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Abstract
Proteins are essential regulators of cellular processes. Intrinsically disordered

proteins (IDPs), despite lacking stable tertiary structures under physiological con-
ditions, play crucial yet often underexplored roles in biological processes. With re-
cent experimental advances like DisP-seq for probing IDP-DNA binding, there is a
pressing need for efficient, interpretable computational methods to identify sequence
determinants of IDP-DNA interactions and analyze their cooperative effects on gene
regulation. To address this, we develop U-DisCo, a novel deep learning model that
predicts base-resolution IDP-DNA binding profiles directly from DNA sequences.
Leveraging a U-Net architecture, U-DisCo captures both local base-level interactions
and long-range dependencies up to 20 kilobases with high accuracy and computa-
tional efficiency, outperforming the baseline BPNet. By incorporating ATAC-seq
data, U-DisCo enables robust cross-cell type predictions as a multimodal framework.
U-DisCo identified key IDP-binding motifs, revealing distinct interaction patterns
and cooperative behaviors across different IDPs. Interestingly, we observed short-
range interactions for motifs like AP-2 and EWS-FLI1 (single GGAA motif), while
others exhibited independent, enhancer-like functions. Further analysis revealed that
some IDPs favored certain strand orientations, suggesting their involvement in spe-
cific regulatory mechanisms. Overall, U-DisCo is the first computational approach
to explore multiple IDPs within a single cell type, offering a versatile framework for
studying IDP-mediated gene regulation and genome-wide regulatory elements.
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Chapter 1

Introduction

1.1 Background
Proteins perform diverse functions in organisms [1–3], yet most of our knowledge is limited to
proteins with stable and well-defined structures [4–8]. Increasing evidence suggests that those
proteins lacking well-defined structures, known as intrinsically disordered proteins (IDPs) [9,
10], also play crucial roles in processes such as transcription, RNA processing, signaling, and cell
cycle control [11–17]. The structural plasticity of IDPs enables them to adopt multiple conforma-
tions [18, 19] and interact with various targets under different physiological conditions [20, 21].
For instance, the H1 linker histone undergoes disorder-to-order transitions upon binding to target
molecules [22]. However, the full role of IDPs in gene regulation remains incomplete due to
limited experimental and computational methods for probing their DNA binding profiles.

As such, this work aims to develop an efficient computational framework to explore genome-
wide interactions between IDPs and DNA. By training and interpreting our deep learning model
using a recent IDP-DNA binding assay, we enable the identification of key DNA sequence deter-
minants and regulatory mechanisms underlying IDP-mediated gene regulation.

1.2 Limitations of sequencing methods
Traditional sequencing and probing methods, such as ChIP-seq (Chromatin Immunoprecipita-
tion Sequencing) and CUT&RUN (Cleavage Under Targets and Release Using Nuclease) [23–
25], have been widely used to map the binding sites of transcription factors (TFs) and other
DNA-associated proteins. ChIP-seq, for instance, uses a specific antibody to target the protein
of interest, allowing the isolation of DNA regions bound by that protein. The DNA is then se-
quenced, providing a high-resolution map of protein-DNA interactions across the genome. Sim-
ilarly, CUT&RUN combines an antibody-guided approach with targeted cleavage by nuclease,
allowing for more precise mapping with less background noise compared to ChIP-seq.

While these techniques have been successful in mapping well-characterized and structured
proteins with available antibodies, they are significantly limited for studying IDPs, primarily
due to the reliance on specific antibodies to recognize target proteins. IDPs often exhibit weak
immune responses and low-affinity binding due to their flexible, unstructured nature [26, 27].
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Unlike the stable, high-affinity interactions needed for antibody recognition, IDPs rely on tran-
sient interactions for rapid signaling [12, 28]. As a result, antibody-based methods may struggle
to capture the genome-wide interaction patterns of IDPs.

To address this challenge, disordered protein precipitation followed by DNA sequencing
(DisP-seq) was recently developed [29], an antibody-independent assay that allows for simulta-
neous mapping of multiple DNA-associated disordered proteins and quantifies their cooperative
behaviors in gene regulation. Nevertheless, no sequence-based computational methods currently
exist to directly investigate the impact of DNA sequence determinants on IDP binding or their
cooperative interactions.

1.3 Key challenges with machine learning methods

Machine learning models, particularly convolutional neural networks (CNNs) in deep learning,
have been applied in the prediction of protein-DNA interactions and chromatin profiles [30–36].
Early CNN-based methods, with their sequential, layer-by-layer architectures, were designed
to predict either binary binding labels or low-resolution continuous signals averaged across ge-
nomic bins of 100 to 200 base pairs (bp) [30, 31, 35, 36]. While these models could offer insights
into protein-DNA interactions, their low resolution limits their ability to capture finer binding de-
tails for IDP-DNA interactions that may vary at base-level resolution.

More recent methods, such as BPNet [33], have achieved higher precision by extending
CNNs to predict base-resolution profiles; however, their local receptive fields restrict them to
relatively short sequences (around 1 kb), limiting their ability to model long-range interactions
across tens of kilobases that are crucial for understanding IDP-mediated gene regulation. Since
IDPs have flexible binding patterns and interact with distal regulatory regions, these models may
underperform in capturing the dynamic chromatin environment influenced by IDPs.

Transformers, with their self-attention mechanisms, allow models to attend to positions across
an entire sequence and capture long-range interactions more effectively [34, 37]. While trans-
formers have shown promise in genomics by expanding the feasible sequence length for inter-
action modeling, they are highly computationally intensive when applied to large-scale genomic
data comprising numerous long DNA sequences. The memory requirements for self-attention
scale quadratically with the input length (O(N2)), making transformers prohibitively costly when
handling genome-wide data at base-level resolution.

To date, no machine learning models have explored genome-wide interactions between IDPs
and DNA. One reason is the lack of labeled IDP binding data. Before DisP-seq, an antibody-
independent assay for simultaneous mapping of IDPs, most available datasets of protein-DNA
interactions focused on well-structured transcription factors. There were no IDP-specific bench-
mark datasets to guide model development or assess performance. Moreover, addressing this gap
requires models that can accurately predict base-resolution IDP-DNA binding profiles, model
long-range dependencies, and operate with computational efficiency for large-scale analyses.
Achieving these goals will demand innovative architectural designs, improved data representa-
tions, and efficient analysis approaches.
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1.4 Contributions
To bridge these gaps, we combine deep learning with the DisP-seq assay. We introduce U-
DisCo, a novel deep learning approach predicting base-resolution DisP-seq profiles from DNA
sequences using a U-Net architecture. Unlike conventional CNNs, U-Net combines downsam-
pling and upsampling paths with skip connections in its U-shaped design, enabling U-DisCo to
efficiently capture local base-level interactions and long-range dependencies up to 20 kilobases.
This capability is particularly useful for identifying complex sequence patterns necessary for un-
derstanding IDP functions in gene regulation. We comprehensively evaluated U-DisCo against
baseline models on DisP-seq datasets from three cell lines and ChIP-nexus data from mouse
embryonic stem cells (mESCs). Our key contributions are as follows:

• U-DisCo is the first computational approach to explore protein-DNA interactions for mul-
tiple IDPs;

• Leveraging U-Net, U-DisCo captures both base-resolution and long-range interactions
with computational efficiency, outperforming baseline models such as BPNet;

• By incorporating ATAC-seq data as an optional input, U-DisCo functions as a multimodal
framework generalizing across cell types, achieving performance on par with biological
replicates;

• Importantly, U-DisCo identifies key IDP-binding motifs, revealing genome-wide regula-
tory roles of IDPs, including spatial distribution, cooperative interactions, and binding
preferences.

Together, U-DisCo provides a versatile method for exploring IDP-mediated gene regulation and
regulatory mechanisms genome-wide.
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Chapter 2

Related machine learning approaches

In this chapter, we provide a comprehensive overview of machine learning approaches that have
been applied to study protein-DNA interactions and chromatin profiles. We start with early ma-
chine learning models and then explore deep learning models, including convolutional neural
networks (CNNs) and transformers. Finally, we categorize these approaches based on their pre-
diction objectives: binary methods for classifying binding sites and profile methods for predicting
continuous chromatin signals.

2.1 Early machine learning methods
Early machine learning methods relied on manually engineered features to model protein-DNA
interactions. Feature engineering was necessary because these models required structured repre-
sentations of DNA sequences or protein-binding patterns as inputs. Common features included
k-mer frequencies and position weight matrices (PWMs) of known DNA motifs, used as inputs
to traditional machine learning models like support vector machines (SVMs) and random forests.
For example, the gkm-SVM approach was developed to predict transcription factor (TF) binding
sites [38]. By transforming raw DNA sequences into feature vectors based on gapped k-mer
frequencies, SVMs could then learn to classify regions as either bound or unbound by specific
proteins. Similarly, an integrative approach trained random forests to predict TF binding sites,
using features such as nucleotide positional dependencies, DNA structure, and PWMs [39].

However, the reliance on feature engineering led to several limitations. Manually extracted
features often fail to capture the complex, high-dimensional interactions underlying protein-DNA
binding. Moreover, the choice of features could bias the model toward known binding motifs,
limiting its ability to discover novel interactions or binding patterns. Nevertheless, early machine
learning models demonstrated the potential of computational approaches for identifying potential
DNA sequence determinants, paving the way for more complex models.

2.2 Deep learning
Unlike traditional machine learning methods, deep learning models are capable of learning hier-
archical representations directly from raw sequence data, eliminating the need for manual feature
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engineering. Deep learning has facilitated the development of models that can capture complex
patterns in DNA sequences and chromatin profiles.

2.2.1 Convolutional neural networks
Convolutional neural networks (CNNs) use convolutional layers to scan DNA sequences, iden-
tifying motifs and patterns within short, contiguous regions. CNNs are effective at capturing
local dependencies in DNA like transcription factor binding motifs. The typical structure of a
CNN consists of sequential convolutional layers, each applying a set of filters to detect sequence
features. For example, an initial convolutional layer might identify nucleotide motifs, while sub-
sequent layers may learn to recognize more complex patterns by combining lower-level features.
Pooling layers often follow convolutional layers, reducing the spatial dimensions of the data and
focusing the model on the most prominent features.

Early CNN-based models, such as DeepBind [30] and Basset [31], were applied to protein-
DNA interaction prediction. DeepBind used CNNs to predict the binary presence or absence
of transcription factor binding, while Basset extended this approach to simultaneously predict
chromatin accessibility scores in 164 cell types. Both models demonstrated that CNNs could au-
tomatically learn biologically relevant motifs from raw sequence data, outperforming traditional
machine learning models that required feature engineering. Later, models like BPNet [33] further
refined CNN architectures to predict base-resolution binding profiles, enabling high-resolution
mapping of protein-DNA interactions.

CNNs are well-suited to predict binding interactions and chromatin accessibility within short
or medium sequences. However, CNNs’ reliance on local receptive fields limits their ability
to capture long-range dependencies, especially when modeling regulatory interactions that span
several kilobases.

2.2.2 Transformers
Transformers [37] are capable of capturing long-range dependencies that CNNs struggle to
model. Transformers use self-attention mechanisms, which allow each position in a sequence
to attend to every other position. The self-attention mechanism operates by computing a set
of attention weights for each position in the sequence, determining which other positions are
relevant for that position’s representation. Therefore, transformers can model dependencies ex-
tending across the entire sequence regardless of length. This enables transformers to model
interactions over long DNA sequences and study distal regulatory elements and complex gene
regulation patterns.

For instance, Enformer [34] is a transformer-based model to predict various gene expression
and chromatin profiles. By leveraging self-attention, Enformer can integrate long-range inter-
actions across DNA sequences up to 100 kb. Built on top of Enformer, Borzoi [40] predicts
RNA-seq coverage from input DNA sequences. Borzoi accounts for interactions across 524 kb
sequences by combining convolutional layers and transformer layers.

While transformers can capture long-range interactions, the computational cost of the self-
attention mechanism scales quadratically with input length. This poses a challenge when analyz-
ing genome-wide sequence data that are often several kb long.
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2.3 Taxonomy of machine learning models

2.3.1 Binary models
Binary models predict binary labels for genomic regions (e.g., bound or unbound by a protein
or factor), providing a straightforward modeling approach for binding potential. The raw output
of these models is typically a probability score indicating the likelihood of binding at a specific
location. The majority of models fall into this category [30, 31, 35, 36] and allow researchers to
identify regions of interest within the genome. However, they do not benefit from profile shape
information and thus are particularly prone to overfitting compared to models that predict profile
shapes [41].

2.3.2 Profile models
Profile models predict continuous signals, representing binding intensity or chromatin accessi-
bility across a genomic region. Unlike binary models, profile models capture the quantitative
nature of protein-DNA interactions, enabling high-resolution mapping of chromatin features.
These models can learn the strength or frequency of binding across each base pair, as well as the
spatial distribution of interactions within a region.

Recently, models in this category have been developed, such as BPNet [33], Enformer [34],
and Borzoi [40], which can finely track sequence patterns along peak regions, allowing them
to accurately locate motifs. These models have proven valuable in studying dynamic chromatin
landscapes, as they provide a detailed view of binding and accessibility patterns.
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Chapter 3

The U-DisCo framework

We present U-DisCo, a novel deep learning framework to explore IDP-DNA interactions genome-
wide. Based on a U-Net architecture, U-DisCo accurately and efficiently predicts base-resolution
DisP-seq profiles directly from DNA sequences, capturing both local and long-range dependen-
cies. By incorporating ATAC-seq data, U-DisCo functions as a multimodal framework and en-
ables cross-cell line predictions. Here, we detail the data collection, model architecture, training,
and evaluation of the U-DisCo framework. In the next chapters, we demonstrate that the inter-
pretation of U-DisCo predictions reveals distinct interaction patterns and cooperative behaviors
across different IDPs, providing insights into IDP-mediated gene regulation.

Figure 3.1: U-DisCo model architecture. The inputs to U-DisCo include a 20 kb DNA sequence,
a control track of the same length, and an optional ATAC-seq signal track for multimodal learn-
ing. Data augmentation techniques such as random shifting and reverse complementing are
employed during the training step. U-DisCo is based on a U-Net architecture, incorporating
convolutional blocks and skip connections to predict base-resolution DisP-seq profiles. Fourier-
based priors are used to regularize gradients during training to improve interpretability.
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3.1 Overview of U-DisCo

An illustration of the U-DisCo model is shown in Fig. 3.1. The inputs to U-DisCo include a
20 kb DNA sequence centered on the peak, a control track for the same region, and an optional
ATAC-seq signal track. The control track corrects for biases and reduces noise during learning,
as established in [33, 41], while the optional ATAC-seq input enables U-DisCo to perform cross-
cell line predictions. U-DisCo outputs a base-resolution DisP-seq profile matching the length of
the input DNA sequence. Based on a U-Net architecture, U-DisCo uses a series of convolutional
blocks for both downsampling and upsampling. The network contains eight downsampling and
eight upsampling blocks, with skip connections transferring feature maps between corresponding
blocks to preserve information at different length scales (see Fig. 3.2 for a detailed illustration).
During training, multinomial negative log-likelihood loss is employed, and data augmentation
techniques such as random shifting and reverse complementing improve generalization. To pre-
vent the model from focusing on short bursts along DNA sequences, we use Fourier-based priors
to penalize high-frequency gradient components [41].

3.2 Data collection

The DisP-seq assay identified 22,633 peaks in SKNMC cells [29]. We selected 22,632 peaks with
sufficient margins to accommodate a 20 kb window around each peak center, averaged across
two biological replicates. This window length was chosen to ensure full coverage of each peak.
Chromosomes 1, 8, and 21 were held out for evaluation, with the remaining chromosomes split
into training (80%) and validation (20%) sets. We also included two additional cell lines, H446
and MRC5, and processed raw sequencing reads following the pipeline from [29], identifying
20,334 and 19,372 peaks, respectively. ATAC-seq data for all cell lines were downloaded from
the ENCODE project [42], with DNase-seq data for IMR90 used as a proxy for MRC5. DNA
sequences from the hg19 reference genome were one-hot encoded (A: [1, 0, 0, 0], C: [0, 1, 0, 0],
G: [0, 0, 1, 0], T: [0, 0, 0, 1]). Control data served as background signals to correct for biases and
noise in DisP-seq profiles.

Additionally, we collected ChIP-nexus data from mouse embryonic stem cells (mESCs) re-
ported in [33]. Peaks with maximum signal intensities above the third quartile across all peaks
were retained to reduce noise, and 1 kb windows were extracted around peak centers. Chromo-
somes 1 and 8 were held out for evaluation, with the remainder split into training (80%) and
validation (20%) sets. DNase-seq data for mESC E14 from ENCODE were used as a proxy
for ATAC-seq, and DNA sequences from the mm10 reference genome were one-hot encoded.
PATCH–CAP data were used as control tracks.

3.3 U-DisCo model architecture and training

U-DisCo is based on a U-Net architecture [43] with double convolutional blocks for downsam-
pling and upsampling. Each block contains two convolutional layers (kernel size 3, padding 1),
batch normalization, ReLU activation, and dropout (rate 0.1). Max-pooling (stride 2) is used for
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Linear Upsample
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U-Net

Conv1d
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(64, 128)

Down Block
(128, 256)

Down Block
(256, 512)

Down Block
(512, 512)

Down Block
(512, 512)

Down Block
(512, 512)
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(512, 512)

Down Block
(512, 512)

Up Block
(1024, 512)

Up Block
(1024, 512)

Up Block
(1024, 512)
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(1024, 512)

Up Block
(1024, 256)

Up Block
(512, 128)

Up Block
(256, 64)

Up Block
(128, 64)

Conv1d
(64, 1)

Figure 3.2: Illustration of the U-DisCo model, showing the building blocks and U-Net archi-
tecture. Dashed arrows represent skip connections. Input and output channels are specified in
parentheses as (in channels, out channels). All convolutional layers (Conv1d) use padding set to
‘same’ to preserve sequence length. Concatenation with the bias track is not shown in the U-Net
for simplicity. DoubleConv Block, double convolutional block. Down Block, downsampling
block. Up Block, upsampling block.

downsampling, while linear upsampling (factor 2) is used in the upsampling path. The network
includes eight downsampling and eight upsampling blocks, with channels doubling from 64 to
512 during downsampling, and halving symmetrically during upsampling. Skip connections
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transfer feature maps between the downsampling and upsampling paths.
A one-hot encoded DNA sequence, optionally concatenated with an ATAC-seq track, is first

processed through a convolutional layer (kernel size 25) to extract coarse-grained motif features.
After passing through the U-Net, the feature maps are reduced via another convolutional layer
(kernel size 25), concatenated with a control track, and passed through a final convolution (kernel
size 1) to generate predicted DisP-seq profiles. A detailed depiction of the U-DisCo architecture
is shown in Fig. 3.2.

The model was trained using a multinomial negative log-likelihood (NLL) loss:

NLL = − log(N !) +
L∑
i=1

log(xi!)−
L∑
i=1

xi log(pi), (3.1)

where N is the sum of all DisP-seq signals in the profile, L is the profile length, xi is the observed
signal at position i, and pi is the predicted probability at position i.

We applied several data augmentation techniques, including random shifts up to 1 kb and
reverse complementing with a 20% probability to enhance generalization. Fourier-based pri-
ors [41] were used to penalize high-frequency gradient components with a frequency limit of
3000, a softness of 0.2, and Gaussian smooth sigma of 3, as detailed in [41]. The regularization
loss term was weighted by 15,000, approximately half of the converged NLL loss.

The model was trained using an AdamW optimizer (learning rate 0.0005, batch size 32,
200 epochs), with exponential moving averages (EMA, decay rate 0.99) of model weights for
stabilization during evaluation. The model with the lowest validation loss was used for the final
evaluation on the held-out chromosomes.

3.4 Baseline models, training, and benchmarking
U-DisCo was benchmarked against BPNet [33] and LightGBM [44]. BPNet employs convolu-
tional blocks (kernel size 3, padding 1) with dilation rates doubling per block, 64 channels, and
residual connections. LightGBM, a gradient boosting algorithm, took k-mer frequencies (k = 2,
31 bp windows centered at each position) and ATAC-seq data as input features. It was trained
with L1 loss, a learning rate of 0.05, 212 leaves, a minimum of 50 data points per leaf, and a
maximum depth of 14 for 2000 epochs, with early stopping after 10 epochs.

All models were trained and evaluated on the same training and validation sets. Both U-
DisCo and BPNet were trained using the same procedure, with data augmentation techniques and
Fourier-based priors for regularization. The models with the lowest validation loss were chosen
for evaluation on the held-out chromosomes. We evaluated models using Pearson correlation
coefficients (PCCs) between predicted and observed windows.

3.5 Peak intersection ratios
To investigate the overlap between predicted and observed DisP-seq peak regions, we designed
peak intersection ratios. This metric quantifies the agreement between predicted and observed
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peak sets instead of signal intensity, measuring the model’s ability to recognize peak locations.
For an observed or predicted DisP-seq region, we defined its peak set by selecting areas with
DisP-seq signals above the median. The peak intersection ratio between two DisP-seq regions,
with peak sets P1 and P2, was calculated as:

precision =
|P1 ∩ P2|
|P1|

, recall =
|P1 ∩ P2|
|P2|

, (3.2)

peak intersection ratio =
2

precision−1 + recall−1 , (3.3)

where | · | represents the cardinality of a set.

3.6 Results: performance evaluation across cell lines
We trained and evaluated U-DisCo using 22,632 DisP-seq peak regions from SKNMC cells,
averaged across two biological replicates, with a window length of 20 kb. U-DisCo was bench-
marked against biological replicates from DisP-seq and baseline models, including BPNet and
LightGBM. Pearson correlation coefficients (PCCs) between the two biological replicates and
between predicted and observed DisP-seq profiles on held-out chromosomes (chr1, chr8, and
chr21) are shown in Fig. 3.3a, with mean PCCs for five training runs and per-peak PCCs. U-
DisCo outperformed all baselines, achieving PCCs comparable to biological replicate repro-
ducibility, highlighting U-DisCo’s reliability in predicting DisP-seq profiles.

We further plotted U-DisCo’s PCCs against biological replicates for each peak region, with
density plots grouped by DisP island state (island/non-island) and number of summits (one or
more) (Fig. 3.3b). DisP islands are large DisP-seq clusters defined in [29]. U-DisCo achieved
high PCCs consistent with biological replicates, with higher performance on non-island regions
and peaks with single summits. To examine peaks with lower PCCs, we analyzed peak intersec-
tion ratios between predicted and observed peak regions (Fig. 3.3c). For U-DisCo, these ratios
were grouped by PCC thresholds (≥ 0.5 and < 0.5), while for biological replicates, they were
calculated between two replicates. Notably, U-DisCo consistently achieved higher intersection
ratios than biological replicates, suggesting low PCCs were due to mismatched profile shapes
rather than incorrect peak locations (examples in Fig. 3.4).

To further assess U-DisCo’s performance and versatility across data types, we compared U-
DisCo with BPNet and LightGBM using DisP-seq datasets from two additional cell lines (H446
and MRC5), and ChIP-nexus in mESCs originally used to train BPNet [33]. The ChIP-nexus
data provide base-resolution binding profiles for four pluripotency TFs (Oct4, Sox2, Nanog, and
Klf4) on the positive and negative strands. Models were trained to predict binding profiles for
all TFs on both strands using multi-task learning, making the task challenging. Mean PCCs
across held-out peaks for all cell lines are presented in Fig. 3.3d, where U-DisCo consistently
outperformed the baselines, particularly in mESCs.

We further tested U-DisCo’s multimodal capability by integrating additional ATAC-seq in-
puts in three distinct settings: (i) within-line, where training and testing occurred on the same
cell line; (ii) cross-line, where models were trained on SKNMC using its ATAC-seq data and
tested on a different cell line using ATAC-seq data from the target cell line; and (iii) mixed,
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Figure 3.3: Performance evaluation of U-DisCo against baselines across cell lines. a. Pearson
correlation coefficients (PCCs) between predicted and observed DisP-seq profiles on held-out
peaks for U-DisCo and baselines, and PCCs between two biological replicates. Mean PCCs
across peaks for five runs are provided, along with per-peak PCCs. b. Scatter plot of U-DisCo’s
PCCs vs. biological replicates, with density plots grouped by DisP island state and number of
summits. c. Peak intersection ratios (predicted vs. observed peak overlap) for U-DisCo, grouped
by PCC thresholds, and between both biological replicates. d. Mean PCCs across held-out peaks
for U-DisCo and baselines on four cell lines. Error bars represent the standard deviation across
five training runs. e. PCCs for multimodal U-DisCo across cell lines: within-line (trained/tested
on same cell line), cross-line (trained on SKNMC, tested on another cell line), and mixed (trained
on SKNMC using its ATAC-seq data, tested using the average ATAC-seq track from SKNMC and
H446). f. Example predictions for a chr1 region in SKNMC cells, showing observed/predicted
DisP-seq profiles and PCCs with/without ATAC-seq input. ***p < 0.001, **p < 0.01, *p < 0.05
(Mann-Whitney U test for significance in distribution differences between two groups).

where training was on SKNMC using its ATAC-seq data, and testing used the average ATAC-
seq track from both SKNMC and H446 rather than the target cell line. Boxplots in Fig. 3.3e
show the per-peak PCCs across these settings. U-DisCo performed well within each cell line,
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Figure 3.4: Observed and predicted DisP-seq profiles on held-out peaks, where U-DisCo
achieved low PCCs but high peak intersection ratios. PIR, peak intersection ratio.

generalized effectively to H446, and reasonably well to MRC5, demonstrating its ability to learn
cell type-specific patterns by incorporating ATAC-seq data. A genome browser view of sample
predictions on SKNMC is shown in Fig. 3.3f, where U-DisCo’s predictions achieved high PCCs
and closely aligned with observed profiles. Incorporating ATAC-seq further improved prediction
accuracy, particularly in regions with complex profile shapes.

Overall, U-DisCo demonstrated robust and reliable performance compared to state-of-the-art
methods in predicting base-resolution genomic signals. This advancement paves the way for
uncovering the sequence syntax underpinning IDP-DNA interactions.
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Chapter 4

Identification of IDP binding motifs

Having trained U-DisCo on DisP-seq data from SKNMC cells and established its predictive
power, we next sought to interpret the model’s learned patterns and identify potential DNA de-
terminants driving genome-wide IDP-DNA interactions. In this chapter, we describe the identi-
fication of IDP-binding motifs, highlight the functional importance of these motifs, and explore
their potential roles in gene regulation.

4.1 Model interpretation and importance scores

To interpret U-DisCo’s predictions, we used integrated gradients with SHapley Additive exPla-
nations (SHAP) [45] to assign importance scores to each nucleotide (A, C, G, T) in the input
sequence. For each 20 kb sequence, a reference set of 100 randomly shuffled versions of the
input sequence was generated, preserving dinucleotide frequencies as recommended in [46]. For
control tracks, the reference set consisted of 100 copies of them. 200 samples were drawn for
each interpretation.

We processed the model output by subtracting the mean and converting it to log-probability
space. Following prior works [41], this output was then weighted by post-softmax probabili-
ties (detached from the computation graph) to ensure that high-probability positions received
exponentially higher weights, and vice versa. The resulting scalar value, obtained by summing
across all positions, was then explained to generate importance scores for each base. This ap-
proach allowed us to quantify the contribution of each genomic base to the model’s predictions,
identifying motif patterns most influential in determining the DisP-seq profiles.

4.2 Motif identification

Normalized importance scores (mean-subtracted along the one-hot encoded dimensions) were
used with TF-MoDISco [47] for motif discovery, which identifies recurring patterns with high
importance scores. TF-MoDISco was configured with a maximum of 1,000,000 seqlets and a
20,000 bp window. Identified motifs were compared against known motifs from the MEME
Suite to validate their biological significance.
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4.3 Chromatin state analysis
To understand the regulatory roles of DisP-seq peak regions, we annotated each genomic bin with
one of five chromatin states (transcription start site, active enhancer, weak enhancer, transcribed
region, and quiescent region) using ChromHMM v1.25 [48]. Histone modification ChIP-seq
datasets (H3K27ac, H3K9ac, H3K4me1, H3K9me3, H3K4me3, and H3K36me3) for SKNMC
cells were downloaded from ENCODE and used as inputs to ChromHMM. The dominant chro-
matin state for each peak was determined by overlapping DisP-seq peaks with ChromHMM-
defined states using bedtools v2.31.0 [49].

4.4 State association analysis
To assess the association of motifs with DisP island states or chromatin states, odds ratios were
calculated by comparing the observed count of a particular state to the expected count after
shuffling motif instances across peaks. A contingency matrix was constructed as:

C =

[
peak count w/ motif w/o state (shuffled) peak count w/ motif w/o state
peak count w/ motif and state (shuffled) peak count w/ motif and state

]
, (4.1)

and the odds ratio was calculated as:

odds ratio =
peak count w/ motif and state× peak count w/ motif w/o state (shuffled)
peak count w/ motif w/o state× peak count w/ motif and state (shuffled)

. (4.2)

An odds ratio greater than 1 indicates a significant association with the state, while a value
less than 1 suggests a negative association. Pearson’s chi-squared test was applied to the contin-
gency matrix to determine the statistical significance of the association.

4.5 Results: IDP-binding motifs and their regulatory roles
By applying SHAP and TF-MoDISco, we assigned importance scores to DNA sequences and
uncovered recurring motif patterns with high importance scores. These motifs, predictive of IDP
activity, are biologically meaningful and less prone to false positives than traditional de novo
approaches like HOMER [50], which rely on statistically over-represented sequences matched
to position weight matrices (PWMs) [33, 36].

Key motifs identified include AP-2, NFI, EWS-FLI1 (single GGAA and GGAA repeat),
C/EBP, TWIST, POU, and HOX, listed in decreasing order of importance (Fig. 4.1a). No-
tably, the disordered fusion protein EWS-FLI1 – a driver of Ewing sarcoma (the second most
common pediatric bone cancer in SKNMC cells [51, 52]), was identified. HOMER analysis
conducted in the DisP-seq assay [29] reported the top identified motifs: AP-2, NFI, and both
EWS-FLI1 motifs (single GGAA and GGAA repeat), listed in increasing order of p-value, sug-
gesting that U-DisCo, while focusing on the predictive power of DNA sequences, also success-
fully captured statistically meaningful motifs. Moreover, their importance scores aligned with
their statistical significance (p-values), further corroborating our results. EWS-FLI1 has been
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Figure 4.1: Identification of IDP-binding motifs driving genome-wide interactions. a. Top motifs
with the highest importance scores, where the height of each letter in the sequence logos reflects
its importance. b. Percentage of peaks containing each motif and their total counts. c. Upset
plot showing motif combinations within peaks, with low-frequency combinations filtered out.
d. Distribution of motif instances relative to peak centers. e. Example motif instances on chr1,
showing single nucleotide mutagenesis effects on model predictions. f. Odds ratios of DisP
island states for each motif, where values above 1 indicate significant association, and below
1 indicate negative association. g. Odds ratios for chromatin states, labeled by ChromHMM,
associated with each motif, with the same interpretation as in panel f. TSS, transcription start
site. ***p < 0.001, **p < 0.01, *p < 0.05 (chi-squared test).

experimentally validated as an intrinsically disordered protein [51, 52], while the other proteins
were predicted to contain significant intrinsically disordered regions (IDRs) by PONDR [53] and
metapredict V2 [54] (see Fig. 4.2 and 4.3).

We calculated the percentage of peaks containing each motif, along with the total number
of motif instances (Fig. 4.1b). AP-2, NFI, and EWS-FLI1, despite their high importance, were
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Figure 4.2: PONDR and metapredict V2 IDR predictions for proteins identified by U-DisCo.
One representative protein isoform was selected for prediction in each case. A, AP-2. B, NFI.
C, C/EBP.

present in only a fraction of peaks, suggesting their roles in specific regulatory contexts. In
contrast, C/EBP, POU, and HOX were more prevalent, indicating broader regulatory functions.
Motif combinations within peaks were visualized using an upset plot (Fig. 4.1c), where low-
frequency combinations were filtered out. AP-2, NFI, and TWIST frequently co-occurred with
C/EBP, POU, and HOX, whereas EWS-FLI1 motifs were less common. The distribution of motif
instances relative to peak centers (Fig. 4.1d) showed that AP-2, NFI, and EWS-FLI1 (single
GGAA) had the highest concentrations, while EWS-FLI1 (GGAA repeat) motifs were more
dispersed, suggesting a role in distal regulation, potentially as enhancers.

Fig. 4.1e shows the identified motif instances under two example peaks on chr1, where many
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Figure 4.3: Continuation of PONDR and metapredict V2 IDR predictions for proteins identified
by U-DisCo. One representative protein isoform was selected for prediction in each case. D,
TWIST. E, POU. F, HOX.

instances are clustered near peak summits. To further investigate their importance, we performed
single nucleotide mutagenesis experiments. For instance, mutating C to A at a high-importance
site within an AP-2 instance resulted in a noticeable decrease in the predicted signals. In contrast,
mutating a less important nucleotide T to C within a POU instance had minimal impact on the
predicted profile.

To assess motif associations with DisP-seq clusters, we calculated odds ratios for DisP is-
land states (Fig. 4.1f). AP-2 was weakly associated with non-island regions, while EWS-FLI1
(GGAA repeat) was strongly associated with islands. TWIST also showed a weak association
with islands, while other motifs displayed no significant relationships. Finally, we computed
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odds ratios for chromatin states, labeled by ChromHMM, associated with each motif (Fig. 4.1g).
AP-2 showed a weak association with transcription start sites (TSS). NFI, EWS-FLI1 (single
GGAA), C/EBP, TWIST, and POU were weakly associated with active enhancers, while EWS-
FLI1 (GGAA repeat) was strongly linked to active enhancers. This suggests that these motifs are
involved in enhancer-mediated gene regulation, particularly EWS-FLI1 (GGAA repeat), consis-
tent with its dispersed distribution (Fig. 4.1d).
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Chapter 5

Cooperative intercations between IDPs

After identifying the binding motifs of IDPs in SKNMC cells, we aimed to understand how these
motifs interact with each other. We conducted a co-occurrence analysis to assess whether motif
pairs were co-occurring due to cooperative interactions or random chance. We also investigated
the strand-specific preferences and spacing between motif instances to uncover subtle patterns.
Our results revealed cooperative behaviors between IDPs and their binding preferences, provid-
ing fine-grained insights into the IDP-mediated gene regulation in SKNMC cells.

5.1 Co-occurrence analysis

To investigate the cooperative behaviors of IDP-binding motifs, we analyzed their co-occurrences
to assess proximity and potential interactions. Four distance ranges between motif instances were
considered: less than 150 bp, 150-300 bp, 300-500 bp, and greater than 500 bp. 100 shuffled
versions of the motif instances were generated by randomly permuting their positions within
chromosomes, preserving their chromosomal distribution. For each distance range, all motif
pairs were evaluated using k-d trees [55] for efficiency. Counts of motif pairs falling inside and
outside the range were obtained for both the original and shuffled motif instances, where the
counts from the 100 shuffled versions were averaged. Following [33], a contingency matrix was
constructed, where Pearson’s chi-squared test was applied to determine the significance:

C =

[
outside count (shuffled) outside count
inside count (shuffled) inside count

]
, (5.1)

and the odds ratio was calculated as:

odds ratio =
inside count× outside count (shuffled)
outside count× inside count (shuffled)

. (5.2)

An odds ratio greater than 1 indicates significant co-occurrence, while a value less than 1 suggests
fewer co-occurrences than expected by random chance.
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5.2 Neighborhood density analysis
To investigate whether co-occurrence within 150 bp indicates cooperative interactions, we
grouped motif instances by the number of neighboring instances of the paired motif within 150
bp. For each motif pair A and B, where A and B may be the same, instances of motif A were
grouped by the number of neighboring B instances, using the following thresholds: isolated (less
than 10% quantile), normal (10-90% quantile), and gregarious (greater than 90% quantile). Sim-
ilarly, motif B was grouped by the number of neighboring A instances. Mann-Whitney U test
was performed to assess the significance of differences in importance scores between adjacent
groups (isolated vs. normal, normal vs. gregarious).

5.3 Strand-specific preference analysis
We extended the co-occurrence analysis to include strand-specific preferences and more gran-
ular distance ranges to uncover subtle patterns. Four strand orientation combinations for motif
A and motif B were considered: (i) ⇒→ (A to B, parallel); (ii) →⇒ (B to A, parallel); (iii)
←⇒ (tail-to-tail); and (iv)⇒← (head-to-head). Although there are eight possible orientations,
symmetry allows them to be condensed into these four categories. When A and B refer to the
same motif, categories (i) and (ii) collapse into one. The distance ranges were binned every 25
bp, extending from 0 up to 600 bp. For each distance range and strand orientation combination,
odds ratios were calculated for motif pairs falling within the specified parameters, as described
in Section 5.1, with error bars representing the standard deviation across 100 shuffled versions.
Paired permutation test was conducted to assess the significance of strand orientation prefer-
ences, where the odds ratios for each orientation were paired with those from other orientations
at the same distance, followed by shuffling across orientations. The variance of the mean odds
ratios from each shuffled orientation was used as the test statistic.

5.4 Results

5.4.1 Cooperative behaviors between IDPs
The co-occurrence analysis revealed distinct patterns of potential cooperative interactions
(Fig. 5.1a). Short-range interactions (less than 150 bp) showed strong co-occurrence between
motifs such as AP-2, NFI, EWS-FLI1 (single GGAA), and TWIST, suggesting they may partic-
ipate in larger regulatory complexes. Notably, AP-2 and EWS-FLI1 (single GGAA) exhibited
homotypic interactions, indicating possible homotypic binding or cooperative formation of reg-
ulatory domains. As the distance increased to medium ranges (150-300 bp and 300-500 bp), the
odds ratios for co-occurrence gradually declined. In contrast, long-range interactions (greater
than 500 bp) revealed high odds ratios for EWS-FLI1 (GGAA repeat), suggesting that this high-
importance motif operates independently at longer distances, potentially focusing on distal reg-
ulatory elements critical for gene expression programs in Ewing sarcoma. NFI also exhibited
strong homotypic co-occurrence at these distances, though it showed less interaction with itself
at shorter ranges.
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Figure 5.1: Co-occurrence analysis revealing cooperative behaviors between IDPs and their bind-
ing preferences. a. Odds ratios for motif pair co-occurrence across distance ranges. Odds ratios
above 1 indicate co-occurrence, and below 1 suggest fewer co-occurrences than expected by
chance. ***p < 0.001, **p < 0.01, *p < 0.05 (chi-squared test). b. Importance scores for
motif pairs grouped by the density of their paired motif instances within 150 bp. A boxplot
with a single motif represents that motif paired with itself. Boxplots with two motifs represent
those motifs paired together. ***p < 0.001, **p < 0.01, *p < 0.05 (Mann-Whitney U test
for significance in distribution differences between adjacent groups). c. Odds ratios for motif
pair co-occurrence grouped by strand orientation across 25 bp distance bins. Interpretation of
odds ratios follows panel a. Error bars represent the standard deviation across 100 simulations.
***p < 0.001, **p < 0.01, *p < 0.05 (paired permutation test for significance of strand orienta-
tion preferences).

To confirm that co-occurrence within 150 bp indicates cooperative interactions rather than
mere proximity, we analyzed the importance scores of motif pairs based on the density of neigh-
boring motifs (Fig. 5.1b). Overall, motifs with more neighbors had significantly higher im-
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portance scores, indicating cooperative behavior. One exception was TWIST, which showed
decreasing importance scores with more TWIST neighbors, explaining its weak homotypic co-
occurrence (Fig. 5.1a). These findings suggest that co-occurrence within 150 bp is generally
indicative of cooperative interactions between motifs.

Importantly, while HOMER can identify sequence motifs under DisP-seq peaks for co-
occurrence analysis, its statistical approach cannot reveal base-level contributions to DisP-seq
signals, lacking fine-grained attribution for each motif and potentially leading to false positives.
In contrast, U-DisCo provides simultaneous importance scores for all motifs, identifying in-
stances specific to SKNMC and predictive of DisP-seq signals, enabling a biologically meaning-
ful co-occurrence analysis.

5.4.2 IDP binding preferences for orientation and spacing
To further investigate motif co-occurrences, we incorporated strand orientation combinations and
finer distance intervals (binned every 25 bp up to 600 bp) and calculated odds ratios for motif
pair occurrences (Fig. 5.1c). This finer granularity revealed co-occurrence patterns that were
not apparent previously. The results aligned with previous analyses (Fig. 5.1a), showing that
co-occurring motif pairs generally had higher odds ratios at closer distances. Three types of ori-
entation preference emerged: none, weak, and strong. AP-2 & AP-2, and AP-2 & EWS-FLI1
(single GGAA) displayed no or negligible preference for any orientation, suggesting flexible
functionality. NFI & EWS-FLI1 (single GGAA), and EWS-FLI1 (single GGAA) & EWS-FLI1
(single GGAA) showed a weak preference for parallel and head-to-head orientations. In contrast,
EWS-FLI1 (single GGAA) & EWS-FLI1 (GGAA repeat) demonstrated a strong, distinct prefer-
ence for different orientations depending on the distance. At distances greater than 350 bp, this
pair favored head-to-head orientations, suggesting potential mechanisms for long-range interac-
tions. EWS-FLI1 (GGAA repeat) & EWS-FLI1 (GGAA repeat) showed a strong preference for
parallel orientations within 50 bp, indicating a tendency to cluster and potentially form extended
GGAA sequences. At distances beyond 500 bp, their head-to-head orientation preference hints
at the formation of higher-order structures.
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Chapter 6

Conclusion

This work presents the first computational approach to explore and quantify multiple IDPs within
a single cell type, rather than in isolation. U-DisCo, our deep learning model, achieved high
accuracy and computational efficiency in predicting base-resolution IDP-DNA binding profiles
from DNA sequences and demonstrated robust generalization across cell lines. Beyond identi-
fying key IDP-binding motifs, U-DisCo revealed functional syntax, cooperative behaviors, and
binding preferences of IDPs in SKNMC cells. This approach can be adapted to other cell types
and protein-DNA binding profiles to investigate regulatory mechanisms across diverse biological
contexts.

IDPs play a central role in complex regulatory networks, making it crucial to understand
their interactions with DNA. Although previous sequencing efforts have explored IDP-DNA in-
teractions, these are limited to one protein type at a time due to reliance on targeted antibod-
ies. The antibody-independent DisP-seq assay overcomes this limitation by mapping multiple
disordered proteins simultaneously. However, no prior computational approaches could inves-
tigate IDP-DNA interactions directly from DNA sequence data. Frequency-based methods like
k-mer [56, 57] and dictionary-based algorithms [58, 59] often miss low-frequency motifs, such
as GGAA repeats, or overestimate highly frequent motifs like HOX and POU. Deep learning has
been applied to protein-DNA binding predictions, but achieving base-resolution interpretability
for IDPs has remained challenging. U-DisCo addresses this gap by combining deep learning
with DisP-seq data, using a U-Net architecture to analyze long-range genomic contexts while
preserving interpretability.

Despite these advances, U-DisCo currently relies primarily on DNA sequence data.
Future iterations could integrate protein structural information predicted by methods like
RoseTTAFold [60], enabling deeper exploration of the fine-tuned binding mechanisms at the
protein-DNA interface. While U-DisCo is computationally efficient in analyzing 20 kb input
DNA sequences, it may face limitations when handling distal interactions spanning several
megabases. Transformer-based methods, known for handling long-range dependencies, could
complement U-DisCo in exploring such large-scale interactions, broadening the scope of IDP-
DNA dynamics across regulatory domains. The lower performance of U-DisCo in cross-cell line
evaluations on MRC5 likely stems from using DNase-seq data from IMR90 cells as a proxy,
due to the absence of MRC5-specific ATAC-seq data. However, this reduced performance may
also indicate inherent cell type-specific differences in IDP-DNA interactions, a topic for further
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study. Additionally, the motif syntax identified in this study may not be exhaustive. Further
investigations could reveal additional motifs and their regulatory roles. Experimental validation
of motif interactions is essential for a comprehensive understanding of the regulatory networks
mediated by IDPs. Overall, these findings lay a foundation for future research into genome-wide
regulatory mechanisms, enhancing our understanding of IDP-mediated gene regulation.
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[51] Grünewald, T. G. et al. Ewing sarcoma. Nature reviews Disease primers 4, 5 (2018). 4.5
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