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Abstract

Automated Program Verification (APV) provides formal guarantees about
software while promising strong automation in the verification process. APV has
already seen preliminary successes in system software (e.g., file systems, network
protocols), extending beyond academic prototypes to industrial applications.
However, the scalability of APV becomes an issue as we move towards more
complex systems, where automation failures start to show up. Such failures
often require tedious manual fixes, breaking the pledge of automation in APV.
Worse yet, since program verification is fundamentally undecidable, automation
failures are inherently inevitable.

Nevertheless, that does not mean APV is hopeless beyond small-scale systems.
In this thesis, we organize the discussion around the development stages of APV:
(1) creating proofs, (2) reusing proofs, (3) debugging proofs, and (4) stabilizing
proofs. We argue that, despite the undecidable nature of program verification
in theory, we can overcome the scalability challenges that arise in practice, due
to the recurrent patterns in APV programming and reasoning.

Specifically, we make empirical observations on the common motifs in APV,
and then design formal methods to leverage them for automation. Using large-
scale verified systems as case studies, we show this combination of formal and
empirical methods leads to practical improvements in APV for system software.
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Chapter 1

Introduction

1.1 The Scalability Problems

As programmers, we often make various informal claims about our software, including its
correctness, efficiency, security, and so on. However, as many of us can also testify, these
claims are sometimes unsubstantiated or even untrue. Luckily, formal verification offers a
path to move away from informal claims and towards formal guarantees about programs.

Formal verification uses mechanized proofs to show that the code meets its specification,
precluding entire classes of problems (e.g., buffer overflows and race conditions) that have
plagued traditional software development. In particular, Automated Program Verification
(APV) offers an encouraging approach, with a promise of strong proof automation. APV
features the use of Satisfiability Modulo Theories (SMT) solvers [15]. Specifically, APV
languages encode the proof obligations as SMT queries, where state-of-the-art SMT solvers
such as Z3 [47] and cvc5 [10] can often discharge the obligations automatically, eliminating
a significant number of manual proof steps.

APV has received increasing interest in recent years. This is evidenced by a growing list
of APV languages, which includes Dafny [97] and F⋆ [154] with active support from Amazon
Web Services and Microsoft, respectively. Moreover, APV has seen preliminary success
in various system software domains, including distributed systems [78, 104, 110], storage
systems [6, 24, 72, 100], operating systems [26, 59, 74, 79, 123, 124, 149, 155], networking
systems [9, 20, 37, 39, 48, 49, 80, 101, 167, 171], and security/cryptography [2, 3, 23, 137,
139, 140, 174, 177].

However, when we apply existing APV techniques to larger systems, scalability becomes
an issue. There can be many concrete symptoms, but they all boil down to failures in proof
automation. Fixing these failures often requires tedious efforts and advanced expertise. Put
in a crude way: automation failures can be laboriously fixed by Ph.D. students, but that is
not a practical strategy for production purposes.
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Worse yet, the scalability challenges are fundamentally due to undecidability. As Rice’s
theorem [144] underscores, verifying programs with basic language features such as recursion
is generally undecidable. Therefore, APV techniques suffer from inherent incompleteness.
Informally, no matter how powerful the SMT solvers or APV languages become, there will
always be “simple” programs that cannot be automatically verified.

1.2 The Recurrent Patterns

Even though the theoretical limitation seems daunting, all hope is not lost yet. In this
thesis, we discuss a few major challenges to the scalability of APV for system software. We
highlight the recurrent patterns in programs or proofs of interest, and then exploit these
patterns to address various scalability problems. Specifically, our thesis statement is:

While fully automated program verification is impossible,
we can often have scalable solutions to practical systems,

based on the recurrent reasoning and programming patterns.

In this thesis, we demonstrate the principle throughout the lifecycle of APV projects,
from creating and debugging proofs in active development, to reusing and stabilizing proofs
for long-term maintenance. We employ empiricism when applicable, to help discover the
recurrent patterns and evaluate our formal techniques. We show that the combination of
formal and empirical methods can lead to pragmatic improvements in the scalability of
APV.

1.2.1 Creating Proofs

We begin the main discussion in Chapter 3, in which we cover proofs about memory safety
and theory-specific reasoning. We place an emphasis on the former, since memory safety is
a prerequisite for more advanced properties such as security and correctness.

We first illustrate the challenges of memory safety proofs in Sec. 3.1.1, using QUIC𝐷 [49]
as a case study. QUIC𝐷 is our implementation of the QUIC [93] protocol in Dafny (∼10kLoc).
As we build up the data structure hierarchy in our implementation, the memory invariants
become increasingly complex. Consequently, the SMT solver often struggles to prove the
safety of heap updates, especially for the higher-level structures. This challenge arises
because Dafny’s memory model allows arbitrary aliasing – the memory invariants must
account for possible points-to relation between each pair of structures. Meanwhile, we
also observe that over 90% of the memory updates in our implementation do not actually
involve aliasing.

In Sec. 3.1.3, we build on this observation and propose a novel approach to memory
safety proofs. Specifically, we introduce linear types to Dafny [100], creating a hybrid of
linear and regular regions in the memory model. Specifically, each linearly-typed structure

2



enforces a unique owner, eliminating the need for further aliasing reasoning at the SMT level.
Meanwhile, we retain the flexibility of arbitrary aliasing in regular regions whenever needed.
We demonstrate the effectiveness of this approach, by reproducing an implementation of
the VeriBetrKV key-value store (∼24 kLoc) using 28% fewer lines of proofs and 30% faster
verification time than its vanilla counterpart. The result further inspires us to design a
new APV language, Verus [94], tailored for the Rust programming language that already
features an affine type system.

Beyond memory safety, specialized theories are another building block in APV. In
particular, cryptography and systems programming often involve bit-level operations,
which requires reasoning over nonlinear integer arithmetic (NIA) and bit-vectors (BV). In
Sec. 3.2.1 and Sec. 3.2.2 we demonstrate the complications these theories introduce and
the manual workarounds in Dafny programs. We then then describe how we encode these
proof obligations in Verus, automating the manual proof patterns.

1.2.2 Debugging Proofs

Despite the best efforts to automate proofs, verification failures are inevitable. In Chapter 4,
we discuss the challenges in debugging proofs. Current APV languages provide limited
insight into the cause of failures. In practice, developers often resort to a manual trial-and-
error process. Similar to debugging traditional software using print statements, the process
can be ad-hoc and time-consuming, which slows down development. Nonetheless, over the
years, we have observed recurrent patterns in the manual debugging practice. We thus
create the ProofPlumber framework [36], which provides an API for developers to easily
define their own debugging strategies for Verus proofs. We call such debug automation
proof actions, which is analogous to the concept of code actions in modern IDEs. As a
proof of concept, we implement 17 common proof actions with ProofPlumber API, using
only 29–177 lines of code each.

1.2.3 Reusing Proofs

We then transition our discussion from active development to long-term maintenance
in APV. In Chapter 5, we focus on reusing proofs, which is similar to reusing code in
traditional software development. More specifically, we discuss proof reuse in the context of
verifying low-level cryptography across multiple heterogeneous hardware platforms through
our Galápagos framework [174]. We demonstrate that, with the introduction of verified
functors for proof reuse, it is possible to achieve a 28%–65% reduction in verification effort
when supporting additional platforms or algorithms. As part of the Galápagos framework,
we have also curated the first Dafny standard library (∼5.8 kLoc), which generalizes and
unifies the previously standalone libraries spread across past projects. The library is now a
part of the Dafny distribution [43], providing reusable lemmas for the community and also
attesting the recurrent reasoning patterns in APV.
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1.2.4 Stabilizing Proofs

While the reusing/debugging proofs has an intuitive counterpart in traditional software
development, in Chapter 6 we discuss a unique challenge in APV, stability. Specifically,
proof instability (also called brittleness) refers to the phenomenon where non-semantic
changes to the program create spurious verification failures. Fixing such failures incurs
significant maintenance overhead without providing new insights into the program under
verification. Worse yet, the problem tends to be exacerbated in large-scale projects with
multiple collaborators and frequent code changes, creating a major scalability challenge.

Our first step towards addressing instability is to quantify it. In Sec. 6.1, we introduce
Mariposa [173], a tool to detect and measure instability. Mariposa takes as input an SMT
query-solver pair, mutates the query with non-semantic changes, and outputs a stability
judgment. Intuitively, if the solver’s performance varies among the mutated queries in a
statistically significant manner, Mariposa flags the query-solver pair as unstable.

We then use Mariposa to conduct a large-scale empirical study, analyzing over 26,000
queries collected from 14 existing system verification projects written in Dafny, F⋆, Verus,
and Serval [122]. In some projects, the ratio of unstable queries can be as high as 5%.
While this might not seem significant at first glance, for a regular software project, it
would be completely unacceptable to have 5% of its unit tests fail randomly. Unfortunately,
for APV developers, instability has been a persistent burden to bear. To highlight this
issue, we curate the first APV query benchmark, which includes a unstable set to test for
improvements and a stable set to watch for regressions.

As we have a way to quantify instability and a benchmark suite to evaluate against,
we start working on mitigation, using a combination of empirical and formal methods.
In Sec. 6.2, we present a novel SMT pre-processing algorithm named Shake [172]. We
base Shake on the observation that APV queries exhibit a goal-axiom structure, which
distinguishes them from general SMT queries. In this structure, the goal represents the
intended property to be verified, while the axioms supply the background information.
Through idealized experiments, we discover that 96%–99% of the axioms are irrelevant to
the goal, while accounting for a vast majority (78%) of the instability instances. Motivated
by the finding, we design Shake to prune out less relevant axioms from the queries, which
mitigates instability by 29% on Z3 and 41% on cvc5.

In Sec. 6.3, we further leverage the goal-axiom structure to repair instability at a fine-
grained level. Through carefully controlled experiments, we discover that instability is often
due to a few query-specific axioms. With this empirical insight, we design Cazamariposas,
a tool to identify the problematic axioms along with fixes. Specifically, we present a novel
differential analysis technique in Cazamariposas, taking advantage of the divergence in
axiom usage profiles when a query undergoes Mariposa-style mutations. When we apply
Cazamariposas to our benchmark suite, it repairs ∼70% of the unstable queries, providing
fixes involving ≤ 2 axioms.
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1.3 The Concrete Contributions (TLDR)

This thesis addresses several major scalability challenges in Automated Program Verification
(APV) for system software. More specifically, we discuss the challenges across the lifecycle
of APV projects and propose pragmatic solutions based on recurrent patterns in programs
or proofs of interest. Here we summarize the contributions in each chapter:

Creating Proofs.
• QUIC𝐷. A verified implementation of the QUIC protocol in Dafny.
• Linear Dafny. A language extension to Dafny, where we leverage linear types to

simplify the reasoning over common-case memory-access patterns.
• VeriBetrKV𝐿. A verified implementation of the VeriBetrKV key-value store using

Linear Dafny.
• Verus. An APV language for Rust programs, where we leverage the built-in affine

type system to simplify memory reasoning and automate the manual proof patterns
for NIA and BV.

Debugging Proofs.
• ProofPlumber. A framework for debugging Verus proofs, with an API to customize

debugging strategies.
• Proof Actions. 17 common debugging strategies implemented with the ProofPlumber

API, automating the corresponding manual debug patterns.

Reusing Proofs.
• Galápagos1. A framework for low-level cryptography on heterogeneous platforms,

where we introduce verified functors to generalize and deduplicate proof patterns.
• Dafny Standard Library. The first curated library of reusable lemmas for the Dafny

community, where we capture the recurrent reasoning patterns in past projects.

Stabilizing Proofs.
• Mariposa2. The first tool to systematically detect and measure instability, and the

first APV query benchmark suite.
• Shake. The first SMT-level algorithm to mitigate instability, where we leverage the

pattern of goal-axiom structures in APV queries.
• Cazamariposas3. The first SMT-level tool to automatically repair unstable queries,

leveraging the differential patterns in axiom usage.

1The Galápagos finch and tortoise species are famous for adapting their bodies to the different environ-
ments on each of the Galápagos Islands. In the same vein, the Galápagos framework adapts cryptographic
algorithms to the specifics of each supported hardware model.

2The name comes from the Spanish word for butterfly, where instability is similar to the so-called
butterfly effect in chaos theory.

3The name comes from the Spanish word butterfly net, since we use this tool to fix instability.
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Chapter 2

Background

In this chapter, we provide an overview of the automated verification of system software.
In Sec. 2.1, we introduce deductive program verification, outlining its historical context and
logical foundations. In Sec. 2.2, we discuss system software, which we focus our verification
efforts on. More specifically, we discuss what the typical requirements for system software
are, and how verification can help meet the requirements. In Sec. 2.3, we expand on
automated program verification (APV), which is the main topic of our thesis. In particular,
we cover the components of the APV pipeline, and discuss the current challenges and
limitations of APV for system software.

2.1 Program Verification Overview

In deductive program verification, we use mechanized proofs to formally establish software
properties. Typically we provide the following as inputs to a program verifier:

(1) Source code, which is meant to be compiled/executed.
(2) Specifications, which are usually non-executable logical formulas.
(3) Proofs justifying that (1) meets (2).

The deductive program verifier then outputs whether the proof is valid.

It is believed that verification can offer a high degree of assurance. In comparison to
software testing, which checks a program’s behavior on a limited subset of possible inputs,
verification ensures that a program complies with its specifications on all inputs. Please
note that in this thesis we do not go to the lengths to justify the business or fiscal value of
program verification as a development method. Instead, we work under the assumption
that deductive verification is a sensible endeavor in academia and certain industry settings.
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2.1.1 Abbreviated Histories of Verification

Deductive program verification originated from the work of Floyd and Hoare [61, 81] in the
1960s. Floyd-Hoare logic, often simply referred to as Hoare logic, is a formal logic based on
Hoare triples, which are statements about program properties. A Hoare triple is of the form
{𝑃}𝐶{𝑄}, where 𝑃 and 𝑄 are logical predicates on program state and 𝐶 is a program.
Intuitively, this triple states that if the program 𝐶 is executed in a state satisfying the
pre-condition 𝑃 , it will terminate 1 in a state satisfying the post-condition 𝑄.

Hoare logic also includes mechanisms to prove these statements of program properties.
Given the syntax and semantics of a language 𝐿, we can mechanically derive its Hoare logic,
which would provide a set of inference rules capturing the behavior of each basic language
construct (e.g., assignment, sequencing, conditionals). We can thus build the proof of a
Hoare triple {𝑃}𝐶{𝑄} from the proofs of 𝑃 ’s sub-constructs, which eventually boils down
to the inference-rule applications.

Dijkstra’s weakest pre-condition calculus [51] further simplifies the proof construction.
Specifically, proving {𝑃}𝐶{𝑄} is reduced to proving 𝑃 ⇒ 𝑤𝑝(𝐶,𝑄), where 𝑤𝑝(𝐶,𝑄) is
the weakest pre-condition the calculus computes. Furthermore, if the state predicates (i.e.,
𝑃,𝑄) are within First-order logic (FOL), then 𝑃 ⇒ 𝑤𝑝(𝐶,𝑄) is also within FOL. In this
way, Hoare logic is translated into FOL, which is a well-studied subject in mathematical
logic and computer science.

As modern programming languages evolve, Hoare logic has also gone through various
adaptations, with support for heap reasoning [143], concurrency reasoning [29], modal
reasoning [75], and more. Despite the variations, the deductive principles of Hoare logic
and weakest pre-condition calculus remain central to program verification.

Around the time Hoare logic was introduced, mechanized theorem provers also began to
emerge. Early examples include LCF [135] and Nqthm [27] in the 1970s. Although these
provers were not exclusively designed for program verification, they laid the groundwork
for computer-aided formal reasoning. For instance, Nqthm was succeeded by ACL2 [89, 90],
while LCF gave rise to HOL [65], which remains as a part of Isabelle/HOL [125]. The field
evolved into interactive theorem proving (ITP) as we know it today, with other popular
tools such as Coq [18], Lean [117], and PVS [130], often used for program verification.

The field of automated theorem proving (ATP) branched off from the early day provers.
While ITP frameworks can handle general-purpose reasoning under user guidance, ATP
tools focus more on fully automated first-order theorem proving. TPTP [153], a library of
ATP problems, along with ATP tools such as Otter [109] and Vampire [165] were developed
in the 1990s. ATP is not as widely used for program verification purposes, but many key
ideas, such as resolution, superposition, and axiom selection remain relevant.

In parallel, boolean satisfiability (SAT) solvers have been evolving since the 1960s [45].

1To be more precise, the relation described by the Hoare triple is known as partial correctness, where
termination is proven separately.
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SAT formulas are in propositional logic, which, while less expressive than FOL, remains
a foundational concept in computer science [87]. Around the 2000s, SAT solving saw
breakthroughs in terms of efficiency and scalability, with new CDCL-based solvers such as
GRASP [106], Chaff [116], and MiniSat [55].

Building on top of the success of SAT solvers, Satisfiability Modulo Theories (SMT)
solvers also gained traction. SMT is a generalization of SAT, extending the formulas to FOL.
While ATP also handles FOL problems, SMT emphasizes the integration of background
theories such as arithmetic, arrays, and bit-vectors. Due to the high degree of automation
and expressivity, SMT solvers such as Z3 [47], cvc5 [10], and Yices [54] have become
popular in a wide range of applications, including model checking [41, 92, 111], symbolic
execution [30, 31, 148], and program synthesis [4, 68].

SMT-based automated program verification (APV) also became practical with the
increasingly more powerful solvers. There have been continuous developments in APV tools,
including Boogie [11], Chalice [98], and VCC [146] in the 2000s; Dafny [97], Why3 [22],
F⋆ [154], Viper [118], JayHorn [85], Ivy [132], Vale [23], Nagini [56], and Prusti [8] in the
2010s; RustHorn [108], GoBra [169], Creusot [50], Flux [95], and Verus [94] in more recent
years.

This concise recapitulation of the history of program verification is by no means
exhaustive, but it helps to understand the current state of the field. Nowadays, deductive
program verifiers generally fall into either ITP-based or APV-based. ITP, while not the
focus of this thesis, has an earlier history, with a persistent impact in the formal methods
community. At a very high level, ITP tools such as Coq or Lean enable developers to
construct proofs interactively. Meanwhile, APV tools such as Dafny or Verus partially
automate the process, where the developer provides some proof annotations as hints. Here
we compare and contrast the two approaches in more detail.

User Interface. With ITP, a developer can examine the proof state through a live
“proof assistant” window, which presents the proven statements and the current sub-goals.
This is not the case with APV, where the developer basically receives an overall pass/fail
result. For more detailed information, e.g., which sub-goal remains unsolved, one often
needs to adjust the proof annotations and re-run verification. We discuss the iterative
development process in APV with greater detail in Sec. 2.3.

Proof Automation. In ITP, the developer writes tactics to manipulate the proof state.
A tactic is similar to a step in a pen-and-paper proof, e.g., applying a lemma, or simplifying
an expression, but beyond that, a tactic can also programmatically orchestrate a proof,
e.g., applying another tactic repeatedly until a sub-goal is solved. In a sense, tactics create
a means to program the proof search. Therefore, the degree of automation depends on
the tactic library available and the developer’s expertise. In APV, the automation is more
“uniform”, where the proof obligations are encoded as SMT queries and handed off to solvers.
There is no direct way to guide the proof search in APV. The developer can only do so
indirectly by adjusting the proof annotations.

Language Embedding. The Hoare logic of some language 𝐿 is based on the syntax
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and semantics of 𝐿. In ITP, one usually defines 𝐿 as a library. For example, using Coq,
CompCert [99] embeds a subset of C, and RustBelt [84] embeds a subset of Rust. In APV,
the language 𝐿 is often embedded in the verifier itself. For example, Verus is an APV tool
for Rust, where the semantics of Rust is hard-coded into the verifier. Similarly, Dafny is an
APV tool for itself, where the executable subset of Dafny is similar to C#. It is feasible to
embed another language in an APV language (as we do in Chapter 5), but less common.

2.1.2 Basic Concepts in Logic

A deductive system consists of the following components:
• Syntax. The set of well-formed formulas2.
• Semantics. The definition of truth (validity), usually in terms of models.
• Axioms. A set of formulas assumed to be valid.
• Proof Rules. The rules for building new formulas (theorems) from existing ones.

The logical symbols, which include connectives (e.g., ∧,∨,¬), quantifiers (∀,∃), constants
(⊤,⊥), and equality (=) usually just have the standard semantics. Function symbols, e.g.,
a binary operator +, can have interpretation-dependent semantics. Specifically, in equality
logic with uninterpreted functions (EUF), non-logical symbols have no meaning, where +
can simply represent a deterministic binary function.

An interpretation M assigns meaning to the non-logical symbols. If a formula 𝜑 is true
under M, M is said to be a model of 𝜑. For example, consider a propositional formula
𝑎 ∧ 𝑏, where 𝑎, 𝑏 are uninterpreted boolean functions (i.e., unknown boolean constants).
One interpretation is {𝑎 ↦→ ⊤, 𝑏 ↦→ ⊤}, which is a model, but {𝑎 ↦→ ⊤, 𝑏 ↦→ ⊥} is not.

We now restrict possible interpretations to models of the axioms. (If the axioms have no
model, the logic is inconsistent.) A formula 𝜑 is valid iff 𝜑 is true under all interpretations.
A formula 𝜑 is satisfiable if 𝜑 has at least one model. A formula 𝜑 is unsatisfiable if 𝜑 is
false under all possible interpretations.

We note unsatisfiability is a dual to validity (rather than satisfiability). If we negate a
valid formula, the result is unsatisfiable, and vice versa. However, if we negate an satisfiable
formula, the result can be either satisfiable or unsatisfiable.

The set of provable formulas is the transitive closure of derivable theorems from the
axioms, based on the proof rules. However, there is no guarantee that the provable formulas
are valid, and vice versa. This dichotomy between derivability and validity leads to a few
basic properties of a logic.

• Soundness. A logic is sound when all provable formulas are true.
• Completeness. A logic is complete when all true formulas are provable.
• Consistency. A logic is consistent when it is contradiction-free. A contradiction

(i.e., inconsistency) manifests as 𝜑 and ¬𝜑 being provable for some formula 𝜑.
2For the rest of the discussion, we implicitly assume the formulas under consideration are well-formed.

10



Depending on the expressivity, a logic may differ in the following aspects:
• Order. The order of a logic depends on what it can quantify over. Propositional

logic, sometimes called zeroth-order logic, is quantifier-free. First-order logic (FOL)
quantifies over non-logical domains (e.g., integers, strings) only. Higher-order logics
(HOL) quantify over functions or predicates.

• Sortedness. An unsorted logic has a single domain of discourse, so a function’s
signature is just the arity. A many-sorted logic makes it possible to quantify over
individual domains. Function signatures are also become more expressive.

• Decidability. A logic is decidable if there is an algorithm that determines the validity
of any formula.

First-Order Theories. Using a set of first-order formulas as axioms creates a first-order
theory. A theory can be unsound or inconsistent, if an axiom is invalid or the axioms
contradict each other. For practical (implementation) purposes, a first-order theory with
infinite number of axioms is incomplete. For example, Peano Arithmetic (PA) is a first-order
theory, but the induction principle requires an infinite number of axioms.

FOL (by which we mean quantified EUF here) is semi-decidable, so that there is an
algorithm proving valid formulas, but no algorithm that can decide general invalid formulas
exists. In practice, effectively checking valid FOL formulas is a difficult problem. Notably,
quantifier instantiation (QI) often poses a challenge, i.e., the process of substituting the
quantified variables with appropriate terms in order to reach a proof.

We have omitted some other properties such as compactness in FOL. Nevertheless, we
have the listed the most relevant properties to this thesis, where Satisfiability Modulo
Theories (SMT) plays a central role.

Satisfiability Modulo Theories. SMT is based on many-sorted FOL3 extended with
background theories. In a simplified view, an SMT query introduces a set of functions
symbols, along with a set of logical constraints over them. The semantics of the query is
satisfiability of the conjunction over the constraints. Excluding basic errors conditions (e.g.,
due to syntax), the possible outcome of an SMT query is one of the following: sat, unsat,
unknown, and timeout.

SMT is many-sorted, where each term is tied to a fixed sort. The sort system enforces
disjointedness over objects of different sorts, which is similar to type systems in programming
languages. However, the sort system is somewhat limited in expressivity. For example,
SMT-LIB offers very limited support for polymorphic sorts, while polymorphism is a
common feature in programming languages.

SMT defines the signatures for a range of background theories, including arithmetic,
arrays, and bit-vectors. These theories are in the “background”, as in they do not have
explicit, callable first-order axioms. Nevertheless, the sorts and functions symbols from

3As of writing, SMT-LIB 2.7 [15] has very recently introduced the standard for polymorphic sorts
and HOL. However, the new standard is not yet widely adopted/implemented. Therefore, we focus the
discussion on SMT-LIB 2.6 [14], which has been in place since 2017.
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supported theories (e.g., Int and + for integer arithmetic) have predefined semantics. In
contrast, query-declared functions are uninterpreted by default. For example, the command
(declare-fun foo (Int) Int) declares an uninterpreted function symbol foo. The solver
knows nothing about foo except its signature, unless given further constraints over it.

SMT solving is generally undecidable and incomplete. While FOL is semi-decidable,
many background theories in SMT are undecidable, including the theory of nonlinear integer
arithmetic [107], which is fairly common in program verification. Moreover, incompleteness
may also be due to certain heuristics. Notably, APV languages including Dafny, F⋆,
and Verus rely heavily on pattern-based quantifier instantiation (QI) [46, 115], which is
incomplete by design. We discuss patterns more formally in Sec. 2.4.

2.2 System Software Overview

In this thesis, we focus on the verification of system software. Generally, system software
provides infrastructure to other software, as opposed to application software that serves
end-users directly. Examples of system software include operating systems, file systems,
network protocols, and hypervisors. It is important to note that machine learning systems
and hybrid systems (e.g., cyber-physical systems) are outside the scope of this thesis, as they
emphasize different program properties and thus require distinct theoretical foundations for
verification.

2.2.1 Requirements for System Software

We discuss a few broad classes of requirements for system software. While these requirements
are often the high-level properties that program verification aims to establish, we start from
the perspective of a system software developer/designer. This is to provide a more practical
view of verification, which is the focus of this thesis.

• Functionality. Advanced properties often become irrelevant without basic function-
ality. For instance, a protocol implementation that drops all messages also leaks no
information about the messages. However, message secrecy here is pointless, as the
system is not functioning at all.

• Robustness. System software is often mission-critical, so it should gracefully manage
unexpected situations. Robustness might have more system-specific implications,
but it generally includes handling unexpected inputs, recovering from failures, and
maintaining availability. For example, a storage system should recover to a consistent
state after power failure, and it should maintain data integrity in the presence of
concurrent accesses.

• Security. System software is often security-critical. Security requirements tend to
overlap with robustness requirements, but focus more on malicious threat models.
For example, a storage system should prevent unauthorized data access, including
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deliberate attempts to bypass the access control mechanisms, rather than accidental
corruption of data due to power failure in our previous example.

• Efficiency. System software is often performance-critical. Performance typically
refers to time-related metrics such as latency and throughput. In some cases, memory
usage, power consumption, and other resources might also be of concern. For example,
a cryptographic library on an embedded device might be subjected to very limited
memory, As a result, minimizing the memory footprint, including the compiled binary
size itself, becomes a part of the efficiency requirement.

While these requirements all contribute to the overall quality of a system, robustness
or security often conflicts with efficiency. For example, data redundancy may improve the
robustness of a storage system, but at the cost of additional disk space; similarly, packet
encryption may improve the security of a network protocol, but at the cost of increased
latency. Generally, robustness and security come with a performance cost, so system
software often needs to minimize the overhead.

As a result, system software often ends up with complex low-level implementations,
squeezing out the last bits of performance. Specifically, languages such as C/C++ or
assembly are common in the implementations, which provides the fine-grained resource
control that is essential to performance. For example, a C program can can apply struct-
padding for better page alignment or reorder allocations for fewer cache misses; either
would be fairly difficult to achieve in Java or Python programs. Similarly, using assembly
languages allows architecture-specific SIMD or bit-manipulation tricks, which a high-level
language compiler might miss.

2.2.2 Implications for Program Verification

With the general requirements for system software in place, we discuss how program
verification fit into the picture. As a starting point, we adopt the perspective that verification
is a means to an end, rather than an end in itself. While we do sometimes make compromises
to facilitate verification, we acknowledge them as limitations of APV, which we aim to
address in this thesis.

Purposes of Verification. System software is vulnerable to low-level bugs, which
verification can help prevent. Specifically, memory safety has been a long-standing issue.
Due to the low-level nature of programming languages like C/C++, programmers have
to perform manual memory management and pointer arithmetic, which may introduce
subtle bugs such as buffer overflows and use-after-free. These bugs often have security
implications, including remote code execution and privilege escalation. Worse yet, the bugs
may occur in silence4, making them hard to detect with traditional testing methods.

In Sec. 3.1.2, we discuss memory reasoning as the first concrete challenge. We place

4In Java, an out-of-bounds array access would lead to an exception, but in C, it might create a segfault,
or it could just corrupt memory without any error messages.
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such emphasis on memory safety, not only because it is a common issue in system software,
but also because it is a prerequisite for proving many other properties. Specifically, without
memory safety, the program’s behavior is undefined [77], making it impossible to reason
about functionality, robustness, or security.

In addition to preventing low-level issues, verification can also help establish high-level
properties. Specifically, it is often advisable to validate a design before investing heavily in
its implementation. With programs verification, we can first prove a design model possesses
the desired properties, and then prove that the implementation refines the model. However,
unlike memory safety, high-level properties are often system-specific. For example, the
security of a cryptographic protocol has a very different definition from the security of a
virtual machine monitor. Thus, it often requires domain-specific knowledge to verify these
advanced properties.

Expressivity of SMT. Despite the complexity of system software, first-order reasoning
is usually sufficient to capture and prove the properties of interest. Intuitively, there is
rarely a need to quantify over functions or predicates. For a system developer, they are
more likely to start a statement with “For all nodes in this list....” than with “For all the
first-order predicates over the structure....”, which might be more typical for a logician.
Even in the rare case where a higher-order statement seems necessary, we can often reduce
it to first-order. Suppose that we would like to claim “For all the procedures in this
codebase, it is memory safe”. This is technically a second-order statement, since it quantifies
over procedures. However, a codebase has finitely many procedures, which we can simply
enumerate and write a first-order statement instead.

Meanwhile, there is often the need to augment pure FOL with background theories,
which is a key feature of SMT. For instance, when reasoning about cryptographic primitives,
we need to connect the bit-level manipulations to high-level algebraic properties, which
requires the theory of bit-vectors and finite fields.

However, with expressivity comes the cost of decidability. Even if the code satisfies
the specifications, it is perfectly valid for an SMT solver to output unknown/timeout.
Intuitively, we would not expect an SMT solver to prove Fermat’s Last theorem without
any hints, so similar expectation applies to complex program verification tasks.

Meanwhile, the push-button verification style in APV offers a trade-off, with a focus on
decidable logics. This approach has seen some success in system software [122, 123, 124, 131].
The obvious advantage is that full automation becomes possible, but the expressivity is
limited. For example, recursive functions or loops might need to statically bounded, integers
might need to have finite ranges, quantification might be subject to Effectively Propositional
Reasoning [134], formulas might be restricted to Constrained Horn Clauses [69], and so on.
For our discussion in this thesis, we do not assume such restrictions.
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2.3 Automated Program Verification

Automated Program Verification (APV) has been a popular approach for system program
verification. In this section, we offer an overview of the APV workflow and its key
characteristics. Our discussion here applies to languages such as Dafny, F⋆, Verus, and
many more, which we mentioned in Sec. 2.1.1.

As we discussed in Sec. 2.1, the verifier takes as input the executable code, specifications,
and proofs. To avoid confusion, we use source program to refer to the entire input, and
code to refer to the part that is meant to be compiled/executed.

2.3.1 Overall Pipeline

The APV pipeline has three main stages: (1) writing the source program; (2) generating
the SMT queries, and (3) checking the queries with an SMT solver. The SMT query is
essentially a different representation of the source program, in a form that is amenable to
automated reasoning by the SMT solver. Since we already have introduced the preliminaries
of SMT in Sec. 2.1.2, we first discuss the source program here, and then how an APV
language bridges between the source and the SMT.

Source Procedure. Procedural abstraction is central to the modularity of Hoare-
style verification, where we can verify each procedure independently, while assuming the
correctness of the others as axioms. We generically refer to a function-like construct with
pre/post-conditions as a procedure. It can be a function, method, lemma, etc. In certain
contexts, it is worth making a distinction between executable and ghost procedures, where
the latter is for specification and proof purposes only.

Proof Annotations. Proof annotation is a key language feature in APV. Programming
languages often have assert statements that dynamically enforce user-defined properties.
APV languages also have assert statements, which statically state the properties instead.
That is, the assert statements in APV would fail if the property cannot be statically
verified. The terminology unfortunately overlaps with the assert command in SMT-LIB.
To make a distinction, we refer the source-level statement as proof annotations, or simply
annotations; and the SMT-level commands as assertions. We also make a distinction
between annotations versus pre/post-conditions, or invariants, which are all specifications.

An annotation can be interpreted in two ways: (1) as an obligation to be proved and
(2) as an intermediary step towards other proof obligations. Consider the Dafny lemma
in Lst. 2.1 that proves two polynomials equal. The annotation on line 3 is an obligation to
be proved, but it can also bridge the gap towards the post-condition on line 1.

The proof annotations do not have to be “complete”: they can skip some reasoning
steps. The example lemma is missing the steps on line 4 and 5 but can still be verified.
This is due to the automation provided by SMT solvers, which can often power through
the proof despite not having all of the details.
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0 lemma foo(a:int, b:int, c:int)

1 ensures (a+b)*c == c*a + c*b

2 {

3 assert (a+b)*c == a*c + b*c;

4 // assert a*c + b*c == a*c + c*b;

5 // assert a*c + c*b == c*a + c*b;

6 }

Listing 2.1: Example Dafny Program

Ghost Variables. Similar to how executable code contains compiled variables, proofs
and specifications may also contain auxiliary ghost variables. In fact, our example lemma
in Lst. 2.1 contains ghost variables only, since a lemmas is a ghost procedure with no
runtime semantics.

Ghost variables, when present in a executable procedure, might require additional type
declarations, e.g., with the ghost keyword as a type modifier in Dafny. Ghost variables
may also augment compilable data structures as members, which can be quite useful for
specifying data structure invariants. At compile time, all ghost variables or procedures are
erased from the source program.

Verification Conditions. The main responsibility of an APV language is to translate
source programs into SMT queries. The process is often called verification condition genera-
tion (VCG), which implements the weakest precondition calculus we mentioned in Sec. 2.1.1.
The VCG typically works on a per-procedure basis, translating a given procedure’s code,
specification, and proof (if any) into a verification condition [51]. Informally, the verification
condition, which we call the goal, is a logical formula stating that the code satisfies the
specification for the given procedure. Overall, verification of a project is equivalent to
proving the verification goals from all its member procedures.

More specifically, the VCG emits the negated version of the goal into the SMT query.
The intuition is that if this query is unsatisfiable, then the specification is never violated,
and thus the procedure verifies. Otherwise, the verifier (e.g., Dafny) reports the verification
failure to the programmer, similar to how a compiler reports errors and warnings.

0 (declare-const a Int)

1 (declare-const b Int)

2 (declare-const c Int)

3 (assert

4 ; negates the verification goal

5 (not

6 (let (

7 ; corresponds to the post-condition line 1 Lst.1.1

8 (Q (= (* (+ a b) c) (+ (* a c) (* b c))))

9 ; corresponds to the proof annotation line 3 Lst.1.1

10 (A (= (* (+ a b) c) (+ (* c a) (* c b)))))

11 (and

12 ; A should hold

13 A

14 ; given A, Q should hold

15 (=> A Q)))))

16 (check-sat)

Listing 2.2: Example SMT Query
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In Lst. 2.2, we show one possible SMT encoding of the lemma. We use an assert

command to introduce a constraint, which negates the verification goal. In the goal, we use
let bindings to define the proof annotation 𝐴 along with the post-condition 𝑄, and then
state 𝐴 ∧ (𝐴⇒ 𝑄). Intuitively, 𝑄 could be easier to establish if we first prove 𝐴.

Context Assertions. For simplicity, we used an example with a single assertion in
the SMT query. More generally, the VCG may also insert additional assertions into the
query context. Specifically, for a source procedure under verification, the VCG may need
to axiomatize the semantics of: (1) the language constructs, (2) the standard library
functions, and (3) the procedures that the current procedure calls. In practice, these may
translate into thousands of additional assertions.

Determining the callee set in (3) can be challenging. For instance, when higher-order
functions or dynamic dispatch are involved, it may be impossible to statically determine the
precise set of callees. To address this, the VCG usually over-approximates the call graph.
This approach ensures completeness, as under-approximation might preclude the verification
of correct programs. However, over-approximation may introduce irrelevant assertions,
potentially leading to solver performance issues, which we explore further in Sec. 6.2.

The callee set also brings up the notion of visibility. In particular, for a procedure 𝐴
under verification and another procedure 𝐵 in the same project, there are three common
visibility levels:

• Signature. 𝐴 can see 𝐵’s signature, but not its implementation (body).
• Full. 𝐴 can see 𝐵’s signature and its implementation.
• None. 𝐴 cannot see 𝐵 at all.

In the special case when 𝐵 is recursive, there is also the notion of fuel, which is the maximum
number of 𝐵 can be expanded in 𝐴.

APV languages usually offer source-level language features to override the default
visibility level defined by the VCG. For example, a Dafny function has full visibility by
default (within the same module). Meanwhile, Dafny also has the opaque and reveal

keywords, which hides the function body, and only reveals it when explicitly requested at a
call site. Similar mechanisms exist in F⋆ and Verus.

2.3.2 Development Workflow

In this section, we discuss the software and proof engineering aspects of APV. This will
hopefully provide some perspective on the scalability challenges we cover in this thesis.

The lifecycle of an APV project is similar to that of traditional software, starting from
conception, to development, to maintenance, and finally to retirement. However, since a
lot of the APV projects are academic research projects, the maintenance phase is often
short-lived. As a result, the development phase has been the main focus of research.
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2.3.2.1 Development Concerns

During active development, the developer typically focuses on a small portion of the source
program (often scoped to a single procedure). The process usually follows an iterative
workflow:

(1) The developer runs the verifier on the current procedure to check if it passes.
(2) If not, they add some debugging annotations.
(3) If so, they make more concrete changes, e.g., adding executable code.
(4) Either way, they go back to step (1), re-running the verifier.

The procedure-oriented, iterative process has a few implications in practice:

Time. The developer is blocked while the solver is running, so the procedure-level
verification time should be in the responsive range of human interaction. In particular,
Verus has a 10-second limit5 by default. In older (now legacy) projects written in Dafny
and F⋆, a 60-second limit is common.

Feedback. Feedback from the verifier (i.e., the SMT solver) is of particular importance,
especially when the verification fails and the developer needs to understand the cause.
Unfortunately, the SMT solver is mostly a black box, and obtaining information from it is
a somewhat arcane art. We thus dedicate Chapter 4 to annotation-based proof debugging,
where we discuss the common debugging techniques in step (2). We also explore the
possibility of making the process more transparent in Chapter 6, leveraging various log files
provided by the SMT solver.

Locality. Despite the procedural abstraction, a local change can have a wider impact
on the verification results. In particular, changing a procedure may require re-verifiying
all its callers, if not the transitive callers. Therefore, a change to a procedure impacts not
only the SMT queries for the procedure itself, but also those for all its callers, potentially
propagating throughout the call graph.

Stability. As we introduced in Sec. 1.2.4, instability is the phenomenon where minor,
non-semantic updates cause unexpected verification failures (which sometimes are not
even local to the change). For example, renaming a source-level variable might lead to a
previously verified procedure taking significantly longer to verify or even failing entirely. In
such scenarios, developers often need to provide additional proof hints to help the SMT
solver efficiently and successfully complete the verification process.

Instability thus poses a significant challenge for large-scale, industrial-level APV projects.
For a developer, instability disrupts the normal workflow and substantially lengthens their
iterative development cycles. Moreover, spurious failures may require developers to fix
proofs/code they did not write and may not even understand. In a large team of developers,
this problem is amplified, as independent and concurrent changes to the codebase potentially
create instability that is only visible after changes are merged. In short, instability impedes

5Verus actually bounds the solver execution using resource count (i.e., rlimit in Z3), where the default
resource limit corresponds to ∼10 seconds of CPU time.
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monotonic progress in developing a verified codebase.

Worse yet, instability is deeply rooted in the nature of APV. As we discussed in Sec. 2.2.2,
system software verification often involves a combination of complex low-level implemen-
tations and undecidable high-level properties. Therefore, the solver inevitably resorts to
incomplete heuristics, causing it to give up on certain queries. Hence, the developer is left
with spurious verification failures that seem to be unrelated to the changes they made.
Nevertheless, the problem is not as hopeless as it seems. We devote Chapter 6 to the study
of instability, where we explore the causes and potential solutions.

2.3.2.2 Maintenance Concerns

While the active development phase is often the focus of research, as APV moves towards
real-world applications, the maintenance phase is also receiving more attention. There are
roughly three types of maintenance updates due to: (1) changing requirements or design
decisions; (2) refactoring for better organization and readability; and (3) verifier upgrades
or changes in the underlying SMT solver.

We note that (1) and (2) also apply to the active development phase, but maybe the
scope of the change tends to be larger in the maintenance phase. For example, renaming a
file from Foo.dfy to Bar.dfy might have a larger impact than renaming a local variable
from x to y, where the latter is more common in active development. Nevertheless, our
discussion on instability remains highly relevant, if not more so, in the maintenance phase.

It is worth pointing out that (3) tends to be rather rare in practice, but points to
an orthogonal issue from instability. For example, HACL⋆ [137], based on F⋆ (or rather,
Low⋆ [141]), has been a long-lived project since 2017 [177], and it is still under active
maintenance as of 2025. While F⋆ has evolved over time, the APV language “pinned” itself
to Z3 version 4.8.5 (also released in 2017) for a long time. Anecdotally, when F⋆ finally
upgraded to Z3 version 4.12.1 in 2023, there were a significant number of regressions, which
we similarly observed on other verification projects (Sec. 6.1.4.4).

2.3.3 Common Techniques

In this section, we discuss a few common techniques in program verification. Due to how
general they are, they also come up a few times in this thesis, so it might be helpful to
introduce them here.

Data Structure Invariants. We usually do not burn down a bridge after crossing
it — if we ever want to go over it again. The same idea applies to data structures, which
we often do not immediately abandon after updates. To show our appreciation for a data
structure, we can define its specifications in the form of an invariant, which we (ghostly)
maintain as we make updates to the structure. Let us demonstrate the paradigm with a
bridge:
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(1) We specify the invariants, e.g., “the bridge is not on fire, and it is safe to cross if it is
not on fire.”

(2) We show that the operation is sane under the invariants, e.g. “given the bridge
invariant, we can cross safely.”

(3) We show preservation after the update, e.g. “we crossed the bridge, resisted our
arsonistic urges, so the bridge invariant still holds.”

Meanwhile, it might be entertaining to come up with cases where destroying the invariant
is the better thing to do. For example, when we are about to exit a program, skipping heap
deallocation violates memory safety, but would be practically faster.

Refinement Relation. A refinement relation connects a abstract model to its more
concrete counterpart, typically through an interpretation function ℱ . In fact, many data
structure invariants are refinement relations, where an operation on the abstract model is
realized by an operation on the implementation.

For example, consider the BigInteger class (e.g. in Java or C#), which often shows up
in cryptographic libraries. BigInteger typically contains some array of machine words as
its private class member. The interpretation function ℱ maps this array to a mathematical
integer, answering design questions such as:

• Where is the sign bit?
• What is the weight of each word?
• Is it big or little-endian?

With a reasonable design, we should be able prove that the refinement relation remains
invariant. For example, our array-based addition ⊕, multiplication ⊗, and subtraction ⊖
should satisfy the following properties:

ℱ(𝑥⊕ 𝑦) = ℱ(𝑥) + ℱ(𝑦)
ℱ(𝑥⊗ 𝑦) = ℱ(𝑥)×ℱ(𝑦)
ℱ(𝑥⊖ 𝑦) = ℱ(𝑥)−ℱ(𝑦)

In a sense, refinement in verification is akin to homomorphism in algebra. Similar to
homomorphisms, we can also compose refinements, which is useful for the separation of
concerns in a complex system. For example, we might decompose a distributed key-value
store into a pure functional layer specifying the overall behavior, a protocol layer describing
the messages between nodes, and an implementation layer sending packets over the network.
This pattern with multiple layers of refinement is sometimes called the refinement stack,
which we use in Chapter 5, in the context of verified assembly code for cryptographic
primitives.
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2.4 Notations and Terminologies

In this section, we introduce the notations for FOL and SMT we use in the thesis. This
part is of particular importance to Sec. 6.2 and Sec. 6.3, where we discuss proof instability.

Conventions for Common Symbols.

First, we cover some conventions we assume, which are relatively standard in the literature.
Unless otherwise specified, we consistently use the following:

• ⊥,⊤ for logical false and true
• 𝑥, 𝑦, 𝑧 for local bound (or free) variables
• 𝑡, 𝑢, 𝑣 for ground terms (i.e., terms without free variables)
• 𝑓, 𝑔, ℎ for global uninterpreted functions
• 𝑎, 𝑏, 𝑐 for global boolean constants
• 𝑛,𝑚 for natural number constants (e.g. number of assertions)
• 𝑖, 𝑗, 𝑘 for non-negative integer indices
• 𝜑, 𝜙, 𝜓 for logical formulas
• Γ,Λ for sets of logical formulas

We use the word constant for fixed but arbitrary values, i.e., 0-arity uninterpreted
functions. We use the notation {·} for a set of elements. We use ‖ · ‖ to denote the
cardinality of a set, along with the union and intersection operators ∪ and ∩. We use ∖ to
denote the set difference operator. For example, Γ ∖ {𝜓} is the set of elements in Γ except
for 𝜓. We use ⟨·⟩ to denote an ordered sequence of elements, and ‖ · ‖ for the length of the
sequence as well. For example, ‖⟨𝜓0, 𝜓1, 𝜓2⟩‖ = 3.

Notations for Logical Formulas.

We reserve ∼= for the equality operator within logical formulas, differentiating it from the
meta-level equality (=) in our English description. For example:

• 𝜙 = (∀𝑥.𝑓(𝑥) ∼= 𝑔(𝑥)) is a valid notation.
• 𝜙 ∼= (∀𝑥.𝑓(𝑥) ∼= 𝑔(𝑥)) is also a valid notation.
• 𝜙 = (∀𝑥.𝑓(𝑥) = 𝑔(𝑥)) is not well-formed.

In the first case, we associate 𝜙 with ∀𝑥.𝑓(𝑥) ∼= 𝑔(𝑥) so that 𝜙 is a meta variable referring
to the quantified formula. In the second case, 𝜙 is a part of the formula itself, rather than
a meta variable.

We use 𝜙[𝑥 ↦→ 𝑡] to denote the result of capture-free substitution of the ground term 𝑡
for free variable 𝑥 in the formula 𝜙. We use ⊑ for the sub-formula relation. For example,
let 𝜙 = 𝑥 ∧ 𝑏, where 𝑥 is free, then 𝜙[𝑥 ↦→ 𝑡] = 𝑡 ∧ 𝑏, and 𝑡 ⊑ 𝜙[𝑥 ↦→ 𝑡].

We abstract an SMT query as the conjunction of its assertions, using the upper case Φ
to denote a query:

Φ =
𝑛⋀︁

𝑖=0
𝜓𝑖
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where 𝜓𝑖 is the 𝑖-th assertion. Since the order in which we introduce assertions has no
impact on the satisfiability of Φ, without loss of generality, we assume that:

• Φ is already in conjunctive normal form (CNF).
• Φ is non-empty, and 𝜓0 encodes the verification goal.
• The assertions are de-duplicated.

We use ΓΦ to denote the set of assertions comprising the query context in Φ:

ΓΦ = {𝜓0, ..., 𝜓𝑛}

Since we assume that 𝜓0 encodes the goal, we refer to the rest of the context as the axioms:

ΛΦ = {𝜓1, ..., 𝜓𝑛}

We may use the term assertion or axiom interchangeably when we refer to some 𝜓𝑖 ∈ ΓΦ.
However, when we use the phrase axiom 𝜓𝑖, we implicitly mean 𝜓𝑖 ∈ ΛΦ. We note that
while ΓΦ ⊢ ⊥ is expected, ΛΦ is supposed to be contradiction-free.

We make a note of the context subset relation ΓΦ0 ⊆ ΓΦ1 between two queries Φ0 and
Φ1. In particular, an unsatisfiable core of Φ, which we denote by Φ𝐶 , is formed by a subset
of ΓΦ sufficient to derive a contradiction. More formally, Φ𝐶 has the following properties:
ΓΦ𝐶
⊆ ΓΦ, ΛΦ𝐶

⊆ ΛΦ, and ΓΦ𝐶
⊢ ⊥.

The use of quantification is common in APV queries. For the ease of exposition, we use
single-variable quantified formulas as examples as long as it is clear how the method under
discussion generalizes to quantification over multiple variables. We use the lower case 𝜑 to
denote a quantified formula, and 𝜙 to denote the quantified body, e.g., 𝜑 = ∀𝑥.𝜙.

In our terminology, a quantified formula 𝜑 must directly start with a quantifier. For
clarification, we introduce the following helper functions:

• IsForall(𝜑) when 𝜑 = ∀𝑥.𝜙 for some 𝜙.
• IsExists(𝜑) when 𝜑 = ∃𝑥.𝜙 for some 𝜙.
• IsQuant(𝜑) when either IsForall(𝜑) or IsExists(𝜑) is true.
• HasQant(𝜓) when there exists 𝜑 ⊑ 𝜓 such that IsQuant(𝜑).
• QantFree(𝜑) when HasQant(𝜑) is false.

We note the difference between IsQuant and HasQant. For example, let 𝜓 = 𝑎∨(∀𝑥.𝜙).
In this case HasQant(𝜓) is true, but IsQuant(𝜓) is false.

We define the set of quantified formulas in Φ as:

ΩΦ = {𝜑 | 𝜑 ⊑ Φ, IsQuant(𝜑)}

we note that ΩΦ further includes all nested quantified formulas as its elements, which are
not directly present in ΓΦ or ΛΦ. As a summary, we have the following terminologies for a
formula 𝜑 when IsQuant(𝜑):

Given 𝜑 = ∀𝑥.𝜙 and a ground term 𝑡, we refer to 𝐼 = 𝜙[𝑥 ↦→ 𝑡] as an instantiation of 𝜑,
and 𝑡 as the instantiating term. For our purposes, we only have to consider instantiating
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Term Scope
quantified axiom 𝜑 ∈ ΛΦ
quantified assertion 𝜑 ∈ ΓΦ
quantified formula 𝜑 ∈ ΩΦ

Table 2.1: Terminologies for Quantified Formulas

terms that are ground. Given an existentially quantified formula 𝜑 = ∃𝑥.𝜙, we use 𝑓𝜑𝑥 to
denote the Skolem constant (function) for the bound variable 𝑥 in 𝜑, and the result after
Skolemization as 𝜙[𝑥 ↦→ 𝑓𝜑𝑥 ].

The APV queries we study often rely on pattern-based [115, 121] quantifier instantiation
(QI). For a universally quantified formula, the verification language or the developer may
attach one or more syntactic patterns. Consider single-variable quantified formula 𝜑 = ∀𝑥.𝜙
with some pattern 𝜋. The pattern 𝜋 would be an ground term otherwise, except that 𝑥
(bounded by the quantifier) is free in 𝜋. The quantified body 𝜙 remains hidden until a
ground term 𝑢 = 𝜋[𝑥 ↦→ 𝑡] is discovered, i.e., the pattern 𝜋 matches against 𝑢 with the
substitution {𝑥 ↦→ 𝑡}, at which point the instantiation 𝜙[𝑥 ↦→ 𝑡] is created.

0 (declare-fun foo (Int) Int)

1 (declare-fun bar (Int) Int)

2 (declare-fun qux (Int) Int)

3 (assert (forall ((x Int))

4 (! (< (foo x) (bar (qux x)))

5 :pattern ((foo x))

6 :pattern ((bar x)))))

7 (assert (= (bar (qux 2)) 3))

8 ; triggers (bar x), effectively introducing:

9 ; (assert (< (foo (qux 2)) (bar (qux 2))))

10 (assert (= (qux 2) 4)) ; will not trigger

Listing 2.3: Example SMT Quantified Axiom with Pattern(s)

In Lst. 2.3, we have a quantified axiom with two patterns (foo x) and (bar x). The
assertion on line 7 contains the term bar (qux 2), which triggers the pattern (bar x)

with the substitution x mapped to (qux 2). This would effectively introduce the assertion
on line 9 (commented out). Pattern-based QI is incomplete (by design). For example,
the assertion on line 10 does not trigger either pattern, and thus does not introduce new
instantiations. Pattern-based QI generalizes to multiple variables, where a pattern needs to
contain all the variables bounded by the quantifier.

Notations for Runtime Behavior.

We have been defining notations for the more theoretical concepts so far. We now introduce
notations that capture the execution of a solver s on a query Φ. That being said, we omit
s from the notation as long as there is no ambiguity. For instance, in Sec. 6.2, we are
interested in some unsatisfiable core Φ𝐶 produced by some solver s, but which specific s to
use is irrelevant. Meanwhile, it is important to note that the concepts under discussion are
tied to concrete execution. For example, in theory, a query Φ can have multiple unsatisfiable
cores. In practice, since solver execution is deterministic, once we have fixed a solver s and

23



its configurations, there is a unique solver-produced Φ𝐶 with a given Φ.

Other than the core, we leverage two other log files from the solver, namely the trace
log t and the proof log p. While there is no standard format for either type of log, we are
particularly interested in a solver’s quantifier instantiation (QI) reasoning, which these logs
record. Informally, a trace log contains all the quantifier instantiations that the solver has
discovered when it attempts to solve Φ, while a proof log contains the instantiations that
the solver has used to construct a proof tree (of unsatisfiability).

Before we proceed to the formal definitions, we need to clarify the notion of determinism
a bit. More precisely, SMT solvers are deterministic given the same input and configura-
tion. For example, SMT solvers support seed-based randomization, but the execution is
deterministic given the same seed. However, changing the configuration (e.g., the seed)
may lead to vary different results, which is not considered as a non-determinism bug. That
also means enabling any type of logging changes the execution.

We use the calligraphic ℐ𝜑 to denote a set of instantiation for a (universally) quantified
formula 𝜑 = ∀𝑥.𝜙. For example, ℐ𝜑 = {𝐼1, ..., 𝐼𝑚} has 𝑚 elements, where 𝐼𝑖 = 𝜙[𝑥 ↦→ 𝑡𝑖] for
a set of instantiating terms {𝑡1, ..., 𝑡𝑚}. Intuitively, we define the instantiation count of a
quantified formula 𝜑 to be the cardinality ‖ℐ𝜑‖. For simplicity, we define ℐ𝜑 = ∅ whenever
IsExists(𝜑), so that ℐ𝜑 is well-defined as long as 𝜑 ∈ ΩΦ.

We denote the the trace/proof instantiation set of 𝜑 in the trace/proof log as ℐ𝜑
t and

ℐ𝜑
p respectively. For our analysis on solver execution, these sets are always finite. In theory,

it should be the case that ℐ𝜑
p ⊆ ℐ𝜑

t for all the universally quantified formula 𝜑 in Φ. In
practice, since the solver execution changes due to configuration changes, the instantiation
sets may not be comparable. Nevertheless, it is generally true that ‖ℐ𝜑

p ‖ < ‖ℐ𝜑
t ‖, and often

the difference is several orders of magnitude.

We often refer a trace or a proof as an instantiation profile, which is essentially a map
from quantified formulas to their instantiation sets.

{𝜑 ↦→ ℐ𝜑 | 𝜑 ∈ ΩΦ}

Intuitively, we define the instantiation count of a profile to be the summation of the
individual instantiation counts.
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Chapter 3

Developing Proofs

In this chapter, we discuss the challenges when we create (new) proofs in APV projects. We
mainly focus on memory-safety and theory-specific proofs. In layman’s terms, this chapter
is actually more about how to avoid these proofs, rather than how to develop them. The
rationale is hopefully clear — if we can let the SMT solver do the dirty work, we should
really take advantage of it.

Meanwhile, this chapter exists because the SMT solver often fails to automate the
reasoning steps. As discussed in Sec. 2.2.2, memory safety is a fundamental requirement of
low-level systems. However, encoding proof obligations of memory safety as SMT queries
might mean poor solver performance (Sec. 3.1.1). We then expand on the concrete challenges
in our QUIC𝐷, an implementation of the QUIC network protocol using Dafny (Sec. 3.1.2).

With the potential of arbitrary aliasing, memory reasoning is indeed difficult in theory.
However, we observe that the points-to relations are often much simpler in practice, even
in systems like QUIC𝐷. We discuss how to leverage the observation in Linear Dafny
(Sec. 3.1.3), where the type checker enforces the common case linear ownership, so that the
SMT solver can handle the nonlinear cases when necessary. We then evaluate how linearity
improves our verification experience in VeriBetrKV𝐿, a large-scale verified key-value store
(Sec. 3.1.4).

In the second part of the chapter (Sec. 3.2), we discuss theory-specific reasoning. As we
discussed in Sec. 2.2.2, while the core quantified EUF is the basis of program verification,
system software often involves theory-specific operations. In particular, we explore challenges
and solutions for bit-vector reasoning in Sec. 3.2.1 and nonlinear arithmetic reasoning in
Sec. 3.2.2.
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3.1 Proving Memory Safety

Low-level memory access is often necessary to high-performance system programming.
However, low-level heap management is error-prone, creating problems such as dangling
pointers and buffer overflows. The good news is that program verification can eliminate
these problems. We even can follow the invariant paradigm in Sec. 2.3.3, which gives us a
to-do list:

(t1) Specify the expected memory layout as data structure invariants.
(t2) Prove that memory operations are safe under the invariants.
(t3) Prove that memory operations preserve the invariants.

It turns out that aliasing relations can be complex, making these tasks nontrivial. If we
assume the general case, where arbitrary aliasing can occur, we essentially have to specify
the points-to relations between all pairs of objects. Consider the following example in
Lst. 3.1. We have two arrays, which are heap objects in Dafny. As we update one of the
arrays, we cannot conclude (either way) whether the other is also affected. If we would like
to show that the updates are independent, we need to explicitly specify that the arrays are
distinct; if we intend the two to alias, we also need to specify that they are referencing the
same array.

0 method mut_arrays(a1:array<int>, a2:array<int>)

1 requires a1.Length >= 10 && a2.Length >= 10

2 // requires a1 != a2

3 modifies a1, a2

4 {

5 a1[5] := 100;

6 a2[5] := 200;

7 assert a1[5] == 100; // FAIL: needs a1 != a2

8 assert a1[5] == 200; // FAIL: needs a1 == a2 (if that is what we intend)

9 }

Listing 3.1: Array Update Example

To be more precise, a1 and a2 are references to the arrays, which are heap objects.
Meanwhile, there is no way to access the arrays other than via the references, so we simply
say that a1 and a2 are arrays. We note that Dafny is type safe, so adding an offset to an
array object reference does not type check, and thus a1 and a2 either refer to the same
array object or are completely distinct arrays without any partial overlap.

The exact specification/proof is dependent on the formalism. A common choice is
separation logic [143], which unfortunately, SMT solvers do not provide good support for.
(At least there is no concrete evidence that solvers with built-in separation logic theory scale
to practical systems verification.) Instead, verifiers like Dafny resort to dynamic frames [88].
At a high level, dynamic frames reduces memory safety reasoning into set reasoning, where
it is fairly straightforward to axiomatize set operations into SMT.
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3.1.1 Framing a Heap of Trouble

The theory of dynamic frames models the heap as a global map of symbolic memory
addresses to objects (or their fields). Each procedure needs to declare its frame, i.e., the
set of addresses that it is allowed to read/write. Each data structure, in addition to the
compilable class definition, also maintains a ghost variable footprint (often called repr),
which is a set of locations the structure has access to.

Under the formalism, memory safety properties are just predicates over sets of addresses.
Let us illustrate with the invariant paradigm. For task (t1), we can now specify the points-to
relation between objects through the intersecting/disjointedness of footprint sets. For task
(t2), we can prove safety by showing the sufficiency of a procedure’s framing condition, e.g.,
for every object 𝑜 that the procedure accesses, the procedure’s frame is a superset of 𝑜’s
footprint. For task (t3), depending on the memory operation, we might need to update the
footprint sets, making sure that each still faithfully represents the set of locations its object
can access.

In this fashion, memory reasoning is now reduced to set reasoning. Moreover, since
sets of locations are first-order concepts, it is fairly straightforward to axiomatize their
operations and relations into SMT. Therefore, the theory of dynamic frames has a rather
simple translation from memory safety obligations into SMT queries.

However, the ease of encoding is not without a cost. First, dynamic frames essentially
require the developers to describe the aliasing relation over all pairs of mutable objects,
which quickly becomes complicated with deeper data structures. Furthermore, SMT solvers
are not particularly good with automating the safety proofs. There is no magic in the
encoding — frame reasoning is set reasoning, which translates to quantifier reasoning in
SMT. Overloading the solver with a large number of quantified formulas leads to poor
performance and confusing error messages when a proof fails.

3.1.2 Verifying it Real QUIC

To better illustrate the challenges of frame-based memory reasoning, we discuss our expe-
rience in implementing the QUIC protocol logic with Dafny. To clarify, QUIC is a fairly
complex protocol, and our implementation QUIC𝐷 is verified for memory and type safety
(and very basic functional correctness). Therefore, the difficulties we discuss here are almost
entirely related to memory reasoning, rather than the protocol-level properties.

QUIC is a network protocol that combines features from TCP (fragmentation, re-
transmission, reliable delivery, flow control) and TLS (key exchange, encryption and
authentication) into a more integrated protocol. These roughly correspond to two compo-
nents in a concrete implementation: the TCP-like protocol layer, and the TLS-like record
(cryptographic) layer. The record layer has its own challenges in terms of verification, but
its memory usage is very limited.
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Figure 3.1: Main Data Structure in QUIC𝐷

Our implementation conforms to the IETF QUIC standard [93] (draft version 30 at
the time of the work). More specifically, QUIC𝐷 provides the following functionalities to
applications:

• Open a connection as a client.
• Listen for connections as a server.
• Control and configure various resources (e.g., number of permitted streams).
• Open/close streams in a connection.
• Write to/read from a stream in a connection.

We now briefly describe the data structures implementing the functionalities in QUIC𝐷.
In Fig. 3.1, we present a simplified version of the class hierarchy, where use the stacked-
documents shape to represent a list of objects of the same type.

As the interface to applications, our top-level object is Engine, which is either a client or
a server. In server mode, we maintain a list of Connection objects in Engine, interacting
with multiple clients. To ensure reliable delivery, we store the additional connection states
for loss recovery and congestion control in LRCC. To support stream multiplexing, we
maintain multiple Stream objects per connection. Under each stream, we keep several lists
of Segment objects, where a segment is essentially a chunk of packet data.

The actual implementation is more involved, which means the frame specifications can
get quite complex, let alone the proof obligations. In Lst. 3.2, we show the reads frame of
a procedure in the Connection class, with 16 lines dedicated to specifying the addresses
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we can read from. (We haven’t even included the modifies frame!) We note how each
member of a class has a referenceable location, e.g., lrcc_manager and stream_manager.
This level of fine-granularity in the frame specification is necessary, since the members can
be independently accessed.

0 reads this;

1 reads short_header_packets, // UNIQUE: Vector<packet_holder_fixed>

2 short_header_packets.buffer; // UNIQUE: array<packet_holder_fixed>

3 reads fixedframes, // UNIQUE: Vector<fixed_frame_fixed>

4 fixedframes.buffer; // UNIQUE: array<fixed_frame_fixed>

5 reads lrcc_manager, // UNIQUE: LRCCManager

6 lrcc_manager.sent_packets, // UNIQUE: PrivateDoublyLinkedList<sent_packet_fixed>

7 lrcc_manager.sent_packets.repr; // UNIQUE: set<PrivateNode<sent_packet_fixed>>

8 reads stream_manager, // UNIQUE:StreamManager

9 stream_manager.quic_streams_repr, // UNIQUE: set<quic_stream_mutable>

10 stream_manager.stream_nodes_repr, // UNIQUE: set<PrivateNode<quic_stream_mutable>>

11 stream_manager.stream_lists_repr, // UNIQUE: set<PrivateDoublyLinkedList<

quic_stream_mutable>>

12 stream_manager.segment_lists_repr, // UNIQUE: set<PrivateDoublyLinkedList<

qstream_segment_fixed>>

13 stream_manager.segment_nodes_repr; // UNIQUE: set<PrivateNode<

qstream_segment_fixed>>

14 reads pspace_manager, // UNIQUE: PacketSpaceManager

15 pspace_manager.ps_states_repr, // UNIQUE: set<packet_space_state>

16 pspace_manager.ack_buffers_repr; // UNIQUE: set<buffer<packet_num_t>>

Listing 3.2: Example Frame Specifications

As one might expect, given the complexity of the specification, the proof obligations can
easily overwhelm the SMT solver. For higher-level objects in the hierarchy, the verification
time of a single procedure can extend way beyond typical interactive range. The problem
is often tied to a massive number of quantifier instantiations originating from the frame
specifications and the aliasing reasoning.

3.1.2.1 Workarounds for Frame Reasoning

To counter the scalability issue, we have to employ various tricks and workarounds. However,
they all come with their own compromises.

Type-based Separation. We take advantage of Dafny’s type-based separation, i.e., to
define types that are known to be incomparable. Rather than homogenizing the distinct
sub-structures into a single ghost set<object>, we maintain ghost representations of each
distinct type. (The example above actually reflects this, with comments on the type of each
footprint set.) This reduces the SMT’s reasoning obligations, since it is “free” that objects
of different types are disjoint. However, this approach requires new type definitions, along
with additional proof annotations.

Layered Updates. Even with the aforementioned discipline, mutation of a child
structure (however deep) requires us to re-establish the invariant of all its parent data
structures. Hence we carefully wrap our heap updates in multiple layers: the innermost
performs the actual mutation, and the outer layers simply expose these changes to higher
levels. This is not ideal, since in many cases, the common thing to do is to perform the
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mutation at the highest level, without the boilerplate layers. However, it is a necessary
compromise to make proof automation possible at that point.

0 method seq_update(s1:seq<int>, s2:seq<int>)

1 returns(s3:seq<int>, s4:seq<int>)

2 requires |s1| >= 10 && |s2| >= 10

3 {

4 s3 := s1[5 := 100]; // copy entire seq

5 s4 := s2[5 := 200]; // copy entire seq

6 assert s3[5] == 100; // PASS: s3 is a new seq

7 assert s4[5] == 200; // PASS: s4 is a new seq

8 assert s1[5] == 100; // FAIL: update is not in-place

9 }

Listing 3.3: Sequence Update Example

Selective Immutability. Another technique we employ is the careful use of immutabil-
ity. Immutable objects (e.g, datatypes, sequences) are trivial to memory reasoning. While
technically they are heap objects, and we pass their references around, the semantics is
essentially as if we were passing the values directly, independent of the heap state. For
example, let us convert the previous mutable arrays in Lst. 3.1 into using sequences. We no
longer need to specify the frame of the procedure, nor how the sequences are aliased, since
they are all independent of each other.

However, an immutable structure has the “copy-on-update” semantics upon update,
where the original structure is left unmodified. We note how the procedure has to allocate
two new sequences, which can be expensive. Therefore, if we indiscriminately apply
immutability, we may incur a very high performance cost. We must carefully balance the
trade-off so that the verifier can handle the proof load, while the performance does not
suffer too much.

Eventually our QUIC𝐷 implementation reached ∼10K lines of Dafny. We successfully
inter-operate with ourself, as well as other unverified QUIC clients/servers, from the
handshake initiation to data transfer, until connection close. QUIC𝐷 adds ∼21% throughput
overhead compared to the unverified baseline when it comes to transmitting gigabytes of
data, which is respectable, but not ideal either.

Considering the significant effort needed to achieve this result, we are not satisfied with
the Dafny’s memory reasoning capabilities, since our workarounds all involve some form of
compromise: type-based separation requires additional proof annotations; layered updates
result in extra boilerplate code selective mutability incurs performance penalties. Most
detrimentally, these workarounds all scale poorly with the size of the system. If the data
structure hierarchy grows higher, these workarounds will require even more compromises.

3.1.2.2 Observations on Linearity

While QUIC𝐷 exposes many scalability issues with memory reasoning in APV, it is not
without merit. In particular, we notice that the full generality of arbitrary aliasing is often
unnecessary. For example, each Connection object should be completely independent.
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Intuitively, two distinct connections should not share any segments, streams, or any other
data structures. Similarly, within a single connection, different streams should not share
any segments, and different segments should not overlap. Our example in Lst. 3.2 even
contains “UNIQUE” in the comments, which we were tracking for our own sanity during the
development.

The observation aligns with the notion of linearity in type theory [166]. A linearly
typed object has a unique “owner” object through which it can be accessed. Therefore,
linearly typed objects are logically detached from the rest of the heap, similar to how the
immutable objects are. Meanwhile, since linear ownership is exclusive, we can safely update
linear objects in place, avoiding the performance penalty that immutable objects would
incur (as in Lst. 3.3). More importantly, since the type checker will enforce the unique
ownerships, the SMT solver can be relieved from the painful alias reasoning.

While there are obvious advantages, linear types can also be quite restrictive for practical
usage. For example, QUIC𝐷 contains a doubly-linked list data structure, where a node
can be referenced by its two neighbors, and thus is nonlinear by nature. QUIC𝐷 even has
several different usages of the list, (corresponding to the stacked-document-shaped objects
in Fig. 3.1,) which unfortunately means that nonlinearity is spread throughout the system.

Therefore, while arbitrary aliasing is the general case in theory, and linearity is the
common case in practice, we cannot naively apply linear types to relief our trouble with
memory reasoning. Intuitively, our formalism needs to account for nonlinearity when
required, while still provide the benefits of linearity when possible. We demonstrate how
we may achieve this in Linear Dafny [100].

3.1.3 Untangling the Linearity

In this section, we discuss how we integrate linear types into Dafny. First we highlight the
new language features, while expanding on how linearity enables safe and efficient in-place
updates on otherwise immutable objects. We then discuss our region-based heap model,
where the linear types reduce the memory reasoning burden on the SMT solver, and heap
regions retain our ability to express aliasing relations.

3.1.3.1 Ownership Modifiers for Types

In Linear Dafny, we introduce the following ownership modifiers:
• linear marks a variable as linear; i.e., it has a unique owner.
• shared marks a variable as immutably shared.
• inout marks a linear parameter variable as “mutably borrowed” (explained below).

Our ownership modifiers are orthogonal to the ghost vs. non-ghost (unmarked) modifiers.
Therefore, we may also have ghost linear or ghost shared variables, which we defer to
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Sec. 3.1.3.2. We first discuss how the ownership modifiers work on the unmarked variables,
or ordinary variables as we call them.

We limit the modifiers to immutable ordinary variables. Intuitively, linearity does not
make sense for value types, e.g., int or bool. Meanwhile, there is no strong motivation for
us to add linearity to mutable ordinary variables, because linearity enables safe in-place
updates on immutable objects.

Let us demonstrate how we can perform such update using linear sequences in Lst. 3.4.
We cannot duplicate or discard linear variables as we do with ordinary variables. Linear
variables are simply “moved” rather than copied upon assignments. For example, on line 8
of Lst. 3.4, we move l1 to l1’, and thus we can no longer access l1 afterwards. Similarly,
on line 10, we give up the ownership of l1’ as we make the method call, obtaining a “new”
linear variable l3 in return.

0 method lseq_set(linear l:seq<int>, i:int, v:int)

1 returns (linear r:seq<int>)

2 // performs in-place update . . .
3 // pre/post-condition and body omitted . . .
4
5 method lseq_update(linear l1:seq<int>, linear l2:seq<int>)

6 returns(linear l3:seq<int>, linear l4:seq<int>)

7 requires |l1| >= 10 && |l2| >= 10

8 {

9 linear var l1' := l1; // just for demo, move l1 to l1'
10 // l3 := lseq_set(l1, 5, 100); // would be a type error, moved out of l1 already!

11 l3 := lseq_set(l1', 5, 100); // l1' now replaced with l3

12 l4 := lseq_set(l2, 5, 200); // l2 now replaced with l4

13 assert l3[5] == 100; // PASS

14 assert l4[5] == 200; // PASS

15 // assert l2[5] == 200; // also would be a type error, moved out of l2 already!

16 }

Listing 3.4: Linear Sequence Update Example

On the surface, Lst. 3.4 might look similar to Lst. 3.3, where we used ordinary sequences.
If anything, Lst. 3.4 comes with more restrictions from the linear types. However, the more
important difference is that linearity has eliminated the possibility where the parameters
themselves are aliased, or the parameters have any other live references at all. More
concretely, let us consider two strategies to implement lseq_set:

(1) We allocate another copy of l, mutate the copy, deallocate l, and return the copy.
(2) We mutate the l in-place and return it.

We note that even though immutable objects are technically on the heap, there is no
syntactic construct to express “address of” in the language. That is, we cannot write some
code to check if the addresses of l and r are the same before and after the lseq_set call.
Therefore, from the perspective of a caller, the two strategies are observationally equivalent.
Furthermore, there are no more live references to l as we enter lseq_set, we can thus
safely mutate in-place without any impact on the rest of the heap.

Meanwhile, lseq_set is “nice” enough to return an r, so the caller regains the lost
ownership through this “new” linear variable. Rather than going through the shenanigan
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of pretended lost-and-found, we make the syntax a bit nicer with the inout modifier. As
we show in Lst. 3.5, the callee can mutably borrow a parameter, borrowing the jargon from
Rust. The rule of linearity still applies, so we cannot duplicate or discard a linear inout

variable. However, we can lend it out to a callee with the right signature, and the type
checker will make sure the callee will return it back.

0 method lseq_inout_set(linear inout l:seq<int>, i:int, v:int)

1 // performs in-place update . . .
2 // pre/post-condition and body omitted . . .
3
4 // this is just a syntactically-sugared version of lseq_update

5 method lseq_inout_update(linear inout l1:seq<int>, linear inout l2:seq<int>)

6 requires |l1| >= 10 && |l2| >= 10

7 {

8 lseq_inout_set(l1, 5, 100); // in-place update

9 lseq_inout_set(l2, 5, 200); // in-place update

10 assert l1[5] == 100; // PASS

11 assert l2[5] == 200; // PASS

12 }

Listing 3.5: Linear Inout Sequence Update Example

Shared variables enables read-only aliasing. We can duplicate shared variables, but only
under restricted scope. We cannot store shared variables in any data structure, while we
can store linear variables in linear datatypes. Therefore, shared variables gives us some
flexibility in nonlinear references, but not much more than that.

3.1.3.2 Region-Based Model for the Heap

As we introduce linear types, we also decompose the global heap model in Dafny into
regions. Our region-based formalism allows us to encapsulate linear data inside nonlinear
data and vice-versa, enabling more flexible aliasing relations. More specifically, the API
introduces the following definitions:

0 linear datatype Region = Region(Id: RegionId, Allocated: set<Loc>)

1
2 function RefLoc<A>(r: RefCell<A>): Loc

3
4 function LocRef<A(00)>(l: Loc): RefCell<A>

5
6 predicate ValidRef(loc: Loc, id: RegionId, is_linear: bool)

7
8 function Get<A>(g: Region, r: RefCell<A>): A

9
10 function Modifies(lcs: set<Loc>, g1: Region, g2: Region): (b: bool)

11
12 // axioms elided . . .

Listing 3.6: Region APIs in Linear Dafny

We note that Region is a ghost linear datatype, which has no runtime impact. Intuitively,
a Region represents a private heap, keeping track of its allocated objects, so that local
changes stay local. We can thus hide a nonlinear data structure inside a linear region,
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where externally the data structure has a linear interface, without the need to specify its
impact on the global heap via modifies clauses.

0 method NewRegion()

1 returns (ghost linear g: Region)

2
3 method FreeRegion(ghost linear g: Region)

4
5 function method Read<A>(ghost shared g: Region, r: RefCell<A>): (a: A)

6 requires ValidRef(RefLoc(r), g.Id, false)

7 ensures Get(g, r) == a

8
9 method Write<A>(ghost linear inout g: Region, r: RefCell<A>, a: A)

10 requires ValidRef(RefLoc(r), old(g.Id), false)

11 ensures Get(g, r) == a

12 ensures Modifies({RefLoc(r)}, old(g), g)

13
14 method Alloc<A>(ghost linear inout g: Region, a: A)

15 returns (r: RefCell<A>)

16 ensures ValidRef(RefLoc(r), g.Id, false)

17 ensures Get(g, r) == a

18 ensures Modifies({}, old(g), g)

19 ensures RefLoc(r) ̸∈ Allocated(old(g))

20 ensures RefLoc(r) in Allocated(g)

Listing 3.7: Region API in Linear Dafny (Cont’d)

In more detail, we use RefCell as the reference type to retrieve objects from a region.
We can duplicate and passe RefCell around, potentially creating multiple references to
the same object. Modifies is our per-region equivalent of Dafny’s global-heap modifies

clause. The predicate states that a region stays the same, except for a specified subset or
new allocations. The ValidRef predicate states that a reference is valid in a given region.
The predicate is true if and only if the reference came from an Alloc (or AllocLinear)
call with the region, which is how we make sure each region is isolated from the rest of the
heap. For example, we would violate the precondition on line 10 in Lst. 3.7, if we attempt
to call Wrtie with a reference from one region on a different region.

0 function method Borrow<A>(ghost shared g: Region, r: RefCell<A>): (shared a: A)

1 requires ValidRef(RefLoc(r), g.Id, true)

2 ensures Get(g, r) == a

3
4 method Swap<A>(ghost linear inout g: Region, r: RefCell<A>, linear inout a: A)

5 requires ValidRef(RefLoc(r), old(g.Id), true)

6 ensures Get(old(g), r) == a

7 ensures Get(g, r) == old_a

8 ensures Modifies({RefLoc(r)}, old(g), g)

9
10 method AllocLinear<A>(ghost linear inout g: Region, linear a: A)

11 returns (r: RefCell<A>)

12 ensures ValidRef(RefLoc(r), g.Id, true)

13 ensures Get(g, r) == a

14 ensures Modifies({}, old(g), g)

15 ensures RefLoc(r) ̸∈ Allocated(old(g))

16 ensures RefLoc(r) in Allocated(g)

Listing 3.8: Region API in Linear Dafny (Cont’d)

It is worth noting that memory safety relies on both the SMT solver and the type checker.
Specifically, ValidRef depends on the region’s identifier rather than the specific contents
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of the region. As a result, once the SMT solver establishes the validity of a reference in a
region, the validity remains invariant, even after the region is freed. Meanwhile, the type
checker will make sure that a region is alive whenever we try to use it. For example, after
FreeRegion consumes a region, we are (syntactically) prohibited from using any references
in that region.

So far we have discussed how we can store nonlinear data inside linear structure, but the
opposite direction can also be useful. As shown in Lst. 3.8, we can use the AllocLinear

call to allocate a linear object, (where the linearity is reflected by ValidRef(. . .,true) in
the post-condition). Unlike RefCell in Rust, we do not need the runtime checks to enforce
single mutable borrow exclusive-or multiple immutable borrows. Instead, proof obligations
on top of the type system help ensure the safety. Therefore, we can borrow a linear object
from a shared region via Borrow or swap a linear value in a linear region via Swap, without
runtime overhead.

3.1.4 Evaluating the Improvement

Now that we have introduced the types and formalism in Linear Dafny, we evaluate how
these changes impact our verification experience. Recall our observations in Sec. 3.1.2.2,
where a doubly-linked list data structure in QUIC𝐷 stands in the way between us and
linearity. Here we first qualitatively demonstrate the new features of Linear Dafny, with a
doubly-linked list data structure with a linear interface (Sec. 3.1.4.1). We then perform a
large-scale quantitative evaluation on VeriBetrKV𝐷, which is a verified, high-performance
storage system, originally developed by Hance et al. [72]. We convert VeriBetrKV𝐷 into
using Linear Dafny, and report our findings in terms of proof size and verification time
(Sec. 3.1.4.2).

0 datatype Option<A> = None | Some(a: A)

1
2 datatype Node<A> = Nil

3 | Cons(data: Option<A>,

4 next: RefCell<Node<A>>,

5 prev: RefCell<Node<A>>)

6
7 type NodePtr<A> = RefCell<Node<A>>

8
9 linear datatype List<A> = List(

10 ghost linear g: Region,

11 sentinel: NodePtr<A>,

12 ghost data: seq<A>,

13 ghost refs: seq<NodePtr<A>>)

Listing 3.9: DLL Datatypes Under a Linear Region

3.1.4.1 Qualitive Evaluation

In Lst. 3.9, we first show the data structure definitions for the new doubly-linked list.
Specifically, the linear List<A> datatype contains a ghost linear region g, which keeps
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track of the private heap “owned” by the list.

We can also specify the data structure invariant, similar to how we would do with
the dynamic frames. Note that we have to explicitly specify the aliasing relations, which
is necessary due to the nonlinear nature of the list. However, the references are now all
RefCell, which are scoped to the local region g, rather than the global heap.

0 predicate ListInv<A>(list: List<A>)

1 {

2 var g := list.g;

3 var data := list.data;

4 var refs := list.refs;

5 && |refs| == |data| + 1

6 && list.sentinel == refs[0]

7 && (∀ i :: 0 <= i < |refs| =⇒ RefLoc(refs[i]) in g.Allocated)

8 && (∀ i :: 0 <= i < |refs| =⇒ ValidRef(RefLoc(refs[i]), g.Id, false))

9 && (∀ i, j :: 0 <= i < j < |refs| =⇒ refs[i] != refs[j])

10 && (∀ i :: 0 <= i < |refs| =⇒ Get(g, refs[i]).Cons?)

11 && Get(g, refs[0]).prev == refs[|data|]

12 && Get(g, refs[|data|]).next == refs[0]

13 && (∀ i :: 1 <= i < |refs| =⇒ Get(g, refs[i]).data == Some(data[i - 1]))

14 && (∀ i :: 0 <= i < |refs| - 1 =⇒ Get(g, refs[i]).next == refs[i + 1])

15 && (∀ i :: 1 <= i < |refs| =⇒ Get(g, refs[i]).prev == refs[i - 1])

16 }

Listing 3.10: DLL Invariant Under a Linear Region

Finally, we show some client code that uses the doubly-linked list. We note that it does
not require any modifies clause. The client does not even need to be aware of the linear
region underneath the data structure.

0 method TestList() {

1 linear var list := NewList();

2 var ptr1 := InsertLast(inout list, 1);

3 Remove(inout list, ptr1, 0);

4 FreeList(list);

5 }

Listing 3.11: Client Code using DLL

3.1.4.2 Quantitative Evaluation

We now turn to a large-scale evaluation using the VeriBetrKV𝐷 key-value store. Similar to
QUIC𝐷, VeriBetrKV𝐷 also resorts to workarounds for complex memory reasoning. Unlike
QUIC𝐷 however, VeriBetrKV𝐷 is not only verified for memory safety but also for functional
correctness, i.e., it behaves like a dictionary data structure. Moreover, VeriBetrKV𝐷 proves
crash safety, which means that it guarantees that the system will not lose data or corrupt
its internal state in the event of a crash.

We convert VeriBetrKV𝐷 into using Linear Dafny. The original VeriBetrKV𝐷 is written
in ∼44kLoc of Dafny, producing ∼31kLoc of C++. We note that our conversion only applies
to the implementation layer (with ∼24 kLoc). The rest of the codebase (with ∼20 kLoc)
are dedicated to the higher layers of model and refinement proofs, which do not involve

36



memory reasoning. Overall, we find that 91% of the implementation layer is amenable to
linear memory reasoning, and only 9% requires reasoning about tricky aliasing relations.

In the linearized version, VeriBetrKV𝐿, we find 28% fewer lines of proofs, 30% shorter
verification time overall, and among slow methods, the typical verification time is cut nearly
in half. It is therefore possible to perform memory reasoning without the compromises
made in QUIC. In fact, we achieve faster verification with fewer annotations, and less
boilerplate code, while retaining the performance.

We attribute these improvements to the right choice of formalism, informed by observa-
tions in practical use cases. Specifically, we recognize the common case of non-aliasing, and
we exploit it to alleviate the scalability issues in memory reasoning with SMT solvers.

VeriBetrKV𝐷 and QUIC𝐷 are not the only systems that would benefit from linearity.
In particular, a growing body of large, performant systems built in Rust serve as evidence
that linear types are practical and effective for ensuring program safety. In followup work,
we build Verus [94], a program verifier for Rust that fully takes advantage of the linear
types for memory safety, allowing us to focus on other challenging aspects of APV.

3.2 Performing Theory-Specific Reasoning

We continue our discussion on developing proofs, now with Dafny and Verus. We would
like to highlight that Verus has a number advanced features leveraging the ownership types
in Rust. Most notably, Verus offer strong support for concurrency reasoning, which is
notoriously hard. For a detailed discussion on these topics, we refer the reader to Travis’s
thesis [71]. In this section, we shift the focus from memory reasoning to theory-specific
reasoning.

In system software, there is often the need to work with nonlinear integer arithmetic
(NIA) and bit-vector (BV). Consider hand-crafted, high-performance cryptographic imple-
mentations in assembly (e.g., those in OpenSSL [126]). Intuitively, to prove the code code
correct, we need to reason about not only the low-level bitwise operations but also the
high-level algebraic functionalities.

In this section, we briefly discuss how we encode NIA and BV proof obligations in Verus,
where we based the encoding on existing manual practices in Dafny programs.

3.2.1 Separating Bit-Vector Obligations

While the SMT solver supports the combination of theories, in practice, mixed theories
often lead to poor performance and scalability issues. As a result, Dafny users are advised
to exert caution when dealing with integers and bit-vectors together [42]. In the past,
researchers have also developed dedicated libraries to deal with these theories separately,
including in Komodo [59], Ironclad [79], IronFleet [78], and Armada [104].
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// Dafny can only handle the following with small bit-widths

lemma dafny_right_shift_div(x: uint8) {

assert ((x as bv8) >> 3) as nat == x / 8;

// in the SMT query,

// the casts correspond to int2bv and bv2int

}

Listing 3.12: Dafny BV Example

However, the manual separation is still insufficient. Consider the following Dafny
example, where we prove that right bit-shifting a variable of type uint16 by 3 is equivalent
to diving it by 8. In Dafny, we have to cast the variable back and forth. This also results in
type casts in the SMT query, which means we have not avoided the mixed theory problem
after all. In fact, the following example would stop working with a variable of type uint16.

In Verus, we assist BV reasoning with a special bit_vector proof mode. Externally,
this mode operates over integers (e.g., in type u32). Internally, it translates the proof
obligations into a pure BV query without mixing theories. This results in less manual
casting and better solver performance.

// Verus can handle much larger bit-widths without a problem

proof fn verus_right_shift_div(x: u128) {

assert(x >> 3 == x / 8) by (bit_vector);

// in the SMT query,

// no cast needed, and no mixed theory!

}

Listing 3.13: Verus BV Example

3.2.2 Discharging Algebraic Properties

We now discuss the algebra solver backend in Verus, which is inspired by existing proof
practices in Dafny. Due to the undecidability of NIA, SMT solvers often struggle to
discharge NIA obligations efficiently. As a result, it is common practice to disable NIA in
the SMT solver (e.g., via the setting arith.nl=false in Z3), relying instead on a first-
order axiomatization of arithmetic operations. This approach, however, often necessitates
extensive manual proof annotations to guide the solver through each step of the reasoning
process.

To illustrate the difficulties, we have chosen a rather complex example in Lst. 3.14.
For some context, this is taken from a proof of correctness for RSA in Dafny, where
IsModEquivalent is a wrapper for the % operator. It is not necessary to understand all
the details, but overall, we are using the calc primitive to prove the congruence relation
on line 29. The proof is structured as a chain of implications, where each step involves a
handful of equational rewrites based on algebraic properties.

0 calc =⇒ {

1 IsModEquivalent(a, Pow(sig, Pow(2, i)) * rsa.R, rsa.M);
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2 {

3 LemmaMulModNoop(a, a, rsa.M);

4 LemmaMulModNoop(Pow(sig, Pow(2, i)) * rsa.R,

5 Pow(sig, Pow(2, i)) * rsa.R, rsa.M);

6 LemmaMulProperties();

7 }

8 IsModEquivalent(a * a,

9 Pow(sig, Pow(2, i)) * rsa.R * Pow(sig, Pow(2, i)) * rsa.R, rsa.M);

10 { LemmaMulIsAssociativeAuto(); }

11 IsModEquivalent(a * a,

12 Pow(sig, Pow(2, i)) * Pow(sig, Pow(2, i)) * rsa.R * rsa.R, rsa.M);

13 { LemmaPowAddsAuto(); }

14 IsModEquivalent(a * a,

15 Pow(sig, Pow(2, i) + Pow(2, i)) * rsa.R * rsa.R, rsa.M);

16 { reveal Pow(); }

17 IsModEquivalent(a * a, next_goal * rsa.R, rsa.M);

18 { LemmaModMulEquivalentAuto(); }

19 IsModEquivalent(a * a * rsa.R_INV,

20 next_goal * rsa.R * rsa.R_INV, rsa.M);

21 {

22 assert IsModEquivalent(next_a, a * a * rsa.R_INV, rsa.M) by {

23 montmul_inv_lemma_1(next_a_view, a_view, a_view, rsa);

24 }

25 LemmaMulIsAssociativeAuto();

26 }

27 IsModEquivalent(next_a, next_goal * rsa.R_INV * rsa.R, rsa.M);

28 { r_r_inv_cancel_lemma(next_a, next_goal, rsa); }

29 IsModEquivalent(next_a, next_goal, rsa.M);

30 }

Listing 3.14: Calc Chain in Dafny

More generally, we capture this form of algebraic-rewriting proofs with a new feature
gbassert in Dafny (and its equivalent in Verus is integer_ring). In gbassert we take
an equation as the goal, and a set of supporting equations as the context. We then employ
the Singular algebra solver [66], which decides whether the goal is entailed by the context.
Now we can simplify the proof to Lst. 3.15, where we can eliminate a large number of
intermediary steps.

0 gbassert IsModEquivalent(next_a, next_goal, rsa.M) by {

1 assert IsModEquivalent(rsa.R_INV * rsa.R, 1, rsa.M);

2 assert IsModEquivalent(a, exp * rsa.R, rsa.M);

3 assert IsModEquivalent(next_a * rsa.R, a * a, rsa.M);

4 assert next_goal == exp * exp * rsa.R by {

5 LemmaPowAdds(sig, Pow(2, i), Pow(2, i));

6 assert exp * exp == Pow(sig, Pow(2, i) * 2);

7 reveal Pow();

8 }

9 }

Listing 3.15: Gbassert in Dafny

We now briefly summarize the mathematical underpinnings in gbassert, which is based
on polynomial entailment from Prior work [76, 158].

Polynomial Ring Ideals. Fix a set of variables 𝑥1, ..., 𝑥𝑛. Let 𝑅 = Z[𝑥1, ..., 𝑥𝑛] be a
polynomial ring over the integers; i.e., the elements of 𝑅 are polynomials with indeterminate

39



𝑥1, ..., 𝑥𝑛 and integer coefficients. A set 𝐼 ⊂ 𝑅 is an ideal in 𝑅 iff

𝑎+ 𝑏 ∈ 𝐼 ∀𝑎, 𝑏 ∈ 𝐼
𝑎× 𝑐 ∈ 𝐼 ∀𝑎, 𝑏 ∈ 𝐼, 𝑐 ∈ 𝑅

Let 𝐵 = {𝑏1, .., 𝑏𝑚} ⊆ 𝑅. 𝐵 is a generating set of an ideal 𝐼, or 𝐼 = ideal(𝐵) if

𝐼 =
{︃

𝑚∑︁
𝑖=1

𝑟𝑖 × 𝑏𝑖 | 𝑟1, ..., 𝑟𝑚 ∈ 𝑅
}︃

The ideal membership problem decides if a polynomial 𝑝 ∈ 𝑅 belongs to an ideal 𝐼 =
ideal(𝐵). If 𝑝 ∈ 𝐼, then there exists polynomials 𝑟1, ..., 𝑟𝑚 ∈ 𝑅 such that

𝑝 =
𝑚∑︁

𝑖=1
𝑟𝑖 × 𝑏𝑖

Our Encoding. gbassert takes in one goal statement and an arbitrary number of
supporting statements as inputs. Each statement must be a congruence, or a direct equality.
For example, a congruence statement is in the form of 𝑎𝑖 = 𝑏𝑖(mod 𝑚𝑖), where 𝑎𝑖, 𝑏𝑖, 𝑚𝑖

are integer-typed expressions.

We start with a pass over the input statements to collect existing variables. For
invocations of uninterpreted functions, we introduce fresh variables. For example, the
source-level function call msb(x) might be assigned a variable name 𝑡0, so that occurrences
of msb(x) will be replaced with 𝑡0.

We then use all of the existing and new variables to construct elements of a polynomial
ring 𝑅 over the integers. The goal statement (at index 0) is in the form of 𝑎0 = 𝑏0(mod 𝑚0)
and is translated to the polynomial 𝑎0 − 𝑏0. Each supporting statement 𝑎𝑖 = 𝑏𝑖(mod 𝑚𝑖)
is translated into the polynomial 𝑎𝑖 − 𝑏𝑖 + 𝑝𝑖𝑚𝑖, where 𝑝𝑖 is a freshly introduced variable.
Because the supporting statement is proven (by Dafny), forall 𝑎𝑖, 𝑏𝑖, there exists some 𝑝𝑖

such that 𝑎𝑖 − 𝑏𝑖 + 𝑝𝑖𝑚𝑖 = 0.

We form a generating set for an ideal 𝐵 by collecting all of the polynomials from the
supporting statements along with the modulus 𝑚0 from the goal statement:

𝐵 = {𝑚0, 𝑎1 − 𝑏1 + 𝑝1𝑚1, . . . , 𝑎𝑘 − 𝑏𝑘 + 𝑝𝑘𝑚𝑘}

We then invoke Singular [66] to decide whether the goal polynomial 𝑎0 − 𝑏0 belongs to
the ideal generated by 𝐵. If so, then we conclude that 𝑎0 = 𝑏0(mod 𝑚0). The intuition is
that if 𝑎0 − 𝑏0 ∈ ideal(𝐵), then there exists polynomials 𝑟0, ..., 𝑟𝑚 ∈ 𝑅

𝑎0 − 𝑏0 = 𝑚0 × 𝑟0 +
𝑘∑︁

𝑖=1
𝑟𝑖 × (𝑎𝑖 − 𝑏𝑖 + 𝑝𝑖𝑚𝑖)

The 𝑝𝑖 values discussed above ensure that the summation on the right evaluates to zero.
Hence membership effectively shows that there exists 𝑟0 ∈ 𝑅 such that 𝑎0 − 𝑏0 = 𝑚0 × 𝑟0,
proving that our original goal congruence holds (i.e., that 𝑎0 = 𝑏0 mod 𝑚0).
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3.3 Work Status and Personal Contribution

The work on QUIC (Sec. 3.1.1) was published in S&P’21 [49]. I implemented and proved
the memory safety of most of the protocol logic, under the guidance of Jay Bosamiya, and
my advisor Bryan Parno. My contribution to the paper writing was scoped to the discussion
on the protocol logic. I did not participate in implementing the record (cryptographic)
layer, which I have omitted here.

The work on Linear Dafny (Sec. 3.1.3) was published in OOPSLA’22 [100], where we
also received a distinguished paper award. I performed most of the conversion (linearization)
from the original VeriBetrKV𝐷 code base, with helpful tips from Jialin Li, Andrea Lattuada,
and Jon Howell. I also worked on experiments to measure the performance improvement in
SMT. My contribution to the paper writing was on the minor side. Chris Hawblitzel was
the main contributor to the type system formalization and its implementation, in which I
did not participate.

I did the encoding for BV and NIA discussed above as a (small) part of the Verus project,
which was published in OOPSLA’23 [94]. I implemented a predecessor of integer_ring
mode in Dafny for the Galápagos work published in CCS’23 [174].
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Chapter 4

Debugging Proofs

So far we have been discussing how to achieve more scalable APV with improved reasoning
capability. We have only alluded to automation failure, which is in fact the fundamental
concern in APV. When automation fails, the programer needs to step in and debug the
proof, stalling further development.

Unfortunately, it can be hard to understand why verification failed or how to fix it.
The SMT solver is roughly a black box that gives a binary output (i.e., unsat or not).
Consequently, a developer also receives a binary verification result (i.e., success or failure),
with little to no visibility into the solver’s internal state.

Exposing such internal state in a useful manner is challenging, since an SMT solver
might prove millions of clauses during its satisfiability check. Hence, it can be difficult to
answer questions like “How much progress has the solver made towards the verification
goal?” or “What additional facts are needed for the solver to complete the proof?”. Indeed,
because verification is generally undecidable, the developer does not even know initially if
the failure is due to an incorrect proof or incomplete automation.

As a result, when writing verified program in APV, a significant amount of time goes
into proof debugging. More specifically, the developer needs to come up with diagnostic
assertions, which are proof annotations (described in Sec. 2.3.1) to help them better
understand the proof failure. In this section, we only refer to source-level assertions (not to
be confused with SMT-level assertions).

4.1 Probing the Solver State

Assertion-based debugging has been the de facto practice in APV. We refer the reader
to, for example, Dafny’s manual assertion guide [44], F⋆’s guide [63], and various proof
debugging questions on StackOverflow [150, 151]. However, while it is a common practice,
there is no clear agreement on how to write them, and more importantly, all the steps are
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performed manually.

Effective assertion choice and placement is a key part of the proof engineering process.
Choosing the wrong assertion or inserting it in the wrong place weds little light on the
cause of the proof failure. Further, a single assertion would rarely be sufficient; instead,
multiple iterations are often needed to further break down the proof goal, until either the
proof succeeds, or the developer determines the key missing facts the prover needs (or finds
a bug in the code).

Assertion-based debugging is an arcane art. Beginners find it hard to understand what
assertions to add, where to add them, and how to use them to break down the proof goal.
We frequently see beginners become stuck randomly adding assertions that do not improve
their understanding of the proof failure. Even for experts, assertion-based debugging is
tedious and error prone.

1 // helper lemma, already proven

2 proof fn mul_inequality(x:int, y:int, z:int)

3 requires x <= y && 0 < z

4 ensures x * z <= y * z

5 {...}

6
7 // first attempt for bounded integers

8 proof fn mul_inequality_bounded(

9 x: int, xbound: int, y: int, ybound: int

10 )

11 requires 0 <= x < xbound

12 requires 0 <= y < ybound

13 ensures x * y <= (xbound - 1) * (ybound - 1)

14 {

15 // precondition fails for both calls

16 mul_inequality(x, xbound-1, y);

17 mul_inequality(y, ybound-1, xbound-1);

18 }

1 // second attempt for bounded integers

2 proof fn mul_inequality_bounded(

3 x: int, xbound: int, y: int, ybound: int

4 )

5 requires 0 <= x < xbound

6 requires 0 <= y < ybound

7 ensures x * y <= (xbound - 1) * (ybound - 1)

8 {

9 // Step #2: split the assertion into pieces

10 assert(x <= xbound - 1); // PASS

11 assert(0 < y); // FALL

12 // Step #1: inline precondition

13 assert(x <= xbound -1 && 0 < y); // FALL

14 mul_inequality(x, xbound-1, y);

15 mul_inequality(y, ybound-1, xbound-1);

16 }

Listing 4.1: Verus Expand Definition Example

We illustrate the challenges with two simplified examples. In real verification projects,
the properties involved are much larger and more complex, making the manual manipulation
of source-level assertions a remarkably laborious, error-prone process.

We first give an example where a function’s precondition fails. After drafting the proof
on the left in Lst. 4.1, we learn that the precondition on line 3 fails at both callsites (lines 16
and 17). On the right side of Lst. 4.1, we first copy over the failing precondition, substituting
the arguments with the values at the call site, as in line 13. When we run the verifier again,
the added assertion fails as expected. To learn which part of the conjunction is the problem,
we split the assertion into two separate ones (lines 10 and 11). After running the verifier
yet again, we finally identify the problem is that 0 < y simply does not hold.

At this point, it becomes clear that we are attempting to invoke the lemma in the wrong
way, rather than the solver giving up due to incompleteness. However, this is not so obvious
initially — we have to go through multiple edit-and-rerun cycles to find out.
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In the second example, we examine a case where the post-condition fails. The first step
is typically to copy the failing post-condition to the end of the function, so that we can
manipulate it further. When that assertion fails (as expected), it remains unknown which
of the four branches is causing the failure. We then move the assertion into each branch, as
shown on the right side. Now we re-run verification, and observe that the assertion in the
third branch fails, where we can start the actual fix.

1 spec fn fibo(n: nat) -> nat {

2 if n == 0 { 0 } else if n == 1 { 1 }

3 else { fibo(n - 2) + fibo(n - 1) }

4 }

5
6 // initial debug attempt

7 proof fn fibo_is_monotonic(i: nat, j: nat)

8 requires i <= j

9 ensures fibo(i) <= fibo(j) // FAIL

10 {

11 if i < 2 && j < 2 {}

12 else if i == j {}

13 else if i == j - 1 {

14 fibo_is_monotonic(i, j - 1);

15 } else {

16 fibo_is_monotonic(i, j - 1);

17 fibo_is_monotonic(i, j - 2);

18 }

19 assert(fibo(i) <= fibo(j)); // FAIL

20 }

1 // second debug attempt

2 proof fn fibo_is_monotonic(i: nat, j: nat)

3 requires i <= j,

4 ensures fibo(i) <= fibo(j),

5 {

6 if i < 2 && j < 2 {

7 assert(fibo(i) <= fibo(j)); // PASS

8 } else if i == j {

9 assert(fibo(i) <= fibo(j)); // PASS

10 } else if i == j - 1 {

11 fibo_is_monotonic(i, j - 1);

12 assert(fibo(i) <= fibo(j)); // FAIL

13 } else {

14 fibo_is_monotonic(i, j - 1);

15 fibo_is_monotonic(i, j - 2);

16 assert(fibo(i) <= fibo(j)); // PASS

17 }

18 }

Listing 4.2: Verus Localize Error Example

Up to this point, our steps have been mechanical and repetitive. Arguably, the actual
“interesting” part of the debugging process has just begun. In this case, maybe the inductive
hypothesis is not strong enough, or maybe the recursive call arguments need to be adjusted,
which are questions that are more worthy of a developer’s time and effort. Nevertheless, we
have to suffer through the tedious steps first.

4.2 Debugging through ProofPlumber

Since much of the effort of proof debugging goes into automatable operations, we propose
proof actions1 to automatically transform the source program in APV. With proof actions,
we can capture in an programmatic manner the existing proof-debugging practices. Not
only do proof actions reduce the tedium and transcription errors, they also make it possible
to hand off the “wisdom” behind these practices to new developers.

Meanwhile, we also recognize the need to support more than a fixed set of proof actions.
Many APV languages are still at a nascent stage, and the proof debugging techniques may
evolve as the language matures. We need a way to allow developers to customize their own
proof actions, and maybe compose them with others proof actions as well.

1This name is inspired by the code actions supported by the Language Server Protocol (LSP)
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We thus introduce ProofPlumber, a novel and extensible debugger framework for Verus.
ProofPlumber enables easy creation and application of proof actions. Fig. 4.1 illustrates
the workflow: ProofPlumber parses and type-checks the source program text from the
editor. ProofPlumber then makes the parsed program available to proof actions, which are
modular plugins. After a proof action is done manipulating the program, ProofPlumber
pretty-printers the modified program back into the editor.

At a high level, the ProofPlumber APIs allows a proof action to do the following:

(1) Lookup context information, e.g., types and definitions.
(2) Manipulate the source-level program and proof.
(3) Interact with the verifier, e.g., run the verifier and get the failed assertions.

Figure 4.1: ProofPlumber Workflow

Fundamentally, a proof action is a procedure that edits the user’s source program
based on results from type checking and verification. The corresponding data structures in
ProofPlumber are: (a) Transformation-Oriented Syntax Tree (TOST) nodes representing
the user’s source code; (b) the Context, which contains additional source-level information
such as types and definitions; and (c) the Verus verifier, which contains information about
failing assertions.

TOST is the core data structure that represents the source program. It is an abstract syntax
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tree, with each language construct represented as an enum (e.g., assertExpr, blockExpr).
Since the TOST is not a concrete syntax tree (CST), it omits semantically irrelevant
syntactic details. The TOST thus allows easy manipulation of the user’s source code,
ignoring trivialities like whitespace. The TOST offers the following APIs (corresponding to
3.1 represents the program, 4. modifies program, and 5. Pretty printing in Fig. 4.1).

• Traverse/Edit. A TOST node allows direct access to its children. For example,
assertExpr has a field expr that contains the asserted expression, which can be
accessed and modified directly. Additionally, ProofPlumber offers a visitor pattern
for recursively filtering or transforming TOST nodes.

• Create. When developing proof actions, it is often necessary to create new TOST
nodes. While this can be done through each node’s constructor, it can be tedious
for large expressions; e.g., consider the expression “x + y * 4”, which needs five
constructor calls. To simplify this process, ProofPlumber provides an option to parse
user-provided text into a TOST node.

• Concretize. When the proof action is done modifying the TOST, it needs to apply
the changes to the program. Since the TOST is abstract, ProofPlumber provides an
API to convert it back to a CST, hiding the details of the conversion.

Context is another core data structure for writing a proof action. It contains the following
information not easily accessible from the TOST (corresponding to 3.2 reports type info
and symbol def in Fig. 4.1):

• Node in Scope. A proof action generally acts within a specific scope indicated by
the user; e.g., the user’s cursor location may identify an expression that is inside a
function, a file, a module, and a crate.

• Type. Needless to say, type information is crucial for understanding and manipulating
the source program. Rust does not require type annotations for every variable or
expression, so the type information is often unavailable at the source (or TOST) level.
However, the type of every expression has been computed by the type checker, and
this API provides that information.

• Definition. It is often necessary to look up the full definition for an identifier. For
example, when case matching on an enum variable c:Color, it is necessary to look
up the variants of Color. At the TOST level, the definition of Color may be in a
different module or even a different crate than the occurrence of c. This API provides
the definition of an identifier, which can be a name for a struct, an enum, a function,
etc.

Verifier (Verus driver) is the last core data structure. It allows the proof action to
interact with the verifier. A proof action does not have to finish all of its rewriting in one
pass; instead, it can make a change, invoke the verifier, and then continue rewriting based
on the verifier’s response. Corresponding to 3.3 reports failing asserts and verification time
in Fig. 4.1, this structure provides:

• Errors. The list of failing assertions, preconditions, and postconditions.
• Time. It often helps to know how long verification takes, since proofs with shorter
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verification time are often more robust [173]. If a proof takes too long, the proof
action may choose a more efficient one.

Notes on Implementation. As Verus is based on Rust, ProofPlumber extends rust-
analyzer [145], the official language server for Rust, to process Verus programs. As with
rust-analyzer, ProofPlumber adheres to the Language Server Protocol (LSP) [112]. In turn,
proof actions developed with ProofPlumber are compatible with editors that implement
the client-side of the LSP.

In our implementation, we have extended rust-analyzer’s grammar and parser to obtain
the Verus CST (1.1 Parsing in Fig. 4.1). We then lift the CST to a TOST, eliminating
details like whitespace (2.1 Lifting in Fig. 4.1). We construct our Context APIs by extending
rust-analyzer’s type checking implementation (2.2 Type Checking in Fig. 4.1). After a proof
action manipulates a TOST node using ProofPlumber APIs, our pretty printer restores the
TOST to a concrete program (5 Pretty Printing in Fig. 4.1).

4.3 Automating Manual Practices

To demonstrate ProofPlumber’s expressivity, and to capture the most common practices in
proof debugging, we implemented 17 proof actions. We come up with two groups of proof
actions: (1) proof actions inspired by Dafny’s documentation [44], which suggests a set of
manual rewrites for debugging proofs, and (2) proof actions distilled from the experiences
of Verus developers. We note there are overlaps between the two groups, as APV languages
often share similar proof debugging practices.

Dafny provides 29 suggested rewrites for manual proof debugging [44], of which we
have implemented 16 as proof actions. We exclude the other 13 rewrites, as 9 of them are
not applicable to Verus, and 4 are inherently manual. We implemented 7 additional proof
actions to automate routine proof engineering tasks in Verus.

Insert Failing Postconditions. A common proof failure is that a procedure’s postcondi-
tions cannot be established. Since there can be multiple postconditions and multiple exit
points (e.g., due to an early return), developers often employ a tedious manual process to
pinpoint the failing conditions at each exit point. This proof action automatically adds the
failing postcondition(s) at each exit.

Insert Failing Preconditions. When preconditions cannot be established at a call site,
this proof action inlines the precondition in the caller’s context.

Introduce Match Case Assertions. A special case of assertion decomposition is when the
assertion is about an enum. Today, the developer tediously writes a match statement for
the enum and then adds assertions to each case to identify where the problem lies. This
proof action emits a boilerplate match statement for the enum, but only presents the failing
variants.

Remove Redundant Assertions. During proof debugging, to understand the solver’s
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1 Insert Failing Postconditions Verus 64 ✓ ✓ ✓ ✓
2 Insert Failing Preconditions Verus 41 ✓ ✓ ✓ ✓ ✓ ✓
3 Introduce Matching Assertions Verus 84 ✓ ✓ ✓ ✓ ✓ ✓ ✓
4 Remove Redundant Assertions Verus 56 ✓ ✓ ✓ ✓ ✓
5 Apply Induction Verus 125 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
6 Weakest Precondition Step Verus/Dafny(5) 176 ✓ ✓ ✓ ✓ ✓
7 Insert Assert By Verus/Dafny 29 ✓ ✓ ✓
8 Decompose Failing Assertion Verus/Dafny 100 ✓ ✓ ✓ ✓ ✓ ✓
9 Split Implication in Ensures Dafny 48 ✓ ✓ ✓

10 Split Smaller or Equal to Dafny 71 ✓ ✓ ✓
11 Convert Implication into If Dafny 40 ✓ ✓ ✓
12 Introduce Assert Forall Dafny 42 ✓ ✓ ✓
13 Introduce Assert Forall Implies Dafny 57 ✓ ✓ ✓
14 Introduce Assume False Dafny 30 ✓ ✓ ✓ ✓
15 Reveal Opaque Function Above Dafny 45 ✓ ✓ ✓ ✓
16 Reveal Opaque Function in Block Dafny 48 ✓ ✓ ✓ ✓
17 Add Seq “in-bounds” Predicate Dafny 58 ✓ ✓ ✓ ✓ ✓

Table 4.1: Proof Actions Implemented with ProofPlumber

state, proof engineers typically introduce multiple assertions, most of which are redundant
(i.e., they help the human, not the verification). Hence, after debugging a proof, to maintain
source code readability, developers manually remove these redundant assertions. This proof
action mechanizes the process.

Apply Induction. If the selected variable is a natural number or an abstract datatype,
this proof action generates the boilerplate code for an inductive proof, including the base
and inductive cases. When the selected variable is an enum, it introduces a match statement
with an empty proof block for each variant, generating the recursive call to the lemma when
the variant is defined recursively.

Weakest Precondition Step. This proof action moves an assertion above the statement
that precedes it: in the case of a branch statement, it moves the assertion to the end of
each of the branch statements. More generally, the proof action implements the rules of the
weakest precondition calculus.

Decompose Failing Assertion. When a complex assertion fails to verify, it is not always
obvious which portion of the failing expression is responsible. This proof action automates
the process of decomposing and isolating the failing sub-formulas.

As a qualitative illustration on one can implement a proof action using ProofPlumber,
we show a snippet for Decompose Failing Assertion in Lst. 4.3. This proof action uses all
three of ProofPlumber’s APIs to analyze a failing assertion with a conjunction of clauses
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and present the clauses that fail. Specifically, the proof action retrieves the surrounding
function using the Context API (line 6). Inside the function, the original assertion is
replaced (using the TOST API) with an assertion of one conjunct (line 11). The proof
action then uses the Verifier API to invoke the verifier on this modified function (line 12)
and check if the new assertion fails. If so, it is added to the source code.

1 fn decompose_failing_assertion(

2 api: &AssistContext<'_>, // handle for API calls

3 assertion: AssertExpr, // TOST Node to modify

4 ) -> Option<BlockExpr> { // ``None'' indicates the proof action is not applicable

5 let split_exprs = split_expr(&assertion.expr)?; // split into logical conjuncts

6 let this_fn = api.tost_node_in_scope::<Fn>()?; // Find assertion's enclosing ``Fn''
7 let mut stmts: StmtList = StmtList::new();

8 for e in split_exprs {

9 // make each logical conjunct into an assertion of its own

10 let split_assert = AssertExpr::new(e);

11 let modified_fn = api.replace_statement(&this_fn, assertion, split_assert)?;

12 if api.run_verus(&modified_fn)?.is_failing(&split_assert) {

13 stmts.statements.push(split_assert.into());

14 }

15 }

16 stmts.statements.push(assertion.into()); // restore the original assertion

17 Some(BlockExpr::new(stmts))

18 }

Listing 4.3: Implement Decompose Failing Assertion

In Tab. 4.1, we have summarized the proof actions we implemented and their API usages
in ProofPlumber. Generally, we can capture and automate many of the mechanical steps in
the proof debugging process, in a fairly succinct and expressive manner (29∼176 lines code
of for each action).

4.4 Work Status and Personal Contribution

The work on ProofPlumber was published at CAV’24, where we also received a distinguished
paper award. Please note that the lead author, Chanhee Cho, implemented the majority
of ProofPlumber itself and most of the proof actions. Nevertheless, ProofPlumber was
heavily influenced by my own experience with debugging proofs in Dafny. At the start
of the project, I came up with a set of proof actions, which eventually lead to Tab. 4.1.
I also implemented several proof actions with and without the framework, which shaped
the design of ProofPlumber APIs. I made minor contributions to the implementation of
ProofPlumber itself (e.g., in constructing the TOST), and I made moderate contributions
to the paper writing.
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Chapter 5

Reusing Proofs

Proof engineering, while not a commonly used term, can be seen as a natural parallel
to software engineering. Although software engineering typically focuses on the design,
creation, and maintenance of conventional software, we argue that the core principles such
as abstraction, modularity, and reuse, are equally relevant in managing complexity and
achieving scalability in verified software.

In this chapter, we demonstrate these principles in the context of verified low-level
cryptography (Sec. 5.1). Specifically, we are interested in scaling up the support for
multiple heterogeneous hardware platforms. For instance, if we have verified an ECDSA [83]
implementation on x86, we would ideally not have to start from scratch for another
implementation on ARM. The key question is how to define proper abstractions, so that
we can leverage the commonalities between different implementations, without sacrificing
the performance benefits of architecture-specific optimizations.

To address these challenges, we introduce Galápagos, a framework designed to efficiently
verify low-level cryptography across multiple platforms. As a more general contribution,
Galápagos includes a standard library for Dafny (Sec. 5.2.1), which consolidates and
enhances libraries from prior projects. This library, now actively maintained and distributed
by AWS, demonstrates how proof engineering can transform repetitive efforts into reusable,
standardized resources.

Building on this foundation, we leverage ML-style functors [113] to create reusable
abstractions (Sec. 5.2.2), enabling modular and scalable verification. We then show how
Galápagos reduces redundancy in hardware ISA specifications (Sec. 5.2.3) and facilitates
the reuse of algorithmic reasoning across implementations (Sec. 5.2.4). Finally, we evaluate
Galápagos on real-world use cases, demonstrating significant reductions in verification effort
and proof burden across multiple heterogeneous hardware platforms (Sec. 5.3).
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5.1 Verifying Low-level Cryptography

Cryptographic primitives are often on a system’s critical path, making high performance
a crucial requirement. Historically, cryptographic providers such as OpenSSL have met
the performance demands via hand-written assembly code that utilizes platform-specific
optimizations (e.g. NEON [7] or AESNI [67]). Emerging heterogeneous platforms reinforce
this trend, since compilers may not be available until long after the platforms are deployed,
necessitating hand-crafted assembly code.

Unfortunately, manually writing such low-level code invites vulnerabilities; e.g., OpenSSL
has reported 33 CVEs between 2021 and 2023 [127], of which 29 are memory safety or func-
tion correctness bugs. Formal software verification can statically prove an implementation
free of entire classes of vulnerabilities, but prior work in this area is ill suited to a world of
heterogeneous hardware, where verification cost and specialization gain are at odds.

A large swath of work [5, 17, 57, 137, 156, 170, 177] verifies high-level source code
and then trusts the compiler to produce the correct assembly. This approach reduces
verification costs but sacrifices specialization-based performance [23], and it is also infeasible
for emerging platforms without a compiler. Another body of work directly targets assembly
implementations [2, 3, 23, 25, 35, 138, 140, 158]. This approach retains performance but
targets only specific platforms. To support an algorithm (say, ECDSA [83]) on a new
platform, the developer needs to start from scratch, which is not-scalable.

5.1.1 Disassembling the Monolithic Approach

Galápagos builds atop of Vale/Dafny toolchain [23], which takes a monolithic approach to
assembly code verification. Conceptually, we needs the following components:

(1) Functional Specification for the input/output behavior of the primitive.
(2) ISA Specification describing the machine model and instruction semantics.
(3) Assembly Code implementing the cryptographic routine.
(4) Refinement Proof connecting the semantics of (3) over (2) to (1).

Let us begin with the assembly code (3) written in Vale. Vale is a domain-specific
language designed for writing and verifying assembly code. It embeds the assembly
instructions into a backend verifier, which in our case is Dafny, to discharge the associated
proof obligations.

In Lst. 5.1, we show a code snippet written in Vale. The reads and modifies clauses
in the procedure are similar to those in Dafny, but now they are specific to the machine
model, which consists of low-level state such as registers and memory. It is worth clarifying
that Vale procedures are merely marcos. Therefore, invoking times4() in another Vale
procedure does not create a stack frame in the underlying machine model. Meanwhile,
RV_ADD is an assembly instruction, which updates the registers in the machine state.
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procedure times4()

requires a0 < 100;

reads a0;

modifies a1, a2;

ensures a2 == 4 * a0;

{

RV_ADD(a1, a0, a0); // a1 <- a0 + a0

RV_ADD(a2, a1, a1); // a2 <- a1 + a1

}

Listing 5.1: Sample RISC-V Code in Vale

We now turn to the ISA specification (2). First we need to define the machine state,
which includes a set of 32-bit registers and a flat memory.

datatype Reg32 =

| a0

| a1

| . . .

datatype state = state(

regs: map<regs_t, uint32>, // 32-bit registers

flat: map<int, uint8>, // Flat memory

ok: bool) // Not crashed

// base integer instruction set, 32-bit

datatype Ins32 =

| RV_ADD (rd: Reg32, rs1: Reg32, rs2: Reg32)

| RV_LW (rd: Reg32, rs1: Reg32, imm12: uint32)

| . . .

Listing 5.2: RISC-V Machine Model in Dafny

We then show the instructions semantics in Lst. 5.3, where eval_code defines the
semantics as a function1. We note that there are special primitives in Dafny/Vale connecting
the semantics of Ins32.RV_ADD here to the instructions in Lst. 5.1. We have elided the
details for brevity.

function method eval_ins32(ins: Ins32, s: state): state

{

match ins

case RV_LW(rd, rs, imm) ⇒
// load word from s.flat[rs + imm], set ok to false if unaligned

. . .
}

function method eval_code(c: code, s: state): state

{

match c

case Ins32(ins) ⇒ eval_ins32(ins, s)

case Block(block) ⇒ eval_block(block, s)

. . .
}

Listing 5.3: RISC-V ISA Semantics in Dafny

1We use function method here, which makes the semantics executable, and thus allows for fuzz testing
the semantics against the actual hardware.
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To make the discussion on the rest of the components more concrete, let us consider
the RSA-3072 signature verification routine as an example. Recall the four components
of the monolithic approach: (1) the functional specification, (2) the ISA specification, (3)
the assembly code, and (4) the refinement proof. For RSA, (1) is straightforward: given a
signature 𝑠 and the public key (𝑒,𝑚), the goal is to compute and output ℎ = 𝑠𝑒 mod 𝑚.
While (1) remains unchanged across platforms, (2) and (3) vary by definition. At first glance,
it might seem inevitable to conduct (4) in a platform-specific manner, as the monolithic
approach offers little incentive to decompose the refinement. However, for our purposes, we
can break it down into two additional components:

(5) Algorithmic Description bridging the gap between the specification in (1) and the
code in (3). While the specification defines what to compute, we also need to prescribe
how to compute it. For instance, we may choose the Montgomery method [114] for
modular exponentiation, where Alg. 1 outlines the concrete steps to follow.

(6) Machine Interpretation specifying how the machine state corresponds to the
variables in (5). For example, we might decide that register a0 points to a heap buffer
containing 384 bytes representing the input 𝑠, and that the same buffer should be
reused to store the output ℎ.

While the algorithmic description and machine interpretation are often implicit, we
leverage them as explicit abstractions to reduce the verification effort in Galápagos.

5.2 Building the Abstractions in Galápagos

Galápagos is a framework designed to verify low-level cryptographic primitives across multi-
ple heterogeneous platforms efficiently. For each ISA, Galápagos provides a proven-correct,
higher-level abstraction of the machine semantics (Sec. 5.2.3). For each cryptographic
primitive, developers prove an algorithmic description (Sec. 5.2.4) once, enabling its reuse
across different platforms. Developers can use the high-level machine interface to write
assembly implementations (Sec. 5.2.5), maintaining a close semantic correspondence with
the algorithmic description.

To enable these abstractions, Galápagos extends Dafny with verified functors (Sec. 5.2.2)
and leverages a comprehensive Dafny standard library (Sec. 5.2.1), streamlining both
algorithmic reasoning and platform-specific verification.

5.2.1 Curating a Dafny Standard Library

Dafny provides a basic set of language features (e.g., sequences or maps). However, any
additional properties must be proven from scratch by the developer. As a result, previous
Dafny projects [23, 33, 59, 73, 78, 79, 104] have each developed their own project-specific
libraries. This has contributed to significant duplication of effort across projects and even
across time, as these project-specific libraries are typically not maintained as Dafny actively
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evolves.

Early in Galápagos development, we observed that we would need many of the same
properties proven by previous projects, so rather than adding yet another project-specific
collection, we have created the first Dafny standard library. In creating the new library, we
drew upon code and proofs from these previous projects, but rewrote them in a uniform
style (both syntactically and in proof style). We also extended them to fill in obvious gaps.
We discuss the main components of the library below.

Data Structures. Dafny provides built-in support for sequences, maps, and sets,
making them convenient for modeling a wide variety of systems. On top of these functional
data structures, we added more robust support for performing and reasoning about insertion,
removal, extrema, subsequencing or subsetting, conversions between data structures, and
higher-order functions (fold, filter, etc.) over the data structures.

Big Integers. As we discussed in Sec. 2.3.3, cryptographic algorithms often operate
on large integers that cannot fit into a single machine word. We provide a parameterized
library for representing such large integers as multi-limb sequences. The library includes
operations such as big_add shown in Lst. 5.12, lemmas about results of the operations, and
lemmas describing the effect of converting between large integers represented by different
bases. The latter simplify the reasoning about, say, converting the representation of a
number as a sequence of bits into a sequence of 32-bit words.

Line Count Definitions Lemmas
Data Structures 1,219 46 40
Big Integers 914 27 29
Nonlinear Arith. 3,732 7 249

Table 5.1: Dafny Standard Library Statistics.

Non-linear Arithmetic. As discussed earlier, another common theme in cryptographic
proofs is algebraic reasoning. While fragments of non-linear reasoning can be decided the
problem as a whole is undecidable. SMT solvers rely on various heuristics to nonetheless
try to solve at least some non-linear problems. Unfortunately, in our experience (and that
of previous work [59, 79]), such heuristics are unreliable; creating instability (which is our
topic in Chapter 6). To mitigate these effects, our library proves a set of common algebraic
properties from first principles and make them available as lemmas.

We offer varying levels of automation in the non-linear algebraic properties. Users can
invoke very general lemmas (e.g., exposing lots of properties about multiplication), which
provide significant automation but may create proof performance problems. Alternatively,
developers can invoke tailored lemmas that specify one property (e.g., multiplication is
commutative) or even choose a version where they specify exactly which variables in an
equation the property should be applied to (e.g., they can specify 𝑥 and 𝑦 as arguments to
the lemma to show that 𝑥 * 𝑦 = 𝑦 * 𝑥). These more specific versions require more manual
developer work but they provide consistently provide fast, deterministic performance.
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The library has been adopted by the Dafny team at Amazon, who have added it to
Dafny’s continuous integration tests, which run on each commit to the main Dafny repository.
The presence of a unified standard library has already encouraged additional contributions
from other Dafny developers, including support for monadic operations, searches, sorts, and
a Unicode library.

5.2.2 Creating Abstractions with Functors

As we mentioned earlier, we base Galápagos on Vale, with Dafny as the backend verifier.
However, the standard Dafny module system is not expressive enough to support our
need of abstraction. We thus extend Dafny’s modules with verified, ML-style functors,
while maintaining compatibility. This requires adapting higher-order functional concepts to
Dafny’s imperative, first-order design.

5.2.2.1 Limitations of Dafny Modules

Akin to a module in many programming languages, a Dafny module is a collection of types,
functions, and proofs. We first discuss the limitations of Dafny’s existing module system
with an example on number theoretic transform (NTT) [136]. Suppose that we wish to
perform efficient polynomial multiplication via forward/inverse NTT. Moreover, we also
wish to parameterize our implementation generically over any ring.

abstract module Ring {

type elem // unspecified type

function unit(): elem

function add(a: elem, b: elem): (c: elem)

ensures b == unit() =⇒ c == a // specifies idempotency

// other ring functions/axioms elided

}

module IntRing refines Ring {

type elem = int

function unit(): elem { 0 }

function add(a: elem, b: elem): elem { a + b } // PASS: maintains idempotency

// function add(a: elem, b: elem): elem { b - a } // FAIL: violates idempotency

}

Listing 5.4: Defining an Abstract Module in Dafny

Dafny modules can be abstract, meaning they can declare types and functions without
providing their implementations. For example, in Lst. 5.4, the abstract module Ring

declares a type elem and functions operating on it.
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Concrete modules can refine abstract modules by providing implementations. For
instance, the IntRing module refines Ring by setting elem to the concrete type int and
providing function bodies. Dafny enforces the refinement relation, ensuring that the concrete
definitions satisfy the properties specified in the abstract module. For example, the add

function in IntRing must uphold the idempotency property declared in Ring.

Dafny also allows an abstract module to import other abstract modules, providing
access to their contents. Continuing with our example in Lst. 5.5, we now implement
forward NTT generically over any ring. In FNTT, we can use the syntax import R: Ring

to use an unspecified module R that promises to implement the Ring interface. Now we
can use functions in R to perform more complex operations without assuming a particular
implementation of R.add. We can also implement inverse NTT generically in a similar way.

abstract module FNTT {

import R: Ring

function double(a: R.elem): R.elem { R.add(a, a) }

// other generic implementations elided. . .
}

abstract module INTT {

import R: Ring

// generic implementations elided. . .
}

abstract module PolyMul {

import F: FNTT

import I: INTT

// cannot express that F.R is the same module as I.R

function problematic(a: F.R.elem, b: I.R.elem): F.R.elem {

F.R.add(a, b) // ERROR: this does not type check

}

}

Listing 5.5: Interoperating Abstract Modules in Dafny

However, Dafny’s basic module system falls short in a subtle but important case. Suppose
that we now implement polynomial multiplication in PolyMul module. Naturally, we would
like to leverage our previous NTT modules. However, as we show in Lst. 5.5, when we try
to interoperate between the two modules, Dafny has no way to specify that F and I are
parameterized by the same underlying ring.

5.2.2.2 Extending Dafny with Verified Functors

We thus extend Dafny with verified functors. Functors are functions from modules to
modules. In our implementation, a functor is a module that takes other modules as
arguments (each argument is given a type defined by an abstract module), and the code
and proofs in the functor are written in terms of the module arguments. The developer
can instantiate the functor by applying it to concrete modules that refine the formal
arguments’ interfaces. A functor thus allows a collection of code and proofs to be reused
when instantiated with different module arguments.
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Using functors, we can now successfully implement the polynomial multiplication
example. As shown in Lst. 5.6, FNTT is now a functor that takes a module R of type Ring

as an argument and returns an instantiation of the FNTT code and proofs specific to that
concrete argument. Applying FNTT to a different ring module produces a different concrete
instantiation. The crucial benefit of using functors (as opposed to Dafny’s existing module
system) is that when two functors are applied to the same argument (e.g., the Ring module
in PolyMul), we can unify the types coming from the two different instantiated modules.
Below, we expand on our functor design choices using Dreyer’s terminology [53].

abstract module FNTT(R: Ring) { /* details elided */ }

abstract module INTT(R: Ring) { /* details elided */ }

abstract module PolyMul(R: Ring, F: FNTT(R), I: INTT(R)) {

// Functions in F and I can interop since R is the same in both

}

Listing 5.6: Using Functor in Galápagos

Applicative. Our functors are applicative, meaning that applying the same functor to
the same argument(s) in two different contexts still produces the same concrete module.
This is crucial for unifying types in examples like Lst. 5.6. Our design contrasts with SML’s
generative functors, where each application generates a fresh copy of types, even with the
same argument module(s). For example, in A = FNTT(IntRing) and B = FNTT(IntRing),
A.elem and B.elem will not be of the same type with generative functors.

Second-Class, First-Order. Similar to most ML dialects, our functors are second
class, meaning the module system exist in a different plane from ordinary functions and
types. Specifically, a module cannot be passed to or returned from ordinary functions,
nor can it be stored in datatypes. Our functors are close to being first-order, since they
cannot be partially applied, but they can be parameterized by other functors, which is a
higher-order property.

Proof Obligations. Unlike most other functor-supporting languages such as OCaml
or ML, Dafny’s types and methods come with verification obligations. Hence, when
extending Dafny to support functors, we had to carefully ensure that the proof of a
functor’s correctness relies only on the properties promised by the abstract module “types”
of its formal parameters, not any details of the concrete instantiations. In exchange, we
gain verification efficiency: we need only verify the algorithmic description once; i.e., no
additional verification work is required when instantiating the functor with concrete module
arguments, since those arguments have already been proven to refine the corresponding
abstract modules.

The functor support enables us to decouple the concerns of machine-specific implemen-
tation from algorithmic correctness in a parameterized way, which we discuss in the next
two sections.
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5.2.3 Abstracting the Machine Specification

A developer using Galápagos needs to define the ISA semantics of target platforms, as in
all other assembly verification projects. Galápagos facilitates this process with an abstract
machine model, which generically defines various bit-level operations. Moreover, Galápagos
provides a higher-level memory interface, lifting the semantics of low-level memory accesses
closer to the algorithm-level reasoning.

Abstract Bit-Vector Operations. Below, we present some of the operations in the
abstract machine. We note that the machine has an under-defined type uint parameterized
by a radix. This allows the developers to instantiate the abstract machine with the specific
word size of their target platform. By doing so, developers also gain access to pre-defined
bit-level operations, which they can directly utilize in defining the ISA specification, such
as the RISC-V machine model shown in Lst. 5.3.

0 abstract module machine_generic {

1 // symbolic upper bound on word size

2 // concrete instantiations must satisfy the ensures clauses

3 function RADIX(): (v:nat)

4 ensures (v > 1)

5 ensures (v % 2 == 0)

6
7 // defines an unsigned integer type upper-bounded by RADIX()

8 type uint = i: int | 0 <= i < RADIX()

9 // defines a 1-bit unsigned integer type

10 type uint1 = i: int | 0 <= i < 2

11
12 // the followings are generic operations

13 // obtained "for free" by concrete

14 // instantiations that define RADIX()

15
16 // word-sized addition with carry

17 function addc(x:uint, y:uint, cin:uint1): (uint, uint1) {

18 var sum := x + y + cin;

19 // handle possible overflow

20 var sum' := if sum < RADIX() then sum else sum - RADIX();

21 var cout := if sum < RADIX() then 0 else 1;

22 (sum', cout)

23 }

24
25 // extract the most-significant bit

26 function msb(x:uint): uint1 {

27 if x >= RADIX()/2 then 1 else 0

28 }

29
30 // more operations elided . . .
31 }

Listing 5.7: Abstract Operations in Galápagos

Structured Memory Model. Galápagos also offers a verified module that translates
a machine’s byte-level memory into a structured memory model. As shown in Lst. 5.9,
mem_t contains a heap and a stack, where a heap is a map from base addresses to sequences
of words, and a stack is a sequence of frames. We note that the uint_t is under-specified,
as in the abstract operations.
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0 datatype mem_t = mem(

1 // The abstract heap is a collection of disjoint buffers,

2 // each identified by its base address

3 heap: map<nat, seq<uint>>,

4 // The stack is a sequence of frames

5 // each frame is a pair of a frame pointer and a sequence of uints

6 stack: seq<(nat, seq<uint>)>

7 )

8
9 predicate mem_inv(mem: mem_t, flat: map<int, uint8>)

10 {

11 // detail elided . . .
12 }

Listing 5.8: Memory Abstraction in Galápagos

We also define mem_inv, which describes the refinement relation between structured and
flat memory. At a high level, mem_inv states that each heap buffer or stack frame maps to
the contents of a contiguous block of flat memory, starting at the respective base or frame
address. The address conversion between byte-arrays and under-specified word-arrays is
straightforward and yet tedious. We thus have elided the details here.

0 datatype iter_t = iter_t(

1 base: nat, // start of the heap buffer

2 index: nat, // current index

3 buff: seq<uint> // abstract view of the heap buffer

4 )

5
6 predicate iter_inv(mem: mem_t, iter:iter_t, addr: int)

7 {

8 && iter.base in mem.heap

9 && mem.heap[iter.base] == iter.buff

10 && iter.index <= |iter.buff|

11 && iter.index >= 0

12 && iter.base + iter.index * RADIX() == addr

13 }

Listing 5.9: Iterator in Galápagos

Galápagos further provides an iterator interface for heap access with the type iter_t,
which abstracts over a structured heap entry. The invariant iter_inv states that the
iterator is in-sync with the heap entry, and reflects the semantics of a given address in the
structured memory.

More importantly, we provide a proof that the structured memory refines the flat memory.
For each memory operation on mem_t, we show that it has a corresponding operation on
flat_t which would preserve the refinement in mem_inv. In the example below, the lemma
shows that a write via an iterator corresponds to a write_word on the flat memory.

0 lemma write_iter_preserves_inv(

1 flat: map<int, uint8>,

2 mem: mem_t,

3 iter: iter_t,

4 addr: int,

5 value: uint)
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6
7 requires

8 && iter.index != |iter.buff|

9 && mem_inv(mem, flat)

10 && iter_inv(mem, iter, addr)

11 ensures

12 var flat' := write_word(flat, addr, value);

13 var iter' := iter.buff[iter.index := value];

14 var mem' := mem[iter.base_ptr := iter'.buff];
15 && iter_inv(mem', iter', addr)

16 && mem_inv(mem', flat')

Listing 5.10: Iterator Write Preserves Memory Refinement.

We note the refinement proof is a one-time effort by Galápagos, where we provide similar
lemmas for the following operations:

• write_iter/read_iter: heap access via an iterator, corresponding to flat memory
access at iter.base + iter.index * RADIX().

• push_frame/pop_frame: manages the stack frames, corresponding to changes to the
stack pointer.

• write_frame/read_frame: interacts with the top stack frame, corresponding to flat
memory access using the frame pointer as the base plus some offset.

The developer only needs to wrap the memory-related assembly instructions with the
corresponding high-level operations, and invoke the refinement lemmas. For example,
in Lst. 5.11, the RV_LW instruction is hidden under the read_iter procedure, giving it
much higher-level semantics.

procedure read_iter(dst: reg32, src: reg32, offset: imm12,

ghost inc: bool, ghost iter: iter_t)

returns (ghost iter': iter_t)

reads

src, flat;

writes

dst;

requires

iter.index != |iter.buff|; // Not at the end of the buffer

// mem and flat are global state variables

mem_inv(mem, flat);

iter_inv(mem, iter, src + offset);

ensures

dst == iter.buff[iter.index];

inc =⇒ iter_inv(mem, iter', src + offset + 4);

!(inc) =⇒ iter_inv(mem, iter', src + offset);

{

// actual assembly instruction

RV_LW(dst, src, offset);

// invariant lemma, courtesy of galapagos

read_iter_preserves_inv(flat, mem, iter, src + offset);

// ghostly update the iterator

iter' := iter.buff[iter.index := dst];

}

Listing 5.11: Vale Procedure to Read via Iterator

We note that the developer does not need to worry about the details of the refinement
proof, or even the definition of mem_inv. They just need have a valid iter_t, call the
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read_iter_preserves_inv lemma, and now read_iter can also return a valid iter_t.

5.2.4 Abstracting the Algorithmic Reasoning

A developer using Galápagos writes the high-level algorithm (with proofs), also param-
eterized by the abstract machine. They can use as many named variables as they wish,
unconstrained by finite registers; they can interact with immutable sequences of structured
data, rather than byte-level memory accesses. In this way, they can focus on proving the
algorithm’s mathematical correctness, without worrying about low-level details such as
register allocation or heap management.

We first show an example of abstract multi-word addition algorithm below. Algorithms
like RSA operate over large integers that cannot fit into a single machine word and must
instead be represented by a sequence of words. Here we perform addition over word
sequences, using ops.addc from our abstract machine. We can also prove the correctness
of the algorithm generically, for any radix, and then instantiate it for specific platforms.

0 abstract module big_add_generic(ops: machine_generic)

1 {

2 type words = seq<ops.uint>

3 // Interpret a sequence of uint as a natural number

4 function to_nat(xs:words): nat {

5 // Actual definition elided. . .
6 }

7
8 function big_add(xs:words, ys:words, cin:uint1):(words, uint1)

9 requires |xs| == |ys|

10 {

11 var len := |xs|;

12 if len == 0 then

13 ([], cin)

14 else

15 var (zs, cin') := big_add(xs[..len-1], ys[..len-1], cin);

16 var (z, cout) := ops.addc(x[len-1], y[len-1], cin');
17 (zs + [z], cout)

18 }

19
20 lemma big_add_correct(xs:words, ys:words, zs:words, cout:uint1)

21 requires |xs| == |ys|

22 requires (zs, cout) == big_add(xs, ys, 0)

23 ensures |zs| == |xs|

24 ensures to_nat(xs) + to_nat(ys)

25 == to_nat(zs) + cout * pow(BASE(), |xs|)

26 { /* Actual proof elided */ }

27 }

28
29 module test {

30 import big_add_32_bits = big_add_generic(machine_32_bits)

31 // Free to use the 32-bit version of big_add and big_add_correct

32 }

Listing 5.12: Generic Multi-Word Addition
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5.2.5 Proving a Low-Level Implementation

The developer then writes the assembly implementation in Vale. They can do this by
transcribing the assembly output by a compiler (e.g., when run on C reference code), by
handcrafting the Vale assembly to exploit optimization opportunities missed by a generic
compiler, or any mix of these strategies.

As they write their implementation, they interact the the high-level, structured memory
interface (Sec. 5.2.3), which makes it straightforward to invoke the definitions and proofs
from the hardware-specific instantiation of the algorithmic description (Sec. 5.2.4).

procedure big_add(ghost x_iter:iter_t, ghost y_iter:iter_t, ghost z_iter:iter_t)

returns (ghost z_iter': iter_t)

modifies

t1; t2; a1; a2; a3; a4; mem; flat;

requires

mem_inv(mem, flat);

iter_inv(x_iter, mem, a1) && x_iter.index == 0 && |x_iter.buff| == 96;

iter_inv(y_iter, mem, a2) . . .
iter_inv(z_iter, mem, a3) . . .

ensures

iter_inv(z_iter', mem, a3);

mem_inv(mem, flat);

a4 == 0 || a4 == 1; // Carry out bit

to_nat(x_iter.buff) + to_nat(y_iter.buff) ==

to_nat(z_iter'.buff) + a4 * pow(BASE(), 96);

// elided the relation between old(mem) and mem . . .
{

RV_ADDI(t1, a3, 384);

// Implementation code here with loops maintaining iter_inv

while (a3 < t1)

invariant

iter_inv(x_iter, mem, a1);

. . .
{

// read_iter maintain iter_inv for free

x_iter = read_iter(t2, a1, 0, true, x_iter);

// we just need to increment the register accordingly

ADDI(a1, a1, 4);

. . .
}

. . .
// Invoke concretized lemma from the algorithmic description

big_add_correct(x_iter.buff, y_iter.buff, z_iter'.buff, a4);

}

Listing 5.13: Vale Procedure for Multi-Word Addition

To illustrate this process, we present an excerpted version of RISC-V implementation
of multi-word addition. We note that the iterators are always passed as ghost arguments,
which are logically connected to the underlying machine state via our abstraction. The
read_iter and write_iter procedures provide a convenient way to interact with heap
buffers while maintaining the iter_inv invariant automatically. We note that read_iter
also allows the developer to specify whether the iterator should be incremented after reading.
In this case, since we set the ghost inc flag to true, we also update the register accordingly.

Additionally, iterators enable reasoning about heap buffers as high-level sequences of
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structured data (e.g., x_iter.buff). This abstraction allows seamless integration with
the concretized proofs from the algorithmic description, such as big_add_correct from
Lst. 5.12, since both operate on the same high-level sequence representation.

5.3 Leveraging the Abstractions in Practice

To evaluate the effectiveness of Galápagos, we apply it to a real-world use case, Open-
Titan [129]. OpenTitan is a TPM-like [157] chip that servers as a silicon root of trust.
OpenTitan bootstraps its trust from a secure boot process [64, 133], which loads and
executes properly signed firmware only. The signature scheme is RSA-3072, which is our
first case study algorithm.

OpenTitan includes both a 32-bit RISC-V main core and a custom 256-bit big-number
accelerator (dubbed the OTBN). For extra resiliency, OpenTitan supports secure boot
with and without the accelerator enabled. Hence, we use Galápagos to produce verified
implementations of RSA-3072 for both the RISC-V and OTBN. Our verified code has been
burnt into the mask ROM currently in use for fabricating OpenTitan chips — the first
instance, to our knowledge, of formally verified cryptographic code baked into hardware at
scale.
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Figure 5.1: Case Studies in Galápagos.

To further validate Galápagos’s ability to support heterogeneous hardware, we developed
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an implementation for yet another architecture, MSP430 [21], in less than a week. MSP430
is a 16-bit micro-controller architecture designed by Texas Instruments for low-power
embedded devices. We avoided ARM and x86, since they are also quite standard and
well-studied in prior work [2, 3, 23, 25, 35, 138, 140].

To further validate Galápagos’s ability to support diverse algorithms, we developed
verified implementations of Falcon-512 [62], a post-quantum signature scheme standardized
by NIST. To our knowledge, these are the first formally verified implementations of Falcon.
Unlike RSA, Falcon is rooted in lattice-based cryptography. At the heart of our Falcon
implementations is an NTT functor, constructed based on the algorithmic description in
Alg. 2. Leveraging the functor support in Galápagos, we parameterized our NTT proofs
over a polynomial ring, ensuring their reusability across other post-quantum algorithms.

5.3.1 Simplifying the Hardware Specification

Our case studies target OTBN, RISC-V, and MSP430, three ISAs with distinct bit-widths,
addressing modes, and arithmetic operations. We define their formal executable semantics
in Dafny. While these semantics are trusted, we bolster confidence in their correctness by
running fuzz tests that compare their outputs against those of reference simulators.

The use of abstract operations (Sec. 5.2.3) in the instruction set architecture (ISA)
specification is straightforward, so we focus on the usage of the memory interface. Over-
all, Galápagos’ memory abstraction seamlessly supports all three architectures, despite
differences in word sizes and addressing modes. We now discuss the architectures in more
detail.

RISC-V.

RISC-V is an open standard ISA family [168]. For our case study, we use RV32IM, which
is the 32-bit base integer ISA (47 instructions) with extensions for integer multiplication
and division (8 instructions). The instruction set is quite standard, with a 32-bit address
space and byte-addressable memory. There are only three data addressing modes: register,
immediate, and indexed. One interesting wrinkle is that, unlike most platforms (including
our other two), RISC-V does not have a dedicated flags register for zero, overflow, or sign
bits; instead, the developer is expected to check for such conditions using standard ALU
operations.

For the memory interface, we demonstrated how to wrap the RV_LW instruction using
read_iter in Lst. 5.11, which leverages the read_iter_preserves_inv lemma provided
by Galápagos. Although RV_LW supports only the register-plus-immediate addressing mode,
it integrates smoothly with the iterator interface: either by combining read_iter with an
explicit addi instruction to increment the pointer, or by setting the inc flag to false to
avoid automatic pointer advancement.

MSP430.
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MSP430 is a micro-controller family developed by Texas Instruments. It offers a minimalist
16-bit ISA with only 27 instructions (omitting, for example, multiplication). MSP430
memory is byte addressable, and its instructions have six possible addressing modes:
register, indexed, absolute, indirect register, indirect auto-increment, and immediate.

The indirect auto-increment mode in the MSP430 uses a register operand as a pointer
and increments the pointer after performing the load. This matches the programming
pattern that moves the iterator of an array to the next entry after reading the current entry,
making it a natural fit for Galápagos’ iterator abstraction.

OTBN.

OTBN is a cryptographic accelerator ISA from the OpenTitan project. OTBN operates on
32 control registers, each 32 bits wide, and 32 data registers, each 256 bits wide. Hence,
the data registers alone can potentially hold 1KB of data without any memory accesses.
OTBN is designed to accelerate cryptographic computations involving large integers, such
as those used in RSA or elliptic curve cryptography. OTBN supports 57 instructions, many
of which offer configurable options. For example, the BN.MULQACC instruction performs a
quarter-word (64-bit) multiplication and then adds the result to a dedicated accumulation
register. The instruction can be customized to choose different quarter words from each
source/destination register, to shift the multiplication result before accumulating it, and to
clear the accumulation register before adding the result.

For the data-memory instructions, BN.LID and BN.SID, a control register provides the
index of the data register as an operand, indirectly reading and writing the wide registers.
The instructions read/write 256 bits of data memory and support indirect addressing modes
with auto-increment. The full syntax of the load instruction is as follows:

BN.LID <grd>[<grd_inc>], <offset>(<grs>[<grs_inc>])

Both grd and grs are 32-bit control registers, where grd specifies the index of the wide
register to use as a destination, and grs along with the offset specifies the source memory
address. Suppose that grd is register x1, which contains the value 0x3, and grs is register
x16, which contains the value 0x8000. With no offset, this instruction will load the 256-
bit word at address 0x8000 into data register w3. Notably, the optional auto-increment
feature aligns well with the read_iter iterator pattern, enabling efficient integration with
Galápagos’ abstractions.

ISA Specification High-Level Interface Tally
Loc Saved Ratio Loc Saved Ratio Loc Saved Ratio

Generic 453 - 1,140 - 1,593 -
MSP430 490 48% 1,091 51% 1,581 50%
RISC-V 685 39% 1,273 47% 1,958 44%
OTBN 1,506 23% 1,843 38% 3,349 32%

Table 5.2: Simplifying the Hardware Specification with Galápagos.
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In Tab. 5.2, we summarize the lines of code developed for the ISA specifications and the
high-level memory interface. The generic row contains the abstract operations and memory
interface in Sec. 5.2.3, which is a one-time cost covered by Galápagos. The other rows show
the additional lines of code needed to support each ISA’s specification and abstraction.
OTBN requires slightly more effort due to the complexities of the ISA. For the simpler
ISAs, it saves up to half of the code that would have been written if developed without
Galápagos.

5.3.2 Simplifying the Algorithmic Refinement

RSA-3072.

RSA signatures are simple to specify in terms of modular exponentiation of integer values.
RSA implementations, however, are amenable to a wide variety of algorithmic and assembly-
level optimizations. The algorithmic optimizations are quite complex to reason about
even in isolation, let alone in the midst of a complicated assembly-level implementation.
Hence Galápagos’ split of these obligations between the algorithmic description and the
hardware-specific implementation simplifies our correctness proofs.

Algorithmic Description. Following OpenTitan’s unverified baselines, our algorith-
mic description employs the Montgomery multiplication (Alg. 1) for efficient modular
exponentiation. Notably, Alg. 1 (and our algorithmic description) is parameterized over
both by the radix (e.g., the machine-word’s upper limit) and by the size of the big integers,
which are represented by sequences of machine words, matching the multi-limb sequences
in Sec. 5.2.4.

Another important detail is that Line 3 accumulates an intermediate result and requires
several multi-limb operations (e.g., 𝑢 ·𝑚 is a product between a multi-limb sequence 𝑚 and
a machine word, which produces a multi-limb result, and similarly for 𝑥[𝑖] · 𝑦). Therefore, in
the full algorithmic description, this line translates into a loop, performing the element-wise
products and sums.

In terms of the algorithmic correctness, the main loop starting on Line 1 has the following
two invariants:

𝑎 ≡ 𝑥[..𝑖] · 𝑦 · 𝑏−𝑖(mod 𝑚)
𝑎 < 2𝑚

These invariants, along with the conditional subtraction at Line 6 of the algorithm, ensure
overall correctness, i.e., the output is congruent to 𝑥 · 𝑦 · 𝑏−𝑛, and it is bounded by 𝑚. The
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proof of the congruence invariant roughly follows these steps:

(𝑎+ 𝑥[𝑖] · 𝑦 + 𝑢 ·𝑚)/𝑏 (mod 𝑚) (5.1)
≡ (𝑎+ 𝑥[𝑖] · 𝑦 + 𝑢 ·𝑚) · 𝑏−1 (mod 𝑚) (5.2)
≡ (𝑎+ 𝑥[𝑖] · 𝑦)𝑏−1 (mod 𝑚) (5.3)
≡ (𝑥[..𝑖] · 𝑦 · 𝑏−𝑖 + 𝑥[𝑖] · 𝑦) · 𝑏−1 (mod 𝑚) (5.4)
≡ (𝑦 · (𝑥[..𝑖] · 𝑏−𝑖 + 𝑥[𝑖])) · 𝑏−1 (mod 𝑚) (5.5)
≡ (𝑦 · 𝑥[..𝑖+ 1] · 𝑏−𝑖) · 𝑏−1 (mod 𝑚) (5.6)
≡ 𝑦 · 𝑥[..𝑖+ 1] · 𝑏−(𝑖+1) (mod 𝑚) (5.7)

We note that the least significant word of 𝑎+𝑥[𝑖] ·𝑦+𝑢 ·𝑚 is 0, which justifies (5.2), and
the evaluation rule of multi-limb numbers justifies (5.6). Moreover, the congruence relation
fits perfectly into the subset handled by our gbassert extension to Dafny (Sec. 3.2.2).

Meanwhile, for the bound invariant, we instead rely on lemmas about non-linear
arithmetic from our Dafny standard library (Sec. 5.2.1). The main steps are as follows:

(𝑎+ 𝑥[𝑖] · 𝑦 + 𝑢 ·𝑚)/𝑏
≤ (2𝑚− 1 + 𝑥[𝑖] · 𝑦 + 𝑢 ·𝑚)/𝑏
≤ (2𝑚− 1 + 𝑥[𝑖] · (𝑚− 1) + 𝑢 ·𝑚)/𝑏
≤ (2𝑚− 1 + (𝑏− 1)(𝑚− 1) + (𝑏− 1) ·𝑚)/𝑏
= (2𝑏 ·𝑚− 𝑏− 1)/𝑏
< 2𝑚

Algorithm 1 Montgomery Multiplication
Require:
𝑏 is some radix
𝑛 is some length
𝑚,𝑥, 𝑦 are vectors length 𝑛 with elements bounded by 𝑏
𝑎 is a vector length 𝑛+ 1 with all 0 elements
0 ≤ 𝑥, 𝑦 < 𝑚
𝑚′ = −𝑚−1mod 𝑏

Ensure:
𝑎 = 𝑥 · 𝑦 · 𝑏−𝑛 mod 𝑚

1: for 𝑖 = 0; 𝑖 < 𝑛; 𝑖 = 𝑖+ 1 do
2: 𝑢 = (𝑎[0] + 𝑥[𝑖] · 𝑦[0]) ·𝑚′mod 𝑏
3: 𝑎 = (𝑎+ 𝑥[𝑖] · 𝑦 + 𝑢 ·𝑚)/𝑏
4: end for
5: if 𝑎 > 𝑚 then
6: 𝑎 = 𝑎−𝑚
7: end if
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Assembly Implementations. We ported the existing, unverified RSA-3072 imple-
mentations for RISC-V and OTBN into Vale. For the MSP430, we compiled a C version
and transcribed the resulting assembly to Vale while making performance optimizations.
For our proofs, we instantiate the algorithmic description’s functor with hardware-specific
modules that specify an appropriate radix for each platform (e.g., 216 for the MSP430).

Given the lemmas instantiated from the algorithmic description, proving the correctness
of the hardware-specific implementations was relatively straightforward, mostly boiling down
to proving various hardware-specific bit-fiddling optimizations. The OTBN implementation
was relatively easy, since it could fit all of the RSA integers entirely into registers. Its two
sets of flag registers simplified carry propagation, and the built-in accumulator register
likewise simplified the multi-word computations. The most significant proof challenge was
proving that the implementation correctly used a chain of the (very complex) BN.MULQACC
instruction to compute the product of two 256-bit numbers.

The MSP430 and RISC-V implementations resemble one another. Compared to OTBN,
both support a simpler multiplication instruction, while RISC-V was complicated by the
lack of a flags register.

Falcon-512.

To validate that Galápagos is applicable to other algorithms, we have used it to produce
verified implementations of Falcon. Falcon is based on lattices and its security reduces to
the short integer solution problem [1], which differs drastically from RSA.

The spec for Falcon is relatively concise, although still more verbose than RSA, since
it depends on definitions of polynomial arithmetic. Simplifying a bit, Falcon verifies a
signature 𝑠 over (hashed) message 𝑚, using public key pk, by computing

𝑠′ ← 𝑚− 𝑠 · pk mod 𝑞

and checking that the distance between 𝑠 and 𝑠′ is small. The signature and the public key
are encoded as polynomials, so the most computationally intense operation is computing
the polynomial multiplication (i.e., 𝑠 · pk).

Algorithmic Description. Naively, a polynomial multiplication takes 𝑂(𝑁2) time,
but this can be optimized to 𝑂(𝑁 log𝑁) using the number theoretic transform (NTT). In
our abstract implementation, we employ the Cooley-Tukey (CT) butterfly algorithm [40]
to compute a forward NTT operation (shown in pseudocode in Alg. 2). Notice that the
algorithm, like our abstract implementation, is parameterized over the prime 𝑞 that defines
the field and the size 𝑛 of the polynomials. Hence, our generic NTT implementation can be
instantiated for many other lattice-based algorithms beyond Falcon.

While the pseudocode in Alg. 2 is relatively succinct, the justifications for why each step
computes the right value are surprisingly subtle and are described across multiple research
papers [102, 103, 119, 120]. We provide some intuitions for the algorithm’s correctness
here. The NTT algorithm works with a sequence of words, where each word represents a
polynomial coefficient in the ring Z𝑞. Hence we can think of a sequence as a polynomial
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Algorithm 2 NTT with CT butterfly
Require:
𝑛 is a power of two.
𝑞 is a prime such that 𝑞 ≡ 1(mod 2𝑛).
𝑎 is a vector in Z𝑛

𝑞 (standard order).
𝜓 is a primitive 2𝑛-th root of unity in Z𝑞

Ψ𝑟𝑒𝑣 is a vector in Z𝑛
𝑞 with powers of 𝜓 (bit-reversed order).

Ensure:
𝑎 is the NTT of its initial content (bit-reversed order).

1: 𝑡 = 𝑛
2: for 𝑚← 1; 𝑚 < 𝑛; 𝑚← 2 ·𝑚 do
3: 𝑡 = 𝑡/2
4: for 𝑖← 0; 𝑖 < 𝑚; 𝑖← 𝑖+ 1 do
5: 𝑠 = Ψ𝑟𝑒𝑣[𝑚+ 𝑖]
6: for 𝑗 ← 2𝑖 · 𝑡; 𝑗 < 2𝑖 · 𝑡+ 𝑡 ; 𝑗 ← 𝑗 + 1 do
7: 𝑒 = 𝑎[𝑗]
8: 𝑜 = 𝑎[𝑗 + 𝑡] · 𝑆
9: 𝑎[𝑗] = (𝑒+ 𝑜) mod 𝑞

10: 𝑎[𝑗 + 𝑡] = (𝑒− 𝑜) mod 𝑞
11: end for
12: end for
13: end for

and reason about the effect of evaluating it on a point. If we have sequence 𝑎 ∈ Z𝑛
𝑞 and

point 𝑥 ∈ Z𝑞, then the evaluation 𝑎(𝑥) can be written as:
𝑛−1∑︁
𝑗=0

𝑎[𝑗] · 𝑥𝑗

Let 𝜔 be the primitive 𝑛-th root of unity in the ring Z𝑞. The NTT algorithm evaluates the
polynomial 𝑎 at the points 𝜔0, 𝜔1..𝜔𝑛−1. More formally:

NTT(𝑎)[𝑖] =
𝑛−1∑︁
𝑗=0

𝑎[𝑗]𝜔𝑖𝑗

The CT butterfly optimization uses the fact that polynomial evaluation can be split into
the evaluation of the terms corresponding to even and odd powers. Let the corresponding
coefficients be 𝑎𝑒 and 𝑎𝑜, then we can rewrite 𝑎(𝑥) as 𝑎𝑒(𝑥2) + 𝑥 · 𝑎𝑜(𝑥2). This reduces the
problem to to evaluating the polynomials 𝑎𝑒 and 𝑎𝑜 on the points 𝜔0, 𝜔2..𝜔2(𝑛−1). Since 𝜔 is
a primitive 𝑛-th root, the list now only contains 𝑛

2 distinct points. Applying this recursively
produces the 𝑂(𝑁 log𝑁) running time.

For additional efficiency, Alg. 2 is an iterative and in-place version of the CT butterfly.
The loop over 𝑚 that starts on Line 2 corresponds to the size of the polynomial, which
doubles at each level. The loops over 𝑖 and 𝑗 combine the evaluations of the smaller
polynomials.
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Assembly Implementations. Having dealt with the complex mathematical reasoning
in our abstract implementation, our concrete Falcon implementations focus on proving that
they faithfully execute the operations dictated by the abstract implementation. Of the three
implementations, the OTBN one is the simplest, since we were able to implement Falcon’s
many additions and subtractions modulo 𝑞 by simply loading 𝑞 into OTBN’s dedicated
modulus register and then invoking OTBN’s modular addition and subtraction instructions.

add a1, a1, a0 ; sum up a0 and a1

sltu a0, a1, a0 ; if the sum is less than a0, set a0

Listing 5.14: RISC-V Extract Carry Bit

Implementing these operations on the MSP430 and RISC-V involves some non-trivial bit
manipulation. For example, on RISC-V the carry bit can be extracted through conditional
branches, but Lst. 5.14 is more efficient.

CLR R10 ; clear R10

SUBC R10, R10 ; subtract with overflow flag

; R10 is either 0x0000 or 0xFFFF

AND 12289, R10 ; R10 is conditionally set to Q

Listing 5.15: MSP430 Set on Overflow

Lst. 5.15 shows an example for MSP430. Without using branches, the code conditionally
sets R10 to 12289 (the modulus 𝑞) based on the overflow flag.

Tab. 5.3 presents the lines of code developed for our RSA and Falcon implementations.
The specification and the generic implementation are the per-algorithm one-time cost.
We note that the generic implementation for RSA is much shorter than Falcon’s, largely
due to the Dafny standard library’s support for big-integer reasoning. For the concrete
implementations, the Vale code embeds the concrete assembly while the Dafny code measures
the additional platform-specific lemmas needed. The generic code reduces the proof burden
for RSA by ∼30% for and for Falcon by more than 60% (RSA has a lower ratio due
to its heavy use of our standard library). In our initial verification efforts, we verified
implementations of RSA for the OTBN and RISC-V using traditional monolithic techniques
from prior work [11, 24, 55]. Motivated by the duplication across these implementations,
we then developed the Galápagos framework and used it to refactor the code. This reduced
the developer-written platform-specific code by 28% for OTBN and 29% for RISC-V. We
further leveraged the framework to both specify the MSP430 and add a custom RSA
implementation, in approximately one week of developer effort.

5.3.3 Meeting the High Performance Requirements

We evaluate the performance of our verified RISC-V and MSP430 implementations on
physical development boards, comparing their cycle counts against unverified baselines.
For RISC-V, we use SiFive’s HiFive1 Rev B, featuring the Freedom E310 microcontroller,
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RSA Falcon
Dafny Vale savings Dafny Vale savings

Spec 58 - - 440 - -
Generic 963 - - 5,280 - -
MSP430 32 1,757 34% 290 2,945 62%
RISC-V 446 1,824 29% 543 2,654 62%
OTBN 339 2,103 28% 163 2,641 65%

Table 5.3: Simplifying the Algorithmic Refinement with Galápagos.

running at its default clock speed of 16 MHz. For MSP430, we utilize a Texas Instruments
LaunchPad equipped with the MSP430FR2476 microcontroller, configured to operate at 8
MHz.

As OpenTitan chips were still undergoing their initial production run during this work,
we rely on OpenTitan’s cycle-accurate simulator [128] to evaluate the performance of our
OTBN implementation.

Unverified Baselines. For RSA, prior to our work, the OpenTitan team developed
a hand-written assembly implementation for OTBN and used a C compiler (configured
to optimize for size) to generate code for RISC-V. Similarly, we used a C compiler to
produce the MSP430 implementation. These three implementations serve as the unverified
RSA baselines. For Falcon, while a pre-existing C implementation [86] exists, there are no
optimized assembly implementations for the hardware platforms we target. Consequently,
we rely on a C compiler to generate unverified baselines for RISC-V and MSP430. Since
no unverified baseline exists for OTBN, we developed our verified implementation from
scratch.

MSP430 RISC-V OTBN
RSA
Baseline 144,998,445 9,355,922 160,814
Verified 142,870,737 9,454,635 160,664

% Change -1.47% +1.05% 0%
Falcon
Baseline 2,810,513 846,946 -
Verified 2,015,556 846,926 256,796

% Change -28.3% 0% -

Table 5.4: Performance of Verified Implementations.

Tab. 5.4 shows the cycle counts for our verified implementations and their unverified
baselines. We find that our verified implementations typically perform within ±2% of
their respective baseline. Our verified Falcon implementation for the MSP430, however, is
considerably faster than its compiled baseline. We believe this is due to the fact that we
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came up with a much more efficient register allocation than the compiler.

5.4 Work Status and Personal Contribution

Galápagos was published at CCS’23 [174]. I was the lead author of the paper, where I
did most of the paper writing, experimented with multiple iterations of the Galápagos
framework, and implemented most of the case studies. In particular, as simple as Alg. 2
might look, the NTT functor was one of the hardest thing I had to prove correct. I ended
up using a Python script to empirically “guess-and-check” the invariants for the nested
loops, one level at a time. I am still not sure if I completely understand the bit-reversal
ordering, but I was able to prove the algorithmic description correct using Dafny.

My advisor Bryan Parno worked on the implementation of the verified functors, which
I did not contribute to. Sydney Gibson contributed to some of the case studies for RSA.
Sarah Cai and Menucha Winchell were the main contributors to the Dafny standard library,
when Sydney Gibson and I were their mentors for their summer internship at CMU.
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Chapter 6

Stabilizing Proofs

Proof instability is a phenomenon where trivial changes to source code may lead to spurious
verification failures. In our earlier discussion (Sec. 2.3.2), we highlighted how instability
presents a unique challenge to APV, significantly limiting the scalability of verification.
In this chapter, we discuss our line of work to measure, understand, mitigate, and repair
instability in APV.

While the program verification community has recognized the issue of instability [52, 79,
96], there is no methodical way to detect it, let alone to mitigate or repair it. In the SMT
community, SMT-COMP [13], the annual competition for SMT solvers, does not include
categories to deter instability. Possibly as a result, the stability of some APV projects
actually deteriorates with solver upgrades (Sec. 6.1.4).

We therefore start with a systematic study of the instability phenomenon in Sec. 6.1.
informing both the APV and SMT communities with empirical data and statistical analysis.
In Sec. 6.1, we introduce Mariposa, a tool to detect instability in APV queries. We detail
our methodology, including our mutation-based tests in Sec. 6.1.1, metrics of instability in
Sec. 6.1.2, and taxonomy of stability status in Sec. 6.1.3. We then shed light on the current
ecosystem with experimentation over a substantial number of APV projects in Sec. 6.1.4.

In Sec. 6.2, we present our work on instability mitigation with Shake, a context-pruning
technique we apply at SMT preprocessing. In Sec. 6.2.1, we leverage Mariposa for controlled
experiments, and we find that irrelevant query context is a major cause of instability.
In Sec. 6.2.2, we present a theorem-proving view on APV queries, decomposing a query
into a verification goal and a set of supporting axioms. In Sec. 6.2.3, we leverage this
theorem-proving perspective in the design of Shake, which reduces the number of irrelevant
axioms in the context to improve stability.

In Sec. 6.3, we present Cazamariposas, a tool to repair instability. Cazamariposas goes
a step further than Shake, pinpointing the specific axioms causing instability, while also
providing a repair strategy to stabilize the query. In Sec. 6.3.1, we discuss our methodology
to test the stability impact of each axiom individually, leveraging the solver-produced proof
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logs. In Sec. 6.3.2, Sec. 6.3.3, and Sec. 6.3.4, we discuss our methodology to effectively triage
the axioms using novel proof and trace mining techniques, so that we put the most likely
suspects under investigation, and we can identify the problematic axioms with minimal
overhead.

6.1 Measuring Instability with Mariposa

In this section, we outline our methodology to detect and measure proof instability in
Mariposa, which we then leverage to understand the state of the ecosystem.

For a given query-solver pair (Φ, s), Mariposa answers two conceptual questions: (1) Is
Φ stable under s? and (2) How stable or unstable is it? Intuitively, instability means that
the performance of s diverges when Φ undergoes seemingly-irrelevant mutations. Following
the intuition, we describe the mutations in Mariposa and the rationales behind them in
Sec. 6.1.1. We introduce metrics to quantify the stability/instability in Sec. 6.1.2. We then
categorize the stability status of (Φ, s) in Sec. 6.1.3 based on the metrics.

6.1.1 Mutating the Input Query

In Mariposa, we focus on query mutations that not only preserve the semantic meaning,
but also maintain syntactic structure. Here we give the (informal) definitions with respect
to an original query Φ and its mutant Φ′.

• Semantic Equivalence. Φ and Φ′ are semantically equivalent when there is a
bijection between the set of proofs for Φ and the set of proofs for Φ′. In other words,
a proof of Φ can be transformed into a proof of Φ′, and vice versa.

• Syntactic Isomorphism. Φ and Φ′ are syntactically isomorphic when there is a
bijection between the symbols (e.g, functions and sorts), as well as the commands
(e.g., assertions). In other words, each symbol or command in Φ has a counterpart in
Φ′, and vice versa.

Given the definitions, it should be reasonable to expect that Φ and Φ′ have similar
performance on the same solver s. For our experiments, we are interested in mutation that
also corresponds to common developer practices. Specifically, we consider the following
three methods:

• Assertion Shuffling. It is common to reorder source-level procedures, which roughly
corresponds to shuffling the order of commands in the generated SMT query.

• Symbol Renaming. It a common practice to rename source-level procedures, types,
or variables, which roughly corresponds to SMT-level 𝛼-renaming.

• RNG Reseeding. SMT solvers optionally take as input a random seed, which
influences some of the internal non-deterministic choices. The seed has no effect on
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the query’s semantics but is known to affect the solver’s performance1.

Conceptually, when we apply a mutation method to a query Φ in an exhaustive manner,
we obtain a set of mutants MΦ. Consider assertion shuffling as an example. If Φ contains
100 assertions, then MΦ would have 100! ≊ 9× 10157 permutations of Φ, including Φ itself.

6.1.2 Quantifying the (In)Stability

Intuitively, whether a query-solver pair (Φ, s) is stable depends on how s performs on MΦ.
We thus introduce two metrics to quantify the degree of instability/stability of (Φ, s) based
on the performance of s on MΦ.

Metric: Mutant Success Rate. We denote the metric with 𝑟Φ,s, which is the ratio
of the number of mutants that s can prove in MΦ. That is, we do not take into account
the type of failure (i.e., unknown and timeout), or how long it takes to prove a mutant.
Intuitively, the ratio reflects the consistency of verification results (and only results) from
s. Therefore, a low value of 𝑟Φ,s indicates consistent verification failures; a high value of
𝑟Φ,s indicates consistent verification successes; and a value of 𝑟Φ,s in between indicates
instability.

Metric: Mutant Time Deviation. We denote the metric as 𝜎Φ, which is the
standard deviation of the response time of s over MΦ. The metric reflects the variation
in the verification time (regardless of the result) from s. Intuitively, a large value of 𝜎Φ,s
means the developer cannot expect a consistent response time from s, which is generally
undesirable.

We note that consistency here does not mean the same as consistency in a logical system.
Due to the undecidable nature of the underlying logic, it may be perfectly reasonable for a
solver to return different results (e.g., unsat, unknown, or timeout) on different members
of MΦ. However, returning unsat and sat on different members of MΦ would be logically
inconsistent. Fortunately, we never encounter such cases in our experiments.

We mainly use 𝑟Φ,s to characterize the stability of (Φ, s), and we use 𝜎Φ,s to complement
the analysis only when 𝑟Φ,s is high. In this way, we prioritize the consistency of the
verification outputs over that of the response times. Meanwhile, when 𝑟Φ,s is high (i.e., the
verification outputs are consistent), the larger 𝜎Φ is, the less stable (Φ, s) actually is.

1Historically, some verification tools have attempted to use reseeding to measure instability. For example,
F⋆ have options to run the same query multiple times with different random seeds and report the number
of failures encountered. Dafny has recently started to perform shuffling and renaming, where its option has
changed from randomSeedIterations to randomizeVcIterations.
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6.1.3 Determining the Stability Status

We further introduce four stability categories, following the intuition behind the success
rate 𝑟Φ,s. To simplify the discussion, we first assume that MΦ is generated by a single
mutation method, and then discuss how to combine results from multiple mutations. We
include two parameters to the scheme: 𝑟sol and 𝑟stb, which correspond respectively to the
lower and upper bounds of the success rate range for unstable queries.

Category Interval Description
unsolvable [0, 𝑟sol) s fails to prove most mutants of Φ
unstable [𝑟sol , 𝑟stb] s fails to consistently prove mutants of Φ
stable (𝑟stb, 1] s consistently prove mutants of Φ

inconclusive N/A no statistical significance

Table 6.1: Mariposa Stability Categories

6.1.3.1 Sampling the Mutants

In practice, it is often intractable to enumerate all members of MΦ (recall the 100! mutants
from our shuffling example), so the true value of 𝑟Φ,s is generally unknown. Therefore we
resort to statistical tests to estimate 𝑟Φ,s from a sample set of mutants M̂Φ ⊆ MΦ. We use
^𝑟Φ,s to denote the observed sample success rate.

Since we are estimating population proportions, the Z-test [58] is a natural choice. The
Z-test is a statistical test that determines whether the proportion of a sample is significantly
different from a hypothesized proportion. The test is parameterized by the 𝛼 value, which
specifies confidence in the judgment. We use an 𝛼 = 0.05 (i.e., 95% confidence), which is a
standard choice.

Fig. 6.1 shows our proposed workflow for categorizing the stability of a query-solver
pair. For a statistical test (shown as a trapezium shape), if we reject the null hypothesis
(𝐻0), there is enough confidence to conclude that the alternative hypothesis (𝐻𝐴) is true.
For example, in the Instability Test, if we reject 𝐻0, we are 95% sure that 𝐻𝐴 is true,
i.e., 𝑟Φ,s < 𝑟stb. However, failing to reject 𝐻0 simply means the result is not statistically
significant. That is, failing the Instability Test does not imply stability. Hence, we test
again using the opposite hypothesis. If the test is still not significant, we do not have a
conclusive result.

6.1.3.2 Accounting for Timeouts

Since there is no guarantee that a solver will terminate, we impose a time limit 𝑇lim on all
of our experiments. We note that solvers can also bound the execution with a resource
limit (rlimit) instead of a time limit, in an effort to make results more consistent across
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(Φ, s)

Solvability Test
𝐻0 : 𝑟Φ,s ≥ 𝑟sol
𝐻𝐴 : 𝑟Φ,s < 𝑟sol

Instability Test
𝐻0 : 𝑟Φ,s ≥ 𝑟stb
𝐻𝐴 : 𝑟Φ,s < 𝑟stb

Stability Test
𝐻0 : 𝑟Φ,s < 𝑟stb
𝐻𝐴 : 𝑟Φ,s ≥ 𝑟stb

Tolerance Test
𝑇 ≥ 𝜔 · 𝑇lim

unsolvable

unstable

stableinconclusive

estimate 𝑟Φ,s from M̂Φ

low confidence

low confidence

low confidence

reject 𝐻0

reject 𝐻0

reject 𝐻0

noyes

Figure 6.1: Mariposa Categorization Flowchart
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different computing platforms. However, the resource tracking often counts only some of
the resources used (e.g., it may ignore the resources spent inside a theory solver). Further,
there is no guarantee of consistency across solver versions, let alone across different solvers.
Hence, Mariposa uses execution time as a more universal measure.

Mariposa considers a mutant that times out a verification failure. However, when the
expected response time of MΦ is close to the time limit, small deviations in the response
time can push some mutants into failure. This might give a false impression of instability,
while in reality the solver behaves stably given enough time.

To address this issue, we further parameterize the scheme with a tolerance factor 𝜔
between 0 and 1. When Mariposa observes mixed results in M̂Φ, it estimates the expected
response time for MΦ, using the mean response time of successful samples, denoted as 𝑇 .
If the latter is close to the time limit, i.e., 𝑇 ≥ 𝜔 · 𝑇lim, the failures may be due to an
insufficient 𝑇lim. In that case, we take a conservative approach and do not label (Φ, s) as
unstable. Fig. 6.1 shows the tolerance test in the workflow.

6.1.3.3 Accounting for Different Mutations

We have based our discussion so far on a single mutation method. In our experiment, we
apply shuffling, renaming, and reseeding, each outputs a stability category. We use the
following procedure to combine the results.

1. If the results are unanimously inconclusive, output inconclusive.
2. Remove inconclusive results. If the rest are unanimously 𝑋, output 𝑋.
3. Otherwise output unstable.

We note that if the mutation methods disagree on the categories, the procedure returns
unstable. For example, if shuffling outputs stable, but reseeding outputs unsolvable,
then the final result is unstable. In Sec. 6.1.4 we show how mutation methods differ in
their ability to detect instability.

6.1.4 Characterizing the Ecosystem

We materialize our methodology in the Mariposa tool, which we then leverage in large-scale
empirical studies to characterize the state of (in)stability. Here we first introduce the query
benchmarks we curated and the general experiment setup. We then discuss the results that
directly reflect upon the ecosystem, which also serves as the baseline for our later work on
mitigation and repair. We defer further controlled experiments using Mariposa to Sec. 6.2
and Sec. 6.3.
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6.1.4.1 Query Benchmarks

We select existing system verification projects in the literature as our benchmarks. We
generally follow these guidelines with respect to the selection: (1) The source code of the
project is publicly available, so that the queries and experiments can be reproduced. (2)
The project required substantial effort, so that the queries are representative of real-world
use cases. (3) The work (or its non-verified baseline) has been published at a peer-reviewed
venue, so that the results are likely to be of interest to the community.

We have curated two benchmark suites: the Mariposa Bench and the Verus Bench. We
introduced the Mariposa Bench in 2023, with a focus on system verification efforts using F⋆

or Dafny, comprising six projects.
• DICE⋆

𝐹 [155] is an implementation of the DICE boot protocol [105] using F⋆.
• Komodo𝐷 [59] is a security hypervisor written in Dafny.
• Komodo𝑆 [122] is a re-implementation of Komodo𝐷 using Serval.
• VeriBetrKV𝐷 [72] is a key-value store written in Dafny.
• VeriBetrKV𝐿 [100] is a re-implementation of VeriBetrKV𝐷.
• vWasm𝐹 [26] is an implementation of a WebAssembly [70] compiler using F⋆.

While Mariposa Bench is by no means an exhaustive collection of APV queries, it is the
first benchmark of the kind. We also decided to include legacy projects even if they are no
longer maintained, (e.g., Komodo𝐷 is ∼8 years old), so that we can study the longitudinal
evolution of the ecosystem.

After our initial stability study in 2023, the Verus language ecosystem gradually matured.
We subsequently curated the Verus Bench in 2025, where we included more recently-
developed Verus-based projects.

• Atmosphere [34] is a full-featured microkernel.
• Anvil [152] is a tool for verifying Kubernetes controllers. The work includes three

verified controllers: ZooKeeper, RabbitMQ, and FluentBit.
• IornKV𝑉 [159] is a re-implementation of the IronFleet [78] distributed key-value store.
• Splinter𝑉 [163] is an implementation of the SplinterDB [38] key-value store.
• VerusMimalloc [160] is a concurrent memory allocator.
• VerusNR [161] is a concurrent NUMA-aware node-replication library [32].
• VerusStorage [164] is a storage system targeting persistent memory devices.
• VerusPT [162] is an implementation of the page table in NrOS [19].
• Verismo [176] is a security module for confidential VMs.

We summarize the source-program line counts and SMT query counts in Tab. 6.2. For
the ease of analysis, we have slightly modified the project names, distinguishing alternative
implementations of the same underlying system.

It is worth noting that we used slightly different configurations for the two benchmarks
in the experiments. Specifically, we set a 60-second timeout for Mariposa Bench, but
we use a 10-second timeout for Verus Bench. Our choices are consistent with the build
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Project Source Queries

DICE⋆
𝐹 ∼24.7 kLoc 1,536

Komodo𝐷 ∼25.8 kLoc 2,054
Komodo𝑆 ∼3.7 kLoc 773
VeriBetrKV𝐷 ∼44.7 kLoc 5,325
VeriBetrKV𝐿 ∼49.0 kLoc 5,600
vWasm𝐹 ∼14.8 kLoc 1,755
Total - 17,043

Project Source Queries

Atmosphere ∼18.4 kLoc 331
Anvil ∼30.2 kLoc 1,808
IronKV𝑉 ∼7.6 kLoc 363
Splinter𝑉 ∼25.8 kLoc 1,215
VerusMimalloc ∼17.1 kLoc 725
VerusNR ∼6.3 kLoc 254
VerusStorage ∼4.9 kLoc 396
VerusPT ∼6.8 kLoc 338
Verismo ∼22.5 kLoc 2,126
Total - 7,256

Table 6.2: Projects in Mariposa/Verus Bench

configuration of the projects. Verus-based projects in general are expected to have fast
verification turnaround time, which is one of the design goals of the Verus language. We
now discuss the experiment setup in more detail.

6.1.4.2 Experiment Setup

Machine Specification. We ran all the experiments on the same machine cluster, each
with an Intel Core i9-9900K (max 5.00 GHz) CPU, 128 GB of RAM, and the Ubuntu
20.04.3 LTS operating system. While there are 16 hyper-threads available on each machine,
we limited the number of threads to 7 to avoid overloading the CPU or causing excessive
cache misses.

Mariposa Configuration. Configuring Mariposa is slightly non-trivial. The parameters
offers a trade-off between computational resources and statistical confidence. Collectively,
the sample size ‖M̂Φ‖, the thresholds (𝑟sol , 𝑟stb), and observed success rate ^𝑟Φ,s determine the
significance (i.e., the 𝑝-value) of a hypothesis test. Specifically, we can claim a statistically
significant result only if 𝑝 < 𝛼, To simplify the discussion, we set 𝛼 = 0.05, which is fairly
standard in the literature.

We have to balance the following considerations:
• We need to set reasonable thresholds so the result meaningfully reflects stability

status. For example, 𝑟stb = 60% is an overly generous threshold for stable queries.
An observed ^𝑟Φ,s = 70% may exceed 𝑟stb in a statistical sense, but most developers
would disagree that Φ is stable.

• We need to sample sufficiently large M̂Φ to avoid excessive number of inconclusive
results. For example, suppose we set 𝑟stb = 95% and ‖M̂Φ‖ = 3. Even if we observe
^𝑟Φ,s = 100%, we cannot conclude stable, because 𝑝 ≈ 0.34555 is much larger than 𝛼.

• We also need to budget ‖M̂Φ‖ and 𝑇lim so that the experiments finish in a reasonable
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amount of time. Larger ‖M̂Φ‖ means more mutants to run per original query. Larger
𝑇lim means potentially more time spent per mutant. Given that our original query
count (24,599) is non-trivial, we need to be careful about these two multipliers.

We resolve the configuration problem with a sanity-check scenario for the Solvability
Test. Specifically, when the observed success rate ^𝑟Φ,s = 0% (i.e., all sample mutants failed),
we should have enough confidence to conclude unsolvable.

Suppose we set 𝑟sol = 1%, we need at least ‖M̂Φ‖ = 268 to draw such a conclusion
(𝑝 ≈ 0.04995). Assuming no machine crashes or disruptions (which happens more often
than one might expect), this roughly translates to a few weeks (wall-clock) turnaround
time for a particular solver s over the whole Mariposa Bench using our infrastructure. This
is less than ideal, since we also had plans to experiment with multiple solvers.

On the other hand, if we were to relax 𝑟sol = 5%, ‖M̂Φ‖ = 60 is more than enough
to conclude (𝑝 ≈ 0.03778). This reduces the turnaround time to a week or so, which is
acceptable for our purpose. Due to the symmetry, if we set 𝑟stb = 95%, ‖M̂Φ‖ = 60 is more
than enough to conclude stable when the observed success rate is 100% (i.e., all sample
mutants passed).

Parameter Value Description
𝛼 0.05 Significance level for statistical tests
𝑟sol 0.05 Minimum success rate threshold
𝑟stb 0.95 Minimum stability rate threshold
‖M̂Φ‖ 60 Sample size for each mutation method
𝑇lim 60 (seconds) Time limit for each mutant
𝜔 0.8 Tolerance factor for performance variability

Table 6.3: Default Mariposa Configuration

We summarize our default configuration of the Mariposa tool in Tab. 6.3, with the
threshold settings 𝑟sol = 5% and 𝑟stb = 95%, and a sample size of ‖M̂Φ‖ = 60 for each
mutation method (since we have 3 mutation methods, the total number of mutants per
original query is 180). As we mentioned previously, for the Verus Bench, we adopt a more
aggressive time limit of 𝑇lim = 10 seconds.

Solver Selection. For most of our experiments, we focus on the Z3 SMT solver [47], which
all of our experiment projects were developed with, except for Komodo𝑆, which used both
Z3 and CVC4 [12]. While we provide some results on cvc5 in Sec. 6.2, we had initially
planned to experiment with cvc5 more extensively.

Unfortunately, our preliminary experiments showed that the current APV ecosystem
is over-fitted to Z3. An out-of-the-box cvc5 solver cannot parse any queries emitted from
Dafny or F⋆. Due various bits of Z3-specific syntax and features these tools rely on, the
resulting queries are not strictly SMT-LIB compliant.

After we converted the queries into standard SMT-LIB format, cvc5 could only solve
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∼14% of the queries in Komodo𝐷. We consulted with the cvc5 developers for option tuning
and tried cvc5’s automated configuration script for SMT-COMP, but it did not significantly
improve the number of queries solved.

6.1.4.3 Recent Sanpshots

We first report the stability of both benchmarks on a recent version of Z3. As we show in
Tab. 6.4, the amount of instability is generally small, but non-trivial nonetheless.

Project Unstable Queries
Z3 4.12.5

DICE⋆
𝐹 20 (1.30%)

Komodo𝐷 93 (4.53%)
Komodo𝑆 4 (0.52%)
VeriBetrKV𝐷 172 (3.23%)
VeriBetrKV𝐿 256 (4.57%)
vWasm𝐹 4 (0.23%)

Project Unstable Queries
Z3 4.12.5

Atmosphere 1 (0.30%)
Anvil 20 (1.11%)
IronKV𝑉 0 (0.00%)
Splinter𝑉 2 (0.16%)
VerusMimalloc 7 (0.97%)
VerusNR 2 (0.79%)
VerusStorage 22 (5.56%)
VerusPT 2 (0.59%)
Verismo 13 (0.61%)

Table 6.4: Recent Snapshot of Instability Status

6.1.4.4 Longitudinal Results.

We are also interested in the historical status of stability in the APV ecosystem. Since the
Verus Bench is relatively new, we perform this part of the study on the Mariposa Bench.
In our Mariposa work (2023), we tested eight (now) legacy versions of Z3, with the earliest
dating back to 2015. In particular, for each project we have included its artifact solver,
which is the version used in the project’s official artifact.

We organize our experimental results around a series of research questions (RQs). We
present the results from a subset of projects here and defer the rest to the appendix.

RQ1. Do Solver Upgrades Improve Stability?

In Fig. 6.2, each stacked bar shows the proportions of categories in a project-solver pair.
From bottom to top, each stacked bar shows the proportions of unsolvable (lightly shaded),
unstable (deeply shaded), and inconclusive (uncolored) queries. The remaining portion
of the queries (stacking each bar to 100%), not shown, are stable. The artifact solver for
each project is marked with a star (⋆). In all project-solver pairs, the majority of queries
are stable. However, a non-trivial amount of instability persists as well.
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Figure 6.2: Longitudinal Evolution of Stability Status

We observe different trends in each project as newer solver versions are used. The
unstable proportion of vWasm𝐹 and Komodo𝑆 remain consistently small across the tested
solver versions. On the other hand, we observe signs of projects that “overfit” to their
artifact solver, in that they become less stable with solver upgrades.

Specifically, all of the Dafny-based projects in our study show more instability in newer
Z3 versions, with a noticeable gap between Z3 4.8.5 and Z3 4.8.8. The difference in the
stability performance is perhaps expected, as these projects were all developed using (now)
outdated Z3 solver versions. As of the time of writing, F⋆ continues to use Z3 4.8.5, which is
approximately four years old, while Dafny only transitioned away from that version earlier
this year.

Commit Bisection. We perform further experiments to narrow down the Z3 git
commits that may have caused the increase in instability. In the six experiment projects,
285 queries are stable under Z3 4.8.5 but unstable under Z3 4.8.8. For each query in this
set, we run git bisect (which calls Mariposa) to find the commit to blame, i.e., where
the query first becomes unstable.

Tab. 6.5 shows the the bisection results for the 285 queries. Note git bisect might not
be able to find a unique commit to blame. For example, when the binary search narrows
the problem down to a region where commits do not compile, all commits in that region are
potentially to blame. We indicate such cases as N/A in the table. There are a total of 1,453
commits between the two versions, among which we identify two commits that have the
most impact. Out of the 285 queries, 115 (40%) are blamed on commit 5177cc4. Another
77 (27%) of the queries are blamed on 1e770af. The remaining queries are dispersed across
the other commits.

These two most significant commits are small and localized: 5177cc4 has 2 changed
files with 8 additions and 2 deletions; 1e770af has only 1 changed file with 18 additions
and 3 deletions. Both commits are related to the order of flattened disjunctions. 1e770af,
the earlier of the two, sorts the disjunctions, while 5177cc4 adds a new term ordering for
ASTs, which it uses to replace the previous sorting order of disjunctions.
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Hash Blames Commit Message

5177cc4 115 change lt

1e770af 77 local sort

db87f2a 16 separate rewriter...

ff6b330 12 remove incorrect ...

7f073a0 7 fix #2452 fix #...

8b23a17 3 move flatten func...

c70e9af 3 fix #3734

dd452e0 3 eq

762f265 3 merge with master

001ddef 3 fix #2749

3774d6d 2 fix #2890

3ef05ce 2 tuning

80994f7 1 redirect to the n...

d23230e 1 fix declaration s...

e5dffea 1 fix #2365

ad55a1f 1 Update release.ym...

06ee09a 1 Update README.md

38ad66c 1 update hash #257...

9cccfb9 1 Take one on addin...

ba40a57 1 better branching ...

1e92165 1 branch selection ...

bba2cf9 1 fix #3163

2a1f8ac 1 revert normalizin...

N/A 28
Total 285

Table 6.5: Regression Bisecting Z3 Commits

86



Coincidentally, when we contacted the Z3 developers, they were investigating regressions
in F⋆ query success, and they identified the same two commits as having the most significant
impact. Their fix is now merged into Z3’s main branch.

RQ2. Do Projects Differ in Stability?

Komodo𝐷 vs. Komodo𝑆. The original Komodo𝐷 is a security hypervisor written
in Dafny, which often generates undecidable queries. Komodo𝑆 is a re-implementation
of Komodo𝐷 using Serval, which requires developers to work within a decidable of FOL.
For example, recursive functions and loops must be statically bounded. The goal is for
developers to write fewer proofs, but one might also conjecture that using a simpler logic
would lead to greater query stability.

The unstable proportion of both projects is small using their artifact solvers. However,
Komodo𝐷 shows a significant increase in instability using newer versions of Z3, while
Komodo𝑆 remains stable. Note that Komodo𝑆 implements a subset of the features in
Komodo𝐷. If we exclude the attestation-related queries from Komodo𝐷, which are not
present in Komodo𝑆, the unstable proportion of Komodo𝐷 is reduced to 4.27% (from
5.01%) using Z3 4.12.1. The proportion is still much higher than Komodo𝑆’s (0.52%). The
gap may be attributable to other differences in features and proof goals, but it may also
indicate that restricting queries to a decidable logic (as Komodo𝑆 does) improves stability.

VeriBetrKV𝐿 vs. VeriBetrKV𝐷. As we discussed in Sec. 3.1.3, the two systems
adopts different approaches to heap reasoning, where verification performance improves
with linear types. However, the does not appear to generalize to stability: VeriBetrKV𝐿 is
only slightly more stable than VeriBetrKV𝐷 when using their artifact solvers, and both
suffer similar stability regressions on later solvers.

vWasm𝐹 vs. the rest. We notice that vWasm𝐹 is remarkably stable: the unstable

proportion is almost negligible across all solver versions. Unlike Serval, F⋆ is not limited
to decidable logic, which makes the stability of vWasm𝐹 somewhat surprising. Since two
authors of vWasm𝐹 , Jay Bosamiya and Brayn Parno also worked on Mariposa, we get to
document some of their manual engineering effort into stabilizing the the queries including
the following empirically-developed techniques.

Globally, they disable the non-linear arithmetic solver (anecdotally prone to instability),
reduce F⋆’s fuel/ifuel settings (which control unrolling of recursive functions and inductive
data types), and minimize the use of ambient lemmas (that tend to bloat solver context).
They also minimize the use of (user-introduced, F⋆-level) quantified formulas, and manually
pick good trigger patterns. Particularly complex proofs necessitated even more drastic
measures: using F⋆ tactic framework to perform manually-controlled normalization of terms
before verification condition generation. They note that neither the original un-normalized
nor the fully-normalized forms were amenable to stable proofs; only the manually controlled
normalization worked.

While few projects can afford this level of manual tuning, these results suggest that the
developers and/or the APV frameworks can potentially shape their queries to minimize or
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control instability.

RQ3. Do Longer Time Limits Mitigate Instability?

As we discussed in Sec. 6.1.3, the choice of time limit 𝑇lim could impact our experimental
results. Indeed, one might expect that unstable queries will eventually turn into stable

ones given large enough time limits. To test this hypothesis, we extended the experiments
using the most recent Z3 (version 4.12.1 as of the time) with a limit of 150s (2.5 × 60s).
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Figure 6.3: Comparison on Time Limit Settings

In Fig. 6.3 we report the proportion of unsolvable and unstable queries for each 𝑇lim
in Komodo𝐷 and VeriBetrKV𝐷. We observe that the unsolvable proportion drops as 𝑇lim
increases. This is expected, as a query might only become solvable with a longer time.

However, the unstable proportion stays remarkably consistent after initial fluctuations.
That is, certain unstable queries remain unstable, even with a longer time limit. To
analyze this further, we report the intersection of unstable queries at 𝑇lim and 𝑇lim + step,
for steps of 10, 30 and 60 seconds. One can interpret a 𝑇lim + step curve as follows: if
some queries are unstable at 𝑇lim, it reports how many of them will remain unstable at
𝑇lim + step.

We observe that for a step of 10s, the difference is small. This means that most unstable
queries remain unstable if given 10 more seconds, which is expected. For a step size of 60s,
the difference is larger but still not significant. In VeriBetrKV𝐷, it has almost no impact
beyond 30s. Therefore, while a longer time limit could help mitigate instability, it is not a
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silver bullet.

RQ4. Do Results from Mutation Methods Overlap?

We covered multiple mutation methods in our study. A natural question is whether these
methods are equally effective in detecting instability.

In Fig. 6.4, we show the unstable proportions identified using each mutation method,
along with the overall unstable proportion. Recall that the latter is a superset of the
individual mutations, as discussed in Sec. 6.1.3. Since the choice of 𝑇lim may also impact
the categorization, we present results for different 𝑇lim as well.
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Figure 6.4: Comparison on Mutation Methods.

Our results indicate that the effectiveness of mutation methods differ. For example, in
Komodo𝐷 and VeriBetrKV𝐷, the unstable proportion is the highest for shuffling, followed
by renaming, then reseeding, regardless of 𝑇lim. In fact, of the unstable queries in
Komodo𝐷 at 60s, 36.9% are uniquely identified by shuffling, 6.8% by renaming, and 3.9%
by reseeding.

RQ5. How Stable are Stable Queries?

In Sec. 6.1.2, we introduced the metric Mutant Time Deviation, where a large ^𝜎Φ,s
indicates less actual stability, even if mutants consistently succeed. Fig. 6.5 shows the
distribution of ^𝜎Φ,s in the stable queries, which are mostly less than 1s, but there are
exceptions exceeding 10s, which is significant given the 60s limit. Mutation methods also
differ in their impact.

RQ6. Is the Original Query Special?

In our methodology, we treat the original query as a member of the mutant set. It might
be reasonable to ask how does the original query differ from its mutants in terms of
performance.

In Fig. 6.6, we compare the verification time of the original query against the median of
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its mutants, using the data from our extended time limit experiment. In Komodo𝐷, which
has the highest unstable proportion among the six projects, the run time of the original
and its mutants are generally within ±50% of each other. In vWasm𝐹 , where the unstable

proportion is the lowest, the two have nearly identical performance.

6.2 Mitigating Instability with Shake

Mariposa provides a systematic way to measure instability, which brings us a step closer to
addressing the challenge. In this section, we investigate the irrelevant query context as a
cause of instability, and discuss context pruning as a mitigation strategy.

In Sec. 6.2.1, we further leverage our Mariposa tool and benchmarks, conducting a
large-scale controlled experiment on the unsatisfiable core. We find that typically ≥ 96.23%
of the query context is irrelevant, while accounting for ∼78.3% of the unstable instances.

Motivated by the findings, in Sec. 6.2.2, we propose a novel SMT context pruning
technique, named Shake, to improve stability. We base Shake on the insight that APV
queries are typically automated theorem proving (ATP) tasks [60], where each query is
composed of a goal assertion along with axiom assertions. Shake triages the relevance of
the axioms with respect to the goal, and prunes the less relevant axioms.

6.2.1 Characterizing the Query Context

In this section, we study the connection between query context and stability. For each
query, we analyze its unsatisfiable core. As we discussed in Sec. 2.4, a given query generally
does not have a unique unsatisfiable core. Te solver can produce one core unsatisfiable
upon reaching an unsat result, Nevertheless, it is a useful approximation of the relevant
assertions.

Briefly reviewing our notations: for a query Φ = ⋀︀𝑛
𝑖=0 𝜓𝑖, we use ΓΦ = {𝜓0, ..., 𝜓𝑛} to

denote the set of assertions in the context, and we use Φ𝐶 to denote some unsatisfiable core
of Φ, where ΓΦ𝐶

⊆ ΓΦ.

6.2.1.1 Exporting the Unsatisfiable Core

In theory, when we run a query Φ on an SMT solver s, we can simply export Φ𝐶 with
the produce-unsat-cores option enabled. In practice, obtaining Φ𝐶 can sometimes be
non-trivial, especially on unstable queries. Though uncommon, two types of problems may
occur, and we document our workarounds here.

Unsuccessful Export. The solver s might not be able to produce a core for a given Φ,
which can be due to several reasons.
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• (Φ, s) is unstable. Specifically, s fails on Φ but succeeds on certain mutants of Φ.
• (Φ, s) behaves differently with core production. Specifically, s may report unsat on

Φ, but returns unknown as soon as we enable core production.
• (Φ, s) is completely unsolvable (regardless of mutations). However, (Φ, s′) might be

solvable, where s′ is a different solver.

When (Φ, s) fails to output a core directly, we perform Mariposa-style mutations to
the Φ, attempting to obtain a core from any of the mutants. We then map the core from
a successful mutant back to a core of Φ. If necessary, we also try the core export using
different versions of the solver.

Incomplete Core. The solver might also produce a Φ𝐶 that is “incomplete”. Specifically,
the solver s might return unsat on the original query and successfully produce a Φ𝐶 ; however,
when given Φ𝐶 as input, s fails to produce unsat, even with mutants of Φ𝐶 . This could
be due to certain assertions that are necessary to the proof but missing in Φ𝐶 . Note that
incompleteness here is not a strictly formal notion, since we do not have a ground truth for
necessity.

When this happens, we apply a best-effort search to repair the core by adding assertions
back to the core query, performing a bisection search to find a small addition of assertions
that make the solver return unsat on the core. In practice, we find incomplete core to
occur more often with F⋆ queries (∼8%), and the core is typically only “missing” a small
number (≤ 5) of assertions.

To summarize, we make a best-effort attempt to find Φ𝐶 , such that ΓΦ𝐶
⊆ ΓΦ and Φ𝐶

is sufficient for some solver s to show unsat. We are successful in these attempts for all
but a small fraction of the original queries. In that remaining fraction, we use the original
Φ as the Φ𝐶 .

6.2.1.2 Quantifying the Context Relevance

After acquiring an unsatisfiable core, we compare its context to the original. Using the
assertion count as a proxy for the “size” of the context, we introduce a metric to quantify
the relevance of the context.

Metric: Relevance Ratio. We define the relevance ratio of a query Φ as the proportion
of the context that is retained in the core:

‖ΓΦ𝐶
‖

‖ΓΦ‖
× 100%

Since ΓΦ𝐶
⊆ ΓΦ, the lower this ratio is, the less context is retained, and the more irrelevant

context the original query has.

Fig. 6.7 shows the CDFs of the relevance ratios for different projects. For example, on
the left side lies the line for DICE⋆

𝐹 . The median relevance ratio (MRR) is 0.06%, meaning
that for a typical query in the project, only 0.06% of the context is relevant. In vWasm𝐹 ,
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Figure 6.7: Original Query Context Relevance

the MRR is 3.76%, which is almost an of order of magnitude higher than the other projects.
We attribute this to the manual context tuning by the authors of vWasm𝐹 , which we
discussed in Sec. 6.1.4. Nevertheless, if we consider the complement of the relevance ratio,
typically 96.23%–99.94% of the context is irrelevant, even considering vWasm𝐹 .

6.2.1.3 Measuring the Stability Impact

Given the significant amount of irrelevant context, we further analyze how that impacts
stability. Here we compare and contrast the Mariposa stability status of the original queries
and their core counterparts. More generally, for an original query Φ and its counterpart
Φ′ = 𝑇 (Φ), where 𝑇 is some mitigation technique, we define the following two metrics to
quantify the stability impact:

Metric: Preservation. Given that Φ is stable, the probability that Φ′ remains stable.

Metric: Mitigation. Given that Φ is unstable, the probability that Φ′ becomes stable.

In this experiment, Φ′ is the the core query of Φ, i.e., Φ′ = Φ𝐶 . We use the Mariposa
tool with Z3 version 4.12.5 in this experiment. In Fig. 6.8, we list the number of original
queries and the scores for solver-produced core queries. As an example, in the original
Komodo𝐷 queries, 1,914 are stable and 93 are unstable. In its core counterpart, 99.4% of
the stable queries remain stable, while 90.3% of the unstable ones become stable. vWasm𝐹

is the only case where the core has no mitigation effect. However, its original queries are
rarely unstable. As we noted previously, vWasm𝐹 also starts with more relevant original
context.

Generally, the solver-produced core is highly likely to preserve originally stable instances.
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Project Original Core
Stable Unstable Preservation Mitigation

DICE⋆
𝐹 1,483 20 99.6% 90.0%

Komodo𝐷 1,914 93 99.4% 90.3%
VeriBetrKV𝐷 4,983 172 99.5% 64.5%
VeriBetrKV𝐿 4,999 256 99.6% 83.6%
vWasm𝐹 1,731 4 99.7% 0.0%

Overall 15,110 545 99.5% 78.3%

Figure 6.8: Stability of Solver-Produced Core

Moreover, across all projects, 78.3% of the unstable instances can be mitigated with the
core. In other words, irrelevant context is a major contributor to instability. This
result suggests a promising mitigation strategy of pruning irrelevant assertions.

6.2.2 Dissecting the Query Context

We now investigate the composition of query context. In Sec. 2.3.1, we offered an overview
of verification condition generation (VCG) in APV. Here we give an intuitive perspective
on the verification query as a theorem-proving task.

As we presented in Sec. 2.4, the standard SMT semantics of Φ is the satisfiability, or
equivalently, the validity of the entailment ΓΦ ⊢ ⊥. If we consider the axioms separately,
ΓΦ ⊢ ⊥ is logically equivalent to ΛΦ ⊢ 𝜃. Intuitively, this is a theorem-proving task, where
ΛΦ is given to establish the verification goal 𝜃.

As we have demonstrated in Sec. 6.2.1.2, a large portion of ΛΦ might be irrelevant towards
𝜃. Intuitively, the VCG should ensure the completeness of ΛΦ, so that it is theoretically
possible to prove 𝜃. Otherwise, there is no way the solver can succeed! Meanwhile, the
minimality of ΛΦ, which is in conflict with completeness to some extent, is a secondary
concern.

Therefore, the SMT solver is implicitly tasked with axiom selection [82], where it needs
to choose a subset of the axioms to prove the goal. Using our notation, we can represent
the axiom selection task as finding ΛΦ* ⊆ ΛΦ such that ΛΦ* ⊢ 𝜃. This effectively creates a
new query Φ*, with the reduced context ΓΦ* = ΛΦ* ∧ ¬𝜃,

Connection to Information Retrieval. It is worth noting that axiom selection has a
strong analogy to information retrieval (IR) [147]. In IR, we are given a set of documents
and a query (e.g., a set of keywords), and the objective is to retrieve a subset of documents
that are most relevant to the query.

With the intuitive connection between information retrieval (IR) and axiom selection,
IR techniques also offer promising avenues for addressing context pruning challenges. For
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instance, in Sec. 6.2.3.3, we demonstrate how the concept of TF-IDF [142] can be adapted
to refine the relevance of axioms. Similarly, in Sec. 6.2.3.4, we explore feedback-driven
mechanisms inspired by IR to enhance the pruning process. These connections underscore
the potential for cross-disciplinary innovation, leveraging IR methodologies to advance
APV’s efficiency and stability.

6.2.3 Approximating the Relevance

In this section, we introduce Shake, a pruning technique APV queries. At a high level,
Shake takes a query as input and computes the distance from each axiom to the goal,
indicating the relevance. More formally, for a query Φ with ΓΦ = {𝜓0, ..., 𝜓𝑛}, assuming
𝜓0 = ¬𝜃 encodes the goal, the output of Shake is a map of distances:

Shake(ΓΦ) = {𝜓0 ↦→ 0, ..., 𝜓𝑛 ↦→ 𝑑𝑛}

where the goal is at 0. Shake then prunes the axioms based on their distances. We first
introduce a naive version of Shake, then progressively improve upon the design.

6.2.3.1 Leveraging Symbol-Based Relevance

In this version of Shake, we abstract a formula 𝜓 via the set of query-defined symbols it
contains, denoted as Symbols(𝜓). More precisely, the symbols are the functions, constants,
and data-types introduced by the query, excluding sorts, local variables, and built-in
SMT-LIB functions: intuitively, ubiquitous functions like < or not do not convey much
information.

Alg. 3 shows the naive Shake algorithm. We first initialize a context symbol set Σctx
from the goal. We then select all axioms 𝜓𝑖 such that Symbols(𝜓𝑖) intersects with Σctx , on
the theory that intersection conveys relevance. After scanning through all axioms in this
round, we augment Σctx with the symbols from the selected axioms. The update is delayed
until the end of the round, so Σctx remains the same during this scan. Otherwise, the scan
order would affect the content of Σctx , introducing a form of instability.

Applying this process repeatedly scores the distance of an axiom 𝜓𝑖 based on the round
in which Symbols(𝜓𝑖) first intersects with Σctx . The outer iteration continues until we
reach a fixed point. When there are unreachable axioms at the end, they are assigned a
distance of round count plus one.

In practice, we find that naive Shake typically terminates after very few iterations,
giving little differentiation between axioms. The problem arises because naive Shake is
too eager in its expansion. Since we use symbol sets to abstract away formulas, a single
complex axiom with a large symbol set can easily saturate Σctx , ending the process quickly.
In light of this problem, we refine the formula abstraction to handle quantified formulas in
a lazy manner.
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Algorithm 3 Naive Shake
procedure NaiveShake(ΓΦ = {𝜓0, ..., 𝜓𝑛})

# assuming 𝜓0 is the goal
Σctx ← Symbols(𝜓0)
dists, round ← {𝜓0 ↦→ 0}, 1
repeat

Σacc ← ∅
for 𝜓𝑖 ∈ {𝜓1, ..., 𝜓𝑛} do

if Σctx ∩ Symbols(𝜓𝑖) ̸= ∅ then
# check if 𝜓𝑖 has been assigned a distance
if 𝜓𝑖 ∈ Unreached(dists,ΓΦ) then

dists ← dists ∪ {𝜓𝑖 ↦→ round}
end if
Σacc ← Σacc ∪ Symbols(𝜓𝑖)

end if
end for
# update the symbol set after considering all 𝜓𝑖

Σctx ← Σacc ∪ Σctx
round ← round + 1

until IsFixedPoint(dists)
round ← round + 1
for 𝜓𝑖 ∈ Unreached(dists,ΓΦ) do

# assign maximum distance to unreachable axioms
dists ← dists ∪ {𝜓𝑖 ↦→ round}

end for
return dists

end procedure
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6.2.3.2 Handling Quantified Axioms

As mentioned in Sec. 2.4, pattern-based quantifier instantiation plays an important role
in APV languages such as Dafny, F⋆, and Verus. In this version of Shake, we use the
available patterns to refine the notion of relevance for the formulas.

We construct a formula state for a given formula 𝜓. We denote this via InitFState(𝜓),
which augments 𝜓 with two fields:

• 𝜓.visible: the set of symbols in 𝜓 not under quantification.
• 𝜓.qstates: a list of quantifier states, constructed only from the outermost quantifiers

in 𝜓. The construction via InitQState is lazy, meaning that any nested quantified
formulas are hidden under the outermost quantifier states.

Given a quantified formula 𝜑, InitQState(𝜑) creates a quantifier state containing 𝜑 and
two additional fields:

• 𝜑.patterns: a list of symbol sets from the patterns.
• 𝜑.hidden: the quantified body, which remains uninitialized until expanded, including

any nested quantified formulas it may contain.

Shake is lazy when determining the relevance of a quantifier state, reflected in the
TryExpand procedure. Given a symbol set Σctx , if none of the 𝜑.patterns is a subset of
Σctx , the quantified formula is irrelevant, and 𝜑.hidden remains unexpanded (i.e., Shake
ignores the symbols it contains). The subset condition is necessary because for an actual
instantiation, all the symbols in a specific pattern must be present in Σctx . Upon a match,
Σctx creates a new formula state from its hidden body 𝜑.hidden. We note we only expanded
one level of quantifier nesting via InitFState.

procedure TryExpand(𝜑,Σctx)
relevant ← false
# subset check needed to check for pattern match
for Σ𝑝 ∈ 𝜑.patterns do

if Σ𝑝 ⊆ Σctx then
relevant ← true

end if
end for
if relevant then

# create a new formula state from the hidden body
𝜙← 𝜑.hidden
InitFState(𝜙)
return Some(𝜙)

end if
return None

end procedure

Shake checks the relevance of a formula state 𝜓 as follows. Given a symbol set Σ, 𝜓
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is relevant if 𝜓.visible intersects with Σ, or if any of the 𝜓.qstates is considered relevant.
When Shake expands a quantifier state, the resultant formula state is merged into 𝜓. This
process is reflected in the FormulaRelevant procedure below.

procedure FormulaRelevant(𝜓,Σctx)
qstates′ ← ⟨⟩
relevant ← Σctx ∩ 𝜓.visible ̸= ∅
for 𝜑 ∈ 𝜓.qstates do

𝑟 ← TryExpand(𝜑,Σctx)
# expansion may create a new formula state hidden
if Some(𝜙) = 𝑟 then

# a trigger matches; merge the previously hidden body
qstates′ ← qstates′ + 𝜙.qstates
𝜓.visible ← 𝜓.visible ∪ 𝜙.visible
relevant ← true

else
# no match; no new formula state created
# append the quantifier state without expansion
qstates′ ← qstates′ + ⟨𝜑⟩

end if
end for
𝜓.qstates ← qstates′

return relevant
end procedure

The main procedure for this version of Shake is shown in Alg. 4. Its structure is almost
identical to the naive version, but it uses FormulaRelevant to determine the relevance
of each axiom in the context. A more subtle detail is that Shake must revisit all of the
context, including the goal, in each round, as nested quantifiers may be expanded in later
rounds.

6.2.3.3 Handling Frequent Symbols

Thus far we have used the symbol set abstraction introduced in Sec. 6.2.3.1. where we
exclude certain basic symbols, such as the built-in SMT-LIB functions, based on the
intuition that such prevalent symbols provide little indication of relevance. We now further
refine the symbol-set abstraction to reflect this intuition.

In some verification languages, the SMT encoding uses certain symbols pervasively. For
example, the function symbol ApplyTT is ubiquitous in F⋆ queries. This is expected, as
F⋆ is based on dependent types, where terms are proofs, and ApplyTT represents term
application. However, symbols like ApplyTT cause Shake to quickly saturate, absorbing
many axioms when added to the reached symbol set.

Metric: Symbol Frequency. To address this issue, we propose a simple heuristic.
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Algorithm 4 Refined Shake with Quantifier Patterns
procedure Shake(ΓΦ = {𝜓0, ..., 𝜓𝑛})

for 𝜓𝑖 ∈ ΓΦ do
# create the formula state
InitFState(𝜓𝑖)

end for
# assuming 𝜓0 is the goal
Σctx ← 𝜓0.visible
dists, round ← {𝜓0 ↦→ 0}, 1
repeat

Σacc ← ∅
for 𝜓𝑖 ∈ ΓΦ do

𝑆prev ← 𝜓𝑖.visible
# possibly expand quantified formulas
if FormulaRelevant(𝜓𝑖,Σctx) then

if 𝜓𝑖 ∈ Unreached(dists,ΓΦ) then
dists ← dists ∪ {𝜓𝑖 ↦→ round}

end if
# update with previous symbols in 𝜓𝑖

Σacc ← Σacc ∪ 𝑆prev
end if

end for
Σctx ← Σacc ∪ Σctx
round ← round + 1

until IsFixedPoint(dists)
round ← round + 1
for 𝜓𝑖 ∈ Unreached(dists,Γ) do

dists ← dists ∪ {𝜓𝑖 ↦→ round}
end for
return dists

end procedure
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We define the frequency of a symbol 𝑓 to be the ratio of formulas in ΓΦ = {𝜓0, ..., 𝜓𝑛}
containing 𝑓 in their symbol set:

freq(𝑓) = ‖{𝜓𝑖 | 𝜓𝑖 ∈ ΓΦ ∧ 𝑓 ∈ Symbols(𝜓𝑖)}‖
‖ΓΦ‖

Given a threshold 𝜉, Shake excludes all symbols 𝑓 such that freq(𝑓) > 𝜉, treating them
as if they were built-in functions. As a side note, this idea is related to inverse document
frequency in information retrieval [142]. This simple approach improves pruning on certain
F⋆ queries, as we show in the evaluation.

6.2.3.4 Setting Distance Limits

Shake is similar to iterative deepening [91] in spirit. However, Shake does not explicitly
or implicitly construct a graph. Instead, Shake creates “layers” of axioms at different
distances. By default, Shake runs until a fixed point, dropping axioms that are unreachable
at the last layer.

Shake’s complexity is therefore 𝑂(𝐷𝑁), where 𝐷 is the maximum distance and 𝑁 is
the number of axioms. In practice, our evaluation shows that 𝐷 is almost always a constant
≤ 20, while 𝑁 can be in the thousands. Shake’s approach improves efficiency, since a
graph-based approach would take 𝑂(𝑁2) time just to construct the graph.

Stopping Shake early can also be useful: by setting a distance limit, Shake potentially
prunes even more irrelevant axioms. However, the other side of the coin is that a shallow
distance limit may miss out on relevant axioms that are necessary to the goal.

The choice of distance limit thus appears to present a dilemma. However, we argue
that Shake can leverage a solver-produced core as an oracle for nearly-optimal distance:
since our main goal is to improve stability, we assume that an initial version of procedure
𝑃 verifies, and a subsequent version 𝑃 ′ may fail due to minor changes. Therefore, we can
use the distance limit from the unsat core of 𝑃 to inform the subsequent runs of 𝑃 ′.

In practice, we envision saving Shake’s distance limit with source-level annotations.
For example, in Dafny, a commonly used attribute is :timeLimit N, which allows the user
to provide a procedure-specific time limit, overriding the default. Related attributes include
:rlimit N, which is also a solver configuration. Similar annotations also exist in languages
like F⋆ and Verus [94].

Shake can be configured in a similar way, where the distance value is a procedure
attribute. With a fresh procedure (query), the attribute is not present yet, and the solver
runs as normal. If verification succeeds, we store the maximum core distance as an attribute.
The next time the same procedure is verified, Shake uses the stored distance limit and
prunes the context accordingly. Small changes in the procedure (e.g., renaming a variable)
will have no impact on Shake’s layering, and the stored limit should still work.
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6.2.4 Evaluating the Improvement

In this section, we evaluate the effectiveness of Shake. We show the distribution of distance
values produced by Shake in Sec. 6.2.4.1. We then evaluate Shake’s improvement of
context relevance in Sec. 6.2.4.2 and stability in Sec. 6.2.4.3. We further assess the impact
of ignoring frequent symbols in Sec. 6.2.4.4. Lastly, in Sec. 6.2.4.5, we evaluate Shake’s
impact on solving performance in terms of run time and number of queries solved.

In the evaluation, we run Shake in two different modes.
• Default Mode: Shake computes the distances and then prunes the unreachable

axioms, i.e., axioms in the last layer discussed in Sec. 6.2.3.
• Oracle Mode: We obtain an “ideal” distance by employing the unsat core as an

oracle. We then use Shake to prune axioms beyond the oracle distance.

To evaluate stability, we use Shake’s oracle mode. As discussed in Sec. 6.2.3.4, to
counter instability, we assume a prior working version of the query that produces a core,
from which we obtain the oracle distance.

To evaluate standard solving performance overhead, i.e., without any query mutation, we
use the oracle mode along with the default mode. This provides a best-case and worst-case
comparison for Shake’s performance impact as a preprocessor.

By default, Shake does not ignore any query-defined symbols based on their frequencies
(Sec. 6.2.3.3). We only experiment with frequency configuration in Sec. 6.2.4.4.

6.2.4.1 Distribution of Shake Distances

First, we evaluate how well Shake distances reflect the relevance of axioms. For a query Φ
with context ΓΦ = {𝜓0, ..., 𝜓𝑛}, Shake computes the distances:

Shake(ΓΦ) = {(𝜓0 : 𝑑0), ..., (𝜓𝑛 : 𝑑𝑛)}

Let ΓΦ𝐶
be the context from the solver-produced core. We can then calculate the maximum

distances for the original query and the core:

𝑑𝑜𝑟𝑖𝑔 = max(𝑑𝑖 | (𝜓𝑖 : 𝑑𝑖) ∈ Shake(ΓΦ))
𝑑𝑐𝑜𝑟𝑒 = max(𝑑𝑖 | (𝜓𝑖 : 𝑑𝑖) ∈ Shake(ΓΦ𝐶

))

Intuitively, if 𝑑𝑜𝑟𝑖𝑔 > 𝑑𝑐𝑜𝑟𝑒, then Shake is able to differentiate between core and non-core
axioms: the more significant the difference is, the more we can safely prune the layers in
between with no loss of core axioms.

As shown in Fig. 6.9-Fig. 6.13, the maximum distances are upper-bounded by 20 for all
queries from the five projects in this study. Moreover, there is usually a clear difference
between 𝑑𝑜𝑟𝑖𝑔 and 𝑑𝑐𝑜𝑟𝑒. As an example, Fig. 6.9 shows the distributions from Komodo𝐷.
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Figure 6.9: Maximum Shake Distances for Komodo𝐷

Note the strong separation between the two: the median 𝑑𝑐𝑜𝑟𝑒 is 2, while the median 𝑑𝑜𝑟𝑖𝑔 is
8. Moreover, the distribution of the 𝑑𝑐𝑜𝑟𝑒 is light-tailed, where a distance of 3 covers almost
the entirety of the query set.
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Figure 6.10: Maximum Shake Distances for VeriBetrKV𝐿

However, in Fig. 6.13, we observe that vWasm𝐹 is a bit of an outlier (again). As
we discussed in Sec. 6.2.1.3, the vWasm𝐹 query set starts off with much higher context
relevance; thus we do not expect much room for differentiation using Shake’s distance.

6.2.4.2 Context Relevance Ratio

Now that we have demonstrated that Shake differentiates core and non-core axioms, we
evaluate how much context pruning Shake enables. Since our main goal is to mitigate
instability, we run Shake in oracle mode. As in Sec. 6.2.1.2, we compute the relevance
ratio of the pruned query.

In Fig. 6.14, we present the relevance ratios that Shake achieves. We see significant
improvements over the original queries as shown in Fig. 6.7. For example, in VeriBetrKV𝐿,
the median relevance ratio (MRR) is 0.32% in the original queries, while the MRR increases
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Figure 6.11: Maximum Shake Distances for VeriBetrKV𝐷
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Figure 6.12: Maximum Shake Distances for DICE⋆
𝐹
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Figure 6.13: Maximum Shake Distances for vWasm𝐹
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to 3.46% with oracle Shake. Overall, Shake improves the MRR by 3–10×. We note the
intersection on the right side of the plot, where the relevance ratio is 100%. In those cases,
Shake matches the unsat core when only given the oracle distance.
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Figure 6.14: Oracle Shake Query Context Relevance

6.2.4.3 Stability Improvement

Next, we evaluate if the improved context relevance translates into improved stability. We
assess stability in the same way as in the unsat core experiments in Sec. 6.2.1.3, both from
a preservation and mitigation perspective.

In Tab. 6.6, we report the stability scores for oracle Shake on Z3 version 4.12.5. We
include all of the unstable queries found in the original Mariposa query set (just as we did
in Fig. 6.8), and then we sample roughly the same number of stable queries (110 from each
project). We observe that Shake generally preserves stability, and achieves reasonable
success mitigating instability, with an overall mitigation score of 29.7%. We also see that
the naive Shake from Sec. 6.2.3.1 performs much worse, achieving an overall mitigation
score of only 11%.

We observe that DICE⋆
𝐹 sees much less mitigation. We attribute this to F⋆’s pervasive

use of certain function symbols (such as ApplyTT) in its query encoding. In Sec. 6.2.4.4, we
evaluate the effectiveness of suppressing such symbols based on their frequency. We also
observe that Shake does not help with the unstable queries in vWasm𝐹 . Since the unsat
core is not effective on vWasm𝐹 , this is unsurprising.

To further evaluate Shake, we also run it on cvc5 version 1.1.1. However, we start
with the caveat that the cvc5 results are not directly comparable to those from Z3. As
we discussed previously, cvc5 cannot solve a significant number of queries from F⋆ and
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Project Original Count Oracle Naive Shake Oracle Shake
Stable Unstable Preservation Mitigation Preservation Mitigation

Komodo𝐷 110 93 99.1% 7.5% 100.0% 25.8%
VeriBetrKV𝐷 110 172 100.0% 12.2% 98.2% 23.3%
VeriBetrKV𝐿 110 256 100.0% 11.7% 100.0% 37.9%
DICE⋆

𝐹 110 20 100.0% 10.0% 100.0% 5.0%
vWasm𝐹 110 4 100.0% 0.0% 96.4% 0.0%

Overall 550 545 99.8% 11.0% 98.9% 29.7%

Table 6.6: Oracle Shake Stability on Z3 4.12.5

Dafny, even after we converted them into standard SMT-LIB format, whereas Z3 succeeds
for nearly all of them. To bound the total time budget, we only evaluate the stability of
original queries that do not timeout with cvc5. This necessarily introduces bias in results,
where the given portion of unstable queries for cvc5 is a very conservative underestimate.

With that caveat in mind, we present the stability scores for oracle Shake on cvc5
in Tab. 6.7. Generally, the preservation scores are quite strong. The overall mitigation
score of 41.3% is promising as well.

Project Original Count Oracle Shake
Stable Unstable Preservation Mitigation

Komodo𝐷 110 36 100.0% 41.7%
VeriBetrKV𝐷 110 143 94.5% 48.3%
VeriBetrKV𝐿 110 210 100.0% 37.1%
DICE⋆

𝐹 110 17 100.0% 100.0%
vWasm𝐹 110 27 99.1% 0.0%

Overall 550 433 98.7% 41.3%

Table 6.7: Oracle Shake Stability on cvc5 1.1.1

6.2.4.4 Frequency Configuration

As discussed in Sec. 6.2.3.3, Shake can optionally take in a threshold 𝜉 and ignore any
symbol 𝑥 such that freq(𝑥) > 𝜉. We now evaluate if this configuration can help with stability.
Intuitively, if 𝜉 is set properly, Shake can ignore trivial matches due to pervasively used
symbols. However, if 𝜉 is too low, Shake may not reach axioms that are actually relevant,
e.g., the ones in the core.

We continue to use the oracle mode for this experiment. Recall that Shake assigns the
unreachable axioms to the maximum distance. When core axioms end up being unreachable,
oracle Shake cannot safely prune any axioms, since this could introduce incompleteness.
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Therefore, in addition to the mean relevance ratio (MRR), we also report the fallback rate
(FR), which is the percentage of queries where oracle Shake cannot prune any axioms.

First, we discuss the choice of 𝜉 with an experiment on query relevance. 𝜉 = 1.00 means
no symbols are pruned based on frequency. In Tab. 6.8, we observe that there is a trade-off
between the relevance ratio and the fallback rate. For example, in Komodo𝐷, 𝜉 = 0.15
achieves the highest MRR, but also has the highest FR. In vWasm𝐹 , since the context
starts with high MRR, lower 𝜉 values only increase FR. In general, 𝜉 = 1.00 (no frequency
pruning) tends to balance the two metrics.

Orig. 𝜉 = 1.00 𝜉 = 0.30 𝜉 = 0.15

Komodo𝐷
MRR 0.57 1.74 1.74 2.40
FR – 0.39 6.08 13.14

VeriBetrKV𝐷
MRR 0.33 3.28 3.35 2.51
FR – 1.45 5.74 28.49

VeriBetrKV𝐿
MRR 0.32 3.46 3.59 3.03
FR – 1.42 5.45 15.91

DICE⋆
𝐹

MRR 0.06 0.21 0.32 0.88
FR – 4.44 5.90 7.10

vWasm𝐹
MRR 3.76 15.74 16.0 16.22
FR – 5.99 6.11 12.51

Table 6.8: Oracle Shake Context Relevance with Frequency

However, for DICE⋆
𝐹 , the results indicate that 𝜉 = 0.15 is a promising setting, since the

MRR is increased by 4× with respect to 𝜉 = 1.00, while sacrificing three percentage points
of FR. We test the stability of using 𝜉 = 0.15 on DICE⋆

𝐹 with Z3 and find that it improves
stability by 6× compared to oracle Shake with 𝜉 = 1.00.

6.2.4.5 Performance Impact

Proof instability is a pernicious problem in program verification, so it might be reasonable
to expect developers to be willing to trade worse solving performance for greater stability.
Fortunately, our results show that such a trade is largely unnecessary: Shake adds relatively
little overhead and even improves performance in some cases.

To evaluate solving performance, for each solver (Z3 and cvc5), we compare the following
three scenarios.

• Baseline. We directly pass the original queries to the solver.
• Default Shake. We preprocess the queries Shake in default mode and then pass

them to the solver.
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• Oracle Shake. We preprocess the queries Shake in oracle mode and then pass them
to the solver.

Since Shake is a preprocessor, its runtime includes the time spent on computing the
distances and the time spent in IO. When reporting the runtime, we exclude the latter,
since we expect Shake to eventually be incorporated directly into solvers, where parsing
is already being done. Therefore, the runtime for the Shake modes is the time spent on
computing the distances plus the time spent by the solver on the pruned queries. Each
query is given a 60 second timeout, so if Shake distance computation and solver together
takes more than that, the query is not considered solved.

First we present the number of queries solved in each scenario in Tab. 6.9. Generally
Shake adds a minor overhead to Z3, but sometimes solves a few more in oracle mode.
However, if we consider cvc5, Shake usually improves the number of queries solved, even in
default mode. Notably, in DICE⋆

𝐹 , cvc5 solves 259 queries in the baseline; even with default
Shake, it solves 190 more (+79%); with oracle Shake, it solves 424 more (+163%).

Solver Baseline Default Oracle

Komodo𝐷
Z3 1,983 -0.10% +0.30%

cvc5 342 +1.75% +21.64%

VeriBetrKV𝐷
Z3 5,103 -0.78% -0.61%

cvc5 2,571 +9.14% +20.77%

VeriBetrKV𝐿
Z3 5,167 -0.41% -0.04%

cvc5 3158 +8.90% +13.01%

DICE⋆
𝐹

Z3 1,493 -0.07% +0.33%
cvc5 259 +73.36% +163.71%

vWasm𝐹
Z3 1,733 -0.29% -0.35%

cvc5 1,630 -0.12% -0.12%

Overall Z3 15,479 -0.45% -0.18%
cvc5 7,960 +8.92% +18.10%

Table 6.9: Queries Solved with Shake as a Preprocessor

To present the runtime performance, we use survival plots [28]. In short, a survival plot
shows the cumulative number of queries solved within a total time budget. Therefore, a
curve that is higher and to the left indicates better performance.

In each plot, we show six curves, based on the three scenarios for each of the two solvers.
Generally, Shake adds a minor overhead to Z3, but often improves the solving speed on
cvc5. For example, in Fig. 6.16, we show the survival plot for VeriBetrKV𝐷. Shake’s
impact on Z3 is almost negligible, whether in default or oracle mode. However, for cvc5,
Shake does improve on the solving speed, as well as the number of queries solved, not only
in oracle mode, but also in default mode. In Fig. 6.17, VeriBetrKV𝐿 shows a similar trend
as in VeriBetrKV𝐷.
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Figure 6.15: Shake Performance Survival Plot for Komodo𝐷
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Figure 6.16: Shake Performance Survival Plot for VeriBetrKV𝐷
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Figure 6.17: Shake Performance Survival Plot for VeriBetrKV𝐿

In Fig. 6.17, we show the survival plot for VeriBetrKV𝐿. We observe a similar trend as
in VeriBetrKV𝐷. Shake does not have a significant impact on Z3, but helps with cvc5’s
performance in both modes.

In Fig. 6.18, we show the results for DICE⋆
𝐹 . We observe that default Shake adds a

minor overhead to Z3, but oracle Shake has little impact. On cvc5, as we discussed earlier,
Shake significantly improves the number of queries solved and improves the runtime as
well.
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Figure 6.18: Shake Performance Survival Plot for DICE⋆
𝐹
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Figure 6.19: Shake Performance Survival Plot for vWasm𝐹
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6.3 Repairing Instability with Cazamariposas

Existing techniques on instability mitigation are often preventive. For instance, in default
Shake, we attempt to deter stability-related failures at preprocessing time, without prior
knowledge of the query. Meanwhile, in oracle Shake, we explore a more reactive approach,
where we harness solver feedback (i.e., the core) to stabilize future iterations of the query.
In this section, we apply the idea to our Cazamariposas tool, which repairs unstable APV
queries leveraging the solver-constructed proofs.

Conceptually, Cazamariposas searches for query edits that repair problematic quantified
axioms. We base the edits on the proof, so that an edit (1) weakens a single target axiom,
and (2) preserves the rest of the query context. In this way, a stabilizing edit is also a valid
repair strategy, which we envision a developer can reenact at the source level.

For instance, Cazamariposas might identify a quantified axiom 𝜑 in an unstable query
Φ, such that dropping 𝜑 creates a stable query. Intuitively, ΓΦ* = ΓΦ ∖ {𝜑} is stable, and
thus 𝜑 is the cause of instability. Moreover, since Φ* preserves the verification goal in Φ, the
removal of 𝜑 is also a valid repair strategy, which corresponds to a developer suppressing
the axiom at the source level. However, it is worth noting that we assume the translation
from query edits to source edits is possible.

In Sec. 6.3.1, we detail our methodology to perform such query edits based on the proof
logs. In fact, as our later experiments suggest, there is a single problematic axiom to blame
in ∼61% cases. That is, by limiting the impact of one ill-behaved axiom within a query, we
can repair most of the unstable instances and avoid future failures.

However, the vast number of quantified axioms in a query presents a challenge to the
repair process. We therefore also discuss how to effectively identify the likely suspects,
rather than exhaustively testing all axioms in a query. In Sec. 6.3.2, we make an observation
on two distinctive failure modes in which instability manifests: the solver either (1) gives
up quickly reporting unknown, corresponding to under-instantiated axioms, or (2) uses up
time limit returning timeout, corresponding to over-instantiated axioms.

With the triage, we further narrow down the search space of the problematic axioms.
We take advantage of the fact that an unstable query Φ has at least a passing mutant
Φ𝑠 and a failing mutant Φ𝑓 . In Sec. 6.3.3, we propose metrics based on the instantiation
profiles of Φ𝑠 and Φ𝑓 , highlighting quantified formulas that are either over-instantiated or
under-instantiated in Φ𝑓 . In Sec. 6.3.4, we further refine the analysis based on the failure
mode with novel proof and trace mining techniques, exploiting the causal relation between
the instantiations.

6.3.1 Testing the Axioms for Stability

We start with our methodology to evaluate the stability impact of individual axioms,
leveraging the information from the proof log. Conceptually, we follow an “edit-and-test”
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approach. With a (quantified) assertion 𝜑𝑖 ∈ ΓΦ in an unstable query Φ, we go through the
following:

• Hypothesize that QI reasoning over 𝜑𝑖 is the cause to instability.
• Select a query edit on Φ to reduce QI reasoning over 𝜑𝑖.
• Apply the query edit to create a candidate query Φ*.
• Test the stability of Φ* using Mariposa.
• If Φ* is not stable, dismiss the hypothesis for now.
• If Φ* is stable, report 𝜑𝑖 as a cause of instability.

More formally, we define a singleton edit as a pair (𝜑𝑖, 𝑎𝑖), where 𝜑𝑖 ∈ ΓΦ is an
assertion, and 𝑎𝑖 is an action among {del, inst, inst-del, sk}. In Tab. 6.10, we define
ApplySingleEdit(ΓΦ, 𝜑𝑖, 𝑎𝑖) as a function that outputs an edited context ΓΦ* of the
candidate query. In particular, for the actions inst and ins-del, we leverage the instantiation
set ℐ𝜑𝑖

p provided by the proof log.

Action Applicability ApplySingleEdit(ΓΦ, 𝜑𝑖, 𝑎𝑖)
del 𝜑𝑖 ∈ ΛΦ, IsQuant(𝜑𝑖) ΓΦ ∖ {𝜑𝑖}
inst

𝜑𝑖 ∈ ΛΦ, IsForall(𝜑𝑖)
ΓΦ ∪ ℐ𝜑𝑖

p

inst-del (ΓΦ ∪ ℐ𝜑𝑖
p ) ∖ {𝜑𝑖}

sk 𝜑𝑖 ∈ ΓΦ, 𝜑𝑖 = ∃𝑥.𝜙 (ΓΦ ∪ {𝜙[𝑥 ↦→ 𝑓𝜑𝑖𝑥
]}) ∖ {𝜑𝑖}

Table 6.10: Cazamariposas Query Edits

Intuitively, the edits are meant to reduce or eliminate the reasoning obligation 𝜑𝑖

introduces, so a stabilized candidate also points to 𝜑𝑖 as a cause of instability. We now
discuss some basic properties of the ApplySingleEdit, including soundness, which ensures
that a stabilizing edit is also a valid repair strategy.

Soundness. We define the soundness of the candidate query Φ* as:

ΓΦ* ⊢ ⊥ =⇒ ΓΦ ⊢ ⊥

We can demonstrate the soundness with a case analysis. When 𝑎𝑖 = sk, ApplySingleEdit
leaves the query semantics unchanged, so soundness trivially holds. For the rest of the
actions, the goal 𝜃 remains unchanged. (Note that we have restricted sk to be the only
potential action on goal.) Therefore, we could instead show that:

ΛΦ* ⊢ 𝜃 =⇒ ΛΦ ⊢ 𝜃

which holds as long as ΛΦ* is no stronger than ΛΦ. When 𝑎𝑖 = inst, because the elements of
ℐ𝜑𝑖
p are tautological consequences of 𝜑𝑖, ΛΦ* is as strong as ΛΦ. When 𝑎𝑖 ∈ {del, inst-del},

ΛΦ* might be weaker than ΛΦ. Therefore, soundness also holds for the rest of the actions.

Completeness. We define completeness of the axiom set as follow:

ΛΦ ⊢ 𝜃 =⇒ ΛΦ* ⊢ 𝜃
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The proof instantiation set ℐ𝜑𝑖
p is sufficient2 to establish 𝜃, so we maintain completeness by

this definition. However, since the edits may weaken the axioms, we do sacrifice a broader
sense of completeness. Specifically, del and inst-del may remove a quantified axiom 𝜑𝑖,
while the ℐ𝜑𝑖

p is only a finite subset of all possible instantiations of 𝜑𝑖, and thus we can no
longer guarantee that ΛΦ* ⊢ 𝜑𝑖.

Applicability. As shown in Tab. 6.10, we limit the actions to quantified axioms, with
the only exception of (𝜙0, sk). As a result, we can establish soundness relatively easily,
but we might miss out certain problematic axioms as candidates. For example, consider
an axiom 𝜑𝑖 = (∀𝑥.𝜙𝑖) ∨ (∀𝑥.𝜙𝑗). Even though 𝜑𝑖 contains quantified formulas, we do not
target it for the stability test. (Soundness arguments become a lot more subtle if we were to
allow edits on more general axioms with quantified sub-formulas, rather than just quantified
axioms.) This is a limitation of our current approach.

Composability. More generally, we define the function:

ApplyEdits(ΓΦ,Δ = ⟨..., (𝜑𝑖, 𝑎𝑖), ...⟩)

where Δ is a sequence of singleton edits. ApplyEdits performs the edits in Δ sequentially,
while maintaining soundness and completeness. Intuitively, when instability arises from the
interaction of multiple quantified axioms, singleton edits (i.e., ‖Δ‖ = 1) might fall short to
capture the cause, and thus we need to consider ‖Δ‖ ≥ 2. In the case where ‖Δ‖ = 2, we
call Δ a doubleton edit.

Practicality. Eventually, we would like to apply the edit actions to the source code,
which we leave as future work. In Cazamariposas, we focus on the SMT level to ensure
applicability to APV languages. The query edits do generally correspond to source-level
features in Dafny, F⋆, and Verus:

• del. As we discussed in Sec. 2.3.1, APV languages typically offers source-level visibility
control mechanisms. For example, Dafny’s opaque keyword allows developers to hide
the definition of a function.

• inst. The developer can also directly introduce quantifier instantiations as source-level
annotations. For example, Line 3 in Lst. 2.1 explicitly adds (a+b)*c == a*c + b*c

into the solver’s context, which is an instantiation of the distributive property.
• sk. APV languages usually has Hilbert’s choice as a language construct. For example,

Dafny’s var x :| P(x) assigns x an arbitrary value such that P(x) holds.

However, the translation might not always be straightforward. As we discussed in Sec. 2.3.1,
the axioms may also encode the semantics of language constructs. For example, del on
an axiom for higher-order functions has no direct source-level equivalent. More specific to
inst, if the repair adds a large number of instantiations to the source code, it is arguably
impractical due to maintenance and readability concerns. Nevertheless, we have some
empirical evidence that the repairs are often practical, which would make it interesting to
explore automatic translation in the future, potentially through ProofPlumber (Sec. 4.2).

2Otherwise, how did the proof succeed in the first place?
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Complexity. Another more pressing concern is the complexity of the search space.
Consider a query Φ with 𝑛 applicable singleton edits. The total number of potential
candidate is roughly:

‖Δ‖∑︁
𝑖=1

(︃
𝑛

𝑖

)︃
=
(︃
𝑛

1

)︃
+
(︃
𝑛

2

)︃
+ ...+

(︃
𝑛

‖Δ‖

)︃

The combinatorial explosion makes it infeasible to test all candidates. Meanwhile, if a
stabilizing edit involves too many axioms, it also become less realistic to reenact the repair
at the source level.

Given the two concerns, we limit our experiments to two classes: singleton and doubleton
edits, i.e., ‖Δ‖ ≤ 2. Nevertheless, a massive search space remains for each class, with
typically thousands of quantified axioms in a query. We thus further introduce a parameter
𝑘 to limit the number of candidates we test for full stability. Specifically, we first test 𝑘
singleton edits, and then 𝑘 doubleton edits if the former fails to stabilize the query.

6.3.2 Triaging the Failure Modes

To help narrow down the search space of the problematic axioms, we make an observation
on the failure modes of the unstable queries. That is, for an unstable query Φ, how the
failed member(s) of the sample mutants M̂Φ behave. More specifically, we pick an arbitrary
failed mutant Φ𝑓 ∈ M̂Φ. We observe two distinct failure modes of Φ𝑓 , which we name quick
unknown (QU) and slow timeout (TO). In a QU, the solver quickly terminates with an
unknown result, despite being given a generous timeout and resource limit. Meanwhile, in a
TO, the solver runs on the query until it runs out of its time or resource budget.

For this experiment, we use both the Mariposa Bench and the Verus Bench (Sec. 6.1.4).
As we mentioned previously, we set a solver time limit of 60 seconds for the former, and
10 seconds for the latter. In Fig. 6.20a, for each original query Φ in the benchmarks, we
report the runtime of Φ𝑓 . The plot is in log scale, and we observe that the distribution for
each benchmark is bimodal. For Verus Bench, ∼43% of the failures occur within 1 second,
barely any occur between 1 and 10 seconds, and the rest fail at 10 seconds. For Mariposa
Bench, the distribution is more spread out, but the separation is still clear, where ∼19%
queries fail within 10 seconds, and ∼78% time out after 60 seconds. There is almost no
middle ground between the two modes.

We perform our triage based on the solver output (i.e., unknown or timeout), and then
plot the instantiation counts based on the failure modes. We note the log-scale on x-axis,
highlighting the fact that the TO cases have orders of magnitude more instantiations than
the QU ones. For example, in Mariposa TO, the median instantiation count is 270, 396
while in Mariposa QU, the median is 4, 587. The separation is also clear within Verus
benchmark.

Our analysis suggests the two failure modes correspond to different types of problems
in quantifier reasoning. Specifically, for QU, we hypothesize that certain formulas are
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Figure 6.20: Failure Mode Distinction

insufficiently instantiated in failed runs. For TO, we hypothesize that certain formulas are
excessively instantiated, or have a high impact on the instantiations of other quantified
formulas.

6.3.3 Calculating the Differential Metrics

In this section, we introduce three metrics, namely Deficit, Excess, and Contingency,
which measures the degree of insufficient or excessive instantiation. We define the metrics
for quantified formulas in ΩΦ, which is a superset of applicable assertions. In the next
sections, we discuss how to aggregate metrics over ΩΦ to rank potential edits over the
quantified axioms.

Our analysis leverages a solver’s divergent behavior between a failed and a successful
verification attempt. By definition, if a query Φ is unstable, our Mariposa tool should
find structurally isomorphic mutants, Φ𝑓 and Φ𝑠, such that Φ𝑓 fails and Φ𝑠 succeeds. This
allows us to compare the instantiation profiles between Φ𝑓 and Φ𝑠 modulo the isomorphism.

Concretely, we obtain from the solver a trace log t for Φ𝑓 , and a proof log p for Φ𝑠.
The log files essentially contain instantiation profiles, which we introduced in Sec. 2.4. In
theory, our method generalizes to multiple traces and proofs. In practice, collecting even
one pair of (t, p) can entail difficulties. Hence, we focus our discussion on a pair of proof and
trace. Furthermore, since we are comparing the instantiation profiles modulo the structural
isomorphism between Φ𝑓 and Φ𝑠, for the ease of exposition, we omit the detailed subscripts
for t and p, which would otherwise be tΦ𝑓

and pΦ𝑠 .

We now define the metrics more formally. We use ℐ𝜑𝑖
t and ℐ𝜑𝑖

p to denote the instantiation
set of 𝜑𝑖 in t and p, respectively. For each quantified formula 𝜑𝑖 ∈ ΩΦ, we compute the
following:
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• Deficit(𝜑𝑖, p, t) = ‖ℐ𝜑𝑖
p-t‖, where ℐ𝜑𝑖

p-t = ℐ𝜑𝑖
p ∖ ℐ𝜑𝑖

t . Intuitively, ℐ𝜑𝑖
p-t is the set of instan-

tiations in the proof but not in the trace. When ‖ℐ𝜑𝑖
p-t‖ is large, the solver may be

missing instantiations of 𝜑𝑖 that are crucial to reaching unsat.
• Excess(𝜑𝑖, p, t) = ‖ℐ𝜑𝑖

t-p‖, where ℐ𝜑𝑖
t-p = ℐ𝜑𝑖

t ∖ ℐ𝜑𝑖
p . Intuitively, ℐ𝜑𝑖

t-p is the set of instan-
tiations in the trace but not in the proof. When ‖ℐ𝜑𝑖

t-p‖ is large, the solver may be
wasting time and resources instantiating 𝜑𝑖 without making progress towards proving
the goal.

We note that when IsExists(𝜑𝑖), the instantiation set ℐ𝜑𝑖
t and ℐ𝜑𝑖

p are both empty, so
Deficit and Excess are trivially 0. In that case, we also introduce Contingency based on
the instantiations that depend on 𝜑𝑖:

• Contingency(𝜑𝑖, p) = ∑︁
𝜑𝑗∈ΩΦ

‖{𝐼 | 𝐼 ∈ ℐ𝜑𝑗
p , 𝑓𝜑𝑖𝑥

⊑ 𝐼}‖

where 𝑓𝜑𝑖𝑥
is the Skolem constant of 𝜑𝑖, and 𝜑𝑗 ∈ ΩΦ is some (universally) quantified

formula, and 𝐼 ∈ ℐ𝜑𝑗
p is some instantiation of 𝜑𝑗 containing 𝑓𝜑𝑖𝑥

. We recall that
𝑓𝜑𝑖𝑥
⊑ 𝐼 means that 𝑓𝜑𝑖𝑥

is a sub-term of 𝐼. Intuitively, the metric reflects the proof
instantiations that depend on 𝑓𝜑𝑖𝑥

. When 𝜑𝑖 has high Contingency, other quantified
formulas cannot be sufficiently instantiated until 𝜑𝑖 is Skolemized.

Naively, we could already start prioritizing the quantified axioms based on these scores
alone. Next we discuss how we aggregate the scores over the axioms, and choose the most
promising edit actions for each axiom.

6.3.4 Ranking the Potential Edits

As mentioned in Sec. 6.3.1, we use a parameter 𝑘 to limit the number of candidates we test
for full stability, where we first consider top-𝑘 singleton edits, and then doubleton edits if
none of the singleton edits is stabilizing. We describe how to compute the scores for the
singleton and doubleton edits in this section. The output of this stage are two partial maps,
SScore and DScore.

1. We score each axiom 𝜑𝑖, and then select an appropriate edit for it. When there are
multiple possible actions on 𝜑𝑖, we commit to one that is likely stabilizing. More
formally, we create a partial map:

SScore = {(𝜑𝑖, 𝑎𝑖) ↦→ 𝑠𝑖 | 𝜑𝑖 ∈ ΓΦ}

where 𝑎𝑖 ∈ {del, inst, inst-del, sk} is the chosen edit action.
2. We then score ordered pair of quantified assertions, along with the most promising

actions for each assertion. More formally, we create another partial map:

DScore = {⟨(𝜑𝑖, 𝑎𝑖), (𝜑𝑑, 𝑎𝑗)⟩ ↦→ 𝑠𝑖𝑗 | 𝜑𝑖, 𝜑𝑗 ∈ ΓΦ}
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where 𝑎𝑖, 𝑎𝑗 ∈ {del, inst, inst-del, sk} are the chosen edit actions. ⟨(𝜑𝑖, 𝑎𝑖), (𝜑𝑗, 𝑎𝑗)⟩
is the doubleton edit we apply (in order). We note that both maps are partial because
we may not find an applicable action for certain assertions.

We split the discussion on the ranking of edits based on the hypothesized failure mode
(QU or TO), as the two failure modes require different strategies.

6.3.4.1 Ranking Edits for QU

We start with how we handle QU failures, which is more straightforward. At the general
triage (Sec. 6.3.2) stage, we hypothesize that the QU failures are due to the absence of
certain instantiations. Intuitively, we are looking for under-instantiated axioms, where inst
is applicable, i.e.,

SScore = {(𝜑𝑖, inst) ↦→ 𝑠𝑖 | 𝜑𝑖 ∈ ΓΦ}

There are various ways to use the differential scores to set 𝑠𝑖. Plausible contenders include:

1. (Deficit,−Excess)
2. (−Excess,Deficit)
3. 𝜅 ·Deficit− Excess for some constant 𝜅
4. Deficit/Excess

We experimented with multiple examples of each of these heuristics. Eventually we settled
on the first one, using Deficit as the primary metric.

However, the picture becomes complicated when instantiations contain Skolem constants.
In that case, we cannot fully materialize all of 𝜑𝑖’s proof instantiations ℐ𝜑𝑖

p , unless all its
Skolem dependencies are met. If the actual materializable instantiation count is 0 (i.e., that
no instantiations can be created without Skolemization), then we drop 𝜑𝑖 in the singleton
phase.

We address this issue in the doubleton stage. Specifically, we use the Contingency
score to select the first axiom 𝜑𝑖 for sk; i.e., the quantified assertion with most “contingent”
instantiations depending on it Skolem constant. When choosing the second axiom 𝜑𝑗, we
only consider 𝜑𝑗 candidates that depend on the Skolem constant 𝑓𝜑𝑖𝑥

in their instantiations,
and we can apply inst to 𝜑𝑗. More formally,

DScore = {⟨(𝜑𝑖, sk), (𝜑𝑗, inst)⟩ ↦→ 𝑠𝑖𝑗 | 𝜑𝑖, 𝜑𝑗 ∈ ΓΦ}

where 𝑠𝑖𝑗 = (Contingency(𝜑𝑖, p),Deficit(𝜑𝑗, p, t)), and ∃𝐼 | 𝐼 ∈ ℐ𝜑𝑗
p , 𝑓𝜑𝑖𝑥

⊑ 𝐼.

6.3.4.2 Ranking Edits for TO

In the general triage stage (Sec. 6.3.2), we hypothesize that the solver is spending significant
time and resources on irrelevant quantified formulas in a TO failure. For this failure mode,
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we focus on the quantified axioms in ΛΦ as targets. Intuitively, we would need to suppress
the excessive instantiation to stabilize the query, while editing the goal is not an option.

A natural choice would be to use the Excess for SScore, and then apply del to the
axiom 𝜑𝑖 with the highest Excess. However, the situation is more complex than QU in
two ways. (1) We cannot simply delete arbitrary 𝜑𝑖 with high Excess. The axiom may
be necessary for the proof, and deleting it will render the goal un-provable (i.e., creating
incompleteness). (2) Even if 𝜑𝑖 is indeed unnecessary, other excessively instantiated axioms
may also be contributing to the instability.

Problem (1) is easier to address. We use the inst-del edit action, replacing the axiom
𝜑𝑖 with its instantiations from the successful proof trace ℐ𝜑𝑖

p . Intuitively, this eliminates the
need (and the ability) for the solver to instantiate 𝜑𝑖: since ℐ𝜑𝑖

p is sufficient for the proof,
this action works around the incompleteness issue.

Problem (2) is more challenging. Anecdotally, if we focus solely on the Excess score, the
debugging process turns into a “whack-a-mole” situation, where we delete one axiom, only
to find another axiom with high Excess taking its place, and we fail to stabilize the query.
Hence, to successfully repair the query, we need a mechanism to identify the underlying
cause of the excessive instantiations.

Dependency Analysis

In order to locate the root cause of TO instability. we further analyze the causal relations
between the instantiations. Our notion of causality extends the instantiation graph from
the SMTScope (formerly the Axiom Profiler) [16], a tool to analyze instantiation loops
and other sources of poor performance in pattern-based SMT solvers. Below, we describe
Axiom Profiler’s approach and then our extension.

The instantiation graph is a directed acyclic graph over the terms (instantiations) in a
trace log t. More formally, we model this graph 𝐺0 with the node set:

{(𝐼, 𝜑𝑖) | 𝐼 ∈ ℐ𝜑𝑖
t , 𝜑𝑖 ∈ ΩΦ}

where each instantiation is labelled with its quantified formula 𝜑𝑖. Edges in the graph
indicate the causal relations, which includes the following:

• Instantiating Dependency: an instantiation causes another one to materialize
due to a matched pattern. Let (𝐼𝑠, 𝜑𝑠) and (𝐼𝑑, 𝜑𝑑) be two nodes in 𝐺0, where
𝜑𝑑 = ∀𝑥.𝜙𝑗 is guarded by the pattern 𝜋𝑗. Suppose a sub-term of 𝐼𝑠 matches 𝜋𝑗,
i.e., 𝜋𝑗[𝑥 ↦→ 𝑡] ⊑ 𝐼𝑠 for some ground term 𝑡. This match triggers the creation of
𝐼𝑑 = 𝜙𝑗[𝑥 ↦→ 𝑡], corresponding to an edge (𝐼𝑠, 𝜑𝑠)→ (𝐼𝑑, 𝜑𝑑) in 𝐺1.

• Equational Dependency: an equational rewrite (from one instantiation) contributes
to another instantiation. Continuing the example above, 𝐼𝑠 may only trigger 𝜋𝑗 after
additional equality rewrites. Consider a quantified formula 𝜑𝑒𝑞 = ∀𝑥.𝑝(𝑥) ∼= 𝑞(𝑥) and
one of its instantiations 𝐼𝑒𝑞 = 𝑝(𝑎) ∼= 𝑞(𝑎). The solver might have to rewrite 𝐼𝑠 with
𝐼𝑒𝑞 first, where the rewrite result, 𝐼𝑠[𝑝(𝑎) ↦→ 𝑞(𝑎)], triggers the creation of 𝐼𝑑. In that
case, there is also an edge (𝐼𝑒𝑞, 𝜑𝑒𝑞)→ (𝐼𝑑, 𝜑𝑑) in 𝐺0.
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We further extend this graph 𝐺0 from prior work into a graph 𝐺1 to capture two
additional types of dependencies.

• Skolemizing Dependency: a Skolem constant is a sub-term of an instantiation.
Consider the existentially quantified 𝜑𝑖 = ∃𝑥.𝜙𝑖 with Skolem constant 𝑓𝜑𝑖𝑥

. There
might be some node (𝐼𝑑, 𝜑𝑑) in 𝐺1 such that 𝑓𝜑𝑖𝑥

⊑ 𝐼𝑑. In that case, we add the node
(𝑓𝜑𝑖𝑥

, 𝜑𝑠), and the edge (𝑓𝜑𝑖𝑥
, 𝜑𝑠)→ (𝐼𝑑, 𝜑𝑑) to 𝐺1. This form of dependency follows

the same intuition as in our definition of Contingency, except we apply it to the
trace log here.

• Nesting Dependency: an instantiation is a (previously-nested) quantified formula,
which creates further instantiations. For example, consider (𝐼𝑠, 𝜑𝑠), where 𝜑𝑠 =
∀𝑥.(𝑓(𝑥) ∧ ∀𝑦.𝑔(𝑥, 𝑦)), and 𝐼𝑠 = 𝑓(𝑡) ∧ ∀𝑦.𝑔(𝑡, 𝑦) for some ground term 𝑡. Let
𝜑𝑑 = ∀𝑦.𝑔(𝑡, 𝑦) be the nested quantified formula. Intuitively, 𝐼𝑠 is the reason why 𝜑𝑑

exists at all. We thus add an edge from (𝐼𝑠, 𝜑𝑠) to every (𝐼𝑑, 𝜑𝑑), where 𝐼𝑑 ∈ ℐ𝜑𝑑
t .

The graph 𝐺1 captures the four types of dependencies we discussed above, which offers
a rather low-level view of the instantiation reasoning in the trace. We further process 𝐺1
so that it reflects the relation between the quantified formulas.

1. We collapse 𝐺1 into a multi-edge graph 𝐺2. We initialize 𝐺2 with ΩΦ as its nodes.
For each edge (𝐼𝑠, 𝜑𝑠)→ (𝐼𝑑, 𝜑𝑑) in 𝐺1, we add an edge 𝜑𝑠 → 𝜑𝑑 to 𝐺2.

2. We reduce 𝐺2 into a weighted simple graph 𝐺3. For each neighboring nodes 𝜑𝑠 and 𝜑𝑑

with 𝑚𝑠,𝑑 parallel edges in 𝐺2, we keep one edge 𝜑𝑠 → 𝜑𝑑 in 𝐺3 with the weight 𝑚𝑠,𝑑.
3. We normalize the edge weights in 𝐺3, where we set the weight for 𝜑𝑠 → 𝜑𝑑 in 𝐺3 to:

𝑤𝑠,𝑑 = 𝑚𝑠,𝑑∑︀
𝜑𝑖→𝜑𝑑

𝑚𝑖,𝑑

Intuitively, 𝑤𝑠,𝑑 reflects the normalized “impact” of 𝜑𝑠 on 𝜑𝑑 over all the in-coming
edges (via. other 𝜑𝑖) to 𝜑𝑑.

Hence the output of our dependency analysis is a directed simple graph 𝐺3 over ΩΦ,
where each edge weight 𝑤𝑠,𝑑 captures (or rather, approximates) the normalized impact of
𝜑𝑠 over 𝜑𝑑. For example, 𝑤𝑠,𝑑 = 0.5 signifies that 𝜑𝑠 has an immediate impact on 50% of
the instantiations of 𝜑𝑑.

We then compute the transitive impact through fixed-point iterations. Concretely, for
𝜑𝑖 ∈ ΛΦ, we consider the reachable subgraph 𝐺𝜑𝑖

in 𝐺3. We initialize a ratio 𝑟𝑑 = 0 for each
𝜑𝑑 in 𝐺𝜑𝑖

, except for 𝜑𝑖, where we set 𝑟𝑖 = 1. We then update each ratio 𝑟𝑑 = ∑︀
𝑠 𝑟𝑠 · 𝑤𝑠,𝑑.

After the fixed-point computation terminates, we use the weighted sum of Excess as the
final score for 𝜑𝑖:

SScore = {(𝜑𝑖, 𝑎𝑖) ↦→
∑︁

𝜑𝑗∈ΩΦ

Excess(𝜑𝑗, t, p) · 𝑟𝑗 | 𝜑𝑖 ∈ ΛΦ}

The fixed-point computation is non-decreasing by transitivity. However, there is no
theoretical guarantee that it will converge. In particular, when 𝐺𝜑𝑖

contains a cycle, certain
node’s ratio may approach a limit at an exponential decay rate. Nevertheless, this is not a
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threat to practical usage. In particular, since floating point numbers represent the ratios,
the convergence criteria must be threshold-based. For our implementation, we consider a
ratio to have converged if its increment from the previous iteration is ≤ 10−4.

Now that we have the scores for each axiom, we proceed to choose the singleton edit action.
We do so with a simple heuristic: if we can delete an axiom without causing incompleteness,
we choose del. Otherwise, we instantiate the axiom with its proof instantiations, using inst-
del. However, if there is Skolemization dependency preventing us from fully materializing
the proof instantiations, we choose inst instead. Finally, if we have no other choice beyond
Skolemization (sk), we do so.

Given the setup, ranking the doubleton edits is simple. We use the fixed-point compu-
tation to estimate the impact of each pair of axioms; i.e., we initialize 𝑟𝑖 = 1, 𝑟𝑗 = 1 for the
pair (𝜑𝑖, 𝜑𝑗), and then iterate over the nodes in 𝐺3 to update the ratios. We then use the
same weighted sum of Excess to calculate the final score for each pair. We also use the
same heuristic to choose the edit actions for each pair.

6.3.5 Evaluating the Improvement

In this section, we evaluate Cazamariposas’ ability to automatically identify stabilizing
edits. We use a total of 614 unstable queries, with 545 from Mariposa Bench and 69 from
Verus Bench, as described in Sec. 6.1.4.1. In our evaluation, we set the number of candidate
edits 𝑘 = 10. That is, we let Cazamariposas try 𝑘 = 10 singleton candidates, and if none
works, we try 10 doubleton edits.
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Figure 6.21: Percentage of Benchmark Queries Repaired

Overall, Cazamariposas repairs 430/614 (≈ 70%) of the benchmark queries. Fig. 6.21
provides more details, reporting Cazamariposas’ performance on the two benchmarks,
subdivided by the underlying failure type (TO vs. QU). We note that Mariposa TO
accounts for the largest absolute number of queries. Cazamariposas appears to be more
effective on Verus queries in either failure type. Nevertheless, Cazamariposas repairs
approximately 69% of the Mariposa queries and 77% of the Verus queries. This compares
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favorably to the best results from Shake (Sec. 6.2.4), which stabilized 29% of the Mariposa
benchmark. We also observe that 374/614 (≈ 61%) queries can be stabilized with a single
edit. Doubleton edits subsequently provide a small but noticeable boost.
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Figure 6.22: Finding Repairs Among Quantified Formulas

We also evaluate how well Cazamariposas ranks the stabilizing edits. First, in Fig. 6.22a,
we show the distribution of the number of quantified formulas in the original queries. For
example, in Mariposa TO, the median count is 5, 965, which is a large search space for
possible edits. The median count is lower in Verus QU, making it potentially more tractable
to fully explore.

Now that we have sense of the search space, we evaluate how well Cazamariposas
identifies the useful edits. In Fig. 6.22b, we report the minimal rank of the stabilizing
singleton edits. Specifically in singletons, given a query, Cazamariposas produces a ranked
list of 10 edits, and we report the rank of the first stabilizing edit within this list. We note
the endpoints of the CDFs on the y-axis. It is the probability that Cazamariposas finds
a stabilizing edit within the first 10 singleton edits, which corresponds to Fig. 6.21. We
note the start points of the CDFs on the y-axis. This is the probability that the first edit
Cazamariposas tries would directly work. For a Mariposa TO query, Cazamariposas has a
36% chance of finding a stabilizing edit with one shot.

6.4 Work Status and Personal Contribution

I am the lead author of the three papers in this chapter. In general, I designed, implemented,
and experimented with multiple iterations of the methodology, carried out the experiments,
and did most of the paper writing. I would like to highlight the contributions of my
collaborators in this section.
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The work on Mariposa (Sec. 6.1) was published in FMCAD 2023 [173]. Jay Bosamiya
had indirect but non-trivial contributions to the design of the Mariposa methodology.

The work on Shake (Sec. 6.2) was published in FMCAD 2024 [172]. I based Shake on
an earlier idea from my advisor, Bryan Parno. Jessica Li had non-trivial contributions to
experiments on the unsatisfiable core.

The work on Cazamariposas (Sec. 6.3) has just been accepted to CADE 2025 as of the
time of writing [175]. The general idea behind the differential analysis came up during
discussions with my advisor, Bryan Parno. Amar Shah had a non-trivial contribution to
collecting the proof logs, conducting the experiments, and writing the paper. Zhengyao Lin
worked on prototyping and validating of our “edit-then-test” approach.
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Chapter 7

Conclusion

In this thesis, we have discussed several major scalability challenges in Automated Program
Verification (APV) for system software. Let us review the thesis statement:

While fully automated program verification is impossible,
we can often have scalable solutions to practical systems,

based on the recurrent reasoning and programming patterns.

We believe that we have provided sufficient evidence to support this statement, covering
various stages of the verification process:

In terms of developing proofs (Chapter 3), we first discussed the challenges of memory
reasoning. While the general case aliasing can be very complex, we have shown that in
practice, linearity is the common case in system software. We thus introduced linear types
to exploit the pattern, not only improving the performance of the verification process,
but also reducing the complexity of the specification. We also discussed the challenges
theory-specific reasoning, where we converted the existing manual proof patterns into
automated encoding in the verification condition generator (VCG).

In terms of debugging proofs (Chapter 4), while fixing a proof failure is intrinsically
manual, we again make observations on the common manual patterns. We have shown that
these patterns are amenable to mechanization, and we further provided a framework for
developers to define their own debug automation.

In terms of reusing proofs (Chapter 5), we demonstrated how to decompose a monolithic
system software verification task into smaller, modular, and reusable components. By
leveraging appropriate abstractions and language features, such as functors, we achieved a
significant reduction in verification effort. Additionally, our curated standard library, built
from past projects, highlights the recurrent reasoning patterns prevalent in APV projects.

In terms of stabilizing proofs (Chapter 6), we face yet another severe challenge rooted
in the undecidable nature of APV. To tackle this challenge, we developed a systematic
methodology to quantify and detect instability, moving from anecdotal observations into
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rigorous statistical analysis. Through carefully designed experiments, we identified recurring
causes of instability and proposed targeted mitigation strategies. We further leverage the
unique structural properties of APV queries in our mitigation, resulting in a substantial
improvement in stability and robustness of the verification process.

While we have made non-trivial progress in addressing the scalability problems, there is
still much work to be done. Certain aspects of APV remain challenging, and new issues will
undoubtedly emerge as systems grow in complexity and scale. However, we are confident
that the principles and methodologies outlined in this thesis provide a solid foundation
for tackling these challenges. Building on the patterns and insights we have identified, we
believe that scalable and practical solutions for system software verification will be within
reach.
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Appendices

A. Mutant Success Rates
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Figure 1: Mutant Success Rates for Komodo𝐷

Our stability categorization is based on the mutant success rate. (Recall the intuition
behind the mutant success rate in Tab. 6.1.) Here we show the CDF of the mutant success
rates in Komodo𝐷. Most of the queries have a mutant success rate of 100%, so the y-axis is
adjusted to show the details of other cases. In later versions of Z3, the span of y-axis is
larger, indicating more unstable or unsolvable queries. shuffling also spans a larger range
on the y-axis than the other methods.
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Figure 2: Mutant Success Rates for Komodo𝑆

The proportion of unstable queries is consistently low in Komodo𝑆, resulting in very
few data points in the plots. Note shuffling is nearly a flat line, indicating that it almost
finds no unstable queries. This is because shuffling only changes the order of consecutive
assert commands in the query, and 99.5% of the Komodo𝑆 queries contains exactly one
assert. This property is unique to Komodo𝑆.
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Figure 3: Mutant Success Rates for VeriBetrKV𝐷.
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Figure 4: Mutant Success Rates for VeriBetrKV𝐿.

We observe similar patterns as in Fig. 1: in later versions of Z3, instability increases,
and shuffling finds more unstable queries than other methods.
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Figure 5: Mutant Success Rates DICE⋆
𝐹 .
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Figure 6: Mutant Success Rates for vWasm𝐹 .

Instability exists in DICE⋆
𝐹 but is not as severe as in Komodo𝐷, VeriBetrKV𝐷, and

VeriBetrKV𝐿. The differences between mutation methods are not obvious. Meanwhile,
vWasm𝐹 is overall stable, which results in a small number of data points in the plots.
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B. Comparison on Time Limit Choices
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Figure 7: Comparison on Time Limit Choices.

We extend Fig. 6.3. Here we present the results from all six projects using the most
recent version of Z3 and a 150s time limit. Note the step curves should all converge as 𝑇lim
approaches infinity, since the differences between adding 5s, 30s, and 60s become negligible.
Such convergence is captured in all projects except Komodo𝐷, where 150s is insufficient.
Note the curves often do not converge to 0%. For example, in VeriBetrKV𝐿, the proportion
of unstable queries narrows to around 3% after 100s, but it does not further decrease.
Therefore, increasing 𝑇lim helps mitigate instability, but it has diminishing return beyond a
certain threshold.
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C. Comparison on Mutation Methods
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Figure 8: Comparison on Mutation Methods for Komodo𝐷.

We extend the results from Fig. 6.4 on Komodo𝐷 with all solvers versions. Recall that each
plot shows the proportion of unstable queries from each mutation method. Note the scale
of the y-axis is different for each plot, where older solver versions have fewer unstable

queries. Differences between mutation methods also become pronounced as we move to
newer solver versions, with shuffling being the most effective, and reseeding being the
least effective.
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Figure 9: Comparison on Mutation Methods for Komodo𝑆.

In Komodo𝑆, the proportion of unstable queries is consistently low, and differences
between mutation methods are not evident. We note that shuffling disappears in the plot,
due to the reason explained in Fig. 2.
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Figure 10: Comparison on Mutation Methods for VeriBetrKV𝐷.
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Figure 11: Comparison on Mutation Methods for VeriBetrKV𝐿.

In VeriBetrKV𝐷 and VeriBetrKV𝐿, we observe similar trends as in Komodo𝐷 from
Fig. 8, where the overall instability and the differences between mutation methods increase
as we move to newer solver versions.
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Figure 12: Comparison on Mutation Methods for DICE⋆
𝐹 .
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Figure 13: Comparison on Mutation Methods for vWasm𝐹 .

The proportion of unstable queries is generally low for DICE⋆
𝐹 , but the proportion

slightly increases as we move to newer solver versions. No obvious differences between
mutation methods observed. The proportion of unstable queries is very low in all solver
versions tested for vWasm𝐹 .
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D. Degree of Stability
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Figure 14: Degree of Stability for Komodo𝐷.

We show the results of Fig. 6.5 on Komodo𝐷 with all solver versions. Recall each plot shows
the distribution of Mutant Time Deviation over the stable queries only. Note the scale
of the y-axis is different for each plot, where older solver versions have fewer stable queries
with large deviations. The differences between mutation methods are more pronounced in
newer solver versions, with shuffling being the most effective, and reseeding being the
least effective.

148



1 5 10 15 20
0

1

2

3

4

5

KomodoS Z3 4.4.2

shuffling

renaming

reseeding

1 5 10 15 20
0

1

2

3

4

5

KomodoS Z3 4.5.0

shuffling

renaming

reseeding

1 5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
KomodoS Z3 4.6.0

shuffling

renaming

reseeding

1 5 10 15 20
0

1

2

3

4

KomodoS Z3 4.8.5

shuffling

renaming

reseeding

1 5 10 15 20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

KomodoS Z3 4.8.8

shuffling

renaming

reseeding

1 5 10 15 20
0

1

2

3

4

5

6

KomodoS Z3 4.8.11

shuffling

renaming

reseeding

1 5 10 15 20
0

1

2

3

4

5

6

KomodoS Z3 4.11.2

shuffling

renaming

reseeding

1 5 10 15 20
0

1

2

3

4

KomodoS Z3 4.12.1

shuffling

renaming

reseeding

p
ro

p
or

ti
on

of
q
u

er
ie

s
ex

ce
d

in
g

(%
)

time standard deviation (seconds)

Figure 15: Degree of Stability for Komodo𝑆.

Komodo𝑆 is one of the more stable projects, but there are still non-negligible variations
in mutant response time for stable queries. Note shuffling also disappears in the results
as in Fig. 9.
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Figure 16: Degree of Stability for VeriBetrKV𝐷.
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Figure 17: Degree of Stability for VeriBetrKV𝐿.

In VeriBetrKV𝐷 and VeriBetrKV𝐿, we observe similar trends as in Komodo𝐷 from
Fig. 14 , where newer solver versions tend to have more stable queries with large deviations.
Furthermore, the differences between mutation methods are also more pronounced, where
shuffling and renaming have larger than reseeding.
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Figure 18: Degree of Stability for DICE⋆
𝐹 .
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Figure 19: Degree of Stability for vWasm𝐹 .

DICE⋆
𝐹 is one of the more stable projects, but there are still variations in mutant

response time for stable queries. vWasm𝐹 is the most stable project. Note the majority of
the stable queries have standard deviations less than one second.
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E. Comparison on Original and Mutant Queries
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Figure 20: Comparison on Original and Mutant Queries for Komodo𝐷.

We show the results of Fig. 6.6 on Komodo𝐷 with all solver versions. Only the latest Z3
version has results from extended 𝑇lim experiments. We observe some data points on the
right side of each the plot, meaning there are some cases where the original query times out,
but where median of the mutants does not. Note the log-log scale of the plots. Generally
the performance of the original query and the median of its mutants are bounded within a
1.5 factor of each other.
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Figure 21: Comparison on Original and Mutant Queries for Komodo𝑆.

The performance of the original query and the median of its mutants are more tightly
bounded within the highlighted region than in Fig. 20.
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Figure 22: Comparison on Original and Mutant Queries for VeriBetrKV𝐷.
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Figure 23: Comparison on Original and Mutant Queries for VeriBetrKV𝐿.

In VeriBetrKV𝐷 and VeriBetrKV𝐿, the data points are more scattered in the new solver
versions. We also observe some data points on the top side of the plot, meaning there are
some cases where the median of the mutants is worse than the original query. However,
there is no obvious trend that the original query is consistently better or worse overall.
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Figure 24: Comparison on Original and Mutant Queries for DICE⋆
𝐹 .
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Figure 25: Comparison on Original and Mutant Queries for vWasm𝐹 .

In DICE⋆
𝐹 , performance is generally bounded within the highlighted region. Meanwhile,

almost no query finishes ≤ 1s, which could be due to the fact that most queries in DICE⋆
𝐹

are larger than 10MB in size. vWasm𝐹 tends to produce faster running queries, and the
performance differences between the original query and its mutants is almost negligible.
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