) exploit transfer learning to discover
good architectures for the practitioner end-task(s). Not only do these structured facilitate per-
formant models, they also allow the discovery of model that meet inference time memory and
latency constraints.

In this thesis, we will design transfer learning approaches that are targeted at sharing all these
different modes.
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Part II

On Data-Efficient Transfer Learning
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Chapter 3

A Case For End Task Aware Transfer
learning

3.1 Chapter Overview
In most settings of practical concern, machine learning practitioners know in advance what end-
task they wish to boost with auxiliary tasks. However, widely used methods for leveraging
auxiliary data like pre-training and its continued-pretraining variant are end-task agnostic: they
rarely, if ever, exploit knowledge of the target task. Because of this, practitioners have to be
careful with their choice of auxiliary tasks, the order in which they are trained on, and the early-
stopping criteria for each pre-training stage so as to actually achieve good downstream end task
performance (Zamir et al., 2018; Abnar et al., 2021). In the absence of principled criteria to make
these difficult design choices, it is common to instead resort to the resource intensive heuristic of
pre-training on as much data as possible on as large a model as possible.

We begin this part of the thesis by making a case for replacing end task agnostic continued
training of pre-trained language models with end task aware training of said models. We argue
that for sufficiently important end-tasks, the benefits of leveraging auxiliary data in a task-aware
fashion can justify forgoing the traditional approach of obtaining generic, end-task agnostic rep-
resentations as with (continued) pre-training. By the end of this chapter, we will demonstrate
that multi-tasking the end-task and auxiliary objectives results in significantly better downstream
task performance and data-efficiency than the widely-used task-agnostic continued pre-training
paradigm of Gururangan et al. (2020a).

3.2 Introduction
The increasingly popular pre-training paradigm (Dai and Le, 2015; Devlin et al., 2018; Gururan-
gan et al., 2020a) involves first training a generalist model on copious amounts of easy-to-obtain
data, e.g. raw text data in NLP, and then using this model to initialize training on a wide swath
of downstream tasks. Generalist models like BERT (Devlin et al., 2018), RoBERTa (Liu et al.,
2019a), and GPT-3 (Brown et al., 2020a) have a strong appeal; a few institutions with significant
resources incur the cost of training these large models whilst the rest of the research community
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enjoys a significant performance improvement at minimal computational overhead. However, the
advantages of initializing a downstream task from a generalist model are not guaranteed. Pre-
vious work has shown that the benefits of pre-training depend heavily on the degree of domain
overlap between the end-task data and the massive, heterogenous data on which the generalist
model was trained (Beltagy et al., 2019a; Gururangan et al., 2020a).

Taux
T*

end-task
aware
trainingpre-training+

fine-tuning

Figure 3.1: Pre-training trains on auxiliary task
Taux before fine-tuning on primary task T ∗. End-
task aware training optimizes both Taux and T ∗

simultaneously and can find better minima since
optimization is informed by the end-task.

Notably, Gururangan et al. (2020a) have
demonstrated the benefits of continued pre-
training of generalist models using data that
is similar to that of the end-task. Their ap-
proach is formalized into two classes: Do-
main Adaptive Pre-training (DAPT) and Task
Adaptive Pretraining (TAPT) where further
stages of pre-training of generalist models are
conducted on domain- and task-specific data,
respectively. DAPT and TAPT exploit the fact
that we often know the end-task beforehand,
and so we can make specific choices about our
pre-training regimen to improve end-task per-
formance.

However, in both pre-training for gener-
alist models and continued pre-training, the
training procedure itself does not explicitly incorporate the end-task objective function. Be-
cause of this, practitioners have to be careful with their choice of auxiliary tasks, the order in
which they are trained on, and the early-stopping criteria for each pre-training stage so as to
actually achieve good downstream end-task performance (Gururangan et al., 2020a; Dery et al.,
2021b). In the absence of principled criteria to make these difficult design choices, it is common
to instead resort to the computationally demanding heuristic of pre-training on as much data as
possible for as long as possible.

In this Chapter, we raise the following question: “In settings where we have a particular
end-task in mind, should we be pre-training at all?”. We define pre-training as any form of task-
agnostic training that a model undergoes before it is finally fine-tuned on the end-task of interest.
As a first milestone in addressing the larger question posed above, we explore the ubiquitous
continued pre-training setting (Gururangan et al., 2020a; Aghajanyan et al., 2021). Specifically,
our work questions the wisdom of having disjoint further pre-training then fine-tuning steps on
a generalist model. In response, we advocate for an alternative approach in which we directly
introduce the end-task objective of interest into the learning process. This results in a suite
of end-task aware methods called TARTAN (end-Task AwaRe TrAiniNg). Our formulations
incorporate both unsupervised auxiliary objectives traditionally used in NLP pre-training (such
as masked language modeling as in Devlin et al. (2018)) and the end-task objective, followed
by an optional fine-tuning step on the end-task. We motivate TARTAN experimentally in the
continued pre-training setting and based on this, we make the following contributions to the
literature on leveraging auxiliary tasks and data:

• In lieu of standard end-task agnostic continued pre-training, we suggest introducing the
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end-task objective into the training process via multi-task learning (Caruana, 1997a; Ruder,
2017). We call this procedure Multi-Tasking end-Task AwaRe TrAiniNg(MT-TARTAN)
(Section 3.4.1). MT-TARTAN is a simple yet surprisingly effective alternative to task-
agnostic pre-training. In Section 3.6, we demonstrate that MT-TARTAN significantly im-
proves performance and data efficiency over Gururangan et al. (2020a)’s results. It also
obviates the need for fickle hyper-parameter tuning through direct optimization of valida-
tion performance.

• To allow more fine-grained control of the end-task over the auxiliary tasks, in Section 3.4.2,
we present an online meta-learning algorithm that learns adaptive multi-task weights with
the aim of improving final end-task performance. Our META-learning end-Task AwaRe
TrAiniNg(META-TARTAN) allows us to robustly modulate between multiple objectives
and further improves performance over MT-TARTAN .

• A naive implementation of META-TARTAN based on first-order meta-learning analysis
results in a sub-optimal algorithm that ignores all tasks except the end-task. We trace this
problem to the use of a single model training head for computing both the end-task train-
ing loss and meta-objective (end-task validation loss). To guard against this pathological
solution, we introduce a separate model head for computing the meta-objective. In Section
3.4.3, we justify this simple-to-implement fix and validate its practical efficacy in Section
3.6.

Our results suggest that TARTAN may be an attractive alternative to the continued pre-
training paradigm, and further research into the place of pre-training in end-task aware settings
is warranted.

3.3 Formalizing Pre-training and Continued Pre-training
We restate the formalism established in Chapter 2 for ease of access.

Consider a dataset D = {(xi, yi)i∈[m]} consisting of m labelled examples. We define a task
as an objective function and dataset pair: T = {L(·), D}. Mθ is a model parameterized by
θ. The objective function L(yi,Mθ(xi)) evaluates how well a model prediction Mθ(xi) fits the
true label yi, such as cross-entropy loss in the case of classification. Note that the task dataset,
D, is typically decomposed into the sets (Dtrain, Dval, Dtest). Dtrain is the set of examples used
for model training whilst Dtest is used for final task evaluation. The validation set, Dval, is
typically used for model selection but it is also frequently used in meta-learning to define the
meta-objective – Lval.

Given a specific end-task T ∗, our aim is to improve performance on T ∗ (as measured by the
model loss on Dtest

T ∗ ) by leveraging auxiliary tasks Taux = {T1, . . . , Tn}. Note that we do not
particularly care about the performance of any of the tasks in Taux. We are willing to sacrifice
performance on Taux if it improves performance on T ∗.

From the perspective of model architecture, there are several ways to leverage Taux. We
focus on the simple but widely-used parameter sharing setting. Here, all tasks share a model
body θbody but each task Ti has its own head ϕi for prediction. We denote the head belonging to
T ∗ as ϕ′. Thus θ =

[
θbody;

(
ϕ1, . . . , ϕn, ϕ′)] and θbody is reusable across new tasks.
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3.3.1 Pre-training

Pre-training is when a model is first trained on Taux before performing a final fine-tuning phase
on T ∗. The motivation behind pre-training is that learning Taux first hopefully captures relevant
information that can be utilized during training of T ∗. This desire has led to the proliferation
of generalist pre-trained models like BERT (Devlin et al., 2018), RoBERTa (Liu et al., 2019a)
and GPT-3 (Brown et al., 2020a) that have been trained on copious amounts of data. Generalist
models have been widely successful at improving downstream task performance when used as
initilization.

We can formalize the pre-training procedure as follows:

θ0 = argminθ

( ∑
Ti∈Taux

LTi
(θ)

)
(3.1)

In Equation 3.1, we seek a point θ0 that achieves minimal loss on the tasks in Taux. We hope that
θ0 will be a good starting point for gradient descent on T ∗. Let g(θ0) represent the set of end-
points of stochastic gradient descent on an initialization, θ0. Stochastic gradient descent from the
same initialization can produce different end-points due to differences in hyper-parameters like
learning rate, batch size and order, as well as regularization strength. We can write the fine-tuning
phase as:

θ∗ = argmin{θ ∈ g(θ0)} LT ∗(θ) (3.2)

Note that pre-training is end-task agnostic: the pre-training Equation 3.1 occurs entirely before
training on the end-task Equation 3.2, and does not explicitly incorporate the end-task objective,
T ∗. Since there is no awareness of the end-task during pre-training it is important to carefully
choose Taux so that pre-training actually results in improved performance on T ∗ (Wang et al.,
2018a). For text data, past work has found left-to-right language modeling (Peters et al., 2017)
and masked language modeling (MLM) (Devlin et al., 2018) to be good choices to include in
Taux.

3.3.2 Continued Pre-training

Recent work (Beltagy et al., 2019a; Gururangan et al., 2020a; Lee et al., 2020) showed that down-
stream performance on T ∗ can be improved by further adapting generalist models via continued
pre-training on a more relevant set of auxiliary tasks. This is equivalent to sequentially perform-
ing multiple steps of Equation 3.1, with different Taux, before finally performing Equation 3.2
on T ∗.
Domain and Task Adaptive Pre-training Gururangan et al. (2020a) present Domain Adaptive
Pre-Training (DAPT) and Task Adaptive Pre-Training (TAPT) as methods for continued pre-
training. During DAPT, a generalist model is further pre-trained on an unsupervised objective
with large amounts of data from the same domain as the end-task. TAPT also pre-trains with
the same unsupervised objective as DAPT, but on the actual dataset of the end-task. Gururangan
et al. (2020a) find that performance can be further improved by chaining objectives, DAPT first,
followed by TAPT.
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Though TAPT and DAPT do not directly incorporate the end-task objective during training, it
still indirectly informs both the choice of pre-training data and the order in which the pre-training
tasks are trained on. Below, we explore stronger versions of this influence.

3.4 End-Task Aware Training (TARTAN)
In this section, we argue for the end-task to be added directly into the training process to create
explicit interactions between T ∗ and Taux.

3.4.1 End-task Aware Training via Multi-tasking (MT-TARTAN)
We propose to directly incorporate knowledge of the end-task by multi-tasking T ∗ together with
Taux, before optionally fine-tuning on T ∗ exclusively. To this end, we introduce a set of task
weights w = (w∗, w1, · · · , w|Taux|) satisfying w∗ +

∑
i wi = 1, to modulate between the differ-

ent losses. Our new formulation is:

θ0 = argminθ Ltotal(θ,w) = argminθ

(
w∗LT ∗(θ) +

∑
i

wiLTi
(θ)

)
(3.3)

Here, Equation 3.3 replaces Equation 3.1 and can be followed by the optional fine-tuning stage
of Equation 3.2. Note that this formulation fixes the tasks weights w throughout the training
process. We call this formulation End-task Aware Training via Multi-tasking (MT-TARTAN)
because we introduce the end-task directly into the training procedure, and do so by multi-
tasking it with Taux.

MT-TARTAN allows us to prioritize performance on T ∗ in several ways. First, we can weight
the end-task higher than all the other auxiliary tasks. Also, during training, we can monitor LT ∗

on the end-task validation set and early stop when it plateaus; even if the auxiliary tasks have
not yet converged. This is not possible during standard pre-training because we do not train
T ∗ and so it performs at random before we actually start fine-tuning. Early stopping on T ∗ can
represent significant computational savings over end-task agnostic pre-training when the savings
in data-efficiency supersede the extra overhead of end-task aware gradient descent steps.

3.4.2 End-task Aware Training via Meta-learning (META-TARTAN)
MT-TARTAN, DAPT and TAPT, all share the same drawback: they implicitly assume that the
auxiliary tasks have static importance to the end-task over the lifetime of its training, either by
being end-task agnostic (DAPT and TAPT) or by having static task weights (MT-TARTAN).
With MT-TARTAN, an additional drawback noted by Wang et al. (2019a); Yu et al. (2020) is
that multi-tasking can negatively impact task performance compared to isolated training. These
shortcomings motivate the formulation of an adaptive algorithm that can mitigate the negative
influence of some tasks whilst responding to the changing relevance of auxiliary tasks over the
lifetime of end-task training.

As they stand, the pre-training equation pair (Equations 3.1, 3.2) and the MT-TARTAN pair
(Equations 3.2, 3.3) are decoupled. The inner-level variables of the pre-training phase do not
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depend on the outer-level variables of the fine-tuning phase. Thus the equation pairs are typi-
cally solved sequentially. We propose to tightly couple Equations 3.2 and 3.3 by formulating
jointly learning w and θ0 as a bi-level optimization problem. A bi-level formulation allows us
to leverage meta-learning (Schmidhuber, 1995) techniques to learn adaptive task weights which
capture variable auxiliary task importance whilst mitigating the contribution of harmful tasks.
We propose a meta-learning algorithm in the mold of Model Agnostic Meta-Learning (MAML)
(Finn et al., 2017a) to learn task weights. As a bi-level problem, this can be formulated as :

θ∗,w∗ = argmin{θ ∈ g(θ0), w} LT ∗(θ) (3.4)

where

θ0 = argminθ Ltotal(θ,w) = argminθ

(
w∗LT ∗(θ) +

∑
Ti∈Taux

wiLTi
(θ)

)
(3.5)

We want to jointly learn w, with θ0, such that taking a gradient descent step modulated by w
leads to improvement in end-task generalization. We use performance on the end-task validation
set (Dval

T ∗ ) as a meta-objective to train w. Performance on Dval
T ∗ serves as a stand-in for end-task

generalization performance whilst also naturally capturing the asymmetrical importance of T ∗.
Our joint descent algorithm proceeds as follows. At each timestep t, we hold the task weights

fixed and update θt based on ∇θLtotal(θt,w). We then proceed to update w via gradient descent
on the end-task validation loss at θt+1. For this, we derive an approximation for∇wLval

T ∗ (θt+1,w)
below:

Lval
T ∗ (θt+1(w)) = Lval

T ∗

(
θt − β

(
w∗∇LT ∗ +

∑
i

wi∇LTi

))
≈ Lval

T ∗ (θt)− β

(
w∗∇LT ∗ +

∑
i

wi∇LTi

)T

∇Lval
T ∗ (θt)

We can take the gradient of the above first-order approximation w.r.t an individual weight wi.
This tells us how to update wi to improve the meta-objective.

∂Lval
T ∗ (θt+1(w))

∂wi

≈ −β
(
∇LTi

)T (∇Lval
T ∗ (θt)

)
= −β

(
∇LTi

)T (∇Lval
T ∗ (

[
θbody, ϕ

′]
t
)
)

(3.6)

In Equation 3.6, we explicitly specify
[
θbody, ϕ

′]
t

because computing losses on T ∗ depend on
only these parameters. LTi

depends solely on
[
θbody, ϕ

i
]
t

but we leave this out to avoid notation
clutter.

Our analysis above is similar to that of Lin et al. (2019) with one key difference: we learn
a weighting for the main task w∗ too. This ability to directly modulate T ∗ allows us to capture
the fact that at certain stages in training, auxiliary tasks may have greater impact on end-task
generalization than the end-task’s own training data. This choice also allows us to control for
over-fitting and the influence of bad (mislabelled or noisy) training data.

20



3.4.3 Introducing a separate classification head for meta-learning

Observe that from Equation 3.6, updates for w ̸= w∗ involve gradients computed from different
model heads ϕi and ϕ′ whilst for w∗, we are taking the dot product of gradients from the same
end-task head ϕ′. As we will show empirically in Section 3.6.4, computing weight updates this
way creates a strong bias towards the primary task, causing w∗ to rail towards 1 whilst the other
weights dampen to 0, which may be sub-optimal in the long run.

Intuitively, this short-horizon (greedy) (Wu et al., 2018) behavior makes sense: the quickest
way to make short-term progress (improveLval

T ∗ (θt+1)) is to descend solely on T ∗. More formally,
the greedy approach arises because we derive ∇wi

Lval
T ∗ (θt+1) in Equation 3.6 as a proxy for

the gradient at θ∗, the outer-loop end-point in Equation 3.4. Variations of this substitution are
common in the meta-learning literature (Finn et al., 2017a; Liu et al., 2018a; Nichol et al., 2018)
because it is computationally infeasible to train a model to convergence every time we wish to
compute∇wi

Lval
T ∗ (θ∗).

To remedy the greedy solution, instead of estimating∇θLT ∗ and∇θLval
T ∗ from the same clas-

sification head (Equation 3.6), we introduce a special head ϕ∗ for computing the meta-objective.
Specifically, instead of trying to compute θ∗, we approximate it by fixing the body of the network
θbody and training the randomly initialized head ϕ∗ to convergence on a subset of the end-task
training data. We do this every time we wish to estimate∇wi

Lval
T ∗ (θ∗). Introducing ϕ∗ eliminates

the strong positive bias on w∗ and enables us to compute a better proxy for the meta-gradient at
θ∗:

∂Lval
T ∗ (θ∗(w))

∂wi

≈
(
∇θLTi

)T (∇θLval
T ∗ ([θbody;ϕ

∗]t)
)

(3.7)

Equation 3.7 represents a simple-to-implement alternative to Equation 3.6. We provide a
more detailed justification for Equation 3.7 in Appendix A.2. In Section 3.6.4, we empirically
validate that the transition from Equation 3.6 to 3.7 improves performance whilst mitigating
pathological solutions. Our approach of creating ϕ∗ for approximating the meta-objective (down-
stream validation performance) is inspired by Metz et al. (2018), who use a similar technique to
construct a meta-objective for evaluating the quality of unsupervised representations.

Please see Algorithm 3 in Appendix A.1 for details about META-TARTAN.

3.5 Experimental Setup

Setting1 Though our algorithms and methodology can be directly applied to both continued
pre-training (Section 3.3.2) and pre-training from scratch (Section 3.3.1) of generalist models,
we focus on the former scenario. This is because the continued pre-training setting is more
common amongst everyday practitioners as it is less computationally demanding. It thus lends
itself more easily to exploration under a realistic computational budget. In Appendix A.4, we
show that end-task aware training from scratch is viable by studying a simple computer vision
setting. Concurrent work by Yao et al. (2021) shows that from-scratch end-task aware training
for NLP problems is viable.

1Code is released at https://github.com/ldery/TARTAN
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In keeping with previous work (Devlin et al., 2018; Gururangan et al., 2020a), we focus on
Taux as a set of MLM tasks on varied datasets. In the case of DAPT and our end-task aware
variants of it, Taux is an MLM task with data from the domain of the end-task. For TAPT, Taux

is an MLM task with data from the end-task itself. DAPT, TAPT and DAPT+TAPT (chained
pre-training with DAPT followed by TAPT) will serve as our baseline continued pre-training
approaches. We will compare these baselines to their end-task aware variants that use MT-
TARTAN and META-TARTAN.

Datasets Our experiments focus on two domains: computer science (CS) papers and
biomedical (BIOMED) papers. We follow Gururangan et al. (2020a) and build our CS and
BIOMED domain data from the S2ORC dataset (Lo et al., 2019). We extract 1.49M full text
articles to construct our CS corpus and 2.71M for our BIOMED corpus. Under both domains,
our end-tasks are low-resource classification tasks. Using low-resource tasks allows us to explore
a setting where pre-training can have a significant impact. Under the CS domain, we consider
two tasks: ACL-ARC (Jurgens et al., 2018) and SCIERC (Luan et al., 2018). ACL-ARC is a
6-way citation intent classification task with 1688 labelled training examples. For SCIERC, the
task is to classify the relations between entities in scientific articles. This task has 3219 labelled
examples as training data. We choose CHEMPROT (Kringelum et al., 2016) as the classification
task from the BIOMED domain. This task has 4169 labelled training examples and the goal is
to classify chemical-protein interactions. More details of these datasets can be found in Table
2 of Gururangan et al. (2020a). Gururangan et al. (2020a) evaluate against all 3 tasks and their
available code served as a basis on which we built MT-TARTAN and META-TARTAN.

Model Details We use a pre-trained RoBERTabase (Liu et al., 2019a) as the shared model
base and implement each task as a separate multi-layer perceptron (MLP) head on top of this pre-
trained base. As in Devlin et al. (2018), we pass the [CLS] token embedding from RoBERTabase
to the MLP for classification.

Training Details For DAPT and TAPT, we download the available pre-trained model bases
provided by Gururangan et al. (2020a). To train thier corresponding classification heads, we
follow the experimental setup described in Appendix B of Gururangan et al. (2020a).

Performing end-task aware training introduces a few extra hyper-parameters. We fix the
other hyper-parameters to those used in Gururangan et al. (2020a). MT-TARTAN and META-
TARTAN introduce joint training of a classification head for the end-task T ∗. We experiment
with batch sizes of 128, 256 and 512 for training this head. We try out learning rates in the
set {10−3, 10−4, 10−5} and drop out rates of {0.1, 0.3}. For META-TARTAN since we are now
learning the task weights, w, we test out task weight learning rates in {10−1, 5 × 10−2, 3 ×
10−2, 10−2}. Note that for all MT-TARTAN experiments we use equalized task weights 1

|Taux|+1
.

A small grid-search over a handful of weight configurations did not yield significant improve-
ment over the uniform task weighting. We use the Adam optimizer (Kingma and Ba, 2014) for
all experiments.

As mentioned in section 3.4.3, we train as separate meta-classification head, ϕ∗, to estimate
the validation meta-gradients. To estimate ϕ∗, we use batch sizes of {16, 32} samples from T ∗’s
train set. We regularize the meta-head with l2 weight decay and set the decay constant to 0.1.
We use a learning rate 10−3 to learn the meta-head. We stop training ϕ∗ after 10 gradient descent
steps.
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3.6 Results and Discussion
In this section, we will discuss the results of comparing our models against DAPT and TAPT
baselines.2 Broadly, we demonstrate the effectiveness of end-task awareness as improving both
performance and data-efficiency.

Domain Task RoBERTa TAPT MT-TARTAN META-TARTAN
CS ACL-ARC 66.033.55 67.743.68 70.484.42 70.084.70

SCIERC 77.962.96 79.531.93 80.810.74 81.480.82

BIOMED CHEMPROT 82.100.98 82.170.65 84.290.63 84.490.50

Table 3.1: Comparison of our end-task aware approaches to RoBERTa and TAPT. All end-task
aware approaches use TAPT as the auxiliary task. Reported results are test macro-F1, except for
CHEMPROT, for which we report micro-F1, following Beltagy et al. (2019a). We average across
10 random seeds, with standard deviations as subscripts. Statistically significant performance (p-
value from permutation test < 0.05), is boldfaced. See A.3,A.5 for more details about this table

3.6.1 End-task awareness improves over task-agnostic pre-training
Table 3.1 compares TAPT to its end-task aware variants. As in Gururangan et al. (2020a), we
observe that performing task adaptive pre-training improves upon just fine-tuning RoBERTa.
However, note that introducing the end-task by multi-tasking with the TAPT MLM objective
leads to a significant improvement in performance. This improvement is consistent across the 3
tasks we evaluate against. We find that both MT-TARTAN and META-TARTAN achieve similar
results in this setting.

3.6.2 End-task awareness improves data-efficiency
Gururangan et al. (2020a) train DAPT on large amounts of in-domain data to achieve results
competitive with TAPT. They use 7.55 billion tokens for the BIOMED domain and 8.10 billion
for the CS domain. This is on average over 104× the size of the training data of our end-tasks
of interest. The large amount of data required to train a competitive DAPT model represents
a significant computational burden to the every-day practitioner. This begets the question: are
such large amounts of auxiliary data necessary for achieving good downstream performance?
To answer this, we train DAPT and its TARTAN version on variable amounts of data for both
SCIERC and ACL-ARC tasks.

TARTAN is more data-efficient than DAPT In Figure 3.2, we focus on training on a small
fraction of available domain data n = {100, 101} × |Train| for the DAPT auxiliary task. Full

2Our results are slightly different from those presented in Table 5 of Gururangan et al. (2020a) in terms of abso-
lute values but the trends observed there still hold here. We attribute these differences to (1) minor implementation
differences, and (2) averaging performance over ten seeds instead of five as used in the original paper in order to
more strongly establish statistical significance. We observe slightly lower performance on ACL-ARC and SCIERC
tasks due to these changes and higher performance on CHEMPROT.
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Figure 3.2: Compared to DAPT, TARTAN makes more efficient use of data. Large standard
deviations are a result of the heterogeneity of the domain data used and the fact that our tasks are
low-resource.

domain data is n′ ≈ 104×|Train|. This relatively low auxiliary data regime represents a realistic
setting that is akin to those encountered by everyday practitioners who are likely to be compu-
tationally constrained. As can be seen in Figure 3.2, on the ACL-ARC task, META-TARTAN
matches the performance of DAPT when the sizes of the domain data and end-task data are of
the same order (100). At this data size, META-TARTAN supersedes DAPT on the SCIERC task.
When trained on 10× more auxiliary data, META-TARTAN supersedes DAPT in performance
on both tasks. On the ACL-ARC task, META-TARTAN achieves 71.194.88, which is close to
DAPT’s performance of 72.493.28 using more than 103× auxiliary data. These results indicate
that end-task awareness can improve data-efficiency and in this case, improvements are on the
order of 1000×.

Domain Task DAPT DAPT+TAPT MT-TARTAN META-TARTAN
CS ACL-ARC 68.602.62 69.125.76 71.581.65 71.052.37

SCIERC 76.441.19 77.621.38 81.021.24 81.411.70

BIOMED CHEMPROT 80.760.54 78.220.74 83.770.60 83.380.89

Table 3.2: We use n = 10 × |Train|, a small fraction the full domain data which is > 104 ×
|Train|. TARTAN methods are trained on both DAPT and TAPT. We average performance across
10 seeds. Statistically significant performance is boldfaced. See A.3, A.6 for more details about
this table.

TARTAN is more data-efficient than DAPT+TAPT Table 3.2 compares DAPT and DAPT+TAPT
(DAPT followed by TAPT) to *-TARTAN which multi-task DAPT, TAPT and the end-task. MT-
TARTAN and META-TARTAN significantly outperform DAPT and DAPT+TAPT in 2 of the
tasks whilst giving higher average performance in the ACL-ARC task. We thus conclude that
end-task awareness allows us to get a greater performance boost out of the same amount of
data.

We explore the data efficiency of TARTAN methods even further by comparing the relatively
data-poor versions of MT-TARTAN and META-TARTAN above (n = 10×|Train|) to the DAPT
and DAPT+TAPT variants trained on all the available domain data (n′ ≈ 104 × |Train|). We
can see from Table 3.3 that for the CS domain, our end-task aware variants come close to (ACL-
ARC) and even supersede (SCIERC) the end-task agnostic variants though trained with≈ 1000×
less data. For BIOMED domain (CHEMPROT task), increasing the amount of data drastically
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improves the performance of end-task agnostic variants compared to MT-TARTAN and META-
TARTAN trained on much less data.

Task DAPTfull +TAPTfull

ACL-ARC 72.493.28 73.791.75

SCIERC 79.972.11 80.001.08

CHEMPROT 86.541.05 87.240.81

Table 3.3: DAPT and DAPT+TAPT runs
on all domain data available.

Zhang et al. (2020) show that different tasks ex-
hibit sigmoid-like curves in terms of how much
pre-training data is required to achieve good results
before performance levels off. We contextualize
Tables 3.2 and 3.3 within said work and posit that
the CHEMPROT task intrinsically requires much
more data (compared to our other tasks) before per-
formance begins to improve appreciably.

3.6.3 META-TARTAN more effectively
utilizes out-of-distribution auxiliary data over MT-TARTAN

TARTAN ACL-ARC SCIERC CHEMPROT
MT 69.270.96 81.530.99 80.263.79

META 71.194.88 82.081.19 82.310.75

Table 3.4: All methods use only DAPT as auxiliary
task. We use n = 10 × |Train|. We report averages
across 3 random seeds. Best average task performance
is bolded.

We have seen that leveraging TAPT
(Table 3.1 and 3.2) leads MT-TARTAN
and META-TARTAN to perform simi-
larly. The advantage of learning adap-
tive weights becomes pronounced in
the DAPT only setting. Whilst TAPT
uses the end-task’s own training data
for masked language modelling, DAPT
uses heterogeneous domain data whose
impact on the end-task performance is

less clear. Notice from Table 3.4 that when required to rely solely on domain data for auxil-
iary tasking, META-TARTAN improves performance over MT-TARTAN. We attribute META-
TARTAN’s improvement over MT-TARTAN to its ability to more flexibly adapt to incoming data
of variable utility to the end-task.

3.6.4 Task weighting strategies discovered by meta-learning
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Figure 3.3: Having a separate classification head for computing meta-gradients is important.
Using the same head as when training up-weights the end-task and under-utilizes auxiliary tasks.

To illustrate the importance of the separate classification head ϕ∗ for computing the meta-
signal for the task weights (described in Section 3.4.3), we run META-TARTAN experiments
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Figure 3.4: The meta-learned task weightings show similar trajectories across different end-
tasks.

with ACL-ARC as the end-task and DAPT as the auxiliary task. We compare using either a
separate (ϕ∗) or the same (ϕ′) classification head for calculating the meta-gradient. Figure 3.3
plots the task weightings learned in each setting during training. We can clearly see that using
a separate head counteracts the pathological solution of down-weighting all tasks that are not
T ∗ and as a result, improves performance: a delta of 1.7 F1 points in this case. The strategy
discovered by META-TARTAN presents an interesting contrast to classical pre-training: whilst
the initial phase of classical pre-training involves solely the auxiliary task, early in training,
META-TARTAN up-weights the auxiliary task but does not fully zero out the end-task. Later
in training, we see leveling off of weights instead of railing the end-task to 1 as in classical
pre-training.

Next, we plot a similar graph for using both DAPT and TAPT across our three tasks in
Figure 3.4. From the figure, it is apparent that META-TARTAN discovers similar task-weighting
strategies across different end-tasks. This suggests that the MLM objective and META-TARTAN
’s strategy for learning task weights are generic enough to induce similar behaviours across tasks.
In general, DAPT is significantly up-weighted compared to the end-task and TAPT. Note that the
TAPT + ACL-ARC task weights (Figure 3.4) has the same approximate trajectory as ACL-ARC
task weight in Figure 3.3. It seems important to assign high weight to the task data (Figure 3.3)
but not necessarily all of it needs to go to the actual task loss (Figure 3.4). We hypothesize that
the diversity in the domain data counteracts overfitting to the end-task data and results in DAPT
being up-weighted.

3.7 Related Work

Multi-task learning can be traced back to seminal work by Caruana (1995), Caruana (1997a),
and has since been the subject of a flourishing literature, recent surveys of which can be found in
Ruder (2017) or Zhang and Yang (2021). In NLP, while initial work from Collobert and Weston
(2008) already showed the benefits of multi-task learning, it has only recently become a central
topic in the field, with the advent of multi-task benchmarks (Wang et al., 2018b; McCann et al.,
2018).

Pre-training is where a machine learning model is first trained on a generic, data-rich task
before being fine-tuned on an end-task. In NLP this practice dates back to the use of pre-trained
word embeddings (Turian et al., 2010; Mikolov et al., 2013) and later pre-trained encoders (Kiros
et al., 2015; Dai and Le, 2015). Peters et al. (2018b) and Howard and Ruder (2018) heralded a
renaissance of pre-training before BERT (Devlin et al., 2018) and its many offshoots (Liu et al.,
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2019a; Yang et al., 2019; Lewis et al., 2019) cemented it as the de facto standard for modern
NLP.

Meta-learning dates back to early work from Schmidhuber (1995); Thrun (1998). More
relevant to our work is gradient-based meta-learning for solving bi-level optimization problems,
first popularized by Finn et al. (2017a) and followup work (Nichol et al., 2018; Rajeswaran et al.,
2019) for few-shot learning. This method has transferred to a variety of applications such as
architecture search (Liu et al., 2018a) and model poisoning (Kurita et al., 2020).

3.8 Conclusion
In this Chapter, we have advocated for a paradigm shift in the way we approach pre-training. We
have motivated making pre-training more end-task aware when the end-task is known in advance.
We introduced two novel end-task aware training algorithms: End-task Aware Training via Multi-
tasking (MT-TARTAN) and End-task Aware Training via Meta-learning (META-TARTAN). In
Section 3.6, we demonstrated the ability of our proposed algorithms to improve performance and
data-efficiency over their end-task agnostic counterparts.

Beyond this thesis, the work in this Chapter suggests several promising directions for fu-
ture work. Instead of learning coarse task level weights, can further performance improve-
ments be achieved via finer-grained example level weighting as in Wang et al. (2020a)? Can
meta-learning algorithms like META-TARTAN enable more effective utilization of previously
discarded (Aroca-Ouellette and Rudzicz, 2020) pre-training auxiliary tasks like Next Sentence
Prediction (NSP) (Devlin et al., 2018)? We hope this work spurs conversation around these
questions and many more.
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Chapter 4

End task aware training via gradient
decomposition

4.1 Chapter Overview
In Chapter 3, we made a case for end task aware training when leveraging a set of auxiliary
tasks. The algorithm we introduced, which we dubbed TARTAN, performs weighted multitask
learning on both the primary and auxiliary tasks. We introduced META-TARTAN, a version of
the TARTAN algorithm that used meta-learning to discern appropriate task weightings in order
to mitigate the influence of tasks in Taux that could negatively impact the primary task. Whilst
effective, the TARTAN’s approach of looking at the alignment of average gradient is coarse,
applying the same weighting to the full task gradient (irrespective of disparate relations between
gradients across different model components).

In this chapter, we present another algorithm for model-agnostic end-task aware transfer
learning that performs fine-grained manipulation of the auxiliary task gradients. We propose to
decompose auxiliary updates into directions which help, damage or leave the primary task loss
unchanged. This allows weighting the update directions differently depending on their impact
on the problem of interest. We present a novel and efficient algorithm for that purpose and show
its advantage in practice. Our method leverages efficient automatic differentiation procedures
and randomized singular value decomposition for scalability. We will empirically demonstrate
in this chapter, that our gradient decomposition approach produces superior generalization per-
formance over multitasking and PC-Grad (Yu et al., 2020) – as end task aware approaches – and
representative end task agnostic ones.

4.2 Introduction
Multitask learning (Caruana, 1997b) and pretraining (Devlin et al., 2018; Caron et al., 2019) have
transformed machine learning by allowing downstream tasks with small training sets to benefit
from statistical regularities from data-rich related tasks (Collobert and Weston, 2008; Zhang
et al., 2014; Liu et al., 2019a; Kornblith et al., 2019). Despite these advances, leveraging the
mixing of tasks is still an art left to the practitioner. When one is interested in a primary task, it is
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unclear how to select helpful auxiliary tasks, an appropriate parameter sharing architecture and
a good way to filter out auxiliary data which might be detrimental to the primary tasks. Without
careful choices, pre-training might hurt end-task performance (Gururangan et al., 2020b) or have
limited impact (Raghu et al., 2019).

Prior work has examined these problems and proposed solutions, either to choose auxiliary
tasks depending on their impact on the primary task (Du et al., 2018; Lin et al., 2019) or to equal-
ize the impact of updates across tasks (Sener and Koltun, 2018; Chen et al., 2018; Hessel et al.,
2019). Recently, several approaches (Sinha et al., 2018; Suteu and Guo, 2019; Yu et al., 2020)
have been proposed that attempt to minimize interference between the updates across tasks. Our
work builds on this direction, but unlike these previous approaches, we do not consider a sym-
metric view of multi-task learning in the sense that our goal is not to train a model performing
well on all tasks. Instead, we focus on improving generalization for a single task, the primary
task, and the other tasks, the auxiliary tasks are considered only through their impact on the
problem of interest.

For that purpose, we introduce a framework which decomposes the gradient updates from
the auxiliary tasks according to their impact on the primary task. We analyze the auxiliary task
gradients in the subspace spanned by the primary task per-example gradients. This allows us to
decompose auxiliary gradients into into three components : components that help, interfere or
have no impact on the primary task according to the Taylor expansion of the expected primary
loss. This decomposition allows us to re-weight each component differently prior to the update.
Our framework enables us to treat each auxiliary update differently depending on its impact on
the task of interest and it encompasses prior methods such as classical multitask learning (Caru-
ana, 1997b) or more novel gradient surgery techniques (Yu et al., 2020). To achieve a tractable
approach, we introduce an efficient, robust algorithm (ATTITTUD, Auxiliary Task Training with
Influence from Target Task Update Direction) to estimate the subspace spanned by the primary
task gradients in an online manner and decompose the auxiliary updates appropriately. As a
result, we can integrate our approach with the stochastic training of large neural networks in
various contexts.

The specific contribution of this Chapter are four-fold. To our knowledge, this Chapter pro-
poses the first approach to adapt auxiliary gradients using a decomposition built from the span
of the primary task Jacobian. In order to scale this approach to deep neural nets, we contribute
a tractable and efficient algorithm called ATTITTUD that leverages insights from randomized
linear algebra and automatic differentiation such as the R-operator (Pearlmutter, 1994). As our
third contribution, we show that the fine-grained manipulation of the auxiliary task gradients un-
der ATTITTUD, represents a unified framework that encompasses several previous approaches to
asymmetrical task learning as special cases. Finally, we demonstrate the efficacy of our approach
in both data-rich and data-starved primary tasks, over both images and textual data.

4.3 Related Work
Methods to leverage data outside of the task of interest have been popular in machine learning
since the inception of multitask learning (Caruana, 1997b; Ruder, 2017; Vandenhende et al.,
2020). These methods address multiple task simultaneously and have been successful in various
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application domains (Collobert and Weston, 2008; Zhang et al., 2014; Misra et al., 2016). The
optimization problem induced by multitask learning is difficult and solutions have been proposed
for the various difficulties, including dealing with task gradients of different magnitude (Sener
and Koltun, 2018; Chen et al., 2018; Hessel et al., 2019), or interfering with each others (Sinha
et al., 2018; Suteu and Guo, 2019; Yu et al., 2020). The specific problem of interference has
been studied extensively in the context of continual learning. Continual learning visits task in
sequence and update interference is particularly problematic as it yields newer tasks to damage
previously mastered tasks. In particular, a family of methods to project the gradient of the new
tasks to be orthogonal to the gradient of the previous tasks has been proposed (Lopez-Paz and
Ranzato, 2017; Chaudhry et al., 2018; Farajtabar et al., 2019).

Different from many previous approaches, we are not interested in addressing multiple tasks
per se. In our setting, only the primary task matters and the other auxiliary task have the sole
role of improving generalization on the primary task. This is the setting considered by Du et al.
(2018); Lin et al. (2019), who favor auxiliary tasks whose gradient directions are helpful to the
primary task. Unlike these works that use coarse properties like the cosine similarity between
averaged gradients, our approach allows fine-grained gradient manipulation within a subspace.
Also, in our case, we do not distinguish between the different auxiliary tasks. Instead, we aim at
correcting every auxiliary gradient in the same manner to improve the loss on the primary task.
This type of gradient correction is related to Yu et al. (2020), which considers projecting multi-
task gradients such that the directions of disagreement are removed. This method is actually a
special case of our framework.

Our work also shares some similarities with data selection and domain adaptation approaches.
In this case, the training data comes from a single task but its distribution is different from the
validation/test distribution (Moore and Lewis, 2010; Axelrod et al., 2011; Ngiam et al., 2018).
This classical problem has recently been addressed by sampling training points whose gradient
aligns well with the expected validation gradient (Wang et al., 2020b,c). Instead of sampling
individual points based on an estimated distribution of how helpful they will be to the primary
task, our work avoids the use (and inherent challenges) of this reinforcement learning approach
by operating on batch gradients of groups of points.

Our primary task/auxiliary task setting is also related to the pre-training then fine-tuning
paradigm in which the auxiliary tasks are visited first (pre-training) to give an initialization for
training on the primary task (fine-tuning). These methods have been very successful in settings
where primary task data are rare. In particular, it is common to first rely on an unsupervised task
over very large datasets prior to fine tuning over a supervised task (Devlin et al., 2018; Liu et al.,
2019a; Kornblith et al., 2019; Yang et al., 2019; Song et al., 2019; Caron et al., 2018).

4.4 Auxiliary Task Update Decomposition
This section introduces a new method to improve generalization on a primary task T ∗ using
training data from auxiliary tasks Taux = {T1, . . . , Tn}, where θ ∈ RD denote the parameters
shared by all tasks. Our approach leverages gradient updates from the auxiliary tasks, but un-
like the traditional approach, we decompose these gradients to maximize their usefulness to T ∗.
Precisely, we decompose the auxiliary task gradients into directions which decrease a first-order
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Figure 4.1: Example gradient manipulation in the 2-D x − y plane with ATTITUD. ATTITUD
can operate in any n-dimensional subspace. Left: Primary task gradient gprim decomposed along
the 3 Dimensions x, y and z. Mid: Decomposed Auxiliary task gradient gaux. We label the
x component of gaux as positive since it agrees (in direction) with the x component of gprim.
Since the y component of gaux is in the opposite direction as that of gprim, this is assigned a
negative label. Right: Corresponds to g̃aux obtained by applying ηaux =

(
1.0, 1.0,−1.0

)
. We flip

the conflicting gradient direction to agree with our primary task. This is just one configuration
achievable under our framework.

approximation of the primary task loss, increase it or have no effect. This decomposition allows
weighting these three directions differently when learning from the auxiliary tasks.

In order to decompose the auxiliary gradient, we must collect more fine-grained statistics
about the primary task. At each training step, we collect the gradient of the loss with respect to
θ for individual examples from the primary task, {∇θLprim

i ,∀i }. The span of these vectors,

S = Span{∇θLprim
i ,∀i}

defines a subspace in which any linear combination of primary task gradients lies, including
the gradient of the expected primary task loss, i.e. gprim = E(∇θLprim

i ) ∈ S. We denote the
size of the subspace, |S| = K. This is upper-bounded by the number of examples m, used to
construct S. If we define the orthogonal complement of S as S⊥, any vector v ∈ S⊥, is therefore
orthogonal to gprim, i.e. v · gprim = 0. This means that adding such a vector to the parameters has
no impact on the expected primary task loss, according the order-1 Taylor expansion of Lprim,
i.e.

Lprim(θ + v) ≃ Lprim(θ) + v · gprim = Lprim(θ).

We propose to project auxiliary task gradients onto S and S⊥. This allow to distinguish between
the directions of the auxiliary task updates which impact the primary task loss and those which do
not. If we denote the averaged auxiliary task gradient as gaux = E(∇θLaux

i ), we can decompose
this gradient as gaux = g±

aux + g⊥
aux. where g±

aux ∈ S is the portion of the gradient that lies in the
span of the primary task example gradients and g⊥

aux ∈ S⊥ is the portion that lies outside of it.
Since g⊥

aux ∈ S⊥, it is orthogonal to the average primary task gradient and parameter updates
along the direction of g⊥

aux are expected to have limited impact on the primary task loss. On the
other hand, updates along the direction of g±

aux can potentially improve or damage the averaged
primary task loss. This component deserves a more careful treatment.
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For that purpose, we introduce {ui, i = 1, . . . , K} an orthonormal basis of S. In this basis,
we can measure if the components of g±

aux agree or disagree with gprim. We say that the two
gradients agree along ui iif sign(g±

aux · ui) = sign(gprim · ui). This means that we can decompose
g±

aux = g+
aux + g−

aux where g+
aux refers to the projection of g±

aux onto the basis vectors where g±
aux

and gprim agree. By this decomposition, g+
aux helps the primary task, g+

aux · gprim > 0, while g−
aux

interfere with the primary task, g−
aux · gprim < 0.

Guided by the primary task, we can therefore decompose the auxiliary task gradient as

gaux = g⊥
aux + g+

aux + g−
aux (4.1)

which is described on Fig 4.1. Our approach proposes to re-weight differently the components
of gaux, i.e.

g̃aux = η⊥g
⊥
aux + η+g

+
aux + η−g

−
aux (4.2)

where ηaux = (η⊥, η+, η−) are hyper-parameters adjusting the auxiliary gradient according to the
impact on the main task. If we also wish to include the primary task gradient in descent, as with
multitasking, we can introduce ηprim as a scalar control variable to modulate its weighting.

A consequence of introducing ηaux is that specific configurations lead us to gradient updates
that are guaranteed to do no harm to both tasks. This is captured by Theorem 1 below.
Theorem 1. Let Laux(θt) and Lprim(θt) represent the full batch losses of the auxiliary tasks and
primary task respectively at step t. We assume the gradients of Laux and Lprim are Lipschitz
continuous with constant L > 0. Following the update rule : θt+1 = θt − α · g̃aux, where α ≤ 1

L

is the learning rate, we are guaranteed :

Laux(θt+1) ≤ Laux(θt)

Lprim(θt+1) ≤ Lprim(θt)

If η− = 0 and η⊥, η+ ≥ 0

Proof. See Appendix B.1

This theorem focuses on a single update and guarantees progress on both auxiliary and pri-
mary tasks. However, our asymmetric scenario is not interested in improving the auxiliary tasks
per se and is amenable to more aggressive settings. Ideally we want gradient updates during pre-
training with Taux to not only do-no-harm to T ∗ when applied downstream but also to be along
descent directions that are maximally beneficial to T ∗. We can consider η− < 0 as in Fig 4.1.
Reversing the direction of g−

aux by setting η− < 0 preserves the descent guarantee on Lprim(θt+1)
but no longer ensures descent on Laux(θt+1). There are other interesting settings for our control
parameters. One can recover the original gradient gaux with η⊥ = η− = η+ = 1.0. One can
choose to drop gradients orthogonal to the primary task gradient span with η⊥ = 0.0, or ignore
those which conflict with the main task by setting η− = 0.0.

Relationships to other approaches Our framework is generic and encompasses other
approaches as a particular case. One can train solely on the primary task by selecting ηaux =(
0.0, 0.0, 0.0) and ηprim = 1.0. Classical multitasking corresponds to ηaux =

(
1.0, 1.0, 1.0) and

ηprim > 0.0, while classical pre-training corresponds to performing a first phase with ηaux =
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(
1.0, 1.0, 1.0) and ηprim = 0.0. Interestingly, our formulation introduces novel variants of pre-

training, for instance, one can consider pre-training with only auxiliary gradients helpful to
the primary task, ηaux =

(
0.0, 1.0, 0.0) and ηprim = 0.0, followed by fine-tuning with ηaux =(

0.0, 0.0, 0.0) and ηprim = 1.0.
Our approach also instantiates PCGrad (Yu et al., 2020) as a particular case. This method

was introduced to address the issue of conflicting gradients in multitask settings. PCGrad or-
thogonalizes the gradients of each task and removes conflicting gradients. To recover PCGrad
under our approach, note that it is equivalent to a specific choice of our decomposition in the 1-D
subspace spanned by the gprim. PCGrad then removes components of gaux that conflict with gprim

which is equivalent to ηaux =
(
αaux, αaux, 0.0

)
and ηaux = αprim.

4.5 Implementation
Equation 4.2 requires selecting a basis for the span of primary task gradients. Multiple choices
are possible to define the basis {ui}, to represent the span at each optimization time-step. This
choice is important since the components of g±

aux are labeled positive or negative depending on
how they agree with the projection of the averaged primary task gradient onto the same basis.
A natural choice is to select the basis as the singular vectors of the matrix of primary task per-
example gradients J∗ ∈ Rm×D, also know as the Jacobian. To improve efficiency and prevent
over-fitting on a few examples, we consider the span defined by the, k < |S|, largest principal
vectors of J∗. Using the principal vectors as directions of descent instead of the mean induces a
more robust algorithm since the mini-batch average gradient is susceptible to outliers and skew
from replicated data-points. To the best of our knowledge, we are the first to propose using
the singular vectors of J∗ as directions of descent. We leave the theoretical implications of this
algorithm to future work but note that its variance reduction properties may induce generalization
benefits (Namkoong and Duchi, 2017).

We also consider alternative choices of bases as baselines, including the canonical parameter
basis. This choice will examine the sign of every parameter update to verify whether it agrees
with gprim. Whilst Theorem 1 holds irrespective of the choice of basis, its proof reveals that the
amount of progress made on each loss depends on the choice of basis. Specifically, the reduction
in Lprim(θt+1),Laux(θt+1) after a gradient step along g̃aux is proportional to the fraction of the
norms of gprim and gaux captured by the subspace spanned by our choice of basis. To justify our
use of the top singular values of J∗, we evaluate this fraction for different choice of basis in our
experiments (see Appendix B.3).

We are interested in applying our approach to the training of large neural networks and must
consider a scalable algorithmic solution. As stochastic optimization is prevalent in this setting,
we construct subspace S from a mini-batch of primary task data. Similarly, the expected gra-
dients gprim and gaux are defined over a mini-batch. Instead of computing the singular value
decomposition (SVD) of {∇θLprim

i ,∀i} exactly, we rely on a randomized approximation (Halko
et al., 2011; Rokhlin et al., 2010; Nakatsukasa, 2017). This method does not require instantiating
the vectors {∇θLprim

i ,∀i} and only needs a low dimensional projection onto a random subspace.
This is advantageous for high dimensional cases, i.e. when the number of model parameters is
large. In our case, this method also allows us to benefit from memory-efficient computation of
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Jacobian Vector product using the R-operator (Pearlmutter, 1994) offered by automatic differen-
tiation packages (Baydin et al., 2015) like Pytorch (Paszke et al., 2017). This means that we can
compute SVD with a limited computational and memory burden, albeit without sacrificing ap-
proximation accuracy (Nakatsukasa, 2017). Additionally, we do not recompute the basis at every
optimization step but at every n steps, which is efficient when training with small updates, e.g.
when small learning rates and gradient clipping are used (Pascanu et al., 2013) (see Appendix
B.3 for more details about n).

Algorithm 1: ATTITTUD : Construct Auxiliary Task Surrogate Gradient
Require : gaux, J∗ : Auxiliary task average gradient, primary task Jacobian
Require : ηaux =

(
η⊥, η+, η−

)
: Auxiliary task control parameters

Require : k : Size of subspace
gprim = 1

m

∑m
i=1 J

∗
i,:

V← randomized lowrank approx(J∗, k)

pprim, paux = Vt

(
gprim

)T
, Vt

(
gaux

)T
// ◦ is the hadamard product operator

p+
aux,p

−
aux =

(
1[

pprim◦paux ≥ 0
]) ◦ paux,

(
1[

pprim◦paux < 0
]) ◦ paux

// Calculate the decomposition components

g+
aux, g

−
aux =

(
p+

aux

)T
V,

(
p−

aux

)T
V

// Calculate the out of span component
g⊥

aux = gaux −
(
g+

aux + g−
aux

)
g̃aux =

(
η⊥ · g⊥

aux

)
+
(
η+ · g+

aux

)
+
(
η− · g−

aux

)
Return : g̃aux : Auxiliary task surrogate gradient

We study the impact of these choices in practice in Section 4.7. Putting it all together results
in the ATTITTUD algorithm, Auxiliary Task Training with Influence from Target Task Update
Direction, shown as Algorithm 1. The sub-procedure randomized lowrank approx is
detailed in Appendix B.2 as Algorithm 4

4.6 Experimental Setup
We compare ATTITTUD with previous methods on a variety of tasks and domains. We rely
on both text and image classification tasks to conduct our analysis. We also present ablation
experiments to explain the impact of hyper-parameter selection. We make code for ATTITTUD
and related experiments available on github. 1

Text Classification. We apply our method on binary sentiment classification. We consider
the Amazon Helpfulness (McAuley et al., 2015) and Imdb Movie Review (Maas et al., 2011)
tasks. The Amazon Helpfulness task splits text reviews into 115k/5k/25k documents for train-
validation-test split whilst the Imdb Review dataset has a 20k/5k/25k split. The Imdb Review
task also has 50k unlabeled reviews as extra data which we utilize.

1Code available here https://github.com/ldery/ATTITTUD

35

https://github.com/ldery/ATTITTUD


For our models we build on top of Gururangan et al. (2020b)’s work where they introduce
Task-Adaptive Pre-training (TAPT). TAPT further pre-trains a generic model, Roberta (Liu et al.,
2019a), by performing Masked Language Modelling, MLM, (Devlin et al., 2018) on the task
specific data (ignoring the labels) before doing supervised learning with the same data. We
replicate Gururangan et al. (2020b)’s experimental setup and re-use their hyper-parameters for
our experiments. We use the TAPT task as our auxiliary task. We extend TAPT to use our method
by modifying the TAPT gradient with guidance from the supervised-learning task gradients. As
baselines, we compare against TAPT and cross-TAPT: where we swap the masked language
modelling pre-training data for the two tasks. Cross-TAPT is a setting where one uses out-of-
distribution data for pre-training.

Image Classification. We apply our method to both high-resource and limited-data image
classification tasks. We use the Cifar100 dataset (Krizhevsky et al., 2009) to explore the high-
resource setting. We follow Rosenbaum et al. (2017) and treat each of the 20 super-classes /
coarse labels of Cifar100 as a separate task. In our asymmetrical task setting, each of the 20
tasks is treated as a primary task, whilst the remaining 95 classes are grouped into a single
auxiliary task. Thus, for each coarse label, we have an auxiliary 95-way classification task and a
5-way primary classification task. Moving forward, we refer to this setting as MultiCifar100.

We use a down-sampled version of Cifar10 (Krizhevsky et al., 2009) as a low-resource set-
ting. Specifically, we rely on Cat-vs-Dog for the primary task and use the remaining 8 classes for
the auxiliary task. Our auxiliary task is therefore an 8-way classification task where each class
has 5,000 examples. We restrict the Cat and Dog classes to only 50 training examples from each
class. We use the low-resource setting to compare against other methods and for our ablation
study.

For these vision experiments, we use a WideResNet-22 architecture (Zagoruyko and Ko-
modakis, 2016) with a depth of k = 4. We compare our method to 4 different baselines : no
pre-training, vanilla pre-training, multitasking and PCGrad (Yu et al., 2020). Our architecture
is more standard and allows gradient descent optimization unlike the routing network of Rosen-
baum et al. (2017) and (Yu et al., 2020), which requires reinforcement learning for training.

Medical Imaging Transfer. We apply our method to cross-domain transfer for low-resource
medical image classification. Specifically, we use 5k training examples from the ChexPert
Dataset (Irvin et al., 2019) as our primary task and seek to identify 5 different thoracic patholo-
gies: atelectasis, cardiomegaly, consolidation, edema and pleural effusion. This setup has been
used in several cross-domain pretraining studies (Raghu et al., 2019; Jaiswal et al., 2019). Note
that since we do not have access to the test set for this task, we use the validation set (231 images)
as a proxy test set, and sample 100 images from the training data as a new validation set. We
rely on generic photographs (Imagenet) as an auxiliary task (Deng et al., 2009). We use Tiny
Imagenet Dataset (Le and Yang, 2015), a subset of Imagenet which consists of 500 examples
each from 200 classes, instead of training on full Imagenet. All approaches are applied to the
Resnet18 model (He et al., 2016) trained with Adam (Kingma and Ba, 2014).

For ease of interpretability in all our experiments, we select the auxiliary task control param-
eters ηaux within {(1.0, 1.0,−1.0), (1.0, 1.0, 0.0), (1.0, 0.0,−1.0), (1.0, 0.0, 0.0)}. For settings
where we compare against multi-tasking, we select ηprim within a small subset of the settings
that worked best with multitasking baseline experiments. These choices limit the overhead of
hyper-parameter search but still allow us to show the empirical advantage of our method. In
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Imdb Imdb + Amazon MLM Amazon Amazon + Imdb MLM
Roberta 95.4 ± 0.14 - 67.0 ± 0.50 -
TAPT 96.1 ± 0.11 95.1 ± 0.10 70.3 ± 0.87 67.8 ± 0.46
Ours 96.1 ± 0.09 95.4± 0.03 70.1 ± 1.13 68.5± 1.01

Table 4.1: Results on Text Classification measured by F1. Experiments are averaged over 5 runs.

all our experiments, we provide all methods with similar hyper-parameter search budgets, e.g.
for Cifar10-Cat-vs-Dog, we ran a grid search with 16 configurations for regular pretraining, 16
configurations for PCGrad and 12 configurations for ATTITUD. More experimental details are
available in Appendix B.3

4.7 Results and Discussion
Text Classification. Table 4.1 shows the results for text classification. When the same data is
used both for the auxiliary task of MLM and the primary classification task, TAPT and ATTIT-
TUD both bring a similar improvement over Roberta (Imdb, Amazon columns). For the Cross-
TAPT setting where different data is used for the auxiliary task and the primary task (Imdb +
Amazon MLM, Amazon + Imdb MLM columns), TAPT does not perform as well as ATTIT-
TUD. This highlights the advantage of ATTITTUD when the auxiliary task data distribution
differ from the primary task distribution.

Image Classification. Our results are presented in Table 4.2. Both for MultiCifar100 (high
resource setting) and Cifar10-Cat-vs-Dog (low resource setting), ATTITUD shows a strong im-
provement over baselines. In general, we find that primary-task aware pre-training (Multitasking,
PCGrad, Ours) is better than vanilla pre-training which also performs better than having no pre-
training at all. For MultiCifar100, we find that using ηaux = (1.0, 1.0,−1.0),ηprim = 0.1 worked
best for 11 out of the 20 Cifar100 super-classes tasks. Note that ηaux = (1.0, 1.0,−1.0) is an
aggressive but novel configuration we introduce. Multitask learning and PCGrad produce bet-
ter models on 6 and 3 tasks respectively. In the low-resource Cat-vs-Dog, setting ATTITUD
produces a bigger boost in performance compared to baselines, with the best performing config-
uration being ηaux = (1.0, 0.0, 0.0),ηprim = 0.01. We posit that this configuration is successful
because removal of the in-span components makes overfitting less likely. Applying the out-
of-span components means the model learns features that do not harm the loss of the current
mini-batch but could be useful later. Note that our best performing configurations are all novel
and never an instantiation of PCGrad.

Medical Imaging Transfer. Table 4.3 shows our results on the ChexPert multi-label clas-
sification task. Per-pathology breakdowns are in Appendix B.3. Doing no pre-training at all
performs worst. Our method outperforms using a pre-trained Resnet18 model over Imagenet.
We apply the end-task-aware ATTITUD over 100k ImageNet images after the initial pretraining
and we reach 83.3% AUC, an improvement over 81.4%.

Ablation Study. Our approach relies on the top-k singular vectors from randomized svd to
define the basis to identify the positive and negative component of the auxiliary task gradient,

37



Method MultiCifar100 Cifar10-Cat-vs-Dogs
No-Pretraining 57.6 53.6 ± 2.26
Vanilla Pre-training 70.2 64.5 ± 1.26
PCGrad 75.6 64.2 ± 1.10
MT-TARTAN 75.5 65.3 ± 1.35
Ours 76.1 67.1± 1.31

Table 4.2: Average Accuracy on MultiCifar100 and Cat-vs-Dog Cifar10 tasks. Cat-vs-Dog
experiments are averaged over 5 runs. We use MT-TARTAN over META-TARTAN because it is
faster, and as we saw in Chapter 3, when the auxiliary tasks are in-distribution with respect to
the primary tasks both versions of TARTAN perform similarly.

Method Average AUC Across 5 Pathologies
No-Pretraining 78.3 ± 0.87
Pretrained-ResNet 81.4 ± 1.34
Pretrained-ResNet + Ours 83.3± 0.71

Table 4.3: Results on ChexPert-5k task measured by average AUC (Area Under Roc-Curve).
All experiments are averaged over 5 runs.
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Figure 4.2: Averaged across 5 random initializations. Left We vary the number of samples used
to estimate a 5-d subspace up to a maximimum of 100 (the total number of training examples in
this low-resource setting). Right. We compare the effect of the dimensionality of the subspace
in the low-resource (50 examples each for Cat, Dog classes) and high-resource (1000 examples
each per class).

see Section 4.5. This method is more accurate than several alternatives; see Table 4.4. Namely,
we compare our choice to random, the basis spanned by k randomly chosen orthogonal vectors
in RD, unit avg grad, the basis spanned by the average primary task gradient, and canonical, the
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Subspace Canonical Random Unit avg grad Randomized SVD
Average Acc. 51.42 ± 2.09 58.72 ± 2.68 59.13 ± 2.08 62.2± 4.00

Table 4.4: Experiment conducted on Cat-vr-Dog Cifar10 dataset for different choices of sub-
space basis. We use k = 5 for Random and Randomized SVD. This ablation uses a smaller
hyper-parameter budget than Table 4.2

per-parameter basis. This ablation was performed under a more limited tuning budget (we cross-
validated on configurations (1, 1, 0) and (1, 1,−1) only) than the full Cat-vs-Dog experiments
from Table 4.2.

We also examine the number of samples to estimate the principal directions of the per-
example primary task gradient. Larger sample sizes involve more computation but have limited
benefit on average accuracy. Large sample sizes however reduce variance, as shown in Figure
4.2 (left). This is as expected since using more samples gives a higher fidelity estimate of the
top-k singular vectors.

Another parameter of our algorithm is the size of our subspace, k. In general, we observe
that in low-resource settings, it is better to operate on the auxiliary task gradient in a smaller
dimensional subspace. The opposite holds for high-resource settings. This can be seen in Figure
4.2 (right). Whilst using a larger dimensional subspace captures a richer description of the J∗,
it also creates the risk of over-fitting especially in a limited data setting. This trade-off therefore
has to be validated on a per-task basis.

4.8 Conclusions
We have proposed, in this Chapter, a new approach to training a model with additional help from
an auxiliary task. Our method decomposes the gradients of the auxiliary task according to three
directions, with positive, negative and neutral impact on the primary task. This decomposition
allows a flexible re-weighting of the auxiliary task components and give rise to a family of
training strategies, which encompasses novel and existing approaches. We leverage insights
from randomized linear algebra and automatic differentiation to scale the approach to large deep
networks. Experiments in multitasking, pretraining and domain transfer over vision and text
classification task demonstrate that our work improves data-efficiency, allowing us to achieve
higher accuries at fixed amounts of task data.
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Chapter 5

Automated, end-task aware construction of
transfer tasks

5.1 Chapter Overview
In the previous chapters, we made a case for end task aware transfer learning and provided
principled algorithms for end task aware optimization. We assumed that the set of auxiliary tasks
Taux has been provided a-priori. However, this is not always guaranteed and whilst much work
has been done to formulate useful auxiliary objectives, their construction is still an art which
proceeds by slow and tedious hand-design.

In this chapter, we present an approach for automatically generating a suite of auxiliary ob-
jectives. We achieve this by deconstructing existing objectives within a novel unified taxonomy,
identifying connections between them, and generating new ones based on the uncovered struc-
ture. Next, we present a principled and efficient algorithm for searching the space of generated
objectives to find those most useful to a specified end task.1.

5.2 Introduction
The auxiliary learning paradigm, where we augment a primary objective with extra learning
signals to boost end-task performance, is a staple of many machine learning (ML) domains.
In natural language processing (NLP), well known models like SpanBERT (Joshi et al., 2020)
and RoBERTa (Liu et al., 2019a) are trained on masked language modelling (MLM) auxiliary
objectives (Devlin et al., 2018) before fine-tuning on the end-task. And for speech processing
and reinforcement learning (RL), Oord et al. (2018) introduced the popular contrastive predictive
coding objective which achieved state of the art performance in many settings when multi-tasked
with the end-task. Despite these successes and many more, research into devising such objectives
has progressed in a very local, objective-by-objective manner (Raffel et al., 2019; Clark et al.,
2020; Grill et al., 2020; Chen et al., 2020). Auxiliary objectives are constructed by hand-design
and without much overarching structure, relying on the experience and intuition of a select group

1Code available at : https://github.com/ldery/Automating-Auxiliary-Learning.
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of researchers versed at making appropriate design choices. Unfortunately, this status-quo not
only creates a technical barrier of entry for exploring auxiliary objectives in new domains but
also, by virtue of its incremental nature, limits the rate at which new objectives are discovered
and investigated.

ICML Experiments

derylucio

November 2021

Objective Data (D) Transform (T ) Representation (R) Output (O)
BERT Out-of-domain BERT-Op Bidirectional Denoise Token

TAPT Task data BERT-Op Bidirectional Denoise Token

DAPT In-domain BERT-Op Bidirectional Denoise Token

ELMO Out-of-domain No-Op Left-to-Right Next Token
and Right-to-Left

GPT Out-of-domain No-Op Left-To-Right Next Token

XLNet Out-of-domain No-Op Random factorized Next Token

Electra Neural LM Data Replace Bidirectional Real / Synthetic

. . . . . . . . . . . . . . .

1

Figure 5.1: We present the decomposition of some auxiliary
objectives in NLP within our framework.

To address the above chal-
lenges, the work in this Chap-
ter presents a framework for au-
tomatically generating and utiliz-
ing a large set of candidate auxil-
iary objectives. Our framework is
seeded by the following key ob-
servation: leading auxiliary ob-
jectives across multiple domains
can be viewed as making dif-
ferent design decisions within a
4 stage pipeline: Input Data
(D) → Input Transformation (T ) → Model Representation (R) → Output (O). For in-
stance, in RL, a common auxiliary objective is to predict the environment’s forward dynamics
(Agrawal et al., 2016; Hafner et al., 2019). To construct this objective, the current task state-
action pair (D) is corrupted (T ) and then passed through the model to produce a latent repre-
sentation (R) which is finally used to predict the next state (O). Similarly, in NLP, the XLNet
(Yang et al., 2019) objective—which performs language modelling on a randomly factorized
permutation of the input—can be written within our taxonomy as {D = Out-of-Domain, T = No-
op,R = Random-Factorized,O = Next Token}. These two examples (along with others listed in
Figure 5.1) fall within a class we term named objectives: objectives that have been previously
proposed in the auxiliary learning literature.

Data (D) Transform (T ) Representation (R) Output (O)

Out-of-domain No-Op Bidirectional Next Token
In-domain Replace Left-to-Right Real / Synth
Task data ⇥ Mask ⇥ Right-to-Left ⇥ Denoise Token

Neural LM Data Noising embeds Rand. factorized TF-IDF
. . . . . . . . . . . .

#
TAPT = {Task data ! BERT-Op ! Bidirectional ! Denoise Token}
GPT = {Out-of-domain ! No-Op ! Left-to-Right ! Next Token}

New-Obj1 = {Task data ! BERT-Op ! Left-to-Right ! Denoise Token}
New-Obj2 = {In-domain ! No-Op ! Random Factorized ! TF-IDF}

. . .

2

Figure 5.2: Our framework in the context of NLP. We de-
compose named objectives within our four staged taxonomy
: {D, T ,R,O}. By taking the cartesian product of choices
across stages, we reproduce named objectives and discover
new ones.

Decomposing named objec-
tives within our taxonomy pro-
vides a unified view of the aux-
iliary learning landscape. From
this vantage point, it becomes
clear that there are many un-
explored combinations of the
various primitives used across
named objectives. This presents
a simple formula for automati-
cally generating a large set of
candidate objectives: take the
cartesian product of the design
decisions across given stages
(Figure 5.2). Using this compo-
sitional process, not only can we
reconstruct existing named objectives, we can also generate new combinations. This overcomes
the tedium of implementing each objective independently since we can just reuse a small set of
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simple stage-wise primitives.
Generating a large set of objectives raises the natural question of how to efficiently select the

most helpful ones for a given end task. Instead of leaving this to practitioner intuition, we develop
principled guidelines to address this question by theoretically studying the impact of auxiliary
learning on a particular end-task. Specifically, using arguments based on algorithmic stability
(Hardt et al., 2016; Bousquet and Elisseeff, 2002), we derive end-task generalization error bounds
that are dependent on the choice of auxiliary task. This contributes to existing theory (Saunshi
et al., 2020; Xie et al., 2021) on how auxiliary learning impacts the end-task by suggesting a
new candidate mechanism: auxiliary learning results in more stable optimization end-points in
the sense of Bousquet and Elisseeff (2002), which in theory improves generalization of the final
model.

Guided by our theory, we introduce AANG (Automating Auxiliary LearniNG), an efficient,
structure-aware algorithm for adaptively combining a set of related objectives to improve gener-
alization on a specific end-task. AANG incorporates the following prescriptions from our theory:
(i) auxiliary tasks that are more similar to the end-task are desirable. Given a set of objectives,
AANG learns adaptive weights to bring the composite objective closer to the end-task; (ii) in
general, more auxiliary data is better. AANG maximizes the effective amount of data used in
training by using all the generated objectives instead of taking task-specific subsets.

To empirically validate our method for automatically generating and utilizing auxiliary ob-
jectives, we experiment on five NLP tasks. We do so in the widely-used setting of continued
pre-training (Gururangan et al., 2020a; Aghajanyan et al., 2021; Dery et al., 2021a; Zhang et al.,
2022), where a model trained with a single auxiliary objective on large-scale data is further
trained on end-task related data. Without introducing any external data or architectural modi-
fications, variants of AANG outperform strong and widely used baselines in 4 out of 5 tasks.
AANG achieves an average improvement of 4.2% over standard fine-tuning of RoBERTa across
our chosen tasks. We believe our results will spur further research into exploring automating
auxiliary learning across a variety of settings. Notably, while we focus on NLP when discussing
the space of auxiliary objectives (Section 5.4) and in our empirical evaluation (Section 5.7), our
theoretical results (Section 5.5) and AANG itself are domain-agnostic2.

5.3 Related Work

To properly scope this work, we define auxiliary learning as training a model on alternative
objectives with the goal of improving performance on some primary end-task. Auxiliary learning
is an instantiation of transfer learning (Caruana, 1997a; Baxter, 2000; Ruder et al., 2019). It
covers the pretrain-then-finetune paradigm (Huh et al., 2016; Devlin et al., 2018; Schneider et al.,
2019; Gururangan et al., 2020a) as well as end-task aware multitasking approaches (Lin et al.,
2019; Dery et al., 2021b,a). Whilst auxiliary objectives may be meta-learned (Liu et al., 2019b;
Navon et al., 2020), for simplicity – since incorporating these would require further complication
of our design space – such objectives are out of the scope of this Chapter.

2Our ideas could be applied to domains like RL or computer vision (CV), where a similar dissection of existing
objectives can be performed.
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This work bears many parallels to the area of neural architecture search (NAS) (Stanley and
Miikkulainen, 2002; Zoph and Le, 2016; Roberts et al., 2021). Whilst we seek to automate
auxiliary learning, the objective of NAS is to automate the discovery of the right neural archi-
tecture given a specific end-task. Search spaces of candidate architectures are created by taking
the cartesian product of architecture design choices across the depth of the network. The de-
sign of suitable architectural search spaces for a variety of settings has been an active area of
research (Tan and Le, 2019; Howard et al., 2019; Dao et al., 2020; Roberts et al., 2021). To
develop AANG, we borrow ideas from the NAS literature on efficient algorithms for sifting
through spaces of architectures. Mirroring the popular differentiable NAS method DARTS Liu
et al. (2018a), we perform a continuous relaxation over the search space of objectives, allowing
for efficient search by gradient descent. We also use a factored approach to model relationships
between objectives that share primitives. This is inspired by recent work on stochastic-relaxation
weight sharing (Dong and Yang, 2019; Li et al., 2020).

As a theoretical contribution, this work derives an end-task aware generalization error bound
for auxiliary learning. Our bound is built on that of Hardt et al. (2016), who derive generaliza-
tion bounds for parametric models trained with stochastic gradient descent (SGD). To derive their
bounds, they leverage the concept of algorithmic stability introduced by Bousquet and Elisseeff
(2002). Informally, a randomized algorithm is uniformly stable if changing a single training data
point in the given samples does not change its end-point too much. Said change is character-
ized as the average difference in predictions between the two learned models. Stability implies
generalization in expectation (Hardt et al., 2016; Kuzborskij and Lampert, 2018).

5.4 Automatically Generating Auxiliary Objectives

To begin, we take a high-level view of the landscape of named objectives. Using running exam-
ples from NLP, we propose the following coarse structure for the sequence of choices made in
the hand-design of auxiliary objectives:

1. Data, D: Auxiliary objective pipelines begin with a choice of input data. Here, options
can range from heterogeneous out-of-domain data (Radford et al., 2019), in-domain data
with respect to the final end-task (Beltagy et al., 2019b) or the task data itself (Gururangan
et al., 2020a). It may even include data outside the modality of the end-task.

2. Input-Transformation, T : Many auxiliary objectives are self-supervised with respect to
their input data. They corrupt or transform the input and then reconstruct it in whole or
part. For example, input text tokens can be masked, replaced or deleted. Operations can
also be aggregated as in BERT-Op: mask 80% of selected tokens and randomly replace
50% of the remaining Devlin et al. (2018); Liu et al. (2019a).

3. Representation, R: After transformation, representations of the input data can be com-
puted from a given model in different ways. A chosen token’s representation can depend
on only its left context (Left-to-Right) (Radford et al., 2018) or its right context (Right-
to-Left) (Peters et al., 2018c). It could also depend on the representations of a randomly
selected permutation of other tokens (Random Factorized) Yang et al. (2019).
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4. Output, O: Finally, representations obtained from the previous stage are fed into a loss
function producing a final output. The choice of output loss is usually coupled with the
choice of transformation made in stage 2. Choices include but are not restricted to denois-
ing tokens, predicting the next token or predicting the TF-IDF (Term Frequency-Inverse
Document Frequency) of a token.

The above taxonomy {D → T → R → O} is expansive enough to cover a range of named
auxiliary objectives of interest in NLP (Figure 5.1)3. For example, we can write any member
of the GPT series (Radford et al., 2018, 2019; Brown et al., 2020b) which perform left-to-right
language modelling on out-of-domain data as {D = Out-of-Domain, T = No-op,R = Left-To-
Right,O = Next Token}.

We can summarize the pre-existing choices within each design stage to obtain a unique set
of options. For example, we can reduce the set of model representation types used by the objec-
tives enumerated in Figure 5.1 to the unique set R = {Bi-directional, Left-To-Right, Right-
To-Left, Random-Factorized}. Having summarized the list of primitives within each stage,
a simple formula for generating a space of auxiliary objectives becomes apparent: take the
cartesian product of the design choices at each stage (see Figure 5.2). In general, given an
instance of our taxonomy, we can construct a space of objectives A = D × T ×R×O of size
|A| ≤ |D| × |T | × |R| × |O|. Consider New Obj1 from Figure 5.2. This previously unexplored
objective can be obtained by combining the special masking operation from BERT (BERT-Op)
with computing model representations based on left-to-right causal masking as in GPT. In fact,
this objective proved one of the most useful ones in our experiments below (see Figure 5.5).

Our framework also allows us to reason about whole families of objectives, F , by thinking
in terms of design stages and choices. For example, given a particular end-task E with input text
ED, we can create a family of objectives based solely on task data by fixing to that option in
our input data stage; we call this family FD=ED . FD=ED not only includes pre-existing TAPT
Gururangan et al. (2020a) but also unexplored objectives like task-data dependent variants of
XLNET, ELMO etc. Auxiliary learning with FD=ED can be seen as a relaxed form of data
augmentation which we dub task augmentation. Whilst data augmentation requires applying
transformations that preserve the data-point’s label, task augmentation has no such restriction
and thus offers greater flexibility in terms of specifying {T ,R,O}. We can also reason about
expanding particular stages to include new primitives. Any supervised loss can be added to
the output stage, O, allowing us to potentially explore auxiliary objectives based on supervised
signals like NER or POS tagging (Carreras et al., 2003; Charniak, 1997). A special example
is setting O to the end-task supervised output EO. This leads to FO=EO

D=ED
which is a subset of

FD=ED . FO=EO
D=ED

includes many objectives like predicting the end-task signal from corrupted
input data. In Section 5.7, we will introduce a search space of objectives that leverages task
augmentation.

3Although this taxonomy is quite expansive, it obviously does not consider other elements of objective creation
such as choice of model architecture, optimizer settings, etc.
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5.5 The Impact of Auxiliary Learning on End-task General-
ization

In this section, we relieve reliance on practitioner intuition by deriving a set of guiding principles
on how to effectively utilize the automatically generated objectives from Section 5.4.

Auxiliary learning influences the end-task through both training and generalization error.
Previous theory has largely focused on characterizing the impact on end-task training error. Liu
et al. (2021), for example, show that end-task agnostic pre-training can create a performance
gap in training error compared to training with the end-task alone. The size of this gap depends
on how dissimilar the pre-training auxiliary objective is from the end-task. They introduce the
following assumption (which we will borrow) to formalize their notion of task similarity:
Assumption A.1: Let fe represent the end-task objective and fa be the auxiliary objective. There
exists ∆ ≥ 0 such that ∥∇fa(θ)−∇fe(θ)∥ ≤ ∆ ∀ θ.
Note that θ represents all the parameters of the model. Smaller ∆ implies fa is more similar
to the primary task fe. Liu et al. (2021) bound the end-task agnostic training error gap to be
logarithmic in ∆.

Unlike training error, end-task generalization error has gone unstudied in the auxiliary learn-
ing setting. Bounding the generalization error not only adds to our theoretical understanding of
the impact of auxiliary learning but also provides insights to guide algorithm design. To arrive
at a bound, we adapt the technique of Hardt et al. (2016) who derive a generalization bound on
training with only the end-task via stochastic gradient descent. We consider the end-task aware
setting where the end-task is multi-tasked with the auxiliary objective. This setting has recently
been shown to improve end-task performance over the pretrain-then-finetune paradigm (Dery
et al., 2021b,a; Yao et al., 2021).

Auxiliary learning with Dynamic Sampling: We are given an auxiliary objective fa(·; z) ∈
[0, 1] with Na samples Sa = (z1, . . . , zNa) from the distribution Da. fa can either be a single
objective or a weighted linear combination of objectives : fa =

∑
k w

kfk
a . At any iteration of

SGD, we sample a choice of the end-task function fe or the auxiliary objective fa according to
the probabilities λe, λa ∈ [0, 1] | λe + λa = 1. Given the chosen objective, we sample a data-point
and perform stochastic gradient descent based on the sampled data-point. We now present our
bound in the setting described.
Theorem 2 (Auxiliary learning with Dynamic Sampling). Assume that fe(; ze), fa(; za) ∈ [0, 1]
are both L-Lipschitz with βe and βa-smooth loss functions respectively. Consider that we have
N ′ = Ne + Na total samples where fe and fa have Ne and Na samples respectively. re = Ne

N ′

is the fraction of the available data represented by the end-task. Suppose that we run stochastic
gradient descent for T steps with monotonically non-increasing step sizes αt ≤ c

t
by dynamically

sampling the tasks according to λe and λa. Then, with respect to fe, the generalization error is
bounded by:

ϵgen ⪅
(
∆)

1
1+cλ∗β∗

(
γT

N ′

)1− 1
cλ∗β∗+1

Where γ =
λe

re
(5.1)

Here β∗ = min{βe, βa} and λ∗ is the weighting of the function with smaller smoothness.

Proof. See Appendix C.4 for full proof and Appendix C.5 for more discussion
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As a detailed inspection of the proof will show, we derive Equation 5.1 by appealing to
algorithmic stability (Bousquet and Elisseeff, 2002; Hardt et al., 2016; Kuzborskij and Lampert,
2018) (Section 5.3). To our knowledge, ours is the first work to present an algorithmic stability
view to formally explain how auxiliary learning influences end-task performance. Equation 5.1
surfaces the following prescriptions about learning with auxiliary tasks :

(P1) Smaller ∆ improves ϵgen. This implies that the more similar the auxiliary objective is to
the end-task (under Assumption A.1), the lower the generalization error.

(P2) Larger N ′ leads to smaller ϵgen4. Since we usually have a fixed amount of task data Ne, we
can increase N ′ by adding more auxiliary data Na.

5.6 End-task Aware Search of Structured Objective Spaces

Algorithm 2: AANG
Input: Search Space - A
Factor vectors - {WAll,W I ,W T ,WR,WO}
End-task - E, End-task weight - λe

Initial Model Params - θ0 ∈ RD

repeat
Sample a batch of n objectives
Kn ∼ A
Weighting of objectives in Kn

Construct wn

for k = 1 to n do
(d, t, r, o) = [Kn

k ].stages
wk ∝ exp

(
WAll

(d,t,r,o) +W I
d +W T

t +WR
r +WO

o

)
wn

k ← wk

end for
Get losses from batches of data
L̂A(Kn,wn) =

∑n
k=1 w

kLk

Ltotal = λeLE + (1− λe)L̂A
Get gradients and update factors
θt+1, {∇wn,λe

} ←META-TARTAN
(
θt, E,Ltotal)

Update {WAll,W I ,W T ,WR,WO} using∇wn

Update λe using∇λe

until done
Return : θT

Guided by Section 5.5, we build a prac-
tical method for exploring a set of objec-
tives, A.

Whilst the dynamic sampling setting
described in Section 5.5 is amenable to
theoretical consideration, we make a few
practical changes to it. First, instead
of performing alternating gradient descent
by sampling fa, fe according to λe, λa,
we instead use them as multitask weights
and perform joint training. Joint train-
ing has been found to produce supe-
rior results compared to alternating opti-
mization when leveraging auxiliary objec-
tives (Aghajanyan et al., 2021). We per-
form gradient descent on the following
total loss which interpolates between the
end-task and the auxiliary loss Ltotal =
λeLE + (1 − λe)LK. Here, K is a chosen
subset of A.

Second, as indicated in Section 5.5,
given K, we can write the set as a single
objective fa =

∑
k∈K wkfk

a . By Prescrip-
tion (P1), we want to choose {wk} such

that fa has a small ∆ with the end-task fe. We would also like to set λe such that the bound on
ϵgen is minimized. Whilst a closed form exists for the optimal weightings λe, {wk}, it depends
on variables like {∆k}, {βk

a}, L that are hard to estimate. We therefore propose to learn λe, {wk}
in an online, data-driven way. To do this, we build on top of the META-TARTAN algorithm pro-
posed by Dery et al. (2021a). META-TARTAN is a meta-learning algorithm that learns adaptive

4This holds at fixed γ which we achieve by adjusting λe to account for introducing more auxiliary data.
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weights for different auxiliary tasks in a way that prioritizes end-task generalization. It learns
{wk} by minimizing the loss on the end-task validation set: ∂Lval

E

∂wk ≈ −
(
∇θLfk

a

)T (∇θLval
E

)
. This

corresponds to learning {wk} such that
(
∇θfa

)T (∇θfe) is maximized. This minimizes one of
the terms that contributes to ∆ and thus attempts to fulfil Prescription (P1). We can similarly
learn λe to minimize the end-task validation loss.

So far, we have introduced independent weights, {wk}, for each objective. This is sufficient
in the case of unrelated objectives. However, the objectives in A share an underlying structure.
We recognize this by using a factored approach to model each wk. We introduce a factor vector
for each of the 4 stages introduced in Section 5.4: WD ∈ R|D|,W T ∈ R|T |,WR ∈ R|R|

and WO ∈ R|O|. This ties together the weights of objectives that share primitives in common.
To capture the fact that an objective can be more than the sum of it parts, we also introduce
an independent weight for each objective : WAll ∈ R|D|×|T |×|R|×|O|. Consider the objective k
which is generated by the composition of the operations {d ∈ D, t ∈ T , r ∈ R, o ∈ O},
its weighting is computed as : wk ∝ exp

(
WAll

(d,t,r,o) +W I
d +W T

t +WR
r +WO

o

)
. Our factored

approach not only allows us to share information between objectives but it also allows us to
analyze which stages and primitives are most important to a particular end-task after training is
completed (Section 5.8).

Prescription (P2) from Section 5.5, advocates for introducing as much auxiliary data as pos-
sible. As such, instead of fixing to a specific subset throughout training for a particular end-task,
we propose to utilize all the objectives in A. This also avoids the combinatorial explosion that
comes with exploring subsets ofA at a time. |A| can be large and descending on all ofA at once
can be computationally prohibitive. As an efficient work around, at each training step, we sample
a subset of A for execution with META-TARTAN. Our samples are drawn from all of A so any
objective can get used at any timestep. Because we model each wk via a factored approach, even
if an objective is not sampled its weight is implicitly updated. Our approach is reminiscent of
stochastic-relaxation weight sharing (Pham et al., 2018; Dong and Yang, 2019; Li et al., 2020)
where sampled architectural primitives result in updates to shared model weights which can be
used by other primitives that are not sampled.

We coalesce all the ideas we have introduced so far into Algorithm 2 which we dub AANG
(Automated Auxiliary LearniNG). At a high-level, given an end-task E:

1. We generate a space of auxiliary objectives A by leveraging the taxonomy discussed in
Section 5.4. A may contain auxiliary tasks that can improve our performance on E.

2. We leverage MAML-style (Finn et al., 2017b) meta-learning to adaptively weight the ob-
jectives in A based on measuring each objective’s influence on E’s validation set loss.

3. We make our algorithm scalable by sub-sampling the tasksA. By exploiting the underlying
structure of the objectives in A via a factored approach to modeling task weights, we
reduce the impact of the inexact sub-sampling.

5.7 Experimental Setting
Our exploration of auxiliary learning has made the following transitions from the status-quo:
manual to automated, single task to multitask, end-task agnostic to end-task aware. In this sec-
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tion, we set up experiments to validate these deviations from the standard.
We focus on continued pre-training (Gururangan et al., 2020a; Aghajanyan et al., 2021). In

this setting, we perform further auxiliary learning on an already pre-trained model. We favor this
setting over pre-training from scratch (Liu et al., 2019a; Yang et al., 2019) not only because it is
a more computationally feasible arena for experimentation but also because it is more relevant to
modern ML systems where building upon pre-trained models is the norm (Qiu et al., 2020; Du
et al., 2020).

Model Details and Datasets: We use a pre-trained RoBERTabase (Liu et al., 2019a) as the
shared model base. We implement each auxiliary objective as a separate head on top of this
shared base. For classification based objectives, the output head is a 2-layer multi-layer percep-
tron (MLP) that receives representations for the special classification token [CLS] (Devlin et al.,
2018) from RoBERTabase. For sequence generation objectives, we make a copy of the pre-trained
output layer of RoBERTabase for each task. Table D.1 in Appendix C.2 provides details of the 5
datasets used. All datasets are low-resource classification tasks. Not only are these datasets more
amenable to meta-learning from a computational standpoint, but low-resource tasks also benefit
the most from auxiliary learning. We also choose these tasks because they feature in previous
work which we use as baselines (Gururangan et al., 2020a; Dery et al., 2021a)

Table 5.1: AANG-TD (task data) has 24 objectives and is based on only end-task data. AANG-
TD+ED (task data + external data) has 40 objectives and uses both end-task and in-domain data.

I T R O

TD End-task BERT-op Bi-directional Denoise Token
Mask Left-to-Right End-task

TD+ED End-task Replace Right-to-Left
In-Domain data No-op Random-Factorized

Baselines and Search Spaces: The following methods are end-task agnostic baselines. By
end-task agnostic, we mean that these do not multitask with the end-task. Finetuning on the
end-task occurs after training on the auxiliary objective.

1. RoBERTa (Liu et al., 2019a): We simply finetune a pre-trained RoBERTabase on the end-
task.

2. TAPT (Gururangan et al., 2020a): Continue training RoBERTabase on masked language
modelling on end-task data itself before finetuning on the end-task.

The following named objectives are end-task aware baselines that use META-TARTAN (Dery
et al., 2021a) but utilize only 1 auxiliary task. Each auxiliary objective is multi-tasked with the
end-task.

1. GPT-style: We perform end-task aware training with a denoising auxiliary objective based
on left-to-right causal masking for computing representations. {I = End-task data, T =
No-op,R = Left-To-Right, O = Denoise Token }.
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2. XLNET-style: This is a denoising auxiliary objective that uses randomized masking for
computing representations. {I = End-task data, T = No-op,R = Random-factorized, O =
Denoise Token}.

3. BERT-style / TAPT: Denoising inputs corrupted via BERT-Op: 80% masking and 10%
random replacement. {I = End-task data, T = BERT-Op,R = Bi-directional,O = Denoise
Token}. Please note that this baseline is equivalent to META-TARTAN as introduced in
Dery et al. (2021a).

Table 5.1 details the search spaces that we evaluate against the above baselines. This is by
no means the most encompassing search space but we leave more expansive space design to
future work. Please note that all tasks within AANG-TD, and those with {I = End-task} in
AANG-TD+ED, are instantiations of task augmentation as introduced in Section 5.4.

Training Details : Please see Appendix C.3 for more details about hyper-parameter configu-
rations.

5.8 Results and Discussion
In this section, we experimentally validate our case for automating the creation of auxiliary
objectives and using them in an end-task aware multitask fashion.

5.8.1 Going a Long Way Without External Data

We first consider the setting where we rely solely on end-task data (task augmentation), and work
with the AANG-TD search space. This search space has 24 objectives. Table 5.2 shows that au-
tomatically generating auxiliary objectives from only task data and using them appropriately is
productive.
End-task awareness is key: From Table 5.2, methods that are end-task aware result in over
1.12% average improvement over those that are end-task agnostic even under the most generous
comparison (GPT-style 79.84% vs task-agnostic TAPT 78.72%). Knowing the end-task means
that at each iteration, AANG can make informed gradient updates by adapting task weights so
the resulting auxiliary task better aligns with the end-task (Prescription (P1)). Amongst the single
task objectives, BERT-style performs best. We posit that this is because RoBERTa was trained
from scratch on a similar objective and so this objective represents minimal shift in training dis-
tributions.

Adaptive multi-task auxiliary learning improves performance: We compare single-task
end-task aware auxiliary learning to its multitask variant. Table 5.2 shows that multitasking our
3 different types of language modelling tasks results in improved average performance over us-
ing the tasks individually (81.12% for the BERT-style and 81.55% for combining the three single
task objectives). We get our best performance when we multitask 24 auxiliary objectives auto-
matically generated with our framework using AANG-TD. Boosting the number of objectives
from 3 to 24 resulted in a 0.66% improvement in average performance across tasks. This is in
line with Prescription (P2) from Section 5.5 since we are increasing the effective amount of aux-
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Table 5.2: Our framework and AANG on tasks using only task data. Without using any exter-
nal data, we are able to get significant average performance improvement over baselines. Super-
scripts are p-values from paired t-tests (best multitask versus best single-task).

Task Adaptive Method # CS BIOMED NEWS STANCE

ACL-ARC SCIERC CHEMPROT H.PARTISAN SE-2016-6 AVG
No RoBERTa 1 66.033.55 77.962.96 82.100.98 93.392.26 70.371.51 77.97

TAPT 1 67.743.68 79.531.93 82.170.65 93.422.87 70.741.21 78.72

[OURS] Static Multitask-TD 24 69.603.80 83.370.58 83.420.26 97.950.73 71.020.43 81.07

Yes X. GPT-style 1 67.220.44 81.620.84 83.291.21 96.410.73 70.671.46 79.84

Y. XLNET-style 1 69.762.42 81.810.42 83.390.31 96.411.92 71.180.58 80.51

Z. BERT-style (Dery et al., 2021a) 1 70.084.70 81.480.82 84.49
(0.09)
0.50 96.841.72 72.700.60 81.12

[OURS] AANG-[X+Y+Z] 3 71.513.19 82.890.78 83.680.45 96.921.26 72.75
(0.94)
0.82 81.55

[OURS] AANG-TD 24 73.26
(0.28)
1.32 82.98

(0.27)
1.52 83.910.32 98.46

(0.14)
0.0 72.461.65 82.21

iliary data. We further posit that introducing more auxiliary objectives also serves to implicitly
regularize the end-task during training.

5.8.2 Introducing External Data

Figure 5.3: AANG effectively
leverages out-of-task data. P-values
(in brackets) are comparisons to
(Dery et al., 2021a)

For the ACL-ARC task, we experiment with introducing
auxiliary tasks based on external data. AANG-TD+ED
has 40 tasks, 16 of which are based on domain data. We
introduce CS domain data (from the S2ORC dataset (Lo
et al., 2019)) that is n = 10× the size of the task data.
From Figure 5.3 we see that AANG-TD+ED makes bet-
ter use of domain-data than doing end-task aware train-
ing using only BERT-style objective with task (TAPT)
and domain-data (DAPT) jointly as in Dery et al. (2021a).
However, AANG-TD+ED (73.70) does not significantly
improve over AANG-TD (73.26) on the ACL-ARC task
(Figure 5.3). This might seem at odds with Prescription
(P2) since the TD+ED search space introduces more data.
However, note that the AANG search algorithm is ap-
proximate and as such, with a larger search space, it can
be harder to find composite tasks with a small ∆ as sug-
gested by Prescription (P1). We posit that we need more
external data than n = 10× in order to see marked im-
provements to offset our inexact search of the space of
composite functions. However, such scales are outside
our computational budget.
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5.8.3 Why does AANG Work ?

To better understand why our auxiliary learning pipeline improves end-task performance, we
perform multiple ablations under AANG-TD.
Static versus Dynamic Weighting: We ablate the impact of using static task weights through-
out training, as against adaptive task weights. Just as with AANG, we sub-sample n tasks from
the search space at every iteration (n is cross-validated exactly as AANG is – Table C.1 ). Each
sampled tasks weight is initialized to 1

n
and this remains unchanged throughout training. This

is the Static Multitask-TD baseline in Table5.2. AANG-TD improves upon the static multitask
baseline by over 1.1% on average. With adaptive weighting, AANG down-weights objectives
that are harmful to the end-task whilst up-weighting relevant ones (Prescription (P1)). However,
using static weightings is more compute friendly since we do not have to calculate task-weight
meta-gradients. This compute-vs-performance trade-off is left for practitioners to resolve based
on their available resources.
Impact of number of sampled objectives: Due to computational constraints, AANG sub-
samples the set of generated objectives. Whilst this sampling can result in approximation error
when inferring task weightings, it can also introduce stochasticity which can help regularize the
learned model. From Table C.1 (Appendix C.1) we find that for some tasks (ACL-ARC and
SCIERC) sampling a larger number of tasks helps. SE-2016-6 and CHEMPROT on the other
hand benefit from smaller number of sampled tasks. Our recommendation is that the number of
sampled tasks be cross-validated on a per-task basis.
Learned task weight trajectories: AANG learns interesting trajectories for weighting design
stage primitives. From Table 5.2, the fact that AANG-TD roughly matches the best single task
performance (72.461.65 versus 72.700.60 for BERT-style) on the SE-2016-6 task suggests that it
may be learning to mostly up-weight this task. Figure 5.4 provides evidence of this. For the
SE-2016-6 task (row 1), composing the highest weighted primitive from each stage [BERT ◦
None ◦ DENOISE] results in BERT-style, the best single task objective. Figure 5.4 also shows
that AANG can adapt to overfitting. The vertical black lines indicate the point of best validation
set performance. AANG responds to over-fitting by down-weighting objectives based on the
output loss being over-fit to. Thus, after several iterations, the objective that dominates when the
validation performance is at its highest (black vertical line) gets down-weighted in response to it
becoming saturated.

What tasks are important and when they are important? We study which tasks are most
highly weighted early in training (first 10% of learning trajectory) and later in training (last
50%). We aggregate statistics across 3 datasets. Note that early in training, objectives based on
the self-supervised output O = {DENOISE} are highly weighted but later, objectives based on
supervised signal, O = {Task} play a larger role. AANG rediscovers the common practice of
training on self-supervised objectives before introducing supervised ones. It is also interesting
to note that many newly generated objectives (outside of the 3 named single task baselines in
Table 5.2) such as simple input reconstruction were discovered to have relevant impact on the
end-tasks. This means AANG can automatically surface new, previously unexplored objectives
relevant to the end-task.
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Figure 5.4: Learned trajectories for AANG-TD for run instances of SE-2016-6 and SCIERC
tasks.
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Figure 5.5: Top ranked objectives (averaged weight) early in training (left) and later in training
(right)

5.9 Limitations and Conclusion

Our work has some limitations that we leave for future work. First, because AANG relies on
meta-learning, it presents extra compute burden over simple multitasking. This is because,
we have to independently compute meta-gradients for each auxiliary task thus requiring O(n)
forward-backward operations for n sampled tasks compared to O(1) for static multitasking. In
Table 5.2, we show that our static Multitask-TD method outperforms all other non-task-adaptive
methods by ≈ 2.4% and is thus a viable alternative when runtime is a signficant constraint.
Secondly, AANG as presented is an approximate algorithm – primarily due to sub-sampling the
space of tasks. Thus as mentioned in Section 5.8.2, we do not get as much gain as desired when
our search space becomes larger. We leave finding an efficient exact search algorithm for future
exploration.

This chapter presents a procedure for automating the creation of auxiliary objectives. We
showed, theoretically, how auxiliary learning impacts end-task generalization. This resulted in
prescriptions that informed the design of AANG, an algorithm to search the space of gener-
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ated objectives in an end-task aware multitask fashion. Our experiments show that AANG is a
promising first step in automating auxiliary learning.
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Part III

On Memory and Compute Efficient
Transfer Learning
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Chapter 6

Structured Pruning of Pre-trained Models
Under Limited Data

6.1 Chapter Overview
In Part II, we focused on how to perform data-efficient transfer learning by leveraging end task
awareness. In this chapter and the following, we will focus on delivering small, task-specific,
compute and memory efficient models by pruning and adapting large pre-trained models.

Specifically, in this chapter, we will explore the problem of structured pruning under limited
target task data. While existing pruning algorithms can be efficient, the common practical setting
where task-specific data is limited is yet to be addressed. To alleviate the data scarcity problem,
we propose a structured pruning strategy that leverages transfer learning. Detailed analyses of
simple transfer learning based remedies lead us to a simple, flexible formulation of what, how and
when to transfer, resulting in pruned models with improved generalization over strong baselines.

6.2 Introduction
Large pre-trained language models have been successfully applied to a wide variety of appli-
cation scenarios (Bommasani et al., 2021; Anil et al., 2023). However, not all applications can
justify the cost of running such large models. E.g. an interactive, offline spellchecker for a phone
has strong memory limits compared to a server-side chat model (Dettmers et al., 2022). Even
server-side, the benefit/cost of large models depends on the application. This situation motivates
research into structured model pruning algorithms.

Structured pruning algorithms generate smaller, faster and yet reasonably accurate sub-models
from large pre-trained ones by removing components (beyond individual parameters) like con-
volutional channels, attention heads and whole layers. Several works over the years (Wang et al.,
2019b; Sanh et al., 2020; Xia et al., 2022) have been proposed to perform task-specific structured
pruning. Unfortunately, to the best of our knowledge, all existing algorithms have been developed
without consideration for the amount of training data available for the target task. Thus, as Fig-
ure 6.1 shows that, even state-of-the-art methods like CoFi (Xia et al., 2022), do not gracefully
handle scenarios with limited training data. We argue that the data-limited structured pruning
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Figure 6.1: Accuracy degradation of CoFi (Xia et al., 2022) vs training data sizes. Sparsity
level refers to the fraction of removed weights (excluding embeddings). Accuracy at 50% data
is stable across sparsity levels (except for 98% sparsity) while more data-limited regimes (10%–
5%) exhibit stronger sensitivity to the sparsity level.

setting is important since limited compute for inference and data scarcity for training tend to co-
occur often in practice Ahia et al. (2021). A popular remedy to the limited data problem at fixed
model size, is to leverage transfer learning (Caruana, 1997a; Erhan et al., 2010; Dery et al., 2022)
by introducing external data or extra tasks. In this work, we investigate transfer learning based
remedies for structured pruning under limited data. Structured pruning algorithms need to jointly
learn both model weights and structural variables (which layers, attention heads, etc. to prune)
for the final size-reduced model Wang et al. (2019b); Xia et al. (2022). This added complexity
makes deploying transfer learning in the structured pruning setting non-trivial and raises several
questions. Do we only perform transfer learning for model weights or do we include structural
variables too? How do we learn structural variables for the target task in a way that benefits from
the presence of a transfer task? When is it best to introduce transfer learning so as to produce the
most accurate pruned target model?

This work aims to provide answers to the questions above. We propose a simple modification
to existing structured pruning algorithms to allow for effective transfer of both structural variables
and model parameters. Overall, our analyses allow us to provide prescriptions to researchers
about what, how and when to transfer during structured pruning. Our effort results in significant
improvements in generalization performance even at compression ratios as high as 50×.

6.3 Background
Unstructured Pruning approaches sparsify models by zeroing out individual components of
weight matrices (Frankle and Carbin, 2018; Sanh et al., 2020). The resulting sparse matrices
reduce the memory overhead of the model but run-time gains cannot be realized unless on spe-
cialized hardware (Liu et al., 2018b; Ma et al., 2021). Over the years, many criteria for choosing
which parameters to remove have been explored. Some approaches like magnitude pruning Han
et al. (2015a) and Wanda Sun et al. (2023b) prune parameters based on either their magnitudes
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or the magnitude of their product with previous layer activations respectively. Other approaches
like Frankle and Carbin (2018); Sanh et al. (2020) use information about about much parameters
have changed since initialization whilst others learn unstructured masks based using gradient
descent (Ramanujan et al., 2020). Ahia et al. (2021) introduce the term the low-resource double-
bind for the challenge of compressing models in data limited regimes. Unlike us, they study
magnitude pruning, which as mentioned, does not ordinarily lead to run-time gains. They also
do not propose a remedy for the limited-data problem, which we do in this paper.

Structured Pruning algorithms remove whole components from pre-trained models such as
attention heads (Michel et al., 2019; Voita et al., 2019), whole layers (Fan et al., 2019) or in-
termediate dimensions of fully connected layers (Wang et al., 2019b) in order to produce faster,
memory efficient sub-models without overly sacrificing downstream accuracy. Unlike unstruc-
tured pruning, there is no need for specialized hardware in order to realize the run-time speedups
from compression. These approaches require optimizing over structural variables (to decide
which model components to prune) and model weights (to adapt the final model to the disruption
that results from removing whole components). Joint optimizations like these mean more vari-
ables to learn, resulting in the need for mode end-task data points. To the best of our knowledge,
we are the first consider the challenge of structured pruning under limited data.

Other model compression approaches Quantization methods (Polino et al., 2018; Dettmers
et al., 2022) reduce model size by reducing the number of bits required to represent each weight.
These methods are generally complementary to pruning approaches but only achieve maximum
size reductions on the order of 2-4× before substantial model performance degradation. We are
interested in achieving extreme compressions to the order of 50× reduction without significant
loss in performance. Distilling directly to a target task has been shown to be a data-hungry
process (Jiao et al., 2019), often requiring a general distillation step (on abundant external data) to
be able to achieve competitive performance with approaches modern structured pruning methods
like CoFi Xia et al. (2022).

Multitask Transfer Learning (Caruana, 1997a) is a common recipe for improving a models
average performance on a desired end-task. When the end-task is data-limited, auxiliary tasks
can be multi-tasked with the end-task (Dery et al., 2021b,a) to serve as proxy data. Previous
work at the intersection of pruning and multitasking have only studied how to prune multi-task
models (Garg et al., 2023; Yang et al., 2023). Unlike these, our starting point is not a multitask
model but a generalist pre-trained model like BERT (Devlin et al., 2018). Our work is interested
in using multitasking in as much as it improves generalization of the pruned model with respect
to the data-starved end-task only.

6.4 Methodology
The goal of this paper is to improve the generalization of pruned models when the end-task is
data-limited without sacrificing memory and run-time gains. We assume that we are given a
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structured pruning algorithm that jointly learns structural/masking variables (which we denote as
{zktarget}) and their corresponding parameters {θktarget} for the target end-task. k indexes the set
of K structural variables being explored. We are primarily concerned with how to incorporate a
transfer task by learning

[
{zktransfer}, {θktransfer}

]
such that we enjoy improved generalization with

the target task’s final model. Since our focus is on the limited-data problem, we care less about
a specific structured pruning algorithm and more about how to adapt any appropriate algorithm
in the data starved setting. We therefore focus on building on top of a state-of-the-art structured
pruning algorithm, CoFi Xia et al. (2022) which we take as a representative algorithm. Whilst we
describe CoFi below to provide sufficient background, for the rest of the paper, we will abstract
away the details of the pruning algorithm and focus on the specifics of adapting transfer learning
to this setting.

6.4.1 CoFi

CoFi (Coarse- and Fine-grained Pruning) is a mixed resolution structured pruning algorithm.
Previous algorithms to prune transformer models Vaswani et al. (2017) have focused on removing
high level units like whole layers (Fan et al., 2019) or finer grained modules like attention heads
Voita et al. (2019) and dimensions of fully connected layers (Wang et al., 2019b) but not both
types. CoFi introduces variables that account for pruning at multiple levels of granularity.
Coarse Grain: Each transformer layer consists of a multi-headed attention component that feeds
into a fully connected two-layer non-linear perceptron Vaswani et al. (2017). CoFi introduces
variables sets {ziMHA}i∈[N ] and {ziFFN}i∈[N ] for each of the model N layers. ziMHA denotes the
probability that the whole attention component of the ith layer is removed whilst ziFFN is similarly
defined for the fully connected component of the specified layer. CoFi also removes whole
columns of the residual stream: zℓ ∈ Rd → ẑℓ ∈ Rd̂ ∀ℓ ∈ [N ]. For a BERT model, d = 768
is typically reduced to d ≈ 750. Xia et al. (2022) find that though relatively few columns
are dropped, including columns as structural variables is important for producnig performant
compressed models.
Fine Grain: Given a particular layer i, CoFi prunes subsets of the attention heads available.
The variables {zij,head}[j∈nh] represent the jth attention head in the i layer which has nh total
attention heads. A similar set of variables is defined for the fully connected units within a layer :
{zij,fc}[j∈nf ] where the ith fully connected layer has nf units.

For the jth attention head of the ith layer, the likelihood that this head is left unpruned
is proportional to ziMHA · zij,head. This allows the algorithm to make coupled fine and coarse
grained decisions that lead to improved results. We collectively represent {z} as the set of all
structural variables that are learned by CoFi. For a model with parameters θ, {z} are learned by
applying the reparameterisation trick on the hard concrete distribution (Louizos et al., 2018) and
minimizing a joint loss wrt {z, θ} that includes

1. distance from target size. CoFi follows Wang et al. (2019b) and adds a lagrangian term
that penalizes deviations from the target sparsity.

2. target task loss. Practitioners ultimately want a pruned model that generalizes well on their
end-task. CoFi jointly optimizes the target task loss along with the pruning objective in
order to produce performant pruned models.
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3. a distillation objective on the original large model. Following Sanh et al. (2020), CoFi
jointly performs distillation and structured pruning by introducing a layer-wise distillation
objective.

With these high level details in mind, we proceed to present our simple, transfer learning based
modification to CoFi that leads to improved results in data-limited settings.

6.4.2 Transfer Learning for Structured Pruning under limited data
Given a target task T with limited training data, we want to improve the final model generated
by CoFi through leveraging additional training data from an auxiliary task A1. Let {zT, θ} be
the initial set of all structural variables and model parameters for the target task and {ẑT, θ̂}γ be
final output of CoFi at a chosen sparsity level γ. ẑ are binary variables ẑi ∈ {0, 1} which indicate
whether component i is dropped/masked out (0) or is retained (1). We would like a procedure
that leverages the auxiliary task (with its own set of variables {zA} such that the generalization
performance of the pruned model when using using data from A and T jointly improves upon
using only data from T.

There are several design questions that arise in this setting when thinking about how to ef-
fectively utilize A. In the following sections, we discuss some of these pertinent questions and
propose some reasonable choices which we will later experimentally validate.

What criteria do we use to select the auxiliary task A ?

The choice of auxiliary task, A, is an important design decision that must be considered carefully.
A poor choice could result in poor generalization performance (with respect to T ) of the pruned
model instead of being helpful. To this end, inspired by existing literature, we propose two
criteria for evaluating what auxiliary task to leverage:

(1) resourcedness: Previous work on transfer learning for learning model parameters has demon-
strated the benefits of leveraging large pools of data (which may possibly be unrelated to the
eventual end-task) for pre-traing (Anil et al., 2023) or multi-tasking (Dery et al., 2021a). We
therefore have a strong prior that using data-rich auxiliary tasks might be helpful for also learn-
ing structural parameters even if they are unrelated to the end-task.

(2) task-similarity Both theoretical (Baxter, 2000; Maurer et al., 2016; Dery et al., 2022) and
empirical works (Gururangan et al., 2020a; Dery et al., 2022) have shown that transfer learning
works best when the auxiliary task is similar or related to the end-task. As a proxy for similarity,
we consider auxiliary tasks that are from the same domain as the end-task.

When should we introduce A?

Structured pruning approaches like CoFi usually perform a two stage process. In the first stage,
they generate a pruned model at the desired sparsity level; this involves learning both {ẑ, θ̂}γT. In

1we use A to denote the auxiliary task instead of the usual Taux to avoid cluttered notation
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the second stage, pruned model is then fine-tuned on the end-task by updating only θ̂γT keeping
ẑγT fixed. The auxiliary task can be introduced in either or both of these stages. We explore
following choices:

Prune(A) → FT(T ): We do structural pruning to learn both the weights and structure for a
small model using only the transfer task, A: {ẑ, θ̂}γA. We then fine-tune (FT) the pruned model
on the target task (T) only to obtain θ̂γT. Here, the target task is used only in the final fine-tuning
stage and is not involved in learning the pruned model structure.

Prune(T ) → FT(A, T ): We learn both the weights and structure for a small model using the
target task: {ẑ, θ̂}γT. We share the pruned model parameters θ̂γ and fine-tune on both (T) and (A).
Here, the auxiliary task is used only in the final fine-tuning stage and is not involved in learning
the pruned model structure.

Prune(A, T )→ FT(T ): We learn both the weights and structure for a small model using both
the transfer and end-task: {ẑT, ẑA, θ̂}γ are learned jointly (we will explore how in Section 6.4.2).
We then fine-tune (FT) the pruned model weights on the target task (T) only.

Prune(A, T ) → FT(T,A): We learn both the weights and structure for a small model using
both the transfer and end-task: {ẑT, ẑA, θ̂}γ are learned jointly (we will explore how in Section
6.4.2). We then fine-tune (FT) the pruned model weights on both the target and auxiliary tasks.

How do we incorporate A when optimizing for {ẑT, θ̂}γ

When using the auxiliary task directly during pruning, there is the question of what the best
way to jointly optimize {ẑT, ẑA, θ̂}γ such that we achieve improved generalization for the final
pruned model with respect to T. Note that we are assuming that the model parameter weights
θ are shared between the two tasks but the structural variables are separate. This is because
there are many more model parameters than structural variables ∥θ∥0 ≫ ∥zT∥0 + ∥zA∥0. And
so introducing separate model weights for the auxiliary task presents a much more significant
modelling overhead than introducing new structural variables.

We can explore different strategies for sharing variables across the two tasks such that the T
benefits from A.

Single mask multi-task learns a single set of structural {z} and model {θ} parameters that are
shared between both tasks. This choice tightly couples the two tasks. Whilst this allows maximal
sharing of information between the target and transfer task, poor choices of transfer tasks could
cause this to perform worse than no transfer at all.

Multi-mask multi-task learns distinct structural parameters {z}T and {z}A for each task but a
single set of model parameters {θ} is shared between both tasks. There is no transfer of structural
information and only the shared model parameters provide a coupling of the two tasks.
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Our δ-Formulation aims to leverage strength from both alternatives. We propose this method
where both tasks share a base set of structural variables {z}base but also have task specific ad-
dends such that: {z}T = {zbase + δT} and {z}A = {zbase + δA}. We regularize δ∗ to encourage
sharing between tasks via zbase whilst maintaining flexibility for task-specific modelling.

6.5 Experimental Setup

Our experimental framework is introduced to investigate the questions posed in the previous
section.

Datasets We consider 3 pairs of tasks. One pair of classification tasks are from the computer
science domain tasks – SCIIE (Luan et al., 2018) and ACL-ARC (Jurgens et al., 2018) with 3.2k
and 3.7k training samples respectively. The second pair of tasks are biomedical domain tasks
- RCT (Dernoncourt and Lee, 2017) (we artificially create a low-resource version of this task
with 10k training samples) and CHEMPROT (Kringelum et al., 2016) which has 4.2k training
samples. We use GLUE (Wang et al., 2018b) tasks for our last pair: STSB and MRPC are
sentence similarity and paraphrase detection tasks with 7k and 3.7k train examples respectively.
For the GLUE tasks, we follow previous work (Jiao et al., 2019; Wang et al., 2019b; Xia et al.,
2022) and report results on the validation set. For Non-GLUE tasks, we report test set results.
Please see Appendix D.1 for more details about the tasks we investigate.

Model Details Since we use CoFi (Xia et al., 2022) as our representative structured pruning al-
gorithm, we use the same model configuration. We use the BERTbase (Devlin et al., 2018) which
has∼ 110M parameters. We explore pruned model sparsities in the set {40%, 70%, 90%, 95%, 98%}.
γ% sparsity means that the model has been reduced to (100− γ)%× 110M parameters. Similar
to Sanh et al. (2020) we also freeze the model embedding weights. See Appendix D.2 for details
about training as well as hyper-parameter values.

Training details We mostly follow the training recipe from CoFi with a few minor changes.
CoFi assumes that one starts pruning after finetuning the full parent model on the target task and
so introduces a distillation loss as part of the pruning objective. In our case, we start directly
from the pre-trained model without first fine-tuning on the target task. This is because of the risk
of over-fitting due to the smaller target task size. Due to this, we find that the distillation based
losses from the original CoFi paper are unnecessary and we did not see significant performance
differences with or without them. When multitasking, we explore a small set of weighting hyper-
parameters {(1.0, 1.0) , (1.0, 2.0) , (2.0, 1.0)} for any losses relating to the target and auxiliary
tasks respectively. Table D.2 has details of the hyper-parameters we cross validate against for all
our experiments.
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Figure 6.2: STSB and MRPC performance at 95% sparsity. Our proposed δ-Formulation out-
performs all other methods on both tasks.
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Figure 6.3: SCIIE and ACL ARC performance at 95% sparsity. Our δ-Formulation produces the
best average performance across the two tasks when either is used as the auxiliary task for the
other.

6.6 Empirical Recommendations for practitioners
In Section 6.4.2, we posed different design questions around how to perform transfer learning for
structured pruning under limited data and presented different options for resolving said questions.
In this section, we proceed to perform a sequence of experiments to validate which choices lead
to superior end-task generalization after pruning, so we can make principled recommendations
to practitioners.

6.6.1 How should you transfer?
In Section 6.4.2, we introduced various approaches for coupling the auxiliary task with the tar-
get task during structured pruning. Figures 6.2, 6.3 and 6.4 , show experimental results after
implementing various options with different pairs of datasets. Across all dataset pairs, our δ-
Formulation produces the best performance when averaged across the task pair.

For the SCIIE task, tightly coupling its structural variable with those of ACL ARC (as an
auxiliary task) under the single-mask multi-task approach can negatively impact performance
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Figure 6.4: RCT and Chemprot performance at 95% sparsity. We see negative transfer from
Chemprot to RCT across all transfer methods. Our proposed approach suffers least from perfor-
mance degradation.

compared to not doing transfer learning at all (Figure 6.3). Our δ-Formulation ensures that
SCIIE actually benefits introducing transfer learning by outperforming the multi-mask multi-task
approach that fully decouples the structural variables. For the ACL ARC task, our formulation
recovers close to the best performance (single mask multi-task). Note that in principle, our
formulation can mimic the single-mask multitask setting by using a high enough regularization
on the δ offsets but we used a default l2-regularization strength of 1e−2 for all experiments to
exhibit robustness of our method. It is interesting to note that for the ACL ARC task, all transfer
learning approaches at 95% sparsity outperform training the full model on task data only. Note
from Table D.1 that ACL ARC is our smallest dataset. We posit that training the full, large
model on this task leads to overfitting, resulting in poor generalization compared to leveraging
transfer-learning at a reduced model size.

Figure 6.4 presents an interesting scenario where Chemprot benefits from transfer but RCT
does not. Whilst this could be due to the fact that we perform limited hyper-parameter tuning
(mainly to exhibit the robustness of our method and to reflect compute constrained settings), it
is encouraging to see that the δ-Formulation for coupling structural masks significantly helped
dampen the impact of negative transfer in the case of RCT as the target task.

6.6.2 What should you transfer?
So far, we have discussed using the auxiliary task when learning both the structural variables and
parameters of the pruned model. In this section, we investigate if transferring both is needed. We
perform the following ablation at 95% sparsity to determine what is most important to transfer.
For this, we assume that the the target task is not used during pruning but is only introduced
during the final fine-tuning of the smaller, pruned model.
Weights Only: We learn model weights and structural mask for the auxiliary task only. We then
generate a random structural mask at the appropriate sparsity level (95%) and extract the model
weights corresponding to this mask from the model trained on the transfer task. We then fine-
tune this smaller, pruned model on the target task.
Masks Only: We learn model weights and structural mask for the auxiliary/transfer task only.
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Table 6.1: Transferring structure, weights or both on STSB and MRPC? It is most beneficial to
transfer both the learned weights and structural variables (masks)

Metric No Transfer Weights Only Structure Only Both

STSB→MRPC Accuracy % 79.2 68.4 (↓) 76.96 (↓) 79.7 (↑)

MRPC→ STSB Pearson C. 0.868 0.23 (↓) 0.8527 (↓) 0.871 (↑)

Table 6.2: When to introduce each task on MRPC and STSB? We find that it is optimal to prune
with both the auxiliary and target task jointly.

Metric No Transfer Prune(A) Prune(T ) Prune(T,A) Prune(T,A)
→FT(T ) →FT(A, T ) →FT(T ) →FT(A, T )

STSB→MRPC Accuracy % 79.2 79.7 (↑) 83.09 (↑) 83.82 (↑) 84.56 (↑)

MRPC→ STSB Pearson C. 0.868 0.871 (↑) 0.861 (↓) 0.8751 (↑) 0.872 (↑)

We then reset the model weights to the pre-trained (not-yet-finetuned) state. Given the learned
mask from the transfer task, and the untuned model weights, we then fine-tune this pruned model
on the target task.
Masks and Weights: We use the transfer task to learn both the model weights and structural
mask. We take weights and masks of this small model and fine-tune it on the target task.

Table 6.1 shows the results of this ablation. For both STSB→MRPC and MRPC→ STSB,
we see that if we are only introducing the target task in the fine-tuning stage, it is beneficial to
transfer both the weights and structure that are learned from the auxiliary task.

6.6.3 When should you transfer?
Table 6.2 shows results for the different choices presented in Section 6.4.2 relating to when to
introduce the transfer task. These experiments are also conducted at a target sparsity of 95%.

We obtain the best performance with the Prune(A, T )→ FT(T ) and Prune(A, T )→ FT(A, T )
approaches. This matches intuition because we expect an appropriately chosen auxiliary task to
be helpful in terms of learning both structure and parameters of the final pruned model. Thus,
introducing it in the first (pruning) stage mitigates the challenge that is exacerbated by learning
a larger set of variables from limited data.

6.6.4 How should we choose the transfer task?
Table 6.3 contains experimental results highlighting our investigation of different variables that
can impact the quality of a transfer task.

We get the best improvements when we use a high resource auxiliary task from the same
domain as the target task. As mentioned in Section 6.4.2, we use domain as a proxy for task
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Figure 6.5: Accuracy vs speed tradeoff on SCIIE. Our δ-formulation, gives accuracy boosts on
SCIIE at varying levels of compression.

relatedness. We see that even using a high resource task that is out-of-domain with respect to
the end-task (RCT) can improve generalization over not introducing a transfer task at all (85.29
versus 79.2 for MRPC) and (0.873 versus 0.863 for STSB).

Table 6.3: Selecting the auxiliary task. A high-resource, in-domain task leads to the best result.
For all experiments, best results from hyper-parameter search are reported. All models (except
Full BERT) are pruned to 95% sparsity.

Target Full BERT No Transfer Domain Resourced-ness Transfer Task Performance

In-Domain High (364k) QQP 85.78

MRPC 83.48 79.2 In-Domain Low (7k) STSB 83.82
Out-of-Domain High (180k) RCT 85.29

In-Domain High (364k) QQP 0.877

STSB 0.901 0.868 In-Domain Low (3.7k) MRPC 0.875
Out-of-Domain High (180k) RCT 0.873

6.6.5 Does the learned structured sparsity translate to hardware speedups?
So far, we have only discussed the impact of transfer learning on generalization with respect to
the end-task. However, when generating pruned models, we not only care about their generaliza-
tion but also the degree of speedup that is achieved at the target sparsity.

Taking SCIIE as our primary task and ACL-ARC as the transfer task, we explore the accuracy-
speedup tradeoff that is induced by leveraging transfer learning for structured pruning. We vary
the degree of compression from 40% sparsity to 98%. To benchmark speed, we use the wall-clock
time required to perform inference on the full SCIIE dataset through the model using at a batch-
size of 128. All experiments were conducted on NVIDIA V100 GPUs. Figure 6.5 summarises
our findings. For SCIIE+ACL, we fix the task weighting to the best performing configuration
from our 95% sparsity experiments, the rest of the hyper-parameters are cross-validated from
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values in Table D.2. At 50× compression (95%) sparsity, we are able to obtain a ∼ 5% boost in
accuracy over not using a transfer task, whilst achieving a ∼ 10× speedup in inference. Transfer
leraning enables a more graceful degradation in accuracy (dashed blue line) whilst still finding
pruned models with comparable speed-ups.

Another view of Figure 6.5 is to consider the model size required for a threshold level of
accuracy for deployment. At a threshold of 84% accuracy, whilst naive pruning results would
produce a model at 80% sparsity, we are able to produce one at 95% sparsity! This is a ∼ 1.2×
memory saving and ∼ 2.8× inference speedup.

6.6.6 What are the structural differences between a pruned model using
transfer learning and without?

Figure 6.6: Structural visualization at 98% sparsity. Qualitatively, using a transfer task changes
the pruned model structure significantly. The ACL transfer task in this case induces the learned
SCIIE structure to be more diffuse across the layers of the model.

At extreme sparsity levels, the differences in speedup from learning a pruned model with and
without transfer learning (Figure 6.5) suggest that the models discovered have different struc-
tures.

Figures 6.6 and 6.7 show the fraction of attention heads and MLP intermediate dimensions
respectively, that are preserved across each layer with respect to the original BERTbase model.
Pruning with the target task alone results most of the preserved parameters coming from earlier
in the network. With an auxiliary task however, the pattern of preserved modules is more diffuse
across layers. We posit that this results from the the two tasks being multi-tasked preferring dif-
ferent layers thus resulting in a more diffuse distribution of preserved modules as a compromise
in order to perform reasonably well on both tasks.

6.7 Conclusion

As coined in Ahia et al. (2021), the low-resource double bind describes the challenge of pro-
ducing compressed models to serve compute-starved (memory and latency limits) tasks under a
setting where these tasks also have limited data for pruning. In this work, we have explored adapt-
ing transfer learning, which has traditionally been leveraged only for learning model weights, to
robustly prune models when the target task is data-limited.
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Figure 6.7: Structural visualization at 98% sparsity. Qualitatively, using a transfer task changes
the pruned model structure significantly. The ACL transfer task in this case induces the learned
SCIIE structure to be more diffuse across the layers of the model.

We have provided practitioners with recommendations on how to choose a transfer task,
when and how to incorporate it into the pruning optimization procedure and what elements to
transfer from the auxiliary task to the target. Equipped with this knowledge, we plan to explore
the problem of structured pruning under limited target data for larger scale models.
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Chapter 7

Structured Pruning of Large Pre-trained
Models Under Limited Inference Compute
and Memory

7.1 Chapter Overview
In the previous chapter, we considered the problem of task specific pruning of large pre-trained
models when the target task is data-limited. Data constraints are not the only type of bottlenecks
that everyday ML practitioners face. Given the burgeoning size of the current generation of
large pre-trained models, many practitioners barely have the compute/memory to run inference
on these models. Whilst structured pruning might seem like an obvious remedy, when the size
of the current generation of pre-trained model is paired against the available hardware resources
(of the everyday practioner), standard approaches to structured pruning become infeasible. This
is because these methods perform backward passes through the large model to learn structural
variables — a step not possible below certain GPU memory thresholds.

In this Chapter, we will propose an approach for memory-efficient pruning of large pre-
trained models. Our approach will be usable in settings where we have enough memory to run
inference / forward passes on the large model but not enough memory to perform backward
passes on it. The inability to perform backward passes in this setting rules out most existing
structured pruning algorithms.

7.2 Introduction
As large language models (LLMs) (OpenAI et al., 2023; Touvron et al., 2023; Team et al., 2023)
continue to grow in size, the gap between models that achieve state-of-the-art performance and
those that every-day machine learning (ML) practitioners can feasibly run on their available
hardware continues to widen (Bender et al., 2021; Vivek, 2023; Samsi et al., 2023). With the goal
of democratizing access to these powerful models, previous research has proposed approaches
such as pruning (Xia et al., 2022; Sun et al., 2023a), distillation (Hinton et al., 2015; Gu et al.,
2023) and quantization (Xiao et al., 2023) to create smaller models from larger pre-trained ones.
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Unfortunately, so far, these methods have fallen short of the goal of truly democratizing ac-
cess to LLMs. In the process of producing a smaller model out of an LLM, methods such as
distillation and structured pruning are inaccessible to the everyday practitioner due to their pro-
hibitive resource consumption at training time. Specifically, pure distillation-based techniques
require running LLMs to generate large amounts of teacher data (Jiao et al., 2019; Hsieh et al.,
2023) whilst existing gradient based structured pruning approaches like LLM-Pruner (Ma et al.,
2023) and LoRAPrune (Zhang et al., 2023) require several times more memory than is needed
to run inference on the model being pruned. Though unstructured pruning (Frantar and Alistarh,
2023; Sun et al., 2023a) and quantization are less restrictive at training time, the models they
produce are not faster except in the presence of specialized hardware for the former (Mishra
et al., 2021), whilst the latter can actually slow down inference due to added overhead (Dettmers
et al., 2022). This limits the usefulness of these options for practitioners who are concerned with
latency-critical applications. Table 7.1 summarizes the landscape of existing methods and their
limitations.

Table 7.1: Landscape of resource consumption (memory and compute) of different model
compression methods at training time and the inference time resource consumption of the
models they deliver. ✗ → a prohibitive cost to the lay practitioner whilst ✓ → a viable option
with respect to that resource.

Regime Resource Approaches
Quantization
(Mixed Preci-
sion)

Distillation Unstructured
Pruning

Gradient-Based
Structured Prun-
ing

Bonsai (Ours)

Train Memory ✓ ✓ ✓ ✗ ✓

Compute ✓ ✗ ✓ ✓ ✓

Inference Memory ✓ ✓ ✓ ✓ ✓

Compute ✗ ✓ ✗ ✓ ✓

We aim to empower ML practitioners to compress LLMs by themselves using their available
resources whilst still producing accurate yet fast and compact models. To this end, we propose
a novel memory-friendly structured pruning method. We observe that the significant memory
overhead of prior structured pruning methods chiefly comes from having to perform gradient-
based optimization: a backward pass requires ⪆ 2× (Bridger, 2023) the memory consumption
of a forward pass, while popular stateful optimizers like AdamW (Loshchilov and Hutter, 2017a)
need ⪆ 3×. To capture the widest range of memory budgets available to practitioners, we focus
on developing an approach for the following concrete setting:
The practitioner only has enough memory on their hardware to run inference on the model to be

pruned.1

The above setting is evergreen. As state-of-the-art models become more compute intensive over
time, the generational gap in hardware available to the lay practitioner versus the most resource
endowed institutions is expected to persist or possibly widen.

1We assume we can run a forward pass with a batch size of at least 1.

72



In light of the proposed setting, we present Bonsai, a structured pruning approach that only
requires forward passes through the parent model and is capable of delivering fast, compact, and
accurate pruned models under the memory limitations that are typical of consumer hardware2. To
decide which modules (attention head, rows in feedforward projection, etc.) of the LLM to prune
in the absence of gradient information, Bonsai estimates module importances perturbatively by
generating sub-models and evaluating their performance by just running inference. We make this
approach tractable by contributing multiple techniques.
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Figure 7.1: Perplexity versus inference speed-
up of pruned models for methods that use only
forward passes on the parent model. At any
given target perplexity, Bonsai produces the
fastest model, resulting in improved latency
and throughput. Circle sizes ∝ model’s mem-
ory footprint.

First, we treat the problem of inferring
each module’s importance from the perfor-
mance of generated sub-models as an under-
determined regression problem. This enables
us to estimate the importance of a large num-
ber of modules by exploring a manageable
number of random sub-models. This is un-
like past perturbative approaches, which pro-
hibitively require roughly as many sub-models
as there are modules to select from Ancona
et al. (2020), making them intractable for
LLMs. Next, instead of instantiating sub-
models by dropping modules with equal like-
lihood (Kang et al., 2023), we use informa-
tive priors derived from work on unstructured
pruning (Han et al., 2015b; Sun et al., 2023a).
We thus obtain better estimates of module
relevance with fewer evaluated sub-models.
Finally, unlike past gradient-free approaches
that greedily make pruning decisions layer-
by-layer (Dekhovich et al., 2021; Nova et al.,
2023; Sun et al., 2023a), Bonsai takes a holis-
tic view to preserve the accuracy of the pruned model: modules across layers are removed and
evaluated together and relevance scores are computed globally to make pruning decisions.

We conduct several experiments that demonstrate Bonsai’s efficacy. We start by pitching
Bonsai against a forward-only structured pruning version of Wanda (Sun et al., 2023a) – we
show that our approach significantly outperforms this baseline. Next, we demonstrate that when
the resulting pruned model small enough to be fine-tuned on available hardware, Bonsai achieves
comparable performance to 2:4 semi-structured sparsity with Wanda (Sun et al., 2023a) – also
finetuned – but is 2× faster (an overall inference speed-up of 1.58× compared to the parent
model). Even when compared to SoTA gradient-based structured pruning methods like LLM-
Pruner and LoRAPrune, Bonsai outperforms these methods on 4 out of 6 evaluation settings in
our experiments. We also use Bonsai to prune the ∼3B Phi-2 (Li et al., 2023) model to a ∼1.8B

2We only ever run inference (i.e., forward passes) on the large parent model. If, however, the generated child
model is small enough that that it can be fine-tuned with backward passes after pruning, we do so.
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model that performs competitively against other sub-2B parameter model of the same class on
the Huggingface Open LLM leaderboard. Based on these strong results and its usability under
real-world memory constraints, we view Bonsai as a significant contribution to unlocking the
power of LLMs for a broader spectrum of practitioners facing diverse hardware constraints.

7.3 Methodology

We will develop a structured pruning method that exclusively does inference on the parent model.

7.3.1 Background on Pruning, Problem Definition and Notation Setup

We are given an LLM, Mθ, parameterized by θ ∈ RD. Also provided is U , a utility function that
evaluates a model’s performance on a target task. We are interested in pruning Mθ to produce
a smaller and faster but still performant (with respect to U ) model under the constraint that we
only have enough memory to run inference on Mθ. Even though we assume we can run Mθ

on available hardware, pruning can be critical for achieving latency targets, reducing compute
burden, or making the model small enough to adapt to new (out-of-domain) tasks by gradient-
based fine-tuning.

Unstructured pruning approaches compress Mθ by removing individual parameters θj from
the model. This results in the updated model consisting of sparsified weight matrices with a
smaller memory footprint. Unfortunately, the updated model does not enjoy inference speedups
except when specialized hardware is available and thus poses a compute burden during infer-
ence. Whilst semi-structured variants – those that remove parameters in patterns like 2:4 or 4:8
(Mishra et al., 2021) – achieve some speedup, these are modest compared to those achieved with
structured pruning.

Structured pruning takes a more modular view of the units to be removed from Mθ. Take
that Mθ is made up of modules m = {mi}i∈[N ] each with corresponding parameter counts
s = {si}i∈[N ] such that

∑
i si = D. For a transformer model, m could consist of attention heads,

dimensions of fully connected layers, or even whole layers. For simplicity, we assume that m
is made up of non-overlapping modules. Structured pruning compresses Mθ by finding accurate
sub-models defined by subsets of m: provided with m̄ ⊆m, we can construct an updated model
M|m̄ that is produced by dropping the modules not in m̄ from M. Thus, given a sparsity target
p, structured pruning can be cast as the following combinatorial optimization problem:

m∗ = argmaxm̄∈Fp
U
(
M|m̄

)
where Fp =

{
m̄ ⊆m

∣∣ ( ∑
[j:mj∈m̄]

sj
)
≤ (1− p)D

}
(7.1)

Fp consists of all sub-models that meet the sparsity threshold. Note that, in general, not only
does M|m∗ have a smaller memory footprint than M, it is also faster to run inference on it
since it has fewer modules. Many structured pruning methods attempt to solve Equation 7.1 by
gradient-guided optimization (or search) over the space of sub-models. However, since we are
interested in the memory-constrained setting where computing gradients is not feasible, these
methods cannot be used.
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Figure 7.2: Overview of Bonsai. Perturbations to the original model are generated according to
an intelligent prior. These perturbed models are evaluated on downstream task and the collected
data is used to build a simple linear model of module importances. Bonsai iteratively drops
modules of least importance until the target model size is reached.

7.3.2 Estimating module relevance with only forward passes

We have motivated the setting of pruning a model that is so large (relative to the amount of
memory available to the practitioner), such that we can only run forward passes through it. This
means that we have to solve Equation 7.1 by relying on only evaluations of U , as opposed to
gradient-based optimization with respect to U . A brute force approach would enumerate all
members of Fp, find their corresponding performances and pick the best one. Unfortunately, this
would be computationally infeasible since |Fp| is combinatorial in the size of the model.3.

We propose a computationally tractable approach where we first perform a small number, n,
of evaluations, where n ≪ |Fp|, to gather data for estimating the relevance of each module in
M with respect to the metric U . Upon carrying out this estimation, we can greedily choose the
member of Fp that has the highest total module relevance. Specifically, let us assume that we
have estimated β = {βi}i∈[N ] to be the relevance of each of the N modules. We can generate an
approximate solution to Equation 7.1 as:

m∗ ≈mapprox = argmaxm̄∈Fp

∑
j∈m̄

βj (7.2)

Equation 7.2 is straightforward to solve as it simply requires sorting βjs and greedily selecting
the top modules until the parameter constraint is met (this approach may slightly overshoot the
sparsity constraint but since si ≪ (1 − p)D ∀ i for our settings of interest, the difference is not
significant).

Estimating β: To obtain estimates of the module relevance scores β ∈ RN , we propose to
generate and evaluate n ≪ |Fp| sub-models, and construct a dataset of the sampled sub-models
and their corresponding evaluated performances: D = {m̄k, Uk}k∈[n] where Uk = U(M|m̄k

).

3The typical fully connected (FC) sub-layer in an LLM has size > 104 units. Pruning just 1 of these FCs to 0.5
sparsity in this way requires evaluating over ≈

(
104

103

)
subsets
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Given D, we treat the problem of estimating β as an under-specified regression problem :

β̂ = argminβ∈RN

1

n

∑
(m̄k,Uk)∈D

(
Uk − βTαm̄k

)2
+ γ∥β∥ (7.3)

where (αm̄k
)i = 1[i ∈ m̄k], is the binary vector that has 0 at indices with modules dropped.

Implementing a sub-model m̄k as a binary mask αmk
is key to practically realizing our approach.

We never actually instantiate sub-models as this would be prohibitively expensive. Instead, we
create them virtually by zeroing out the outputs of the parts to be pruned so they have no effect
on the model output.

7.3.3 Selecting sub-models for evaluation

An as yet unexplored design choice is how to choose the n candidate sub-models for evalua-
tion. A naive approach would be to sample uniformly from the space of all feasible sub-models.
However, we can show that this is sub-optimal. Take mi as a module that is critical for good
performance under evaluation with U . Since n < N , it means that some modules may never
be ”turned on” in the list of n chosen sub-models. If mi happens to be one of these masked-out
modules, the resulting estimate of β̂i = 0 would in turn result in mapprox being a poor estimate
for m∗. We therefore need to make a more informed choice to ensure that our estimates of β are
accurate and useful.

Given a module mi, we can set the likelihood of it being present in any of the n sampled
sub-models to be proportional to some measure ρi which captures our prior belief that mi is a
useful module. To define ρi, we can turn to metrics from the pruning literature. Specifically,
we set ρi to be a module-level analogue of any of the pruning metrics like Wanda (Sun et al.,
2023a) or activation magnitude. As an illustration, consider a 1 hidden layer (of dimension d)
network we wish to prune. If activation magnitude is the metric for our prior, we would calculate
the activation vector for the d hidden dimensions – â – averaged across multiple samples. The
likelihood that the ith column of the matrix W ∈ Rd×d is left unpruned would be: ρi ∝ âi =
1
B

∑
b

∣∣σ((W T [i, :]
)
xb

)∣∣ where σ is the nonlinearity. Sampling sub-models according to ρ means
we are more likely to explore models that already have a good performance U . The priors ρi can
be computed via forward passes through the unmodified model Mθ which allows us to respect
memory constraints. Appendix E.6 has the list of priors we explore.

To enhance the efficiency of our method, instead of considering all active modules for prun-
ing, in each layer we consider the bottom 2p fraction of modules4 ranked according to our prior
ρ. Thus, the top 1 − 2p fraction of modules remain fixed whilst the rest are perturbed and their
relevance scores are computed and compared for pruning. This helps reduce the space of pos-
sible sub-models being considered for evaluation. For the bottom 2p fraction being compared,
whenever we generate a mask αmk

with sparsity level p, we also generate its complement αc
mk

,
which is obtained by flipping the values in αmk

(except for the fixed 1 − 2p fraction of entries).
(Covert and Lee, 2020) show that this technique can help reduce the variance of the estimator
obtained from regression with binary inputs.

42p is arbitrary. Practitioners can run hyper-parameter searches to find more optimal values for their settings.
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7.3.4 Iterated Pruning

Previous work on gradient-based pruning (Anwar et al., 2017; Frankle and Carbin, 2018) have
shown that taking an iterated approach to pruning yields improved results over pruning directly
to the target sparsity p. Similarly, we define an updated pruning fraction piter < p and perform
iter = ⌈ p

piter
⌉ steps where we explore niter = ⌈ n

iter
⌉ sub-models at a time. At the beginning of

each iteration, we re-estimate the priors ρ for the unpruned modules and use them to select the
niter sub-models to evaluate.

We combine the recipes developed in Sections 7.3.2, 7.3.3 and 7.3.4 together to produce Bon-
sai5, our gradient-free structural pruning algorithm (Figure 7.2). Algorithm 5 specifies Bonsai in
detail.

7.4 Experimental Details and Main Results

Table 7.2: Reported memory consumption of different methods. The minimum amount of mem-
ory required to run a Llama-7B model at half precision (FP16) is 14Gb. Running a forward pass
with a batch size of 1 using the default model sequence length of 4096 uses around 20Gb of
memory.

Forward Only Gradient-Based

Llama-2-7B (Model Only) Forward with bsz=1 (Bonsai Min.) Bonsai (Faster) LoRA Prune (Zhang et al., 2023) Compresso (Guo et al., 2023) LLM-Pruner (Ma et al., 2023) ShearedLlaMA (Xia et al., 2023)

14GB 20GB A6000 (48GB) 1 A100 (80GB) 4 V100 (128GB) 2 A100 (160GB) 8 A100 (640GB)

In all Bonsai experiments, we prune (1) the heads in the self-attention layers, and (2) the
dimensions of the fully connected layers. In general, we will consider pruning LLMs of size
∼ 7B parameters. Since the primary goal of this paper is to provide a method for memory
constrained practitioners, in Table 7.2, we give a brief tour of the amount of memory required to
prune a Llama-2-7B model by different approaches. As can be seen, for models of our size range
of interest, we can run Bonsai on any device with ≈ 20Gb of memory if we restrict our batch
size to 1.

To obtain lower variance estimates of the score of any sampled structure, we average over
a batch of 32 data-points. A constrained practitioner with only 20Gb of memory would do this
by running 32 forward passes with batch-size of 1. For us, this would dramatically slow down
our experimentation and so we elect (though it is not required by Bonsai) to run all experiments
on 1 A6000 GPU which has 48Gb of memory – allowing us fit batches of size 4-6 to speed up
experiments.

5Structural pruning is a canonical way of giving a bonsai tree its shape, hence the name.
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7.4.1 Bonsai is competitive with other forward pass-only, structured prun-
ing methods

We focus our first set of experiments on comparing structured pruning methods that can be
run without gradient-based optimization6. We prune the LLaMA-2 7B model (Touvron et al.,
2023) to 50% sparsity and evaluate on the Wikitext-2 (Merity et al., 2016) validation dataset.
Our module importance signal for pruning, U , is the language modeling performance on the
training set. When measuring speedups, we consider end-to-end latency of running inference on
model.sequence length chunks of the Wikitext-2 validation set. See Table E.3 (Appendix
E.1.4) for details about the hyper-parameters used for this experiment.

Figure 7.1 shows the results of our experiments. Compared to a structured version of Wanda
(Sun et al., 2023a), at any fixed desired speedup over the parent model, Bonsai produces a child
model with the lowest perplexity.

7.4.2 Introducing Post-Pruning Adaptation (PPA)

After pruning the parent model, depending on the sparsity level p achieved, it is possible to obtain
a pruned model on which we can run full fine-tuning or a parameter-efficient fine-tuning method
like LoRA (Hu et al., 2021) with the available hardware memory. In this case, we can fine-tune
the pruned model on the downstream task in order to recover more performance relative to that
of the parent model.

Like many past works (Sanh et al., 2020; Xia et al., 2022), we can combine pruning with
distillation by incorporating a distillation loss in the training objective during fine-tuning of the
pruned model. Let Ltask be the loss function over the task data and Ldistill be the distillation
objective. We optimize the following post-pruning objective: Lpost−prune = Ltask + λLdistill.
Using i to index the task data, we have:
Ldistill =

∑
i DKL

(
logitsi

(
M|mapprox

)
∥ logitsi (M)

)
, where λ is a scalar weighting that can

cross validated. Note, distillation can be performed without significant memory overhead by
apriori caching the logits from the parent model M instead of hosting the model in memory
during fine-tuning. In the sections ahead, we will apply PPA after pruning the parent model if
the child model is small enough to allow for this.

Bonsai is competitive with semi-structured pruning methods

We compare Bonsai to the semi-structured variant of Wanda (Sun et al., 2023a). In general,
structured pruning methods under-perform semi-structured pruning methods, but compensate
for this in speedup.

Before fine-tuning, the Wanda 2:4 model is more accurate (10.52ppl vs 19.47ppl) but slower
(1.14× vs 1.58×) than the model from Bonsai. Since the Bonsai child model is small enough,
we can perform PPA on it, resulting in improved accuracy (8.89ppl) with unchanged speedup.

6Near submission, we learned of FLAP (An et al., 2024), a recent forward pass only method put out a little over
a month before the release of Bonsai. Please see Appendix E.1.2 for a set of early-stage experimental comparisons.
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Table 7.3: Wikitext-2 perplexity at 50% sparsity of LLaMA-2 7B with end-to-end latency
speedups.

Model ∼Size Fine-tune PPL Speedup

LlaMA-2 7B ✗ 5.11 1×

Phi-2 3B ✓ 8.69 1.24×

Wanda 2:4 3B ✗ 10.52 1.14×
+ PPA ✓ 8.34 0.75×

Bonsai 3B ✗ 19.47 1.58×
+ PPA ✓ 8.89 1.58×

Finetuning the semi-sparse Wanda 2:4 model is unfortunately less straightforward. It would
require similar memory resources as needed to finetune the parent model7 but we are in the
setting where we do not have enough memory for this. We therefore have to use a parameter
efficient fine-tuning method like LoRA (Hu et al., 2021) instead. While the performance gap can
be bridged by LoRA finetuning (10.52→ 8.34), the adapted semi-structured model experiences
a drastic slowdown (0.75×), since the learned low-rank matrices cannot be merged with the
original sparsified ones without reverting back to dense computation. Thus, LoRA fine-tuned
Wanda 2:4 is twice slower (∼ 0.48×) than the model from Bonsai and similarly accurate.

In a memory-constrained setting, practitioners could opt for a pre-existing model of the target
size instead of pruning a larger model. We compare the Bonsai-pruned model to Phi-2 (Li et al.,
2023), a strong representative pre-existing model of similar size. As can be seen in Table 7.3,
Bonsai is able to generate a model that is as accurate (0.2 difference in ppl) yet significantly
faster (1.58× vs. 1.24× speedup), thus making it a competitive option to consider even if a
model already exists at the target size.

Bonsai is competitive with gradient based structured pruning

We compare Bonsai to the following gradient-based structured pruning approaches: LLM-Pruner
(Ma et al., 2023) and LoRA-Prune Zhang et al. (2023). We use the reported results from (Zhang
et al., 2023) since none of these methods are actually runnable in our memory-constrained setting
(Table 7.2). We choose to compare to these over Sheared LlaMA (Xia et al., 2023) since they
have much lower memory requirements (Table 7.2). We prune the LLaMA-1 7B model (Touvron
et al., 2023) to 50% sparsity since these approaches report their results for the LLaMA-1 model
only. We compare these methods on Wikitext-2 and also on six tasks from the Eleuther LLM
Evaluation Harness benchmark (Gao et al., 2023). The pruning signal used for the Wikitext-2
task is the same as the above experiments. For the Eleuther Harness tasks, we use language

7though the child tensors are sparse, the resulting gradients and cached intermediate tensors can be dense and
have the same dimensions as those of the parent model (say M ×M ). Since Bonsai does structured pruning, the
actual tensor sizes are shrunk (say N ×N | N < M ) which reduces memory during backward passes.
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Table 7.4: LLaMA-1 (50% sparsity) after post-pruning adaptation. † are results as reported by
(Zhang et al., 2023).

Method Wikitext-2 ↓ BoolQ HellaSwag WinoGrande ARC-e ARC-c Average ↑

LLaMA1-7B (Touvron et al., 2023) 5.68 75.05 56.92 69.93 75.34 41.89 63.83

LLM-Pruner† (Ma et al., 2023) 16.41 60.28 47.06 53.43 45.96 29.18 47.18
LoRAPrune† (Zhang et al., 2023) 11.60 61.88 47.86 55.01 45.13 31.62 48.30

Bonsai + PPA 10.92 67.22 43.09 61.64 54.92 26.28 50.63

Table 7.5: Phi-2 pruned to 35% sparsity and fine-tune the pruned model on small amount of the
C4. We achieve strong performance compared to Phi-1.5 (trained from scratch). Since Sheared
LlaMA has values absent, its MC Average would be misleading and we refrain from adding it.

Generation Multiple Choice (MC)

Model Size GSM8k ARC-c Winogrande Hellaswag Truthful-QA MMLU MC Average ↑
(5-shot) (25-shot) (5-shot) (10-shot) (0-shot) (5-shot)

Phi-2 (Li et al., 2023) 2.7B 54.81 61.09 74.35 75.11 44.47 58.11 62.63
Phi-1.5 (Li et al., 2023) 1.5B 12.43 52.9 72.22 63.79 40.89 43.89 54.74

Sheared LlaMA (Xia et al., 2023) 1.3B Not Reported 33.5 57.9 60.7 Not Reported 25.7 *
Bonsai (w PPA) 1.8B 6.37 47.44 68.35 65.09 42.20 40.53 52.72

+ Reasoning Tuning 1.8B 27.67 45.56 68.82 64.51 42.58 40.97 52.49

modeling performance on the C4 (Raffel et al., 2020) dataset as pruning signal. We also perform
parameter-efficient finetuning on our pruned model using 30K 512-length sequences from this
corpus. Bonsai and LoRAPrune use similar amounts of the C4 dataset for Table 7.4 (30K vs 20K
samples, respectively) whilst LLM-Pruner is trained on instruction tuned data with nearly twice
the amount of unique samples (50K). Find more details in Appendix E.1.5.

As evinced by Table 7.4, Bonsai outperforms gradient-based methods even though it exclu-
sively uses forward passes in the pruning stage. We attribute the superior performance of Bonsai
to the fact that its pruning decisions are informed by directly exploring the space of sub-models
whilst the other approaches resort to inaccurate proxies of module relevance in order to reduce
the memory overhead of a fully gradient-based optimization approach (though not by enough to
be runnable in our setting).

Bonsai can produce compressed models with strong zero-shot abilities

Considerable amounts of compute and data, beyond what is feasible for lay ML practitioners, are
needed to train LLMs with strong zero-shot capabilities (OpenAI et al., 2023; Team et al., 2023).
In this section, we demonstrate that Bonsai can empower everyday practitioners to produce strong
and compact models with competitive zero-shot abilities by simply pruning bigger models on
their available hardware.

We use Bonsai to prune a≈3B Phi-2 model to≈1.8B (35% sparsity). Bonsai hyper-parameters
in this experiment are in Appendix E.1.6. Since it is small, the 1.8B pruned model can be fully
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Figure 7.3: LLaMA-2 7B @ 50% sparsity (No PPA). Pertubation and regression components are
both needed to make Bonsai effective. Experiment details in Appendix E.2.

ns = 50 ns = 200 ns = 1000

PPL (↓) NaN 61.63 22.09

Table 7.6: Wikitext-2 perplexity of LLaMA-2 7B @ 50% sparsity (No PPA). We vary the number
of perturbative evaluations. Details in Appendix E.7.

fine-tuned on 1 A6000 GPU over 100k sequences of 2,048 tokens from the C4 dataset. As can be
seen from Table 7.5, our pruned model achieves strong zero-shot performance on the Hugging
Face OpenLLM leaderboard (Gao et al., 2023) compared to Phi-1.5, a smaller version in the Phi
series of models that was trained from scratch.

Interestingly, one exception to the general trend of Bonsai’s strong performance is the GSM-
8K dataset, which is a mathematical reasoning dataset that requires generation of long reasoning
chains. In our experiments, Bonsai prunes with respect to language modeling likelihood, as
opposed to reasoning accuracy, and we posit that this mismatch may have contributed to our
model’s underperformance on GSM8K. We attempt to remedy the drop in reasoning ability by
including the GSM8K training data during post-pruning finetuning (resulting in a total of 108K
fine-tuning samples). This boosts our model’s performance on the GSM8K with almost no degra-
dation of performance on the other tasks.

7.5 Analysis

We conduct ablative experiments to understand the impact of the ingredients from Section 7.3.

Do we need both perturbative and regressive components of Bonsai? Figure 7.3 shows that
both components are key to obtaining a good pruned model. Removing the estimation of module
importances via regression leads to a degradation in performance (61.6 ppl→ 146.6 ppl). Further
degradation (146.6 ppl→ 405.7 ppl) is encountered if we do not perform perturbative evaluations
on the parent model but simply prune according to the prior ρ as computed from the unperturbed
parent model.
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Table 7.7: Impact of PPA on LLaMA-2 7B @ 50% sparsity. Details in Appendix E.5.

Method Wikitext-2 PPL

No Post-Pruning Adaptation 19.47

Post-Pruning Finetuning 10.39

+ Distillation 8.89

Figure 7.4: LLaMA-2 7B pruned to 50% sparsity. See Appendix E.6 for experiment details and
definitions of Wanda and Activation Magnitude priors.
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What is a reasonable number of perturbative samples? We investigate the number of per-
turbative samples required to obtain good regression estimates of module importance based on
Equation 7.3. Our results are shown in Table 7.6. As expected, performance improves as we in-
crease the number of sub-models explored. We note that the number of samples being explored,
ns, is significantly less than the number of candidate modules at each iteration (N ≈ 70k). Nev-
ertheless, Bonsai is able to deliver a performant pruned model because of the recipes developed
in Section 7.3.

How much performance is recovered by post-pruning adaptation? During iterative prun-
ing, Bonsai damages the parent model by removing modules but does not perform intermittent
retraining to recover lost performance since even intermediate models may be too large for fine-
tuning. Even so, as Table 7.7 shows, the final model produced by Bonsai has reasonable per-
formance without fine-tuning. We attribute this to the redundancy of modules with respect to
the target downstream tasks and Bonsai’s ability to identify good candidates for pruning. If the
pruned model is small enough in size, we may perform post pruning adaptation to recover more
performance, as can be seen from Table 7.7.

What is the impact of the choice of metric for the prior ρ? We investigate three different
choices of metrics for defining ρ. Figure 7.4 shows that using the module-level analogue of
Wanda Sun et al. (2023a) yields the best performance, both before and after post-pruning adap-
tation. This indicates that Wanda is a strong signal for efficiently estimating the importance of
model units.
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Chapter 8

Conclusion

Historically, the primary objective of transfer learning has been to improve the performance
(accuracy, generalization error) of a model on the desired end-task(s). This thesis has advocated
for a refocusing of the lens towards a broader set of objectives with an eye towards efficiency.
Specifically, we have looked into accounting for data, compute and memory efficiency when
designing transfer learning techniques.

In the first part of this thesis, we made a case for looking beyond only the generalization
error of the final model as the ultimate goal of transfer learning. We motivated this from three
perspectives:

• the task itself. The setting of a task can itself place fundamental resource limitations in
designing transfer learning algorithms. Latency critical tasks place a limit on model size
whilst tasks that live on the edge (mobile devices, internet of things) have strict memory
and compute consumption budgets.

• the individual ML practitioner. Democratizing machine learning entails making it possible
for less resource endowed practitioners to build ML models for their specific needs. By
designing resource-aware algorithms, we broaden the scope of people who can leverage
transfer learning for their unique set of problems. All the work in this thesis is done with
resources that are typical of the everyday ML practitioner, and we output models that are
meant to be easily accessible.

• large corporations. Even in the case of resource rich large corporations, being resource
conscious can not only lead to monetary savings but also free up resources for an expanded
range of applications. There is also the issue of the environmental impact of exorbitant
resource consumption – being resource aware enables corporations to build ML models
that are more friendly towards the environment.

The beginning of the second part of this thesis highlighted the primary tool we would use to
achieve resource efficiency in transfer learning: end task awareness. We showed that knowing
something about the intended downstream applications of the model to be trained allows us to
make informed design choices during tranfer learning that prioritize certain resources without
sacrificing the model’s end-task performance. In the rest of Part II, we presented three tech-
niques: TARTAN, ATTITUD and AANG for improving data-efficiency in transfer learning.

Part III of this thesis moved beyond data-efficiency to include compute and memory effi-

83



ciency. Informed by knowledge of the end-task, this part focused on delivering compact yet
performant versions of large pre-trained models by pruning these models to smaller sizes via
modified structured pruning techniques. To make our methods widely usable, we focused on
pruning these models in settings that are realistic with respect to the everyday practitioner. This
included data-starved end-tasks (Chapter 6) and memory constraints during the pruning process
itself (Chapter 7).

8.1 Future work

The works presented in this thesis were developed within the rapidly evolving landscape of deep
learning. With the advent of scaling laws (Kaplan et al., 2020; Hoffmann et al., 2022), there has
been even more focus on task agnostic approaches to transfer learning (specifically the pre-train
then adapt setting) with a particular emphasis on scaling up models in terms of data and compute.
Whilst our own resource limitations prevent us from conducting large scale studies to drive home
the power of end-task awareness, it is heartening to repeatedly see larger scale work like Abnar
et al. (2021); Isik et al. (2024) that show that (1) the one size fits all approach of pre-training
without knowledge of the end-task leads to disparities in task-based outcomes (2) misalignment
between pre-training and downstream tasks can result in worse scaling exponents leading to
poor data-efficiency. We have also seen a ballooning in the sizes of model ML models (partially
a result of task agnosticity of the pretrain-then-adapt paradigm) that has widened the gap between
models that everyday ML practitioners can feasibly train and deploy in their settings of interest.
These issues, within the context of this thesis present several avenues for future directions:

Exploring anchor tasks during pre-training: One way of marrying the resource efficiency
of end-task aware approaches, with the current zeitgeist of delivering generalist models is to in-
troduce a suite of anchor tasks during pre-training. These tasks would be constructed based on
practitioner knowledge of dominant usage patterns on generalist models. Already, the existence
of large scale benchmarks like the Eleuther Language Model Evaluation Harness (Gao et al.,
2023) indicates that the ML community does have a non-trivial grasp of what a broad set of
capabilities a general model should be descent at. Research in this direction could involve ex-
perimenting with various anchor tasks to determine their impact on model performance and data
efficiency across different downstream tasks. As well as exploring strategies for incorporating
these anchor tasks into large scale optimization pipelines without bottle-necking them.

Synthetic data and synthetic tasks: There has been a recent flurry of research into synethetic
data (Lu et al., 2023; Gunasekar et al., 2023; Maini et al., 2024; Bauer et al., 2024) as a means
of making training of subsequent LLM generations more data-efficient. Chapter 5 of this thesis
showed that we can go a long way with only task data by introducing synthetic tasks. Marrying
both synthetic data with synthetic task generation is appealing as an avenue for future work, not
only as a means to even higher degrees of data-efficiency, but also towards building more LLMs
with robust internal representations (Huh et al., 2024)
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Modularity and continual learning: Thinking more deeply about modularity and continual
learning when building deep learning models presents another exciting direction. Modularity
(Pfeiffer et al., 2023; Douillard et al., 2024) allows for the development of models with inter-
changeable components that can be updated or replaced independently, facilitating easier adap-
tation to new tasks and environments and ultimately both data and memory efficiency. Continual
learning (Hadsell et al., 2020; Mehta, 2023), on the other hand, enables models to incrementally
learn from new data without forgetting previously acquired knowledge. This can be particu-
larly useful in dynamic settings where data evolves over time. Research in this area could focus
on designing modular architectures and developing algorithms that support continual learning,
ensuring that models remain relevant and effective over prolonged periods whilst effectively re-
using model components and thus amortizing resource consumption over many tasks.

Adaptive inference from the ground up: Finally, in order to make outsized strides in compute
and memory efficiency with respect to deployed ML models, we have to rethink adaptive infer-
ence from the ground up. Adaptive inference techniques that dynamically adjust computational
resources based on the complexity of the input can lead to more efficient and scalable models.
They can also be seen as an approach to sharing knowledge across different model size families
within the same training run. Future work could investigate various adaptive inference strategies,
such as conditional computation (Raposo et al., 2024) and neural architecture search (Gao et al.,
2020), to create models that are both computationally efficient and capable of maintaining high
performance across a range of tasks.
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Appendix A

TARTAN (Chapter 3) Appendix

A.1 Algorithm for META-TARTAN

A.2 Justifying the introduction of a Meta-Head

Proof. To arrive at Equation 3.7 we start with the closed form solution for∇wi
Lval

T ∗ (θ∗) and then
introduce approximations in order to produce Equation 3.7. First, note that :

∂Lval
T ∗ (θ∗(w))

∂wi

=

(
∇θLval

T ∗ (θ∗(w))

)T(
∇wi

θ∗(w)

)
[Chain rule] (A.1)

To get∇wi
θ∗(w) we invoke the Cauchy Implicit Function Theorem (IFT) as with Lorraine et al.

(2020); Navon et al. (2020); Liao et al. (2018):

∇wi
θ∗(w) =

[
∇2

θLtotal(θ
∗(w))

]−1[
∇wi
∇θLtotal(θ

∗(w))

]
[IFT]

=

[
∇2

θLtotal(θ
∗(w))

]−1[
∇wi
∇θ

(
w∗LT ∗(θ∗(w)) +

∑
Ti∈Taux

wiLTi
(θ∗(w))

)]

=

[
∇2

θLtotal(θ
∗(w))

]−1[
∇θLTi

(θ∗(w))

]
[Only terms with wi survive]

Bringing it all together, we get :

∂Lval
T ∗ (θ∗(w))

∂wi

=

(
∇θLval

T ∗ (θ∗(w))

)T([
∇2

θLtotal(θ
∗(w))

]−1[
∇θLTi

(θ∗(w))

])
(A.2)

Computing∇wi
Lval

T ∗ (θ∗) from Equation A.2 is computationally unwieldy since we would not
only have to optimize θ to convergence for every step of wi but we would also have to invert the
Hessian of a typically large model. Our middle ground between Equations A.2 and 3.6 (Equation
3.7) makes use of the following approximations:

• We approximate the inverse Hessian with the identity. This approximation is not new;
we follow previous work like Lorraine et al. (2020)(Table 3) who explore the use of this
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Algorithm 3: End-task Aware Training via Meta-learning (META-TARTAN)
Require: T ∗,Taux: End-task, Set of auxiliary pre-training tasks
Require: η, β1, β2: Step size hyper-parameters
Initialize :

Pre-trained RoBERTa as shared network body, θbody
Task weightings: w∗, wi =

1
|Taux|+1

Randomly initialize :
end-task head as ϕ′

meta head for end-task as ϕ∗

task head, ϕi, for each Ti ∈ Taux

while not done do
B∗

tr ∼ T ∗
train // Sample a batch from end-task

g∗θ , g
∗
ϕ ←

[
∇θ,∇ϕ′

](
LT ∗(θ, ϕ′, B∗

tr)

)
// Get end-task grads

giθ, g
i
ϕ ←

[
∇θ,∇ϕi

](
LTi

(θ, ϕi, Bi)

)
// Get task grads.

∀i ∈ [n], Bi ∼ Ti

// Learn a new meta head
ϕ∗ ← estimate meta head(B∗

tr, β2, θ, ϕ
∗) // B∗

tr ∼ T ∗
train

g∗meta ← ∇θLT ∗(θ, ϕ∗, B∗
val) // B∗

val ∼ T ∗
val

// Update task weightings
w∗ ← w∗ + η cos(g∗meta, g

∗
θ)

wi ← wi + η cos(g∗meta, g
i
θ)

// Update task parameters
α∗, α1, . . . , α|Taux| = softmax(w∗, w1, . . . , w|Taux|)
Update θbody ← θbody − β1

(
α∗g∗θ +

∑
i αig

i
θ

)
Update

(
ϕi ← ϕi − β2g

i
ϕ

)
,
(
ϕ′ ← ϕ′ − β2g

∗
ϕ

)
end
Result : θ, ϕ′

approximation because of computational efficiency.[
∇2

θLtotal(θ
∗(w))

]−1

= lim
i→∞

i∑
j=0

(
I−∇2

θLtotal(θ
∗(w))

)j

≈ I

We are assuming the contribution of terms with i > 0 are negligible.
• Instead of training the whole network to convergence, at each time-step, we fix the body

of the network and train a special head ϕ∗ to convergence on a small batch of end-task
training data. We then use [θbody;ϕ

∗] as a proxy for θ∗. This is a computationally feasible
work-around to training all of θ to convergence to get a single step gradient estimate.
Especially in the continued pre-training setting where a pre-trained generalist model like
BERT is used as θbody, this approximation is reasonable. To our knowledge, we are the
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first to suggest this approximation.
∇θLval

T ∗ (θ∗)→ ∇θLval
T ∗ ([θbody;ϕ

∗])

• Above, we have approximated θ∗ = [θbody;ϕ
∗]. Since ϕ∗ is only used to evaluate end-task

(T ∗) validation data, it means θ remains unchanged with respect to the training data for
task Ti. Thus∇θLTi

([θbody;
(
ϕ∗, . . . , ϕi

)
]) = ∇θLTi

([θbody;ϕ
i]) = ∇θLTi

(θ)

Bringing it all together, we get Equation 3.7, repeated here:
∂Lval

T ∗ (θ∗(w))

∂wi

≈
(
∇θLTi

)T (∇θLval
T ∗ ([θbody;ϕ

∗]t)
)

A.3 Calculating p-values from Permutation Test

We used the permutation test (Good, 2005; Dror et al., 2018) to test for statistical significance.
For each test, we generate 10000 permutations to calculate significance level. This is sufficient
to converge to a stable p-value without being a computational burden. We chose this over the
common student t-test because :

1. We have only 10 runs per algorithm and permutation tests are more robust at low sample
size

2. Permutation test is assumption free. Student t-tests assume that the samples are normally
distributed

3. Permutation test is robust to variance in the samples, so even though error-bars can overlap,
we still establish significant differences in the samples. Variance in our results is expected
due to small dataset sizes of end-tasks.

A.4 Vision Experiments

We validate that the gains from end-task Aware Training are not siloed to only learning from text.
We conduct an experiment comparing end-task aware training on images to its end-task agnostic
variant. We use the Cifar100 dataset (Krizhevsky et al., 2009). We use the Medium-Sized

Method Medium-Sized Mammals
Regular (Task-Agnostic) Pre-training 46.72.2

MT-TARTAN 51.31.2

META-TARTAN 52.33.8

Table A.1: We report averages across 3 random seeds. Best average task accuracy is bolded.

Mammals superclass (one of the 20 coarse labels) as our main task whilst the other 19 super
classes are used as auxiliary data. Our primary task is thus a 5-way classification task of images
different types of medium-sized mammals whilst whilst the remaining 95 classes are grouped
into a single auxiliary task.
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As can be seen from Table A.1, being end-task aware improves over task agnostic pre-
training. We find that, again, when our auxiliary task consist of solely domain data and no
task data, META-TARTAN performs better than MT-TARTAN (as measured by averaged perfor-
mance).

A.5 Full TAPT Table with Significance levels

We repeat Table 3.1 and provide details about levels of statistical signifance.

Task TAPT MT-TARTAN p−values META-TARTAN p−values

ACL-ARC 67.743.68 70.484.42 0.040 70.084.70 0.069
SCIERC 79.531.93 80.810.74 0.038 81.480.82 0.005
CHEMPROT 82.170.065 84.290.63 0.000 84.490.50 0.000

Table A.2: Significance levels as computed from the permutation test. All p−values are rel-
ative to the TAPT column. Statistically significant performance(p-value from permutation test
< 0.05), is boldfaced

Task TAPT META-TARTAN p−values

HYPER-PARTISAN 93.392.26 96.841.72 0.003

Table A.3: Additional results for HYPERPARTISAN task. This is a binary, partisanship classi-
fication task with 515 labeled training examples.

A.6 Full DAPT/DAPT+TAPT Table

We repeat Table 3.3 and provide details about levels of statistical signifance.

Task DAPT DAPT+TAPT MT-TARTAN p-values META-TARTAN p-values

ACL-ARC 68.602.62 69.125.76 71.581.65 0.110 71.052.37 0.174
SCIERC 76.441.19 77.621.38 81.021.24 0.000 81.411.70 0.000
CHEMPROT 80.760.54 78.220.74 83.770.60 0.000 83.380.89 0.000

Table A.4: Duplicate of Table 3.2. Significance levels as computed from the permutation
test. All p−values are relative to max

(
DAPT,DAPT + TAPT

)
. Statistically significant

performance(p-value from permutation test < 0.05), is boldfaced
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A.7 FAQ
1. What settings are TARTAN algorithms designed for?

TARTAN algorithms specialize auxiliary objectives to a particular end-task. This comes at
a risk of losing the generic representations afforded by generalist pre-trained models. Thus
if a practitioner has a sufficiently important end-task where obtaining improved end-task
performance is paramount over generic representations, then TARTAN is a viable option.

2. When do we get computational savings from META-TARTAN?
MT-TARTAN does not add any extra overhead compared to pre-train then fine-tune ap-
proaches. META-TARTAN however, adds extra overhead per gradient descent step due to
computing meta-gradients. However, as shown in Section 3.6 we are able to get several
orders of magnitude improvement in data-efficiency from applying the method. In general,
for the tasks we experimented with, we find that the savings in data-efficiency superseded
the extra per-timestep meta-learning overhead.

3. When should we use META-TARTAN over MT-TARTAN?
In +TAPT settings (Tables 3.1, 3.3), we observe that META-TARTAN and MT-TARTAN
perform similarly. We attribute this to the strength of TAPT-MLM objective. We were
pleasantly surprised that the two methods performed comparatively in this setting but in
hindsight, we appreciate the insight that went into designing TAPT-MLM as an objective
which makes it a strong baseline. In other settings with less carefully designed auxil-
iary objectives and data (which can potentially be detrimental to the end-task) we expect
META-TARTAN to perform better. Section 5.3 provides evidence of this.
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Appendix B

ATTITUD (Chapter 4) Appendix

B.1 Proof of Theorem 1
Theorem 3. Let Laux(θt) and Lprim(θt) represent the full batch losses of the auxiliary tasks and
primary task respectively at step t. We assume the gradients of Laux and Lprim are Lipschitz
continuous with constant L > 0. Following the update rule : θt+1 = θt − α · g̃aux, where α ≤ 1

L

is the learning rate, we are guaranteed :
Laux(θt+1) ≤ Laux(θt)

Lprim(θt+1) ≤ Lprim(θt)

If η− = 0 and η⊥, η+ ≥ 0

Proof. Let Vt ∈ RK×D be the orthonormal matrix whose rows span the per-example primary
task gradients J∗ at timestep t. The projections of the average primary task gradient gprim =
1
m

∑m
i=1 J

∗
i,: and average auxiliary task gradient gaux at iteration t are :

pprim = Vt

(
gprim

)T
paux = Vt

(
gaux

)T
pprim and paux will agree on some directions (same sign on those components). We use the

operator [x]+ to mark these directions of agreement. This operator preserves components that
agree and sets those that disagree to zero. As an example given pprim = [1, 1,−1] and paux =
[1, 3, 10], [pprim]+ = [1, 1, 0] and [paux]+ = [1, 3, 0]. For directions that disagree (different signs
of the respective components), we introduce the operator [x]−. In the above example [pprim]− =
[0, 0,−1] and [paux]− = [0, 0, 10]. Note that our operators are defined by comparing two vectors
x1 and x2, Our operators have the following properties by definition :

x = [x]− + [x]+
and

[x]+ ⊥ [x]−, [x1]± ⊥ [x2]∓

From Equation 4.2 :
g̃aux = η+g

+
aux + η−g

−
aux + η⊥g

⊥
aux

We can re-write this in terms of [x]± as :
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g̃aux = η+[paux]+ + η−[paux]− + η⊥
(
gaux − paux

)
We now proceed to show the effect of the gradient descent update below on Laux(θt+1) and

Lprim(θt+1).

θt+1 = θt − α · g̃aux (B.1)

How does this update affect the loss on the primary task loss Lprim(θt+1)?
Lprim(θt+1) = Laux(θt − α · g̃aux)

≈ Lprim(θt)− α
(
g̃aux

)T
gprim (First order Taylor Expansion)

= Lprim(θt)− α

(
η+[paux]+ + η−[paux]− + η⊥g

⊥
aux

)T

gprim

= Lprim(θt)− α

(
η+[paux]+ + η−[paux]− + η⊥g

⊥
aux

)T(
[pprim]+ + [pprim]−

)
= Lprim(θt)− α

(
η+

(
[paux]

T
+[pprim]+ + [paux]

T
+[pprim]−

)
+ η−

(
[paux]

T
−[pprim]+ + [paux]

T
−[pprim]−

))
= Lprim(θt)− α

(
η+[paux]

T
+[pprim]+ + η−[paux]

T
−[pprim]−

)
≤ Lprim(θt) (if η− ≤ 0, η⊥, η+ ≥ 0)

Note that in going from line 3 to 4 in the proof above, we use the fact that
(
g⊥

aux

)T
gprim = 0 since

g⊥
aux lies outside the subspace and gprim lies inside it. For the last step of the proof, we use the

observations below :

[paux]+[pprim]+ ≥ 0 since these directions agree in sign
[paux]−[pprim]− ≤ 0 since these directions disagree in sign
[paux]+[pprim]− = 0 by the property of the [x]± operator
[paux]−[pprim]+ = 0 same motivation as above

How does Equation B.1 affect the auxiliary task loss Laux(θt+1)?
Laux(θt+1) = Laux(θt − α · g̃aux)

≈ Laux(θt)− α
(
g̃aux

)T
gaux (First order Taylor Expansion)

= Laux(θt)− α
(
η⊥g

⊥
aux + η+g

+
aux + η−g

−
aux

)T (
g⊥

aux + g+
aux + g−

aux

)
= Laux(θt)− α

(
η⊥∥g⊥

aux∥2 + η+∥g+
aux∥2 + η−∥g−

aux∥2
)

(Cross terms cancel due to orthogonality)
≤ Laux(θt) (If η−, η⊥, η+ ≥ 0)

Thus, choosing η− = 0 ensures that we are minimizing both Laux(θt) and Lprim(θt). We can
combine this with the constraint on α ≤ 1

L
to derive convergence guarantees after some T steps

as in optimization literature.
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B.2 Randomized Matrix Theory

Algorithm 4: randomized lowrank approx : Construct low rank approximation
Require : J ∈ Rm×D : Input Matrix
Require : k : Rank of subspace

Π ∼ N (0, I) ∈ Rk×m

C = ΠJ
V← Gram Schmidt(C)

Return : V ∈ Rk×D : Low rank approximation of J

The Gram Schmidt procedure orthogonalizes the rows of an input matrix.

B.3 More Experimental Details
Image Classification For MultiCifar100, unlike Rosenbaum et al. (2017); Yu et al. (2020) who
use a 500-100 train-test split for examples under each fine-grained CIFAR 100 label, we include
a validation set and therefore opt for a 400-100-100 train-validation-test split. We test on all 1000
test examples per class.

For Cat-vs-Dog, we use 100 examples from the training set as validation and test on all 1000
test examples per-class.

For Image Classification experiments, we perform pre-training with a learning rate of 1e-4
for all experiments and finetuning learning rate of 5e-4. These values were selected after coarse
hyper-parameter search. In both pre-training and finetuning settings, we decay the learning rate
by 0.5 if the validation loss has not improved over 4 epochs, up till a minimum learning rate
of 1e-5. we use the Adam Optimizer (Kingma and Ba, 2014) with β = (0.9, 0.999). We clip
all gradient norms to 1.0 before performing gradient descent. We cross-validated dropout rates
within the set {0.05, 0.1, 0.2, 0.3} for both pre-training and finetuning steps. We cross validate
ηprim based on the relative sizes of primary and auxilary task datasets. All experiments are av-
eraged over 5 random seeds. For all our Vision experiments, we either recompute our subspace
basis every n = 5 or n = 10 iterations. We find that n is not as important as the other hyper-
parameters, with the two choices showing similar performance when the other hyper-parameters
(learning rate and gradient norm clipping) are fixed to reasonable values.

Due to the fact that Yue et al (PCGrad) treat all tasks symmetrically, which is different from
our primary-auxiliary setting, we introduced an extra parameter, αprim, for PCGrad to account
for weighting the primary task. We cross validated values of αprim ∈ {0.1, 0.05, 0.01, 0.001}.

Medical Imaging Transfer Table 4.4 presents a more detailed breakdown of the ChexPert
task. For 50k examples from Imagenet, our best performing configuration was ηaux = (1.0, 0.0,−1.0).
We did not use the primary task gradient directly for pre-training so ηprim = 0.0 for all cases. For
ATTITUD, we use the same learning rates as in the Image classification setup above. For the
No-Pretraining and Vanilla pretraining we cross-validated the learning rates for both finetuning
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and pre-training from the set {1e-3, 1e-4}. We cross-validated the same list of dropout values
above.

Method No-Pretraining Pretrain w Imgnet Pretrained + Ours (50k) Pretrained + Ours (100k)
Atelectasis 76.0 ± 1.82 79.0 ± 3.66 81.6± 1.38 81.8± 0.80

Cardiomegaly 74.9 ± 2.34 75.8 ± 4.04 78.0 ± 2.13 80.7± 1.79

Consolidation 83.2 ± 2.26 85.3± 1.86 85.6± 2.32 84.9 ± 1.36
Edema 79.5 ± 1.27 82.6 ± 0.76 85.2± 1.23 84.7 ± 1.78
P. Effusion 77.9 ± 1.88 84.4± 0.75 83.4 ± 1.80 84.3± 0.65

Table B.1: Results on ChexPert-5k tasks measured by average AUC (Area Under Roc-Curve)

Text Classification For our NLP experiments, we tried limiting the number of layers we ap-
plied ATTITUD to. We achieved good performance without applying ATTITUD to the word em-
bedding layers (these were updated with untouched auxiliary task gradients). We cross-validated
ηprim = {0.01, 0.05, 0.0025}. For all our NLP experiments, we either recompute our subspace
basis every n = 1 or n = 4 times

For all experiments involving ATTITUD, We cross-validate the following choices of the sub-
space size k ∈ {5, 10, 20} from J∗ ∈ Rm×D using m ∈ {32, 64}. We recompute the subspace
every 10 steps for vision experiments and every 4 steps for NLP experiments. We run all experi-
ments for a maximum of 150 pretraining epochs and 500 finetuning epochs. We performed early
stopping for all experiments if no improvement after 10 consecutive epochs.

Ablation of Fraction of Norm within Subspace The left pane of Figure B.1 reinforces our
intuition and confirms that our choice of the top-k singular vectors (randomized svd) gives the
best accuracy as averaged across 5 seeds. random is the basis spanned by k randomly chosen or-
thogonal vectors in RD, unit avg grad is the basis spanned by the average primary task gradient
whilst canonical uses the per-parameter basis. Note that k = 5 for random and randomized svd
whilst for unit avg grad and canonical, k = 1 and k = D respectively. We use the fraction of the
norm of sample gradients within a subspace as indicators of how semantically meaningful that
choice of subspace is. We expect that a semantically meaningful choice of basis will achieve bet-
ter generalization performance because it captures the essential parts of the gradient with k ≪ D
. canonical trivially captures all the norm of the sampled gradient vectors but because k = D, it
generalizes poorly. Notice that only small fractions of the norms of sample primary and auxil-
iary task average gradients lie in the subspace for random and unit avg grad, whilst significant
fractions lie in randomized svd.
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Figure B.1: Experiment conducted on Cat-vr-Dog Cifar10 dataset. Left Averaged accuracy
across 5 seeds of different choices of basis. Our choice, randomized svd performs best. Right
We look at the fraction of the norm of gaux within each subspace (dashed line). We also do so for
a randomly sampled mini-batch of the primary task (solid line).
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Appendix C

AANG (Chapter 5) Appendix

C.1 More Ablation Tables

Table C.1: Varying number of sampled objectives per-iteration.

Task 3
24 tasks 6

24 tasks

ACL-ARC 72.112.12 73.261.32

SCIERC 82.351.76 82.981.52

SE-2016-6 72.461.65 72.460.90

CHEMPROT 83.910.32 83.690.98

H.PARTISAN 98.460.0 97.950.73

C.2 Dataset Details

Table C.2: Specifications of datasets used to evaluate our methods.

Domain Task Label Type Train Size Dev Size Test Size Classes Metric

BIOMED CHEMPROT Kringelum et al. (2016) relation classification 4169 2427 3469 13 Accuracy
CS SCIERC Luan et al. (2018) relation classification 3219 455 974 7 F1
STANCE SE-2016-6 Mohammad et al. (2016) stance detection 2497 417 1249 3 Accuracy
CS ACL-ARC Jurgens et al. (2018) citation intent 1688 114 139 6 F1
NEWS H.PARTISAN Kiesel et al. (2019) partisanship 515 65 65 2 Accuracy
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C.3 More Training Details
We run each hyper-parameter configuration across 3 seeds {0, 1, 2}. We use a batch size of 128
for all end-tasks tasks except H.PARTISAN where we use a batch size of 64. The auxiliary task
batch-size, aux bsz, is shared across all the n sub-sampled auxiliary objectives according to
the objective’s weight.

We use the AdamW optimizer (Loshchilov and Hutter, 2017b), with weight decay of 0.01 for
all experiments.

Table C.3: AANG-TD specific Hyper-parameters

Hyper-parameter Values Description

aux lr 1.0, 0.1 Learning rate for factor vectors - {WAll,W I ,W T ,WR,WO}
sopt lr 0.1, 0.01 Learning rate for primary task weighting λe

nconf subsamp 3, 6 Number of sub-sampled auxiliary tasks.
learning rate 1e-3, 1e-4 Learning rate used for further training of RoBERTabase
aux bsz 256 Batch size of for auxiliary objectives

Table C.4: AANG-TD+ED specific Hyper-parameters

Hyper-parameter Values Description

aux lr 1.0, 0.5, 0.1 Learning rate for factor vectors - {WAll,W I ,W T ,WR,WO}
sopt lr 0.1 Learning rate for primary task weighting λe

nconf subsamp 6, 12, 24 Number of sub-sampled auxiliary tasks.
learning rate 1e-4 Learning rate used for further training of RoBERTabase
aux bsz 1024 Batch size of for auxiliary objectives

Table C.5: META-TARTAN Hyper-parameters for single task auxiliary tasks

Hyper-parameter Values Description

sopt lr 1.0, 0.1, 0.01 Learning rate for primary task weighting λe

learning rate 1e-3, 1e-4, 5e-5 Learning rate used for further training of RoBERTabase

META-TARTAN introduces a dev-head which is trained sporadically during training for es-
timating the meta-gradients. We use the following hyper-parameters for training this dev-head :
we sample 32 examples (8 examples in the case of H.PARTISAN) and perform full batch gra-
dient descent with a learning rate of 1e-2 for 10 iterations. The dev-head is trained with the
AdamW optimizer with weight decay set to 0.1.
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We copy the end-task agnostic baseline results from (Dery et al., 2021a) when available.
We use the hyper-parameters specified for TAPT in Gururangan et al. (2020a) to train for the
SE-2016-6 task.

All models were trained on one of two types of gpus: NVIDIA A100 or NVIDIA A6000.
All models fit within a single gpu. We used gradient accumulation to expand the effective batch
sizes used for our experiments.

C.4 Generalization Error Bound for End-task Aware Train-
ing

C.4.1 Definitions

Definition C.4.1. A function, f : Ω→ R is L-Lipschitz if ∀u, v ∈ dom(f):
∥f(u)− f(v)∥ ≤ L∥u− v∥

Note that L-Lipschitz implies bounded gradients.
∥∇f(w)∥ ≤ L ∀w

Definition C.4.2. A function, f : Ω→ R is β-smooth if ∀u, v ∈ Ω:
∥∇f(u)−∇f(v)∥ ≤ β∥u− v∥

Definition C.4.3. An update rule, G is σ-bounded if :
supw∈Ω ∥w −G(w)∥ ≤ σ

Consider the following general setting. There is an unknown distribution De over examples
from some space Z . We receive a sample S = (z1, . . . , zNe) of Ne examples drawn i.i.d. from
De. Our goal is to find a model w, that parameterizes the function fe, with small population risk
defined as:
Definition C.4.4. Population Risk

R[w] = Ez∼Defe(w; z)

Definition C.4.5. Empirical Risk
Since we have a finite number of samples, we can only compute the empirical risk which is :

RS[w] =
1

Ne

∑
i

fe(w; zi),

Let A be a potentially randomized algorithm (such as Stochastic Gradient Descent) that is a
function of the S such that w = A(S).
Definition C.4.6. Generalization Error ϵgen(A,Ne)

ϵgen(A,Ne) = ES,A

[
RS[A(S)]−R[A(S)]

]
Definition C.4.7. Uniform Stability
A randomized algorithm A is ϵ-uniformly stable if for all data sets S, S ′ ∈ Z, |S| = |S ′| = Ne

such that S and S ′ differ in at most one example, we have
sup
z

EA

[
fe(A(S); z)− fe(A(S

′); z)
]
≤ ϵ
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Here, the expectation is taken only over the internal randomness of A. We will denote by ϵstab(A,Ne)
the infimum over all ϵ for which the above holds.

C.4.2 Relevant Theorems

Theorem 4 (Uniform Stability implies Generalization in expectation). Let Algorithm A be ϵ-
uniformly stable. Then,

ϵgen(A,Ne) =

∣∣∣∣ES,A

[
RS[A(S)]−R[A(S)]

]∣∣∣∣ ≤ ϵstab(A,Ne)

For full proof see Theorem 2.2 of Hardt et al. (2016).
Theorem 5 (Stochastic Gradient Method is stable). Assume that fe(; z) ∈ [0, 1] is an L-Lipschitz
and βe-smooth loss function for every z. Suppose that we run SGM for T steps with monotoni-
cally non-increasing step sizes αt ≤ c

t
. Then, SGM has uniform stability with :

ϵsgm ≤
1 + 1

q

Ne − 1

(
2cL2

) 1
q+1T

q
q+1

where q = βec

We can simplify this to only terms involving T and Ne

ϵsgm ⪅
T 1− 1

cβe+1

Ne

(C.1)

Proof. For the full proof, see Theorem 3.12 of Hardt et al. (2016)

C.4.3 Growth Functions

Lemma 6 (Growth Recursion Under Dynamic Sampling). We consider the Stochastic Gradient
update rule G : Ω→ Ω :

Gf (w) = w − α∇f(w)

Fix an arbitrary sequence of updates Gf1 , . . . , GfT and another G′
f1
, . . . , G′

fT
. Let w0 = w′

0 be a
starting point in Ω given that f : Ω→ R and define

δt = Ef1...ft∼Pλ

[
∥wt − w′

t∥
]

where wt, w
′
t are defined recursively through :

wt = Gft(wt−1) w′
t = G′

ft(w
′
t−1) t ≥ 0

Then we have the recurrence relation :
δ0 = 0

δt+1 ≤
{

min
{(

1 + αλ1β1

)
δt + αλ2

(
∆+ 2L

)
,
(
1 + α

(
λ1β1 + λ2β2)

)
δt
}

Gft = G′
ft

δt + 2σt Gft , G
′
ft

are σ-bounded

Note that Pf is a distribution over the support {f 1, f 2} according to probabilities {λ1, λ2 | λ1 +
λ2 = 1}. {f1, f2} have smoothness β1, β2 respectively.
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Proof. The second bound on δt is taken directly from Lemma 2.5 of Hardt et al. (2016). We now
derive the first-half of the first bound
δt+1 = Ef1...ft+1∼Pλ

[
∥wt+1 − w′

t+1∥
]

= Ef1...ft∼Pλ

[
λ1∥Gf1(wt)−G′

f1(w′
t)∥+ λ2∥Gf2(wt)−G′

f2(w′
t)∥

]
= Ef1...ft∼Pλ

[
λ1∥wt − α∇f 1(wt)− w′

t + α∇f 1(w′
t)∥+ λ2∥wt − α∇f 2(wt)− w′

t + α∇f 2(w′
t)∥

]
≤ Ef1...ft∼Pλ

[
∥wt − w′

t∥
]
+ αEf1...ft∼Pλ

(
λ1∥∇f 1(w′

t)−∇f 1(wt)∥+ λ2∥∇f 2(w′
t)−∇f 2(wt)∥

)
(Triangle Inequality used for above step)

= δt + αEf1...ft∼Pλ

(
λ1∥∇f 1(w′

t)−∇f 1(wt)∥+ λ2∥∇f 2(w′
t)−∇f 2(wt)∥

)
(Without Loss of Generality, let β1 ≤ β2)

≤ δt + αEf1...ft∼Pλ

[
λ1β1∥wt − w′

t∥+ λ2∥∇f 2(w′
t)−∇f 2(wt)∥

]
(Smoothness)

= δt + αλ1β1δt + αλ2Ef1...ft∼Pλ

[
∥∇f 2(w′

t)−∇f 2(wt)∥
]

(Triangle Inequality)

=
(
1 + αλ1β1

)
δt + αλ2

∥∥∥∥∇f 2(w′
t)−∇f 1(w′

t) +∇f 1(w′
t)−∇f 2(wt)

∥∥∥∥ (add zero)

≤
(
1 + αλ1β1

)
δt + αλ2

(
∥∇f 2(w′

t)−∇f 1(w′
t)∥+ ∥∇f 1(w′

t)−∇f 2(wt)∥
)

(Triangle Inequality)

≤
(
1 + αλ1β1

)
δt + αλ2

(
∆+ ∥∇f1(w′

t)−∇f2(wt)∥
)

Using Assumption A.1

≤
(
1 + αλ1β1

)
δt + αλ2

(
∆+ ∥∇f1(w′

t)∥+ ∥∇f2(wt)∥
)

Triangle Inequality

≤
(
1 + αλ1β1

)
δt + αλ2

(
∆+ 2L

)
L-Lipschitz function
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To obtain the second half of the first bound :
δt+1 = Ef1...ft+1∼Pλ

[
∥wt+1 − w′

t+1∥
]

= Ef1...ft∼Pλ

[
λ1∥Gf1(wt)−G′

f1(w′
t)∥+ λ2∥Gf2(wt)−G′

f2(w′
t)∥

]
= Ef1...ft∼Pλ

[
λ1∥wt − α∇f 1(wt)− w′

t + α∇f 1(w′
t)∥+ λ2∥wt − α∇f 2(wt)− w′

t + α∇f 2(w′
t)∥

]
≤ Ef1...ft∼Pλ

[
∥wt − w′

t∥
]
+ αEf1...ft∼Pλ

(
λ1∥∇f 1(w′

t)−∇f 1(wt)∥+ λ2∥∇f 2(w′
t)−∇f 2(wt)∥

)
(Triangle Inequality used for above step)

≤ δt + αEf1...ft∼Pλ

[
λ1β1∥wt − w′

t∥+ λ2β2∥wt − w′
t∥
]

(Smoothness)

= δt + αλ1β1Ef1...ft∼Pλ

[
∥wt − w′

t∥
]
+ αλ2β2Ef1...ft∼Pλ

[
∥wt − w′

t∥
]

= δt + α(λ1β1 + λ2β2)δt

= (1 + α(λ1β1 + λ2β2))δt

C.4.4 Stability of Dynamic Sampling

We repeat the description of our Auxiliary Learning with Dynamic Sampling Setting here for
ease of access.
Setting : We are given an auxiliary objective fa(·; z) ∈ [0, 1] with Na samples Sa = (z1, . . . , zNa)
from the distribution Da. At any iteration of SGD, we sample a choice of either the end-task
function fe or the auxiliary objective fa according to the probabilities λe, λa | λe + λa = 1.
Given the chosen objective, we sample a data-point and perform stochastic gradient descent
(SGD) based on the sampled data-point.

An equivalent way to instantiate this procedure to create SA by drawing N ′ = Ne +Na total
samples from the end-task and auxiliary task according to Pλ. S ′

A is then created by replacing 1
end-task sample in SA. At each step, a sample is drawn from a distribution : zi, z′i ∼ PSA

, PS′
A

and a gradient step is taken on the function corresponding to the set the sample was drawn from.

Lemma 7 (Stability of dynamic sampling). We denote the outputs of T steps of SGM on SA and
S ′
A with the dynamically sampled functions, as wT and w′

T respectively. Then, for every ze ∈ Ze

and every t0 > 0, under both the random update rule and the random permutation rule, we have
:

E
∣∣fe(wT ; z)− fe(w

′
T ; z)

∣∣ ≤ γt0
N ′ sup

w,ze

fe(w; ze) + LE[δT |δt0 = 0]

Where N ′ = Ne +Na and γ = λe·N ′

Ne
= λe

λr .
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Proof. Let E = 1[δt0 = 0] denote the event that δt0 = 0. We have
E
∣∣fe(wT ; z)− fe(w

′
T ; z)

∣∣ = P{E}E
[∣∣fe(wT ; z)− fe(w

′
T ; z)

∣∣|E]
+ P{Ec}E

[∣∣fe(wT ; z)− fe(w
′
T ; z)

∣∣|Ec]
≤ E

[∣∣fe(wT ; z)− fe(w
′
T ; z)

∣∣|E]+ P{Ec} · sup
w,ze

fe(w; ze)

because fe is non-negative

≤ LE
[
∥wT − w′

T∥|E
]
+ P{Ec} · sup

w,ze

fe(w; ze)

because fe is L-Lipschitz

(C.2)

We now proceed to bound P{Ec}. Let i∗ ∈ [N ′] denote the position in which SA, S
′
A differ and

consider the random variable I assuming the index of the first time step in which SGM uses the
example zi∗e . Note that when I > t0, then we must have that δt0 = 0 since the two samples are
identical up until this point.

P{Ec} = P{δ0 ̸= 0} ≤ P{I ≤ t0}
Using the selection rule specified above (sample either fe, fa according to the probabilities λe, λa

and then sample uniformly from the selected task data) we have that :

P{I ≤ t0} =
t0∑
t=1

P{I = t0} =
t0∑
t=1

(
λe ·

1

Ne

)
=

λet0
Ne

=
γt0
N ′

Theorem 8 (Stability Bound on Dynamic Sampling). Assume that fe(; ze), fa(; za) ∈ [0, 1] are
L-Lipschitz and βe and βa-smooth loss functions. Consider that we have N ′ = Ne + Na total
samples where fe and fa have Ne and Na samples respectively. Suppose that we run SGM for
T steps with monotonically non-increasing step sizes αt ≤ c

t
by dynamically sampling the tasks

according to λe and λa. Then, with respect to fe, SGM has uniform stability with :

ϵstab ≤
(
1 +

1

cβ̄

)(
2γL2c

N ′ − γ
+ ρLc

) 1
cβ̄+1

(
γT

N ′

) cβ̄
1+cβ̄

Where γ =
λeN

′

Ne

Given that β∗ = min{βe, βa} and λ∗ is the corresponding weighting of the function with smaller
smoothness.

Depending on which one gives a tighter bound the pair (β̄, ρ) can be :
(β̄, ρ)1 = (λ∗β∗, (1− λ∗)

(
∆+ 2L

)
)

or
(β̄, ρ)2 = (λeβe + λaβa, 0)

When (β̄, ρ)1 gives the tighter bound, we can simplify to :

ϵgen ⪅
(
∆)

1
1+cλ∗β∗

(
γT

N ′

)1− 1
cλ∗β∗+1

As presented in Section 5.5.
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Proof. Let SA, S
′
A be two sample of size N ′ = Ne +Na as described in lemma 7. Consider the

gradient updates Gf1 , . . . , GfT and G′
f1
, . . . , G′

fT
induced by running SGM on samples SA and

S ′
A respectively. Let wT and w′

T denote the corresponding outputs of SGM. By lemma 7 we have
:

E
∣∣fe(wT ; z)− fe(w

′
T ; z)

∣∣ ≤ γt0
N ′ sup

w,ze

fe(w; ze) + LE[δT |δt0 = 0] (C.3)

Let ΨT = E[δT |δt0 = 0]. We will bound ΨT as function of t0 and then minimize for t0. Note the
following :

• At any step t, with probability
(
1 − γ

N ′

)
, the sample selected is the same in both SA and

S ′
A. In this case Gft = G′

ft
and we use the corresponding expansivity rule from lemma 7.

This gives :
δt+1 ≤ min

{(
1 + αtλ

∗β∗)δt + αt(1− λ∗)
(
∆+ 2L

)
,
(
1 + αt

(
λeβe + λaβa)

)
δt
}

Where β∗ = min{βe, βa} and λ∗ is the corresponding weighting of the function with
smaller smoothness. To avoid deriving the bound independently for each case, we perform
a variable substituation that captures the two cases :

δt+1 ≤
(
1 + αtβ̄

)
δt + αtρ

β̄ =
{
λ∗β∗, λeβe + λaβa

}
and ρ =

{
(1 − λ∗)

(
∆ + 2L

)
, 0
}

. We can present the final
bound in terns of these variables which can be substituted depending on the minimizer.

• With probability γ
N ′ the selected example is different. Note that in this case, we know that

we are evaluating the end-task function fe. We use that both Gft and G′
ft

are (σt = αtL)-
bounded according to lemma 6 since fe is L-Lipschitz.

Combining the above we have :

Ψt+1 ≤
(
1− γ

N ′

)((
1 + αtβ̄

)
Ψt + αtρ

)
+

γ

N ′

(
Ψt + 2αtL

)
=

(
γ

N ′ +
(
1− γ

N ′

)(
1 + αtβ̄

))
Ψt +

2γαtL

N ′ + αt

(
1− γ

N ′

)
ρ

=

(
1 +

(
1− γ

N ′

)
αtβ̄

)
Ψt +

αt

(
2γL+ (N ′ − γ)ρ

)
N ′

≤
(
1 +

(
1− γ

N ′

)c
t
β̄

)
Ψt +

c
(
2γL+ (N ′ − γ)ρ

)
tN ′

≤ exp

((
1− γ

N ′

)c
t
β̄

)
Ψt +

c
(
2γL+ (N ′ − γ)ρ

)
tN ′

We use 1 + x ≤ exp(x) ∀x

≤ exp

((
1− γ

N ′

)c
t
β̄

)
Ψt +

cρ̄

tN ′

Where ρ̄ =
(
2γL+ (N ′ − γ)ρ

)

(C.4)
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We can unwind the recurrence until Ψt0 = 0.

ΨT ≤
T∑

t=t0+1

( T∏
k=t+1

exp
(
(1− γ

N ′ )
cβ̄

k

))( cρ̄

tN ′

)

=
T∑

t=t0+1

(
cρ̄

tN ′

)
exp

(
(1− γ

N ′ )cβ̄
T∑

k=t+1

1

k

)

≤
T∑

t=t0+1

(
cρ̄

tN ′

)
exp

(
(1− γ

N ′ )cβ̄ log
(T
t

))

=
cρ̄T cβ̄(1− γ

N′ )

N ′

T∑
t=t0+1

t−cβ̄(1− γ
N′ )−1

We can upper bound the sum over t with an integral + drop negative terms

≤ cρ̄

N ′cβ̄(1− γ
N ′ )

(
T

t0

)cβ̄(1− γ
N′ )

=
ρ̄

β̄(N ′ − γ)

(
T

t0

)cβ̄(1− γ
N′ )

≤ ρ̄

β̄(N ′ − γ)

(
T

t0

)cβ̄

(C.5)

Plugging this bound back into Equation C.3 and using the fact that fe ∈ [0, 1]:

E
∣∣fe(wT ; z)− fe(w

′
T ; z)

∣∣ ≤ γt0
N ′ +

Lρ̄

β̄(N ′ − γ)

(
T

t0

)cβ̄

(C.6)

We let q∗ = cβ̄, we can minimize the R.H.S by setting :

t0 =

(
N ′Lcρ̄

γ(N ′ − γ)

) 1
q∗+1

T
q∗

q∗+1

Plugging this in gives us :

E
∣∣fe(wT ; z)− fe(w

′
T ; z)

∣∣ ≤ (
(1 + 1

cβ̄
)

N ′

)(
N ′Lc

(
2γL+ (N ′ − γ)ρ

)
(N ′ − γ)

) 1
cβ̄+1 (

γT
) cβ̄

1+cβ̄

=

(
1 +

1

cβ̄

)(
2γL2c

N ′ − γ
+ ρLc

) 1
cβ̄+1

(
γT

N ′

) cβ̄
1+cβ̄

(C.7)

Recall that :

β̄ =
{
λ∗β∗, λeβe + λaβa

}

ρ =
{
(1− λ∗)

(
∆+ 2L

)
, 0
}

We can choose whichever of the pairs for β̄, ρ that minimizes the bound :
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C.5 Discussion of Generalization Error Bounds

C.5.1 What Does Theorem 8 Say.
We consider the setting where

β̄ = λ∗β∗

ρ = (1− λ∗)
(
∆+ 2L

)
Assuming the ρ term dominates Equation C.7 in this setting is :

ϵauxdyngen ≤ ϵauxdynstab

∣∣
(β̄,ρ)1

⪅ 1+cβ̄
√
(1− λ∗)(∆ + 2L)

(
γT

N ′

) cβ̄
1+cβ̄

⪅
(
∆)

1
1+cλ∗β∗

(
γT

N ′

)1− 1
cλ∗β∗+1

This is Equation 5.1 from Section 5.5

(C.8)
In going from the first line to the second we consider the setting where ∆ ≫ 2L. This is a case
where the auxiliary task is sufficiently different from the primary task. Some observations about
this setting:

1. Smaller ∆ implies auxiliary task is similar to main task and leads to improving the bound.

2. Dependence of the bound on N ′ is a bit more nuanced. Note that increasing N ′ increases
γ unless we reduce λe appropriately. Remember that λe is the rate at which we sample
the primary task. Thus, if we add more auxiliary data but still sample the primary task at
the original rate, then we are effectively ignoring the extra auxiliary data.

3. It might be tempting to assume that we can get arbitrary improvements in this setting by
setting λe = 0. However, note that whilst this might reduce the generalization error, it
means that we are seeing none of the end-task which would result in large increase in the
training error

4. Note that (β̄ = λ∗β∗ ≤ βe) always. So we get improvements on the dependence on T
compared to Theorem 5.

5. We can optimize λe, λa to minimize ϵauxdynstab .
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Appendix D

Structured Pruning under Limited Task
Data (Chapter 6) Appendix

D.1 Datasets
Table D.1 describes the tasks and datasets used in our experiments.

Table D.1: Specifications of datasets used to evaluate our methods.

Domain Task Task-Type Train Size Metric

BIOMED CHEMPROT Kringelum et al. (2016) Classification 4169 Accuracy
RCT Dernoncourt and Lee (2017) Classification 10K∗ Accuracy

CS SCIIE Luan et al. (2018) Classification 3219 Accuracy
ACL-ARC Jurgens et al. (2018) Classification 1688 Accuracy

GLUE STSB Wang et al. (2018b) Sentence Similarity 7K Pearson’s Correlation
MRPC Wang et al. (2018b) Paraphrase Detection 3.7K Accuracy

D.2 Training Details
We follow as closely as possible the hyper-parameters that are used in the original CoFi code
base. Table D.2 reports CoFi-specific hyper-parameter settings.

Unlike the original CoFi, we turn off output prediction distillation for all experiments. ie –
we do not distill the predictions from the pre-trained models since unlike in the original CoFi
paper, we are not starting from a model that has already been fine-tuned on the target task but
rather we are starting from the pre-trained model itself.

During pruning, we perform 10K gradient descent steps to learn both the structural and pa-
rameter variables of the model. We perform 20 epochs of post-pruning finetuning on the target
task.
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Table D.2: Hyper-parameter choices

Hyper-parameter Values Description

Task pair weightings (1, 1), (1, 2), (2, 1) Weightings applied to transfer task vs target task during training.
Model LR - Pruning 1e-4, 2e-5 Learning rate used for model parameters during pruning.
Model LR - Finetuning 1e-4, 2e-5 Learning rate used for finetuning pruned model.
Structure LR 0.1, 0.01 Learning rate used for learning structural parameters.
δ-l2 Reg Weight 1e-2 Regularization weight used in δ-formulation.
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Appendix E

Bonsai (Chapter 7) Appendix

E.1 Main Experiment Details

E.1.1 Full Algorithm

Algorithm 5: Bonsai
1: Input:

Model [Mθ], sub-models per iteration [niter]
Sparsity per iteration [piter], Target sparsity [p]
Module list [m]

2: for l = 1 to ⌈ p
piter
⌉ do

3: ρl ← Calculate unstructured pruning metric for all modules in m
4: ρ̄l ← Fix the top (1− 2piter) of ρl to∞
5: Sample {m̄i}[niter] sub-models according to ρ̄l

6: Run forward pass on each sub-model and compute U . Construct Dl = {m̄i, Ui}[niter]

7: βl ← Regress
(
Dl
)

8: {mpruned} ← sort βl and drop the bottom k modules that make up piter fraction of the
model.

9: m← update module list to exclude {mpruned}
10: end for
11: Output: Pruned model M|m

A note about Line 5 in our algorithm. Depending on the task, we find that sampling m̄i

and its complement m̄c
i helps reduce the variance of our regression estimate and leads to better

results.

E.1.2 Comparison with FLAP (An et al., 2024)
Close to the time of submission, we found out about FLAP (An et al., 2024), a recently proposed
forward pass only method that was put out a little over a month before the first release of this
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Table E.1: Perplexity at 50% sparsity of LLaMA-{1,2} on Wikitext-2 datasets.

Dataset Method Sparsity Llama-1 Llama-2

Wikitext-2 Base Model 0% 5.68 5.11

Wanda-Structured 50% 226.23 147.04
FLAP 50% 31.80 23.95
Bonsai 50% 26.49 18.29

work. Table E.1 reflects results of preliminary experiments we run to compare to FLAP. We
plan to include a broader set of result comparisons by the rebuttal period. But below, we discuss
differences between our methods.

FLAP is much faster than Bonsai ( < 1hr vs ≈ 24hrs to generate the above results). Though
Bonsai is slower, one of its core strengths is that we can improve the quality of pruning by
running for longer (more perturbations, more data-samples, slower iterative pruning) but at the
cost of more time (a trade-off we note and leave to the discretion of the practitioner).

E.1.3 Hyper-parameters for all Bonsai regression during pruning
When using Bonsai, we estimate β from Dl by performing linear regression via gradient de-
scent with Adam (Kingma and Ba, 2014). We cross-validate over the following set of hyper-
parameters. Note that doing this cross-validation takes much less time than the time needed to
construct the dataset Dl. During cross validation, we choose the model whose predictions have

Table E.2: Bonsai hyper-parameters for regression. This applies to all experiments unless other-
wise specified

γ(Regression Weight) Learning rate Batch Size Epochs

{100, 0, 1e-4} {100, 10, 1, 0.1} {32, 64, 128} 50

the best Kendall rank correlation co-efficient (Kendall, 1948) with the target. We do this because
we do not care about matching Uk exactly for each sub-model k; we rather care that our learned β
predicts the correct rankings amounts sub-models, which would denote that β reasonably models
relative module importances.

In general, we use ℓ1-norm regularization on β for all experiments. For the Phi-2 experiment
in Chapter 7, we find that ℓ2-norm works better.

E.1.4 Forward Pass Only / Semi-structured pruning Experiments
Table E.3 show the Bonsai hyperparameters we used for the experiments in Section 7.4.
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Table E.3: Bonsai hyper-params for for-
ward only experiments

piter nssub−models nsdata Metric for ρ

0.05 200 32 (per-iter) Wanda

Table E.4: Bonsai fine-tuning HP for pruned
LLaMA family models

LR rank LoRA-α λ (Distill Weight) LoRA Modules

1e-4 128 4×rank 0.01 All Modules

For Wanda(Sun et al., 2023a), we use the default hyper-parameters specified by the paper
repo here for pruning. For fine-tuning, we use rank = 64. We apply LoRA to only the q proj and
v proj matrices in each layer of the pruned LLaMA model – this is unlike with Bonsai where we
fine-tune all modules. We cannot do same because since the Wanda model just produces sparse
matrices, the matrices instantiated during the backward pass are the same sizes as the sparsified
matrices and thus occupy more memory (compared to our approach that actually makes the
matrices smaller in dimension instead of sparsifying). We are also unable to perform distillation
on the Wanda models due to this reason. For fine-tuning the Phi-2 model on Wikitext-2, we use
the same hyper-parameters as Bonsai in Table E.4.

E.1.5 Experiments comparing to Gradient based structured pruning
We compare to LoRA-Prune and LLM-Pruner. We take their performance results directly from
the LoRA-Prune paper. Whilst we use 1 A6000 GPU (48G) for all experiments, LoRA-Prune
uses A100 GPU (80G) for pruning LLaMA-1 7B.

All Bonsai hyper-parameters are the same as Appendix E.1.4 except for nssub−models which
we set to 1000.

E.1.6 Phi-2 pruning experiment details
For the Phi experiment in Chapter 7, All Bonsai hyper-parameters are the same as Appendix
E.1.4 except for the following changes:

• nssub−models = 2000

• piter = 0.35. We thus perform 1-shot pruning directly to the target sparsity of 35%. We find
that this seems to work best for the Phi-2 model. We posit that this might be because the
Phi-2 models use LayerNorm(Ba et al., 2016) whilst the other models we explore, LLaMA
and Mistral use RMSNorm.

• Due to its relatively small size, the 1.8B pruned model can be fully fine-tuned on a single
A6000 GPU over 100k sequences of length 2,048 tokens from the C4 dataset instead of
using LoRA.

E.2 Impact of regression and perturbation ablation details
For the experiment in E.8, All Bonsai hyper-parameters are the same as Appendix E.1.4 except
piter = 0.1 to speed up pruning.

A simple alternative to Bonsai is to leverage the prior ρ, computed from the unperturbed par-
ent model, and make pruning decisions exclusively according to this. This is the No Perturbation
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+ No Regression baseline in Figure 7.3. This approach has quite poor performance. We
can further improve this baseline by adding back perturbative aspect where we prune the parent
model according to ρ′ which is computed by aggregating the ρ metric computed over the per-
turbed models. Note that we use a Wanda based metric to define ρ for this experiment. Module
level analogues of the unstructured pruning metrics we explore are defined in Appendix E.6.

Table E.5: Experiment on linear regression to estimate module importances. Wikitext-2 Perplex-
ity. LLaMA-2 7B pruned to 50% sparsity

Linear Regression Relative Speepdup w/o Post-Pruning Adaptation w Post-Pruning Adaptation

No 2.06 146.57 9.68

Yes 1.77 61.63 9.15

E.3 Varying the pruning fraction per-iteration
For the experiment in Section E.8, All Bonsai hyper-parameters are the same as Appendix E.1.4
except we vary piter.

Table E.6: Varying the fraction pruned at a time. Wikitext-2 Perplexity. LLaMA-2 7B pruned to
50% sparsity

Prune Frac Relative Speepdup w/o Post-Pruning Adaptation w Post-Pruning Adaptation

0.05 1.58 19.47 8.89

0.1 1.77 61.63 9.15

0.20 1.67 209.44 9.57

E.4 Varying the number of calibration data points for prun-
ing

All Bonsai hyper-parameters are the same as Appendix E.1.4 except we vary nsdata and piter =
0.1 to speed up pruning.

E.5 Post-pruning adaptation
For this experiment, All Bonsai hyper-parameters are the same as Appendix E.1.4.
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Table E.7: How many data-points to consider during forward passes. Wikitext-2 Perplexity.
Llama-2 7B pruned to 50% sparsity

nsdata w/o Adapt w Adapt

8 130.04 9.45

32 61.63 9.15

E.6 Impact of prior
For this experiment, All Bonsai hyper-parameters are the same as Appendix E.1.4 except we vary
ρ

E.6.1 ρ is Activation Magnitude
MLP / Fully Connected Module: Let d be the intermediate dimension of the MLP to be pruned.
Note that for all transformer models evaluate, the MLP components are 2 layer and thus have a
single intermediate dimension. For any data-sample sequence b, we flatten model activation at
this point a ∈ RB×S×d → RBS×d and then compute the following averaged activation magnitude
: (

ρ ∈ Rd
)
∝ â =

1

B

∑
b

Mean

(∣∣ab

∣∣, axis =0

)
(E.1)

Self-Attention Module: For any data-sample sequence b, the output of the self attention module
before the final output projection is a ∈ RB×S×dh×h where h is the number of attention heads
and dh is the size of each head’s output. We can flatten a ∈ RB×S×dh×h → RBSdh×h and then
use the same formula as Equation E.2 above to calculate ρ.(

ρ ∈ Rh
)
∝ â (E.2)

E.6.2 ρ is Wanda (Sun et al., 2023a)
MLP / Fully Connected Module: Let d be the intermediate dimension of the MLP to be pruned.
Let W ∈ Rd×o be the output projection matrix for the MLP. For any data-sample sequence b, we
flatten model activation before the final output, a ∈ RB×S×d → RBS×d and then compute the
following metric which is a module level analogue of Wanda:(

ρ ∈ Rd
)
∝ â =

1

o

∑
o

ao

ao =

∣∣∣∣W [:, o]

∣∣∣∣⊙ RootMeanSquare

(
a, axis =0

) (E.3)

Self-Attention Module: Let W ∈ Rd×o be the output projection matrix for the self-attention
module. For any data-sample sequence b, the output of the self attention module before the final
output projection is a ∈ RB×S×dh×h where h is the number of attention heads and dh is the
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size of each head’s output. We can flatten a ∈ RB×S×dh×h → RBSdh×h and then use the same
formula as Equation E.2 above to calculate ρ ∈ Rh.

E.7 How many perturbative samples are reasonable?
For this experiment, All Bonsai hyper-parameters are the same as Appendix E.1.4 except piter =
0.1 to speed up pruning.

Table E.8: Varying the number of sub-models generated. Wikitext-2 Perplexity. LLaMA-2 7B
pruned to 50% sparsity

Num Samples w/o Post-Pruning Adaptation w Post-Pruning Adaptation

1000 22.09 9.25

200 61.63 9.15

50 NaN 9.24

Using nssub−models = 50 results in an model with NaN perplexity on the Wikitext validation
set. We posit that this is because of the LLaMA models are half precision, and removing the
wrong modules can result in activations going outside of the FP16 dynamic range for unique
data-points. Note that we are able to recover good performance of the model after fine-tuning
though (we do not observe NaNs with the Wikitext-2 training data). This indicates that Bonsai
actually recovers good modules even using as few samples as 50 sub-models.

E.8 Mistral-7B Experiment Details
In addition to the primary experiments on the LLaMA and Phi-2 models, supplementary exper-
iments were performed on the Mistral-7B Jiang et al. (2023) model in comparison with Wanda
results on the stated model. We apply Bonsai with the same hardware and configuration settings
as used for the LLaMA and Phi-2 experiments. We target different pruning fractions (0.05, 0.1,
and 0.2) across different numbers of samples and masks per iteration to evaluate the method’s
performance under varying sparsity conditions.

The Mistral-7B model architecture differs from the LLaMA architecture in its use of group
query attention and sliding window attention in lieu of the standard self-attention used in most
transformer-based models like LLaMA Jiang et al. (2023). We factor these differences into
consideration in the implementation of Bonsai for Mistral. For the experiments that produced
the results below, all Bonsai hyper-parameters are the same as Appendix E.1.4.

Table E.9 presents the test perplexity results for Mistral-7B under different pruning methods.
Considering the fully-structured sparsity nature of Bonsai, it achieves a test perplexity of 47.5
without post-pruning adaptation, with 1.66× inference speedup. After performing post-pruning
adaptation on our pruned Mistral-7B, perplexity dropped drastically to 10.08. Note that the
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reported results of Wanda-pruned Mistral-7B are not fine-tuned afterward; if they were, their
results would be marginally better than Bonsai’s results. However, as shown in Table 7.3 latency
speedup would have dropped rapidly, while Bonsai stays the same at 1.66×.

Table E.9: Test perplexity of Mistral-7B model on Wikitext-2 across fully-structured Bonsai and
semi-structured Wanda methods.

Sparsity Level Method Test PPL

Original, unpruned Mistral-7B N/A N/A 5.245

Wanda semi-structured 2-4
magnitude 13.81

Wanda 12.38
SparseGPT 10.46

Bonsai (w/o Adaptation) structured 50%
magnitude 67.48

Wanda 47.50

Bonsai (w/ Adaptation) structured 50% Wanda 10.08

We further investigate the pruning habits of Bonsai by examining the pruned layers of Mistral,
as shown in Figure E.1. We notice a recurring theme: when an attention layer is significantly
altered, it leads to compensation in the next layers within the sequence. This adaptive behavior,
termed the ”Hydra effect” by (McGrath et al., 2023), implies that the layers within a language
model interact in a way that changes in one layer prompt adjustments in another. (McGrath et al.,
2023) specifically mentioned that when one attention layer was removed from a language model,
the model was still able to self-repair and produce similar outputs; but it did so by relying more
heavily on other layers.
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Figure E.1: Mistral’s pruned attention layers. The heavily pruned layers are usually preceded
by or sandwiched between lightly-pruned layers, exhibiting the self-repairing ”Hydra effect”
McGrath et al. (2023).

Should Bonsai prune iteratively? Table E.10 demonstrates the benefits of using Bonsai in
an iterative fashion. Pruning slowly (piter = 0.05) yields the best results, but this comes at the
cost of increasing the total time to prune the model. The performance gap between values of
piter persists even after post-pruning adaptation, indicating that slower pruning allows for more
accurate estimates of module importance.
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Table E.10: Varying piter. Wikitext-2 perplexity of LLaMA-2 7B pruned to 50% sparsity.

piter = 0.05 piter = 0.1 piter = 0.2

w/o Adapt 19.47 61.63 209.44

w Adapt 8.89 9.15 9.57
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Atri Rudra, and Christopher Ré. Kaleidoscope: An efficient, learnable representation for all
structured linear maps. arXiv preprint arXiv:2012.14966, 2020.

Xuanyi Dong and Yi Yang. Searching for a robust neural architecture in four gpu hours. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1761–1770, 2019.

Liam Li, Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Geometry-aware gradi-
ent algorithms for neural architecture search. arXiv preprint arXiv:2004.07802, 2020.

Ilja Kuzborskij and Christoph Lampert. Data-dependent stability of stochastic gradient descent.
In International Conference on Machine Learning, pages 2815–2824. PMLR, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Lan-
guage models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Iz Beltagy, Arman Cohan, and Kyle Lo. Scibert: Pretrained contextualized embeddings for
scientific text. CoRR, abs/1903.10676, 2019b. URL http://arxiv.org/abs/1903.
10676.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. 2018.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. Deep contextualized word representations. CoRR, abs/1802.05365,
2018c. URL http://arxiv.org/abs/1802.05365.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. CoRR,
abs/2005.14165, 2020b. URL https://arxiv.org/abs/2005.14165.
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Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeon-
woo Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ash-
ley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail
Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Hen-
rique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass, Vitchyr Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya
Ramesh, Cameron Raymond, Francis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri
Roussez, Nick Ryder, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather
Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov,
Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jor-
dan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher,
Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine
Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley,
Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya, Chelsea Voss,
Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin
Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Woj-
ciech Zaremba, Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng,
Juntang Zhuang, William Zhuk, and Barret Zoph. Gpt-4 technical report, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. On the

133



dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021
ACM conference on fairness, accountability, and transparency, pages 610–623, 2021.

Skanda Vivek. The economics of large language mod-
els, Sep 2023. URL https://medium.com/emalpha/
the-economics-of-large-language-models-2671985b621c.

Siddharth Samsi, Dan Zhao, Joseph McDonald, Baolin Li, Adam Michaleas, Michael Jones,
William Bergeron, Jeremy Kepner, Devesh Tiwari, and Vijay Gadepally. From words to watts:
Benchmarking the energy costs of large language model inference. In 2023 IEEE High Per-
formance Extreme Computing Conference (HPEC), pages 1–9. IEEE, 2023.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural net-
work. ArXiv, abs/1503.02531, 2015.

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. Knowledge distillation of large language
models. arXiv preprint arXiv:2306.08543, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.
Smoothquant: Accurate and efficient post-training quantization for large language models.
In International Conference on Machine Learning, pages 38087–38099. PMLR, 2023.

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander
Ratner, Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. Distilling step-by-step! outperform-
ing larger language models with less training data and smaller model sizes. arXiv preprint
arXiv:2305.02301, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In International Conference on Machine Learning, pages 10323–10337. PMLR,
2023.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

Paul Bridger. Pytorch memory tuning, Jul 2023. URL https://paulbridger.com/
posts/pytorch-memory-tuning/.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017a.
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