Provably Efficient Coscheduling of Computation and
Memory through Disentanglement

Jatin Arora

CMU-CS-24-141
August 2024

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Umut A. Acar, Chair
Guy E. Blelloch
Robert Harper
K. Rustan M. Leino (Amazon)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2024 Jatin Arora

This research was sponsored by the National Science Foundation under award numbers CCF-1314590, CCF-
1408940, CCF-1629444, CCF-1901381, CCF-2028921, CCF-2107241, CCF-2115104, and CCF-2119352. The views
and conclusions contained in this document are those of the author and should not be interpreted as representing

the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other
entity.



Keywords: parallel programming, functional programming, parallel algorithms, automatic
memory management, garbage collection, disentanglement, hierarchical memory management,
race conditions



For my godfather



iv



Abstract

Because of its many desirable properties, such as its ability to control effects
and thus potentially disastrous race conditions, functional programming offers a
viable approach to programming modern multicore computers. This has led to the
development of several parallel functional languages, typically based on dialects
of ML and Haskell. However, these languages have traditionally underperformed
compared to procedural languages such as C and Java. The primary reason for this
underperformance has been the lack of scalable memory management techniques
that can match the increased demand of memory in parallel execution.

Building on a long line of work on parallel memory management, this thesis
proposes provably efficient techniques for managing memory in parallel functional
programs. The key idea behind our techniques is to coschedule the parallel compu-
tation with its data, enabling the memory manager to exploit the disentanglement
hypothesis—the idea that parallel tasks of a program largely execute independently
and avoid side-effecting data that may be accessed by others—for efficiency. We
implement these techniques in the MPL compiler for parallel ML, and our experi-
mental results show that the techniques can marry the safety benefits of functional
programming with performance.



vi



Acknowledgments

First, I want to thank my advisor Umut Acar, for making my PhD journey possible. Umut has
been the most understanding, appreciative, and larger than PhD advisor I could have hoped for.
He taught me more things than I can list in both life and research. Perhaps my favorite lesson
from Umut was learning to recognize, appreciate, and expect quality work. Thank you, Umut!

I would like to thank members of my thesis committee: Robert Harper, Guy Blelloch, and
Rustan Leino. Bob’s (Robert) ideas and convictions have always been an inspiration to me
and I really appreciate his support throughout the thesis process. Guy has been a supportive
mentor and teacher, from whom I have learnt a lot. Rustan: I want to thank you for hosting
me at Amazon and for being such a great mentor from Day 1. Thank you all for your time and
cooperation with my thesis defense.

I have been fortunate to work with a lot of great people during my time at CMU. I want to
especially thank Sam Westrick for essentially being my second advisor, and also tolerating all
the stupid ideas I have had throughout the years. I learnt a lot from you Sam, and the sheer joy
with which you approach your work is a reference for me. I also want to thank Stefan Muller,
Pengyu Liu, Dantong Li, Mingkuan Xu, and Yongshan Ding, who taught me a lot. It was a
pleasure to work with you all.

I am very grateful to my mentors who have guided me to where I am today. Thank you
Frank Pfenning for introducing me to Programming Languages, which was my favorite class.
Thank you Jan Hoffmann, Marijn Heule, Stephen Brookes, David Kahn. I am very grateful to
Krishna Subramaniam, Parosh Abdulla, Faouzi Atig, Supratik Chakraborty, Akshay S, Rupak
Majumdar, Anthony Lin, Sumith Kulal, Shubham Goel for introducing me to research in my
undergrad.

I feel most fortunate to have my friends, who provide me with a warm, comfortable space.
I want to thank my roommates, old and new, Praneeth Kacham, Vishnu Raghuraman, Saket
Dingliwal, Divyansh Pareek, for putting up with me. My experience would not have been the
same without Peter Manohar, Magdalen Dobson, Hugo Sadok, Long Pham, Luiz Sa, Rachel Lee,
Alex Chen, Beatrice Lee, David Kahn, and Yue Niu. Special thanks to Akshat Gupta, Braham
Chawla, Kshitij Jain, and Shaan Vadiya for always being there, even without being here. Thank
you all for so many memories.

During my PhD at CMU, I met many people who made being on campus fun. Thanks Nirav
Atre, Ziv Scully, Jay Bosamiya, Siva Somayyajula, Daniel Anderson, Abhiram Kothapalli, Yue
Yao, Lucio Dery, Justin Whitehouse, Matthew Weidner, Bernardo Subercaseaux, Shir Maimon,
Mikhail Khodak, Siddharth Prasad, Dorian Chan, Suhas Jayaram, Ananya Joshi, Aditi Kabra,

vil



and Dravyansh Sharma. Thank you all for creating an enjoyable campus atmosphere.

Thank you, Urvee, for your love and unwavering support. Your child-like lightheartedness
will always remind me to enjoy the simple things in life.

To my parents, Bharat and Seema, thank you for always prioritizing my life and giving
me an amazing, comfortable platform. Thank you Nana, for all the memories and card games.
Thank you Massis, Renu and Puja, for spoiling me with your food, gifts, and warmth. A special
note for two people who played a formative role in my life and who I miss dearly: Ajay Saluja,
for always pushing me to pursue my dreams, and Jatinder Mehra, my godfather, for making me
believe in myself.

viii



Contents

1 Introduction

2

3

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Fork-Join Parallelism and Programming Languages . . . ... ... ... .. ..
The Performance Challenge . . . . . ... ... ... ... .. ... ... .....
Disentanglement Hypothesis . . . . . ... ... ... ... ...
Independent Memory Management . . . ... ...................
Coscheduling . . . . . . . .
Work and Space Bounds . . . . . ...
Implementation and Evaluation . ... ... ... .. ... ... ... ...,
Disentanglement Hypothesis beyond Fork-Join. . . . .. ... .... .. .. ..

Coscheduling of Computation and Memory

2.1

2.2
2.3

2.4

Language . . . . . . . . .. e e
21,1 Syntax . . ... e e
212 TaskTrees . . . . . . . . .
213 HeapTrees . . . . . . . . . e
214 Semantics . . . . ... ...
Heap Tree and Pointer Directions . . . . . . ... ... ... ... ........
Coscheduling Tasksand Heaps . . . . . . .. ... ... ... ... ... .....
2.3.1 Overview and Examples of Heap Scheduling . . . . . ... ... ... ..
2.3.2  Heap Scheduling Algorithm . . . .. ... ... ... ... ... .....
2.3.3  Proof of the Cluster Invariants . . . ... ... ... ...........
Collection Policy . . . . . . . . . . .

Disentanglement Hypothesis

3.1
3.2

3.3

Disentanglement . . . . . . . . .. ... L
Entanglement Semantics . . . . . .. ... ...
3.21 Syntaxand Task Trees . . .. . ... ... ... ... .. ... ...
3.2.2  Entanglement Sources, Regions, and Cost Metrics . . . . . .. ... ...
323  Semantics . . . . ...
Evidence for the Disentanglement Hypothesis . . . . .. ... ... ... ....
3.3.1 Deterministic Programs . . . . .. .. ... ... .. 0 L.
3.3.2 Nondeterministic Programs Without Entanglement . . . . . . ... ...

ix

11
12
12
13
13
14
16
17
18
20
24
25



4

3.3.3 Entangled Programs . . . ... ... .. ... .. ... ... ... ... 37

3.4 Limitations and Extensions . . . . . . ... ... . ..o oL oL 39
Memory Management 41
4.1 Background: Garbage Collection . . . . . . .. ... ... .. .. ... ... ... 42
4.2 Accounting for Inter-Heap Pointers . . . . . .. ... ... ... ... ..... 43
4.2.1 Types of Inter-Heap Pointers and Example . . . . . . ... ... ... .. 44
4.2.2  Barriers, Remembered Sets, and Heap Tree . . . . . . ... ... ... .. 44
423 Managing Up Pointers . . . . . .. .. .. ... . o . 45
424 Managing Down Pointers . . . . ... ... ... ... ... ... . ... 46
425 CrossPointers. . . . .. ... ... ... oo o o 46
4.3 Tracking and Managing Entanglement . . . .. ... ... ... ... ...... 47
431 OVeIVIEW . . . . . . . 47
43.2 Read barrier for mutable objects . . . . . ... ... o o000 49
4.3.3 Entanglement region and its pinning . . . . ... ... L. L. 51
434  Expiration depth of entanglement sources . . . . . ... ... ... ... 52
4.3.5  Write barrier for mutableupdates . . . . . ... ... ... ... ... .. 52
44 Bounding the Overhead of Tracking Entanglement . . ... .. ... ... ... 53
4.5 Independent Garbage Collection of Heaps. . . . . .. ... ... . ... ..... 56
4.5.1 Identifying and Discarding Expired Entanglement Sources . . . . . . . . 56
4.5.2 Discarding Stale Remembered Set Entries . . . . ... ... ....... 57
453 TracingtheHeap . . . ... ... ... ... .. 57
4.5.4  Concurrent Reclamation of Memory . . . .. ... ... ... ...... 58
Provable Efficiency 61
5.1 Revisiting Language Syntax . . . . . .. ... .. o oo o 62
5.2 Memory Management: An Abstract View . . . . . .. ... ... ... ...... 63
5.2.1 DataStructures . . . . . ... ... ... o o oo oo 63
5.2.2 Maintaining Snapshots and Remembered Sets . . . . ... ... ... .. 64
5.23 Down Pointers Assumption . . . .. ... ... ... .. 000 L. 66
5.2.4  Collection Policy and Algorithm . . . .. ... ... ... ... ..... 66
5.2.5  Structural Properties of the Heap Clusters . . . . .. ... ... ... .. 67
5.3 Determinacy Race Free Programs . . . . . ... ... ... ... .. ... ... 68
5.3.1 Unordered Reachable Space: Sequential Baseline . ............ 68
532 SpaceBound ... ... ... ... 71
533 WorkBound . . . ... ... 73
5.4 Nondeterministic Programs . . . . . . .. ... .. .. .. oL 74
54.1 Race Factor for Nondeterministic Programs . . . . ... ... ... ... 75
5.4.2 Sequentialized Space . . . . ... ... oo 79
543 Workand SpaceBounds . . . ... ... ... . o o oL 83
54.4 Boundingthecounter . ... ... ... ... ... ... ... . ... 84



6 Implementation 89
6.1 CoschedulingandHeaps . . . ... ... ... .. .. ... ... ... . ... 89

6.2 Tracking of Inter Heap Pointers . . . . . ... ... ... ... .. ... ..... 91

6.3 Optimizing the Read Barrier . . . . ... ... ... ... ... .......... 92

6.4 Garbage Collection Algorithms. . . . . . .. ... ... ... ... ... ..., 93

7 Evaluation 95
7.1 Overheads and Scalability . . . . . . ... ... ... ... ... 99

7.2 Disentanglement is Not Penalized . . . . . ... ... ... ... ... ..... 100

7.3 Entanglement Management Overhead . . . . . . ... ... ... ......... 100

7.4 Cross-Language Comparisons . . . . . . . . . ... ... 101

8 Disentanglement Hypothesis for Futures 105
8.1 Language . . . . . . . . . . 106
81.1 Syntax . . . .. ... e 106

8.1.2 Computation Trees . . . . . . .. ... ... L o 108

8.1.3 Disentanglement . . . ... ... ... ... o L. 110

8.1.4 JOINS . . . . . .. e e e e e 111

8.1.5 Language Semantics . . . .. ... ... ... .. oL 113

8.2 Race Freedom and Disentanglement . . . . . .. ... ... ... ......... 116
8.2.1 Determinacy Race Freedom . . . . ... ... ... .. .......... 117

8.2.2  Determinacy Race Free Programs are Disentangled . . . . . . ... ... 118

8.23 ProofofkeyLemmas . . ... ... ... ... ... ... .. .. .. ... 121

824 HelperLemmas . . . . ... ... ... ... 129

8.3 Applications of Futures with Disentanglement . . . . . ... ... ... ... .. 130
83.1 Pipelining . . . . . . ... 130

83.2 WebServer . ... ... ... 131

8.3.3 PDF viewer with disentanglement . . . ... ... ... ... ...... 133

8.3.4  Futures and references for dynamic programming . . . . . .. ... ... 135

9 Related Work 139
9.1 Parallel Memory Management . . . . .. . ... .. ... ... ... ..... 139

9.2 CostBounds . .. ... ... ... 141

9.3 Parallel Programming Languages . . . ... ... ... ... ........... 142

9.4 Disentanglement and Futures . . . . . ... ... ... 143

10 Conclusion and Future Work 147
10.1 Conclusion . . . . . . . . e 147
10.2 Future Work . . . . . . o e 148
Bibliography 151

pel



xii



2.1
2.2

2.3
2.4

2.5

2.6

31

3.2
3.3

List of Figures

Syntax . . ...

Forks and joins. Tasks are spools and their heaps are gray rectangles. The “stop-

watch” denotes suspended tasks, waiting for its children to finish. . . . . .. ..

Language Dynamics defining task trees and heap trees. . . . . . ... ... ...

The figure shows a heap tree where the gray boxes denote heaps. The circles
denote locations allocated in each heap. The arrows denote pointers. The black
arrows denote internal pointers, those between locations within the same heap
and the red arrows denote inter-heap pointers, those between locations across

heaps. . . . ..

Two heap trees representing a parallel evaluation with five tasks: A, B, C, D, and
E. The gray boxes denote heaps and the ellipses/bubbles denote heap clusters.
The left and right trees show the heap clustering before and after task D ter-
minates and becomes passive. When task D is active, the heap scheduler keeps
heap D and its sibling E in separate clusters. After task D becomes passive, the
heap scheduler puts them together, and the clustering appears as if D executed

sequentially before E. . . . . . ...
The Coscheduling Algorithm.. . . . . .. ... ... ... ... ... ... ...

The example shows a heap tree along with allocations performed by the corre-
sponding tasks A, B, and C. The arrows denote pointers between the allocations.
The hash table ht in heap A contains key k allocated in heap B. If task C reads
the hash table and its contents, it would access the key k, making the key en-
tangled, as denoted by the orange highlighting around k. But, this is temporary.
After tasks B and C join, we merge their heaps with the parent A to create the
heap A-H B+-C. Since tasks B and C have joined, we don’t consider them con-
current, and the key k becomes disentangled. We denote this by removing the
orange highlight from key k. Thus, whether an object is disentangled/entangled

may change as the execution proceeds. . . . ... ... ... ... ... ... ..
Syntax . . ...

Language Dynamics. . . . . . . . .. .. L o e e

13
15

18

29



3.4

3.5
3.6
3.7

4.1

4.2

4.3

4.4

5.1
5.2
5.3
5.4
5.5

5.6

5.7
5.8

Parallel reduce function takes a binary operation £, its identity id, and an array

and computes the “sum”, £ (a[0], f(a[1], ... f(a[n-2], aln-11)

) e e e e 35
The implementation of non-deterministic BFS. . . . . . ... ... ... ..... 36
Concurrent hash tables: insert function. . . . . . . ... ... ... ....... 37

The code shows a MPL program for computing graph reachability. The program
calls functions Idd and contract repeatedly, but each time with a smaller input.
Theoretically, the worst-case entanglement ceiling of reach is O(J - m), which
is fraction [ of the total memory. In practice we observe that the amount of
entangled memoryis < 1%. . .. ... .. ... L L 38

The code on the left demonstrates how down and cross pointers are created
by mutable effects. The figure on the right shows a heap tree where the gray
boxes denote heaps, green boxes are mutable references and circles represent
immutable objects. The red arrows indicate pointers. . . . ... ... ... ... 45
The figure shows a heap tree with mutable and immutable objects represented
as squares and circles respectively. The black pointers are between ancestor-
descendant objects and the red pointers are between concurrently allocated ob-
jects. The targets of red pointers are the entanglement sources. Each entan-
glement source has an entanglement region, which includes objects reachable
from the source upto a mutable frontier. The entanglement regions are depicted
using blue bubbles. The figure shows two entanglement regions that overlap
and also shows an entangled region with a single mutable object. . . . .. ... 48
Pseudocode read shows our read barrier. It uses pin_region and set_ sinfo as
helper functions to pin entanglement regions and maintain the exp-depth of en-
tanglement sources respectively. The procedures account for concurrency with

other tasks and also with the garbage collector. All procedures are lock-free. . . 50
procedure try_COpYy . . . . . ..o e e e 58
Syntax . . . . 62
Maintenance of the snapshots, remembered sets, and heap clusters. . . . . . .. 65
Sequential Cost Semantics . . . . . ... ... .. L 70
Additional Syntax for defining race factor . . . . . . ... ... Lo L. 75

Cost Semantics for calculating the race factor by tracking the readers and writ-
ers of mutable references. . . . . . . ... Lo Lo 77

Rules for computing the race factor of a given program state (R; W; u; T'; e). The
context tracks the set of allocations A along the root-to-leaf path, and the rules
inductively add allocations of each task from the task tree to this set. The reader
store R, writer store W, and the memory store ; remain unchanged by the rules. 78

Cost semantics for sequentialized space in parallel executions with races . . . . 80

Computing Sequentialized Space ofaState . . . . . ... ... ... ... .... 81

Xiv



7.1

7.2
7.3
7.4
7.5

7.6

8.1
8.2

8.3

8.4
8.5
8.6
8.7

8.8

3.9

8.10

8.11
8.12

Comparison with sequential baseline: times, max residencies, overheads (OV),

speedups (SU), space blowups (BU), and entanglement factors (¢). . . ... ... 97
Speedups, continued in Figure 7.3 . . . . . . ... ..o 98
Speedups,continued . . . . . . ... L 98
Stress test for entanglement management overhead . . . .. .. ... ... ... 100

MPL vs C++, Java, Go, and OCaml: time (seconds) on 72 processors. The time
ratios are relative to MPL and show how fast it runs w.r.t. other languages
(larger ratios favor MPL). The geomeans show the average of these ratios. . . . 102
MPL vs C++, Java, Go, and OCaml: space (GB) on 72 processors. The space ratios
are relative to MPL and show the proportion of memory MPL saves, w.r.t. other
languages. (larger ratios favor MPL). The geomeans average these ratios. . . . . 102

Syntax of AV . . ... 107
Two computation trees representing an evaluation where a thread main spawns
a future named a, which in turn spawns future b, and then the main thread syn-
chronizes with future a to retrieve its result (location ¢”). We denote each node
of the tree with a box containing a possibly empty action trace. The labels on
the boxes denote the thread that performed the actions. The left and right trees
show the tree structure without and with the join transformation. Without the
join transformation, the left tree (mis-)characterizes the computation as entan-
gled, as it represents the allocation ¢” of future a to be concurrent to the syn-
chronized access of location ¢” by thread main. With the join transformation,
the right tree correctly characterizes the computation to be disentangled as the
allocation action is an ancestor of the synchronization action. . ... ... ... 109
The figure defines the judgements A - T de and A + ¢ de, which formalize

disentanglement for a tree 7" and a node t respectively. The context A contains

locations allocated by the ancestor actions of the tree/node. . . . . . . ... ... 110
Function Join . . . . . . . . . . . e 112
Dynamics of \Y(continued in Figure 8.6) . . ... ... ... ... ........ 114
Dynamics of \Ycontinued . . . ... ... ... .. .. ... ... .. ... ... 115

The figure defines the judgement F' = 7' drf, where F'is a set of locations that
actions of 7" must not mention. The function AW takes a tree and returns the
set of locations allocated/updated by it. . . . ... ... ... . ... ... ... 117
Strengthening of disentanglement and race freedom with invariants on futures
and MeMOTY . . . . . . . . L e e e e e e e e e 119
Pipelined merge with futures. We define the function #1 x = get (fst x)
and #2 x = get (snd x), where fst and snd project out the first and the

second componentof apair. . . ... ... ... o o oL 131
A server with pollable futures and disentanglement . . . . . .. ... ... ... 132
PDF viewer with disentanglement . . . . . . ... ... ... ........... 134

An illustration of data-dependent parallelism in a DP matrix: two paths can
proceed in parallel regardless of all the other elements in their respective rows. 135

XV



8.13 Dynamic programming with futures, state, and disentanglement

XVi



Introduction

Every computing device today, ranging from smartphones with 10 cores and workstations with
dozens of cores [161], to servers with hundreds [65], and even thousands of cores [141], is a par-
allel computer. Motivated by these hardware advances, researchers have designed high-level
programming languages to utilize modern multicore chips. These languages abstract away the
low-level hardware and memory details, providing programmers with high-level constructs
such as parallel tuples, parallel-for, fork-join, and async-finish to express parallelism. This ab-
straction relieves programmers from the burden of managing the parallel execution manually.

Instead, runtime systems manage the parallel execution. These runtime systems are respon-
sible for scheduling parallel programs on processors and managing memory. A key goal of such
runtime systems is to provide an abstract cost specification that allows the programmer to rea-
son about the performance of their code. To achieve this goal, nearly all parallel languages
strive to abide by Brent’s theorem, which states that a program with work W (total number
of instructions) and span S (longest chain of dependencies) can be executed in time 7p on P
cores such that

w
TPSF-FS

Indeed, many effective scheduling algorithms that match the Brent bound have been de-
signed (e.g., [1, 6, 22, 43, 48]), and implemented in a wide variety of parallel programming sys-
tems [38, 42, 59, 83, 109, 111, 112, 136, 163]. However, all of this work either ignores the space
performance and cost of memory management, or assumes perfect (manual) memory manage-
ment. This shortcoming invalidates the performance guarantees provided by the scheduling
algorithms, because they do not account for the cost of memory management—a core compo-
nent of almost all high-level programming systems. The absence of bounds for parallel mem-
ory management is not just a theoretical curiosity, unless carefully accounted for, the cost of



garbage collection can easily undo the benefits of parallelism.

In this thesis, we develop provably work- and space- efficient techniques for automatically
managing the memory of parallel programs. Specifically, we bound the work and space for
P-processor runs in terms of work and space of a sequential run. The bounds account for the
cost of scheduling and the cost of garbage collection. We implement our memory management
techniques in a parallel functional language called MPL and establish that these techniques are
not only theoretically sound, but also practically efficient, as they scale to dozens of cores.

1.1 Fork-Join Parallelism and Programming Languages

Fork-Join parallelism is a powerful technique for utilizing modern multicore processors. It
abstracts away the complexities of managing parallelism manually by providing programmers
with high-level constructs such as parallel tuples, parallel-for, fork-join, and async-finish. These
constructs are then managed by the runtime system, which automatically creates and sched-
ules parallel tasks using a task scheduler. As a result, fork-join parallelism has been adopted
by many programming languages and libraries including procedural languages such as Intel
Thread Building Blocks (a C++ library) [98], Cilk (an extension of C) [50, 84], OpenMP [134],
Task Parallel Library (a .NET library) [111], Rust [144], Java Fork/Join Framework [109], Ha-
banero Java [97], and X10 [59]. While these languages deliver great performance, they often
make parallel programming challenging because of their lax control over effects or mutation.
With little or no control over effects, it is easy for programmers to create race conditions, which
can have disastrous consequences [8, 10, 51, 52, 54, 75, 117, 130, 166].

To address these challenges, researchers have proposed functional languages that make
parallel programming much simpler and safer, such as multiLisp [90], Id [23], NESL [38, 42],
various forms of parallel Haskell [92, 112, 116, 136], Multicore OCaml [159], and several forms
of Parallel ML [83, 89, 133, 138, 157, 163, 174, 183]. Some of these languages only support pure
or mutation-free functional programs, thereby eliminating data races by construction. Others
such as Parallel ML [89, 174, 178] and Multicore OCaml [159] allow side effects, but use pow-
erful type systems to simplify reasoning about data races, for example, by separating mutable
and immutable data. Functional languages also support higher-order functions, such as map,
filter, reduce over collections of data, which enable expressing parallel algorithms elegantly and
succinctly.

By reducing the emphasis on in-place updates/mutation and supporting the use of higher-
order bulk operators, functional languages promote a style of parallel programs that is simpler
and safer. However, achieving practical efficiency and scalability with this approach has been
challenging. The primary reason for this is memory: such programs often rely on immutable
data structures and require frequent allocations [14, 16, 26, 71, 72, 86, 87, 116]. This allocation
rate further escalates with parallelism, because multiple cores can allocate at the same time,
overwhelming traditional memory management techniques.

Thus, writing correct, efficient, and scalable parallel code remains challenging for program-
mers today. In this thesis, we address this challenge by improving the efficiency of parallel

2



functional programs. Specifically, our goal is to design automatic memory management tech-
niques that scale to meet the allocation demands of these programs.

1.2 The Performance Challenge

Automatic memory management, essential for safety of parallel programs, presents significant
challenges for their performance. Our goal is to support fast and parallel memory manage-
ment because parallelism increases allocation rates as multiple processors demand memory
simultaneously. In parallel functional languages, nearly all memory managers facilitate this by
partitioning the memory into “processor-local” regions or heaps, so that each processor can
allocate in its own private heap [26, 108, 116, 158].

While heaps enable fast and parallel allocation, they increase the underlying complexity and
costs of memory management due to inter-heap pointers. Inter-heap pointers are references
from objects in one heap to objects in another heap. If the memory manager does not account for
these pointers, it may reclaim objects that are still in use, leading to program errors or crashes.
Therefore, the memory manager must account for these pointers to ensure that all “live objects”
are preserved. Managing these pointers can require expensive synchronization, with costs that
increase with scale. Researchers have broadly proposed two techniques to handle such pointers:

1. Stop-the-world synchronization. This technique halts all processors during garbage collec-

tion and determines the “roots” from each processor. While efficient for low core counts,
it becomes impractical as the core count increases. The synchronization overhead in-
herent in the stop-the-world significantly increases with the number of cores and harms
scalability. This is particularly problematic for parallel functional programs that require
frequent garbage collections [15, 19].

2. Promotion. This technique preemptively copies objects from processor-local heaps to a
shared global heap to manage inter-heap pointers. Promotions require copying reachable
objects from an inter-heap pointer and can be triggered by scheduler actions, making it
difficult to prove bounds on their runtime and space impact. Promotions have proved to
be expensive in practice [89, 159].

Thus, even though heaps enable fast and synchronization-free allocation, they introduce

a performance challenge due to inter-heap pointers. These pointers are a fundamental
and unavoidable consequence of using heaps, as they exist even in purely functional programs
that perform no mutable effects and are deterministic. When the scheduler migrates tasks be-
tween processors, it causes multiple processors to access the same memory locations, resulting
in pointers between their heaps. Managing these pointers results in overhead and harms scala-
bility. This creates a tug of war between synchronization-free allocation, which is essential for
the performance of functional programs, and scheduling, which is essential for scalability.

Because of these fundamental challenges, current techniques for the processor-local-heap

architecture do not guarantee provable space and work bounds [26, 71, 72, 116, 159]. Perhaps
surprisingly, this limitation applies even to purely functional programs, which are easier to an-
alyze due to their deterministic behavior and freedom from side effects. This is in stark contrast



to techniques for sequential memory management, where nearly all programming models are
provably space and work (time) efficient [101].

To begin addressing these challenges, we propose the disentanglement hypothesis, which
motivates a novel organization of heaps and enables efficient tracking of inter-heap pointers.
This sets the foundation for coscheduling (Section 1.5) of computation and memory, which ex-
ploits program parallelism to deliver provable efficiency.

1.3 Disentanglement Hypothesis

Consider a parallel program written using the fork-join primitive, which allows any task to fork
new child tasks that run in parallel, and then wait until the children join. These computations
form a tree of tasks, where parent-child relationships represent sequential dependencies and
sibling tasks run in parallel. For such fork-join programs, we propose the disentanglement
hypothesis, which categorizes each memory object as disentangled or entangled, based on how
tasks access (read/write) objects relative to the tasks that allocated them:

» Entangled objects: Allocated by one task and accessed by other parallel tasks

» Disentangled objects: Accessed only by tasks that are sequentially dependent on the
task that allocated them, not by parallel tasks.

The disentanglement hypothesis states that most objects in a parallel fork-join program
are disentangled, meaning they are never accessed by tasks executing in parallel. This is based
on our observation that objects become entangled through races, where parallel tasks perform
mutable operations on the same memory objects. Such races only involve a small portion of the
memory, as most parallel programs prioritize independence among tasks to achieve good paral-
lelism and avoid side-effecting memory objects that are allocated by others, avoiding entangled
objects.

For example, in a computation where two tasks A and B are executing in parallel, task A
can only access an object allocated by B through a race condition, where B writes its object in
a mutable cell and A reads it; our hypothesis is that such objects are rare.

We validate the disentanglement hypothesis both theoretically and empirically for many
fork-join programs. The hypothesis holds universally for all deterministic programs, including
purely functional and race free programs, because they don’t have any entangled objects [3,
20, 178]. Nondeterministic programs, which use mutable effects in ways that create nonde-
terministic behavior, typically have only a small portion of their memory entangled, thereby
satisfying the disentanglement hypothesis. We empirically validate this for a wide range of
parallel algorithms including those from C++ benchmark suites such as PBBS, Ligra, and Par-
layLib [12, 46, 150, 168].



1.4 Independent Memory Management

In this section, we present an overview of our memory manager that supports all fork-join
programs with arbitrary mutable effects. It achieves the following three scalability properties:
 Each task can allocate memory without synchronizing with other tasks.

o Each task can reclaim memory independently, by only tracing its own portion of the
memory.

» Tasks may share objects without any restriction, and without copy operations (a.k.a pro-

motions) or object movement

To achieve this goal, our memory manager exploits the disentanglement hypothesis by or-
ganizing memory as a dynamic hierarchy of task-local heaps that mirrors the parallel struc-
ture of computation. For each task fork/join operation, the memory manager creates and joins
heaps. Within this heap hierarchy, the memory manager distinguishes between disentangled
and entangled objects using our entanglement tracking algorithm. This algorithm is optimized
for disentangled objects, ensuring near-zero overhead for their allocations and accesses, while
only incurring some overhead for entangled objects.

By differentiating between disentangled and entangled objects, the memory manager can ef-
ficiently manage inter-heap pointers to support independent garbage collection. Pointers into
disentangled objects are relatively straightforward to track because disentangled objects are
only accessed by sequentially dependent tasks. Pointers into entangled objects do not need to
be tracked, because our entanglement tracking algorithm maintains all of them and the garbage
collector keeps them live. By tracking entangled objects, our memory manager can efficiently
account for inter-heap pointers. This allows the memory manager to independently garbage
collect any heap by only tracing memory within that heap. The memory manager also simulta-
neously enables fast allocation, since each task can allocate within its own heap. Crucially, the
memory manager never stops the world nor promotes any data.

Our use of the disentanglement hypothesis is similar to how generation-based memory
managers exploit the (weak) generational hypothesis, which asserts that most objects die young
and can be quickly reclaimed. Generation-based memory managers exploit this hypothesis by
organizing the memory into “generations”, grouping objects of similar “age”, and optimizing
the garbage collection for common case of the young objects [101]. Similarly, our approach
organizes the memory into “task-local heaps” by grouping objects allocated by the same task
and optimizing performance for disentangled objects.

1.5 Coscheduling

Partitioning memory into a dynamic hierarchy of task-local heaps that mirror the task tree
enables independent garbage collection of each heap (see Section 1.4). However, this hierarchy
has numerous heaps, making it challenging to ensure that the cumulative work and space cost
of garbage collection is bounded. Additionally, independent garbage collection assumes that the
inter-heap pointers are live, which can lead to unbounded space usage. For example, if heap A

5



has pointers to objects in heap B and B is garbage collected independently, then the objects in
B cannot be reclaimed because they are referenced by objects in A, potentially accumulating
garbage in heap B. This design raises a critical question: how can we coordinate the garbage
collection of these heaps to achieve both provable and practical efficiency?

We address this challenge by coscheduling computation with memory, where our sched-
uler simultaneously assigns tasks and heaps to processors. Our scheduler consists of a task
scheduler and a heap scheduler that distribute tasks and heaps on processors. The heap sched-
uler dynamically partitions all the heaps into heap clusters and assigns each cluster to a pro-
cessor. Each processor then independently garbage collects the heaps within its cluster.

The heap scheduler coordinates the garbage collection of different heaps by cluster-
ing them based on the parent-child relationships in the heap tree. By keeping closely
related parent-child heaps in the same cluster, it ensures that objects in these heaps
are garbage collected together by the same processor. This clustering is provably space-
efficient because each cluster roughly corresponds to the memory in a sequential execution.
Simultaneously, different processors can garbage collect their own clusters independently, be-
cause the clusters are disjoint.

To create the clusters, the heap scheduler closely follows the decisions of the task scheduler,
guaranteeing that each active task and its corresponding heap are coscheduled on the same
processor. This allows the same processor to efficiently manage both allocation and garbage
collection for the task. Together the task scheduler and the heap scheduler migrate tasks and
heaps between processors.

But we must take care with heap scheduling: As the heap scheduler migrates heaps between
processors, it can increase the work cost of garbage collection. In sequential garbage collectors,
the collection work can be easily amortized against the work of allocations. However, when
objects allocated on one processor are garbage collected by another, it complicates the justifica-
tion of the work cost. We address this via a collection policy. The collection policy determines
when a processor must garbage collect to meet the desired work and space efficiency bounds.
The policy is fully distributed: each processor makes its decisions independently of all other
processors, without any synchronization. The key aspect of this policy is that it ensures that
each processor roughly allocates as much as it collects by charging the collection work against
future allocations. However, because the policy relies on future allocations to justify the col-
lection work, it lets each processor perform one extra garbage collection. This additional work
shows up as an extra term in the work bound below.

1.6 Work and Space Bounds

With our collection policy and coscheduling, we prove space and work bounds on P-processor
computations. We start by considering deterministic parallel programs and then extend our
results to programs with nondeterministic effects.



Deterministic Programs. Deterministic programs, including those that use mutable effects
in a deterministic fashion, guarantee that their executions perform the same instructions irre-
spective of the number of cores. This allows us to use a cost metric R, the high watermark of
memory used in sequential runs, as the baseline for P-processor runs. We formally define the
metric R using a cost semantics in Chapter 5. We show the following key results for executing
a deterministic program with work 11" and sequential space I? on P processors:

« total parallel work, including the cost of garbage collection, is O(W + R - P), and
« total parallel space used for execution is O(R - P).

The total parallel space, O(R - P), is not just the live/reachable space; it is the amount of
maximum space the memory manager allocates during execution, including all its overheads.
We observe that this bound is tight for our setting. Specifically, for a work-stealing task sched-
uler, like the one we use, it is expected that parallel executions can require at least P times
as much space, even assuming perfect/manual memory management. Our space bound, after
performing fully automatic memory management, show the same asymptotic scaling, and thus
is tight. The work bound is almost tight, except it has an additive term R - P, which is a con-
sequence of the heap migrations performed by the heap scheduler. These migrations trigger P
extra garbage collections, each requiring O(R) work in the worst case.

Nondeterministic Programs. Now we consider programs that are nondeterministic due to
(determinacy) races. To account for the work and space cost of such programs, we develop
a cost semantics that tracks the memory associated with races. The semantics assigns each
computation a race factor that bounds the size of the memory that may be accessible via non-
deterministic races. We use this race factor to bound the space consumption of parallel runs,
as our memory manager keeps the objects affected by races (including entangled objects) live
until tasks involved in the races join.

Another key challenge in accounting for the cost of racy programs is the lack of an obvious
sequential baseline to compare their performance. A particular parallel run of a racy program
may not have a corresponding sequential run, because it is not always possible for a racy execu-
tion to repeat on a single core. To account for this, we define a cost metric called sequentialized
space, ", that approximates a sequential cost for a given parallel execution. For a parallel ex-
ecution with work W and sequentialized space R*, and race factor r, we show the following
work and space bounds:

« total parallel work including the cost of garbage collection is W + (R* 4 1) - P work, and
« total parallel space is (R* + 1) - P.

These results show that our memory manager’s cost is well-behaved for racy programs: its
overhead is linear to race factor r, which represents the amount of memory associated with
races. If this amount is small then the overheads are correspondingly small. Note that these
results are similar to the bounds for deterministic programs, where the race factor r is zero.



1.7 Implementation and Evaluation

Our techniques are unique in how they integrate the scheduling of tasks and garbage collection
within the same scheduler. Given their reliance on concurrency for efficiency and scalability,
a natural concern is practicality: can these techniques be made to work well in practice? This
thesis includes a major implementation effort that develops the MPL compiler for the Parallel
ML language. MPL extends the MLton for Standard ML by implementing support for nested
fork-join parallelism, supporting all Parallel ML programs including those with unrestricted
use of references and mutation.

Using this compiler, we have implemented a substantial benchmark suite, containing paral-
lel algorithms from various problem domains such as graphs, computational geometry, numeri-
cal analysis, and quantum computing. Many of these benchmarks were ported from C++ bench-
mark suites such as PAM, PBBS, Ligra, and ParlayLib [12, 46, 150, 168]. We implemented these
state-of-the-art non-blocking concurrent data structures as an open-source library for MPL,
which these parallel algorithms utilize. Some of these benchmarks have entangled objects, for
example those using hash tables, but all of them validate the disentanglement hypothesis—only
a minority of the objects are entangled.

Our experiments show that MPL performs well, incurring relatively small overheads com-
pared to sequential runs, and scaling well to dozens of cores. Notably, MPL delivers both per-
formance and compactness: parallel runs usually consume less memory than sequential runs
and deliver significant speedups. We also perform a comparison with several other languages
including Go, Java, Multicore OCaml, and C++. Our results show that MPL is competitive with
these languages, roughly within 2x of the fastest C++ implementations on 72 cores.

1.8 Disentanglement Hypothesis beyond Fork-Join

The promising results for memory management of fork-join programs raise the question: Are
the memory management techniques applicable beyond the fork-join model? While a compre-
hensive answer to this question is beyond the scope of this thesis, we present some theoretical
evidence that the techniques could be extended to support more general forms of parallelism.
Specifically, we show that the guiding principle of our memory management techniques—the
disentanglement hypothesis—also holds for programs with futures.

Invented in the 1970s [29], futures allow you to create a parallel task and demand the result
from the task at a later time when needed (hence the name “future”). Unlike fork-join which is
a control-flow construct, futures are first-class values, making parallelism a “first-class citizen”
of the programming language. This feature contributes to their expressive power: futures can
express data-dependent parallelism, pipelining, asynchrony, and interaction.

Surprisingly, we find that a broad class of programs written with futures, even in the pres-
ence of asynchronous interaction and data dependencies between tasks, satisfy the disentan-
glement hypothesis. That is, most objects are accessed by sequentially dependent tasks, rather
than by concurrent tasks. We consider a calculus that combines futures with state and I/O, and

8



prove that determinacy-race-free programs written using this calculus do not have any entan-
gled objects, and thus satisfy the hypothesis. This result suggests that our memory management
techniques could be extended, potentially in a provably efficient fashion, to a wider range of
parallel applications based on futures.

Outline

The main chapters of this thesis are as follows:

» A language semantics for describing the heap hierarchy for fork-join parallel programs
and an algorithm for coscheduling computation and memory (Chapter 2)

» An entanglement semantics that distinguishes between disentangled and entangled ob-
jects, and quantifies the amount of entanglement. We use the semantics to state and
provide evidence for the disentanglement hypothesis (Chapter 3).

» Memory management techniques for supporting independent allocation and independent
garbage collection of each heap in the memory hierarchy. This includes the algorithm for
tracking entangled objects and proofs that the tracking only incurs small work/time and
space overheads, proportional to the amount of entanglement (Chapter 4).

 Space and work bounds for memory-managed fork-join programs (Chapter 5).

o Implementation of the MPL compiler for Parallel ML (Chapter 6). We implement all our
techniques in MPL.

o Parallel benchmarks from a variety of problem domains and their evaluation (Chapter 7)

» A semantics for defining disentanglement for futures and proofs that determinacy-race-
free programs with futures do not have entangled objects. (Chapter 8)

Peer-Reviewed Publications

The thesis contains work that appeared in the following publications.

» Provably Space-Efficient Parallel Functional Programming [17], at POPL’21. This paper
presented the coscheduling algorithm (Chapter 2) and bounds for work and space for
deterministic programs (Chapter 5).

o Efficient Parallel Functional Programming with Effects [19], at PLDI'23. This paper pre-
sented memory management techniques for entangled objects (Chapter 4), by exploiting
the disentanglement hypothesis.

 Disentanglement with Futures, State, and Interaction [20], at POPL’24. This paper gener-
alized the theory of disentanglement to futures (Chapter 8).

Thesis Statement

Our theoretical and practical results support the following thesis statement:

9



By coscheduling the computation with its memory, we can exploit the disen-
tanglement hypothesis to perform provably and practically efficient memory
management.

10



Coscheduling of Computation and Memory

In this chapter, we propose a coscheduling algorithm that integrates task scheduling with mem-
ory management of parallel programs. The key idea behind our approach is to organize memory
into a tree of heaps and schedule heaps by actively mapping them to processors, just like a task
scheduler that assigns threads (or tasks) to processors. Each processor in turn allocates memory
only in the heaps that are assigned to it and is responsible for collecting garbage in those heaps.
The decisions to garbage collect are mediated by a fully distributed collection policy which we
formulate.

Note that it is possible to garbage collect each heap independently without coscheduling.
While this would be efficient in isolation for each heap, this approach falls short, because it
offers no guarantees on the overall work and space costs of garbage collection. This is also
challenging because the heap tree has numerous heaps, each potentially containing pointers to
objects in other heaps. These inter-heap pointers can lead to unbounded space usage because
for independent garbage collection of each heap, we must assume they are live.

To overcome these limitations of per-heap garbage collection, our coscheduling approach
carefully coordinates the garbage collection of heaps. It partitions the heap tree into clusters
and schedules garbage collections of each cluster. Each cluster is designed to roughly mimic a
sequential execution, enabling us to bound the space of every cluster. As we show in subsequent
chapters, by carefully coordinating the garbage collection of heaps, coscheduling achieves both
provable and practical efficiency.

To present our coscheduling technique, we first define a call-by-value functional language
that supports fork-join parallelism. We define a language semantics that organizes the compu-
tational tasks as a tree and also creates a corresponding heap tree that mirrors the task tree.
We then describe the coscheduling algorithm that schedules tasks and heaps on processors and
also implements our collection policy.

11



Variables x, f
Numbers m € N
Types T ::= nat |7 X7 |7—7|Tref
Memory Locations £
Storables s m | fun fxise| ((,0) | ref {
Expressions e C|ls|z|ee|(ee)|fste|snde|refe|le|e:=e](e]e)
Memory €  Locations — Storables
Task Identifiers u, v
Heaps h 0| h,t
Task & Heap Tree T Aleaf(u, h) | PLeaf(u, h) | Par(u, h, T,T)

Figure 2.1: Syntax

2.1 Language

For a formal analysis of our techniques, we consider a simple call-by-value functional language
extended with fork-join (nested) parallelism. Richer constructs like arithmetic operators and
arrays could be added, but we omit them for brevity. The language supports unrestricted mu-
table effects. We give an operational semantics that evaluates the expressions of the language
and also defines a task tree and a heap tree for each step. The trees encode the structure of the
parallelism of the program and our heap scheduling algorithm operates on the trees.

2.1.1 Syntax

Figure 2.1 presents the syntax for the language. We cover some aspects of the syntax here and
discuss others as needed.

Types. The types include a base type of natural numbers, function types and product types
for expressing parallel pairs. The type system also supports mutable references.

Expressions. Expressions in our language include variables, locations, storables, and in-
troduction and elimination forms for the standard types. The language includes the parallel pair
({e||e)) for expressing parallel computations, where the expressions within the pair can be eval-
uated in parallel. For an expression e, we use locs(e) to denote the set of locations referenced
by it.

Memory Locations and Storables. The language tracks memory operations by distin-
guishing between storables s and memory locations (. Storables are allocated in a memory
store 1 and include natural numbers, named recursive functions, pairs of memory locations,
and mutable references. Storables step to locations, which are the only irreducible form of the
language. We say that a location ¢ points to location ¢ if the storable at ¢ mentions ¢

Memory Store. The memory store ;1 maps locations to storables. We use dom(u) for the
set of locations mapped by y, 1(¢) to look up the storable mapped to ¢, and p[¢ < s] to extend
1 with a new location.

12



i

Fork

—

Join |

B

TR
-

i

Figure 2.2: Forks and joins. Tasks are spools and their heaps are gray rectangles. The “stop-
watch” denotes suspended tasks, waiting for its children to finish.

2.1.2 Task Trees

The semantics maintains a dynamic task tree to encode the structure of the parallel computa-
tion. Each node in the tree is a task and the parent-child relationships represent the sequential
dependencies between tasks. Each task evaluates some expression and terminates when the
expression is fully evaluated.

The computation starts with a root task. When a task evaluates a parallel pair, it forks two
child tasks and suspends its own execution, as it waits for the children to terminate. When both
children of a task have terminated, they join into the parent and are removed from the tree.

The internal tasks in the tree are suspended because they await the completion of their
children tasks. Leaf tasks are either active or passive. Active leaf tasks are currently executing
their computations, while passive leaf tasks have finished their computations but are waiting
for their sibling tasks to complete before they can join.

2.1.3 Heap Trees

We organize all locations in the memory store ;4 as a heap tree that mirrors the structure of
the task tree, where each task is assigned its own heap for memory allocation. As we will
demonstrate, this design facilitates efficient memory management for tasks.

Each task is given its own heap, which is simply a set of memory locations allocated by
that task. We use the variable h to represent heaps and use notation h, ¢ to extend the heap
with location /. New tasks are initialized with fresh empty heaps, and when sibling tasks join
with their parent, we merge their heaps into the parent heap. This ensures that all locations
allocated by a task are transferred to its parent upon completion. We use similar terminology
for heaps as for tasks: internal heaps are suspended, and leaf heaps are either active or passive

13



(determined by the status of their corresponding tasks).

To maintain a clear association between tasks and their heaps, our semantics superposes
the task tree and heap tree into a unified tree. Each node of the tree contains both a task and its
corresponding heap. We use identifiers like u, v to denote tasks and identifiers h,,, h, to denote
their respective heaps. An internal node of the tree is of the form Par(u, h, T}, T3), representing
an internal task v with heap h, and child trees 7T} and 75. An active leaf node, corresponding to
unfinished tasks, is denoted ALeaf(u, h), and passive leaf nodes, corresponding to terminated
tasks, are denoted PLeaf (u, h).

Figure 2.2 illustrates how tasks and heaps are created/merged at forks and joins in a one-
to-one fashion. The larger heap (gray box) resulting from the join signifies that it contains all
the locations from the children heaps and the parent heap (see Join below for more details).

2.1.4 Semantics

Our operational semantics steps a program state consisting of three components: (i) the mem-
ory store i, (ii) a task tree 7', and (iii) an expression e. We can write the semantics relation as:
wi;Tie— p' ;T ;€. Figure 2.3 shows the rules for the semantics.

Allocation. The allocation rule ArLLoc extends the memory store ;1 with location ¢ mapped
to storable s. The rule also checks that the location ¢ is “fresh”, i.e., ¢ ¢ dom(u). It records this
location in the heap & of task v, thus tracking all allocations in the heaps of respective tasks.

Parallel Evaluation. The rule Fork creates two child tasks, v and w, to evaluate the compo-
nents of the parallel pair (e; || e2). It creates the subtree Par(u, h,, ALeaf (v, ]), ALeaf (w, })),
adding the new nodes v and w as children of node u. Initially, both the new tasks are active
leaves in the tree, and their heaps are as empty sets. After the fork, rules PARL and PARR step
the left and right sides of the parallel pair. The rules PARL and PARR can be interleaved non-
deterministically. This non-determinism is a fundamental aspect of parallelism: when executing
the program on a real system, the order in which the left and right expression of a parallel pair
are evaluated depends on task scheduling decisions and other runtime artifacts.

Passive Leaves. After a leaf task finishes evaluation, the rule AcTPass makes the active leaf
task passive. Note that the initial expression for this step is a location ¢, denoting that the task
has finished evaluation (locations are the only irreducible form of the language). After the step,
the tree node is PLeaf(u, ) which denotes that the task u is passive.

Join. Once both children of a task terminate, the rule JoIN removes the children tasks from
the tree and turns the parent task into an active leaf. The rule also merges the heaps h, and
h,, of the children tasks with the parent heap h,. We denote heap merge with the operator +,
which simply takes a union of the locations in the heaps. After the step, all locations from these
heaps are in the extended heap /' belonging to the parent w.

14



¢ & dom(p) p = pll— s h' =h,t

A
w; Aleaf(v, h) ;s — u'; ALeaf (v, h') ; £ Hoe
piTier— 5T el piTser—p'sT e
. . /: /u I ASL . . /- /' / ASR
IU,,T,(€162)—>/L,T,(€1€2) :U’7T7(£1€2)_>M7T7(£162)

u(l1) = fun f x is ey
W ALeaf(v, h) ; (51 52) VN ALeaf(v, h) ; [61,52 / f, x]eb

ArpP

piTie—p 5T € u() = (b, £2)
S FsT

F
piT; (fste) = p' ;T (Fst €) . w; ALleaf(v, h); (fst £) — p; ALeaf(v, h) ; £y

pi;Tse—p ;T €

REFS
;T (refe) — p ;T ; (ref €)
wiTie—u ;T € w(ly) = ref lo
; 7 / BanGS Banc
wi;Ts5(le)—=p ;15 (Ne) w; ALeaf (v, h) ; (141) — p; ALeaf(v, h) ; lo
piTser =T el piTier =T e
— USL — — USR
wi T (ep:=eg) = p' ;T (€] :=e2) wiT; (bi=ex) = u' ;T (0 :=e)
Upp
u0[€1<—>s] ; ALeaf(v, h) ; (51 = 52) — u0[€1 —ref 52] ;ALeaf(v, h) ; ly
ActPass
w; ALeaf(v,h) ;€ — p; Pleaf(v, h) ;€
Fork
w; ALeaf(u, h); (e1 || e2) — p; Par(u, h, ALeaf(v, (), ALeaf (w, D)) ; {e1 || e2) o
B = hy +H hy H by
Join

w ; Par(u, hy, PLeaf (v, hy), PLeaf(w, hy)) 5 (€1 || €2) — p; ALeaf(u, b)) ; (£1, ls)

. . ,o /0/
MaT17€1_>M 7T1761

PARL
1 Par(u, b, T, Ty) ; (1 || e2) — 1/ s Par(u, b, T, Ty) (€] [ ea)

. . Lot )
M7T2a62—>}u 7T2762

PAarRR
1 Par(u, b, T, Ty) ; (e1 || ea) — ' s Par(u, b, T1,T3) ; (€1 || €h)

Figure 2.3: Language Dynamics defining task trees and heap trees.

15



//?
H L

1
oo/ | o©

D E

Figure 2.4: The figure shows a heap tree where the gray boxes denote heaps. The circles denote
locations allocated in each heap. The arrows denote pointers. The black arrows denote internal
pointers, those between locations within the same heap and the red arrows denote inter-heap
pointers, those between locations across heaps.

Other rules and aspects of the language (sequential pairs, functions, and mutation) are se-
quential and do not alter the structure of the tree. We skip their description for sake of brevity.
The evaluation of a program e starts with the state ({) ; ALeaf(u) ; ¢), where the memory store
1 is empty and the root task u is an active leaf evaluating the expression e. And the program
terminates with a state (1 ; PLeaf (u) ; ¢), where the initial expression e has been fully evaluated
to location ¢ in the memory store x and the root task u has become a passive leaf.

2.2 Heap Tree and Pointer Directions

Within a heap tree, every pointer can be classified as either up, down, internal, or cross, depend-
ing on the relative positions of locations within the heap hierarchy. In particular, consider two
locations ¢ and ¢’ and their corresponding heaps H (¢) and H (¢'), and suppose ¢ points to ¢ (i.e.
¢ has a field which is a pointer to ¢'). We classify this pointer as follows:

1. if H(?) is a descendant of H (') then the pointer is an up-pointer;
2. if H({) is an ancestor of H (¢') then it is a down-pointer;

w

. if H({) = H({) then it is an internal pointer;

4. otherwise, it is a cross-pointer.

Figure 2.4 shows all the pointers in the heap tree with heaps labelled A, B, C, D, E. The
circles denote memory locations and arrows denote pointers between them. The black arrows
denote internal pointers and the red arrows denote inter-heap pointers, including an up pointer,
a down pointer, and a cross pointer.

The heap tree tracks the sequential order in which locations are allocated. Locations in de-

16



scendant heaps are allocated “sequentially after” those in ancestor heaps, because descendant
heaps are created after forks and locations in ancestor heaps are allocated before forks. Con-
sequently, up pointers always reference older locations, while down pointers always reference
newer locations. Cross pointers reference objects allocated by parallel tasks, where the relative
allocation times are incomparable. Up pointers are ubiquitous in (eager) functional programs
because they largely rely on immutable data structures, where new locations reference older,
existing locations. Down/Cross pointers are typically created with mutable effects by modify-
ing objects.

We analyze these inter-heap pointers more closely in Chapter 4, where we give an example
of how they are created (Section 4.2.1) and also develop techniques for tracking them. For the
purposes of coscheduling and this chapter, we assume that the pointers can somehow be tracked
efficiently and that each heap can be independently garbage collected.

2.3 Coscheduling Tasks and Heaps

We consider executing a fork-join program on P processors, with identities 0 < p < P. Each
processor executes tasks and may perform garbage collection. As is typical with fork-join pro-
grams, a scheduling algorithm assigns active tasks to processors dynamically in an online fash-
ion; each processor then executes the task that they are assigned. Thus, each active task runs
on a processor and there are at most P active tasks at any moment.

To enable efficient and scalable garbage collection of the heaps in our dynamic tree, we intro-
duce coscheduling. Coscheduling integrates task scheduling and memory management, using
the task scheduling decisions to distribute the work of garbage collection among processors.

The crux of our coscheduling technique is a heap scheduler that dynamically partitions
the heap tree into heap clusters and assigns each cluster to a processor. Each processor in turn
only allocates memory in its heaps and is responsible for garbage collecting their objects. The
heap scheduler assigns a heap cluster M, to each processor p such that

 each and every heap is assigned to a processor,

« for different processors p and ¢, M, N M, = 0.

By dynamically partitioning the heap tree into clusters and assigning each cluster to a processor,
the heap scheduler enables each processor to independently manage the memory within its
assigned cluster. This method distributes the work of garbage collection and also avoids the
need for costly synchronization across processors.

The most important difference between our heap scheduler and standard task schedulers
is that our scheduler must also assign suspended and passive heaps, which are not actively
used for allocation but still consume memory. To ensure these heaps are garbage collected,
the heap scheduler clusters them with active heaps, ensuring that each heap is assigned to
some processor. However, arbitrary heap clusters do not guarantee efficiency. Our clustering
strategy is carefully designed to minimize pointers between clusters by keeping parent-child
heaps together and ensuring that each cluster internally represents the behavior of a sequential
execution. This ensures provable efficiency with independent garbage collection, as we show

17



Figure 2.5: Two heap trees representing a parallel evaluation with five tasks: A, B, C, D, and E.
The gray boxes denote heaps and the ellipses/bubbles denote heap clusters. The left and right
trees show the heap clustering before and after task D terminates and becomes passive. When
task D is active, the heap scheduler keeps heap D and its sibling E in separate clusters. After
task D becomes passive, the heap scheduler puts them together, and the clustering appears as
if D executed sequentially before E.

in Chapter 5. We provide a detailed overview of the clustering strategy here and dive into the
specifics of the algorithm in the next subsection.

2.3.1 Overview and Examples of Heap Scheduling

Our coscheduling approach is unique in how it dynamically clusters heaps based on the parent-
child relationships in the heap tree. It achieves three key things: (i) active tasks and heaps
are always assigned to the same processor, ensuring that the same processor can allocate and
manage the task’s memory, (ii) parent heaps are always clustered with at least one of their
children, ensuring that they are garbage collected together by the same processor, and (iii) each
cluster internally mimics the memory behavior of a sequential execution.

Coscheduling Active Tasks and Heaps. The heap scheduler ensures that every active task
and its heap are always “coscheduled” on the same processor. To do this, it follows the deci-
sions of the task scheduler, migrating heaps between processors as the task scheduler migrates
active tasks. This is crucial for efficiency because it ensures that the processor responsible for
executing a task also manages its allocation and garbage collection.

Keeping Parent-Child Heaps Together. Whenever possible, the scheduler keeps closely
related ancestor-descendant heaps in the same cluster, so that they are garbage collected by the

18



same processor. It guarantees that a parent always has (at least) one child in the same cluster,
i.e., if a suspended/parent heap is in a heap cluster M, then one of its children is also in M,,.

By keeping parent-child heaps together, the heap scheduler directly addresses the chal-
lenges of inter-heap pointers for independent garbage collection. Most inter-heap pointers
exist between a parent and its children (as explained by the disentanglement hypothesis in
Chapter 3). Ensuring that a parent heap is never isolated from its children minimizes the num-
ber of pointers that cross cluster boundaries. This is important because independent garbage
collection of the clusters assumes that the pointers between them are live, which can lead to
accumulation of garbage objects, if not managed carefully. By clustering parent-child heaps
together, we ensure that they are garbage collected together by the same processor, enabling
for more effective reclamation of garbage objects.

Each cluster mimics a sequential execution. The heap scheduler ensures that the memory
in each cluster mimics the memory of a sequential run of the program—each cluster resembles
a segment of a sequential execution. This is important because, by comparing to a sequential
execution, we can bound the space usage of each cluster.

For example, consider the two heap trees in Figure 2.5, which shows the clustering for a
heap tree with five tasks/heaps A, B, C, D, and E. The figure shows two trees but we return
to the right tree later in the section. In the left tree, each gray box denotes a heap and the
bubbles around heaps denote heap clusters. Imagine a sequential run of the program, which
executes tasks A, B, C, D, E in that order and these tasks allocate in their heaps in the same
order. In a parallel execution, as shown in the example, each cluster contains heaps from a
segment of our imagined sequential execution. The first cluster contains heaps A and B; the
second contains C and D; the third one contains E. All of these are contiguous segments of our
sequential execution, and loosely speaking the space of each cluster can be upper bounded by
the space of the sequential execution.

Challenges of Passive Heaps. Passive heaps present a challenge for the heap scheduler.
They correspond to tasks that have finished executing but whose siblings are still active. When
active heaps become passive, they must be reassigned, because if left as is, a passive heap could
get clustered with the heap of an unrelated active task which is scheduled on that processor.
This would disrupt the sequential order that exists within each cluster.

To prevent this, the heap scheduler rearranges the clusters when a task terminates and
becomes passive. It ensures that the passive task’s heap is relocated to the same cluster as
its sibling. After this rearrangement, the heap cluster appears as if the passive task executed
sequentially, since both sibling’s memory is at the same processor.

To illustrate this rearrangement, let’s consider left and the right heap tree in Figure 2.5,
which represents clusters before and after heap D task becomes passive. The black box, cor-
responding to heap D, represents that it is passive. After heap D becomes passive, the heap
scheduler rearranges the clusters, ensuring that heaps C and D are in the same cluster as heap
E. By this process it creates the heap cluster containing C, D, and E together, which a segment

19



of the sequential execution (A, B, C, D, E). This new cluster appears as if the tasks C and D
executed sequentially before E, thus “sequentializing” the passive heap.

In summary, the heap scheduler ensures that each cluster roughly corresponds to a segment
of a sequential execution. This is crucial for the proof of space bounds in Chapter 5, as it allows
us to bound the space of each cluster.

2.3.2 Heap Scheduling Algorithm

In this section, we present our heap scheduling algorithm, which is a distributed algorithm im-
plemented by each processor. The heap scheduling algorithm is integrated with a work-stealing
task scheduler that assigns tasks to processors. Scheduling algorithms like work-stealing assign
one active task to each processor and migrate tasks between processors by assigning each pro-
cessor a double ended queue or deque, which contains the tasks that the processor may execute.
Figure 2.6 shows the pseudocode of our scheduling algorithm. For simplicity, the pseudocode
ignores concurrency issues unlike our implementation; the concurrency details are similar to
those in the work-stealing literature.

Assumed Functions. We assume the implementation of following helper modules:

1. Module Deque provides the type Deque.deque for deques and functions like
Deque.empty, Deque.popBottom, Deque.pushBottom that are used to modify and
query the deque,

2. Module Task provides functions like parent, sibling and Instructions that imple-
ment task trees

3. Module Heap provides similar functions for heap trees, gives a function Merge for merg-
ing leaf heaps with their parent, and a function HeapOf that returns the heap of a corre-
sponding task. If a task does not have a heap, the function creates a new heap for it.

Additionally, the code also leaves abstract the function stealWork, which a processor executes
to steal tasks from the deques of other processors. The function only returns after the processor
successfully steals a task. Various stealing strategies can be used to implement this function.
The collect function executes a collection algorithm that reclaims the unreachable locations
in the input heap cluster. The collection algorithm is described later in the section.

Cluster Invariants. The task scheduler and the heap scheduler guarantee the following in-
variants for every processor p and its cluster M,

1. if a processor p is executing a task, then the heap of the task is assigned to p
2. if a suspended heap is in the cluster M, then at least one of its children is also in M,

3. every passive heap belongs to the same processor as its sibling.
We can establish the following useful lemma from the cluster invariants.

Lemma 1. Every suspended heap has an active descendant heap assigned to the same processor.

20



This is because every suspended heap has at least one child on the same processor (Invariant
2). The child itself is either suspended (and thus has its own child), or active (and is a leaf).
If a child on the same processor is passive, then by Invariant 3, we can consider its sibling
heap, which must be active or suspended on the same processor. This parent-child relationship
continues until we reach a leaf node, which must be active (Invariant 1).

These invariants are integral to how the scheduler works and we use them while describing
the pseudocode of the algorithm. We prove them for the algorithm in the next subsection.

Coscheduler. Figure 2.6 shows the functions each processor implements to run the heap
scheduling algorithm. Each processor p maintains three pieces of state: a counter \,, a deque
R(p), and a heap cluster M,,. Initially, the root task is placed into the deque of the processor
0, while other deques are empty. All the heap clusters are empty, and the counter of all the
processors is zero. Each processor begins by running the function findWork on their own
state. We describe the steps for a given processor p. The processor p first checks its deque R(p)
for an available task. If the deque is empty, p executes the stealWork function, which returns
only after it successfully steals a task from another processor (line 34). The processor then pops
a task ¢ from the bottom of its deque, and calls the function coschedule with the task ¢ as the
input.

The function coschedule takes an active task ¢ as input and manages its heaps, execution,
and forks/joins. It first gets the heap h, of the task and adds the heap to the heap cluster
M,,. Tt then calls the function executeTask on task ¢. The function executeTask(?) iterates
through the computational instructions of the task ¢ and executes them. Before executing each
instruction, the function checks the space usage of the heap cluster on processor p and ensures
that it is below a certain threshold. If not, the processor garbage collects by calling the function
collect. This check implements our collection policy, which we describe in Section 2.4.

When the task forks or terminates, the function returns back to coschedule function. The
function coschedule handles the forks and termination as follows.

Fork. In the case of fork, the processor p adds the right child ¢, to the bottom of the deque
and then recursively calls the function coschedule on the left child ;, starting its execution.
The current task ¢ becomes suspended.

Task Termination. When a task ¢ terminates, it returns the instruction terminate to the
function coschedule, which then takes steps based on whether task ¢ is the root task (see
line 13). If task ¢ is the root task, it marks the end of the computation, and we call exitProgram
to stop all processors. Otherwise, the task ¢ has a sibling task ¢, which may be either active,
suspended, passive, or still in the deque.

First, if the task t’ is passive, then both the siblings have terminated and can be joined. As
part of the join, the processor joins the children heaps h;, hy with their parent heap parent (h;).
Observe that it is guaranteed that all three heaps are already assigned to the processor p: heap
h, is assigned to processor p because it corresponds to task ¢, which was active before this step

21



1

2

3

4

5

6

20

21

22

23

24

25

26

27

28

Ap: int //Size of live set 32
R(p): Deque.deque // Work deque 33
M, : heap cluster 34
35

procedure coschedule (?): 36
h; < HeapOf () 37
Mp — Mp U hy 38

I = executeTask (¢) 39
case I of 40
fork (t1,t2) — 41
Deque . pushBottom (o) a2
coschedule (t1) 3
terminate — 4

if isRootTask (#): a5
exitProgram () 46

t = S|b||ng(t) 47

if ' is passive: m

// join heaps of tasks t and t' with their parent

join (hy, hy, parent(hy)) 50
coschedule (parent(t)) 51

else if t' is suspended or active: 52

// processor q has the heap of sibling t’
var q : hy € M,
surrenderHeaps (q)
findWork ()
else:
assert (¢’ = Deque.getBottom (R(p)))
coschedule (Deque.popBottom (R(p)))

procedure findWork ():
if Deque.empty(R(p)) then
R(p) < stealWork()
t < Deque.popBottom(R(p))
coschedule(¢)

procedure surrenderHeaps (q):
M, « M, UM,
My, 0

procedure executeTask (¢):
for I in Instructions(¢):
if ( |Mp|>K-Ap ) then
collect (M)
Ap < | My
case I of
fork(ty,t2) —
return I
otherwise —
execute I
return terminate

Figure 2.6: The Coscheduling Algorithm.

22



(Invariant 1), heap hy is assigned to processor p because it is passive (' is passive) and our
heap scheduler ensures that passive heaps and their siblings are assigned to the same processor
(Invariant 2), and lastly parent (h;) is assigned to processor p because both its children on
processor p, and the heap scheduler never assigns a parent to a heap without assigning at least
one of its children (Invariant 3). Thus, the join operation of these heaps does not interact with
other processors, and the heap clusters of other processors remain unchanged. After joining
the heaps, the parent task becomes active and the processor recursively calls coschedule to
execute it.

Second, if the task ¢’ is active or suspended, its heap must belong to a processor other than
p. This is because if task t’ is active, its heap can not belong to processor p, because every
active task and its heap are coscheduled on the same processor (Invariant 1), and processor p is
not executing task . If task ¢’ were suspended, Lemma 1 requires that one of its descendants
would also be active on the same processor. Since task ¢t was the active task on processor p
in the previous step, Lemma 1 implies that the heap of its (suspended) sibling ¢ can not be on
processor p.

Given that heap of task ¢’ is on a different processor, the processor p finds the processor ¢
which has the heap of task ¢’ and surrenders all its heaps to that processor. This is implemented
by the function surrenderHeaps. The function takes the processor ¢ as argument, which rep-
resents the processor to which the heaps are surrendered. This function transfers all the heaps
of heap cluster M, to the heap cluster M, and reassigns the heap cluster M, as empty (denoted
()). This surrender operation ensures that heap h;, which is now passive because task ¢ has fin-
ished, is on the same processor as its sibling . After surrendering the heaps, the processor p
calls function getWork to execute other tasks.

Third, when the sibling task ¢’ is neither active nor suspended nor passive, the work-stealing
scheduler’s deque structure guarantees that task t' is at the bottom of the deque of processor p.
This is because each processor only manipulates the bottom of its own deque, effectively using
it as a stack (for processor-local operations), and adds the spawned tasks in order. When a task
finishes, its sibling is either stolen or is the next one to be popped from the deque for execution.
We assert this property, which is established for work-stealing, on line 27. The function pops
the sibling from the bottom of the deque and calls itself recursively to execute it.

Then it proceeds as follows: at the start of each step, the processor checks if it needs to
collect M,. If the size of M, is more than x times the counter, the processor executes the
collect function and updates its local counter.

Otherwise, Mp| is within limits, and the processor p executes an instruction of the task that

it is working on.

Instructions other than fork and join match with the otherwise case of the pseudo code.
These are simply executed without any updates to the state of the processor. Thus, if the pro-
cessor p does not change the task it is working on, no changes are made to M, except if some
other processor surrenders and synchronizes with it.

23



2.3.3 Proof of the Cluster Invariants

In this section, we prove that our coscheduling algorithm maintains the cluster invariants we
stated in Section 2.3.2. The invariants state the following for each processor p with heap cluster
M,:

1. if a processor p is executing an active task, then the heap of the task is assigned to p

2. if a suspended heap is in the cluster M, then at least one of its children is also in M,,

3. every passive heap belongs to the same processor as its sibling.

Like our algorithm, we ignore the concurrency of these steps to simplify the analysis. Ad-
ditionally, we prove that the invariants before each call to the function executeTask. They may
not hold in transition, when the processors are reclustering their heaps We prove Invariant 1
directly and then use induction to prove Invariants 2 and 3.

Proof of Invariant 1.

Proof. This invariant holds by construction. Before a processor p calls the function
executeTask to execute an active task ¢, it adds the task’s heap to its heap cluster. For all
subsequent steps. the heap stays on the processor p, until the task terminates, at which point
the task is no longer active. This is because (i) the actions of the task itself do not change the
heap cluster, and (ii) other processors can only add to the heap cluster of processor p by surren-
dering to it but they never steal any heap from it. Thus, the only way a heap leaves a processor
is when the processor itself surrenders, or merges heaps, which only happens when the task
terminates. []

Proofs of Invariants 2 and 3.

Proof. We prove the invariants by induction on the number of steps. We assume that only one
processor performs actions at each step. The invariants hold trivially at the beginning, when
no steps have been taken, because no processor is executing a task and there are no heaps.

Next, we consider the nth step that a given processor p takes. If the processor executes a
program instruction (in function executeTask), then no clusters change, and the invariants
continue to hold. If the processor executes a fork instruction in function coscheduler, then
the task ¢ becomes suspended, the processor adds the right child task ¢, to its deque, and then
schedules the left task ¢; on itself. Thus, Invariant 2 holds after a fork for processor p, because
the new suspended task ¢, has a child task ¢;, whose heap is assigned to the same processor by
the recursive call to coschedule. The invariant continues to hold for other processors, because
their clusters are unchanged. Invariant 3 also continues to hold because no passive heaps are
created or reassigned.

Now, let’s consider the case where the active task ¢ executes the terminate instruction. If
the task ¢ is a root task, then the program has finished and the invariants hold. Otherwise, if
the terminating task ¢ has a sibling task ¢/, then there are three cases. The cases consider the
status the sibling task t'.

24



Task t' is passive. If the task ¢’ is passive, the function coscheduler joins the heaps of
the siblings with their parent, and recursively coschedules the parent task. Observe that it is
guaranteed that all the three joined heaps are already assigned to the processor p: heap h;
is assigned to processor p because it corresponds to task ¢, which was active before this step
(Invariant 1), heap hy is assigned to processor p because it is passive (¢’ is passive) and our
heap scheduler ensures that passive heaps and their siblings are assigned to the same processor
(Invariant 2), and lastly parent (h;) is assigned to processor p because both its children on
processor p, and the heap scheduler never assigns a parent to a heap without assigning at least
one of its children (Invariant 3). We have we established that all these three heaps are on the
same processor p and the merge does not affect any heap cluster other than processor p. Thus,
this satisfies the Invariants 2 and 3, because in this step, a suspended heap (corresponding to the
parent) has become active, and a passive heap has been removed (corresponding to the sibling),
both of which do not affect the invariants, since they are on the same processor.

Task t' is active or suspended. If the task ' is suspended or active, then the processor p
surrenders all its heap to a processor ¢ which has the heap of task t’. The surrendering is
implemented by function surrenderHeaps in Figure 2.6. Let M, and M, be the heap clusters
on processors p and ¢ before this step and let M, and M, be the corresponding clusters after
the step. The invariants trivially hold for cluster M, because it is empty after the step. Consider
a heap h € M!; note that Mé is the union of clusters M, and M, If the heap A is in Mé N M,,
then both invariants hold for it, because all the heaps in A, are in M, and thus the invariants
continue to hold.

Foraheap h € M, ; N M, we take three cases. First, if the heap is suspended, then it has a
descendant in M), by Invariant 2 on the previous step. Because all heaps in ), are now in M,
the Invariant 2 continues to hold. Second, if the heap is corresponds to the newly passive task
t, then its sibling is in M, by construction, because the processor ¢ was chosen because it had
the sibling heap. Third, if the heap is passive, and does not correspond to the task ¢, then it was
passive before this step, and by Invariant 3, its sibling must also be in M), and M.

Task ¢’ is still in the deque If the task ¢’ is neither active, nor passive, nor suspended, then
the task is in the deque. Given that our task scheduler is work-stealing, we assume in this case
that the task is at the bottom of the deque. This case is straightforward, because the processor
p executes the sibling task ¢ and adds its heap to the heap cluster M, This addition ensures
that Invariant 3 holds after the step, because the sibling of now passive heap of task ¢ is on the
processor. []

2.4 Collection Policy

Each processor manages its assigned heaps and decides when to perform garbage collection
independently. This decision is governed by a fully distributed collection policy, implemented
on all processors.

25



Processor p maintains a local counter ), which tracks the amount of memory that survived
its last collection. This counter serves as an estimate of the maximum live data within the
processor’s heap cluster, M. The processor ensures that the space remains within a constant
factor, kK > 1 of this estimate, i.e., |[M,| < x - \,. When |M,| exceeds this threshold, the
processor triggers a garbage collection of its heaps, identifying and reclaiming unreachable
locations. After the collection is completed, the counter ), is reset to the new size of M,, and
the processor resumes its assigned task.

To identify the reachable locations, processor p assembles the roots for its heaps, includ-
ing both the standard program roots (e.g., registers, program stack) and inter-heap pointers
from other processors’ heaps. These inter-heap pointers introduce dependencies that must be
considered for safe, independent garbage collection. Our memory manager achieves this by ac-
counting for all inter-heap pointers, allowing any heap to be garbage-collected independently,
without tracing other heaps. We describe the details of our memory manager in Chapter 4.

26



Disentanglement Hypothesis

In Chapter 2, we described our memory manager partitions memory into a tree of task-local
heaps, and then uses the coscheduling algorithm to schedule the heaps on processors. The
coscheduling algorithm assumes, however, that each heap of the tree can be garbage collected
independently. Given the many decades of research on garbage collection, there are numerous
possible designs and techniques that could be used to achieve this. In our memory manager,
the guiding principle for all the design decisions is the disentanglement hypothesis.

In this section, we propose and give evidence for the disentanglement hypothesis. The
hypothesis distinguishes between two kinds of objects, disentangled and entangled, based on
relative relationships of tasks that allocate them and tasks that access them. We say that two
tasks of the task tree are concurrent if they are not in an ancestor-descendant relationship; if
they are, then we call them sequentially dependent. We classify objects into the following two
categories:

» Entangled objects: Allocated by one task and accessed by concurrently executing tasks.

» Disentangled objects: Accessed only by tasks that are sequentially dependent on the
task that allocated them, not by concurrent tasks.

The disentanglement hypothesis states that most objects in a parallel fork-join program
are disentangled. The hypothesis is supported by a key theoretical result proving that all objects
in a race-free program are disentangled [174, 178]. As we show, an object gets entangled only
if it participates in determinacy races [19]. Because races typically lead to correctness bugs [8,
10, 51, 52, 54, 75, 117, 130, 166], they are rare in parallel programs, leading to the hypothesis
that most objects in a fork-join parallel programs are disentangled.

In this chapter, we define our notion of object-level disentanglement and then present a
semantics that classifies each object to be entangled and disentangled. The semantics produces

27



two cost metrics entanglement factor and entanglement ceiling, which quantify the amount
of entanglement for an execution of the program. We then formalize the disentanglement hy-
pothesis, based on the metrics, and analyze a wide class of parallel algorithms, illustrating why
the hypothesis holds for them. In Chapter 7, we give evidence for the hypothesis empirically,
by measuring the number/size of entangled objects for a wide variety of benchmarks.

3.1 Disentanglement

Westrick et al. [178] defined disentanglement as a property of programs where concurrent tasks
never access each other’s allocations. The intuition for disentanglement is that in many parallel
programs, concurrent tasks execute independently from each other and avoid side-effecting
memory objects that may be accessed by others. We generalize this intuition by introducing
the concept of object-level disentanglement. At a high level, an object is disentangled if it is
not accessed by any concurrent task. The key difference here is that we treat disentanglement
as a continuous property of memory objects as opposed to prior treatment of disentanglement
as an all-or-none property of programs.

One of the benefits of defining disentanglement on a per-object basis is that it enables us to
reason about programs that have entangled objects. Many interesting parallel programs create
entangled objects by using various forms of concurrency to communicate between tasks. For
example, consider a shared hash table that is accessed by many tasks concurrently. As tasks
insert and retrieve elements of the hash table, they may read objects allocated by concurrent
tasks. Such objects, accessed by concurrent tasks, become entangled.

Figure 3.1 illustrates the hash table example with a heap tree containing heaps A, B, and C.
Recall that each heap contains the allocations performed by its corresponding task. In this tree,
the parent task A is suspended and the children task B and C' are executing concurrently. The
figure shows a hashtable ht in heap A containing the key k allocated in heap B, as shown by
the pointer from ht to k. If task (' accesses the hash table and its contents, including the key
k, then the key becomes entangled (denoted by the orange highlight), because tasks B and C'
are concurrent, and task C' is accessing an allocation performed by task B.

Note, however, an entangled object does not remain entangled throughout the execution.
When tasks join, objects that are entangled between them become disentangled. Thus, the
classification of objects as disentangled/entangled changes throughout the execution. Figure 3.1
shows the heap tree after tasks B and C' join. After the join, the heaps of A, B and C' are merged
together to create the heap A+ B+ C. As aresult of the join, the key k becomes disentangled.

In the next section, we formalize the notion of object-level disentanglement with a formal
semantics that tracks and quantifies entanglement in parallel programs.

3.2 Entanglement Semantics

We introduce a language semantics to classify each memory object as either entangled or dis-
entangled. The semantics identifies entangled objects by tracking the threads forked by the

28



ht

T,

. A++B++C

B C

Figure 3.1: The example shows a heap tree along with allocations performed by the correspond-
ing tasks A, B, and C. The arrows denote pointers between the allocations. The hash table ht
in heap A contains key k allocated in heap B. If task C reads the hash table and its contents,
it would access the key k, making the key entangled, as denoted by the orange highlighting
around k. But, this is temporary. After tasks B and C join, we merge their heaps with the par-
ent A to create the heap A + B + C. Since tasks B and C have joined, we don’t consider
them concurrent, and the key k becomes disentangled. We denote this by removing the orange
highlight from key k. Thus, whether an object is disentangled/entangled may change as the
execution proceeds.

program and observing their memory actions. When threads join, the semantics resolves any
entanglement that they created and updates the corresponding objects to be disentangled. The
semantics also quantifies the amount of entanglement by computing two cost metrics: an en-
tanglement factor, ¢, which quantifies the total amount (size) of entangled objects, and an
entanglement ceiling, , which tracks the peak amount (size) of entangled objects at any step.
We use the cost metrics to formalize the disentanglement hypothesis and reason about the
overhead of our memory manager (Chapter 4). We note that our semantics only observes ac-
cesses on mutable objects and does not track accesses on immutable objects. This is motivated
by a practical concern: we want to implement the semantics and identify entangled objects.
Not tracking accesses to immutable objects allows us to skip read barriers on immutable ob-
jects, which is crucial for practical performance. This is because a majority of reads in a typical
functional program are for immutable objects and we want to minimize that overhead.

3.2.1 Syntax and Task Trees

Much of the language syntax and semantics is similar to our language in Chapter 2. We revisit
the important details below.

Our language contains parallel pairs (e; || e2) where e; and e, may execute in parallel. The
language tracks memory operations by defining storables s, which are allocated in memory,
and memory locations ¢, which are indices into the memory. Locations are mapped to storables

29



Variables x, f
Numbers m € N
Types T ::= nat |7 X7 |7—7|Tref
Memory Locations £
Storables s m | fun fxise| ((,0) | ref {
Expressions e C|ls|z|ee|(ee)|fste|snde|refe|le|e:=e](e]e)

Memory €  Locations — Storables

Task Identifiers u, v
Task Tree T : : = AlLeaf(u) | PLeaf(u) | Par(u,T,T)

Figure 3.2: Syntax

in the memory store u. Locations are the only irreducible form of the language.

Locations that are mapped to mutable references are called mutable locations and those
that are mapped to other types of storables are called immutable locations. We say that a
location ¢ has a pointer to another location ¢’ if the storable at location ¢ mentions ¢'. The
pointer is mutable if the location ¢ is mutable and otherwise, if the location ¢ is immutable, its
pointers are immutable.

The semantics tracks the structure of parallelism using a task tree. The task tree arranges
the tasks of the program with vertices that represent tasks and edges that express parent/child
relationships between tasks. When a task forks, we add two children to the task tree, and when
it joins we remove the children from the task tree. We use identifiers u, v to represent tasks. Two
tasks u and v are concurrent if neither is an ancestor of the other, denoted concurrent(u, v).

3.2.2 Entanglement Sources, Regions, and Cost Metrics

Tasks create entanglement when they read locations allocated by other concurrent tasks. To
track entanglement, the semantics intercepts the reads of mutable references and identifies en-
tanglement sources. Each entanglement source causes a region of memory to become entangled.

Entanglement sources. A memory location ¢ becomes an entanglement source when:

A task u performs a mutable read (dereference) and obtains /¢ as the result, and

o The task u is concurrent with the task that allocated /.
To track entanglement sources, the semantics maintains an allocator map o, mapping each
location to the task that allocates it, and a reader history H, mapping each location to a set
of tasks that performed a dereference operation resulting in that location. Given a task tree 7',
reader history H, and allocation map «, the set of entanglement sources, E(H), is:

E(H)={¢|3ue H({) : concurrent(u, a(l))},

where the relation concurrent(u, v) holds if neither u nor v is an ancestor of the other in tree
T'. This definition states that for an entanglement source /, there is a task u, which is in the

30



reader history of location ¢. This means that task u has performed a mutable dereference on
some location to obtain location /. Furthermore, the location ¢ was allocated by task «(¢), and
that task is concurrent to task w.

Entanglement region. An entanglement source affects its vicinity: a task can use the en-
tanglement source to read locations that are reachable from it and create more entanglement. If
the source is mutable, such reads will be accounted by the reader history. However, the reader
history does not track reads of immutable locations.

To account for this, we associate with each entanglement source an entanglement region
which contains all locations reachable from the source using immutable pointers only. We can
formally define it as follows: let out(¢) be the set of locations to which location ¢ points to.
Then the entanglement region of location ¢, written er(¢), is defined by the recurrence:

{¢yu U er(¢), iffisimmutable
er(ﬂ = {'eout(£)

{0} if  is mutable

If a location ¢ belongs to an entanglement region, we say that ¢ is entangled.

Cost metrics. To quantify the amount of entanglement, the semantics calculates entangle-
ment factor and entanglement ceiling. The entanglement factor, ¢, accumulates the amount of
memory that becomes entangled throughout an execution. The entanglement ceiling, 0, tracks
the maximum amount of entangled objects at any point of the execution. The ceiling provides
a reference for the peak amount of entanglement by accounting for the fact that this amount
decreases when tasks join. As an example, consider two parallel subcomputations whose execu-
tions have entanglement factors €, €5 and ceilings d;, d2. Then for their sequential composition,
the entanglement factor is €; + €2 and the ceiling is max(dy, d2). Because the first computation
finishes before the second begins, its entanglement is resolved and does not affect the second.
The entanglement ceiling accounts for this resolution.

3.2.3 Semantics

Our semantics, presented in Figure 3.3, is a transition relation that steps a program state con-
sisting of six components: allocator map «, reader history H, memory p, entanglement factor
¢, task tree T, and expression e. The transition relation has the form: (o ; H ;pu;e;7T ;e) —
(o' s H ;1 55T 5 €).

Fork and parallel evaluation. The rule Fork (see Figure 3.3) forks two children, v
and w to evaluate the components of the parallel pair (e; || e2). It creates the par-node
Par(u, ALeaf(v), ALeaf (w)). Then, the rule PARL steps the left side of the parallel pair e; with
subtree 7). The rule PARR for stepping the right side is similar. Rules PARL and PARR may
interleave non-deterministically.

31



Mutable reads and entanglement factor.

¢ & dom(p) p = pll—s] o = afl—v]
ase; H;pu;Aleaf(v) ;s — o ;e; H ;' ; ALeaf(v) 5 ¢

ALLOC

pu(ly) = fun f x is e,
ase; HjpyALleaf(v); (61 l2) — acse; H sy Aleaf(v) 5 [€1, 02 / f, zlep

AppP

ase;Hip;Tie—a € s H )l ;T €
ase;Hi;pu;Ts(refe) = o ¢ s H ;i ;T (ref €)

REFS

ase;Hyp;Tie—ao € H ) T s €
asesHyp;Ti(le)» o s5€ H ;15T (1e)

BanGS

u(l) = ref ' H = H/{'H() U {v}] € =e+ler(E(H')) \ er(E(H))|
aje; H;p;ALeaf(v); (10) — ase; H ;s ALeaf(v) ; ¢

Banc

Upp

ase; Hipg[l—ref "] ; ALeaf(v); (0:=0') — a;e; H 5 o[l —ref ('] ; ALeaf (v) ; ¢

F
aje; Hipy Aleaf(u) ;s (e1 || e2) — a ;e H 5 p; Par(u, ALeaf(v), ALeaf(w)) ; (e1 || e2) o
ase;Hip;Tyser — o 5é s H pl 5T s e
PARL
aie HipiPar(u, Ty, Th) ; (e1 || ea) — o s € s H' 5 15 Par(v, T), To) ; (€] [ e)
ase;HipiToses — o s s H )l Th s ey
PARR
aie; Hip;Par(o, T, To) s {en [ e2) — o5& s HY s s Par(v, T, Th) s (en || )
o =af{u/vH{u/w}  H' = H{u/v}{u/w}
Join

a;e; H;p; Par(u, ALeaf (v), ALeaf(w)) ; (01 || o) — o s e; H'; p; ALeaf (u) 5 (€1, fo)

Figure 3.3: Language Dynamics.

Allocation. The rule Arroc (see Figure 3.3) shows how storables are allocated. The rule
steps a storable s to a fresh location ¢ (¢ ¢ dom(u)), and extends the memory store p with
location ¢ mapped to storable s. It assigns the location its allocator task in the allocator map «.

respectively by stepping the sub expression e.

The rules REFS and BANGS step ref e and !e

Rule BANG performs the dereference operation and updates the reader history and the en-

tanglement factor. When a task v dereferences a mutable location ¢ to read a location ¢, the
rule adds the reader v to the reader history of location ¢'. Because this dereference may in-
crease the amount of entanglement, the rule updates the entanglement factor. To update the

32



entanglement factor, the rule first identifies locations entangled because of this read. We can
write the set of entangled locations as Uycg(myer(¢), where er computes the region for a source,
H is a reader history, and £(H ) contains all the sources for history H. This set is the union of
entanglement regions of all the entanglement sources. We write this concisely as er(E(H)).

The rule computes the set difference er(E(H’)) \ er(€(H)) because the difference represents
all entangled locations in the new (after the read) reader history H’ that were not entangled in
the old (before the read) history H. The rule increases the entanglement factor by the size of
this set, which it computes with |.| (see Figure 3.3).

Mutable updates. Rule UpD creates a pointer from a mutable location ¢ to a location /.
Mutable updates do not affect entanglement because the task already can access both locations.

Join. Once a parallel pair is fully evaluated, we turn it into a sequential tuple. When this hap-
pens, we remove the children from the tree and as a result, the parent becomes the leaf. The rule
Join replaces the par-node Par(u, ALeaf(v), ALeaf (w)) with the leaf node ALeaf(u). Because
the children have terminated, we transfer the ownership of the allocations of the children to
the parent. The Join rule does this by substituting task w for the children tasks v and w in the
allocator map a.

After the join, the locations entangled between children tasks v and w are no longer entan-
gled because tasks v and w are no longer concurrent (they have joined). To reflect this in the
program state, the JoIN rule remaps the accesses of the children tasks (v and w) to the parent
task (u). In the semantics, the rule modifies the reader history and substitutes task « for tasks
v and w. The modified reader history H' is equal to H{u/v}{u/w}.

Entanglement ceiling. Entanglement ceiling quantifies the maximum amount of memory
reachable from entanglement sources at any step of an execution. Formally, suppose an exe-
cution starts with state Sy, proceeds as Sy — 57 ....5,, and finishes with state .S,,. Then, the
entanglement ceiling, represented as J, for this execution is max;|u™ (E(H;))|, where £(H;) is
the set of entanglement sources for history H; and ;1™ computes memory reachable from them.
Entanglement ceiling bounds the space cost incurred by our memory manager for managing
entanglement, as the memory manager preserves all memory reachable from entanglement
sources.

Other rules. Other rules are standard and we skip them for brevity. The evaluation begins
from the state (0 ; 0 ; @ ; 0 ; ALeaf(v) ; ) where the allocator map «, the reader history H,
and the memory p are empty, the task tree is ALeaf(v), the entanglement factor is 0, and e
is the program. At the end of evaluation, the program state contains the result and also the
entanglement factor of the execution.

33



3.3 Evidence for the Disentanglement Hypothesis

The disentanglement hypothesis states that most objects in a parallel fork-join program are
disentangled. Specifically, for any given execution of a program, both the entanglement factor
e and the entanglement ceiling  are a small fraction of the total memory used. While the
hypothesis may not hold universally for all fork-join programs, theoretical results and empirical
evidence show that it holds for many parallel programs.

In the rest of this section, we consider several classes of programs written in our language
MPL and describe which of them have entangled objects and their extent. We include examples
ranging from simple to sophisticated parallel algorithms, demonstrating that the disentangle-
ment hypothesis holds for a wide range of programs including those that utilize concurrent data
structures for parallelism. We have measured the entanglement factor € of these examples and
many other benchmarks, and in all of them the entanglement factor is much smaller (< 1%)
than the memory footprint (see Chapter 7 for numbers).

3.3.1 Deterministic Programs

First, we observe that all purely functional programs satisfy the disentanglement hypothesis
because they do not have entangled objects by construction. Entangled objects/sources are
only created by mutable reads/writes, which are absent in purely functional programs. Con-
sequently, purely functional programs are naturally race-free and deterministic, making them
a reliable medium for expressing parallel programs. A wide range of collections such as sets,
maps, and sequences, and operations such as union, filter, intersection, reduction, and range
queries can be expressed purely functionally with excellent parallel performance [68, 167, 178].
All of these satisfy the disentanglement hypothesis.

As a concrete example, Figure 3.4 shows the code for the reduce function that “sums” an
array of elements with a given binary operator in parallel. The code first checks if the array
is empty, and if so returns the identity value of the input function f. Otherwise, it recursively
evaluates two halves of the array in parallel, as denoted by the parallel operator ||.

Beyond purely functional programs, many programs that utilize mutable state for perfor-
mance benefits also satisfy the disentanglement hypothesis. Westrick et al. [178] showed that a
program free from determinacy races—where two concurrent tasks access the same memory lo-
cation, with at least one modifying it—satisfies program level disentanglement. Such programs
do not have entangled objects and thus adhere to the disentanglement hypothesis.

Determinacy race free programs are guaranteed to be deterministic [78]. Many programs
use mutation in a deterministic fashion, including those with array-based sequences (lists),
that allow for mutable updates, and support common operations like map, filter, and reduce

'Note that their formal definition of disentanglement is different from ours as they define it as a program
property, whereas we define it on a per-object basis. Formally, we must show that our definitions are semantically
equivalent for disentangled programs to use their result. But adapting their result for our setting is relatively
straightforward.

34



1

2

3

fun reduce f id a =
if length(a) = O then id
else
let mid = length(a) / 2
(left, right) = (reduce f id al[0 .. mid] || reduce f id a[mid .. 1)
in
f (left, right)
end

Figure 3.4: Parallel reduce function takes a binary operation £, its identity id, and an array
and computes the “sum”, £ (a[0], f(al[1l], ... f(a[n-2], aln-11) ... )).

in a deterministic fashion. This is often achieved by ensuring that parallel tasks operate on
separate, non-overlapping array sections [178].

3.3.2 Nondeterministic Programs Without Entanglement

Many irregular algorithms use atomic operations, typically implemented with mutable effects,
to mediate interaction between parallel tasks. One such operation is the “compare and swap”
(ak.a., “CAS”) operation that performs an atomic non-blocking read-modify-write on a mutable
cell. The motivation for these operations comes from the practice of parallel programming,
where many algorithms and implementations use nondeterminism for efficiency reasons. CAS
operations, when applied on unboxed values like integers or floats, which are not heap-allocated,
do not lead to entangled objects (because there is no sharing of allocations between tasks). Thus,
programs using such operations on unboxed values satisfy the disentanglement hypothesis.

As an example of a class of algorithms that use CAS operations for improved efficiency,
consider the classic parallel breadth-first-search that takes a graph and a source vertex and tra-
verses the graph from the source, visiting each level of the graph in parallel. The BFS algorithm
uses a CAS operation on a mutable cell in an array to ensure that each vertex is visited exactly
once, preventing repeated work. The signature of the CAS operation is

CAS : (a Array * int) — (a * a) — bool.

It takes an array, the position of a cell, the expected value v, and the new value v,,, and atomi-
cally swaps the value v of the cell with the new value if v is equal to the expected value v, and
does nothing otherwise (v is different from v,).

Figure 3.5 shows the MPL code for such a BFS. The workhorse is the recursive search
function that takes the graph, an array of visits, and a frontier as an argument. Each
invocation of the search visits all the vertices on a specific level. The frontier is the array
of vertices to be visited and the array visits indicates completed visits: visits[u] = -1 if
the vertex is not visited and visits[u] = uif it is visited. To visit the vertices in the frontier,
the algorithm parallel-maps a visit function over the frontier. The visit function takes each
outgoing edge of a vertex and attempts to “claim” the target of the edge with compare-and-swap,

35



i fun search(graph, visits, frontier) =

2

3

4

20

21

22

23

24

25

CAS, operation, and returns the array of neighbors that it has successfully claimed. The search
function constructs, by using the flatten function, the new frontier to include the vertices

if length(frontier) = 0 then
visits
else let
fun visit(v) =
filter (fn u =
CAS (visits, u, (-1, v)))
(neighbors(graph, v))
frontier =
flatten(map(visit, frontier))
in
search (graph, visits, frontier)
end

fun bfs(graph, source) =

let
fun init(i) =
if 1 = source then source
else -1
n = numVertices(graph)
visits = tabulate(init, n)
frontier = singleton(s)
in
search (graph, visits, frontier)
end

Figure 3.5: The implementation of non-deterministic BFS.

claimed by the visit function.

executions. Notice, however, that the races only involve unboxed integer values, and involve
no memory allocations that are shared between tasks, thus avoiding any entangled objects.

Key Takeaway. Nondeterministic programs that use concurrent mutable operations, such
as compare-and-swap, on small, word-size, values of primitive types (e.g., int, and bool) do not
create entangled objects. Thus, they satisfy the disentanglement hypothesis.

Because the BFS algorithm visits each reachable vertex and edge once, its work and space
is bounded by the size of the graph. Because the algorithm uses compare-and-swap operations
on shared vertices, it is non-deterministic: different executions of BFS could yield different

36



1

2

3

type o ht = {T: « option array, h: a — int}
fun insert ({T, h}: o ht, k: «) : unit =
let fun loop i =
if (T[i] = SOME k) then ()
else if (T[i] = NONE and (CAS (T, i) (NONE, SOME k))) then ()
else loop ((i + 1) mod ITI|)
in loop (h(k)) end

Figure 3.6: Concurrent hash tables: insert function.

3.3.3 Entangled Programs

The parallel breadth-first-search example above illustrates a very simple concurrent data struc-
ture consisting an array of atomic cells, each of which allows atomic read and write operations
(implemented via compare-and-swap). More broadly, concurrent data structures, such as hash
tables and lists, are essential for efficiency in many parallel algorithms. Although these data
structures contain heap-allocated objects that are entangled because they are shared between
tasks, the total amount of entangled memory in the entire program often remains low. Let’s
examine this using a concurrent hash table in the context of a graph algorithm.

Concurrent Hashing. Figure 3.6 shows a hash table type o ht, which is a record containing
an array T and a hash function h. The insert function uses linear probing to insert key k into
hash table {T, h}: it starts at the index h (k) and loops until it finds an empty cell in the array
T. When it finds an empty cell, it attempts to insert the key using a compare-and-swap (CAS) to
atomically update the empty cell; the attempt may fail if another task concurrently performs an
insertion, in which case the function probes for the next empty cell. We assume for simplicity
that the hash table has sufficient space.

Since many concurrent tasks access the keys of the hash table, they make the keys entangled.
For example, when a task probes for an empty slot, it reads the keys inserted by other tasks,
making them entangled if they are inserted by other concurrent tasks.

The hash table is useful for many parallel algorithms, including for memoization and dedu-
plication. Let’s examine how we can use a hash table for deduplication, i.e., removing duplicates
from an array of keys. Given an array, we can fork parallel tasks that attempt to insert the keys
into the hash table. The hash table guarantees that the attempt only succeeds if the key has not
been inserted previously, thereby removing duplicates. For this algorithm, the entanglement
factor (amount of entanglement) is bounded by the number of unique keys—only those keys
that are successfully inserted into the hash table can be read by other tasks. Thus, for a sequence
of n keys with  unique keys, the entanglement factor is bounded by O(r) € O(n). While this
can be theoretically high, especially in the case where all elements are unique, deduplication
is typically used within a larger parallel algorithm that makes this entanglement factor much
smaller in comparison, particularly when there are a lot of duplicates. We consider an example

37



of this below.

Graph Reachability As another parallel program that uses concurrent hash tables, we con-
sider parallel graph reachability for undirected graphs. Figure 3.7 shows the code for the reach
function, which labels each vertex of the graph such that two vertices have the same label if they
are in the same connected component. The function works in rounds: each round decomposes
the graph into clusters using a low-diameter decomposition function 1dd and then contracts
the graph using function contract. The 1dd function takes a parameter 5 < 1 and returns a
(8,0( lo%))—decomposition of the graph, meaning it partitions the graph into clusters, where

logn

5 ) and the number of edges between clusters is at most a

each cluster has a diameter of O(
fraction /3 of the total edges m.
After the decomposition, the reach function calls contract, which collapses each clus-
ter into a single vertex, removing edges within each cluster, and deduplicating edges between
clusters. This contraction step simplifies the graph, making it smaller and easier for comput-
ing reachability. Since each round reduces the number of edges by a fraction of /3, the reach

function terminates after a logarithmic number of rounds.

i (= B is a floating—point number in (0, 1) *)
: fun reach(V, E) =
s let L = 1dd(G, /)

" (V’, E’) = contract ((V, E), L)
5 in

¢« if |E’| = 0 then

7 L

8 else

. let L’ = reach(V’, E’)

10 in{ v~ L’[L[v]] | v in V }
11 end

12 end

Figure 3.7: The code shows a MPL program for computing graph reachability. The program
calls functions Idd and contract repeatedly, but each time with a smaller input. Theoretically,
the worst-case entanglement ceiling of reach is O(/5-m), which is fraction J of the total memory.
In practice we observe that the amount of entangled memory is < 1%.

The precise implementation details of the 1dd function are not crucial here, but interested
readers can refer to Miller et al [119] for more details. Roughly speaking, the 1dd function,
based on the algorithm of Miller et al [119], samples vertices and perform parallel breadth-first
searches (BFS) to form clusters. If multiple searches reach the same vertex, it uses compare-
and-swap operations to ensure that a vertex is assigned to at most one cluster. While these
compare-and-swap operations introduce nondeterminism, they don’t create entangled objects
because they only involve unboxed integer values.

38



The contract function, however, does create entanglement, because it uses a shared
hashtable to deduplicate inter-cluster edges. Theoretically, the worst-case amount of entan-
gled memory is the number of distinct remaining edges which is O(3 - m), a fraction /3 of the
total memory O(m).

Key Takeaway. For the reach algorithm, we can bound the worst case amount of entangled
memory as a fraction [ of the total memory, where 3 is a parameter to the algorithm, typically
around 0.3 for large graphs. In practice, our experimental results suggest that the amount of
entangled memory is significantly smaller, because the worst case is conservative. We observed
that, after just one round, the number of edges dropped dramatically from roughly 200 million
to 11 thousand, far exceeding the worst case reduction of 8 = 0.3. Of the 200 million edges
that are allocated, only 11 thousand are entangled and others are disentangled. This
program thus satisfies the disentanglement hypothesis.

The low-diameter decomposition and contraction steps are highly effective in minimizing
the number of inter-cluster edges. Consequently, the amount of entangled memory is very low.
Additionally, all of this entanglement is temporary. When the contract function finishes, the
entanglement is resolved because the tasks performing the deduplication have joined.

3.4 Limitations and Extensions

Although the disentanglement hypothesis applies to many fork-join parallel programs, there
are interesting classes of programs that may create higher amounts of entanglement. This is
particularly the case in interactive settings. For example, a PDF viewer with user threads and
application threads communicating through concurrent effects on shared memory (e.g., by read-
ing and writing to the same data structures simultaneously) could create a large number of
entangled objects, under the fork-join model.

To overcome this limitation, we can use a more powerful model of parallelism, where com-
munication is a first-class citizen of the language. For example, many modern programming
languages and frameworks support a more powerful form of parallelism called futures. Futures
allow you to create a parallel task and demand the result from the task at a later time when
needed (hence the name “future”). In Chapter 8, we demonstrate that even interactive appli-
cations adhere to the disentanglement hypothesis when expressed using futures. We consider
a functional calculus with futures, state, and I/O, and define a semantics for disentanglement
for futures. We show that determinacy race free programs with futures only have disentangled
objects, thereby generalizing the disentanglement hypothesis to include interactive programs.

39



40



Memory Management

Our coscheduling algorithm organizes the memory into a tree of heaps and assigns each heap to
a processor. Our goal is to enable efficient and scalable memory management by allowing each
processor to independently manage its heaps without much synchronization. This means that
each processor can allocate memory and perform garbage collection within its heaps, without
tracing memory outside of them.

At a high level, the memory manager exploits the disentanglement hypothesis to enable
independent memory management. It tracks entangled objects efficiently and uses this infor-
mation to enable each heap to be independently garbage collected.

To track entangled objects, the memory manager observes the memory actions of paral-
lel tasks using read/write barriers. For efficiency, the memory manager only uses read and
write barriers for mutable data and does not use any barriers for immutable data. The memory
manager also tracks when tasks join and resolves the entanglement between them punctually,
thereby ensuring that entanglement does not “snowball” to include a large number of objects.
We prove that our memory manager is precise in tracking entangled objects, by showing that
the work and space for tracking them is proportional to the amount of entanglement in the
program (Section 4.4). This ensures that tracking entangled objects imposes near-zero
overhead on the allocation and access of disentangled objects. Because entangled objects
are a minority in parallel programs (disentanglement hypothesis), shielding their overheads
from disentangled objects ensures that tracking of entangled objects is efficient.

By efficiently tracking entangled objects, the memory manager can account for all inter-
heap pointers and enable independent garbage collection of each heap. Specifically, inter-heap
pointers into disentangled objects can be cheaply tracked because they are between sequentially
dependent heaps. Inter-heap pointers to entangled objects, on the other hand, do not need
explicit tracking because the entanglement tracking algorithm already identifies and preserves

41



these objects. Thus, each heap can be garbage collected independently, as the memory manager
accounts for all incoming pointers.

We start this chapter by giving some relevant garbage collection background and describing
independent garbage collection along with the problems posed by inter-heap pointers.

4.1 Background: Garbage Collection

Garbage Collection relieves programmers from the burden of manually managing the memory,
improving the programmer’s productivity by guaranteeing safety from errors like dangling
pointers and memory leaks. We give an intro-level overview of the key concepts in garbage
collection, relevant for our discussion in the thesis. We recommend the book by Jones et al. [101]
for a comprehensive introduction.

Memory as a Graph. We can abstractly represent a program’s memory as a graph, with
memory objects as vertices, and pointers, which are references between objects, as directed
edges. The graph is dynamic because the program continuously allocates new objects and modi-
fies (mutates) pointer edges during execution. The program accesses the memory graph through
a set of designated objects called program roots. These roots include global variables, task-local
stacks, and other objects directly accessible to the program.

Liveness and Reachability. An object is live if it is reachable from program roots either
directly or through a series of pointers. Conversely, objects that are not reachable from any
program roots are garbage or dead objects. The garbage objects are guaranteed to be never
accessed by the program and can be safely reclaimed.

Garbage Collection. The garbage collector is responsible for identifying live objects and re-
claiming the memory occupied by dead objects, making space available for new allocations.
Our focus in this work in on tracing garbage collectors, which traverse the memory graph to de-
termine live and garbage objects. Such garbage collectors typically have two steps: 1) Tracing:
Starting from the program roots, the collector follows pointers to discover and mark all reach-
able objects, and 2) Reclamation: Memory occupied by unmarked objects is reclaimed, either
by directly freeing them or by relocating live objects to compact the memory. Compaction, as
achieved by relocation of live objects, not only reduces fragmentation by using memory space in
a contiguous fashion, but also improves memory locality, boosting the program’s performance.

Heaps and Independent Garbage Collection. In parallel programs, where multiple tasks
allocate memory simultaneously, memory managers partition memory into heaps. A heap is
an abstract data type representing a set of objects and supports operations such as creating
a new heap, merging two heaps, allocating within a heap, freeing objects within a heap, and
tracking whether an object is in the heap. The benefit of partitioning memory into heaps is
that processors can use different heaps to allocate and garbage-collect objects independently.

42



By independent garbage collection, we mean that the garbage collector determines the live/-
garbage objects of a heap by only tracing objects within the heap and not tracing those outside
it. This can be efficient both in terms of the work and parallelism of the garbage collector,
because it allows a processor to garbage collect a portion of the memory without tracing the
entire memory graph, and also allows multiple processors to garbage collect independently in
parallel.

However, independent garbage collection is difficult to achieve, because of inter-heap
pointers—pointers that reference objects in different heaps—complicate this, as the collector
must consider pointers from objects outside the heap. When collecting a heap independently,
any object that is target of pointer from an object outside the heap, must be treated like a root.
This is because, there is no way to determine if that object is live, and furthermore, even if the
object may be garbage, freeing that object would create a dangling pointer, which is unsafe.
Thus, the garbage collector must account for all the inter-heap pointers and keep their target
objects live. Accounting for inter-heap pointers can be challenging because it typically requires
synchronization between processors and can lead to high overheads and scalability problems.

Connection to Coscheduling. When garbage collecting a heap, we can assume that the tar-
get object of all pointers coming into the heap are live. This is a conservative approximation
because its possible that those inter-heap pointers are themselves are garbage and could be col-
lected. In Chapter 2, we discuss our coscheduling technique, which bounds how conservative
this approximation is by “clustering” these heaps and assigning clusters them to processors All
heaps in a cluster can be garbage collected together by the same processor, allowing for accu-
rate treatment of inter-heap pointers within a cluster. Different clusters are garbage-collected
independently.

4.2 Accounting for Inter-Heap Pointers

Our memory manager partitions memory into heaps, with each task assigned to its own heap
for allocations, and organizes the heaps as a heap tree. To enable efficient and independent
memory management of heaps in the tree, the memory manager must account for inter-heap
pointers, which are pointers between objects in different heaps. These pointers create depen-
dencies between heaps, as the liveness of objects in one heap can depend on objects and pointers
in another.

In this section, we present techniques to account for all the inter-heap pointers and ensure
that their target objects are not prematurely reclaimed during garbage collection. By keeping
the target objects of inter-heap pointers live, we account for all the inter-heap pointers and
enable independent garbage collection of each heap, i.e., any heap in the tree can be garbage
collected without tracing the memory in other heaps (Section 4.5). We begin by considering
the different types of inter-heap pointers that can exist within the heap tree; the classification
is same as the one we described in Chapter 2.

43



4.2.1 Types of Inter-Heap Pointers and Example

Within a heap tree, we classify pointers based on the relative positions of the objects they
reference. Every pointer can be classified as one of four categories:
1. Up Pointers: These pointers originate from objects in a descendant heap and target/ref-
erence objects in an ancestor heap. They point “upwards” in the heap tree.

2. Down Pointers: These pointers originate from objects in an ancestor heap and reference
objects in a descendant heap. They point “downwards” in the heap tree.

3. Internal Pointers: These are between objects within the same heap (they are not “inter-

heap”).

4. Cross Pointers: These pointers are between objects in heaps belonging to concurrent

tasks.

This classification of pointers not only distinguishes the relative positions of objects, but
also gives insights into how the program creates these pointers. Given that each task gets a
new heap when it is created and that heaps are merged into parent heaps at joins, the heap
tree tracks the sequential order in which objects are allocated. Objects in descendant heaps are
allocated “sequentially after” those in ancestor heaps, because descendant heaps are created
after forks and objects in ancestor heaps are allocated before forks. Consequently, up pointers
always reference older objects, while down pointers always reference newer objects. Cross
pointers reference objects allocated by concurrent tasks, where the relative allocation times are
not directly comparable.

Up pointers are common in functional programs due to the frequent use of immutable data
structures, where new objects reference older, existing objects. Down pointers are associated
with mutable objects, as they are created by modifying an existing object to point to a newer
object. Cross pointers are created because of entanglement and determinacy races, because
they are between objects allocated concurrently.

Example. Figure 4.1 illustrates how down pointers and cross pointers are created by mutable
effects. It shows an example program and the heap tree at a step of program execution. The
code first creates a mutable reference a and then executes functions add1 and add?2 in parallel.
The function add1 allocates an immutable object, corresponding to value Some 4, and writes
it to reference a, creating a down pointer. The function add2 loops until the write by function
add1 takes place, and then stores the result in a reference b, creating a cross pointer.

4.2.2 Barriers, Remembered Sets, and Heap Tree

To track the creation, deletion, and usage of inter-heap pointers, the key mechanisms we use
are barriers and remembered sets. A read/write barrier is a snippet of code that the compiler
inserts before every read/write. Our memory manager uses barriers to detect and account for
inter-heap pointers. Because barriers can potentially add overhead to every program read/write,
it is crucial that they are as efficient as possible. In our memory manager, we ensure that all

44



val a = ref None

fun add1() = /.

a := Some 4;

return a
fun add2() =
case la of 1
None = add2()
b = ref (la); add1 () add2 ()

return b
val (c, d) = fork (add1(), add2 ())

Figure 4.1: The code on the left demonstrates how down and cross pointers are created by
mutable effects. The figure on the right shows a heap tree where the gray boxes denote heaps,
green boxes are mutable references and circles represent immutable objects. The red arrows
indicate pointers.

immutable objects are read directly without any barriers, which is important because most reads
in a parallel functional language involve immutable objects. Additionally, we design several
techniques to ensure that the overhead of the read barrier on mutable objects remains low (see
“pin sharing” in Section 4.3 and “entanglement frontier” in Chapter 6).

When the memory manager detects new inter-heap pointers using barriers, it stores them
in a remembered set. Each entry in the remembered set typically contains a source object,
which is the origin of the pointer, and a target object, which is the object being referenced.
We maintain a remembered set for each heap to allow the creation and removal of entries in
parallel across different heaps. At a fork, when a task creates child tasks, the memory manager
creates two empty heaps for the children tasks and initializes their remembered set as empty
sets. At a join, it merges the parent heap with the children heaps and merges the remembered
sets of the children with those of the parent.

Our data structure for implementing the dynamic heap tree supports many useful opera-
tions. For example, the tree allows for efficient querying of an object’s heap and also tracks
information about the relationships between heaps, such as their depth within the tree and
whether two heaps are concurrent (i.e., not in an ancestor-descendant relationship). We leave
the implementation details of this data structure to Chapter 6.

4.2.3 Managing Up Pointers

Up pointers, which target objects in ancestor heaps from objects in descendant heaps, are the

most ubiquitous inter-heap pointers in parallel functional programs. This is because up pointers

are primarily created by immutable objects, which point to old objects allocated before them.
To manage up pointers, we use a snapshot-at-fork technique which efficiently captures

45



all potential up pointers at the time of fork. When a task forks, it passes object references to
its children, which can then use these references to create up pointers. At the time of fork,
we record all the objects the parent passes to its children and add them to the parent heap’s
remembered set. These objects and any objects reachable from them through pointers, are the
complete set of objects that the children tasks—or any of the descendants—can access and use
to create up pointers. Our memory manager thus treats these objects as roots and ensures that
all objects targeted by up pointers are preserved and can be safely accessed.

Note, however, child tasks can delete pointers in the parent heap and change the reacha-
bility of objects from these roots, potentially causing the garbage collector to miss live objects.
To address this, we use write barriers to intercept pointer deletions. The write barriers identify
deleted pointers and add them to the heap-local remembered sets, ensuring that they are con-
sidered as roots for garbage collection. This technique is similar to snapshot-at-the-beginning
techniques used in garbage collection that preserve the reachability in a heap w.r.t. a given
point in time [101]. In our setting, we perform this snapshot at the time of fork and use it to
account for up pointers.

4.2.4 Managing Down Pointers

Down pointers target objects in descendant heaps from objects in ancestor heaps. Since de-
scendant objects are younger than ancestor objects, down pointers represent a old-to-young
relationship between objects, which is only possible through mutation (immutable objects can
only point to objects allocated before them). Thus, a program creates a down pointer by modi-
fying an old mutable object to reference a newer object. For example, a parent task may pass a
reference to a mutable object to a child task, which can then modify it to create a down pointer
to its an object in its own heap.

We can use this observation to track down pointers using write barriers. The write barrier
intercepts memory updates and checks whether a pointer is being created and whether the
pointer is a down pointer. If a down pointer is created, the write barrier stores it in the remem-
bered set of the target object. This ensures that the target of the down pointer is not reclaimed
and the pointer can be accessed safely.

4.2.5 Cross Pointers

Cross pointers are pointers between objects in heaps corresponding to concurrent tasks. These
pointers typically originate in two steps. First, a task accesses an object in a concurrent task’s
heap via a down pointer. Then, the task stores a reference to that object in its own heap.
Cross pointers are challenging to track because, once a cross pointer is created, it can lead
to more cross pointers. Tasks can create new cross pointers, through an existing cross pointer,
by using it to reference objects in other heaps. This proliferating effect makes tracking all cross
pointers impractically expensive. For instance, even new object allocations can create cross
pointers because they may reference objects in a concurrent heap. Tracking cross pointers

46



would thus require inspecting all allocations, even those unrelated to cross pointers, resulting
in significant overhead.

Instead of tracking individual cross pointers, we can feasibly track objects that are targets of
cross pointers. These target objects, accessed by concurrent tasks, correspond to the entangled
objects in the heap tree. By tracking all entangled objects and ensuring they remain live, we
can avoid tracking individual cross pointers. Keeping entangled objects live guarantees that
all cross pointer accesses are safe and prevents dangling pointers. We discuss entanglement
tracking and its overheads in the next section, Section 4.3

4.3 Tracking and Managing Entanglement

In this section, we describe our techniques to manage entangled objects in the heap tree archi-
tecture. Our memory manager tracks all entangled objects in the heap tree and keeps them live,
ensuring that concurrent tasks can safely access the entangled objects in each other’s heap. To
do this, we roughly follow the of our entanglement semantics, described in Section 2.1. Our
memory manager tracks entanglement sources—the objects where entanglement begins and
their entanglement regions—the objects that become dependent on other concurrent tasks
as a result of entanglement sources. To reclaim memory of each heap independently, we use
garbage collection algorithms that keep the objects of entanglement regions in place, but move
and compact other objects.

Identifying and managing entanglement regions correctly and efficiently poses several chal-
lenges. First, we must mediate between the concurrent tasks and the collector, because new
objects can become entangled virtually at any point during execution, e.g., a concurrent task
may try to access an object in a heap, while the garbage collector is actively relocat-
ing objects within that heap. Second, entangled objects are not permanently entangled and
become disentangled once tasks join; we must recognize the resolution of entanglement punc-
tually, so as not to penalize computations more than necessary. Third, we must do all of this
efficiently, in work proportional to their number/size, without imposing any cost on allocations
and accesses to disentangled objects. Crucially, our tracking algorithm must not use any barri-
ers on immutable objects, which is crucial for the performance of parallel functional programs,
because most memory operations involve immutable objects.

In the rest of this section, we present our techniques and describe how we overcome these
challenges. Our techniques culminate in a theorem that bound the work (run-time) and space
cost of tracking entanglement in terms of the cost metrics defined by the semantics. Before we
dive into details we give an overview and consider a simple example.

4.3.1 Overview

The memory manager maintains, for each task, a source set for tracking entanglement sources.
Its components—the read/write barriers and the collector—work together to track and manage
entangled objects.

47



/\\.q:
&
o A

\/
Figure 4.2: The figure shows a heap tree with mutable and immutable objects represented as
squares and circles respectively. The black pointers are between ancestor-descendant objects

and the red pointers are between concurrently allocated objects. The targets of red pointers
are the entanglement sources. Each entanglement source has an entanglement region, which

includes objects reachable from the source upto a mutable frontier. The entanglement regions
are depicted using blue bubbles. The figure shows two entanglement regions that overlap and
also shows an entangled region with a single mutable object.

Barriers and collector. The barriers intercept memory accesses and identify entanglement
sources. When they identify a source, they add it to the source set of the task that allocated it.
The collector treats the sources as roots and keeps them live.

The barriers and the collector also achieve a key performance goal: “barrier-less immutable
accesses”. Rather than intercepting immutable accesses to manage entanglement, the barriers
pin the entanglement region of every source and the collector refrains from reclaiming or
relocating pinned objects. The entanglement region spans all immutable objects that may be
accessed via the source: it starts at the source (which may be mutable or immutable) and goes up
to its “mutable frontier”, i.e., it contains all objects reachable from the source by only considering
immutable pointers. Here immutable pointers mean pointers of immutable objects. When a
barrier identifies an entanglement source, it pins the source’s entanglement region to ensure
that the collector does not relocate or reclaim any object of the region. This way the barriers and
the collector manage entangled immutable objects without intercepting immutable accesses.

Example. Consider the heap tree shown in Figure 4.2 with mutable objects depicted as
squares and immutable objects as circles. The black pointers are either internal to a heap or are
between objects of ancestor-descendant heaps whereas the red pointers are between objects of
independent heaps. The objects at the target end of red pointers are entanglement sources. The
regions of the sources are represented with blue bubbles. One of the bubbles wraps only a single
square demonstrating that if the source is mutable, its region only contains the source itself.
Another bubble illustrates that the entanglement region does not extend beyond mutable ob-

48



jects, but may contain series of immutable objects (circles). As the figure shows, entanglement
regions may overlap.

Expired entanglement sources. Entanglement sources increase space usage because the
collector assumes that these sources are live. However, we can remove entanglement sources
when two tasks join and the entanglement between them is resolved, leading to the expiration
of the sources entangled between them. By removing expired sources, we can remove the space
cost of keeping them live. The challenge lies in tracking when sources expire. To do this, the
barriers track an exp-depth (expiration depth) for each entanglement source. The exp-depth
represents the depth at which all tasks that read the source through a mutable reference join.
Once a source’s heap reaches exp-depth in the heap tree, it is guaranteed that all the relevant
joins have occurred and the source has expired. At this point, we can discard the source.

Invariants. To track entanglement sources, entanglement regions, and their expiration
depth, We use read and write barriers on mutable objects. The barriers ensure the following
invariants for each source:

1. the source is in the source set of the task that allocated it,
2. the source’s entanglement region is pinned, and

3. the source’s exp-depth is correct, i.e., it expires once its heap reaches the exp-depth.

Figure 4.3 shows the pseudocode for the barriers that shows how these invariants are main-
tained. In addition, the code considers the interaction between the collector and the barrier,
e.g., it shows how a barrier may find a “forwarding pointer” on an object it is about to pin,
because the collector has moved it. To ensure that a barrier is never blocked by a collection and
vice versa, our code is lock-free. We discuss the code for the collector in Section 4.5.

4.3.2 Read barrier for mutable objects

Procedure read in Figure 4.3 shows the pseudocode for the read barrier. It takes as arguments
the reader task ¢ and an object ¢ and returns the result of the read, the object ¢'. But first, it per-
forms an entanglement check by comparing task ¢ to the allocator task of object ¢, task ¢’. The
procedure allocator returns the task which allocated the object. If ¢’ is concurrent to ¢ (line 4),
then the read is entangled, otherwise the read is disentangled. In the case of disentanglement,
the barrier returns without further actions.

In case of entanglement, object ¢’ is an entanglement source and the read barrier acts to en-
sure the three invariants. It calls the procedure get_sinfo to check if the object is already flagged
as a source. The procedure get_sinfo returns an object called sinfo, a tuple of two elements con-
taining a boolean flag that tells if the object is a source and the exp-depth of the source. If
the object is flagged as a source then the first two invariants are guaranteed and we only need
to ensure the third invariant, i.e., ensure that the exp-depth is correct. The read barrier calls
set_info, to update the exp-depth appropriately (discussed later in detail).

49



iprocedure read (¢, t): 51 procedure write (¢, ¢'):

2 =N 2 t' = allocator (')

3 t' = allocator(!) 13 if (allocator({) #t')

+ if (concurrent(t,t')) { 34 ry —re U{(¢,0)}

5 (is_source, ed) = get_sinfo({) 5 L0

¢ if (is_source) { 36 return

7 set_sinfo (/') 37

8 return ¢ ss procedure pin_region ({):

s} 3 h = get_header (/)

1w else { w0 if (forwarded(h)) {

1 {" = pin_region({) 41 ¢’ = get_forward_object (h)

12 ey — ep U{l'} 1 return pin_region (¢')

13 set_sinfo(¢") s

14 return ¢’ w if (is_pinned(h)) {

15} a5 return ¢

16 } % ¥

v // fast path for disentangled reads 7 if (mutable(h)) {

18 else return ¢ 48 if cas(addr_header({), h, pinned_version(h))

19 1 return ¢

wprocedure set_sinfo (¢, t, t'): 50 else return pin_region (¥)

21 sinfo = get_sinfo(¥) st}

22 (is_source, ed) = sinfo 52 else {

» if (!is_source) 53 foreach i € ptr_fields(¢) {

2« ed = DCADepth (¢, t') 54 0, = pin_region({[i])

s else 55 if AL {

% ed = min (DCADepth (t, t/), ed) 56 (i) « 2,

27 nsinfo = (true, ed) 57 }

28 if cas (sinfo_addr(¥), sinfo, nsinfo)ss T

29 return 59 if cas(addr_header({), h, pinned_version(h))

30 else set_source (¢, t, t') 60 return ¢
61 else return pin_region (/)
@

Figure 4.3: Pseudocode read shows our read barrier. It uses pin_region and set_sinfo as helper
functions to pin entanglement regions and maintain the exp-depth of entanglement sources re-
spectively. The procedures account for concurrency with other tasks and also with the garbage
collector. All procedures are lock-free.

50



If the object is flagged as a source, the barrier (i) calls procedure pin_region to pin the entan-
glement region of ¢/, (ii) adds the object to the source set e,/ of task t/, and (iii) calls procedure
set_sinfo to mark the object ¢ as a source and set its exp-depth (see lines 11-13).

4.3.3 Entanglement region and its pinning

We implement pinning by reserving a bit in the header of each object, and when we set it we say
that we pin the object. The procedure pin_region pins the objects in the entanglement region
of its argument, accounting for the facts that each object in the region may be relocated by
the collector, or may simultaneously be pinned by other tasks. The procedure’s pseudocode is
shown by Figure 4.3.

Relocation by the collector. First, the procedure checks if its argument object has been re-
located by the collector. When a collector relocates an object, it creates a copy of the object and
installs a forwarding pointer to the copy in the header of the object. The procedure pin_region
calls get_header to read the header of the argument object ¢ and calls forwarded to check if the
header is a forwarding pointer (see Figure 4.3). If the header is a forwarding pointer, the pro-
cedure pin_region recursively calls itself on the copy of the object and returns (line 40). This
recursive call pins the entanglement region of the object’s copy and returns it.

When the header is not a forwarding pointer, the procedure pin_region checks if the header
is pinned. If the header is pinned, it is guaranteed that the entanglement region of the object is
also pinned (see “pin sharing” below). In this case, the procedure returns (line 45).

Mutable and immutable objects. In the case where the object is not pinned, the procedure
pin_region pins the entanglement region of the object, a region that only includes the object
itself when it is mutable, but goes up to the object’s mutable frontier when it is immutable.

When the object is mutable, the procedure attempts to pin the object by calling cas (which
stands for atomic compare-and-swap) on the header of the object (line 48). The procedure cas
takes three arguments: the address of the header addr_header(¢), the expected version of the
header h, and the pinned version of the header pinned_version(h). The cas updates the object’s
header if it finds the expected version h, returning true and otherwise performs no updates,
returning false. If the cas fails, the procedure loops by calling itself.

When the object is immutable, the procedure must pin the entanglement region of the im-
mutable object, consisting of all objects pointed by the immutable object and their respective
entanglement regions. To do so, it recursively calls itself on each object pointed by the im-
mutable object. Specifically, it calls procedure ptr_fields to obtain a sequence of pointers in the
immutable object and recurses on the ith pointer ¢[i], thereby pinning the entanglement region
from /[i] (line 54). However, this recursive call may return a copy of the argument object ¢[i], if
that object has been forwarded by the collector. In such a case, the procedure pin_region deletes
the pointer from the immutable object to the relocated object and replaces it with a pointer to
the copy (£} in line 56). After it iterates through all the pointers, the procedure attempts to pin
the immutable object. If it succeeds it returns the immutable object, and otherwise, it recurses.

51



Pin sharing. Multiple tasks may concurrently attempt to pin the same objects, raising the
question if we can avoid redundant pinning operations. To do so, tasks pin objects in a specific
order, determined by pointers of immutable objects: if an immutable object ¢ points to another
object ¢, then object ¢’ is pinned before object . This ordering guarantees that when an object is
pinned all objects in its entanglement region are also pinned, because the region only contains
immutable pointers from the object. Thus, if a task encounters an object that is already pinned,
it can safely assume that the entire entanglement region is also pinned (see line 45 in Figure 4.3).
This allows the task to skip the pinning process for that region, avoiding redundant work.

4.3.4 Expiration depth of entanglement sources

An object becomes an entanglement source when read by concurrent tasks via a mutable object.
The entanglement source expires (becomes disentangled) when the tasks that read it and the
task that allocated it have joined. This occurs at the depth of their deepest common ancestor in
the heap tree

Definition 4.3.1. The expiration depth (exp-depth) of an entanglement source ¢ is the deepest
depth in the heap tree at which all tasks that have read ¢ through a mutable reference have
joined with the task that allocated /.

The exp-depth of a source can be calculated as follows: let vy . .. v, be the tasks that read
object ¢ from some mutable object and let a(¢) be the allocator task of object £. Then, the exp-
depth of source ¢ is equal to DCADepth(vg, vy . ..v,, a(f)), where DCADepth calculates the
depth of the deepest common ancestor of a set of tasks in the task tree.

The procedure set_sinfo calculates the exp-depth in an online fashion. It takes the source /,
its allocator ¢, and its reader ' and sets the sinfo object of source ¢. Recall that sinfo is a tuple
which contains a flag that tracks whether the object is a source and also contains its exp-depth.
We give the pseudocode of the procedure in Figure 4.3. The procedure first reads the sinfo of
the object ¢ by calling get_sinfo and then checks if the object is already a source. If not, then
the exp-depth of the source is equal to DCADepth(¢,?’). Otherwise, if the object is a source,
it already has exp-depth ed, and the procedure picks the minimum among that depth and the
depth DCADepth(¢,t'). To update the object’s depth, it creates a new sinfo object named nsinfo,
containing the correct exp-depth. Then, it attempts to install the nsinfo on the object using a
cas and if it fails (because another task updated the sinfo), it tries again. In our implementation
we flatten the sinfo tuple to a word.

4.3.5 Write barrier for mutable updates

The write barrier tracks inter-heap pointers created by mutable updates and adds such pointers
to the remembered sets. We show its pseudocode in procedure write of Figure 4.3. It takes as
arguments a mutable object ¢ and an object ¢/, and compares their allocator tasks to check if
they are in different heaps (line 33). If so, it adds the tuple (¢, ') to the remset (1) of task ¢'.
After this, it performs the update. The collector treats remembered set entries as roots, ignoring
those that may have become internal as a result of joins.

52



4.4 Bounding the Overhead of Tracking Entanglement

We analyze the performance of our entanglement tracking algorithm by giving bounds on its
work cost and space cost (in terms of liveness).

Theorem 1 (Work bound). An execution with work W requires O(W + €) work to execute in-
cluding the cost of entanglement tracking, where € is the entanglement factor of the execution.

Our entanglement tracking algorithm has three sources of overhead: identifying entangle-
ment sources, pinning their entanglement region, and maintaining the exp-depth. The work
bound shows that these overheads are localized to entangled objects, i.e., accesses to disentan-
gled objects are not penalized. The bound also confirms that the penalty to entangled objects
is additive: it is paid once per entangled object and does not increase with the number of times
an entangled object is accessed. Our proof assumes that contention per object is low, i.e., we
assume that each compare-and-swap (cas) instruction succeeds after a constant number of at-
tempts. All of them are borne at mutable reads by the read barrier. We prove the following
lemma to bound the work of mutable reads.

Lemma 2. The total work for mutable reads is O(r + €), where 1 is the number of mutable reads
and € is the entanglement factor.

Proof. We prove the lemma, assuming that contention per object is low and each cas succeeds
after some constant number of tries. In this model, if we ignore constant factors, then we can
analyze by directly assuming that the cas (compare-and-swap) always succeeds. The constant
number of tries do not play a role in a big O bound.

For reads of disentangled mutable objects, there is a constant overhead because the read
barrier checks for disentanglement and in that case, returns the object. Because this is constant
time, this work can be charged against 7, which is the number of mutable reads. Reading an
entangled object is also constant time, if the object is an entanglement source. In this case, the
read barrier only calls set_sinfo, which takes a constant number of steps and thus, this work can
also be charged against the number 7.

The main overhead is incurred when an entangled read makes the object a source and as a
result, the barrier traverses the objects in the entanglement region to pin them. This overhead
can be charged against the entanglement factor e. To do so, recall that the cost semantics (Fig-
ure 3.3) bumps the entanglement factor each time a new location is added to the entanglement
region. We argue that the work of the read barrier is exactly equal to the number of locations
added to an entanglement region because of this read.

Let’s consider three cases. First, suppose the object that becomes the source, is already in an
entanglement region of another source. Then, the procedure pin_region does not perform any
additional pinning and returns. Likewise, the cost semantics does not increase the entanglement
factor because no new objects are added to the entanglement region.

Second, suppose the object that becomes the source has no locations pinned in its entangle-
ment region. Then the procedure performs work equal to the size of the entanglement region.

53



Likewise, the cost semantics increases the entanglement factor by the size of the entanglement
region.

Third, suppose the entanglement region of the source is the set of objects F; and it overlaps
some other entanglement regions (whose objects are already pinned), and their union is Ej.
Then the procedure pin_region only traverses the set difference |E; \ F2| amount of memory.
When the procedure pin_region recurses on immutable objects, it stops as soon as it hits a pinned
object. This pinned object must belong to an objects in Es,. Thus, the procedure never traces
any pointers of objects in Es. Thus, the work cost is |F; \ Es|. Likewise, the cost semantics

increases the entanglement factor by the size of new locations in an entanglement region, which
is |E1 \ EQ ’ [l

Liveness Bound Our entanglement tracking algorithm keeps entanglement sources live and
increases the liveness of the execution for the garbage collector. The bound states that the
algorithm only keeps O(d) additional memory live, confirming that our entanglement tracking
is precise: entanglement sources are kept live only for the duration they are entangled.
Theorem 2 (Liveness bound). If R is the maximum live memory of an execution of a parallel
program, then maximum live memory of that execution, including the impact on liveness from
entanglement tracking, is O(R + ¢), where § is the entanglement ceiling of that execution.

Proof. To prove this theorem, we compare the set of entanglement sources, as defined by the se-
mantics, to the entanglement sources, as computed by our implementation. Assuming that they
match, the result follows from the definition of entanglement high-watermark. The entangle-
ment high-watermark is the maximum amount of memory reachable from any entanglement
source, at any step. If our tracking of entanglement sources is accurate w.r.t. the semantics,
then we assume, at any step, no more than O(d) amount of memory to be live. Thus, the total
is O(R+9).

We compare the tracking of entanglement sources at each step of the execution. For a step
i, let S and S! be the set of entanglement sources as tracked by our semantics and algorithm
respectively. Our semantics tracks entanglement sources by maintaining a reader history. Each
time a task reads an object from a mutable reference, it adds the task to the reader history of
that object. If H; is the reader history at step 7, then S! = £(H;) = {¢ |3 v : v € H;({) A
concurrent(a(¢),v)}. We rephrase this as E(H;) = {¢ | C(H;(¢)) # 0}, where C(H;({)) = {v :
v € H;(¢) A concurrent(c(f), v)}.

For a step 7, we show the following by induction:

1. 8=8!
2. for an entanglement source /, the exp-depth of object ¢, as maintained by the algorithm,
is equal to DCADepth(C(H;(¢)), a(¥)).

At the start, there are no entanglement sources and the hypotheses hold trivially. Let’s
assume that they hold upto step ¢ and consider the next step. We consider the following cases
based on the instruction executed in this step:

54



Mutable read In this step a task v reads a mutable object ¢’ from object £. As a result, the
semantics adds task v to the reader history H (¢) of object ¢'.

Let u be the allocator task of object ¢, i.e., u = allocator(¢’) be the allocator task of object ¢'.
If the allocator and the task v are not concurrent, the read is disentangled. In the semantics the
set C(H;(¢")) does not change and thus, nothing changes. Likewise, the entanglement tracking
algorithm does not do anything and the hypotheses continue to hold.

When the allocator task u and the task v are concurrent, we have that C(H;1(¢')) =
C(H;(¢")) U {v}. We consider two cases. If the object ¢’ was not an entanglement source, then
C(H;(¢")) = 0 and the proof is easy: both the semantics and the algorithm make it a source
after the step. Furthermore, C(H;,1(¢')) = {v} and the exp-depth is equal to DCADepth(u, v).

However, if the object ¢’ was an entanglement source prior to the read, then it continues
to be so after the read and the first hypothesis holds. For the second hypothesis, we need
to consider the exp-depth carefully. Suppose the exp-depth of object ¢’ is ed before the read.
After the read, the algorithm updates the exp-depth to min(ed, DCADepth(u, v)). To prove the
second hypothesis, we show that

min(ed, DCADepth(u,v)) = DCADepth(C(H;1+1(¢)), u).

From the inductive hypothesis, we have that ed = DCADepth(C(H;(¢')), u).

Consider the deepest common ancestor of the tasks in (C(H;(¢))U{u}) and let it be r. If task
v is a descendant of task r, then the deepest common ancestor of (C(H;(¢)) U {v} U {u}) does
not change and thus, and DCADepth(C(H;+1(¢)), u) = DCADepth(C(H;({)), u). Furthermore,
ed < DCADepth(u,v) because ed = DCADepth(C(H;({)),w). Thus, the exp-depth after the
step remains equal to ed, because its lesser than DCADepth(u, v), and the second hypothesis
holds. If task v is not a descendant of task r, then we observe that the deepest common ancestor
of v and v, say 7/, must be an ancestor of r. This is because r and " are both ancestors of task u
and 7’ can not be a descendant of 7: otherwise, because 7’ is an ancestor of v, 7 is an ancestor of
v. Now, because 1’ is the deepest common ancestor of u and v and it is an ancestor of tasks in
C(H;), it follows that 7’ is the deepest common ancestor of C(H;) U{v}U{u} = C(H;41)U{u}.
The algorithm sets the exp-depth to the depth of 7’ and the second hypothesis continues to hold.

Join After a join, some entanglement sources expire. We show that the semantics and the
algorithm agree on the sources that expire. We take two cases. First, we consider an object that
is expired according to the semantics and show that it is also expired according to the algorithm.
Second, we show vice-versa. The semantics expires sources by remapping accesses in the reader
history. Specifically if tasks v and w join and their parent is u, then H; 1 = {u/v}{u/w}H;.
First, Consider an object / € S, i.e., the object is an entanglement source at step 7. But
as a result of the join, it is not a source anymore, i.e., { & S;“. We show that the algorithm
follows this and for the algorithm, ¢ ¢ S'™'. We have that C(H;(¢)) # 0 because ¢ € S.
and that C(H,,(¢)) = () because ¢ ¢ S*'. From the definition of C(H), it follows that either
the joining task v = «(¢) and {w} = C(H;(¢)), or w = «(¢) and {v} = C(H;(¢)). Without
loss of generality, suppose w = «(¢) and {v} = C(H;({)). From the inductive hypothesis, the

55



exp-depth of object ¢ before the step, is equal to DCADepth(C(H;(¢')), a({)), which is equal
to DCADepth(w, v), which is equal to the depth of u. The object ¢ expires, according to the
algorithm, when it reaches the depth of task u and because «(¢) = v before the join, a(¢) = u
after the join. Thus, we get that source ¢ expires after the join.

Second, consider an object ¢ € Sé, i.e., the object is an entanglement source at step 7. But
as a result of the join, it is not a source anymore (according to the algorithm), i.e., { & Sé“.
Then, the depth of the parent task u is equal to the exp-depth of object ¢. Furthermore, because
a(f) = u after the join and a(¢) # u before the join, then «(¢) = v or a(¢) = w. Without
loss of generality, let «(¢) = v, before the join. From the inductive hypothesis, we know that
DCADepth(C(H;),v) = d(u), where d(u) represents the depth of task u. Because task u is a
parent of v, the only possible set C(H;) is {w}. Thus, before the join, we have a(¢) = v and
C(H;) = {w}. Because the semantics remaps the access history H; and forgets the distinction
between v and w, we get that C(H;,1) = ) and ¢ ¢ S

O

4.5 Independent Garbage Collection of Heaps

Our inter-heap pointer tracking guarantees that all targets of inter-heap pointers are either in
the remembered set or the source set, for entangled objects, and that all the entangled objects are
pinned. With this guarantee, our memory manager can perform independent garbage collection
within any heap, meaning each heap can be collected without tracing memory in other heaps.

In our memory manager, we treat internal and leaf heaps differently. We collect internal
heaps by adapting a concurrent mark-sweep algorithm for our heap hierarchy. The memory in
internal heaps may be accessed by all its descendant tasks, and to support that without paying
for synchronization overheads, we use a concurrent mark-sweep algorithm that does not move
live objects and frees the garbage objects.

For leaf heaps, we pause the corresponding leaf task and use a hybrid algorithm—an al-
gorithm that does not relocate the pinned objects because they are entangled, but copies and
compacts other objects. The compaction aspect of this algorithm is crucial for our performance
because it improves locality and defragments the heap. In fact, initially, we tried a mark-sweep
approach for the leaf heaps and observed performance hits of upto 20% in time and 75% in space.
The hybrid algorithm runs in three parts: (1) filtering roots, (2) tracing the heap graph, and (3)
reclaiming memory using epoch-based reclamation. In all three parts, the algorithm accounts
for concurrent readers, consisting of other tasks that concurrently attempt to read and pin the
objects of the heap. To guarantee that the collector never blocks a concurrent reader, the hybrid
algorithm is lock-free.

4.5.1 Identifying and Discarding Expired Entanglement Sources

To collect a heap, the collector treats the entanglement sources in the source set as roots. How-
ever, some of the sources may have expired because they reached their respective expiration

56



depth. The collector can safely discard such sources, as they no longer need to be treated as
roots. To do so, it (i) unmarks the object as a source, (ii) unpins the entanglement region of
the source, and (iii) removes the source from the source set. However, there is a subtle issue
here: if the entanglement region of a stale source overlaps with the region of a real entangle-
ment source, then unpinning the region of the stale source would be incorrect because it would
unpin the overlapping portion of the other region. Worse, such a source, with an overlapping
entanglement region, could be added concurrently by the read barrier while the collector is
unpinning. To address this issue, the collector unpins in three steps. First, it takes a snapshot
of the source set and use the snapshot, to compute a set of objects that can be unpinned. It does
this as follows: it maintains two sets, P (pin) and U (unpin), and traverses the entanglement
regions of sources in the snapshot. If a source is stale, it adds the objects of its entanglement
region to the set U and otherwise adds them to the set P . The set difference U \ P is the set
of objects that can be unpinned. Then, it unpins all the objects in this set. These two steps
guarantee that unpinning is correct, at least for the snapshot. Considering the example above,
if two regions overlap and one of them is still entangled, t hen this approach will not unpin
their overlap. The overlap would appear in both sets U and P and taking the set difference will
ensure that it stays pinned. As the third step, the collector compares the heap’s source set with
its snapshot: if new sources were added to the source set during the first two steps, it traverses
their entanglement regions and ensures that they are pinned.

4.5.2 Discarding Stale Remembered Set Entries

The write barrier adds to a heap’s remembered set, when a task creates a pointer from another
heap to an object of that heap. A remembered set entry is a tuple of objects, for example (¢, '),
and tuple contains the origin and target of the pointer. Entries in the remembered set can
become stale, for example, if the origin and target come in the same heap because of joins. The
collector discards stale remembered set entries. A remembered set entry (¢, ') is stale if either
objects £ and ¢’ are in the same heap, or the pointer from object £ to ¢’ has been destroyed by a
mutable update.

4.5.3 Tracing the Heap

To trace a heap, our hybrid algorithm maintains a mark bit in the object header and maintains
a to-space for relocating the objects. Initially, every object is unmarked. By the end, the algo-
rithm ensures that every pinned object is marked and every unpinned object is either garbage
(unreachable) or has a forwarding pointer, pointing to the object’s copy in the to-space.

The algorithm uses a stack of objects to trace the heap and begins by adding all the roots
to the stack. Then, it iteratively pops an object from the stack and checks if the popped object
is pinned. If so, it marks the object; otherwise, if the object is unpinned, it copies the object to
the to-space and installs a forwarding pointer in the header of the object (unless the object is
already in the to-space). After either marking the object or copying it, the algorithm adds the
pointers within the object to the stack. This continues until the stack is empty.

57



To copy an unpinned object to the to-space, the collector
1 procedure try_copy (£):

h = get_header ({)
if (is_pinned (h)) return ¢the object. Figure 4.4 presents the pseudocode that accounts

¢" = copy_in_tospace (/) for such readers. The procedure try_copy takes an object ¢

, must account for concurrent readers that may attempt to pin
3
4
s if cas (addr_header({), h, and attempts to copy it to the to-space. The procedure reads
6
7
8
9

fud_ptr () the header of the object and checks if the header is pinned.

return ¢
else { If the header is pinned, it returns the object without copy-
delete_in_tospace (¢') ing it. Otherwise, it copies the object and attempts to replace
0 return / the object’s header with a pointer to the object’s copy. This
no b pointer is called a forwarding pointer because it “forwards”
the readers of the object to the object’s copy. The procedure
Figure  4.4: procedure try_copy uses a cas operation (atomic compare and-swap) to
try_copy install the forwarding pointer on the header. If the cas suc-

ceeds, the procedure returns the copy of the object. The cas operation can fail if a concurrent
reader changes the header by pinning the object before the procedure replaces the header with
a forwarding pointer. Because the object is pinned in this case, the procedure deletes the copy
and returns the original object.

4.5.4 Concurrent Reclamation of Memory

By tracing the heap, the hybrid algorithm pins or relocates live objects to the to-space, leaving
the garbage unpinned objects in the from-space. But, it cannot immediately free unpinned
objects of the from-space as they may be accessed by concurrent tasks that have not detected
that the algorithm has relocated them. Specifically, a read barrier issued by a concurrent task
may attempt to pin an unpinned object of the from-space because it has not reached the point
where it discovers the forwarding pointer. The algorithm can only free objects in the from-
space after all barriers have crossed this “discovery point” and discovered the relocation. The
read barrier discovers the relocation when it attempts to pin the object with a cas operation
(compare-and-swap), but the operation fails because the collector has forwarded the object.
(See line 11 in Figure 4.3: the location ¢’ may be in the from-space because the object has been
relocated to location ¢”. In this case, the procedure pin_region discovers the forwarding pointer
to location ¢” after a cas fails.)

To ensure that all read barriers have crossed the discovery point, the hybrid algorithm em-
ploys epoch-based reclamation [56]. ' This technique retires from-space objects instead of free-
ing them, marking the objects with the current global epoch. It frees retired objects only after
all the read barriers have crossed into a future epoch. Because epochs are incremented after
read barriers cross the discovery point, all retired objects from the old epoch become safe to
reclaim.

'Epoch-based reclamation is a technique developed for lock-free data structures which face a similar problem:

when a thread removes a node from a lock-free data structure, it is not safe to immediately free that node, because
other threads may still access the node.

58



To amortize the work cost of retiring, our algorithm retires whole pages instead of individual
objects. That is, the algorithm retires a page only if all objects within that page are garbage. As
an optimization, the algorithm avoids the cost of retiring by directly freeing pages that are not
susceptible to entanglement. (For example, if a garbage page is only reachable from the “local
roots” of the collection, then the algorithm frees the page directly.)

After the algorithm retires the unpinned objects of the from-space, it traces the to-space to
unmark the marked objects.

59



60



Show me a completely smooth operation and
I’ll show you someone who’s covering mistakes.
Real boats rock.

Frank Herbert, Dune

Provable Efficiency

Taking into account all the costs of running the program (including memory management), we
are interested in bounding the work (total number of instructions executed) and space (peak
memory footprint) required for executing a program on P cores. Ideally, in parallel computing,
these bounds would be stated in terms of the work and space required for sequential execution,
eliminating the need to reason about interleaving of parallel tasks. However, not all programs,
particularly those with races, admit equivalent sequential executions; their behavior can di-
verge arbitrarily from sequential executions.

Given the complexity of accounting for races in the work and space cost, we prove our
bounds in two stages. We first consider determinacy-race-free programs which are determin-
istic in the sense that all runs of the program execute the same instructions. Even for such pro-
grams, the order in which parallel tasks complete can be nondeterministic due to the scheduler,
potentially leading to varying space requirement. To account for this scheduling-level non-
determinism, we show that it suffices to consider a “little bit of” non-determinism by defining
a metric, which we call unordered reachable space. This quantity bounds the reachable space
over all sequential computations, where the two sides of a parallel pair are executed in either
order (i.e., left before right, and right before left).

We then prove work and space bounds for P-processor executions of determinacy-race-free
programs. For space, we prove that for such a program with unordered reachable space of R,
any P-processor run with our coscheduling algorithm requires O(R - P) space. This bounds the
maximum amount of memory required by the memory manager for executing the program on
P processors. This upper bound is tight for our setting, because a work-stealing task scheduler,
like the one we use, it is expected that parallel executions can require at least P times as much
space [48]. We also prove that the total work for a P-processor execution is O(W + R - P),
where W is the work of the computation, i.e., the time for a sequential run. This bound includes

61



Variables x, f
Numbers m € N
Memory Locations £
Types T nat |7 X 7| 7—7| 7 ref
Storables s = m|fun faise| ((,{) | ref/
Expressions e C|ls|z|ee|(ee)|fste|snde|refe|le|e:=e](e]e)

Memory p €  Locations — Storables

Task Identifiers u, v
Task Tree T : : = Aleaf(u) | PLeaf(u) | Par(u,T,T)

Figure 5.1: Syntax

the cost for garbage collection. The additive term R - P is a consequence of the heap migrations
performed by the heap scheduler, as in the worst case, these migrations may trigger P extra
garbage collection, each requiring O(R) work.

We then extend this result by considering programs with nondeterministic mutable effects,
including those exhibiting races. To account for the impact of races, we give our language a
cost semantics that assigns each computation a race factor that bounds the size of the memory
that may be accessible via non-deterministic races. We then define a sequentialized cost R*
for such executions of racy programs, by considering the program to execute in parallel and
then retrieving a sequential cost from it. For a parallel program with sequential work ¥ and
sequentialized space R*, we show the following work and space bounds for P-core runs:

« total parallel work including the cost of garbage collection is W + (R* 4 1) - P work, and

« total parallel space is (R* + 1) - P.

Note that these results are similar to the bounds for race-free programs, where the race factor
7 1S zero.

5.1 Revisiting Language Syntax

In this section, we revisit the syntax of our core language, which we use to define the various
cost metrics of this section. Figure 5.1 gives the syntax. The syntax is mostly similar to our
language in Chapter 2.

Types. The types include a base type of natural numbers, function types and product types
for expressing parallel pairs. The type system also supports mutable references.

Memory Locations and Storables We distinguish between storables s, which are always
allocated in the heap, and memory locations ¢. Storables include natural numbers, named recur-
sive functions, pairs of memory locations, and mutable references to other memory locations.
Storables step to locations. Locations are the only irreducible form of the language.

62



Expressions Expressions in our language include variables, locations, storables, and intro-
duction and elimination forms for the standard types. Parallelism is expressed using parallel
pairs ({e || €)). For an expression e, we use L(e) to denote the set of locations referenced by it.

Memory In order to give an operational semantics for memory effects, we include a map
w from locations to storables. We refer to p as the memory, dom(y) for the set of locations
mapped by p, 11(¢) to look up the storable mapped to ¢ and pu[¢ < s] to extend p with a new

mapping.

5.2 Memory Management: An Abstract View

In this section, we present an abstract view of our memory manager, to emphasize key aspects
and assumptions for understanding its theoretical cost behavior. Practical implementation de-
tails for optimizing efficiency and scalability are discussed in Chapter 4 and Chapter 6.

5.2.1 Data Structures

Our memory manager organizes the memory into a hierarchy of heaps that mirrors the task
tree. The heaps of this tree are partitioned among P processors by our heap scheduler that
follows closely the decisions of the task scheduler—a work-stealing scheduler in which parallel
execution starts when a thief processor steals a task from a victim processor. Working with
the task scheduler, the heap scheduler assigns each processor a heap cluster, denoted as M,
for processor p (See Section 2.3.2 for full details.)

Our memory manager supports independent garbage collection of each heap cluster by
accounting for all the inter-heap pointers. To account for these pointers, it tracks memory
locations/objects that are the targets of these pointers and keeps them live. A key aspect of
our memory manager is that it “coarsens” the tracking of inter-heap pointers using the heap
clusters. If there is an inter-heap pointer between heaps belonging to the same cluster, then
that inter-heap pointers is not assumed to be live during garbage collection. Specifically, if
location ¢ in heap h has an inter-heap pointer to location ¢ in A/, then the memory manager
only considers ¢’ as a root, if h and h’ are in different heap clusters. When the two heaps h and
h' are assigned to the same processor, they are garbage collected together by that processor,
eliminating the need to track pointers between them.

To do this, it maintains the following for each processor p:

1. a snapshot, S(p), that accounts for memory locations referenced by stolen tasks at the
time of steal,

2. aremembered set, R(p), that tracks all locations of the processor’s heap cluster that may
be referenced by pointers from heaps not assigned to the processor p.

63



5.2.2 Maintaining Snapshots and Remembered Sets

Figure 5.2 illustrates the actions of our heap scheduler and also shows how the memory manager
maintains processor-local remembered sets and snapshots. When a processor reads/writes a
memory location in another processor’s heap set, the memory manager adds the location to
the corresponding processor’s remembered set. As tasks join and their heaps are merged or
reassigned to the same processor, the memory manager discards stale snapshot and remembered
set entries, ensuring that only references between processors remain in the remembered sets
and snapshots.

Our snapshot accounts for locations referenced by stolen tasks at the time of steal, which
may later create up pointers into the heap set. By recording these locations during the steal,
we eliminate the need to detect up pointers that could be created by subsequent allocations.
The remembered set R(p) includes any locations read using existing pointers, down pointers
created by mutable updates, and entanglement sources for cross pointers.

We define reachability within a heap cluster M, as the set of locations that are reachable
from the snapshot S(p) and remembered set R(p), following only the pointers within the heap
cluster. Our snapshots and remembered sets together guarantee the following invariant: For
any processor p with heap cluster M, any locations in )/, that are read/updated by tasks on
other processors are reachable from locations either in snapshot S(p) or remembered set R(p).
The invariant is maintained by the following actions (Figure 5.2).

Steal. When a thief processor p steals a task v from a victim processor ¢, the processor p
creates a new heap h, for task v and reinitializes its heap cluster M,,. This creates pointers
from the thief’s heap cluster to the victim’s heap cluster because the stolen task, specifically
its expression, has pointers to the victim’s heap cluster. To track these inter-heap pointers, the
processor p inserts them to the snapshot S(¢g) of the victim gq.

The procedure StealFrom in Figure 5.2 shows how the snapshot of victim ¢ is updated on
a steal. The processor p adds to the snapshot S(q) entries of the form {root: ¢, from-heap: h,},
where root is the destination of some pointer from outside the heap cluster and from-heap
corresponds to the heap that holds the pointer, which in this case is the heap &, of the stolen
task v. As we show, the from-heap helps us identify stale remset entries.

Surrender. As soon as a processor finishes its task, it surrenders its heaps and its remset to
the sibling’s processor. The procedure SurrenderTo in Figure 5.2 shows the pseudocode where
a processor p surrenders its heap cluster M, and its snapshot and remset, S(p) and R(p), to
processor g. As a result of this, all pointers between the heap clusters M, and M, become
internal to M, and their corresponding entries in the remset become stale. We can identify
stale entries using the from-heap: a remset entry of the form {root: ¢, from-heap: h} is stale
when the heap H(¢) of location ¢ and the from-heap & are in the same heap cluster.

Mutable Read. The procedure Read intercepts mutable reads. When a task v (at processor
p) reads location ¢ by dereferencing location ¢, we check whether location ¢’ is in another

64



1

2

—

9

20

22

23

24

25

26

27

28

29

30

31

32

w
@

34

35

36

37

// let p be a processor, S(p) is its snapshot, R(p) is its remembered set, M), is the heap cluster
var p, S(p), R(p), M,

// Processor p steals task v, evaluating expression e, from processor q
procedure StealFrom (¢, v, e):
» = {hy}
for location /€ L(e):
S(q) = S(q) U{root: ¢, from-heap: h,}

// Processor p surrenders to q after finishing task v
procedure SurrenderTo (q,v):
M, = (M, U M,)
(q) S(p)¥S(q)
R(¢) = R(p) ¥R(q)
(p)

()

wn

X

R
0
0

// Let u be the active task performing reads/writes on processor p

procedure write (¢, /'):
// A mutable write may destroy an existing pointer.
var 0" = p(f)
var ¢ : H({) € M,
var v : H({") e M,

// account for a new pointer being created.
var q : V' € M,
if (H(0) & My :
R(¢) = R(q) U{root: ¢, from: {, from-heap: H({)}

// perform the write operation

MOEE4

procedure read (£):
var ¢ =14
it (H() & M,):
var q: H({') € M,
R(¢) = R(q) U{root: ¢, from-heap: h,}
return pu(/)

Figure 5.2: Maintenance of the snapshots, remembered sets, and heap clusters.

65



processor’s heap cluster. If ¢’ is in some other processor ¢’s heap cluster, then to ¢’s remset, the
entry {root: (', from-heap: h,}, where heap h, corresponds to the reader task v.

Mutable Write. The procedure Write accounts for destructive mutable updates. It considers
a task v creating a pointer from location ¢ to location ¢'. The write barrier accounts for a new
pointer being created. We check whether ¢ and ¢’ belong to different heap clusters (i.e., check if
the pointer is between two heap clusters). In that case, suppose location ¢’ is in the heap cluster
M, of processor g. Then, we add the entry {root: ¢, from: {, from-heap: H({)} to its remset; the
heap H (¢) denotes the heap of location /. For this case, we also track the from location which
is the reference that holds the pointer. This allows us to inspect stale entries more aggressively:
if this pointer is deleted by a future mutable update, we can disregard this entry at the time
of collection. This can be checked by dereferencing location ¢ and confirming if it points to
location ¢'.

We note here a special case of pointers that are tracked by our remset: down pointers.
The entry {root: ', from: {, from-heap: H({)} is for a down pointer if the from-heap H(¢) (cor-
responding to location /) is an ancestor of heap hy of location ¢'. Once the from-heap is in
the same heap-set or the down pointer is deleted (the from location stops pointing to the root
location), the entry becomes stale and we remove it.

5.2.3 Down Pointers Assumption

We make a simplifying assumption for our analysis: we assume that down pointers, as stored
by our remembered sets, are not conservative, i.e., locations pointed by a down pointer in the
remembered set are live. This assumption does not affect the correctness of our algorithm but it
simplifies its analysis. While this assumption may not hold universally for all parallel fork-join
programs, it is reasonable in practice. In the fork-join model, children tasks primarily use down
pointers to return results back to their parent task. A child task can allocate a result object in
its heap and then create a down pointer to store the result in memory allocated by the parent.
Thus, until the child task joins, we expect the down pointer to be live. After the join, we merge
the child’s heap with the parent’s heap, turning the down pointer into an internal pointer, at
which point the assumption no longer applies.

Note that this assumption is not relevant to purely functional programs, as they do not have
mutable references and therefore do not have down pointers.

5.2.4 Collection Policy and Algorithm

We use a collection policy that determines when a processor garbage-collects.

Collection policy Each processor independently triggers collections based on a processor-
local counter \. Whenever the size of a processor’s heap-set M exceeds its counter A by a
constant factor i.e., when | M| > A x k, that processor performs a collection on its heap cluster.
The constant factor & is a tunable parameter in our design. The processor performs collection by

66



pausing its current active task and then executing a collection algorithm (described below) on
its heap cluster. After the collection finishes, the processor resets the counter A to the amount
of memory that survives the collection and resumes its task.

Collection algorithm When a processor decides to collect, it runs a tracing collection algo-
rithm. The algorithm first filters out stale remset entries and then traces all objects reachable
from the remaining entries, without tracing pointers that go out of the heap cluster.

Because the collection proceeds without stopping the world, the locations in the heap cluster
may be concurrently accessed by other processors. Our collection algorithm is careful to not
change the addresses of objects that are accessible by other processors. We present the full
details of our algorithm in the Implementation section (Chapter 4), which combines both in-
place and moving collection algorithms. These details are important in practice, but not for our
theoretical results: for our theory, the only requirement is that the algorithm uses O(|M|) work
and space for collecting a heap cluster M of size |M|. Any algorithm that ensures the safety of
concurrent accesses and adheres to the above work and space costs would suffice. For example,
an in-place collection algorithm such as mark-and-sweep could be used to meet our bounds.

5.2.5 Structural Properties of the Heap Clusters

In Chapter 2, we showed how our coscheduling algorithm partitions the heap tree into clusters
and proved the following invariants. We restate the invariants here and also prove an additional
lemma, that is useful for our efficiency proofs. The invariants state the following for each
processor p with heap cluster M,:

1. if a processor p is executing an active task, then the heap of the task is assigned to p

2. if a suspended heap is in the cluster M, then at least one of its children is also in M,

3. every passive heap belongs to the same processor as its sibling.
Intuitively, these invariants guarantee that each heap cluster is a subtree of the heap tree.
These invariants imply properties that are useful for our proofs. We discuss them below.
We restate a guarantee of these invariants, proved in Chapter 2.
Lemma 3. Every suspended heap has an active descendant heap assigned to the same processor.
Based on these properties we prove another structural property.
Lemma 4. If heap h is in a heap cluster M, any ancestor h' of h not in M, is an ancestor of all
heaps in M,

Proof. Let <y be a relation on heaps, which holds when a heap is an ancestor of another in the
heap tree, i.e., h <y I’ if and only if heap h is an ancestor of heap h'. Suppose there are three
heaps h,, h,, h,, such that h, is an ancestor of h, and both h, and h,, are in the heap set M,
Then, we must show that h,, is an ancestor of h,,.

We consider four cases. First, suppose both h, and h, are suspended. In this case, by
Lemma 3 above, at least one of their descendants must be active on processor p. Since only one
heap can be active on processor p, the heaps h, and h,, must share the same descendant. Two

67



heaps in a tree share a descendant only when they are in an ancestor-descendant relationship.
Now, since the heaps &, and h,, are in an ancestor-descendant relationship and heap A, is an
ancestor of h,, then we have that h, and h,, are also in an ancestor-descendant relationship. If
hy, is an ancestor of h,, which in turn is an ancestor of heap h,, then Invariant 2 implies that
h., is in the heap set M,,, which is a contradiction. Thus, h,, must be a descendant of heap 5,/

Second, suppose h, is passive and h,, is suspended. Then, in this case the sibling heap of
hy, say h., is in the heap cluster M, (Invariant 3). Since h,, is an ancestor of h,, it is also an
ancestor of its sibling /. Because heap h! is suspended, otherwise the heaps would be joined
and removed, we can apply the first case with heap h, being an ancestor of h!, and heaps h!
and h,, being suspended.

Third, suppose h, is suspended and h,, is passive. Since h,, is passive, it must have a sus-
pended sibling %),. Applying the first case with h, as an ancestor of h,, and h, and h! sus-
pended, we get that h, is an ancestor of h! . Since k!, and h,, are siblings, h,, is an ancestor of
hy,. Fourth, suppose h, is passive and h,, is passive. In this case, we can establish that h,, is an
ancestor of h,, by applying the first case with their suspended siblings k! and h/,.

]

5.3 Determinacy Race Free Programs

In this section, we assume programs are deterministic in the sense of being determinacy-race-
free (defined below), and show work and space bounds for their execution on P-processors.
The determinism guarantees that parallel and sequential executions are similar enough in order
to prove our bounds. A determinacy race occurs when two concurrent tasks access the same
memory location, and at least one of these accesses modifies the location [78]. This is essentially
the same notion as a “data race”; however there is a subtlety which leads us to prefer the term
“determinacy race”. Programs which are determinacy-race-free are deterministic in a strong
sense: not only is the final result the same in every possible execution, but also the specifics of
how that result is computed are precisely the same every time.'

To prove the bounds, we first define a cost metric called unordered reachable space, which is
a baseline space cost for sequential executions of deterministic programs.

5.3.1 Unordered Reachable Space: Sequential Baseline

In this section, we give a cost semantics that defines the unordered reachable space, which
is the space usage of sequential executions of determinacy-race-free programs. The sequential
executions we consider, however, allow for some flexibility in the evaluation order. Specifically,
the semantics allows for some non-determinism in the order of evaluation of parallel pairs, i.e.,
it can non-deterministically decide which side of the pair to evaluate first, either left before
right or right before left. However, the semantics fully evaluates one side before evaluating the

This is also known as internal determinism [45] at the level of individual memory reads and writes.

68



other. This ensures that the evaluation proceeds in a “depth-first” fashion, characteristic of a
sequential execution, as the components of a parallel pair are never interleaved.

We include this non-determinism because, even though determinacy-race-free programs
offer strong program-level guarantees about consistency of instructions for all executions, task
scheduling itself inherently relies on randomized decisions and is non-deterministic. The spe-
cific order in which tasks corresponding to a parallel pair finish can vary across parallel exe-
cutions. For example, if two tasks u and v correspond to components of a parallel pair, then
either v might finish before v, or v might finish before u, fundamentally requiring different
space usage. The unordered reachable space accounts for this non-determinism. We sometimes
refer to unordered reachable space as unordered sequential space.

Cost Semantics. The cost semantics for computing unordered reachable space is a standard
transition (small-step) semantics of a functional language with mutation. We write the seman-
tics relation as:

pEu;TiRye—p/ T R €

The cost semantics sequentially executes the given parallel program and computes its space
usage. Space usage is defined as the peak memory footprint of an evaluation. To calculate space
usage, we treat the memory store, 4, as a directed graph, where nodes represent locations and
edges are the pointers between locations. A location  is said to point to location ¢ if the storable
at ¢ has a pointer to the storable at /. Locations that are explicitly referenced by the program
expression are called roots. The context p tracks the roots of the program and the rules of the
semantics extend the context appropriately to track all roots. Only locations reachable (in the
memory graph) from the context p count towards the space usage of the program. At some
step t of the evaluation, suppose the set of roots (root set) as p'. The set of reachable locations
is denoted as p* (p') and the cumulative size of storables mapped by this set is represented as
|t (p")]. Space usage is formally defined to be max;|u™(p)|.

The context p tracks the roots of the program and the rules extend the set of roots based
on the locations mentioned in the program expression. For example, the rule ASL (application
step left) adds all the locations mentioned by expression es to the context p before evaluating
expression e;. This ensures that the locations mentioned in expression e, are considered as
roots. The semantics maintains the space usage of the evaluation in R. Since the reachable
memory can increase only after an allocation, 1 is updated only after the program allocates
(see rule Arroc). This rule computes the reachable memory from the root set (pUlocs(s)), adds
the size of the newly allocated storable and updates R if the space usage has increased.

Sequentially executing parallel pairs. The key rules that execute the program sequentially
are rules ExL and ExR. The rule ExL fully evaluates the left side, expression e; of the parallel
pair, before evaluating the right side, expression e,. The rule ExR is symmetric, as it instead full
evaluates the right side of the parallel pair, expression e,, and then evaluates the left side. Note
that the relation used in these rules is labeled with the side picked first, for example, in EXL we
use the relation — .

69



R =max( | (pUlocs(s))| +Is|,R) £ &dom(p)  p' = pll—s]
pht u;Aleaf(u); R;s — u'; ALeaf(u); R ;4

ALLOC

pU{locs(e)} F pu:T:Rie1 — p/ ;T R s el
pEu;T;R;(e1ex) » /5T R (€] ea)

ASL

pU{li} ;T Ryeg— ;T R G ed

ASR
pbEu;TiR;(Gey) —u' ;T R (4 €h)

u(f1) = fun f x is ey
pF i ALeaf(u); R; (€1 la) — p; ALeaf(g®n); R [l1, 0/ f,x]ep

App

,u,(ﬁl) =ref EQ
pt i ALeaf(u); R; (141) = p;ALeaf(g®n); R; lo

Banc

Upp

p b polly—s]; ALeaf(u) ; R (01:=03) — uol[ly —ref l3] ; ALeaf(g ®n); R; ¥l

F
pF i ALeaf(u); R; (e1 || e2) — p; Par(u, ALeaf(v), ALeaf(w)) ; R; (e1 || e2) o
b 1 Par(u, ALeaf (v), ALeaf (1)) : R s (€1 || f2) — p1; ALeaf(u); R: (61, 6a) T
pU{locs(e2)} b ;T Ryen —* sy R 5
pU{liyEu' Ty R yeo —* Ty R 5 4y
ExL
p b s Par(u, Ty, To) s R; (e || ea) —p " 3 Par(u, Y, T5) s R” 5 (¢1 || £2)
pU{locs(e)} Fpu;To; Rieo ="/ 5T5 R 5 4y
pU{le}u' T R e —* T R 44
ExR
pF i Par(u, T, To) s R (en || e2) —r 1 ; Par(u, T, To) s B 5 (61 || 62)
pt s Par(u, T1, To) s R {er || e2) = g5 Par(u, Ty, Ty) s R'; (€ || £5)
pt s Par(u, Ty, To) s R (e || e2) —r p s Par(u, T, Ty) s R” (€] || £5) R > R" .
pk s Par(u,T{,T3) ; R; (e1 || e2) — 5 Par(u, T1,T3) ; R'; (€1 || £3)
pt s Par(u, Ty, To) s R (e || e2) = g5 Par(u, Ty, Ty) s R ; (67 || £5)
pb s Par(u, Ty, To) ; R; (e || ea) —r p' 5 Par(u, Ty, 1) s R” 5 (€1 || €5) R'"> R ek

p b s Par(u, T1,T3) s R (e1 || e2) — p s Par(u, TV, T3) s R”; (€1 || £3)

Figure 5.3: Sequential Cost Semantics

70



The rules P1ckL and PickR then select the order in which the space usage is higher. In this
way, the cost semantics “closes over” all possible executions and returns the maximum space
across all such executions. It thus assigns a unique cost to the program.

Even though the semantics evaluates the program sequentially, it includes the rules Fork
and JoiN for managing task creations and deletions; all tasks execute sequentially. Other rules
in the semantics are standard and we skip their description for sake of brevity. The semantics
for a program e starts with the state () ; ALeaf(u) ; 0 ; €), where u is the name of the root task.
Suppose it terminates with the state (4 ; ALeaf(u) ; R ; £). Then the unordered reachable space
of the program is R.

5.3.2 Space Bound

Theorem 3 (Space Bound). Given a determinacy-race-free program with unordered reachable
space R, its parallel execution on P processors with our memory manager uses at most O(R-P)
memory.

Proof. In our collection policy, each processor maintains a counter and keeps the size of its heap
set within some constant x times this counter. If the size exceeds this limit, then the processor
collects. For processor p, |M,| < k-\,, where \, denotes the counter and |/,| denotes the size
of its heap cluster. By Lemma 5 (stated and proved below) the counter A, < R. Thus, the size of
M,, is less than O(k-R) when the processor is not collecting. The collection algorithm requires
at most O(|M,|) memory when it collects. Thus, the maximum space used by processor p is

O(R). O

Bounding the counter. After every collection, the processor updates its counter to the size of
memory that survived the collection. Because the counter is not updated otherwise, its value is
bounded by this size. We show that whenever a processor garbage collects, the size of memory it
preserves is bounded by the unordered reachable space R. Thus, the counter at every processor
is bounded by R.

Lemma 5. At any step during a parallel execution of a deterministic program, if a processor
garbage collects, the size of objects it preserves from its the root set and its remembered set is
bounded by the unordered reachable space.

Proof. The crux of the proof is to show for a garbage collection at any processor, the amount of
memory preserved by the processor is equivalent to the reachable memory in some sequential
execution. Consider an arbitrary step ¢ taken by processor p before it garbage collects. We
construct a sequential execution, whose reachable memory at some step ¢’, matches the memory
preserved in the parallel evaluation after garbage collection at step ¢. We construct such a
sequential execution by carefully defining an order of evaluation for parallel pairs.

Defining a sequential execution. Suppose processor p is executing task u at step ¢. Let
the root to leaf path in the task tree be RootlLeaf(u) = ug,u; . .. u,, where u,, = u. Also, let

71



vy ...V, be the siblings of the tasks u; ... u,; note that the root task uy has no siblings. We
define a precedence relation <, for these tasks as follows:

1. If task v; has terminated by step ¢, then v; <, u;.
2. Otherwise, u; <, v;.

For the other tasks and their siblings, let the relation <, be arbitrary. This precedence
relation defines a sequential execution S, where siblings tasks are evaluated in the order defined
by <,. The sequential execution starts with the root task w,. Then, the order of execution for
any two siblings u; and v;, is given by the precedence relation. If u; <, v; then v; is evaluated
completely before v; is executed. Otherwise v; is evaluated first. This sequential execution
corresponds to an execution in the semantics for unordered reachable space. Thus, the reachable
space at any step of this sequential execution is bounded by R*.

Reachability Equivalence. Since the program is deterministic, there exists a step (') in the
sequential execution (S) where it executes the same instruction that processor p executes at
step t in the parallel execution. We will show that the amount of memory preserved in heap set
M, after a garbage collection at step ¢, is upper bounded by the amount of reachable memory
in the sequential execution at step t'.

To do this, we first observe that only the actions of a specific subset of tasks affects the
garbage collection of heaps in cluster M,:

1. Tasks within M,,: these are the tasks that directly allocated and manipulated the memory
in the heap cluster M, affecting the garbage collection in M,

2. Descendant tasks of stolen tasks: These tasks have been executed (and are potentially run-
ning) on other processors, and potentially access the objects in heap cluster M, requiring
the memory manager to update the remembered sets and snapshots appropriately.

The actions of other tasks are irrelevant for garbage collection at processor p. This is because
of race freedom and the absence of cross-pointers. Race freedom guarantees that the order in
which memory locations are accessed and modified is consistent across all executions. It also
guarantees the absence of cross-pointers (see Chapter 3), meaning actions of concurrent tasks
(those not in ancestor-descendant relationships) are irrelevant for garbage collection. Since
there are no cross pointers, the collection of objects within a heap cluster M, is solely deter-
mined by actions of ancestor/descendant tasks.

We formally define the relevant tasks as follows. Let ), be the heap cluster assigned to
processor p and let T, be the tasks whose heaps are in M, ie., T, = {u | h, € M,}. Let S,
be the set of successor tasks that were stolen from processor p and, let D, O S, be the set of
all the tasks in S, and their descendants. Let A, be the set of ancestor tasks of those in T,. The
liveness of the memory in M, is only influenced by tasks in T,, A, and D,,.

Comparing task execution. First, let’s analyze the impact of tasks in T,. For tasks in T,
that are also on the root-to-leaf path RootLeaf(u), the same instructions have been executed
up to steps ¢ and ¢’ because they are ancestors of the current task u. For tasks in T, that are

72



not on the root-to-leaf path RootLeaf(u), they must be passive leaves and siblings of tasks in
RootLeaf(u); these tasks have been fully evaluated in the parallel execution (they are passive).
Due to the precedence relation, these tasks must also have been fully evaluated in the sequential
execution by step .

Second, consider the tasks in A,. These task are guaranteed to be on the root-to-leaf path
RootLeaf(u). We can show by contradiction. Suppose there is a task us € A, which is an
ancestor of some task in 7}, but is not on the root-to-leaf path. Then, by Lemma 4, the task u4
is an ancestor of the leaf task w. This is a contradiction because the root to leaf path contains
all ancestors of the task u. Thus, the tasks in A, are guaranteed to be on the root-to-leaf path
RootLeaf(u). Given this, it is guaranteed that for these tasks, the same instructions have been
executed up to steps ¢ and t’ of the parallel and sequential execution respectively, because at
the steps they are executing the same instruction.

Third, consider tasks in D, (stolen tasks and their descendants). These tasks potentially
affect the memory preserved by the memory manager, because they may read locations in the
heap set M, causing our memory manager to add any such locations to the remembered set
(see Section 5.2), and keep them live. However, due to race freedom, a task in D,, can only access
locations that were reachable from it at the time of its steal. This is because gaining access to
any other memory locations in heap set M, would require a race, as a concurrent task would
have to create a pointer, exposing a new location to the tasks in D,,; this can not happen in a race
free program. Therefore, the actions of a task in D, only add those locations to the remembered
set that were already reachable at the time of its steal. We show next that all such locations are
reachable in the sequential execution at step .

In our sequential execution upto step ¢/, first assume that tasks in D, have not executed at
all (we prove this below). Under this assumption, the reachable space at step ¢’ in the sequential
execution is computed with tasks in D, not having executed, thus including all the locations
that are reachable from a task at time of steal in the parallel execution. Thus, the memory
preserved by remembered set entries due to stolen tasks is upper bounded by the reachable
space in the sequential execution.

To prove the assumption above, consider any task v € D,. We define task v as the the
ancestor of v such that v" € T,. In the parallel execution, task v has not terminated by step
t and thus, v" has not terminated as well. By definition of the set S, task v’ is a sibling of
some task in RootlLeaf(u). In the sequential execution, task v’ is thus ordered later than its
sibling in the precedence relation and because the sibling, say «/, has not terminated v’ has not
executed. Because v’ has not executed, its descendant v has not executed either in the sequential
execution.

]

5.3.3 Work Bound

The collection algorithm performs ¢ - | M| units of work to collect | M| amount of memory. We
prove the following bound on the work done in all the collections:

73



Theorem 4 (Work Bound). If a determinacy-race-free program performs W units of program
work in a sequential execution, then the total work on P processors, including the cost of garbage
collection, is upper bounded by O(W + P - R*).

Proof. Let | M]| be the size of heap cluster before the ith collection on worker p. If AJ"! is the size
of heap cluster after the collection, then the memory reclaimed is (]M;,| — )\;H). The memory
reclaimed by all the collections can not be greater than the memory allocated by the program.
Thus, if worker p performs n, collections and « is the total memory allocated then:

i=np

Z Z |Mz /\z+1 (5'1)

In our collection policy, a worker starts a collection only when the size of its heap cluster grows
a constant x times its counter, i.e, the worker p starts the ith collection because |M}§] > K% )\;.
Moreover, by Lemma 5, the value of the counter )\, does not exceed 2*. Thus, it follows that:

i=nyp 1=ny znp

ZZX“<ZZ”+ZA(""“)<ZZ

After substituting this in Equation 5.1, it follows that:

i=np

ZZ|M;|§(a+P~R*)-Kf1 <W+P R) =

Kk—1

We assume that allocation of one unit of memory requires one unit of work and thus, o < W.
The total memory traced in all collections is (3 S |M']). Suppose c; is the work efficiency
of the collector, i.e., the collection of | M | amount of memory requires ¢ x | M | amount of collec-
tion work. Then, the total work done in collections is upper-bounded by ¢~ (>, S M) <

- (W 4+ P-R) - . Thus, total work, including program work and collectlon work, is
O(W + P - R"). O

5.4 Nondeterministic Programs

In this section, we analyze the work and space costs for nondeterministic parallel programs
with arbitrary races. This is challenging because of the unpredictable cost behavior of execu-
tions of such programs. Unlike deterministic programs, where all executions perform the same
instructions, nondeterministic programs can exhibit arbitrarily different behaviors due to races.
To account for this inherent non-determinism, we reason about the work and space costs on
a per-execution basis. This means that instead of accounting for all behaviors beforehand, we
analyze the costs for a specific execution that has occurred.
We introduce two key metrics to analyze the cost of an execution:

74



Allocation Sets « - Locations

Task Tree T : 1 = PlLeaf(v) | ALeaf(v, ) | Par(v, o, T, T)
Reader, Writer Stores R,W €  Locations — P(Tasks x Locations)
Program State S = (Ry;Wu:T )

Figure 5.4: Additional Syntax for defining race factor

1. Sequentialized Space R* : This metric analyzes generalizes the unordered reachable
space for deterministic programs, estimating a sequential space cost even for parallel ex-
ecutions that might not have a sequential equivalent. It does this by simulating sequential
execution along each path in the task tree, capturing the maximum memory usage under
different task orderings. Sequentialized space addresses the issue that some executions
of a racy program may not even be possible on a single processor because they rely on
intricate interleaving of concurrent tasks.

2. Race Factor r: This metric measures the high watermark of memory impacted with
races. We present a cost semantics that tracks the race factor as it executes a program by
observing the memory actions of each task and identifying memory “exposed” to concur-
rently executing tasks via effects. This metric quantifies the additional cost our memory
manager incurs for racy programs.

After defining the metrics, we show that, given an execution on P processors with program
work W, sequentialized space R*, and race factor r, the work cost of our memory manager is
bounded by O(W + (R* +r) - P) and the space cost of the execution is O((R* 4+ 1) - P). These
bounds show that our memory manager incurs linear work and space overhead, proportional
to the amount of memory impacted by races.

5.4.1 Race Factor for Nondeterministic Programs

To account for the impact of races on our memory manager’s performance, we define a metric
called race factor, that measures the amount of memory affected by races. We present a cost
semantics that defines the race factor throughout the execution by observing the memory ac-
tions of each task and identifying memory “exposed” to concurrently executing tasks via effects.
The final race factor for the execution is the maximum value across all steps. This is important
because the semantics resolves races when threads join, potentially leading to a reduction in
the race factor as the computation proceeds The core language and syntax are similar to our
language in Section 2.1. Figure 5.4 shows the new/modified pieces of syntax for the language.

The cost semantics for computing the race factor is a transition relation that steps a program
state containing five components: reader store R, writer store W, memory p, task tree 7', and
expression e. We write the relation as:

(REW5 ;T 5e) = (RGW sl T 5 )
Figure 5.5 shows the key rules of the semantics. The task tree 7" is the standard dynamic task

75



tree, which contains suspended tasks waiting for the children to finish, active leaves that can
take more steps, and passive leaves that are waiting for their sibling to finish.

Reader/writer stores. To calculate the race factor, the semantics maintains a reader and a
writer store. The reader store R remembers for each memory location the tasks that reads it
along with the (mutable) location it was read from. The reader store is primarily updated by rule
BANG (see Figure 5.5), which dereferences a mutable location ¢ to obtain location ¢'. The rule
adds the tuple (v, £) to the reader store of ¢'. Observe that the mutable dereference is performed
on location /, but the reader store is updated for location ¢'. This is because the reader store
tracks the locations obtained from mutable dereferences, not the references themselves.

The writer store \W remembers for each location the reference it is written into along with
the task that performed the write. The writer store is updated at the step Dupp, which updates
the mutable reference ¢ to point to location ¢’ The step adds the tuple (v, £) to the writer store at
location ¢, where task v is performing the write. Observe that the mutable effect is performed
on mutable reference ¢, but the store is updated for the location ¢’. This is because the writer
store tracks the locations written into mutable references, not the references themselves.

The rule RerALLoc, which allocates mutable references also updates the writer store. It
steps the storable ref ¢’ to a fresh location ¢ and extends the memory store p with location ¢
mapped to ref . It also adds the tuple (v, £) to the set W(¢'). This can be seen as recording an
“Initialization write” where the task v writes location ¢’ to initialize the reference /.

Exposed locations. At a given program state (R; W; u; T'; ¢), we determine the set of loca-
tions exposed due to a race, where a task writes to a mutable reference and another concurrent
task reads from the reference. Specifically, a location ¢’ is exposed, if a race condition exists
such that one task writes ¢ to a mutable reference ¢ and a different, concurrent task reads ¢
by dereferencing /. Essentially, the race condition on reference ¢ exposes the location ¢’ to a
concurrent reader. We define the set of exposed locations, denoted as V (R, W), as follows.

V(R,W) = {¢"| 3u,v, £ : concurrent(u,v) A (u,€) € W(') A (v,£) € R(¢)}

Here, concurrent(u, v) denotes that tasks v and v are not in an ancestor-descendant rela-
tionship within the task tree.

Race factor. The race factor of a given program state (R; W: u; T'; e) is the maximum amount
of memory that is reachable from exposed locations along any root-to-leaf path of the task tree.
Figure 5.6 calculates the race factor r of the state using a judgement R; W; ui; A = T' | r. The
context A tracks the allocations along the root-to-leaf path.

The rules of the judgement consider all root-to-leaf paths in the task tree and take the max-
imum race factor along any path. To do this, consider the rule PAR which computes the race
factor of a task tree Par(v, v, T}, T3), with suspended task v and its allocations «. The rule com-
putes the race factors r; and r, along subtrees 77 and 75 and takes the maximum. Note that

76



pure(s) (¢ dom(u) i = pltrs)
R;W ;s ALeaf(v,a) ;s — R; W i ALeaf (v, U {£}) 5 ¢

PureALLOC

¢ & dom(p) W = p[l—ref '] W = W[{'—sW(") U{(v,0)}]

REFALLOC
R;W; u;AlLeaf(v,a) ;ref £/ — R; W' ; i ; ALeaf (v, a U {€}) ; ¢
RiWsp; Tirje 2 RGW 05T v 5er”
RsWiu;Tsr;(eres) = RW 1/ 5T 5075 (€] e2)
u(l1) = fun f x is ey
App

R;W ;s ALeaf(v,a) 5 (€1 €2) = R; W s ALeaf(v, ) 5 [41, 02 / f, x]ep

RWipu;Tse—RGW 5T €
REWspsTi(fe) = R Wl s T (Le)

BAaNGS

u(l) = ref ' R'=R[l'>R)U{(v,0)}]
R;W; u;AlLeaf(v,a); (1) = R ;W u; ALeaf(v, ) ; ¢

BaNG

W = W' —sW() U {(v,0)}]
R;W ; ug[l —ref ¢"]; ALeaf(v,a) ; (£:=¢") = R;W'; o[l — ref ¢'] ; ALeaf (v, ) ; ¢/

Dupp

Fork

R; W ; ALeaf(u, ) ; {eq || e2) — R; W ; 5 Par(u, o, ALeaf (v, ), ALeaf (w, D)) ; (e1 || e2)

RyW;u;Tiser — R GW 51/ 5T 5 €
R; W s Par(v, a,T1,T2) 5 (e || e2) = R's W' 1/ s Par(v, o, 7, T2) 5 (€] || e2)

ParL

RiWip:iThier = RGW 1/ T5 56
R;W; u;Par(v,a,Th,Ts) 5 (e1 || e2) — R ;W5 1 5 Par(v, o, Th, Ty) 5 (e || €5)

ParR

o/:aUal

R; W u; Par(u, o, ALeaf (v, 1), T2) 5 (01 || e2) = R; W s Par(u, o', PLeaf(v), T2) ; (41 || €2)

SURRL

o =aU 9
R; W ;s Par(u, a, Ty, ALeaf (w, a2)) ; (en || £2) = R W ; s Par(u, o, Ty, PLleaf(w)) ; (e1 || o)

SurrR

R = R{u/v}{u/w} W = W{u/v}{u/w}
R; W ; u; Par(u, a, PLeaf(v), PLeaf (w)) ; (e1 || £2) — R ; W' ; uu; ALeaf (u, o) ; (€1, ¢3)

Join

Figure 5.5: Cost Semantics for calculating the race factor by tracking the readers and writers of
mutable references.

77



r= |V:(R,W) N(AUa)]
ALEAF PLEAF
R;Wi;u; AF ALeaf(v,a) | r R;W;u;AF PLeaf(v) L 0

RiWiu;AUatTy L m RWiu;AUat Ty | re
R;Wpu; Al Par(v,a,T1,T3) | max(ry, o)

Par

Figure 5.6: Rules for computing the race factor of a given program state (R; W; u; T'; €). The
context tracks the set of allocations A along the root-to-leaf path, and the rules inductively add
allocations of each task from the task tree to this set. The reader store R, writer store W, and
the memory store p remain unchanged by the rules.

for both cases, the rule PAR extends the context A with locations in «, because the node v is on
every root-to-leaf path that contain the nodes in the subtrees 77 and 75.

The rule ALEAF corresponds to the case of the active leaf ALeaf (v, «). It computes the race
factor as [V} (R, W) N (AU a)|. To parse this,

1. Reachability from Exposed Locations. First, we consider V:(R, W), which is the set
of all locations reachable by following pointers from the exposed locations V (R, W).

2. Intersection with the Root-to-Leaf Path. Next, we take the intersection of V (R, W)
with the set (AU «). The set (AU «) contains all locations along the root-to-leaf path (to
leaf v), and these only locations that count towards the race factor along this path.

3. Sum of Sizes. We compute the size of all locations in this intersection. which is the sum
of sizes of all storables mapped to the locations.

For passive leaves, we define the race factor to be zero, and the rule PLEAF corresponds to
this case. This is because our semantics performs a surrender step when an active leaf becomes
passive. This step transfers the ownership of all allocations of the leaf to its parent. For example,
the rule SURRL takes an active task v that has finished and marks its leaf as passive. After the leaf
becomes passive, the rule merge its allocations with the parent; we call this a surrender because
the leaf “surrenders” its allocations to the parent. This way, the parent becomes responsible for
allocations of the passive leaf. The rule SURRR is symmetric. This surrender is similar to the
surrender step in our coscheduling algorithm (Chapter 2).

We can use this definition of race factor at a state to define race factor for an execution. An
execution proceeds as Sy — S - - - S,,, where the initial state Sy = (0;(); 0 ; ALeaf(r, D) ; ¢) has
stores R, W, and p as empty, the task tree as ALeaf (v, (}), and the expression e as the program.
The race factor for this execution is the maximum race factor observed at any state S;. Note
that taking the maximum is important because the race factor may decrease at joins, because
joins “resolve” the races between the joining tasks.

Join. The rule JoIiN executes the join step and also resolves all the races and exposed locations
among the joining children (see Figure 5.5). To do this, the rule remaps all the reads and writes
performed by the child tasks v and w to the parent task u. We denote this with R{u/v}{u/w}

78



and W{u/v}{u/w}, which can be read as, “substitute u for v and w in the reader and writer set
of every location.” The net effect of this substitution is that any race conditions between tasks
v and w that were tracked in reader and writer stores, have now been removed, thereby also
removing the exposed locations between them. However, races involving v and w with other
tasks are now represented as races with u ensuring that these race conditions are still tracked
and considered towards the race factor.

Other rules. Rules ASL, ASR, and Arp are standard rules for evaluating functions, their
arguments, and the application respectively. Rules FsTS and Fst show how the sequential tuple
(e1, e2) evaluates. Note that none of these rules extend the reader and writer stores because the
stores only monitor mutable accesses.

Relationship between exposed and entangled locations. In Section 3.2, we defined that
an object is entangled when it is allocated by a task and accessed by a concurrently executing
task. There is a subtle difference between entangled locations and exposed locations. First,
all entangled locations are exposed. A location becomes entangled when it is allocated by a
task and then later exposed to a concurrently executing task through mutable effects. Thus, by
accounting for the impact of exposed locations on the cost of memory management, we also
account for the impact of entangled locations.

However, an exposed location may not be entangled, because locations are considered ex-
posed regardless of the task that performs the allocation. For example, suppose a task A allo-
cates a mutable location ¢ and two other locations ¢’ and ¢, such that ¢ points to ¢'. Task A forks
children tasks B and C. Task B updates the mutable location ¢ to point to location ¢”. If task C,
which is concurrent to B, reads this update, then the location ¢ becomes exposed. However,
since location ¢” was allocated by the parent A of task C, it is not considered entangled.

5.4.2 Sequentialized Space

Sequential executions are often used as a baseline for reasoning about the costs of parallelism.
We showed that for a deterministic (race-free) programs establishing a sequential baseline is
straightforward: we simply sequentialize execution of parallel tuples. (Section 5.3.1). However,
this approach does not work at all for nondeterministic programs, because they can have vastly
different executions due to race conditions. Even if we fix the instructions executed in a partic-
ular run, it may not be possible or meaningful to create a corresponding sequential run, because
some races rely on a very specific interleaving of parallel tasks, which can only be reproduced
when tasks are executed concurrently.

To address this challenge, we define the sequentialized space R*. This metric approximates
a sequential space cost even for parallel executions that might not have a true sequential equiv-
alent. We achieve this by simulating the space behavior of a sequential execution along each
path in the task tree and computing the maximum memory usage along all the paths. This
approach is necessary because racy executions are not guaranteed to be feasible on a single
processor.

79



(¢ dom(p)  p' = pll—s]

7 ALLOC
w; Aleaf(v,a) ;s = p'; ALeaf(v,a U {¢}); ¢
p;Tier = pw'5T el
— ASL
piT s (e1ea) = p' 5T (€] e2)
w(l1) = fun f x is ey
App

w; ALeaf(v, ) ; (01 €2) = p; Aleaf(v,a) ;01,02 /) f,x]ep

piTse = ;T ;€

REFS
;T (refe) = u' ;T ; (ref €) .

piTse = 5T ;¢
piTsi(le) = p' T (1)

BanGS

wu(ly) = ref ly
w; ALleaf(v, ) ; (141) = p; ALeaf(v, ) ; lo

BancG

Duprbp

polly—ref (] ; ALeaf(v, o) ; (41:=02) = po[l1—ref ls]; ALeaf(v, ) ; lo

S1=p"(Lle)) Sa=p"(L(e2)) .
ORK
w; ALleaf(u, o) 5 (e1 || e2) = p;Par(u,a, S1 ® Sa, ALeaf(v, (), ALeaf (w, D)) ; (e1 || e2)

piTser = 5Ty 5 €)
ParRL
22 Par(uv «, Sl o2y SQ7T17T2) ; <€1 H €2> = ,U/ ; Par(uaaasl & SQaTLTQ) ; <€,1 || 62>

piTasea = p' 5Ty s eh
PARR
w; Par(u, o, S1 ® So, T, Ts) 5 {e1 || e2) = ' ;Par(u,a, Sy ® Sa,T1,T5) ; {e1 || €b)

a’:aUal
SURRL

w; Par(u, a, S1 ® So, ALeaf (v, a1),T3) ; (¢1 || e2) = p;Par(u,o/,0 ® (), PLeaf(v), T) ; (¢1 || e2)

o =aU [
SurrR
w; Par(u, a, S1 @ So, Th, ALeaf (w, a9)) ; (e1 || £2) = pu; Par(u,a,d ® 0, Ty, PLeaf(w)) ; (e1 || £2)

Join

w; Par(u, a, ) @ 0, PLeaf (v), PLeaf(w)) ; (¢1 || {2) = u; ALeaf(u, ) ; (¢1,02)

Figure 5.7: Cost semantics for sequentialized space in parallel executions with races

80



R=(p"(PULE)N(AUQ))  R= (" (PU{)N 4]
w; A; PE ALeaf(v,a);e | R, u; A; P Pleaf(v); 4 | R

PLEAF

—(eg loc) wiAUa; PU{l} F Ty ea [ R
P
w; Ay P Par(u,a,0 @ 0, Pleaf(v), T5) ; (41 || e2) | R

AssL

—(eq loc) pi;AUa; PU{l}FTie1 L R
P
p; A; P Par(u,a,0 @ 0, Ty, Pleaf(v)) ; {e1 || £2) | R

AssR

—(ey loc) —(ez loc) wi;AUa; PUSs ETier | Ry wi;AUa; PUSTE Ty ea | Ro
w;A; P Par(u,a, 51 ® So,T1,T3) ; (e1 || e2) | max(Ry, Ro)

Par

Figure 5.8: Computing Sequentialized Space of a State

We formalize this approach with a cost semantics. The semantics is a transition relation
that steps a program state .S consisting of three components: (i) a memory store p, (ii) a task
tree T, and (iii) an expression e. We write the relation as :

piTse =y 5T ;¢

Figure 5.7 shows the rules for the semantics. The semantics tracks information in task trees
to determine the sequentialized space for each program state S, which is the maximum size
of reachable locations within the allocations along any root-to-leaf path of the task tree. We
formalize the definition for each program state in Figure 5.8. The sequentialized space R* for
an execution Sy = S, = ---S, is the high watermark of the sequentialized space of
every state SAYZ

Task Trees and Snapshots. To calculate the sequentialized space, the task tree stores the
allocations performed by each task. An active leaf task v is of the form AlLeaf(v, ), where «
is the set of allocations performed by task v. The allocations are tracked at rule ArLLoc, which
adds newly allocated locations to the allocation set of the leaf task (Figure 5.7).

In addition to storing allocations, an internal task of the form Par(u, «, S; ® S, T, T3) also
stores snapshots S and S5. When parallel tasks execute in a nondeterministic program, their
memory effects can interfere with each other, making it difficult to measure memory usage as
if the tasks were executing sequentially. To negate this effect and simulate a sequential cost, we
use snapshots. Snapshots record the memory state at forks where a parent task spawns child
tasks. They allow us to isolate the effects of one child’s execution on the reachability cost of
another child.

A snapshot of a task is the set of locations that are reachable from it before it starts exe-
cuting. For a task, evaluating expression ey, its snapshot is ™ (L(e;)) (here L(e;) is the set of
locations mentioned in e;). Snapshots are created at forks. For instance, the rule Forx in the

81



semantics (Figure 5.7) creates the snapshot S for expression e; and S, for expression e,, cre-
ating the internal node Par(u, a;, S; ® Sy, ALeaf(v, ), ALeaf(w,)). These snapshots are not
updated while the children execute. We use them to define the sequentialized space as follows.

Sequentialized Space. Given a program state (u; T'; €), we define the sequentialized space
for that state as the maximum size of reachable locations within the allocations along any root-
to-leaf path of the task tree. Figure 5.8 shows the judgement p; A; P; T';e | R that calculates
the sequentialized space R. The context A tracks the allocations along the root-to-leaf path
and the variable P tracks snapshots along the path. The rules of the judgement compute the
sequentialized space along every root to leaf path and then take the maximum across all paths.
For instance, the rule PAR considers an internal task whose children are still executing, de-
noted by —(e; loc) and —(es loc) for expression e; and es; this asserts that both expressions are
not yet locations, meaning that they haven’t finished evaluating. The rule considers a node of
the form Par(u, a, S; ® S, T1,T3), and computes the sequentialized space for both children.
The rule extends the context A with the allocations « of the task . When computing the
sequentialized space along the left child 77, it adds the snapshot S5 to the root set P; the snap-
shot S, contains all the locations referenced by the sibling at the time of fork. This ensures that
reachability calculation along the paths in 73 remains unaffected by actions of tasks in 75. The
rule computes the reachability along the paths in 7} similarly. After computing the sequential
space I?; and R, along subtrees 7 and 75 respectively, it takes the maximum among them.
The rule ALEAF considers the case for an active leaf v. It computes the sequentialized space
as (Jut(PUL(e)) N (AU «)]|), which uses the set (P U L(e)) containing snapshots and loca-
tions of expression e as “program roots”. It calculates all locations reachable from those roots
using 11", and then takes the intersection with the set A U « containing the locations along the
root to leaf path to the task v. The rule PLEAF is similar except passive leaves don’t have an

allocated set of locations «. This is because when a task finishes, all its locations are transferred
to the parent by the rules for surrendering.

Surrendering and Sequentialization. As soon as a sibling task finishes evaluation, it sur-
renders its allocations to the parent and the semantics deletes the snapshots of both the chil-
dren. This design simulates a sequential execution, where one child has finished before the
other. For example, consider rule SURRL of the semantics (Figure 5.7) in which the left child
finished first. We surrender the allocations of the left child, making its leaf passive, and delete
both snapshots. By deleting snapshots, we commit to a sequential execution where the left
child finished before the right child. The rule SURRR is symmetric. Once both the children
have finished, the corresponding passive leaves are removed (see rule JoiN) and their parent
resumes.

The rules PassL and PassR calculate the sequentialized space for cases where one of the
children is passive (see Figure 5.8). When one child is passive, no snapshots are used. Instead,
the location computed by the passive child is added to the root set P. Note that the alloca-
tions of the passive child also count towards the root-to-leaf path, but they have already been

82



transferred to the parent.

Relation to the Race Factor Semantics. Our semantics for sequential space and the seman-
tics for race factor (Section 5.4.1) are morally similar for expression evaluation. Their task tree
stores different data at each node, for computing the cost metrics, but otherwise the rules are
similar. In fact, we could merge them, but we chose to keep them separate for presentation.

5.4.3 Work and Space Bounds

We start with a quick recap of our collection policy: our memory manager uses a heap scheduler
to divide the memory among the processors and each processor manages it own memory. Each
processor p maintains a counter )\, and starts a collection when the size of its heap cluster
exceeds k * \,. After the collection is done, we reset the counter )\, to the amount of memory
that survives collection.

Given an execution, we observe its steps and use our cost semantics to define the race
factor and the sequential space. We show that with our memory management techniques the
execution satisfies the following space bound, due to the memory management.

Theorem 5 (Space bound). Given an execution on P processors with sequential space R* and race
factor r, our memory manager requires no more than O((R* + r) - P) space for that execution.

To establish the space bound, we show that the counter )\, never exceeds (R* + r) (in
Lemma 6). Assuming this, we have that for any processor p its heap set M, is never larger than
k- \p (otherwise the processor collects and resets the counter). Because there are P processors,
the total memory is

SIM <> koA, <. (R +7)- P
p p

To bound the counter, we show that the space after garbage collection from the roots and
remembered sets at any processor is bounded by R* + r. Intuitively speaking, our memory
manager tracks pointers between heap sets and each such pointer targets either locations of the
snapshots or the locations exposed by mutable references. This way, each pointer is accounted
by either the sequential space R* or the race factor r respectively. Both these cost metrics only
consider root-to-leaf paths (and passive leaves) in the semantics and this corresponds to how
our heap sets are designed. Because our memory manager punctually discards stale entries at
surrenders, it is able to maintain its precision w.r.t. these cost metrics. We prove this in the next
section (Lemma 6).

We also show a bound on the work of our memory manager, w.r.t. a collection algorithm
that collects a heap set M in ¢ - | M| work.

Theorem 6 (Work bound). Given an execution on P processors with program work W, our mem-
ory manager does not do more than v’ - (W + (R* +7r) - P) work, where ' = c- "5, c is the work
efficiency of our collection algorithm, and k is a tunable parameter of the collection policy.

Proof. At each collection, the collector does no more than ¢ - | M| amount of work, which as
shown above is bounded by ¢ - x - A. After the collection finishes, the counter A is reset to the

83



amount of memory that survives the collection. Roughly speaking, before the next collection,
the program must allocate at least (x — 1) - A amount of memory, so these allocations essentially
pay for the collection. The first collection at each processor is extra work and that shows up in
the bound above as the term ' - (R* 4 r) and is paid by each processor.

Let | M| be the size of heap cluster before the ith collection on worker p. If X" is the size
of heap cluster after the collection, then the memory reclaimed is ( |M;)| — )\;“). The memory
reclaimed by all the collections can not be greater than the memory allocated by the program.
Thus, if worker p performs n, collections and « is the total memory allocated then:

i=np

ZZ (IMy] = X)) < (5.2)

In our collection policy, a worker starts a collection only when the size of its heap cluster grows
beyond « times its counter, i.e, the worker p starts the ith collection because |M;)| > K% )\;.
Moreover, by Lemma 6, the value of the counter )\, does not exceed *. Thus, it follows that:

i=np =np znp

ZZX“<ZZ”+Z”"”“)<ZZ

After substituting this in Equation 5.2, it follows that:

i=np

ZZ|M;|§(Q+P~R*)~Ki1 <W+P R) =

Kk—1

We assume that allocation of one unit of memory requires one unit of work and thus, o < W.
The total memory traced in all collections is (3, S 1"|M|). Thus, the total work done in

collections is upper-bounded by ¢; - (3, S VM) < - (W P-RY) - O

5.4.4 Bounding the counter

In the following lemma, we show that the processor-local counter )\, for processor p, which
tracks the amount of memory surviving the last garbage collection, is always bounded by the
sum of the sequentialized space R* and the race factor r. This bound is crucial because it ensures
that the memory used by each processor remains bounded, allowing us prove a space bound on
the entire execution (Section 5.4.3).

Lemma 6. The processor-local counter \, for processor p is bounded by R* + 7.

Proof. A processor updates its counter after every collection and the value is set to the amount
of memory that survives, i.e., the amount of memory reachable from the program roots, the
remembered set, and the snapshot stored the processor. We show that the amount of memory
surviving is always less than R* + 7 for any processor p.

84



Proof Strategy. To prove this, we must show that the memory reachable from the remem-
bered set and snapshot tracking algorithm used our memory manager (Section 5.2) is bounded
by R*+4r. We achieve this by establishing a connection between this algorithm and a theoretical
“frame remset” that implements the cost semantics. The frame remset, although not practically
implementable, serves as reference point for analyzing the efficiency of our practical algorithm.
By demonstrating that the practical algorithm is as space-efficient as the frame remset, we can
leverage the bounds established by the cost semantics to bound the processor-local counter.

Heap Cluster, Semantics, and Frame Remset. The cost semantics for the race factor and
sequentialized space include the step surrender, which happens when a leaf becomes passive.
In this operation, the passive leaf transfers all of its allocations (tracked in variable o) to the
active sibling. Thus, a root to leaf path in the semantics also contains the allocations from any
passive siblings. This structure is identical to the way the heap scheduling algorithm maintains
the heap clusters. For any heap cluster M, and active task v, the memory in the cluster M, is a
subset of the memory allocations in the root-to-leaf path of the semantics. Since the reachability
along the root-to-leaf path to v using the frame set is bounded by R* + r, the reachability in
heap M, from same frame remset is also bounded by R* + .

Since each heap cluster created by the heap scheduler contains a subset of the allocations
along some root-to-leaf path in the semantics, we can specialize the semantics for heap clusters.
We define a frame remset that implements the cost semantics for both sequentialized space and
race factor precisely, for each heap cluster. The frame remset maintains the reader and writer
stores as defined in the cost semantics for the race factor. in Section 5.4.1. Furthermore, the
frame remset creates and stores snapshots, as defined the semantics for sequentialized space
Section 5.4.2, for each heap cluster M/, when a task is stolen from the processor p. Then at a
surrender, the frame remset deletes the snapshot that was stored at the corresponding steal,
staying consistent with the semantics for sequentialized space. Since the definitions of se-
quentialized space R* and race factor r bound reachable memory from the frame remset along
all root-to-leaf paths, the memory reachable from the frame remset within a heap cluster is
bounded by R* 4 7.

Adequacy Property of the Frame Remset. We assume an adequacy property of the frame
remset that ensures that garbage collecting any heap cluster using the frame remset is “safe”, i.e.,
any location that may be accessed by tasks on other processors is not reclaimed. Specifically, if
any task v on processor p accesses location ¢ that is in another processor’s heap cluster then: (i)
either location / is an exposed location, i.e., ¢ € V(R, W) and it stays exposed until task v joins
with the task whose heap is H ({) or (ii) there location / is allocated by an ancestor v’ of task v
and is present in the snapshot stored at the processor which contains the location. We formalize
this by defining two relations for a given step i of the execution. ExposedUntil(, £, u, v):

ExposedUntil(z, £, u,v) = 3¢’ /', 0" : (v, 0') € Ri(O)A (', €') € W,;()ALCA (W', v") <7 LCA(u,v)

Here, t <p t’ denotes that task ¢ is an ancestor of task ¢’. The relation ExposedUntil formally
states that (i) location ¢ is exposed at step 7 and (ii) for tasks v’ and v" whose actions expose the

85



location, their least common ancestor is an ancestor of the least common ancestor of tasks «
and v. The second condition (LCA(w',v") <7 LCA(u,v)). ensures that location ¢ stays exposed
until «’ and v’ join, which only happens after u and v join because of the positions of their least
common ancestors.

The relation InSnapshot(i, ¢, u) is defined follows:

InSnapshot(i, £,u) = H({) <p uAJu' :u' <puAnleS;(u)

, where S;(u') denotes the snapshot for task u' (according to the cost semantics), and H () is
the task (represented by the overline) of the heap of location 4.

Formally, for a task v with expression e, that is executing on processor p at step 7, we assume
(as adequacy property) the following:

vVl e L(e): ¢ ¢ M, = InSnapshot(i, ¢,v) V ExposedUntil(¢, ¢, v, H(¢))

Practical Remset and Frame Remset. For each processor, our memory manager maintains
a snapshot S(p) and a remembered set R(p) (Section 5.2).

We show that every entry in these sets corresponds to an entry in the frame remset. For
the proofs here, we consider the remembered set and the snapshot together as one, i.e., our
practical remset SR(p) contains locations in both the snapshot S(p) and a remembered set
R(p).

We consider an execution Sy —* 5, and prove the following invariants before ith step with
state S; on processor p:

1. for every entry {root: {, from-heap: h, } that is in SR(p),

either InSnapshot(i, ¢, u) or ExposedUntil(i, ¢, u, H(¢))
2. for every entry {root: £, from: V', from-heap: h, } in SR(p), if the entry was created by a

task v, either location / is the target of a down pointer or ExposedUntil(i, ¢, H (), H({)),

or ExposedUntil(i, ¢', H(¢"),v) and ¢ and h, are in the same heap cluster, or
InSnapshot(i, ¢, H()).

Intuitively, the above properties imply that every location in our practical remset is either
exposed or in some snapshot. Every entry corresponds to an entry in the frame remset. Since,
the memory reachable in any heap cluster due to the frame remset is upper bounded by R* +r,
the memory from the practical remset is also upper bounded by R* + 7.

We establish the invariants by induction. The base case with ¢ = 0 holds trivially because
the remset is empty. From state .S; suppose we take the ith step on processor p and reach S; ;.
We consider all the possible steps at that processor:

Case STEAL When processor p steals a task u with expression e from processor ¢, its adds
all the locations mentioned in e (that are in the heap cluster M,) to the remset of g. For each
such location, it creates the entry {root: {, from-heap: h, }. Because u executes the expression e
at step ¢ + 1, we get from the adequacy condition that V¢ € L(e) : ¢ ¢ M, = InSnapshot(i +

1,¢,v) V ExposedUntil(i + 1, ¢, v, H(¢)). So, every such entry satisfies hypothesis (1) after the
step.

86



Case SURRENDER In this step, suppose task v at processor p finishes and the processor
p surrenders all its heaps to another processor ¢, which has the sibling’s heap. In this case,
processor p adds all the entries in the remset of p to remset of q. Then we clear stale entries:
an entry is stale if either the from-heap is in the same heap cluster as the root, or it has a from
location and it does not point to the root. Let’s consider the remaining valid (not stale) entries
in the remset of ¢ one-by-one and prove the hypotheses for them.

First consider an entry {root: ¢, from-heap: h,} such that InSnapshot(i, ¢, u), i.e., location
¢ € S;(v') for some u' <7 u (from the inductive hypothesis). Because the entry is valid, it means
that h, ¢ M, and thus v # v' and v # v from h, ¢ M, and h, € M, and h,, € M,. Thus,
task u is not involved in this surrender and v’ is not the parent of v and v'. Because our frame
remset algorithm only deletes the snapshots stored at the parent of v and v/, £ € S;; (). Thus,
InSnapshot(i+1, £, u). Second, let’s consider an entry either of the form { root: ¢, from-heap: h,,}

such that ExposedUntil(i, ¢, u, H(¢)). Because no exposed locations are cleared and the reader
and writer sets are unchanged at surrender, we have ExposedUntil(i + 1, £, u, H(()).

Now, let’s consider the valid entries of the form {root: ¢, from: ', from-heap: H({')}. By
validity, we get that H({') ¢ M, and location ¢ points to ¢. First, if location /¢ is the target
of a down pointer, it stays the target of a down pointer because the heap H (') is not in-
volved in the surrender (H(¢') ¢ M,) and its position w.r.t. location ¢ remains unaffected.

Second, if InSnapshot(i, ¢, H(¢')), then the reasoning is similar to the case above for entry

{root: £, from-heap: h,}, with H(¢') = u. Third, in cases where ExposedUntil(i, ¢, H(¢'),v)
and ¢ and h, are in the same heap cluster, or ExposedUntil(i, ¢, H(¢), H(¢')), the hypotheses
continue to hold because no exposed locations are cleared and the reader and writer sets are
unchanged at surrender

Case JoiN Suppose task v joins with task v’. At the join, the heaps h, and h, are merged
together with their parent and the reader and writer sets are relabelled, potentially turning
some exposed locations into “non-exposed”. Note that the heaps h, and h, of the joining tasks
are on the same processor prior to this step. This is because one of the tasks v and v' must have
been passive, and passive heaps are on the same processor as their sibling.

For our hypotheses, those cases which hold because of InSnapshot trivially hold be-
cause no snapshots are deleted in the frame remset at joins. We consider the cases
with relation ExposedUntil. First consider an entry {root: ¢, from-heap: h,} such that
ExposedUntil(i, £,u, H(()). Because the entry is still valid (not stale), we get that h, & M,,.
Thus, it follows that v did not join in this step. Thus, ExposedUntil(i, ¢, u, H(¢)) continues to
be satisfied because task u has not joined in this step.

Similarly, consider an entry {root: ¢, from: 0, from-heap: h,} in SR(p), such that
ExposedUntil(i, ¢, H(¢), H(¢")). Because the entry is still valid (not stale), we get that H(¢') ¢
M,. Thus, we get that ExposedUntil(i, ¢, H(¢), H(¢')) continues to be satisfied because task

H (") has not joined in this step (H(¢') ¢ M,). Lastly, suppose ExposedUntil(i, ¢', H({'),w)
and ¢ and h,, are in the same heap cluster. Because the entry is valid, H(¢') ¢ M,. Thus, in

this step, task w and H (¢') could not have joined, because the heaps of both joining tasks are

87



in M,,. Thus, the condition ExposedUntil(é, ¢, H(¢'),w) continues to hold.

Case BaNnG In this step, suppose processor p dereferences location ¢ to read location ¢'. If
location ¢’ is in p’s heap cluster M, then the remset is unchanged and all hypotheses continue
to hold.

Suppose, ¢’ is not in p’s heap cluster and instead is at some other processor ¢, i.e., ¢ € M,.
Then processor p will add the entry {root: ¢, from-heap: h, } to ¢’s remset. We know from the
adequacy conditions that either InSnapshot (i, ¢, u) or ExposedUntil(i+1, ¢, u, H({')). Because
no snapshots are deleted in this step, we get either InSnapshot(i + 1, ¢, u) or ExposedUntil(i +

1,0 ,u, H(¢")). From this we get hypothesis (1).

Case Dupp In this step, a processor, say p executes a mutable update of task v, installing
a pointer from location ¢ to ¢'. If locations ¢ and ¢’ are in the same heap cluster, the remset
does not change and all the hypotheses continue to hold. Otherwise, locations ¢ and ¢’ are in
different heap clusters, say ¢’ € M, and ¢ € M, for processors r and ¢ such that ¢ # r. In
this case, we add the entry {root: ¢, from: {, from-heap: H({)} to the remset of q. We show the
hypothesis (2) for this entry (hypothesis (1) is inapplicable).

First suppose ¢ # p and r # p. By applying the adequacy conditions with locations ¢
and (/, we get that either InSnapshot(i, ¢/, v) or ExposedUntil(i + 1,¢ v, H(')) and either
InSnapshot(i, £, v) or ExposedUntil(i + 1,¢,v, H(¢)). If ExposedUntil(i + 1,¢,v, H(¢")) and
ExposedUntil(i 4+ 1, ¢, v, H({)), then ExposedUntil(: + 1,¢', H(¢"), H(¢)). If ExposedUntil(i +
1,0/, v, H(?")) and InSnapshot(i, ¢, v), then either the pointer from location ¢ to ¢ is a down
pointer or ExposedUntil(i + 1,¢, H(¢'), H(()). If InSnapshot(i, ', v) and ExposedUntil(i +
1,0,v, H(()), the either InSnapshot(i, ¢/, H(()) or ExposedUntil(i + 1,¢, H(¢'), H(¢)). In the
case where InSnapshot(i, ¢', v) and InSnapshot(i, £, v), then either the pointer from location ¢
to ¢’ is a down pointer or InSnapshot(i, ¢, H({)).

Second, suppose ¢ = p and r # p. By applying the adequacy conditions with lo-
cation ¢, we get that either InSnapshot(i, £, v) or ExposedUntil(i 4+ 1,¢,v, H(¢)). Consider
InSnapshot(i, £, v) and the heap h, of task v. We have that the heap H (/) is an ancestor of
hy, from InSnapshot(i, ¢, v). If ¢ is in heap h,, then the pointer ¢ to ¢’ is a down pointer and
we get the hypothesis. Otherwise, if ¢’ is in some other h,, € M,, then we can use Lemma 4
with H(¢), h, and h,, to get that H ({) is an ancestor of h,, . Thus, the pointer ¢ to ¢’ is a down

pointer and we get the hypothesis. Otherwise, if ExposedUntil(i + 1, ¢, v, H(¢)), then we have

ExposedUntil(i + 1, ¢, v, H({¢)) and that v and ¢’ are in the same heap cluster.

Third, suppose ¢ # p and r = p. By applying the adequacy conditions with location ¢, we
get that either InSnapshot (i, ¢, v) or ExposedUntil(i+1, ¢, v, TE’)) If InSnapshot(i, ¢, v) then
H (') is an ancestor of both v and H (¢) and thus, we have InSnapshot(i, ', H(¢)). Otherwise,

if ExposedUntil(i+1, ¢, v, H({")), then either the pointer from location ¢ to ¢’ is a down pointer
or ExposedUntil(i + 1, ¢', H(¢), H({"))

]

88



Implementation

To evaluate the efficiency of our parallel memory management techniques, we developed a
language called MPL (MaPLe), which is a high-performance compiler for Parallel ML (SML).
MPL is built as an extension of the MLton compiler for (sequential) Standard ML, and supports
the full SML language, including including unrestricted mutable state. MPL extends SML with
parallel tuples for fork-join parallelism. MPL is open-source' and has been used in several
publications [17-19, 89, 138, 174, 175, 178].

The implementation of MPL is crucial for evaluating the real-world performance and scal-
ability of our techniques. Our implementation follows the coscheduling and memory manage-
ment techniques described in Chapter 2 and Chapter 4 respectively. In this chapter, we cover
some remaining aspects of the MPL implementation, including important efficiency optimiza-
tions.

Acknowledgements

MPL has been under-development for over a decade by multiple collaborators, including Sam
Westrick, Ram Raghunathan, Stefan Muller, Adrien Guatto, Rohan Yadav, Larry Wang, Guy
Blelloch, Umut Acar, Matthew Fluet, and myself.

6.1 Coscheduling and Heaps

We implemented MPL as an extension of the MLton compiler, which is one of the fastest
compilers for sequential Standard ML. The compilation steps of MLton and MPL are

https://github.com/MPLLang/mpl.git

89



roughly the same, except MPL supports fork-join parallelism by a language primitive called
par : (unit — «a) * (unit — «) — (a * (), which takes two functions to be evalu-
ated in parallel, and returns a tuple of their result. In the implementation, the par primitive
creates new tasks for computing the input functions.

For load-balancing tasks across processors, MPL uses a work-stealing task scheduler with
concurrent deques [21]. Tasks are implemented as one-shot continuations with heap allocated
call stacks. We adapt the work-stealing scheduler to implement our coscheduling algorithm,
as described in Section 2.3.2. At steals, when a new task begins execution, the coscheduling
algorithm creates a heap for the task and all allocations of the task are performed in that heap.
When a task finishes, we implement a lazy form of surrendering which occurs only after both
siblings are ready to join. When this happens, we merge the heaps of the children with the
heap of the parent. We discuss the implementation of heaps as follows.

Heaps. The coscheduling algorithm and our memory management techniques use the fol-
lowing heap operations:

type heap

type addr

create : unit — heap

allocate : heap * size — addr
heapOf : addr — heap

depth : heap — int

merge : heap * heap — heap

dca : heap * heap — heap
concurrent : heap * heap — bool

Representation. We implement the heap datatype, primarily in C, because it allows tight
control over memory allocation and manipulation. A heap is a linked list of memory chunks,
where each chunk is a contiguous array of bytes. A new heap is initialized an empty linked list.

Allocation. Within a heap, memory is allocated by bump-allocation. Each chunk of
the heap maintains pointers frontier and limit. The compiled program includes code for
checking the frontier and limit pointers. For an allocation of size s, the code checks if
s + frontier <= limit. If the check succeeds, the allocation is performed directly by bump-
ing the frontier, and the program continues. Otherwise, the compiled code makes a call into
the runtime system, and the heap allocates a new memory chunk large enough to perform
the allocation. Allocations at the level of memory chunks are handled by a Hoard-style block
allocator [34].

Each allocated object comprises of a header and a payload. The header stores meta informa-
tion about the object and is used exclusively by the runtime system. The payload corresponds
to the value of the object, and is used by the program instructions.

90



Object Query. Given an allocated object, we can determine its heap using the heapOf opera-
tion, which takes the address of the object and returns the corresponding heap. To support this
operation, we include a chunk decsriptor at the beginning of each memory chunk. The de-
scriptor stores information about its corresponding heap. Given an object at a memory address,
we can determine its chunk in constant time by ensuring that all memory chunks are appro-
priately aligned at power-of-two addresses. To find the chunk of an object from its address, we
only need to zero the appropriate lower order bits. Once the chunk found, we can refer to the
chunk descriptor to determine the heap. The heapOf operation is used by the memory man-
ager for tracking inter-heap pointers and also for restricted the scope of garbage collection. For
example, when a processor garbage collects a cluster of heaps, it does not trace objects outside
those heaps; it determines that an object is outside by using the heapOf operation.

Merge. Representing heaps as a linked list facilitates constant time merge operations of
heaps. To merge two heaps, we only need to append the corresponding linked lists and update
the chunk descriptors. Since updating the descriptor of each chunk could result in overhead, we
use a thread-safe union-find data structure that merges heap names at heap merges. This elim-
inates the need to update each chunk eagerly, and instead, the chunk descriptors are updated
as part of path-compression of the union-find data structure.

Entanglement Checking and Management The operations concurrent and dca are used
for tracking and managing entangled objects. The concurrent takes two heaps and returns
a boolean. It returns true when the heaps are concurrent in the heap tree, i.e., when they
are not in an ancestor-descendant relationship. The operation is used for detecting entan-
gled objects: when a task v reads an object ¢, the location ¢ is an entanglement source if
concurrent (h,,heapOf(¢)), where h, denotes the heap of task v (implemented by storing
the heap in each task). This is used within our read barrier (Section 4.3).

The operation concurrent can be implemented using the operation dca, which takes two
heaps and computes their deepest common ancestor in the heap tree. For example, the deepest
common ancestor of two siblings is their parent. When two heaps are not concurrent, one of
them is their dca, because they are in an ancestor-descendant relationship. The dca operation
is used by the entanglement tracking algorithm for computing the expiration depth of entan-
glement sources (Section 4.3). To implement this, we use the DePa algorithm, a series-parallel
order maintenance data structure [177].

6.2 Tracking of Inter Heap Pointers

We use a combination of barriers and remembered sets to track all targets of inter heap pointers.
At a high level, we use three forms of remembered sets: (i) forgotten set for pointer deletions,
(ii) down set for tracking down pointers, and (iii) source set for tracking entanglement sources.
Our goal is to maintain these sets, with as little overheads as possible in the form of read/write

91



barriers. Specifically, we want zero overhead for reads of immutable objects, near-zero overhead
for reads of disentangled, mutable objects, with some overhead acceptable for mutable writes.

Up Pointers. To account for up pointers, we snapshot every internal heap at the time of fork
and collect internal heaps w.r.t. the snapshots. The snapshotting is performed by storing the
continuations of both the children task and the parent task at the time of fork, and also using
a Yuasa-style barrier for pointer deletions [182], that negates the effects of a mutator deleting
pointers by adding the target objects to a deleted set of pointers. At the write barrier, we check
if the task is deleting a pointer within objects in an internal heap; if so, we add the target object
to the forgotten set of the corresponding heap. Since many tasks may delete pointers simulta-
neously, we implement the forgotten set as a list that supports concurrent additions. Overall,
these techniques are similar to “snapshot-at-the-beginning” used by concurrent collectors, ex-
cept our snapshots are taken at the time of fork [101].

Down Pointers. The write barrier detects down pointers and adds them to the down set.
Before a pointer is created from object = to y, the write barrier considers the heaps H(x) of
object z and H (y) of object y. If the pointer is a down pointer, i.e., H(z) # H(y) and H(x) =
dca (H(z), H(y)), the write barrier adds the pointer to the down set of heap H (y).

Cross Pointers. As we discussed in Section 4.2, we do not track cross pointers, because track-
ing them would be infeasible, and instead track all entangled objects. To achieve this, we use a
read barrier, but carefully design it to minimize its cost. We discuss our optimizations for the
read barrier in the next section.

6.3 Optimizing the Read Barrier

One of the key challenges for efficiency our approach is the use of read barriers, which can
significantly impact performance if not carefully optimized. To address this, we implemented
three key optimizations to minimize the overhead of read barriers: 1) No read barriers on any
immutable objects, 2) Near zero overhead for reads on disentangled, mutable objects, and 3)
One time cost to entangled objects. The most important among them is Optimization 1, which
ensures barrier-less accesses to immutable objects—a crucial feature because parallel functional
programs frequently access such objects. Chapter 4 already covered this important optimization
(Section 4.3) and also covered Optimization 3 (Section 4.4). We describe Optimization 2 in this
section.

Entanglement Frontier. The read barrier intercepts the reads of mutable objects and per-
forms an entanglement check: when a task v reads a mutable location ¢, the check performs a
graph query that tests whether the read is entangled, i.e., if concurrent(v, allocator(¢)) (see Sec-
tion 4.3). This check has non-zero overhead, which can accumulate over reads of the mutable
objects. We optimize this overhead by implementing a fast path and only performing a check

92



on the slow path. In the slow path, the read barrier proceeds as usual: perform an entangle-
ment check to determine if the read creates an entanglement source, and if so, the read barrier
adds the entangled object to the source set of the corresponding heap. Since multiple tasks
may attempt to add entanglement sources to the source set, we implement the source set as a
list that supports concurrent insertions. Even though such concurrent operations impose over-
head, this overhead is restricted to entangled objects and is imposed only once, per entangled
object.

In the fast path, the read barrier just checks a lower order bit in the header of the object being
read; if the bit is not set, then no checks are needed. To achieve this, we design an algorithm
to track an entanglement frontier, which contains the set of all mutable objects whose reads
may cause entanglement. Objects in the frontier are checked when read and reads of objects
outside the frontier take the fast path. Testing whether an object in the frontier is cheap: we
maintain a bit in the object header and set it for frontier objects. Since the object is already
being read, testing this bit has near zero overhead.

Our barriers add two types of mutable objects to the frontier because they may create en-
tanglement. First, when a mutable object has a down or cross pointer to another object outside
its heap, its read may enable a task to create entanglement. The write barrier detects when a
task creates an inter-heap pointer from an object (to some other object) and adds the object
to the entanglement frontier. Second, when an object is at the boundary of an entanglement
region, it is entangled, and other (concurrent) tasks may read it, creating more entanglement.
The read barrier adds such objects to the frontier when it pins an entanglement region.

Frontier objects become non-frontier after joins. Because joins merge heaps, they turn inter-
heap pointers into internal pointers and void the first type of frontier objects. Furthermore,
because joins expire entangled objects, they void the second type of frontier objects. To identify
these changes to the frontier, the barriers associate a“join point” with every frontier object.
When a frontier object reaches its join point, it is removed from the frontier. We reserve a bit
in the header of mutable objects and toggle it to add/remove objects from the frontier. Because
frontier objects are create in parallel, it is important to clear frontier objects in parallel. We
parallelize the clearing of frontier objects, by creating fork-join tasks and adding them to the
scheduler.

This optimization is delivers significant benefits, upto 20% in running time on 72 cores. This
is because a vast majority of reads of mutable objects can not create entangled objects. The
optimization removes the overhead of checking entanglement from all these reads, resulting in
near-zero overhead for most disentangled objects.

6.4 Garbage Collection Algorithms

We covered most of the details about the garbage collection algorithms in Section 4.5. Here, we
cover some additional optimizations important for efficiency.

93



Internal Heaps. Internal heaps are snapshotted at forks and we collect them using a con-
current mark and sweep algorithm. To garbage collect an internal heap, we fork a “GC task”
that is added on the work-stealing deque and is then scheduled by the task scheduler on a pro-
cessor. The collection can proceed concurrently to the rest of the program, because the heap is
snapshotted and the mark and sweep algorithm does not move objects, allowing for concurrent
accesses to the heap’s objects.

Note that it is possible for the internal heap to become a leaf heap while it is being garbage
collected. This is because the program tasks can join, and the internal heap may be needed for
new allocations. To support this, we create a new heap for allocations, which is used by the
task for the time being, while the collection is being performed. Once the concurrent garbage
collection is finished, we merge this new heap with the collected heap.

Hybrid Garbage Collection of Leaf Heaps. For leaf heaps, we pause the corresponding
leaf task and use a hybrid collection algorithm. The hybrid collection algorithm uses a mark
and sweep style algorithm for entangled objects, and performs semi space copying collection
for the disentangled objects. The defragmentation aspect of the hybrid collector it crucial for
both time and space efficiency, improving upto 20% in time and 75% in space.

For efficiency, the collection proceeds in two phases. First, the collector runs a hybrid phase
taking the source set and the entanglement frontier as roots. This phase traces all objects that are
entangled and also those that are disentangled, but are susceptible to entanglement, i.e., those
reachable from the entanglement frontier. In this phase, the collector relocates objects while
accounting for potential concurrent readers that may access them; it does this by performing
compare-and-swap operations on the object header (as described in Section 4.5).

After the first phase, the objects that are remaining in the heap, are completely local to the
leaf task and are guaranteed to be inaccessible to other tasks. As an optimization, we perform
purely Cheney-style semi space reclamation, with no hybrid component, because there is no
possibility of concurrent tasks accessing these objects. We also optimize the relocation of such
objects, performing no compare-and-swap operations them.

94



Evaluation

In this chapter, we evaluate and establish the practicality of our techniques. We compare our
implementation, called MPL, against multiple other language implementations (including both
procedural and functional languages) and demonstrate its efficiency and scalability.

Benchmarks Our evaluation considers two different benchmarking suites, totaling 48 bench-
marks across five different languages.

The first suite includes 26 different benchmarks written in MPL. Half (thirteen) of these
benchmarks are highly concurrent and entangled. To implement these benchmarks, we first
implemented a number of non-blocking concurrent data structures, including Harris’s non-
blocking list [94], the Lindén-Jonsson priority queue [113], the Michael-Scott non-blocking
queue [118], Kumar et al’s persistent arrays [107], and many others. Using these, we then
implemented sophisticated parallel algorithms for

¢ quantum circuit synthesis,

o delaunay triangulation,

« various graph analyses, including reachability/connectivity, O(k)-spanner, low-diameter
decomposition boundaries, etc., and

 deduplication via concurrent hashing.

In addition, we implemented synthetic benchmarks that operate on concurrent data structures
by mixing parallelizable work with updates and queries on the shared data structure(s).

Some of our benchmarks—such as the quantum synthesis and delaunay triangulation—are
complex and have taken multiple person-months of work (each) to implement. The bench-
marks are heavily concurrent; for example, the quantum circuit synthesizer implements a par-
allel version of the Solovay-Kitaev algorithm [66, 105] and uses both concurrent hash tables

95



and concurrent lists. Other benchmarks are from various problem domains, such as graph
analysis, text processing, digital audio processing, image analysis and manipulation, numerical
algorithms, computational geometry, and others; some are from prior work [176, 178]. Many
of these benchmarks have been have been ported from highly optimized C/C++ implementa-
tions and include state of the art algorithms that have been designed over the past ten years
[12, 45, 46, 67, 150, 151, 168].

Our second benchmarking suite contains the implementations of eight benchmarks in four
languages (other than MPL) : C++, Go, Java, and Multicore OCaml. The C++ benchmarks come
from PBBS [12, 151] and ParlayLib [46]. We ported these to Go, Java, and OCaml, while re-using
existing Java implementations of two benchmarks. We selected these benchmarks for diver-
sity (covering both disentanglement and entanglement, as well as both memory- and compute-
intensive benchmarks), and for ease of implementation, as it takes significant work to imple-
ment each benchmark in multiple languages.

Methodology To measure timings, we first do a warmup by running the benchmark back-
to-back for at least 5 seconds, and then do 20 back-to-back runs. All of this happens in the
same program instance. The number reported is the average of the 20 runs, and the warmup is

disregarded.

To measure space usage, we measure the average of the maximum resident set size (as
reported by Linux) of 20 back-to-back runs of the benchmark. Back-to-back runs are executed
in the same program instance to ensure that any effects of memory management amortization
thresholds are taken into account (for example, a garbage collection might run only once every
five runs). We use the maximum resident set size measurement because it takes into account all
potential sources of space usage, including allocation freelists, GC metadata, etc., thus allowing
for comparison across systems with different memory management strategies.

We write Tp for time on P processors, and similarly Rp for the max residency on P proces-
sors. Unless stated otherwise, all times are in seconds and all space numbers (max residencies)
are in GB.

Experimental Setup We run all of our experiments on a 72-core Dell PowerEdge R930
consisting of 4 x 2.4GHz Intel (18-core) E7-8867 v4 Xeon processors, 1TB of memory, and
running Ubuntu version 16.04.7 with Linux version 4.10.0-40-generic x86_64. In Sec-
tion 7.1, we use MLton version 20210117. In Section 7.2, we use MPL version 0. 3. For cross-
language comparisons (Section 7.4), we use the following systems: multicore OCaml version
5.0.0+dev4-2022-06-14 with default settings and the library domainslib version 0.4.2;
Go version 1.18.4; g++ version 10. 3.0 with the jemalloc library, and the compiler flags -03,
-march=native, -std=c++17, and -mcx16; Java OpenJDK version 11.0. 14. For Java, we used
the G1GC collector (which we found yielded the best performance) and controlled the number
of threads with the setting -XX: ActiveProcessorCount=N.

96



Time (s) Space (GB) Bytes Entangled
ov SuU BU; BU72
Benchmark T T % T7o 72; > R, Ry % R7o RR—? €72
centrality 14.7 209 142 .466 32 33 6.6 .20 5.8 .18 0
delaunay 8.65 17.1 198 .667 13 27 17 .63 11 4.1 9.5 M
find-influencers 14.5 155 1.07 .433 33 35 7.4 .21 5.8 .17 23 M
grep 143 216 1.51 .041 35 4.6 .61 .13 .85 .18 0
harris-linked-list 5.84 5.97 1.02 .163 36 .034 .021 .62 .094 2.8 33 M
hash-dedup 246 379 154 .081 30 68 .92 .14 13 .19 S56 M
interval-tree 2.89 430 149 .067 43 .53 12 .23 .64 1.2 0
ldd-boundary 22.3 308 1.38 .705 32 31 7.0 .23 17 .55 12G
linden-pq 5.84 6.98 120 .193 30 .14 .11 .79 15 1.1 9.3 M
linefit 3.01 234 0.78 .149 20 385 8.2 .96 8.3 .98 16 M
max-indep-set 13.2 163 1.23 379 35 27 7.0 .26 5.7 .21 0
mcss 188 4.74 2.52 .080 23 43 4.1 .95 4.1 .95 0
ms-queue 595 794 133 303 20 .27 .18 .67 33 122 80 M
msort-int64 3.30 4.45 1.35 .08 39 5.0 .66 .13 93 .19 0
nearest-nbrs 1.32 1.69 128 .039 34 15 .98 .65 2.1 1.4 0
persistent-arr  4.61 7.60 1.65 .109 42 65 .60 .92 15 2.3 3.6 K
quant-synth 129 172 1.33 .319 40 46 99 .22 12 2.6 1.8 M
quickhull 2.50 3.59 144 .115 22 15 18 1.2 20 1.3 0
range-query 14.1 16.2 1.15 .287 49 13 4.5 35 4.3 .33 0
reachability 11.3 147 130 .412 27 37 5.9 .16 15 41 82K
reverb 1.01 136 135 .043 23 69 1.5 22 2.0 .29 0
seam-carve 7.58 7.95 1.05 .280 27 1.2 .13 11 33 .28 0
spanner 11.2 169 1.51 421 27 34 8.8 .26 46 1.4 59M
tokens 1.55 1.89 1.22 .042 37 13 1.1 .08 1.2 .09 0
triangle-count 4.67 5.18 1.11 .110 42 27 .76 .28 1.2 44 0
wc 5.18 7.44 144 .120 43 1.9 3.6 1.9 3.6 1.9 28 M
geomean 1.34 31 0.34 0.68

Figure 7.1: Comparison with sequential baseline: times, max residencies, overheads (OV),
speedups (SU), space blowups (BU), and entanglement factors (e).

97



centrality
delaunay
find-influencers
grep
harris-linked-list
hash-dedup
interval-tree
Idd-boundary
linden-pq

linefit
max-indep-set
mcss

ms-queue

msort-int64
nearest-nbrs
persistent-arr
quant-synth
quickhull
range-query
reachability
reverb
seam-carve
spanner
tokens
triangle-count
wc

1 10 20 30 40 50 60 70
Processors

Figure 7.2: Speedups, continued in Figure 7.3

70

1 10 20 30 40 50 60
Processors

Figure 7.3: Speedups, continued

98



7.1 Overheads and Scalability

In this section, we compare against the MLton [120] compiler, which is a compiler for (sequen-
tial) Standard ML. Our MPL extends MLton with support for parallelism; there are minimal
compilation differences between the two systems. (For MLton, we compile the sequential eli-
sion of each benchmark.) This comparison therefore allows us to determine the overheads and
scalability of our memory manager by using executables produced by MLton as a sequential
baseline. We also measure here the entanglement factor € of each benchmark.

The results of the comparison are shown in Figure 7.1. The column 7 is the sequential
baseline time, using MLton. The columns 77 and 77, are the times of our MPL on 1 and 72
processors, respectively. Similarly, R, is the maximum residency of the sequential baseline, and
Ry and R, are the single-processor and 72-processor residencies of MPL. The overheads T} /T
indicates the performance of MPL on 1 processor relative to the sequential baseline; smaller
numbers are favorable. Speedups on 72 processors in comparison to the sequential baseline are
calculated as T /T52, where larger numbers are favorable. To compare space usage, we compute
the space blowup on p processors as R,/ R,. This number indicates how much more memory
MPL uses in comparison to the sequential baseline. Larger blowups indicate more space usage.

Speedups. We first observe that, on average, MPL achieves 31x speedup on 72 processors
over MLton. These speedups range from 13x to 49x, with benchmarks such as interval-tree,
quant-synth, and triangle-count—being compute bound—see higher speedups. In con-
trast, memory bound benchmarks such as seam-carve, delaunay, and reverb deliver lower
speedups. The Figure 7.2, where we plot the speedup of MPL relative to MLton, also shows this
trend. Some benchmarks plateau in speedup before 72 processors (e.g., delaunay, seam-carve,
linefit). This is expected, as these benchmarks are memory-bound. All other benchmarks
scale approximately linearly with the number of processors.

It’s important to note that a perfect 72x speedup on 72 processors is unrealistic due to mem-
ory access bottlenecks. Memory is not 72-way parallel, and introduces fundamental scalability
bottlenecks such as limited memory bandwidth and cache coherency delays. For this reason,
the 31x speedup observed here is excellent, especially considering that state-of-the-art parallel
programs written in C/C++ achieve similar speedups (see Section 7.4 for details).

Blowups. Across the board, we also see that MPL almost always uses less memory than ML-
ton (Figure 7.1). On average, MPL uses approximately 30% less memory on 72 processors than
MLton does sequentially. This is because MPL has a more aggressive GC policy than MLton;
in anticipation of high memory usage for parallel applications, MPL collects aggressively.

Validating the Disentanglement Hypothesis. The disentanglement hypothesis states that
most objects in a parallel fork-join program are disentangled. To validate the hypothesis in
practice, we report the entanglement factor on 72 cores, €75, which represents the cumula-
tive number of bytes that are entangled throughout the computation. The results across 26

99



benchmarks (Figure 7.1) show that entanglement factors are generally low in practice. Approx-
imately half of the benchmarks considered here do not have any entangled objects, and there-
fore have an entanglement factor of 0. Amongst the entangled benchmarks, we can see that the
amount of entangled bytes is generally small, especially in comparison to the maximum resident
memory needed for 72 processor execution. For example, the graph reachability benchmark,
reachability, has €79 = 82K, which is less than 1% of its resident memory R, = 0.41GB. The
low entanglement factor of this algorithm is analyzed and explained in detail in Section 3.3.3.
At a high level, the reason for low entanglement factors is primarily that entangled objects are
created only due to races, which are rare in these parallel programs.

Altogether, these results demonstrate that MPL is able to achieve significant speedups while
controlling space usage effectively. The results also validate the disentanglement hypothesis,
as the amount of entanglement for all benchmarks is less than 1%. Next, we analyze how well
our implementation takes advantage of this hypothesis.

7.2 Disentanglement is Not Penalized

To show that our entanglement management techniques do not penalize disentangled pro-
grams, we compare our performance with MPL*. In MPL, all entanglement management tech-
niques are disabled, including the read barrier and any potential overhead related to managing
entangled objects is completely removed. This makes MPL* specialized for benchmarks that do
not have entangled objects.

We evaluate MPL with MPL* on all such benchmarks from Figure 7.1 as well as multiple
other programs from the Parallel ML Benchmark Suite, for a total of 30 benchmarks. Across
these benchmarks, we find that our MPL, which is fully general, performs similarly to MPL™.
Specifically, we observed less than 5% overhead across all benchmarks, on both 1 and 72 pro-
cessors, and observed less than 4% average space overhead. These results confirm that MPL
effectively takes advantage of the disentanglement hypothesis, because its entanglement man-
agement techniques do not compromise the efficiency of disentangled programs. Additionally,
these results are a sanity check for our theory (Theorem 1), which bounds the extra work of
tracking entanglement to O(e), where € is the amount of entanglement. As expected, the over-
head on disentangled benchmarks is negligible.

7.3 Entanglement Management Overhead

To further investigate the cost of managing entanglement,
we developed a stress test for which we can control the

. 2.75
amount of entanglement. The total program work, live
. . 2.50
memory, and parallelism of this benchmark all stay ap- 5 5
X o 2.

proximately the same regardless of the amount of entan- &
. ) . < 2.00

glement introduced. On this stress test, we varied the 735
>1.75
amount of entanglement and measured the overhead on 150
1.25

100

1.00

0% 25% 50% 75% 100%
Fraction of Memory Entangled

Figure 7.4: Stress test for entangle-

Mot manoacdoroint averhoad



72 processors. Specifically, if the benchmark is 2% entan-

gled, then overhead is the ratio 7'(x)/T(0), where T'(x)

is the running time with 2% entanglement. The results of

this stress test are shown in Figure 7.4. First, we observe

that the overhead increases linearly with the amount of

entanglement. It is 1 (i.e., no overhead) at 0% entangle-

ment and grows upto a factor of approximately 3 near

100% entanglement. This agrees with our theory: the work of entanglement tracking increases
linearly with entanglement (Theorem 1). Furthermore, the constant factor hidden in the work
bound O(W + ) is relatively small (approximately 3 in this case)

7.4 Cross-Language Comparisons

In this section, we compare MPL with four other languages, C/C++, Go, Java, and multicore
OCaml, all of which support nested fork-join parallelism in the same style as MPL. In Go, we
use goroutines and channels to implement nested fork-join parallelism. In Java, we use parallel
streams and the Java Fork/Join framework. (Note also that we account for Java warmup in
our benchmarking methodology, discussed at the top of Chapter 7.) In OCaml, we use parallel
primitives from the domains1ib library.

We compare these languages on eight benchmarks, which come from the PBBS benchmark
suite [12, 151] and the ParlayLib [46] library of parallel algorithms and data structures. We port
these benchmarks from C/C++ into each of Parallel ML, Go, Java, and OCaml, preserving the
underlying algorithms. For example, an array of structs in C/C++ is represented as (i) an array of
tuples in Paralle]l ML and OCaml, (ii) an array of structs in Go, and (iii) an array of objects in Java.
Where possible, we use external codes implemented by experts. In Java specifically, we use the
ConcurrentHashMap and parallelSort implementations from the java.util.concurrent
and java.util.Arrays libraries, respectively, for the hash-dedup and msort-int64 bench-
marks. Three benchmarks use lock-free data structures and have entanglement: hash-dedup,
linefit, and wc.

Results The results of this comparison are shown in Figures 7.5 and 7.6. Figure 7.5 shows the
time of each benchmark, as well as the ratio relative to our MPL; Figure 7.6 similarly reports
space of each benchmark. Here, the abbreviations are C for C/C++, M for our MPL, G for Go, J
for Java, and O for OCaml. For example, in the time figure, the column J is the running time (in
seconds) for Java, and next to it, the column J/M is the ratio of Java’s running time to MPL’s
running time. Higher ratios are favorable for MPL.

The results show that among memory-managed languages, MPL is faster and more space-
efficient on all but two benchmarks. In particular, on benchmarks hash-dedup and wc, Java
runs faster than MPL but consumes more space; on the same benchmarks, both Go and OCaml
consume less space than MPL, but run slower than it. On all other benchmarks MPL performs
better in terms of both speed and space consumption. On the tokens benchmark, we observe a

101



C/C++ MPL (Ours) Go Java OCaml

C c M % G G J L 0 o

hash-dedup .043 0.53 .081 1.00 .127 1.57 .052 0.64 .174 2.15
linefit .150 1.01 .149 1.00 .157 1.05 405 2.72 1.18 7.92

mcss .038 0.47 .080 1.00 .105 1.31 .507 6.34 5838 7.35
msort-int64 .058 0.68 .085 1.00 .280 3.29 .242 2.85 .489 5.75
primes .072 0.58 .124 1.00 .189 1.52 211 1.70 .166 1.34
sparse-mxv  .050 1.04 .048 1.00 .092 192 .089 185 .727 15.15
tokens .020 0.48 .042 1.00 .484 11.52 .256 6.10 .947 22.55

wc .058 0.48 .120 1.00 .171 143 .052 0.43 910 7.58

Time (s) on 72
processors:

geomean 0.63 1.00 2.07 2.00 6.30

Figure 7.5: MPL vs C++, Java, Go, and OCaml: time (seconds) on 72 proces-
sors. The time ratios are relative to MPL and show how fast it runs w.r.t.
other languages (larger ratios favor MPL). The geomeans show the average
of these ratios.

C/C++ MPL (Ours) Go Java OCaml
c M G ] o
c w M § 6 w J M O M

hash-dedup 140 1.08 130 1.00 110 0.85 770 592 110 0.85
linefit 880 1.06 830 1.00 840 1.01 23.0 2.77 330 3.98

mcss 4.80 1.17 410 1.00 490 120 27.0 6.59 420 1.02
msort-inte4 1.40 1.51 930 1.00 170 1.83 240 2.58 6.80 7.31
primes .920 2.30 400 1.00 470 1.17 190 4.75 180 4.50
sparse-mxv 490 1.09 450 1.00 630 140 170 3.78 730 1.62
tokens 170 1.42 1.20 1.00 460 3.83 150 12.50 17.0 14.17

wec 250 0.69 360 1.00 360 1.00 560 156 190 0.53

Space (GB) on
72 processors:

geomean 1.22 1.00 1.36 4.20 2.47

Figure 7.6: MPL vs C++, Java, Go, and OCaml: space (GB) on 72 processors.
The space ratios are relative to MPL and show the proportion of memory
MPL saves, w.r.t. other languages. (larger ratios favor MPL). The geomeans
average these ratios.

102



large performance gap between MPL and the other languages, where MPL is significantly faster
and also consumes less space. This performance difference is due to the memory layout of a key
data structure—specifically, an array with tuples for elements. MPL is able to “unbox” the tuples
and flatten them into the array; note that MPL is based on MLton which performs optimiza-
tions such as data flattening. In Java, each element of the array is “boxed” and therefore incurs
additional allocations. We confirmed that by pre-allocating the elements of the array and ex-
cluding this cost, the runtime of Java improves by approximately 2x. We similarly investigated
the performance of Go and OCaml on this benchmark, and observed similar behavior.

We also compare against the C/C++ versions of these benchmarks. For our purposes, the
C++ implementations serve as the “performance goal”, as they have been independently devel-
oped and highly optimized to achieve the best parallel runtimes for these problems [46, 67]. For
time performance, MPL is generally within a factor of 2 of C/C++, and in two cases matches
C/C++ (1inefit and sparse-mxv). This is excellent considering that the runtime of MPL the
costs of automatic memory management.

We observe that MPL is also competitive in terms of space, with approximately 22% less
space on average. This space difference is due to additional space consumed by the allocator
used in the C/C++ benchmarks. In particular, the C/C++ benchmarks use an allocator provided
by ParlayLib [46], which is primarily optimized for running time performance and incurs some
space overhead to support fast parallel allocation. With the help of the ParlayLib authors, we
were able replace the allocator with jemalloc [76] for some benchmarks. In particular, we
were able to rerun hash-dedup, msort-int64, and tokens benchmarks using jemalloc, and
observed that on these benchmarks, jemalloc yields similar time performance while using
less space. (For these benchmarks, jemalloc uses 0.75x space relative to MPL on average; in
comparison, the default ParlayLib allocator uses 1.4x space relative to MPL on this subset of
benchmarks.) However, we also observed that some benchmarks crash with jemalloc, and we
could not determine the source of the bug. We have relayed these findings to the ParlayLib
authors.

Overall, our conclusion from these results is that MPL is generally fast, scalable, and space-
efficient. Our experiments suggest that parallel functional programming can deliver the same
performance and scalability as procedural and imperative languages.

103



104



Disentanglement Hypothesis for Futures

In the previous chapters, we described how disentanglement hypothesis can exploited to
achieve provably and practically efficient memory management for fork-join programs. How-
ever, the fork-join model, while sufficient for many cases, can struggle to express certain classes
of programs, such as those using pipelining [36, 165], or interaction, where parallelism is data-
driven rather than control-driven [5, 123, 125, 126, 156].

For these reasons, many modern systems including Concurrent Haskell [115, 136], Ha-
banero Java [97], Parallel ML (Manticore) [82, 83, 133, 165], Rust [144], TPL (a .NET li-
brary) [111], and X10 [59], support a more powerful construct for parallelism: futures. Fu-
tures allow you to create a parallel task and demand the result from the task at a later time
when needed (hence the name “future”). Unlike fork-join which is a control-flow construct,
futures are first-class values, which can be created, passed between function calls, or stored in
memory, just like ordinary values. As a result, futures can effectively capture data-dependent
parallelism, making possible speculative execution, pipelining [36, 165], and interactive appli-
cations [123, 125, 126, 156], which are difficult with fork-join.

The effectiveness of our disentanglement-based memory management techniques for fork-
join programs raises the question: Can we generalize these techniques to programs with fu-
tures? Although a comprehensive answer to this question is beyond the scope of this thesis,
we develop, in this chapter, the theoretical foundations for such a generalization. We consider
a functional calculus with futures, Input/Output (I/O), and mutable state (references) and show
that a broad range of programs written in this calculus only have disentangled objects. We
then illustrate the potential advantages of using futures in a disentangled fashion, by provid-
ing concrete examples in Section 8.3. These examples demonstrate that the disentanglement
hypothesis applies even to programs that rely on dynamic dependencies and asyn-
chronous interactions between tasks.

105



These theoretical results do not directly follow from the disentanglement results of fork-
join programs. Futures make computations first-class language citizens, allowing them to be
stored and shared as values. Because parallel computations can share and synchronize with fu-
tures through language level primitives such as “get()”, futures exhibit a complex dependency
structure that evolves during runtime. Analyzing this dependency structure is more challeng-
ing than the series-parallel dependency structure of fork-join programs, where parallel tasks
synchronize implicitly at the end of each task. To address this, we track object ownership and
memory dependencies through a tree structure defined by spawned futures, and model syn-
chronization between with futures as a “one-way dependency” that restructures this tree. This
rewriting allows us to define and reason about disentanglement for futures.

8.1 Language

In this section, we consider a functional calculus that supports futures, I/O (input/output), and
mutable references. We use this calculus to define disentanglement for programs with futures.
To simplify theorems and their proofs, we define disentanglement as a program-level property,
i.e., we say that a program satisfies disentanglement if it does not create any entangled ob-
jects. Although it is relatively straightforward to extend this calculus for defining per-object
disentanglement as in Chapter 3, we focus on the entire program for clarity.

To define disentanglement, our semantics tracks the computation tree, which captures the
control flow dependencies between the program threads and their memory actions such as
allocations, reads, and writes. The computation tree is generated by the language semantics
at each step of program evaluation. At a high level, we say that a computation tree satisfies
disentanglement if the allocation actions of concurrent threads are oblivious to each other and a
program evaluation satisfies disentanglement if the computation tree satisfies disentanglement
at each step of the evaluation.

The semantics models parallelism by interleaving the evaluation of futures and their contin-
uations. During the parallel evaluation of a future and its continuation, the semantics represents
their actions as parallel in the computation tree. However, once the future finishes its evalua-
tion, the semantics applies a join transformation on the tree. This transformation rewrites the
computation tree to sequence the future’s actions with the continuation’s actions, capturing the
idea that after the future has completed, its actions no longer need to be considered concurrent
to the actions of the continuation. As we show in subsequent sections, the join transformation
enables us to reason about disentanglement for futures.

8.1.1 Syntax

Our language contains constructs for functions, references, futures, and support for input/out-
put operations. Figure 8.1 presents the syntax of the language.

106



Future names a,b
Memory Locations £
Types T bool |nat | 7—7 | T fut
Storables s = true|false|n|fun fxise|fcellla]|refv
Values v 14
Memory pu € Locations — Storables
Expressions e = v|s|xz|ee|fut(e) | fpoll(e) | get(e) |
refe|le|e;:=ey|in_nat() | out_nat(e)
FutureMap A ::= (Q|Afawe]l|Alar ]
Action Trace t = o|Al<s|RI=s|Ul<s | Fl=o | tdt
Computation Trees T — ::= Leaf(t) |[t® (T RT)|t®, T

Figure 8.1: Syntax of A\

Types. The types include booleans, natural numbers, function types and the type 7 fut for
futures which evaluate an expression of type 7.

Storables and memory locations. To define disentanglement and precisely account for the
actions on memory, the language distinguishes between storables and locations. Storables
include numbers, named recursive functions, and future cells. The language steps storables to
locations and uses a memory store x to map location to storables. A storable at a location may
refer/point to other locations. We use L(s) to denote the locations referred to by the storable
s. We represent locations with variables like ¢, use () to denote the storable at location /,
and use ([ s] to denote the allocation of location £ in the memory store 1 (with the implicit
requirement that ¢ ¢ dom(u)). Locations are the only irreducible form of the language. In
our dynamics, we use this distinction between storables and locations to track all the program
allocations.

Expressions. The expressions include the usual constructs for functions and references. The
expression fut(e) spawns a future to evaluate expression e. The language dynamics gives each
future a name like a, b and other similar variables. For each future, the language allocates a
future cell, which can be used by other threads to either 1) block on the future with the ex-
pression get, which returns the future’s value when it finishes, or 2) poll the future with the
expression fpoll, which returns true or false depending on whether the future has terminated.
We denote the future cell for future a as fcell|a]. The expressions in_nat() and out_nat(e)
support input and output operations for natural numbers. The language models an input as a
non-deterministic step to a number and an output as a deterministic step that reads the argu-
ment and returns. This model captures the memory effects associated with these operations,
which is sufficient for our goal of defining and reasoning about disentanglement.

107



8.1.2 Computation Trees

The computation tree records the memory actions taken during evaluation and organizes them
according to their control flow dependencies. Each node of the tree represents a memory action
taken by the program, which may be one of the following:

e Al<=sis the allocation of location / initialized with storable s.
¢ R/=sis a memory lookup (read) at location ¢ which returns storable s.
o Ul<« s is an update (write) which stores storable s at a mutable location ¢.

o F{=vis a synchronization with the future whose future cell is at location ¢ which returns
v.

The edges of the tree represent sequential ordering between the actions. For simplicity,
we fuse sequentially taken memory actions into a single node of the tree and call it an action
trace. An action trace contains a (possibly empty) series of actions composed by the operator
@, where the connective @& emphasizes that actions within a trace are taken sequentially. Fig-
ure 8.1 shows the syntax of action traces and computation trees. We denote action traces with
a lowercase variable like ¢ and computation trees with an upper case variable like 7.

When the evaluation starts, the computation tree only contains a single node. When a
thread spawns a future, we add two leaves to the tree, one for storing the actions of the future
and the second for storing the actions of the thread after the spawn. After a thread spawns a
future, we refer to it as the continuation of that future.

A computation tree of the form Leaf(t) is a leaf and represents a sequential evaluation
that performs actions in trace t. A computation tree of the form t & (T} ®, T3) represents an
evaluation that performs the actions in trace ¢ before spawning a future named a. The tensor
®, is called the spawn point of future a. The spawn point denotes that the actions of the future
are in subtree 77, actions of the continuation are in subtree 75, and the respective actions are
taken in parallel. A computation tree of the form ¢ G, T represents an evaluation that spawned
a future named a, but the future has finished and “joined” with its continuation. The operator
@, is called the join point of future a. We describe the join operation in Section 8.1.4.

Small example. Figure 8.2 shows two computation trees of an evaluation where a thread
main spawns a future a, which in turn spawns future b, and then thread main synchronizes
with the future a to retrieve its result (location ¢”). The figure shows two trees but we return to
the right side tree later in the section. In the left tree, each box denotes an action trace and the
edges between boxes denote the edges of the tree. The figure labels each box with the thread
that performs its actions. After the main thread spawns the future q, it allocates the future cell
fcell[a] at location ¢ (see Al <= fcell[a]); the thread can now use location ¢ to synchronize
with the future. The future a spawns future b and similarly allocates a cell for it at location ¢/
(see Al' <= fcell[b]). The future a then allocates some storable s at location ¢” (see Al < s),
which is the return value of the future. Its continuation (thread main) synchronizes with it and
receives location ¢’ (see F{ = (").

108



main main

Al < feell[a]
F(= 10"
a main a

Al < feell[b] " Al < feell[b]

Al < Al =5

b a b |

Al < feell[a]

F(= 0"

main

Figure 8.2: Two computation trees representing an evaluation where a thread main spawns a
future named a, which in turn spawns future b, and then the main thread synchronizes with
future a to retrieve its result (location ). We denote each node of the tree with a box contain-
ing a possibly empty action trace. The labels on the boxes denote the thread that performed
the actions. The left and right trees show the tree structure without and with the join trans-
formation. Without the join transformation, the left tree (mis-)characterizes the computation
as entangled, as it represents the allocation ¢’ of future a to be concurrent to the synchronized
access of location ¢” by thread main. With the join transformation, the right tree correctly
characterizes the computation to be disentangled as the allocation action is an ancestor of the
synchronization action.

109



L(s)CTA teA L(s)CA (€A L)CTA (€A L(s)CA
Al ede Al (Al<s) de AF (Rl=5) de At (Fl=v) de A (Ul<s) de
At de AUA(ty) Fta de
AFt1 Dty de

AFtde Al tde AUA(t) T de
A Leaf(t) de AFt®, T de
Al tde AUA(t) T de AUA(t) F Ty de
ARt (Th ®T) de

Figure 8.3: The figure defines the judgements A - T de and A I~ t de, which formalize disen-
tanglement for a tree 7" and a node ¢ respectively. The context A contains locations allocated
by the ancestor actions of the tree/node.

8.1.3 Disentanglement

At a high level, disentanglement restricts concurrent threads from accessing each other’s al-
locations. In the context of futures, disentanglement implies that a continuation is prohibited
from accessing a future’s allocations as long as the future is executing. However, if the con-
tinuation synchronizes with the future, disentanglement lifts the restrictions and allows the
continuation to freely access the future’s allocations. This is because a synchronization be-
tween the continuation and the future returns only after the future has terminated, rendering
them non-concurrent.

We define disentanglement using the computation tree. The computation tree arranges the
memory actions of program threads according to their control flow dependencies, i.e., it orders
sequentially dependent memory actions in an ancestor-descendant relationship and keeps con-
current memory actions unrelated. A computation tree satisfies disentanglement when every
action in the tree only mentions locations that are allocated by the ancestor actions of that ac-
tion. An evaluation satisfies disentanglement if its computation tree maintains disentanglement
at each step.

We formalize disentanglement for a tree with an inductive process using the judgement
A T de. The judgement’s context A stores the set of locations allocated by the ancestor
actions of tree 7". The judgement checks that every location mentioned by an action of tree 7'
is either present in the context A, or is allocated by some ancestor action in tree 7. For a full
tree T, if the judgement () - T de holds (i.e., with the empty context) then the tree T satisfies
disentanglement.

Figure 8.3 defines the rules for the judgement A - T de for the tree and judgement A - ¢ de
for a node t of the tree. When the tree is of the form Leaf(¢), the judgement checks the node ¢

110



which is an action trace. If the trace ¢ is of the form t; @ t,, then its rule checks the trace ¢; and
subsequently checks the trace ¢, after extending the context A with the allocations in trace ;.
This is because actions in trace ¢; are ancestors to actions in trace t».

The rule for the allocation action Al < s checks that all locations in storable s are in the
set A. The rule for the read action R¢ = s checks that both the location ¢ and locations in
storable s are in set A. Similarly, the rule for the update action inspects both the location and
the new storable. The rule for the synchronization action (F¢=-v) checks the location ¢ and the
locations in value v.

The rule for the form ¢ @ (T} ® T3) checks that the trace ¢ is disentangled (A F ¢ de) and
inspects the subtrees 77 and 75 after extending the context A with locations allocated by the
trace t (denoted as A(t)). This is because actions of trace t are ancestors of actions in subtrees
T} and T5. Importantly, the rule does not include the locations allocated by tree 75 to check tree
T} and vice-versa. This is because their actions are not in an ancestor-descendant relationship.

When the tree is of the form ¢ &, 7, the judgement checks the trace ¢ and the tree 7". In
a tree of this form, actions of trace t are ancestors to actions in tree T'. Thus, the rule for this
form checks the tree T after extending the context A with allocations of the trace ¢.

8.1.4 Joins

After a future terminates, its continuation can access its allocations without violating disentan-
glement. Our semantics represents this in the computation tree by transforming the tree after
a future terminates. The semantics rearranges the tree such that memory actions of the future
become ancestors of its continuation’s actions, and they appear sequentially ordered. The se-
mantics performs this join transformation at an evaluation step called join. The join step is
only a tool for reasoning about disentanglement and, in no way, affects the actual parallelism
of the program.

Example. Toillustrate the join transformation, we draw two trees in Figure 8.2. The two trees
represent an evaluation in which a thread main spawns future a, which subsequently spawns
future b, and then thread main synchronizes with the future to retrieve its result. The left tree
does not incorporate the join transformation whereas the right tree does. In the left tree, the
synchronization action by thread main (F{ = (") and the allocation action (A¢” <= s) by future
a are positioned concurrently in the tree, i.e., they are not in an ancestor-descendant relation-
ship. Consequently, since the allocation of location ¢” is not an ancestor of the synchronization
action, the left tree mistakes the evaluation as violating disentanglement. In contrast, the right
tree satisfies disentanglement because of the join transformation. By sequencing the future’s
actions with those of the continuation, the join transformation ensures that the allocation ac-
tion (Al” <= s) for location ¢” becomes an ancestor of the synchronization action (F{=-¢").

By sequencing the future’s actions before the continuation’s actions, the join transforma-
tion represents that once a future finishes, it is no longer concurrent with the continuation.
However, it is essential to note that any futures spawned by the completed future may still be

111



T1 = Leaf(tl) T1 = tl @b T{
LEAF
> (a, Th,Tp) = t1 ©o T i (a, Ty, Ty) = t1 @y (a, T}, Tb)

Join PoinT

Ti=t & (1] @ 1Y)
> (a, 71, Tz) = t1 & (17 @y >4 (a, 17, 13))

SpawnN PoIiNT

Figure 8.4: Function Join

executing and remain concurrent with the continuation. As a result, it is crucial for the join
transformation to not sequence their actions with the continuation.

Join Function. Figure 8.4 shows the join transformation with the function <. The function
takes arguments a, 7, 15, where a is the future that finished and trees 7} and 75 are the children
of the spawn point of future a, i.e., tree 7} is the tree containing the future’s actions, and tree
Ty, is the tree containing the continuation’s actions. To perform the join, the function recurses
down the tree 77, following the actions of the future until it reaches the leaf. This leaf marks
the end of the future’s actions because it has finished. Then, the function sticks tree 75 as
a descendant of that leaf, making all of the future’s actions ancestors of the continuation’s
actions. The function does not change the relationship between any actions corresponding to
other threads in trees T} and 75.

In the leaf case, when tree T} is a leaf of form Leaf(¢;), the function returns t; &, Ts, where
the operator @, marks the join point of future a. For tree T} of the form ¢; @, 7], which
represents the join point of future b, the function returns the tree ¢; @ < (a, 77, 7,). This
resulting tree maintains the relationship between trace t; and tree 77, and also incorporates the
join of tree T, with tree T7. For tree T} of the form ¢; @ (7] ®, T}'), which represents the spawn
point of future b, the function recurses on subtree 77" and leaves subtree 7] unchanged. This is
because the tree 7] contains the actions of future b and the actions of the future a are in tree
T}'. By recursing down tree 77, the function makes all the actions of the future a ancestors to
the actions of tree T5.

Fork/Join. We note that our join here is similar to a “join” in a fork-join computation but
there are some important differences. The join in fork-join is two-way because two sibling
tasks finish their execution and join with each other. It requires that all tasks nested within the
joining tasks also terminate before the join can proceed. As a result, join effectively eliminates
all concurrency and parallelism within its scope. On the other hand, in the case of futures, the
join is one-way because a future finishes and joins into its continuation. Furthermore, tasks
spawned by the joining future can escape its scope. This key difference allows for concurrency
and parallelism even after the join, as the spawned tasks can execute independently of the future
and its continuation.

We can indeed observe these differences by considering the join function. For fork-join,
a corresponding join function, say function J, is J(Leaf(¢;), Leaf(t2)) = Leaf(¢; & t2). This
function is relatively simple because both its arguments are guaranteed to be leaves in the

112



computation tree. Any tasks nested within their scope have finished. In contrast, the join
function for futures operates on trees. This is because the continuation has not finished and
the future, even though itself has finished, may have spawned other futures which are still
executing. This ability of futures to spawn futures which continue to execute concurrently
beyond the joining point introduces additional challenges for reasoning about concurrency and
proving disentanglement.

8.1.5 Language Semantics

Our operational semantics steps a program state consisting of four components: (i) a future
map A tracking the evaluation of futures, (ii) a memory store ; mapping locations to storables,
(iii) a computation tree 7', and (iv) an expression e. We write a program state as (A ; u; T ; e).
Figure 8.5 and Figure 8.6 show the rules for the semantics. We split the rules into two figures
for space reasons; Figure 8.6 shows the rules specific to futures, and Figure 8.5 shows rules for
other features of the language.

Allocations and functions. The allocation rule ArLoc extends the memory p with location
¢ mapped to storable s and records it in the leaf Leaf(¢) as the allocation action Al < s. Rules
AppSL and AppSR for function application step the function and the argument respectively. The
application rule App applies the function to the argument. It substitutes recursive mentions of
the function in its body e by location ¢, and substitutes the variable = by the argument v.

References. Rules REFS, BANGS, UPDSL, and UpDSR evaluate their corresponding subexpres-
sions. The rule BANG corresponds to dereferencing a mutable location ¢ and looks up the loca-
tion £ in memory store y and returns the stored value v. The rule records this in the leaf Leaf ()
as the read action R¢ = ref v. The rule UpD corresponds to a destructive update and updates
the memory location / to refer to value v. The rule records this in the leaf Leaf(¢) as the update
action Ul <ref v.

Input/Output. The rule INPUT steps the expression in_nat() to a non-deterministic natural
number n. The natural number n will then be allocated in the memory store by the rule Arroc.
The rule’s non-determinism models the effect of the input on evaluation and the allocation
captures the effect of the input on memory and disentanglement. The rule ouTpuT takes a
location ¢, which stores a natural number 7, and steps the location to a unit value. The rule
extends the computation tree with the read action R¢ = n. This step models an output to an
environment and the read action captures the effect of the output on disentanglement. For
brevity, we do not model I/O on other types but the language can be extended to support them.

Futures. The rule FSPAWN spawns a future. It steps the expression fut(e) to the future cell
fcell[a], where a is an unused/fresh name. Each future’s evaluation is tracked in the future
map, denoted A, which stores all future names and their expressions. We write Ala » €] to

113



¢ ¢ dom(y)

AvrLoC
Ay Leaf(t) ;s — A u[l—s]; Leaf(t @ (Al<s)) ;¢
Asp;Tier— A T el Asp;Treg— A sp T ey
AprPSL ApPPSR
ATy (ereg) = AT (€] e) AspsTs(breg) — AT p' 5T (€ €)y)

u(l) =fun frise
A Leaf(t); (0v) = Ay s Leaf(t @ (RE=fun frise)); [l,v/ f,x]

ArpP
e

Asp;Trer— AT e

UpbpSL
ATy (eri=eq) = Ay ;T (€] :i=e3)
Asp;Treg— Ay ;T ey
; 7 n UppSR
Asp;Ts(bi=eg) = AT (0 :=ey)
Asp;Tie—= AT €
REFS
Asp; T (refe) = A ;T (ref €)
AspsTie— Ay T 5 €
BANGS
AspsTy(te) = Asp' ;T (1)
pu(l) =ref v
Bancg

A Leaf(t); (14) — A p; Leaf(t @ (R€=ref v)) ;v

Upp

A poll—s]; Leaf(t) ; (0:=v) = A; ug[l—ref v] ; Leaf (t @ (Ul<ref v)) ;v

n: int
INPUT
Ay Leaf(t) sin_nat() — A p; Leaf(t) ;n
u(l) =n
OuTPUT

A s Leaf(t) ;out_nat(d) — A p; Leaf(t @ RE=n) ; ()

Figure 8.5: Dynamics of A\U(continued in Figure 8.6)

114



(a fresh) A" = Alaw e
A s Leaf(t) ; fut(e) = A" st @ (Leaf(o) ®, Leaf(e)) ; fcelllq]

FSpawn

Aa) » e Asp;Tiser— AT e (A" = Allaweq])

FurS
Asp;t® (T ®.Ty) ;e = Allawei]; 15t @ (T ®a Ta) ; €2
Asp;Tasey — ATy ey
ConTS
Aspit® (i@ T)sea = Al 1@ (T @4 T3) 5 €y
A = Aglaw ] > (a, Ty, Ty) =T A= Aar>v]
FJoin
Aspit® (Ti®uTh) 560 > A st ®T ey
p(l) = fcelllal Aa) > v
PoLLT
Ay Leaf(t) ; £poll(d) — A p; Leaf(t & (R€=fcellla])) ; true
p(l) = fcelllal A(a) » e
PoLLF

A Leaf(t) ; £poll(d) — Ay Leaf(t @ (R=-fcelllal)) ; false

Asp;Tie— AT €
AT get(e) = AT get(e)

GETS

p(l) = fcelllal Aa) > v
A Leaf(t) s get(d) — A ps Leaf(t @ (Fl=wv)) ;v

GET

Figure 8.6: Dynamics of A" continued

115



extend map A with future a and use A(a) » e to denote that a is mapped to expression e. The
rule FSpAwN extends the future map with the new future and also adds two empty leaves to the
computation tree. The resulting tree is of the form ¢ & (Leaf(e) ® Leaf(e)), where the symbol
e denotes the empty trace. The rule composes the leaves with the operator ®,, marking the
spawn point of future a. The left and right leaf will store the subsequent actions of the future
and the continuation respectively.

The rules FutS and CoNTS step the program state if the computation tree is of the form
t ® (11 ® Ty). The rule FutS looks up the future name @ and expression e; in future map A,
and steps the expression e; with the left subtree 7). The rule has a premise, the condition
A" = Al[aw e;] which guarantees that stepping e; does not change the future map for future
a,ie., A(a) = A'(a). The rule has the premise because this rule is responsible for tracking the
evaluation of future a. For the resulting state, the rule FuTS maps the future a to expression
¢}. The rule CoNTS steps the continuation e, with the right subtree 75. These rules can be
interleaved non-deterministically to model parallel evaluation.

Once a future is fully evaluated to a value, the rule FJoIN joins it with its continuation.
The rule performs the join transformation on the computation tree, as described earlier in Sec-
tion 8.1.4, and also updates the future map to mark that the future has joined. In the future
map, we use an unshaded triangle to denote joined futures. The rule changes the map from
Agla » v] to Aga > v].

Polling and synchronization. The rules Porr, PoLLT, and PoLLF describe the semantics of
polling. The rule PoLL steps its argument subexpression. If the future being polled has joined,
then the rule PoLLT steps fpol1(/) to true; otherwise, the rule POLLF steps fpol1(/) to false.
Since both the rules look up location ¢ in the memory store p, they insert the read action
R{ = fcellla] to the computation tree. Note that polling is a non-blocking primitive, as the
expression fpoll always steps immediately.

Unlike the expression fpoll(e), the expression get(e) blocks until the future completes
and then returns its the value. The rule GETS steps the argument expression e to a location /.
Then, once the future referred by location ¢ has joined, the rule GET retrieves the value of from
the future map and returns it. The rule records this synchronization in the computation tree
with the action F¢ = v, where v is the return value of the future. Notice that the rule GET has
the condition A[a > v] in the premise, asserting that it blocks until the future has joined.

8.2 Race Freedom and Disentanglement

In this section, we show that the determinacy-race-free programs of our language satisfy dis-
entanglement. In the next section, Section 8.3, we illustrate how this result implies that we
can express pipelining, dynamic programming, and interactive applications while satisfying
disentanglement

116



t¢gF (g F ¢ F ¢ F
Fredrf FF (Al<s)drf FrF (Fl=v)drf FF (Ul<s)drf FF(R(=s)df
Frtidrf Fhktodrf
Ftty @ty drf

Frtdf Frtdf FrTdf
F + Leaf(t) drf Frt®,T df
Frtdf FUM(T)FTidf FUAWN(TY)F T, drf
FHt® (T, ®T) drf

Figure 8.7: The figure defines the judgement F' = T drf, where F' is a set of locations that
actions of 7" must not mention. The function AW takes a tree and returns the set of locations
allocated/updated by it.

8.2.1 Determinacy Race Freedom

Determinacy Races. A determinacy race occurs when two concurrent threads access the
same memory location, and one of those accesses modifies the location [130]. Determinacy
race freedom is the program property that guarantees that every execution of the program
is free of determinacy races. We say that a computation with no determinacy races is deter-
minacy race free. For brevity, we write race and race freedom to mean determinacy race and
determinacy race freedom.

We define race-freedom formally using the computation tree. The computation tree or-
ganizes the memory actions of program threads based on their control flow dependencies. It
orders sequential memory actions in an ancestor-descendant relationship and keeps concurrent
memory actions unrelated. The memory actions in the tree include modifying actions such as
allocation (A/ < s) and update (U/ <= s) and non-modifying actions such as read (R{=>s) and
sync (F{ = v). A computation tree satisfies race freedom if no modifying action on a location
is concurrent to another action, modifying or otherwise, on that location.

Figure 8.7 defines race freedom for a computation tree with an inductive process using the
judgement F' + T drf. The judgement’s context F' represents a set of “forbidden locations” that
are modified by threads concurrent to those represented in tree 7". The judgement F' = T' drf
ensures that no action of tree 7" operates on a location in the set F'.

Let’s look at the rules for the judgement. The rule for the tree Par(¢, T}, T5) shows how the
forbidden set prohibits races between the concurrent trees 77 and 75. When checking tree 77,
the rule extends the forbidden set with locations that are modified by tree 75. Specifically, let
AW(T') represents the set of locations modified by tree 7". Then the rule checks tree 7} with the
forbidden set £ U AW(T3), which ensures that actions of tree 77 are forbidden from locations
modified by tree 75. The rule checks tree 75 similarly.

The rule for the read action R¢ = s checks that location ¢ is not in the set F', checking
that no concurrent action modified location ¢. The rules for other actions also check the re-
spective locations. These rules uncover an interesting perspective on the distinction between

117



race freedom and disentanglement. While race freedom only restricts where an action occurs,
disentanglement goes a step further and also restricts what an action can store or retrieve. For
example, the rule for checking disentanglement of a read action R/ = s checks both the loca-
tion ¢ and the locations in storable s (see Figure 8.3), whereas the rule for race freedom only
checks the location /, leaving the contents of storable s unrestricted. From this perspective, it
is perhaps surprising that disentanglement applies to a broader class of programs (because it is
implied by race freedom).

8.2.2 Determinacy Race Free Programs are Disentangled

We prove taking an arbitrary number of steps from an initial state, if the computation tree
satisfies the drf property at each step, then it satisfies the de property after the final step. Thus,
if the drf property holds for every step, the de property does as well.

Theorem 7 (DRF = DE). Forany();();Leaf(e);eq =" A; ;T ; e, where L(eq) = 0, if every
intermediate tree T; in {T} ... T, } satisfies ) - T} drf, then ) - T,, de.

To prove the theorem, we account for the two ways a thread can share an allocation with
another thread. First, a thread can synchronize with another thread as a future, which may
potentially return handles to handles to other futures because futures are themselves mem-
ory allocations (they are first class). Thus, to establish disentanglement, we must prove that a
thread never gets a handle to a future that is spawned concurrently. Second, a thread can com-
municate with another thread through mutable effects. However, because the program satisfies
determinacy race freedom, we can prove this form sharing does not occur. We formalize this
by defining two properties, namely drfde and ok.

The property drfde implies both disentanglement and race freedom and the property ok
captures the structure of futures. For a state A ; i1 ; T ; e, we write the drfde property as the
judgement K ; A; F' =, A ;T ;e drfde and the ok property as the judgement A ; A -, K ok.
The set A is a set of locations and set K is a set of futures, both of which a thread can access
without violating disentanglement. The set /' is the set of forbidden locations that a thread
should not access or else the thread violates race freedom. These sets are empty for the full
state, but for sub states of various threads in the program, they encode memory information
relevant to disentanglement and race freedom. We discuss the properties in detail and prove
them by induction.

Property ok. The judgement ok (A ; A -, K ok) guarantees that the value of every termi-
nated future in set K only refers to futures and locations within sets K and A. With this
judgement, we can show that if a thread performs a synchronization action on a future to re-
trieve a value, then the value only contains locations and futures within sets K and A. We can
define it formally as follows.

K C dom(A) Va e K. A(a) >v= L(v) CAAFut(v,pn) C K
A; A, K ok

118



Ki;A;Fr,A;T;edrfde

L(e) CA Fut(e,u) CK Ve A\F.L(p(l)) CA WVle A u)=r=fcellla) = a€ K

(BASE)
K ;A;FF, Aj;Leaf(e) ; e drfde
Frtdrf Abtde K;AUA(t); FF, Aj;Leaf(e); e drfde
L
K;A;FF, AjLeaf(t) ; e drfde (Lear)
K;AUA(t); FF, AjLeaf(e) ;v drfde
Frtdrf Abrtde Aa) > v KU{a}; AUA(@); FF, AT ;edrfde
K;AFF, At @, T ;e drfde (orne)
K;AUA(t); FUAW(T,) F,, AT eq drfde
Frtdf Abtde Aa) » ey KU{a}; AUA(t); FUAW(Th) b, AT 5 eo drfde Pax)
Par

K;A;FF, A te (T ®Ts) ;e drfde

Figure 8.8: Strengthening of disentanglement and race freedom with invariants on futures and
memory

As a sanity check, the property ok ensures that all futures in K are in the future map A. The
property then checks the values of terminated futures; recall that futures that have terminated
are mapped with an unshaded triangle in the future map A. For each terminated future, the
property checks that the return value v of the future only refers to locations and futures in
sets A and K respectively. The property uses the function £(v) that returns all the locations
mentioned in value v and asserts that all such locations are in the set A. The property uses the
function Fut(v, i), which returns all futures referred by value v and asserts that they are in the
set K. We define it formally as follows:

« Fut(e, 1) = Uyese) Fut(4, 1), where L(e) contains all locations mentioned by expression
e.

o Fut(?, ) = {a},if p(f) = fcelllal.

Property drfde. The drfde property implies disentanglement and determinacy-race-freedom,
and in addition imposes restrictions on the memory locations mentioned by the expressions of
various program threads. Given a subtree 7" and an expression e, the judgement drfde (K ; A ;
F =, A; T e drfde) enforces that (i) the tree 7" satisfies disentanglement w.r.t. the set 4, i.e,
A T de, (ii) the tree T satisfies determinacy race freedom w.r.t. the set F), ie., F' = T drf,
(iii) the expression e only mentions futures present in set K and locations present in set A, in
addition to futures spawned and locations allocated within the subtree 7', and (iv) all subtrees
of tree 1" satisfy the judgement drfde.

Figure 8.8 shows the rules for the judgement K ; A; F'=, A ;T ; e drfde. The rules encode
both disentanglement and race freedom by creating the sets A and F' in the same way as the
definitions of judgements de and drf respectively.

119



The rule BASE applies to an empty leaf of the form Leaf(e). The rule checks that all locations
mentioned by expression e are in the set A. The rule uses the function Fut(e, 1), which returns
all futures mentioned by expression e, and asserts that they are in the set K. The rule also
ensures that all locations that are in set A but not in set F, i.e. in set difference A \ F, point to
locations in set A, i.e., the set A\ F is closed under the memory pointer relation (highlighted in
purple). Additionally, if a location in set A refers to a future, then the future is in set K. These
four properties guarantee that no matter what the expression e does in the next step, it will
not access a location outside set A or access a future outside set K, assuming the step does not
access a location in set F' (which is implied by race freedom).

The rule LEAF considers the case when the tree is a leaf, i.e., of the form Leaf(¢). It checks
that trace ¢ satisfes the drf and de properties and defers to the BAsE after extending the set A
with the allocations in trace ¢. The rule PAR applies to a tree of the form Par(t, T3, T5). Recall
that this tree represents the spawning of future a after actions in trace ¢, with tree 7} recording
the actions of the future, and tree 75 recording the actions of the continuation. The rule checks
the tree T, with expression e, after extending the set A to AUA(t), set F'to F' U AW(T}) set K
to K U{a}. These extensions represent that the tree T, and expression e, can mention locations
allocated by the trace ¢ and also access the future a. For the tree 77, the rule uses future map A
to retrieve the future’s expression e; and checks K ; AUA(t) ; F U AW(Ty) -, AT ;eq drfde.
The rule extends the set A with the allocations in tree ¢, but unlike for tree 75, the rule does not
extend the set K with future a. By excluding future a from set K, the rule prohibits the future
from mentioning and accessing itself.

The rule JoiNED shows the conditions for future a after it has joined with its continuation
e. The tree in this case is of the form ¢ &, T', where the operator &, marks the join point of
future a. Because the future has joined, its is mapped to a value v in the future map and the
rule checks the value similar to rule LEAF.

Proof of Theorem. We can prove the theorem from the following lemma.
Lemma 7. Forany A ;p;T e — A"/ T" € if KA F =, AT s edrfde, A AF, K ok,
and K =T"drf, then K ; A; F =,y A"; T ; € drfde and A ; A"+, K ok.

The lemma states that if the drfde and the ok properties hold for a sub state A ; 14 ; T ; e and
if state takes a step to state A’ ; ' ; 7" ; €/, then the drfde and the ok properties holds for the
resulting state assuming its tree 7" satisfies race freedom, i.e., F' = T" drf.

We can use the lemma to show that the full program state always satisfies disentanglement.
For the full state, the sets K, A, and F' are empty. From the lemma, we have that if a state
that satisfies drfde takes a step such that the resulting state satisfies the drf property then the
resulting state also satisfies the drfde property. Because the initial state satisfies the property
drfde and we assume that all states satisfy the drf property, we have that all states satisfy the
drfde property. Since the drfde property implies the de property, we have that race freedom
implies disentanglement.

We prove the lemma by induction on the stepping relation A ; pu; T ;e — A" 1/ ;T 5 €.
We cover the proof in the next subsection.

120



8.2.3 Proof of key Lemmas

Lemma 8. Forany A; ;T ;e — AT if Ky A F =,y AT edrfde, A A, K ok,
and AFT' drf, then K ; A; F &,y AT € drfdeand A ; A’ K ok.

Proof. We prove the lemma by induction on the stepping relation.

Case FuTA. We have T = Leaf(t) and ¢ = fut(¢”) and ¢/ = p and 7" =
Par(t, Leaf (o), Leaf(e)) and A" = Afa » ¢”] and ¢’ = fcell[a]. Assume K;A;F -, A;Leaf(t);
e drfde. From inversion, we have F' - ¢ drf, At t de,and K; AU A(T); F =, A;Leaf(e);e drfde.
The judgement K ; A; F'+, A"; Par(t, Leaf(e), Leaf(e)) ; fcell|a| drfde derives from the fol-
lowing:

o F' It drf, established above

e At de, established above

e KU{a}; AUA(T); FF, A"; Leaf(e) ; fcell[a] drfde by,

» L(fcellla]) =0 C AUA(T)

» Vb € Fut(fcelllal, ). b € K U {a}, from Fut(fcelllal, u’) = {a}.

=Vl e (AUA(T)UA(e))\F. L(1u(0)) € AUA(T)UA(e), from (AUA(T)UA(e)) =
AUA(T) and V¢ € (AUA(T)) \ F. L(u(¢)) € AUA(T). The latter follows from
inversion of K ; AUA(T) ; F =, A ; Leaf(e) ; e drfde.

=Vl e (AUA(T)). u(f) = fcellla] = a € K, frominversionof K; AUA(T); F F,
A ; Leaf(e) ; e drfde.

e K;AUA(T); F +, A’ Leaf(e) ; €” drfde. The proof is similar to the previous case.

From inversion on A ; A +, K ok, K C dom(A). Thus, a ¢ A = a ¢ K. Applying
Lemma 10 with A; A+, K okand Vb € K. A(b) = A'(b), we get A; A", K ok. By u = 4/,
A; AR, K ok

Case GET. We have T' = Leaf(t) and e = get({) and i/ = u, where p(¢) = fcellla| and
A" = A, where A(a) > vand 7" = Leaf(t ® (F{=-v)) and ¢’ = v. Assumer F' - 7" drf. From
applying inversion(s) ' on K ; A; F'F, A; Leaf(t) ; get(¢) drfde we have,

e Fi-tdrf

e AFtde
L(get(¢)) € AUA(t), which means ¢ € A UA(t)
Ve (AUA()\ F. L(u(l)) C AUA()

 Fut(e, ') C K. By definition Fut(e, 1) = {a}, which means a € K.

e Ve (AUA(T)). p(f) = fcellla) = a € K
Note that A = A’ and pp = ¢/, so A; A’ k-, K ok follows directly from A ; A I, K ok. From
inversion of A ; A+, K ok, a € K, and A(a) > v, we get:

e L(v) CAUA(T)
e Fut(v,pu) C K

Technically, by applying inversion on the judgement and applying it again on the derived judgement

121



The judgement K ; A; F' -, A ; Leaf(t @ (F{=-v)) ; v drfde derives from the following:

o ['F Leaf(t ® (F{=-v)) drf, from the assumption F' - T" drfand T’ = Leaf(t ® (F{=v)).
o Al Leaf(t ® (F{=v)) de. We know A + t de from the above derivation, so we only
need to show A UA(t) - (F{=-v) de. From the definition, this follows as { € A U A()
and L(v) € AUA(T).
e K;AUA(t® (Fl=));F F, A;Leaf(e);v drfde, from AUA(t @ (Fl=v)) = AUA(t)
and K ; AUA(t) ; F =, A; Leaf(e) ; v drfde which derives from the following:
* L(v) CAUA(t® (Fl=v)), from L(v) C AUA(T)
Ve (AUA(t)) \ F. L(u(0)) € AUAC(t), established above
» Fut(v, u) C K, established above
Ve (AUA(T)). p(f) = fcellla] = a € K, established above

Case BANG. This step reads a reference’s value from memory. The expression e is of the form
I'¢ and it steps to location ¢, such that ;(¢) = ref ¢'. The tree T is a leaf of the form Leaf(¢);
this step extends it with the read action and creates the tree 7" = Leaf(t & (R{=-ref (')). The
future map and the memory remain unchanged, i.e., A’ = A and i/ = p. Thus, for the resulting
state, the condition 0k—A ; A’ -, K ok, follows directly from A ; A -, K ok.

Because the step is assumed to be race-free, we know F' - 7" drf. Recall that the drf property
makes sure that no action tree 7" mentions a location in /. Because the read action R{ =-ref ¢’
is in tree 7", we know ¢ ¢ F'. By applying inversion on K ; A; F' -, A ; Leaf(t) ; | ¢ drfde, we
get: F-tdrf, A-tdeand K; AUA(t); F' I, A;Leaf(e); !/ drfde. By applying inversion on
K;AUA(t); F F, A;Leaf(e);! ¢ drfde, we have: £ € AUA(t), VIl € (AUA(E))\ F. L(1u(¢)) C
AUA(t), Fut(e,u) € K,and V¢ € AUA(t). p(f) = fcellla] = a € K.

The judgement K ; A; F' =, A ;1" ; e drfde follows from applying RULE (8.2) with the
following:

e ['F T’ drf, assumed.

o At T’ de. Note that 7" is a leaf of the form Leaf(t & (R{=ref {')). We know trace t is
disentangled from A F T deand T' = Leaf(t). To prove, that the read action (R{ = ref ')
is disentangled, we need to show ¢ € A and ¢’ € A (both established above).

e K; AUA(t® (Rl=ref l")); F I, A;Leaf(e) ; ' drfde. There is no allocation in this
step,i.e, AUA(t @ (Rl=ref (")) = AUA(t). Weprove K; AUA(t); F F,, A;Leaf(e);
(" drfde using RULE (8.1) with the following:

= L({') C AUA(t), established above

Ve (AUA(L)) \ F. L(u(0)) € AUA(t), established above.

» Fut(¢, u) C K. If ¢’ refers to a future cell, i.e. 1(¢') = £cell[a] for some a, then we
know that a € K because: ' € AUA(t) and V¢ € AUA(t). u(¢) = fcellla] =
a € K. Thus, in this case, Fut(¢', u) = {a} C K. Otherwise, Fut(¢, u) = ), which
is trivially a subset of K.

V0 e AUA(L). u(f) = fcellla] = a € K, established above

122



Case Upp. We have y = o[l s] and T = Leaf(t) and e = /:=vand A’ = A and i/ =
poll—ref v]and T = Leaf(t @ (Ul<«ref v))and €’ = v. Assume F' = T" drf, K; A;F =, A;
Leaf(t);¢:=wv drfdeand A;A I, K ok. From inversion(s) of K; A; F' =, A;Leaf(t);{ := v drfde,
we get the following:

« FHtarf

AFtde

L(e) € AUA(t), which means ¢ € AUA(t) and L(v) C AUA(t).
Ve e (AUA)\ F. L(u(f)) € AUA()

Fut(e, ) C K.

e Ve (AUA(T)). u(l) = fcelllal| = a € K

The judgement K ; A; F =, A; Leaf(t @ (Ul <«<ref v)) ; v drfde derives from the following:

o F't Leaf(t ® (Ul<«=ref v)) drf, from F = T" drf.
o AF Leaf(t ® (Ul<ref v)) de. We know A F t de from the above derivation, so we
t

only need to show AUA(t) i (Ul<«ref v) de. This follows from ¢ € A U A(¢) and
L(v) T AUA(T).

o K;AUA(t @ (Ul<«<=ref v));F b,y A;Leaf(e);v drfde, from AUA(t @ (Ul<ref v)) =

AUA(t) and K ; AUA(t) ; F' =, A; Leaf(e) ; v drfde which derives from the following:

* L(v) CAUA(t @ (Ul<=ref v)), from L(v) C AUA(T) (L(e) C AUA(R)).

=Vl e (AUA(t)) \ F. L(p/'(¢)) € AUA(t). Because p and ' only differ at ¢, for
other locations, this property follows from V¢ € (AUA(t))\ F. L(u(€)) € AUA(?).
The location ¢ is updated to point to v. From p(¢) = v and L(v) C (AU A(t)), the
property holds for ¢ too.

» Fut(v, /) C K, If v is a primitive value (not a location), then Fut(v, u/) = 0 and
the relation holds trivially. Otherwise, suppose v = ¢’ for some ¢’ and consider the
following two cases:

L0 # L ie, @/(0) = pu(l). We have Fut(¢', 1) C Fut(e, ) € K. From p/(¢') =
p(l"), we get Fut(¢, ') = Fut(¢', u) C K
2. ' = (. In this case /' (¢) = ref ¢ and Fut(¢, /') = () by definition.

V0 e AUA(t). i/ (¢) = fcellla] = a € K. From Lemma 18 with A ; ;T ;e —
AT el we have VU € dom(p). u(f) = fecellla] = pu(f) = p/ (). This implies
the above property using ¥/ € AU A(t). u(¢) = fcellla] = a € K (established
above).

The judgement A ; A I, K ok derives from the following:

e K C dom(A), from inversion of A; A+, K ok.
e Va € K. A(a) » v = L(v) € AAFut(v, /) C K. From inversion of A; A F, K ok,

we know Va € K. A(a) » v = L(v) € A A Fut(v,u) € K. Applying this to an
arbitrary name a € K, such that A(a) » v/, we know L(v') C A and Fut(v', 1) C K.
To prove the property above, we need to show L£(v') C A (which follows directly) and

123



Fut(v', ') € K. If v’ is a primitive location then Fut(v', ii/) = (), so Fut(v', /) C K holds

trivially. Otherwise, suppose v' = ¢’ for some ¢’ and consider the following two cases:
L0 # e, (/(0) = pu(l). From p/(¢) = p(¢'), we get Fut(¢', 1) = Fut(¢', u) C K.
2. ' = (. In this case /' (¢) = ref ¢ and Fut(¢, /') = () by definition.

Case OUTPUT.

u(l) =n
Ay Leaf(t) s out_nat(f) — A s Leaf(t @ RO=n) ; ()

We have T' = Leaf(t) and e = out_nat({) and ¢/ = pand A" = Aand 7" = Leaf (t&Rl=n)
and e’ = (). Assume K ; A; F'F, A;Leaf(t);{ drfdeand A; A+, K ok. We get A; A"+, K ok
directly because ;' = pand A" = A. To prove the judgment K ; A; F' -, A;Leaf(t ® R{=n);
() drfde, we observe that from inversion on K ; A; F' -, A;Leaf(t); (¢ drfde, we get A - t deand
K ;AU A(t);F =, A;Leaf(e);¢ drfde. And, from inversion on the latter we get £({) C AUA(t).
The judgement can be proved as follows:

OutpPUT

e A I Leaf(t®R{=n) de. We have A t de from above and we only need to show
AUA(t) F Rl=-n de. This follows from ¢ € A U A(t), which follows from above
L(0) T AUA(T).

« F' I Leaf(t ® R{=-n) drf. This follows from the assumption that the resulting tree satis-
fies drf (the program is drf).

o K;AUA(t); Ft, A Leaf(e); () drfdeby,

= L(()) =0 S AUA()

V0 e (AUA(L) \ F). L(pu(f)) € AUA(L), from V¢ € AUA(t) \ F.L(u(¢)) C
A U A(t), which follows from inversion of K'; AU A(t); F' =, A; Leaf(e); ¢ drfde..

= Fut((), ) C K, from Fut((), ) =0

Case PoLLT We have 7" = Leaf(t) and e = fpoll(/) and u(¢) = fcellla] and ' = p and
T" = Leaf(t ® (R{=-fcellla])) and ¢’ = true . Assume F' - T" drf. From inversion(s) on
K;A;FF, A;Leaf(t); fpoll(/) drfde we have,

e Fltdrf

e Atde

L(fpoll(¢)) € AUA(t), which means ¢ € AUA(t)
Vee (AUA@))\ F. L(u(l)) T AUA(Y)

Va € Fut(e,i/). a € K.

e Ve AUA(L). u(l) = fcelllal| = a € K

Note that A = A’ and ¢ = ¢/, so A; A’ , K ok follows directly from A ; A -, K ok.
From F' + Leaf(t @ (R{=fcellla])) drf, we have ¢ ¢ F. The judgement K ; A; F -, A;
Leaf(t @ (R¢=fcellla])) ; true drfde derives from the following:

« F + Leaf(t ® (R¢{=fcellla])) drf, from the assumption F' + T’ drfand T' =
Leaf(t & (R¢=fcelllal))

124



o A F Leaf(t ® (R¢=-fcellla])) de. We know A  t de from the above derivation, so
we only need to show AUA(t) - (R{=-fcell[a]) de. This follows from ¢ € A U A(t)
(established above).

e K ; AUA(t® (Rl=fcellla])) ; FF F, A ; Leaf(e) ; true drfde, from
AUA(t ® (Rl=fcellla])) = AUA(t)and K ; AUA(t); F -, A;Leaf(e); true drfde
which derives from the following:

» L(true) C AUA(t ® (R{=fcellla))), from L(true) = ()

=Vl e (AUA(L)) \ F. L(u(€)) € AUA(t), established above

» Fut(true, u) C K, from Fut(true, i) = ()

V0 e AUA(L). p(f) = fcellla] = a € K, established above

Case PoLLF Proof is similar to the above case.

Case FuTS. We have ¢ = e; and T' = Par(¢,71,T5) and A = Agfa » e1] and € = e; and
T" = Par(t,T],T3) and A" = Al[a » €|, where A5 Ty ;e — A5/ 5T 5 €l

Assume F' = T"drf, A; A+, K ok,and K ; A; F &, A ;T ; ey drfde. By inversion of
K;A; Fr,A;T;e, drfde we get the following:

o F'+= T drf, which implies F' + t drf, F'U AW(T3) - T} drfand F'U AW(Ty) - T5 drf
o At T de, which implies A -t de, AUA(t) =Ty deand AUA(t) - T de

ca g K

o A= Aglaw e

e K;AUA(t); FUAW(T,) F, AT e drfde

e KU{a}; AUA(t); FUAW(Ty) -, A Ty ; ey drfde

First, apply the inductive hypothesis with:

L Asp; Ty e — A pl ;T 5 e, established above

2. K; AUA(t); FUAW(T) F, ATy ; eq drfde, established above

3. FUAW(T,) - T7 drf, from inversion of F' = T" drf, where T’ = Par(g, T}, T5)

4. AUA(t); A+, K ok, applying Lemma 11 with A; A+, K okand A C AUA(t)

toget K; AUA(t) ; FUAW(T) b, AT 5 € drfdeand AU A(t) ; A+, K ok. To establish
K;A; Fbt, A Par(t,T7,T5) ; eo drfde, we show the following:

o F' =1 drf; established above

e At de, established above

e a ¢ K, established above

« A'(a) » €, by definition

K;AUA(t); FUAW(Ty) b,y A" T7 5 € drfde, established above

KU{a}; AUA(t); FUAW(TY) -,y A"; Ty ; eq drfde. The proof has the following steps:

1. KU{a}; AUA(t); FUAW(Ty) F, A’ ; Ty ; e5 drfde. By the uniqueness of future

names, Fut(77) N Fut(T3) = . Using this with Va & Fut(T7). A(a) = A'(a), we
get Va € Fut(T3). A(a) = A’(a). Applying Lemma 12 with K U {a} ; AUA(?) ;

125



FUAMW(Ty) F, ATy 5 eq drfde, we get K U {a} ; AUA(t); FUAW(TY) F, A
T, ; ey drfde.

2. FUAW(TY) F T drf, from inversion of F' - Par(g, T}, Ts) drf.

3. AW(T7) € AW(T]) and V¢ € dom(u) \ (FU AW(T’)) pu(l) = p'(€). Applying
Lemma 14 with A ; o ; Ty ;1 — A’ 5 T] ;5 €}, we have AW(T7) € AW(T}) and
Ve € dom(ys) \ (AW(TY) \ AW(T,)). u(f) = 4({). From (AW(T]) \ AW(T,) C
AW(T]) C (F U AW(T])) with ¥ € dom(ys) \ (AW(T]) \ AW(T,)). ju(t) = (),
we have V/ € dom(u) \ (FF'UAW(TY)). u(0) = /' (¢).

4. KU{a};AUA(t); FUAW(TY) kv A’;T5; ey drfde. From applying Lemma 13 with
KU{a}; AUA(); FUAWN(TY) &, A" Ty eq drfde, FUAW(Ty) C FUAW(TY),
FUAW(T]) F Ty drf, and V(¢ € dom(u) \ (FUAW(TY)). u(€) = p'(¢)

The judgement A ; A", K ok follows from the following:

1.
2.

K C dom(A’), from inversion of A; A+, K okand A C A'.

Va € K. A'(a) » v = L(v) € AAFut(v, /) C K. From inversion of A UA(t) ; A -,
K ok, we getVa € K. A(a) » v = Fut(v, i) C K. From K;A; F &, A';Par(t,T7,T5);
ey drfde, we get K N Fut(Ty) = 0. From A ; pu; Ty ;e — A’ 4/ 1] 5 €}, we have
Va ¢ Fut(Ty). A(a) = A’(a) and thus, Va € K. A(a) = A’(a). From inversion of
A;A b, K ok, wegetVa € K. A(a) » v = L(v) C AandfromVa € K. A(a) = Al(a),
we getVa € K. A'(a) » v=L(v) C A

Case CoNTS. Proof is similar to the previous case.

Case FJoiN. We have T' = Par(t,11,T,) and e = e; and A = Agla » v, and i/ = p and
T' =t ® G", where i (a,T1,T3) = G",and ¢’ = eg and A’ = Ag[a > v].

From inversion on K ; A; F' =, A; Par(t,11,T5) ; e; drfde, we get:

AFtde

Frtdrf

a ¢ K

Aa) » v

K;A; FUAWN(TY) F, AT ;v drfde
KU{a}; A; FUA(T)) F, ATy e drfde

The judgement K ; A; F' =, A";t @< (a,T1,T3) ; eo drfde derives from A -t de, F' =t drf,
and K ; AUA(T) ; F =, A" ;> (a, T4, T5) ; ex drfde, which follows from applying Lemma 9

with:

1.
2.

a ¢ K UFut(Ty) UFut(T3), from uniqueness of names in 7.

KU{a}; AUA(T) ; FUMW(Ty) F, A’ ; Ty ; ey drfde, by Lemma 12 with Vb €
Fut(T3). A(b) = A’(b) and K U {a}; A; FUAW(TY) F, A ;T ; eq drfde
K;AUA(T); FUAW(T,) F, A" Ty ;v drfde, by Lemma 12 with Vb € Fut(77). A(b) =
A'(b)and K ; A; FUAW(Ty) F, ATy ;v drfde.

Fut(71) N Fut(T3) = ), from uniqueness of names in 7.

126



5. A'(a) > v, by definition.
Lemma 9. If
a ¢ K UFut(Ty) U Fut(T3)
Ku{a};A; FUAWN(TY) F, ATy s ey drfde
K;A; FUAWN(TY) b, ATy ;o drfde
Fut(77) N Fut(Tz) = 0
Aa) > v
,then K ; A F =, As<a(a,Th,T5) ;5 eq drfde

SANE N S

Proof. We prove K ; A; F F, A (a,Th,T5) ; es drfde by induction on 77:

1. Case 11 = Leaf(g;). In this case > (a, 11, T5) = g1 ®, T». The judgement K ; A; F' -,
A5 g1 B, T3 ; eo drfde derives from the following;

e F' = g1 drf. From inversion of K ; A; FUAW(T,) F, A ;T ;v drfde, we get
FUAW(T;) F gy drf. Using this and applying Lemma 16 with ' C F U AW(T3),
we have F' - gy drf.

A&ty de, from inversion of K ; A; FUAW(T3) -, A g1 ;v drfde

a ¢ K, from premise (1) of the lemma.

A(a) > v, by definition

K;AUA(TY); F =, Aj;Leaf(e) ; v drfde. This follows from

(@) L(v) € AUA(T}), from applying inversion twice on K ; A ; FFUAW(T5) F,
A ; Leaf(gy) ; v drfde.

(b) Fut(v, ) C K, from applying inversion twice on K ; A; FUAW(T,) F, A ;
Leaf(g1) ; v drfde.

() Ve (AUA(t1)) \ (AUA(t1)). L(1(€)) € AUA(t), holds vacuously.

(d) V¢ € AUA(t1). p(f) = fcellla] = a € K, from applying inversion twice on
K;A; FUAW(T,) F, A Leaf(g1) ;v drfde.

KuU{a};AUA(t)); Ft, A;Ty; ey drfde, applying Lemma 15 with K U {a}; A ;

FUAW(Leaf(g1)) . A;Tyseq drfdeand K A F' U AW(T) =, AsLeaf(g1);v drfde.

2. Case T1 = g1 @ T7. In this case > (a,T1,T5) = g1 @, < (a,T],T5). From inversion of

K;A; FUAW(T,) B, Ay gy @y 17 ; v drfde, we get:

e FUAW(T)) F gy drf
Al gy de
beg K
A(b) > v
K;AUA(TY); AUA(TY) F, A Leaf(e) ; o drfde

« KU{b}; AUA(TY); FUAW(T,) F, AT s v drfde
By uniqueness of names in the graph 7', we get b ¢ Fut(77) and from Fut(7})NFut(T3) =
0, we get b & Fut(T3). The judgement K; A; F' =, A; g1 @< (a, T}, Ts);es drfde derives
as follows:

127



F + g1 drf. Using FFUAW(T5) F ¢; drfand applying Lemma 16 with F* C F' U

AW(T3), we have F' F g drf.

A F t; de, established above

b ¢ K, established above

A(b) > v/, established above

K;AUA(TY); AUA(TY) F, A Leaf(e) ; v drfde, established above

Ku{b}; AUA(TY) ; F F, A;p<(a,T],T3) ; ex drfde, by applying the inductive

hypothesis with:

(@) a & KU{b} UFut(T]) UFut(Ty), from a ¢ K U Fut(T}) U Fut(T3) and b €
Fut(7}) and Fut(T7) C Fut(Ty).

(b) Ku{btU{a}; AUA(t1); FUAW(T]) -, A ;T ;e drfde. By Lemma 17
with b ¢ Fut(7h) and K U{a}; A; FUAW(TY) F, ATy ; ey drfde, we
get KU{a}U{b} ; A; FUAW(T}) F, A ; T, ; ey drfde. Using this
and K ; A; FUAW(Ty) F, A ;T ;v drfde with Lemma 15, we get
Ku{btU{a}; AUA(t1); FUAW(TY)) -, A Ty ; eq drfde.

(c) KU{b}; AUA(t1); AUA(t1) b, A TY ;v drfde, established above.

(d) Fut(T]) NFut(Tz) = 0, from Fut(Ty) N Fut(Tz) = 0

(e) A(a) > v, by definition

3. Case T = g & (T] ® TY). In this case < (a, 11, Ty) = g1 & (1] ®p < (a, T}, T3)). From

inversion of K ; A; FUAW(T,) F, A; g1 @ (17 @4 17') ; v drfde, we get:
« FUAN(T) & g, drf

At g1 de

beg K

A(Db) » €]

K;AUA(TY) ; FUAW(T:) UAW(TY) F, A TY 5 €) drfde

e KU{b}; AUA(TY); FUAW(T3) UAW(TY) -, ATV ;v drfde

By the uniqueness of names in the graph 73, we get b ¢ Fut(7]) U Fut(7}) and

from Fut(7}) N Fut(Ty) = 0, we get b ¢ Fut(Ty). The judgement K ; A; F +,

A g1 @ (T] @y (a,T],T3)) ; es drfde derives as follows:

e F'+ gy drf. Using FFUAW(T5) F ¢y drfand applying Lemma 16 with F' C F' U

AW(T3), we have F' F g; drf.

At g1 de, established above

b ¢ K, established above

A(b) » €}, established above

K ; AUA(TY) ; FUAW(X (a,T),T3)) F, A T7 5 € drfde, from K ;

AUA(TY) ; FUAW(Ty) UAW(TY) F, A TY ;5 €) drfde and AW(T,) U AW(TY) =

AW (i (a, TY', T3)).

Ku{b}; AUA(TY) ; FUAW(TY) F, A spx(a, TV, Ts) ; eo drfde, applying the

inductive hypothesis with:

(@) a & KU{b} UFut(T}) U Fut(T5)

128



(b) Ku{b}U{a}; AUA(TY); FUAW(T]) UAW(TY) -, A; Ty ; ey drfde. By
Lemma 17 with b ¢ Fut(T3) and K U {a} ; A; FUAW(TY) F, ATy ; ey drfde,
we get KU {a}U{b}; A; FUAW(T}) F, A ; T, ; ey drfde. Using this
and K ; A; FUAW(T3) F, A ;T ;v drfde with Lemma 15, we get
Ku{btU{a}; AUA(t1); FUAW(TY)) -, A Ty ; eq drfde.

() KU{b}; AUA(TY); FUAW(T]) UAW(T3) -, A; T ;v drfde, established
above.

(d) Fut(T]) NFut(Tz) = 0, from Fut(Ty) N Fut(Tz) = 0

(e) A(a) > v, by definition

8.2.4 Helper Lemmas

Lemma 10. If K;Aba, T ;edefut and Ya € Fut(T). A(a) = A'(a), then
K Atar, T edefut, Similarly, if A; A F, K ok andVa € K. A(a) = A'(a) , then
A;A'F, K ok.

Proof. Proof by induction on judgements K ; A Fa , T ; e defutand A; A I, K ok respectively.

O
Lemma 11. IfA; A+, K okand A C A’, then A" ; A=, K ok.
Proof. Proof by induction on judgement A ; A -, K ok. [
Lemma 12. If K ; A; Ft, A; T ;e drfde andVa € Fut(T). A(a) = A'(a),
then K ; A; F'=, A" T ; e drfde,
Proof. Proof by induction on judgement K ; A; F'+, A"; T ; e drfde. O

Lemma 13. If ;A F F, A;T edrfde, F C F', F' = G drf, and¥( € dom(pu)\F". pu(€) = pu(?'),
then K ; A F' =0 AT ;e drfde

Proof. Proof by induction on judgement K ; A ; F't,, A; T ; e drfde. []

Lemma 14. If A; ;T e — A" /T 5 €, then AW(T) C AW(T7), dom(p) € dom(p'), A C A’
and V0 € dom(p) \ (AW(T") \ AW(T)). u(€) = p'(¢).

Proof. Proof by induction on stepping relation A ; ;T ;e — A"/ ;T 5 €. O

Lemma 15. If K; A; FUAW(Th) B, ATy eq drfdeand K5 A F U AWN(TS) b, AT eq drfde,
then K ; AUA(hd(TY)) ; FUAW(tI(Th)) b, A5 Th 5 e drfde.

Proof. Proof by induction on tree 7}. [
Lemma 16. If F =T drfand F' C F, then F' & T drf.

129



Proof. Proof by induction on F' =T drf. ]
Lemma 17. If K;A; F &, A;T ;e drfdeanda & Fut(T), then K U{a}; A; F -, A;T;e drfde.

Proof. Proof by inductionon K ; A; F' =, A; T ; e drfde. O]
Lemma 18. If A;pu;T5e — A’/ ;T ¢ thenVE € dom(p). pu(f) = feellla] = u(f) = p/(£).

Proof. Proof by inductionon A ; ;T ;e — A" p/ ;T € O

8.3 Applications of Futures with Disentanglement

Because it combines futures, state, and I/O, our calculus enables us to express a broad range of
applications in a disentangled fashion. In this section, we present four examples to illustrate
this. First, in Section 8.3.1, we use our language to express a parallel tree merge algorithm and
show that futures express pipelining in a succinctly and efficiently. In Section 8.3.3, we present a
PDF viewer, demonstrating the language’s ability to handle asynchrony by utilizing futures and
state to proactively compute and cache results, improving responsiveness. Then, we consider a
web server involving interaction (Section 8.3.2), and lastly we express a dynamic programming
algorithm leveraging data-dependent parallelism (Section 8.3.4).

All of these programs satisfy disentanglement, and thus the disentanglement hypothesis,
because they do not have any entangled objects. This was surprising to us—we did not expect
that the complex dependency structure of parallel programs with futures, which allows asyn-
chronous and data-dependent dependencies between threads/tasks, could satisfy the disentan-
glement hypothesis. The ability to express such programs in a disentangled fashion suggests
that our memory management techniques could be generalized to a wider range of parallel
programs, including those presented in this section.

8.3.1 Pipelining

Pipelining is a fundamental technique in the design of parallel algorithms that can mean-
ingfully reduce the parallel depth (span). For example, pipelining was used by Paul et al. to
improve parallel operations on balanced trees [135] and by Cole to give a O(lgn) span parallel
mergesort algorithm [64]. Implementing pipelined algorithms, however, is quite challenging,
because the programmer has to carefully manage the rather complex, producer-consumer-like
data dependencies between parallel computations. Blelloch and Reid-Miller [36] showed that
pipelined algorithms can be expressed at quite a high level by using functional programming
extended with futures.

Figure 8.9 shows the code for a pipelined tree merge from Blelloch and Reid-Miller [36],
adapted to our language °. The tree datatype is a binary search tree whose branches are of

“The example in Blelloch and Reid-Miller [36] uses a non-strict semantics for forcing futures whereas our
futures are strict.

130



1

2

3

4

5

1 split :: o — « tree —

type a tree = 2 ((a tree) fut * («a tree) fut)
Empty s fun split k t =
| Node of o * (a tree) fut * (« tree) fut s+ case t of
5 Empty —
merge :: « tree — « tree — « tree 6 (fut Empty, fut Empty)
fun merge tl t2 = 7 | Node (v, 1, g) —
case (t1, t2) of 8 if k < v then
(Empty, _) — t2 9 let s = fut split k (get 1)
|, Empty) — t1 10 in
| (Node (v, 1, g), _) — 1 (fut #1 s,
let s = split v t2 12 fut Node (v, #2 s, g))
11 = fut merge (get 1) (#1 s) 13 else
gg = fut merge (get g) (#2 s) 14 let s = fut split k (get g)
in 15 in
Node (v, 11, gg) 16 (fut Node (v, 1, #1 s),
17 fut #2 s)

Figure 8.9: Pipelined merge with futures. We define the function #1 x = get (fst x) and
#2 x = get (snd x), where fst and snd project out the first and the second component of
a pair.

future type. The merge function returns the non-empty tree if one of the trees is empty. In
the case where both trees are non-empty, the function splits the second tree by using the key
at the root of the first tree and recursively merges the two “halves” from the two trees. These
recursive merges run inside futures, allowing them to proceed in parallel. Because the function
split also returns the recursive portion of its result inside a future, the recursive calls to merge
can run in a pipelined fashion with the split. This is possible because each node of the tree is
wrapped inside future and is demanded by the get expression as needed.

Given two balanced trees of depth O(lgn), the parallel merge runs in O(lgn) span or par-
allel time. With fork-join parallelism, however, the best parallel merge runs in O(Ig(n)) span.

8.3.2 Web Server

Our web server listens for clients on its socket and spawns futures to handle their requests.
Each future services exactly one client and as it does so, the future tracks the relevant infor-
mation from their requests and aggregates it into a log object. Our current example simplifies
the log to only include the name of the client and request count, but in practice, the log could
contain many different statistics that we omit. When a client terminates the connection, the
corresponding future produces a log of its interaction with the client and completes its evalua-
tion.

The server synchronizes with the futures to obtain their logs. However, in order to respond

131



1 type socket

> type log = {name : string, requests: int}
s start_socket : unit — socket

4+ listen : socket — unit

5 accept : socket — socket option

¢ process : socket — log

s fun server ()
9 let
10 server_sock

start_socket ()
1 val _ = listen(server_sock)
2 fun handle_clients (clients : log fut set) =

13 let

14 completed = filter (fn ¢ = fpoll c) clients

15 logs = map (completed, fn ¢ = get c)

16 in

17 (logs, Set.diff (clients, completed))

s fun loop (clients : log fut set) =

19 let

20 (logs, remaining_clients) = handle_clients (clients)
21 (+ Process logs as desired =)

22 in

2 case accept (server_sock) of

2 NONE = loop (remaining_clients) (x No new clients )
2 | SOME client_sock =

2 let val f = fut (process (client_sock))

2 in loop (Set.add (remaining_ clients, f))

2 in

2  loop (Set.empty ())

30

31 type request

52 recv : socket — request option
33 Service : request — unit

3 name : socket — string

35

3 fun process (c) =

y  let fun loop (req, cnt) =

38 case req of

39 NONE = {name = name (c), count = cnt}
w0 | SOME req =

a service (req); loop (recv (c), cnt + 1)
42 in

e loop (recv (c), 0)

Figure 8.10: A server with pollable futures and disentanglement

132



to incoming clients efficiently, the server never blocks or waits on a future. The server achieves
this by regularly polling the futures it spawned, filtering out the ones that have terminated,
and synchronizing only with terminated futures. By only synchronizing with the terminated
futures, the server ensures that it gets the logs immediately without creating any interruption.

Figure 8.10 shows the code for the server. The function server initializes a socket and
proceeds to listen for incoming clients by calling the function 1isten. Subsequently, the server
calls the function loop. The function loop accepts new clients, spawns futures to handle their
requests, and collects and processes logs. The function 1loop maintains the spawned futures in
a set named clients. Each time it accepts a client, the loop spawns a future to (concurrently)
execute the function process, which services the requests of the client and returns the log.

Before spawning a future for a new client, the loop checks on the other clients by calling
the function handle_clients. The function handle_clients takes the set of futures, filters
those that have finished servicing their clients, and aggregates their logs. To filter out completed
futures, the function uses the non-blocking primitive fpoll, which returns true for terminated
futures (see line 14). Subsequently, the function uses the primitive get to obtain the logs. Note
that each use of get returns immediately because the function only calls them on terminated
futures. After aggregating the logs, the function removes the terminated futures from the set
of futures, and returns the logs and the running futures back to the loop.

The function loop processes the logs it receives. We leave the log processing abstract as it
varies with the use case. Then, it proceeds to process a new client, adds it to the set of clients,
and repeats.

Overall the application uses the ability to store futures in a set and to poll them for manag-
ing clients without ever blocking. The application does not use any mutable effects and thus is
free from determinacy races by construction. From the result that determinacy-race-free pro-
grams are disentangled (Theorem 7), we get that application satisfies disentanglement. This is
interesting because the server is interactive and involves communication between threads, and
performs I/O, but it remains disentangled. The key point is that the server thread obtains a log
only after the corresponding future has terminated, which, as we have shown, does not violate
disentanglement.

8.3.3 PDF viewer with disentanglement

We consider a PDF viewer that accepts a page number from the user and displays the corre-
sponding page of the PDF on the screen. Before displaying a requested page, the viewer must
first render the page, i.e., it must interpret the bytes in the PDF and generate a visual represen-
tation, like a pixel array, which it can then display. Our viewer renders pages in an optimized
manner, as it not only renders the pages as requested by the user, but also anticipates the user’s
navigation actions and renders adjacent pages in the background. It spawns futures to perform
this proactive rendering and stores the futures in an array indexed by the appropriate page num-
bers. In this way, futures and array implement a proactive memoization/caching mechanism,
allowing the viewer to display rendered pages efficiently and without delay.

Figure 8.11 shows the code for the viewer. The function viewer allocates the “page array”, a

133



23

type pdf = {raw_data : bytes array,
num_pages : int,

Pa

ge_offsets : int — int}

val render : pdf * int — page

val display : page — unit
val getClick : unit — int

fun viewer (p : pdf) =

le

in

t

pa
fu

lo

ge_arr = tabulate (#num_pages p) NONE
n loop O =
let pnum = getClick () in
case page_arr[pnum] of
NONE =
pg = render (p, pnum);
display (pg);
page_arr[pnum] := SOME (fut (pg));
fill_page_arr (pnum - §, pnum + §) page_arr p
SOME f =
display (get £f)

op O

2 fun fill_page_arr (1, r) page_arr p =

25

26

27

28

29

30

31

32

le

in

t
fun fill i =
case page_arr[i] of
NONE = page_arr[i] :=
fut (render (p, i))
| SOME _ = O

foreach (1, r) (fn i = fill (i))

Figure 8.11: PDF viewer with disentanglement

134



future option array indexed by the page numbers of the PDF. Initially all elements of the array
are NONE. The function then runs the loop function, which repeatedly awaits for the user to
request a page number by calling the function getClick. To complete the user request, the
function loop looks up the page number in the array and if it finds NONE, the loop prepares the
page by calling function render, displays the page to the user, and writes it to the page array at
this page number. After completing the user request, the function loop proactively renders o
number of pages near the current page by calling the function £ill_page_arr, which spawns
futures to render the given range of pages and writes the corresponding futures in the page
array. Note that function fill_page_arr takes constant time because it returns immediately
after spawning futures that render pages in the background. This allows the loop to be ready
promptly for the next user request.

The code uses the stateful array to track futures and also to memoize the already prepared
pages. Note that the array is accessed exclusively by a single thread, the thread that runs the
functions viewer, loop, and £i11_page_arr. The futures spawned by the thread never read or
write to the array. Thus, the code does not exhibit determinacy races because all the writes in
the code are visible only to the writer itself. Thus, from Theorem 7, it satisfies disentanglement.

8.3.4 Futures and references for dynamic programming

-
N
[ ¥ i

Figure 8.12: An illustration of data-dependent parallelism in a DP matrix: two paths can proceed
in parallel regardless of all the other elements in their respective rows.

We consider a dynamic programming algorithm that tabulates an M x N matrix by com-
puting a cell’s value from the value of its neighboring cells in the row above the cell. Specif-
ically, it computes the value at a cell (7, j) by applying an abstract function f to the values at
cells (i — 1,7 — 1), (i — 1,7) and (i — 1, j + 1). The algorithm exemplifies a common pattern
and has various applications, such as seam carving and sequence alignment [27, 153]. In seam
carving, for instance, the function f takes the minimum of the neighbor’s values and adds a
constant factor to compute the value of a cell.

To tabulate the matrix, we could implement an algorithm that proceeds in a row-by-row
manner and fills each row in parallel (because cells of a row do not depend on each other).
This algorithm, however, does not exploit parallelism across the rows. In particular, once three

135



1 fun f: a * o * o & «
2 val id : «
3 val arr = array2D (M, N, NONE)

s fun lookup (i, j) =

6 if i <0 |l j <O |l j > M then id (» Out-of-bounds reads return id *)
7 else

8 case arr[i] [j] of

9 | SOME r — get r

10 | NONE — raise Impossible

2 fun compute_cell (i, j) =
13 f (lookup (i - 1, j - 1), lookup (i - 1, j), lookup (i - 1, j + 1))

15 (xInitialize the array row-by-row in parallel+)

6 val _ = seq_fill M
17 (fun i — par_fill N
18 (fun j — arr[il[j] <- SOME (future (compute_cell (i, j)))))

v val result = lookup (M - 1, N - 1)

Figure 8.13: Dynamic programming with futures, state, and disentanglement

consecutive cells of row ¢ are computed, the middle cell in the next row ¢ + 1 can be computed
without waiting for the rest of the cells of row i. Because such “vertical” parallelism depends
on the data flow, it is impossible to express with fork-join parallelism, but is naturally express-
ible by using a combination of futures and state. Figure 8.12 illustrates the flow of data and
parallelism present in this application.

Figure 8.13 shows an algorithm where futures unleash the data dependent parallelism across
rows. The algorithm represents each cell of the matrix with a future, which waits for the neigh-
bors to complete and then computes the cell’s value by using the function compute_cell. The
algorithm starts by initializing each cell of a mutable M x N array arr with NONE. It then fills
the array with futures. To do so, the algorithm proceeds in a row-by-row manner and writes the
futures of a row in parallel, ensuring that a future is spawned only after the futures it depends
on have been spawned. Each future executes the function compute_cell which synchronizes
with the neighboring cells by calling the function 1ookup, a function that handles boundary
conditions around the edges of the matrix, waits for a cell to finish using expression get, and
returns its value.

The algorithm satisfies disentanglement but this is not easy to establish by reasoning about
the the memory allocations of the program. One potential concern arises from the fact that
futures read handles to other futures from the array, and since these handles themselves are
allocated concurrently, reading them could create entanglement. However, we can see that
each future only reads those indices of the shared array which are tabulated before the future
is spawned. Thus, no future witnesses the concurrent updates of the array (see line 10) and the

136



code satisfies determinacy race freedom. Using the result that race freedom implies disentan-
glement (Theorem 7), we get that the code satisfies disentanglement.

137



138



Related Work

9.1 Parallel Memory Management

Since its early days in the Lisp language, automatic memory management has come a long
way and has become a popular and a prominent feature of modern programming languages.
The book by Jones et al. [101] discusses many garbage-collection techniques incorporating par-
allelism, concurrency, and real-time features. There is, however, relatively little work on the
problem of parallel memory management for functional languages that support fork-join par-
allelism, where programs may create many (e.g., millions of) fine grained threads, which are
scheduled by a (usually highly nondeterministic) scheduler.

Within the world of parallel functional programming, we can distinguish between two main
architectural approaches to memory management, none of which have (until this work) estab-
lished space and work bounds.

The first approach uses processor-local or thread-local heaps combined with a shared global
heap that must be collected cooperatively [13, 26, 71-73, 116]. This design is employed by
the Doligez-Leroy-Gonthier (DLG) parallel collector [71, 72] and the Manticore garbage col-
lector [26, 108]. They enforce the invariant that there are no pointers from the shared global
heap into any processor-local heap and no cross pointers between processor local-heaps. To
maintain this invariant, all mutable objects are allocated in the shared global heap and (tran-
sitively reachable) data is promoted (copied) from a processor-local heap to the shared global
heap when updating a mutable object. The Glasgow Haskell Compiler (GHC) uses a garbage
collector [116] that follows a similar architecture but also employs techniques similar to Do-
mani et al. [73]. The collector allows pointers from global to local heaps and relies on a read
barrier to promote (copy) data to the global heap when accessed. Recent work on a multicore

139



memory manager for OCaml uses several techniques to reduce the cost of promotions [159]. Be-
cause promotions require copying reachable objects from a shared pointer and can be triggered
by scheduler actions, none of these approaches can guarantee space and work/time bounds.
Indeed, promotions have proved to be expensive in practice [89, 158].

The second approach is due to more recent work on disentanglement [3, 89, 138, 174]. In
that work, the authors associate heaps with tasks rather that system-level threads or processors
and organize the memory as a dynamic hierarchy that can be arbitrarily deep and grows and
shrinks as the computation proceeds. Pointers between heaps that have ancestor-descendant
relationships are allowed but cross pointers between concurrent heaps are not allowed. There-
fore, disentangled parallel programs can return the result of a child task and migrate threads
without copying (promoting) data and concurrent threads can share the data allocated by their
ancestors. More recently, techniques were proposed to prevent undefined behavior in case of
entanglement by safely terminating the program when entanglement occurs [176]. The primary
focus of work on disentanglement so far has been to develop the dynamic memory architecture
consisting of a tree of heaps and does not offer any guarantee on space usage.

One of our key contributions is to support unrestricted mutation in the hierarchical heap
architecture, and do so without breaking the key advantages of the architecture: independent
allocation, reclamation and promotion-free sharing. We propose techniques for dynamically
tracking “entanglements” that are created by cross-pointers between concurrent heaps. For
garbage collection, we use both concurrent and a hybrid collector. The concurrent collector
never moves objects and is similar to standard mark-sweep collectors [102] except that it only
collects a single heap (region) of memory. The hybrid collector moves non-entangled objects
and leaves the entangled objects in place. To accomplish this, our hybrid collector uses tech-
niques that are similar to the “mostly copying” collector of Bartlett [30, 31] and the Customizable
Memory Manager of Attardi et al [24, 25], which was designed as a garbage collector for C++
programs. The basic approach is to track “quasi” or “ambigious” pointers, which may be point-
ers to objects and prevent these objects from moving during garbage collection. Hosking [96]
also presents a mostly copying algorithm; this work allows for concurrency but relies on a
stop-the-world phase to collect roots. Our approach applies ideas from these to hierarchical
heaps and entanglement but differs in the specific barriers used and specific ways of handling
pinned objects. These culminate in techniques that allow threads to allocate, access, and reclaim
memory independently without using locks or stop-the-world pauses.

Nearly all of the work on parallel functional languages organizes memory as a hierarchy of
heaps; this general idea goes back to 1990s [11, 106, 131, 180]. More recent work includes Se-
quioa [77] and Legion [32]. These techniques are also remotely related to region-based memory
management in the sequential setting [81, 88, 93, 143, 149, 169, 173], which allows objects to
be allocated in specific regions, which can be deallocated in bulk. MPL’s approach differs from
prior work because in MPL hierarchical heaps are fully dynamic and are managed (created,
maintained, destroyed, and collected) without programmer intervention.

140



9.2 Cost Bounds

Memory Management. There are many provably space and work efficient algorithms for
garbage collection for uniprocessor computing models. Similar provable algorithms for mul-
tiprocessors or parallel systems are more scarce. One notable exception is the algorithm of
Blelloch and Cheng [39, 61], which is able to achieve tight space and time bounds. The algo-
rithm, however, is primarily meant for real-time garbage collection and has several shortcom-
ings, including its complex synchronization and load-balancing techniques, and its relatively
liberal space usage [28]. Follow-up work has overcome some of these limitations, though some-
times by assuming the uniprocessor model [28, 137]. These real-time algorithms may be used
in conjunction with our heap scheduling algorithm in real-time applications.

Scheduling. Nearly all modern parallel programming languages today rely on a scheduler to
distribute threads over hardware resources so that the programmer does not have to control it
manually. This is important as, manual thread scheduling can be very challenging, especially
for multiprogrammed environments.

Early results on scheduling goes back to 1970s, beginning with the work of mathemati-
cian Brent [55], whose results were later generalized to greedy schedulers [22, 74]. Blumofe
and Leiserson [48], and later Arora, Blumofe, and Plaxton [21], proved that randomized work
stealing algorithm can generate efficient greedy schedules “on-the-fly”, also on multiprocessor
systems. More recent work extended these techniques to account for the cost of thread cre-
ation [4, 6, 170] and aspects of responsiveness or interactivity [121-124]. Our implementation
is based on a variant of the work stealing algorithm based on private deques [2].

The space consumption and local properties of various scheduling algorithms have been
widely studied [3, 9, 37, 40, 44, 47, 62, 110, 128, 165], but, none of these works consider garbage
collection and the impact of thread scheduling on garbage collection. For example Blumofe and
Leiserson [48] establish space bounds, but assume a restricted form of “stack-allocated compu-
tations” that use work stealing, where all memory is allocated on the stack, and all memory
allocated by a function call is freed upon returning from that call. They show that P—core
executions consume as much as O(S; - P) space, where 5 is the space usage of a sequential
execution, under stack allocation. Stack allocation is a rather unrealistic assumption for most
programming languages, because even non-managed languages such as C/C++ permit heap
allocated objects. They assume instead that programs follow a specific allocation strategy, typ-
ically “stack allocation”, where objects that are allocated by deeper calls cannot be returned
without being copied explicitly.

One of our key contributions is that our bounds account for heap allocated objects in work-
stealing. To do this, we define sequential space in an unordered fashion, which considers ex-
ecuting two sides of a parallel pair in either order (i.e., left before right, and right before left).
Although the unordered depth-first execution differs from traditional left-first and depth-first
sequential executions, this difference is fundamental to how work-stealing schedulers operate,
and seems unavoidable in this context. We are not aware of any space bounds for heap allocated
objects for work-stealing schedulers.

141



Space Bounds in Scheduling. There has been significant research on understanding the
space behavior of parallel programs. Considering programs with manual memory allocation,
Burton in 1996 [57] and later Burton and Simpson [152] showed that P-core executions can
consumes O(P - R) total space, where R is the space of the sequential execution. Blelloch,
Gibbons, and Matias [37] showed that parallel depth-first schedules can deliver tighter space
bounds of O(R+ P - S), where S is the span of the computation. While this approach delivers
excellent space performance, it can be inefficient in practice, because of high scheduling over-
heads and related factors due to frequent data migrations between processors [129]. Narlikar
and Blelloch [128, 129] have proposed algorithms that can combine theoretical and practical
efficiency. All of these works assume manual memory management and apply only under the
C/C++ model where all the malloc/free operations are given by the programmer. In this the-
sis, we consider a more general model, where memory is automatically managed without any
programmer intervention.

Cost Semantics. To establish our bounds, we use a cost semantics that keeps track of work,
space usage, and yields a task tree of the computation. The task tree allow us to reason about the
intrinsic properties of the computation (threads/concurrency created and their relationships).
For our bounds, we use a notion of reachability that accounts for the different orders in which
parallel pairs may be executed in a sequential computation. This notion is quite interesting: it
does not account for all interleavings of the parallel pairs, but just two specific ones, where the
left completes before the right starts, and the right completes before the left starts.

Cost semantics have proved to be an effective tool for reasoning about non-trivial properties
of the computation. The idea of cost semantics goes back to the early 90s [142, 145] and has
been shown to be particularly important in high-level languages such as lazy (e.g., [145-147])
and parallel languages (e.g., [4, 6, 35, 41, 164]). Aspects of our cost semantics resemble prior
cost semantics used in parallel languages [4, 6, 41, 164], though the specifics such as our use of
task trees and our specific notion of reachability measure differ.

9.3 Parallel Programming Languages

In this thesis, we implement and evaluate our techniques as part of the MPL (MaPLe) compiler
for Parallel ML, which is a functional language that extends Standard ML with parallelism,
and supports references and destructive updates [3, 89, 138, 174, 178]. Parallel ML builds on
a rich history of research on parallel functional programming languages, including parallel
Haskell [58, 103, 116] Manticore [82, 83] MultiMLton [157, 183], SML# [133], and multicore
OCaml [158] projects. MPL differs from these projects in its emphasis on theoretical guarantees
on efficiency and implementations that can match the bounds in practice. Even though it is not
aimed at functional programming, the Rust language supports type-safe programming and can
ensure memory safety without using a garbage collector [144].

In addition to the functional languages mentioned above, there has also been extensive
research on procedural parallel languages. Systems including Cilk/Cilk++ [49, 85, 99], Cilk-

142



F/L [154, 155], I-Cilk [121], and Intel TBB [100] extend C/C++ with task parallelism and re-
quire manual memory management. Deterministic Parallel Java [53], Fork-Join Java [109], and
Habanero Java [97], extend the Java language to support parallelism and support automatic
memory management. The X10 [59] is designed with concurrency and parallelism from the be-
ginning and uses automatic memory management. The Go language is designed from grounds
up with concurrency in mind. The Rust language supports type-safe programming and can
ensure memory safety without using a garbage collector [144].

9.4 Disentanglement and Futures

Disentanglement. Research on disentanglement originates with two key theoretical results
for fork-join programs. Acar et al. [3] showed that purely functional fork-join programs satisfy
program-level disentanglement. Westrick et al. [174, 178] generalized this result to include ef-
fects and showed that fork-join parallel programs remain disentangled as long as the mutable
effects are performed without creating determinacy races. This thesis generalizes the applica-
bility of disentanglement in two important ways.

First, we redefine disentanglement as a continuous object-level property rather than a
program-level property, which enables us to propose the disentanglement hypothesis. This
shift is important because it allows us to exploit the disentanglement hypothesis for provably
and practically efficient memory management of fork-join programs.

Second, we extend the theory of disentanglement to include futures and prove that
determinacy-race-free programs with futures do not have any entangled objects. Importantly,
our generalization of disentanglement for futures is consistent with fork-join, i.e., if we restrict
our language to fork-join, the class of programs that satisfy our definition of disentanglement is
the same. The theoretical results for futures are strictly more general because futures are more
expressive than fork-join (we can implement fork join constructs using futures [162]).

From Fork-Join Parallelism to Futures. Fork-join parallelism has proved to be an effective
model for many parallel computations [50, 84, 109]. But it has limitations, especially when it
comes to computations where parallel tasks run asynchronously until a data-driven condition,
e.g., based on input from the user, is satisfied. Muller et al’s work shows that futures can
provide this kind of asynchrony, which is pervasive in interactive applications [121-123, 126,
127, 156]. This line of work observed that, when combining asynchronous interaction and fine-
grained compute-heavy parallelism, it is necessary to assign higher priorities in the scheduler
to the interactive threads to maintain responsiveness. Priorities are orthogonal to the theory
of disentanglement we explore in this thesis, and so we did not add them to this theory to keep
the focus on disentanglement.

Researchers have therefore proposed futures for increasing the expressiveness of parallel
languages. Futures were invented in the 1970s [29] and were brought to their current form
by Halstead in the 1980s [91]. Today, many concurrent and parallel programming systems
support futures, including Cilk-F/L [154, 155], I-Cilk [121], Concurrent Haskell [92, 112, 116,

143



136], Habanero Java [97], Parallel ML [7, 17, 19, 82, 83, 89, 133, 138, 157, 163, 174], OCaml
[69, 114], Rust [144], and TPL (a .NET library) [111].

Futures can also be challenging to manage in the run-time system of a programming lan-
guage. For example, data locality of parallel programs with futures can significantly worsen
when they execute in parallel [1] and restricting their expressiveness can improve the data
locality [95, 165].

Exploiting Disentanglement Hypothesis for Futures. The motivation for generalizing
the disentanglement hypothesis to futures comes from its effectiveness in the fork-join setting.
We believe that our memory management techniques for fork-join can be generalized to futures
in a provably efficient fashion. First, because our result establishes race-free programs are dis-
entangled, we anticipate that the disentanglement hypothesis will hold for parallel programs
with futures. The result implies that objects become entangled only because of races and as we
have observed for fork-join, races typically only involve a small portion of the memory. This
is important because our memory manager in MPL is designed to exploit the disentanglement
hypothesis and its efficiency relies on the observation that entanglement is rare. Second, our se-
mantics for futures defines the heap tree at each step (Section 8.1.5), and the join step for futures
(Section 8.1.4) is analogous to the surrender step in our coscheduling algorithm. This suggests
that our coscheduling algorithm could be extended to create and surrender heaps for futures,
assigning heaps to processors in a similar fashion. However, one engineering challenge is ex-
tending the specialized task scheduling infrastructure of MPL to support futures, which have a
more complex dependency structure than fork-join.

Race Freedom. As we established in this thesis, disentanglement is implied by freedom
from determinacy races [78, 130]. Determinacy races, also called general races, cause non-
determinism and are considered bugs for programs that are intended to be deterministic [130].
Absence of determinacy races guarantees determinism: in every execution, the executed in-
structions and their execution order are the same. Determinacy races are different from data
races, which only occur when a critical section of the code is not executed atomically. Unlike
data races, determinacy races are quite conservative and can include accesses that produce de-
terministic outcomes. For example, atomic fetch-and-add operations by concurrent threads do
not cause a data race because each increment is performed atomically. However, such opera-
tions cause a determinacy race because the execution order is nondeterministic.

There is a lot of work checking for race freedom and bounding the impact of races, partly
because data races usually cause incorrect behavior [8, 54, 70]. Many algorithms for race detec-
tion in fork-join parallel programs have been proposed [33, 60, 78, 79, 117, 139, 140, 171, 179].
More recent work considers race detection for futures [179].

There has also been significant research on race detection for more general concurrent pro-
grams [80, 104, 132, 148, 160, 181]. Such programs differ from task-parallel programs, because
they use coarse-grained threads and synchronize in an unstructured manner, using locks and
other synchronization primitives. The two classes of programs therefore typically require dif-

144



ferent approaches for reasons of efficiency, soundness (ability to correctly detect races), and
completeness (ability to detect all races).

Deadlock. The expressiveness of futures can make them harder to use safely. One important
concern is deadlock: with futures, it is possible to create cyclic dependencies in a computation
that prevent the computation from making progress. Cogumbreiro et al. identify this problem
and formulate two properties called “known joins” and “transitive joins” that can be enforced
by restricting the expressive power of joins [63, 172] to prevent deadlock. They achieve this by
enforcing a discipline on the use of futures, i.e., they forbid tasks from synchronizing with cer-
tain other futures. Loosely speaking, the known joins property states that task A is allowed to
sync with future B only if B is spawned by one of the ancestors of A. The transitive joins work
relaxes the known joins restriction by adding transitivity, i.e., if task A can synchronize with
B and B can synchronize with C, then A is allowed to synchronize with C. The known joins
property is naturally satisfied in disentangled executions—in a disentangled execution, a task
only knows about those locations/futures that are allocated/spawned by its ancestors. Thus, we
have separately proven in our paper that disentanglement implies deadlock freedom [20]. Prior
work has shown that determinacy race freedom implies known joins.

145



146



Conclusion and Future Work

10.1 Conclusion

In this thesis, we presented novel techniques for addressing the challenge of parallel memory
management in functional programs. Our memory management techniques are provably work
and space efficient, leading to practically efficient and scalable parallel programming. The key
technical innovation behind our techniques is coscheduling, which partitions the memory into
smaller heaps and schedules (assign) these heaps on processors in such a way that allows each
processor to independently manage its own heaps. The provable bounds are crucial for not only
for guaranteed efficiency, but also for precisely specifying the behavior of the memory manager
across different types of programs, including deterministic and nondeterministic programs.
The guiding principle for our approach is the disentanglement hypothesis, which states that
most objects are disentangled, i.e., they are only accessed by tasks that are sequentially depen-
dent on the task that allocated them. To exploit the hypothesis, we organize the memory into
a tree of heaps, which mirrors the structure of parallel tasks, and enables efficient management
of the disentangled objects. Then, we develop techniques for tracking and managing the special
and rare case of entangled objects. These techniques incur overhead only for entangled objects,
ensuring that allocations and accesses of disentangled objects observe no overhead due to them.

A fundamental reason for the prevalence of disentangled objects is the fact that entangled
objects arise from races on mutable objects. In contrast, immutable objects—which are common
in functional programming—do not lead to entanglement. Our memory manager is optimized
to handle immutable objects, using bump allocation for fast allocations and ensuring barrier-
free access. Supporting immutability efficiently is a key goal for our approach, as our memory
management techniques are explicitly designed to avoid overheads for immutable objects.

147



Building on memory management techniques for the heap tree, we developed a coschedul-
ing algorithm that integrates task scheduling with memory management. By coscheduling
the computation with memory, we ensure that related tasks and their associated memory are
managed together on the same processor. This integration reduces the overheads of memory
management and improves precision—when a processor garbage collects, it traces all the heaps
that are assigned to it, accurately accounting for all the inter-heap pointers between the heaps
assigned to it. Coscheduling guarantees work and space bounds because it clusters heaps such
that each cluster represents a sequential execution.

To demonstrate the practicality of our techniques, we developed the the MPL compiler suite
and showed that it can be used to implement sophisticated non-blocking and wait-free concur-
rent data structures, as well as parallel algorithms that use them. Our experiments show that
MPL performs well, incurring relatively small overheads compared to sequential runs, and scal-
ing well as the number of cores increase. Notably, MPL delivers performance and compactness
simultaneously: parallel runs on dozens of cores usually consume less memory than sequen-
tial runs and deliver significant speedups. We also perform a more modest comparison with
several other languages including Go, Java, Multicore OCaml, and C++. Our results show that
MPL is competitive with these languages, establishing that functional languages can deliver
both performance and scalability, while offering important safety benefits.

10.2 Future Work

There are several promising directions for future research based on the concepts presented in
this thesis.

Span Bounds. In this thesis, we primarily focused on establishing the provable bounds for
work and space for our memory management techniques. However, the span of our memory
management techniques is another crucial metric for analyzing the efficiency of the runtime
system. Span represents the longest chain of sequentially dependent instructions in a parallel
computation. Bounding the span is important for establishing an upper bound on the end-to-
end execution time of the program.

One promising direction is designing a span-aware collection policy and extending our
analysis for deriving span bounds of memory managed programs. Currently, we perform
garbage collection of each heap sequentially. Instead, future work could implement a parallel
garbage collector that runs in O(D) span, where D is the longest chain of pointers in memory.
The collection policy could then take advantage of the parallel garbage collector and ensure that
the span of the program, including the cost of parallel garbage collection, is O(D + S), where S
is the span of the computation. Achieving work, space, and span bounds simultaneously, while
preserving the practical benefits of independent allocation and garbage collection, would be an
excellent theoretical result.

148



Interactive Applications and Futures. Another promising area for generalizing our mem-
ory management techniques is their application to interactive applications. Interactive applica-
tions, including real-time systems or data-driven software, introduce new challenges for mem-
ory management due to their need for responsiveness. Although our work primarily focuses
on the end-to-end running time or throughput of applications, there is potential to apply the
disentanglement hypothesis for interactive applications.

As proved in this thesis, when interactive applications are expressed using futures, they
satisfy the disentanglement hypothesis. Integrating our coscheduling techniques and perform-
ing independent memory management for interactive applications is an exciting direction for
future research. Independent garbage collection is particularly powerful, because it requires
no more than one processor to be paused at any time, and can be used to eliminate stop-the-
world pauses and optimize for low latency. Exploiting the disentanglement hypothesis in such
interactive environments is an exciting avenue for research.

149



150



(1]

(2]

[10]

Bibliography

Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work stealing.
Theory of Computing Systems, 35(3):321-347, 2002.

Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Scheduling parallel programs by
work stealing with private deques. In Proceedings of the 19th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’13, 2013.

Umut A. Acar, Guy Blelloch, Matthew Fluet, Stefan K. Muller, and Ram Raghunathan.
Coupling memory and computation for locality management. In Summit on Advances in
Programming Languages (SNAPL), 2015.

Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Oracle-guided scheduling for con-
trolling granularity in implicitly parallel languages. Journal of Functional Programming
(JFP), 26:¢23, 2016.

Umut A. Acar, Arthur Charguéraud, Mike Rainey, and Filip Sieczkowski. Dag-calculus: A
calculus for parallel computation. In Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, pages 18-32, 2016.

Umut A. Acar, Arthur Charguéraud, Adrien Guatto, Mike Rainey, and Filip Sieczkowski.
Heartbeat scheduling: Provable efficiency for nested parallelism. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2018, pages 769-782, 2018. ISBN 978-1-4503-5698-5.

Umut A. Acar, Jatin Arora, Matthew Fluet, Ram Raghunathan, Sam Westrick, and Rohan
Yadav. Mpl: A high-performance compiler for parallel ml, 2020. https://github.com/
MPLLang/mpl.

Sarita V. Adve. Data races are evil with no exceptions: technical perspective. Commun.
ACM, 53(11):84, 2010.

Shivali Agarwal, Rajkishore Barik, Dan Bonachea, Vivek Sarkar, R. K. Shyamasundar,
and Katherine A. Yelick. Deadlock-free scheduling of X10 computations with bounded
resources. In SPAA 2007: Proceedings of the 19th Annual ACM Symposium on Parallelism in
Algorithms and Architectures, San Diego, California, USA, June 9-11, 2007, pages 229-240,
2007.

T. R. Allen and D. A. Padua. Debugging Fortran on a shared memory machine. In Pro-
ceedings of the 1987 International Conference on Parallel Processing, pages 721-727, August

151


https://github.com/MPLLang/mpl
https://github.com/MPLLang/mpl

[11]

[12]

[13]

1987.

B. Alpern, L. Carter, and E. Feig. Uniform memory hierarchies. In Proceedings [1990] 31st
Annual Symposium on Foundations of Computer Science, pages 600-608 vol.2, Oct 1990.
doi: 10.1109/FSCS.1990.89581.

Daniel Anderson, Guy E. Blelloch, Laxman Dhulipala, Magdalen Dobson, and Yihan
Sun. The problem-based benchmark suite (pbbs), V2. In Jaejin Lee, Kunal Agrawal,
and Michael F. Spear, editors, PPoPP °22: 27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, Seoul, Republic of Korea, April 2 - 6, 2022, pages
445-447. ACM, 2022. doi: 10.1145/3503221.3508422. URL https://doi.org/10.1145/
3503221 .3508422.

Todd A. Anderson. Optimizations in a private nursery-based garbage collector. In Pro-
ceedings of the 9th International Symposium on Memory Management, ISMM 2010, Toronto,
Ontario, Canada, June 5-6, 2010, pages 21-30, 2010.

Andrew W. Appel. Simple generational garbage collection and fast allocation. Software
Practice and Experience, 19(2):171-183, 1989. URL http://www.cs.princeton.edu/
fac/~appel/papers/143.ps.

Andrew W. Appel. Compiling with Continuations. Cambridge University Press, New
York, 1992.

Andrew W. Appel and Zhong Shao. Empirical and analytic study of stack versus heap
cost for languages with closures. Journal of Functional Programming, 6(1):47-74, January
1996. URL ftp://daffy.cs.yale.edu/pub/papers/shao/stack.ps.

[17] Jatin Arora, Sam Westrick, and Umut A. Acar. Provably space efficient parallel func-

tional programming. In Proceedings of the 48th Annual ACM Symposium on Principles of
Programming Languages (POPL), 2021.

[18] Jatin Arora, Sam Westrick, and Umut A. Acar. Replication instructions for Article: Ef-

ficient Parallel Functional Programming with Effects, March 2023. URL https://doi.
org/10.5281/zenodo . 78240609.

[19] Jatin Arora, Sam Westrick, and Umut A. Acar. Efficient parallel functional programming

with effects. Proc. ACM Program. Lang., 7(PLDI):1558—-1583, 2023. doi: 10.1145/3591284.
URL https://doi.org/10.1145/3591284.

[20] Jatin Arora, Stefan K. Muller, and Umut A. Acar. Disentanglement with futures, state, and

[21]

interaction. Proc. ACM Program. Lang., 8(POPL), jan 2024. doi: 10.1145/3632895. URL
https://doi.org/10.1145/3632895.

Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for mul-
tiprogrammed multiprocessors. In 10th Annual ACM Symposium on Parallel Algorithms
and Architectures, pages 119-129, 1998.

Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multi-
programmed multiprocessors. Theory of Computing Systems, 34(2):115-144, 2001.

152


https://doi.org/10.1145/3503221.3508422
https://doi.org/10.1145/3503221.3508422
http://www.cs.princeton.edu/fac/~appel/papers/143.ps
http://www.cs.princeton.edu/fac/~appel/papers/143.ps
ftp://daffy.cs.yale.edu/pub/papers/shao/stack.ps
https://doi.org/10.5281/zenodo.7824069
https://doi.org/10.5281/zenodo.7824069
https://doi.org/10.1145/3591284
https://doi.org/10.1145/3632895

(23]

[24]

[28]

[29]

Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. I-structures: Data structures for par-
allel computing. ACM Trans. Program. Lang. Syst., 11(4):598-632, October 1989.

Giuseppe Attardi and Tito Flagella. A customisable memory management frame-
work. Technical Report TR-94-010, International Computer Science Institute, Berkeley,
1994. URL ftp://ftp.icsi.berkeley.edu:/pub/techreports/1994/tr-94-010.
ps.Z. Also Proceedings of the USENIX C++ Conference, Cambridge, MA, 1994.

Giuseppe Attardi, Tito Flagella, and Pietro Iglio. A customisable memory management
framework for C++. Software Practice and Experience, 28(11):1143-1183, November 1998.
URL ftp://ftp.di.unipi.it/pub/Papers/attardi/SPE.ps.gz.

Sven Auhagen, Lars Bergstrom, Matthew Fluet, and John H. Reppy. Garbage collection
for multicore NUMA machines. In Proceedings of the 2011 ACM SIGPLAN workshop on
Memory Systems Performance and Correctness (MSPC), pages 51-57, 2011.

Shai Avidan and Ariel Shamir. Seam carving for content-aware image resizing. In ACM
SIGGRAPH 2007 Papers, SIGGRAPH 07, page 10—es, New York, NY, USA, 2007. Associa-
tion for Computing Machinery. ISBN 9781450378369. doi: 10.1145/1275808.1276390. URL
https://doi.org/10.1145/1275808.1276390.

David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time garbage collector with low
overhead and consistent utilization. In Conference Record of the Thirtieth Annual ACM
Symposium on Principles of Programming Languages, ACM SIGPLAN Notices, New Or-
leans, LA, January 2003. ACM Press.

Henry G. Baker and Carl E. Hewitt. The incremental garbage collection of processes. Al
memo 454, MIT Press, December 1977.

[30] Joel F. Bartlett. Compacting garbage collection with ambiguous roots. Technical Report

88/2, DEC Western Research Laboratory, Palo Alto, CA, February 1988. URL http://
www.research.digital.com/wrl/techreports/88.2.ps. Also in Lisp Pointers 1, 6
(April-June 1988), 2-12.

[31] Joel F. Bartlett. Mostly-Copying garbage collection picks up generations and C++. Tech-

[33]

[34]

nical note, DEC Western Research Laboratory, Palo Alto, CA, October 1989. URL ftp://
ftp.digital.com/pub/DEC/WRL/research-reports/WRL-TN-12.ps. Sources avail-
able in ftp://ftp.digital.com/pub/DEC/CCgc.

M. Bauer, S. Treichler, E. Slaughter, and A. Aiken. Legion: Expressing locality and inde-
pendence with logical regions. In SC ’12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, pages 1-11, Nov 2012.
doi: 10.1109/SC.2012.71.

Michael A. Bender, Jeremy T. Fineman, Seth Gilbert, and Charles E. Leiserson. On-the-fly
maintenance of series-parallel relationships in fork-join multithreaded programs. In 16th
Annual ACM Symposium on Parallel Algorithms and Architectures, pages 133-144, 2004.

Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard:
a scalable memory allocator for multithreaded applications. In Proceedings of the Ninth

153


ftp://ftp.icsi.berkeley.edu:/pub/techreports/1994/tr-94-010.ps.Z
ftp://ftp.icsi.berkeley.edu:/pub/techreports/1994/tr-94-010.ps.Z
ftp://ftp.di.unipi.it/pub/Papers/attardi/SPE.ps.gz
https://doi.org/10.1145/1275808.1276390
http://www.research.digital.com/wrl/techreports/88.2.ps
http://www.research.digital.com/wrl/techreports/88.2.ps
ftp://ftp.digital.com/pub/DEC/WRL/research-reports/WRL-TN-12.ps
ftp://ftp.digital.com/pub/DEC/WRL/research-reports/WRL-TN-12.ps

[40]

[41]

[42]

[43]

International Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS IX, page 117-128, New York, NY, USA, 2000. Association for
Computing Machinery. ISBN 1581133170. doi: 10.1145/378993.379232. URL https:
//doi.org/10.1145/378993.379232.

Guy Blelloch and John Greiner. Parallelism in sequential functional languages. In Pro-
ceedings of the 7th International Conference on Functional Programming Languages and
Computer Architecture, FPCA °95, pages 226-237. ACM, 1995.

Guy Blelloch and Margaret Reid-Miller. Pipelining with futures. Theory of Computing
Systems, 32(3):213-239, 1999.

Guy Blelloch, Phil Gibbons, and Yossi Matias. Provably efficient scheduling for languages
with fine-grained parallelism. Journal of the ACM, 46(2):281-321, 1999.

Guy E. Blelloch. Programming parallel algorithms. Communications of the ACM, 39(3),
March 1996.

Guy E. Blelloch and Perry Cheng. On bounding time and space for multiprocessor
garbage collection. In Proceedings of SIGPLAN’99 Conference on Programming Languages
Design and Implementation, ACM SIGPLAN Notices, pages 104-117, Atlanta, May 1999.
ACM Press.

Guy E. Blelloch and Phillip B. Gibbons. Effectively sharing a cache among threads. In
SPAA, 2004.

Guy E. Blelloch and John Greiner. A provable time and space efficient implementation
of NESL. In ICFP, pages 213-225, 1996.

Guy E. Blelloch, Jonathan C. Hardwick, Jay Sipelstein, Marco Zagha, and Siddhartha
Chatterjee. Implementation of a portable nested data-parallel language. . Parallel Distrib.
Comput., 21(1):4—14, 1994.

Guy E. Blelloch, Phillip B. Gibbons, Yossi Matias, and Girija J. Narlikar. Space-efficient
scheduling of parallelism with synchronization variables. In Proceedings of the Ninth
Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA °97, pages 12—
23, 1997.

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Harsha Vardhan Simhadri.
Scheduling irregular parallel computations on hierarchical caches. In Proceedings of the
23rd ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 11, pages
355-366, 2011.

Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, and Julian Shun. Internally de-
terministic parallel algorithms can be fast. In PPoPP ’12, pages 181-192, 2012.

Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. Parlaylib - A toolkit for par-
allel algorithms on shared-memory multicore machines. In Christian Scheideler and
Michael Spear, editors, SPAA °20: 32nd ACM Symposium on Parallelism in Algorithms
and Architectures, Virtual Event, USA, July 15-17, 2020, pages 507-509. ACM, 2020. doi:

154


https://doi.org/10.1145/378993.379232
https://doi.org/10.1145/378993.379232

[47]

[48]

[49]

[53]

[54]

10.1145/3350755.3400254. URL https://doi.org/10.1145/3350755.3400254.

Robert D. Blumofe and Charles E. Leiserson. Space-efficient scheduling of multithreaded
computations. SIAM Journal on Computing, 27(1):202-229, 1998.

Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by
work stealing. Journal of the ACM, 46(5):720-748, September 1999.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system. In
Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 207-216, Santa Barbara, California, July 1995.

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. Cilk: An efficient multithreaded runtime system. Journal
of Parallel and Distributed Computing, 37(1):55 — 69, 1996.

Robert L. Bocchino, Stephen Heumann, Nima Honarmand, Sarita V. Adve, Vikram S.
Adve, Adam Welc, and Tatiana Shpeisman. Safe nondeterminism in a deterministic-by-
default parallel language. In ACM POPL, 2011.

Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V. Adve, Stephen Heumann,
Rakesh Komuravelli, Jeffrey Overbey, Patrick Simmons, Hyojin Sung, and Mohsen Vak-
ilian. A type and effect system for deterministic parallel java. In Proceedings of the 24th
ACM SIGPLAN conference on Object oriented programming systems languages and appli-
cations, OOPSLA 09, pages 97-116, 2009.

Robert L Bocchino, Jr., Vikram S. Adve, Sarita V. Adve, and Marc Snir. Parallel pro-
gramming must be deterministic by default. In First USENIX Conference on Hot Topics in
Parallelism, 2009.

Hans-Juergen Boehm. How to miscompile programs with "benign” data races. In 3rd
USENIX Workshop on Hot Topics in Parallelism, HotPar’11, Berkeley, CA, USA, May 26-27,
2011, 2011.

Richard P. Brent. The parallel evaluation of general arithmetic expressions. journal of
the ACM, 21(2):201-206, April 1974. ISSN 0004-5411.

Trevor Alexander Brown. Reclaiming memory for lock-free data structures: There has
to be a better way. In Proceedings of the 2015 ACM Symposium on Principles of Dis-
tributed Computing, PODC 15, page 261-270, New York, NY, USA, 2015. Association
for Computing Machinery. ISBN 9781450336178. doi: 10.1145/2767386.2767436. URL
https://doi.org/10.1145/2767386.2767436.

FW. Burton. Guaranteeing good memory bounds for parallel programs. IEEE Transactions
on Software Engineering, 22(10):762-773, 1996. doi: 10.1109/32.544353.

Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon L. Peyton Jones, Gabriele Keller,
and Simon Marlow. Data parallel haskell: a status report. In Proceedings of the POPL
2007 Workshop on Declarative Aspects of Multicore Programming, DAMP 2007, Nice, France,

155


https://doi.org/10.1145/3350755.3400254
https://doi.org/10.1145/2767386.2767436

[59]

[64]
[65]

[66]

[67]

[68]

[69]

January 16, 2007, pages 10-18, 2007.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-
stra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In Proceedings of the 20th annual ACM SIG-
PLAN conference on Object-oriented programming, systems, languages, and applications,
OOPSLA 05, pages 519-538. ACM, 2005.

Guang-Ien Cheng, Mingdong Feng, Charles E. Leiserson, Keith H. Randall, and Andrew F.
Stark. Detecting data races in Cilk programs that use locks. In Proceedings of the 10th
ACM Symposium on Parallel Algorithms and Architectures, SPAA "98, 1998.

Perry Cheng and Guy Blelloch. A parallel, real-time garbage collector. In Proceedings of
SIGPLAN 2001 Conference on Programming Languages Design and Implementation, ACM
SIGPLAN Notices, pages 125-136, Snowbird, Utah, June 2001. ACM Press.

Rezaul Alam Chowdhury and Vijaya Ramachandran. Cache-efficient dynamic program-
ming algorithms for multicores. In Proc. 20th ACM Symposium on Parallelism in Algo-
rithms and Architectures, pages 207-216, New York, NY, USA, 2008. ACM.

Tiago Cogumbreiro, Rishi Surendran, Francisco Martins, Vivek Sarkar, Vasco T. Vascon-
celos, and Max Grossman. Deadlock avoidance in parallel programs with futures: why
parallel tasks should not wait for strangers. Proc. ACM Program. Lang., 1(OOPSLA):103:1-
103:26, 2017.

Richard Cole. Parallel merge sort. SIAM Journal on Computing, 17(4):770-785, 1988.

Intel Corp. Knights landing (knl): 2nd generation intel xeon phi processor. In Intel
Xeon Processor E7 v4 Family Specification, 2017. https://ark.intel.com/products/
series/93797/Intel-Xeon-Processor-E7-v4-Family.

Christopher M. Dawson and Michael A. Nielsen. The solovay-kitaev algorithm. Quantum
Inf. Comput., 6(1):81-95, 2006. doi: 10.26421/QIC6.1-6. URL https://doi.org/10.
26421/QIC6.1-6.

Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Theoretically efficient parallel graph
algorithms can be fast and scalable. ACM Trans. Parallel Comput., 8(1):4:1-4:70, 2021. doi:
10.1145/3434393. URL https://doi.org/10.1145/3434393.

Laxman Dhulipala, Guy E. Blelloch, Yan Gu, and Yihan Sun. Pac-trees: Supporting par-
allel and compressed purely-functional collections, 2022.

Stephen Dolan, Spiros Eliopoulos, Daniel Hillerstrom, Anil Madhavapeddy, K. C. Sivara-
makrishnan, and Leo White. Concurrent system programming with effect handlers. In
Meng Wang and Scott Owens, editors, Trends in Functional Programming, pages 98—117,
Cham, 2018. Springer International Publishing. ISBN 978-3-319-89719-6.

Stephen Dolan, KC Sivaramakrishnan, and Anil Madhavapeddy. Bounding data races in
space and time. SIGPLAN Not., 53(4):242-255, jun 2018. ISSN 0362-1340. doi: 10.1145/
3296979.3192421. URL https://doi.org/10.1145/3296979.3192421.

156


https://ark.intel.com/products/series/93797/Intel-Xeon-Processor-E7-v4-Family
https://ark.intel.com/products/series/93797/Intel-Xeon-Processor-E7-v4-Family
https://doi.org/10.26421/QIC6.1-6
https://doi.org/10.26421/QIC6.1-6
https://doi.org/10.1145/3434393
https://doi.org/10.1145/3296979.3192421

[71] Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage collection for
multiprocessor systems. In Conference Record of the Twenty-first Annual ACM Sympo-
sium on Principles of Programming Languages, ACM SIGPLAN Notices, Portland, OR, Jan-
uary 1994. ACM Press. URL ftp://ftp.inria.fr/INRIA/Projects/para/doligez/
DoligezGonthier94.ps.gz.

[72] Damien Doligez and Xavier Leroy. A concurrent generational garbage collector for a
multi-threaded implementation of ML. In Conference Record of the Twentieth Annual
ACM Symposium on Principles of Programming Languages, ACM SIGPLAN Notices, pages
113-123. ACM Press, January 1993. URL file://ftp.inria.fr/INRIA/Projects/
cristal/Xavier.Leroy/publications/concurrent-gc.ps.gz.

[73] Tamar Domani, Elliot K. Kolodner, Ethan Lewis, Erez Petrank, and Dafna Sheinwald.
Thread-local heaps for Java. In David Detlefs, editor, ISMM’02 Proceedings of the Third
International Symposium on Memory Management, ACM SIGPLAN Notices, pages 76—
87, Berlin, June 2002. ACM Press. URL http://www.cs.technion.ac.il/~erez/
publications.html.

[74] Derek L. Eager, John Zahorjan, and Edward D. Lazowska. Speedup versus efficiency in
parallel systems. IEEE Transactions on Computers, 38(3):408-423, March 1989.

[75] Perry A. Emrath, Sanjoy Ghosh, and David A. Padua. Event synchronization analysis for
debugging parallel programs. In Supercomputing *91, pages 580-588, November 1991.

[76] Jason Evans. A scalable concurrent malloc(3) implementation for freebsd. 01 2006.

[77] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem, Mike Hous-
ton, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken, William J. Dally, and Pat
Hanrahan. Sequoia: Programming the memory hierarchy. In Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC ’06, New York, NY, USA, 2006. ACM. ISBN
0-7695-2700-0.

[78] Mingdong Feng and Charles E. Leiserson. Efficient detection of determinacy races in Cilk
programs. In Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), pages 1-11, June 1997.

[79] Jeremy T. Fineman. Provably good race detection that runs in parallel. Master’s thesis,
Massachusetts Institute of Technology, Department of Electrical Engineering and Com-
puter Science, Cambridge, MA, August 2005.

[80] Cormac Flanagan and Stephen N. Freund. Fasttrack: efficient and precise dynamic race
detection. SIGPLAN Not., 44(6):121-133, June 2009. ISSN 0362-1340. doi: 10.1145/1543135.
1542490.

[81] Matthew Fluet, Greg Morrisett, and Amal J. Ahmed. Linear regions are all you need. In
Proceedings of the 15th Annual European Symposium on Programming (ESOP), March 2006.

[82] Matthew Fluet, Mike Rainey, and John Reppy. A scheduling framework for general-
purpose parallel languages. In ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP), 2008.

157


ftp://ftp.inria.fr/INRIA/Projects/para/doligez/DoligezGonthier94.ps.gz
ftp://ftp.inria.fr/INRIA/Projects/para/doligez/DoligezGonthier94.ps.gz
file://ftp.inria.fr/INRIA/Projects/cristal/Xavier.Leroy/publications/concurrent-gc.ps.gz
file://ftp.inria.fr/INRIA/Projects/cristal/Xavier.Leroy/publications/concurrent-gc.ps.gz
http://www.cs.technion.ac.il/~erez/publications.html
http://www.cs.technion.ac.il/~erez/publications.html

(83]

(84]

[90]

[91]

[92]

Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly threaded paral-
lelism in Manticore. Journal of Functional Programming, 20(5-6):1-40, 2011.

Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the
Cilk-5 multithreaded language. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 212-223, 1998.

Matteo Frigo, Pablo Halpern, Charles E. Leiserson, and Stephen Lewin-Berlin. Reduc-
ers and other Cilk++ hyperobjects. In 21st Annual ACM Symposium on Parallelism in
Algorithms and Architectures, pages 79-90, 2009.

Marcelo ]J. R. Gongalves. Cache Performance of Programs with Intensive Heap Alloca-
tion and Generational Garbage Collection. PhD thesis, Department of Computer Science,
Princeton University, May 1995.

Marcelo J. R. Gongalves and Andrew W. Appel. Cache performance of fast-allocating
programs. In Record of the 1995 Conference on Functional Programming and Computer
Architecture, June 1995.

Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling Wang, and James
Cheney. Region-based memory management in Cyclone. In Proceedings of SIGPLAN
2002 Conference on Programming Languages Design and Implementation, ACM SIGPLAN
Notices, pages 282-293, Berlin, June 2002. ACM Press. ISBN 1-58113-463-0.

Adrien Guatto, Sam Westrick, Ram Raghunathan, Umut A. Acar, and Matthew Fluet. Hi-
erarchical memory management for mutable state. In Proceedings of the 23rd ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming, PPoPP 2018, Vienna,
Austria, February 24-28, 2018, pages 81-93, 2018.

Robert H. Halstead, Jr. Implementation of Multilisp: Lisp on a Multiprocessor. In Pro-
ceedings of the 1984 ACM Symposium on LISP and functional programming, LFP ’84, pages
9-17. ACM, 1984.

Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM
TOPLAS, 7(4):501-538, October 1985.

Kevin Hammond. Why parallel functional programming matters: Panel statement. In
Reliable Software Technologies - Ada-Europe 2011 - 16th Ada-Europe International Confer-
ence on Reliable Software Technologies, Edinburgh, UK, June 20-24, 2011. Proceedings, pages
201-205, 2011.

David R. Hanson. Fast allocation and deallocation of memory based on object lifetimes.
Software Practice and Experience, 20(1):5-12, January 1990.

Timothy L. Harris. A pragmatic implementation of non-blocking linked-lists. In Jen-
nifer L. Welch, editor, Distributed Computing, 15th International Conference, DISC 2001,
Lisbon, Portugal, October 3-5, 2001, Proceedings, volume 2180 of Lecture Notes in Com-
puter Science, pages 300-314. Springer, 2001. doi: 10.1007/3-540-45414-4\_21. URL
https://doi.org/10.1007/3-540-45414-4_21.

158


https://doi.org/10.1007/3-540-45414-4_21

[95]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

Maurice Herlihy and Zhiyu Liu. Well-structured futures and cache locality. In Proceedings
of the 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’14, pages 155-166, New York, NY, USA, 2014. ACM.

Antony Hosking. Portable, mostly-concurrent, mostly-copying garbage collection for
multi-processors. volume 2006, 01 2006. doi: 10.1145/1133956.1133963.

Shams Mahmood Imam and Vivek Sarkar. Habanero-java library: a java 8 framework
for multicore programming. In 2014 International Conference on Principles and Practices
of Programming on the Java Platform Virtual Machines, Languages and Tools, PPP} ’14,
pages 75-86, 2014.

Intel. Intel threading building blocks, 2011. https://www.threadingbuildingblocks.
org/.

Intel Cilk++ SDK Programmer’s Guide. Intel Corporation, October 2009. Document Num-
ber: 322581-001US.

TBB. Intel(R) Threading Building Blocks. Intel Corporation, 2009. Available from http:
//www.threadingbuildingblocks.org/documentation. php.

Richard Jones, Antony Hosking, and Eliot Moss. The garbage collection handbook: the art
of automatic memory management. Chapman & Hall/CRC, 2011.

Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection Handbook : The
Art of Automatic Memory Management. CRC Press, 2012.

Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones, and
Ben Lippmeier. Regular, shape-polymorphic, parallel arrays in haskell. In Proceedings of
the 15th ACM SIGPLAN international conference on Functional programming, ICFP ’10,
pages 261-272, 2010.

Dileep Kini, Umang Mathur, and Mahesh Viswanathan. Dynamic race prediction in lin-
ear time. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,
Barcelona, Spain, June 18-23, 2017, pages 157-170. ACM, 2017.

Alexei Yu Kitaev, Alexander Shen, Mikhail N Vyalyi, and Mikhail N Vyalyi. Classical and
quantum computation. Number 47. American Mathematical Soc., 2002.

A. Krishnamurthy, D. E. Culler, A. Dusseau, S. C. Goldstein, S. Lumetta, T. von Eicken,
and K. Yelick. Parallel programming in split-c. In Proceedings of the 1993 ACM/IEEE
Conference on Supercomputing, Supercomputing 93, pages 262-273, New York, NY, USA,
1993. ACM. ISBN 0-8186-4340-4. doi: 10.1145/169627.169724. URL http://doi.acm.
org/10.1145/169627 .169724.

Ananya Kumar, Guy E. Blelloch, and Robert Harper. Parallel functional arrays. In
Giuseppe Castagna and Andrew D. Gordon, editors, Proceedings of the 44th ACM SIG-
PLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, Jan-
uary 18-20, 2017, pages 706-718. ACM, 2017.

159


https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
http://www.threadingbuildingblocks.org/documentation.php
http://www.threadingbuildingblocks.org/documentation.php
http://doi.acm.org/10.1145/169627.169724
http://doi.acm.org/10.1145/169627.169724

[108]

[109]

[110]

[111]

[112]

[113]

[114]
[115]

[116]

[117]

[118]

[119]

Matthew Le and Matthew Fluet. Partial aborts for transactions via first-class continu-
ations. In Proceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2015, pages 230-242, 2015. ISBN 978-1-4503-3669-7.

Doug Lea. A Java fork/join framework. In ACM 2000 Conference on Java Grande, pages
36-43, 2000.

I-Ting Angelina Lee, Charles E. Leiserson, Tao B. Schardl, Zhunping Zhang, and Jim
Sukha. On-the-fly pipeline parallelism. TOPC, 2(3):17:1-17:42, 2015.

Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of a task parallel
library. In Proceedings of the 24th ACM SIGPLAN conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA 09, pages 227-242, 2009.

Peng Li, Simon Marlow, Simon L. Peyton Jones, and Andrew P. Tolmach. Lightweight
concurrency primitives for GHC. In Proceedings of the ACM SIGPLAN Workshop on
Haskell, Haskell 2007, Freiburg, Germany, September 30, 2007, pages 107-118, 2007.

Jonatan Lindén and Bengt Jonsson. A skiplist-based concurrent priority queue with min-
imal memory contention. In Roberto Baldoni, Nicolas Nisse, and Maarten van Steen,
editors, Principles of Distributed Systems - 17th International Conference, OPODIS 2013,
Nice, France, December 16-18, 2013. Proceedings, volume 8304 of Lecture Notes in Com-
puter Science, pages 206—220. Springer, 2013. doi: 10.1007/978-3-319-03850-6\_15. URL
https://doi.org/10.1007/978-3-319-03850-6_15.

LWT. Lwt ocaml. GitHub, 2022. URL https://github.com/ocsigen/lwt.

Simon Marlow. Parallel and concurrent programming in haskell. In Viktoria Zsok, Zoltan
Horvath, and Rinus Plasmeijer, editors, Central European Functional Programming School
- 4th Summer School, CEFP 2011, Budapest, Hungary, June 14-24, 2011, Revised Selected
Papers, volume 7241 of Lecture Notes in Computer Science, pages 339-401. Springer, 2011.

Simon Marlow and Simon L. Peyton Jones. Multicore garbage collection with local heaps.
In Hans-Juergen Boehm and David F. Bacon, editors, Proceedings of the 10th International
Symposium on Memory Management, ISMM 2011, San Jose, CA, USA, June 04 - 05, 2011,
pages 21-32. ACM, 2011.

John Mellor-Crummey. On-the-fly detection of data races for programs with nested fork-
join parallelism. In Proceedings of Supercomputing’91, pages 24-33, 1991.

Maged M. Michael and Michael L. Scott. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In James E. Burns and Yoram Moses, editors,
Proceedings of the Fifteenth Annual ACM Symposium on Principles of Distributed Comput-
ing, Philadelphia, Pennsylvania, USA, May 23-26, 1996, pages 267-275. ACM, 1996. doi:
10.1145/248052.248106. URL https://doi.org/10.1145/248052.248106.

Gary L Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using
random shifts. In Proceedings of the twenty-fifth annual ACM symposium on Parallelism
in algorithms and architectures, pages 196-203, 2013.

160


https://doi.org/10.1007/978-3-319-03850-6_15
https://github.com/ocsigen/lwt
https://doi.org/10.1145/248052.248106

[120]
[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

MLton. MLton web site. http://www.mlton.org, n.d.

Stefan Muller, Kyle Singer, Noah Goldstein, Umut A. Acar, Kunal Agrawal, and I-Ting An-
gelina Lee. Responsive parallelism with futures and state. In Proceedings of the ACM
Conference on Programming Language Design and Implementation (PLDI), 2020.

Stefan K. Muller and Umut A. Acar. Latency-hiding work stealing: Scheduling interacting
parallel computations with work stealing. In Proceedings of the 28th ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA 2016, Asilomar State Beach/Pacific
Grove, CA, USA, July 11-13, 2016, pages 71-82, 2016.

Stefan K. Muller, Umut A. Acar, and Robert Harper. Responsive parallel computation:
Bridging competitive and cooperative threading. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI 2017, pages 677—
692, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4988-8.

Stefan K. Muller, Umut A. Acar, and Robert Harper. Competitive parallelism: Getting
your priorities right. Proc. ACM Program. Lang., 2(ICFP):95:1-95:30, July 2018. ISSN
2475-1421.

Stefan K. Muller, Umut A. Acar, and Robert Harper. Types and cost models for respon-
sive parallelism. In Proceedings of the 14th ACM SIGPLAN International Conference on
Functional Programming, ICFP °18, 2018.

Stefan K. Muller, Sam Westrick, and Umut A. Acar. Fairness in responsive parallelism.
In Proceedings of the 24th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2019, 2019.

Stefan K. Muller, Kyle Singer, Devyn Terra Keeney, Andrew Neth, Kunal Agrawal, I-
Ting Angelina Lee, and Umut A. Acar. Responsive parallelism with synchronization.
Proc. ACM Program. Lang., 7(PLDI):712-735, 2023.

Girija J. Narlikar and Guy E. Blelloch. Space-efficient scheduling of nested parallelism.
ACM Transactions on Programming Languages and Systems (TOPLAS), 21(1):138-173,
1999. ISSN 0164-0925. doi: http://doi.acm.org/10.1145/314602.314607.

Girija Jayant Narlikar. Space-efficient scheduling for parallel, multithreaded computations.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 1999.

Robert H. B. Netzer and Barton P. Miller. What are race conditions? ACM Letters on
Programming Languages and Systems, 1(1):74-88, March 1992.

Robert W. Numrich and John Reid. Co-array fortran for parallel programming. SIGPLAN
Fortran Forum, 17(2):1-31, August 1998. ISSN 1061-7264. doi: 10.1145/289918.289920.
URL http://doi.acm.org/10.1145/289918.289920.

Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data race detection. In Rudolf
Eigenmann and Martin C. Rinard, editors, Proceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPOPP 2003, June 11-13, 2003, San
Diego, CA, USA, pages 167-178. ACM, 2003.

161


http://www.mlton.org
http://doi.acm.org/10.1145/289918.289920

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]
[145]

[146]

Atsushi Ohori, Kenjiro Taura, and Katsuhiro Ueno. Making sml# a general-purpose high-
performance language, 2018. Unpublished Manuscript.

OpenMP 5.0. OpenMP Application Programming Interface, Version 5.0, November 2018.
Accessed in July 2018.

Wolfgang Paul, Uzi Vishkin, and Hubert Wagener. Parallel dictionaries on 2-3 trees.
In International Colloquium on Automata, Languages, and Programming, pages 597-609.
Springer, 1983.

Simon L. Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M. T.
Chakravarty. Harnessing the multicores: Nested data parallelism in Haskell. In FSTTCS,
pages 383-414, 2008.

Filip Pizlo, Erez Petrank, and Bjarne Steensgaard. A study of concurrent real-time garbage
collectors. ACM SIGPLAN Notices, 43(6):33-44, 2008.

Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy Blelloch. Hierarchical mem-
ory management for parallel programs. In Proceedings of the 21st ACM SIGPLAN Interna-
tional Conference on Functional Programming, ICFP 2016, pages 392-406, New York, NY,
USA, 2016. ACM.

Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. Efficient
data race detection for async-finish parallelism. In Howard Barringer, Ylies Falcone,
Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon Pace, Grigore Rosu, Oleg Sokol-
sky, and Nikolai Tillmann, editors, Runtime Verification, volume 6418 of Lecture Notes in
Computer Science, pages 368-383. Springer Berlin / Heidelberg, 2010. ISBN 978-3-642-
16611-2.

Raghavan Raman, Jisheng Zhao, Vivek Sarkar, Martin Vechev, and Eran Yahav. Scalable
and precise dynamic datarace detection for structured parallelism. In Proceedings of the
33rd ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 12, pages 531-542, 2012.

Dan Robinson. Hpe shows the machine — with 160tb of shared memory. Data Center
Dynamics, May 2017.

Mads Rosendahl. Automatic complexity analysis. In FPCA °89: Functional Programming
Languages and Computer Architecture, pages 144-156. ACM, 1989.

D. T. Ross. The AED free storage package. Communications of the ACM, 10(8):481-492,
August 1967.

Rust Team. Rust language, 2019. URL https://www.rust-lang.org/.

David Sands. Calculi for Time Analysis of Functional Programs. PhD thesis, University of
London, Imperial College, September 1990.

David Sands. Complexity analysis for a lazy higher-order language. In ESOP ’90: Pro-
ceedings of the 3rd European Symposium on Programming, pages 361-376, London, UK,
1990. Springer-Verlag.

162


https://www.rust-lang.org/

[147]

[148]

Patrick M. Sansom and Simon L. Peyton Jones. Time and space profiling for non-strict,
higher-order functional languages. In Principles of Programming Languages, pages 355—
366, 1995.

Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas Ander-
son. Eraser: A dynamic race detector for multi-threaded programs. In Proceedings of the
Sixteenth ACM Symposium on Operating Systems Principles (SOSP), October 1997.

[149] Jacob T. Schwartz. Optimization of very high level languages (parts i and ii). Computer

Languages, 2-3(1):161-194,197-218, 1975.

[150] Julian Shun and Guy E. Blelloch. Ligra: a lightweight graph processing framework for

shared memory. In PPOPP ’13, pages 135-146, New York, NY, USA, 2013. ACM.

[151] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Aapo Kyrola, Har-

[152]

[153]

[154]

[155]

[156]

[157]

sha Vardhan Simhadri, and Kanat Tangwongsan. Brief announcement: The problem
based benchmark suite. In Proceedings of the Twenty-fourth Annual ACM Symposium
on Parallelism in Algorithms and Architectures, SPAA *12, pages 68-70, 2012. ISBN 978-1-
4503-1213-4.

DJ. Simpson and FW. Burton. Space efficient execution of deterministic parallel pro-
grams. [EEE Transactions on Software Engineering, 25(6):870-882, 1999. doi: 10.1109/32.
824415.

Kyle Singer, Yifan Xu, and I-Ting Angelina Lee. Proactive work stealing for futures.
In Proceedings of the 24th Symposium on Principles and Practice of Parallel Program-
ming, PPoPP ’19, page 257-271, New York, NY, USA, 2019. Association for Comput-
ing Machinery. ISBN 9781450362252. doi: 10.1145/3293883.3295735. URL https:
//doi.org/10.1145/3293883.3295735.

Kyle Singer, Yifan Xu, and I-Ting Angelina Lee. Proactive work stealing for futures.
In Proceedings of the 24th Symposium on Principles and Practice of Parallel Programming,
PPoPP ’19, pages 257-271, New York, NY, USA, 2019. ACM. ISBN 978-1-4503-6225-2. doi:
10.1145/3293883.3295735. URL http://doi.acm.org/10.1145/3293883.3295735.

Kyle Singer, Kunal Agrawal, and I-Ting Angelina Lee. Scheduling I/O latency-hiding
futures in task-parallel platforms. In Bruce M. Maggs, editor, Ist Symposium on Algo-
rithmic Principles of Computer Systems, APOCS 2020, Salt Lake City, UT, USA, January
8, 2020, pages 147-161. SIAM, 2020. doi: 10.1137/1.9781611976021.11. URL https:
//doi.org/10.1137/1.9781611976021.11.

Kyle Singer, Noah Goldstein, Stefan K. Muller, Kunal Agrawal, I-Ting Angelina Lee, and
Umut A. Acar. Priority scheduling for interactive applications. In Christian Scheideler
and Michael Spear, editors, SPAA 20: 32nd ACM Symposium on Parallelism in Algorithms
and Architectures, Virtual Event, USA, July 15-17, 2020, pages 465—477, 2020.

K. C. Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. Multimlton: A
multicore-aware runtime for standard ml. Journal of Functional Programming, FirstView:
1-62, 6 2014.

163


https://doi.org/10.1145/3293883.3295735
https://doi.org/10.1145/3293883.3295735
http://doi.acm.org/10.1145/3293883.3295735
https://doi.org/10.1137/1.9781611976021.11
https://doi.org/10.1137/1.9781611976021.11

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom Kelly, Anmol Sahoo,
Sudha Parimala, Atul Dhiman, and Anil Madhavapeddy. Retrofitting parallelism onto
ocaml. Proc. ACM Program. Lang., 4ICFP):113:1-113:30, 2020.

KC Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom Kelly, Anmol Sahoo,
Sudha Parimala, Atul Dhiman, and Anil Madhavapeddy. Retrofitting parallelism onto
ocaml. arXiv preprint arXiv:2004.11663, 2020.

Yannis Smaragdakis, Jacob Evans, Caitlin Sadowski, Jaeheon Yi, and Cormac Flanagan.
Sound predictive race detection in polynomial time. In John Field and Michael Hicks,
editors, Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January 22-28, 2012,
pages 387-400. ACM, 2012.

A. Sodani. Knights landing (knl): 2nd generation intel xeon phi processor. In 2015 IEEE
Hot Chips 27 Symposium (HCS), pages 1-24, Aug 2015.

Daniel Spoonhower. Scheduling Deterministic Parallel Programs. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, 2009.

Daniel Spoonhower. Scheduling Deterministic Parallel Programs.  PhD thesis,
Carnegie Mellon University, May 2009. URL https://www.cs.cmu.edu/~rwh/theses/
spoonhower . pdf.

Daniel Spoonhower, Guy E. Blelloch, Robert Harper, and Phillip B. Gibbons. Space profil-
ing for parallel functional programs. In International Conference on Functional Program-
ming, 2008.

Daniel Spoonhower, Guy E. Blelloch, Phillip B. Gibbons, and Robert Harper. Beyond
nested parallelism: Tight bounds on work-stealing overheads for parallel futures. In

Proceedings of the Twenty-first Annual Symposium on Parallelism in Algorithms and Ar-
chitectures, SPAA °09, pages 91-100, New York, NY, USA, 2009. ACM.

Guy L. Steele Jr. Making asynchronous parallelism safe for the world. In Proceedings of
the Seventeenth Annual ACM Symposium on Principles of Programming Languages (POPL),
pages 218-231. ACM Press, 1990.

Yihan Sun, Daniel Ferizovic, and Guy E. Belloch. Pam: parallel augmented maps. In
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP °18. ACM, February 2018. doi: 10.1145/3178487.3178509. URL http:
//dx.doi.org/10.1145/3178487.31785009.

Yihan Sun, Daniel Ferizovic, and Guy E. Blelloch. PAM: parallel augmented maps. In
Andreas Krall and Thomas R. Gross, editors, Proceedings of the 23rd ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming, PPoPP 2018, Vienna, Austria,
February 24-28, 2018, pages 290-304. ACM, 2018. doi: 10.1145/3178487.3178509. URL
https://doi.org/10.1145/3178487.3178509.

Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Information and
Computation, February 1997. URL http://www.diku.dk/research-groups/topps/

164


https://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf
https://www.cs.cmu.edu/~rwh/theses/spoonhower.pdf
http://dx.doi.org/10.1145/3178487.3178509
http://dx.doi.org/10.1145/3178487.3178509
https://doi.org/10.1145/3178487.3178509
http://www.diku.dk/research-groups/topps/activities/kit2/infocomp97.ps
http://www.diku.dk/research-groups/topps/activities/kit2/infocomp97.ps
http://www.diku.dk/research-groups/topps/activities/kit2/infocomp97.ps

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

activities/kit2/infocomp97.ps.

Alexandros Tzannes, George C. Caragea, Uzi Vishkin, and Rajeev Barua. Lazy schedul-
ing: A runtime adaptive scheduler for declarative parallelism. TOPLAS, 36(3):10:1-10:51,
September 2014.

Robert Utterback, Kunal Agrawal, Jeremy T. Fineman, and I-Ting Angelina Lee. Provably
good and practically efficient parallel race detection for fork-join programs. In Proceed-
ings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016, pages 83-94, 2016.

Caleb Voss, Tiago Cogumbreiro, and Vivek Sarkar. Transitive joins: a sound and efficient
online deadlock-avoidance policy. In Jeffrey K. Hollingsworth and Idit Keidar, editors,
Proceedings of the 24th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP 2019, Washington, DC, USA, February 16-20, 2019, pages 378-390,
2019.

David Walker. On linear types and regions. In Proceedings of the First workshop
on Semantics, Program Analysis and Computing Environments for Memory Management
(SPACE’01), London, January 2001. URL http://www.diku.dk/topps/space2001/
program.html#DavidWalker.

Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. Disentanglement in
nested-parallel programs. In Proceedings of the 47th Annual ACM Symposium on Principles
of Programming Languages (POPL), 2020.

Sam Westrick, Jatin Arora, and Umut A. Acar. Entanglement detection with near-zero
cost. Proc. ACM Program. Lang., 6(ICFP), aug 2022. doi: 10.1145/3547646. URL https:
//doi.org/10.1145/3547646

Sam Westrick, Jatin Arora, and Umut A. Acar. Entanglement detection with near-zero
cost. In Proceedings of the 27th ACM SIGPLAN International Conference on Functional
Programming, ICFP 2022, 2022.

Sam Westrick, Larry Wang, and Umut A. Acar. DePa: Simple, provably efficient, and
practical order maintenance for task parallelism. CoRR, abs/2204.14168, 2022. doi: 10.
48550/arXiv.2204.14168. URL https://doi.org/10.48550/arXiv.2204.14168.

Samuel Westrick. Efficient and Scalable Parallel Functional Programming
Through Disentanglement. 10 2022. doi:  10.1184/R1/21313731.v1. URL
https://kilthub.cmu.edu/articles/thesis/Efficient_and_Scalable_
Parallel_Functional_Programming Through_Disentanglement/21313731.

Yifan Xu, Kyle Singer, and I-Ting Angelina Lee. Parallel determinacy race detection
for futures. In Rajiv Gupta and Xipeng Shen, editors, PPoPP "20: 25th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, San Diego, California, USA,
February 22-26, 2020, pages 217-231. ACM, 2020. doi: 10.1145/3332466.3374536. URL
https://doi.org/10.1145/3332466.3374536.

Kathy Yelick, Luigi Semenzato, Geoff Pike, Carleton Miyamoto, Ben Liblit, Arvind Kr-

165


http://www.diku.dk/research-groups/topps/activities/kit2/infocomp97.ps
http://www.diku.dk/research-groups/topps/activities/kit2/infocomp97.ps
http://www.diku.dk/research-groups/topps/activities/kit2/infocomp97.ps
http://www.diku.dk/research-groups/topps/activities/kit2/infocomp97.ps
http://www.diku.dk/topps/space2001/program.html#DavidWalker
http://www.diku.dk/topps/space2001/program.html#DavidWalker
https://doi.org/10.1145/3547646
https://doi.org/10.1145/3547646
https://doi.org/10.48550/arXiv.2204.14168
https://kilthub.cmu.edu/articles/thesis/Efficient_and_Scalable_Parallel_Functional_Programming_Through_Disentanglement/21313731
https://kilthub.cmu.edu/articles/thesis/Efficient_and_Scalable_Parallel_Functional_Programming_Through_Disentanglement/21313731
https://doi.org/10.1145/3332466.3374536

[181]

[182]

[183]

ishnamurthy, Paul Hilfinger, Susan Graham, David Gay, Phil Colella, and Alex Aiken.
Titanium: a high-performance java dialect. Concurrency: Practice and Experience, 10(11-
13):825-836, 1998.

Yuan Yu, Tom Rodeheffer, and Wei Chen. Racetrack: efficient detection of data race
conditions via adaptive tracking. In Andrew Herbert and Kenneth P. Birman, editors,
Proceedings of the 20th ACM Symposium on Operating Systems Principles 2005, SOSP 2005,
Brighton, UK, October 23-26, 2005, pages 221-234. ACM, 2005.

Taiichi Yuasa. Real-time garbage collection on general-purpose machines. Journal of
Systems and Software, 11(3):181-198, 1990. ISSN 0164-1212. doi: https://doi.org/10.1016/
0164-1212(90)90084-Y. URL https://www.sciencedirect.com/science/article/
pii/016412129090084Y.

Lukasz Ziarek, K. C. Sivaramakrishnan, and Suresh Jagannathan. Composable asyn-
chronous events. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages
628-639, 2011.

166


https://www.sciencedirect.com/science/article/pii/016412129090084Y
https://www.sciencedirect.com/science/article/pii/016412129090084Y

	Introduction
	Fork-Join Parallelism and Programming Languages
	The Performance Challenge
	Disentanglement Hypothesis
	Independent Memory Management
	Coscheduling
	Work and Space Bounds
	Implementation and Evaluation
	Disentanglement Hypothesis beyond Fork-Join

	Coscheduling of Computation and Memory
	Language
	Syntax
	Task Trees
	Heap Trees
	Semantics

	Heap Tree and Pointer Directions
	Coscheduling Tasks and Heaps
	Overview and Examples of Heap Scheduling
	Heap Scheduling Algorithm
	Proof of the Cluster Invariants

	Collection Policy

	Disentanglement Hypothesis
	Disentanglement
	Entanglement Semantics
	Syntax and Task Trees
	Entanglement Sources, Regions, and Cost Metrics
	Semantics

	Evidence for the Disentanglement Hypothesis
	Deterministic Programs
	Nondeterministic Programs Without Entanglement
	Entangled Programs

	Limitations and Extensions

	Memory Management
	Background: Garbage Collection
	Accounting for Inter-Heap Pointers
	Types of Inter-Heap Pointers and Example
	Barriers, Remembered Sets, and Heap Tree
	Managing Up Pointers
	Managing Down Pointers
	Cross Pointers

	Tracking and Managing Entanglement
	Overview
	Read barrier for mutable objects
	Entanglement region and its pinning
	Expiration depth of entanglement sources
	Write barrier for mutable updates

	Bounding the Overhead of Tracking Entanglement
	Independent Garbage Collection of Heaps
	Identifying and Discarding Expired Entanglement Sources
	Discarding Stale Remembered Set Entries
	Tracing the Heap
	Concurrent Reclamation of Memory


	Provable Efficiency
	Revisiting Language Syntax
	Memory Management: An Abstract View
	Data Structures
	Maintaining Snapshots and Remembered Sets
	Down Pointers Assumption
	Collection Policy and Algorithm
	Structural Properties of the Heap Clusters

	Determinacy Race Free Programs
	Unordered Reachable Space: Sequential Baseline
	Space Bound
	Work Bound

	Nondeterministic Programs
	Race Factor for Nondeterministic Programs
	Sequentialized Space
	Work and Space Bounds
	Bounding the counter


	Implementation
	Coscheduling and Heaps
	Tracking of Inter Heap Pointers
	Optimizing the Read Barrier
	Garbage Collection Algorithms

	Evaluation
	Overheads and Scalability
	Disentanglement is Not Penalized
	Entanglement Management Overhead
	Cross-Language Comparisons

	Disentanglement Hypothesis for Futures
	Language
	Syntax
	Computation Trees
	Disentanglement
	Joins
	Language Semantics

	Race Freedom and Disentanglement
	Determinacy Race Freedom
	Determinacy Race Free Programs are Disentangled
	Proof of key Lemmas
	Helper Lemmas

	Applications of Futures with Disentanglement
	Pipelining
	Web Server
	PDF viewer with disentanglement
	Futures and references for dynamic programming


	Related Work
	Parallel Memory Management
	Cost Bounds
	Parallel Programming Languages
	Disentanglement and Futures

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

