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Abstract
Building interpretable-by-design AI models that intuitively communicate model

uncertainty is vital to engendering physician and patient trust. We develop uncertainty-
guided deep learning systems for two pertinent healthcare settings. Efficient in-
travascular access in trauma and critical care is a high-stakes intervention affording
minimal tolerance for error. Autonomous needle insertion systems can be useful
in austere environments due to the lack of skilled medical personnel. However,
inaccuracies in vessel segmentation modeling can result in vessel damage and hem-
orrhage. The risk can be mitigated via predictive uncertainty estimation to assess
model reliability. Thus, we introduce MSU-Net, a novel multistage approach to se-
mantic vessel segmentation in ultrasound images that combines the predictive power
of Monte Carlo networks and deep ensembles. We demonstrate significant improve-
ments, 27.7% over the state-of-the-art, while enhancing model reliability through a
20.9% stronger discrimination in epistemic uncertainty between correct and incor-
rect predictions.

Next, we investigate the robustness of predictive modeling in quantifying the
severity of rash manifestations associated with Cutaneous Dermatomyositis (CDM),
a rare and currently incurable autoimmune disorder. Given the importance of tele-
medicine for remote disease monitoring and timely intervention, we address chal-
lenges of data scarcity and patient diversity by integrating a novel BERT-style self-
supervised learning framework to CNN-based models. Pretrained via masked image
modeling on demographically diverse images, our model achieves over a 40% im-
provement in fine-tuning performance on high-resolution in-clinic hand images from
a limited cohort of 23 CDM patients. We achieve 83% accuracy on a held-out patient
set, surpassing the clinical benchmark of 70–75% accuracy. To our knowledge, this
is the first work to integrate uncertainty estimation into such architectures, enabling
robustness under distributional shift in skin tone unseen during fine-tuning.

Our contributions lay the groundwork for developing accurate, statistically rigor-
ous, clinically actionable deep learning models that can be aware of their limitations
and communicate this awareness to their users. Future work aims to improve the
interpretability of models for equitable clinical decision support.
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Chapter 1

Introduction

Clinical decision support systems (CDSSs) are a network of software systems used primarily at
the point-of-care to improve healthcare delivery by enhancing medical decisions with targeted
clinical knowledge and demographic patient data. While earlier CDSSs retrieved information
from knowledge-based systems, modern technologies leverage the powerful and efficient capa-
bilities of Artificial Intelligence (AI) algorithms. Recent Deep Learning (DL) systems rival the
performance of board-certified specialists; they can perform rudimentary diagnostic tasks to de-
tect diabetic retinopathy or arrhythmia on electrocardiograms (Sutton et al., 2020), generate
precise vessel segmentations (Banerjee et al., 2025), or perform automated cancerous lesion de-
tection in a fraction of the time of a trained dermatologist (Yu et al., 2017). However, while DL
is an attractive solution for solving complex diagnostic tasks, adopting such algorithms in CDSS
is challenging for the following reasons;

Clinical data quality. Acquiring high quality, clean data is non-trivial. For visual recognition
tasks, noisy image data often arises from inconsistent lighting conditions, a lack of calibration
in technology settings, and operator bias. Acquisition artifacts can obscure the desired object in
an image, leading to data leakage (Berseth, 2017) or performance degradation in downstream
tasks (Wang et al., 2021). Furthermore, the scarcity of high-quality labeled training data is a
well-known issue in the medical community, as labeling is time-consuming and requires domain
expertise. The quality of labels is critical to model performance; improper labeling can propagate
misinformation and result in inaccurate predictions, endangering patient lives and clinical reputa-
tions. Consequently, most labeled clinical datasets contain only a few hundred to a few thousand
samples, insufficient for training modern, sophisticated architectures. The limited amount of
training data provides a weak representation of larger populations, which can diminish the utility
of DL in CDSSs. Distribution shifts between training and testing data can significantly affect a
model’s generalizability, as a model trained on data from one clinic may perform poorly when
applied to patients from a different clinic.

Model interpretability. DL architectures are often described as “opaque” or “black-box”, al-
luding to the lack of interpretability of their internal decision-making processes. In healthcare,
standalone models can diminish autonomy, requiring clinicians to use model predictions with-
out sufficiently understanding how they are retrieved. Similarly, opacity makes it challenging
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to identify preexisting biases, which often go unnoticed and are unknowingly perpetuated. As
modern architectures grow in sophistication, the trade-off between interpretability and perfor-
mance becomes increasingly difficult to balance. In patient-centered care, the transparency and
open disclosure of predictive model uncertainty is an ethical and moral imperative (Simpkin and
Armstrong, 2019) to address the lack of interpretability in standalone DL models. Uncertainty
estimates enable physicians to subjectively abstain from using model predictions heuristically
(Kompa et al., 2021), sparsely leveraging a clinician’s expertise without causing fatigue. With-
out a way to communicate its predictive uncertainty, clinicians are likely to exhibit a stronger
algorithmic aversion to the CDSS (Dietvorst et al., 2015). Buffering the tendency to abandon
an algorithm the first instance of an error through uncertainty estimates is vital for the continued
adoption of DL in CDSSs.

Engendering physician trust is two-fold. First, models must be equipped to quantify their un-
certainty. Second, and crucially, uncertainty estimates must be reliable. After all, a model that
claims high certainty in every prediction is not meaningful. To address these challenges, we
design accurate and efficient DL systems for two relevant healthcare settings. Our proposed sys-
tems seek to enhance human capabilities by surpassing the performance of novice, semi-trained,
and trained clinicians at several notable diagnostic tasks. Thus, our research aims to answer the
following questions:

❖ RQ1: What additional considerations do we need to make when designing DL systems for
healthcare applications?

❖ RQ2: What methods of uncertainty quantification are most effective in communicating
predictive uncertainty?

❖ RQ3: How reliable are the uncertainty estimates of our models?

❖ RQ4: How can we ensure that our systems establish clinical relevance?

1.1 Notable Implications

1.1.1 Saving Lives at Ground Zero

Fluid resuscitation in trauma patients is an urgent high-stakes intervention that demands accu-
rate localization of femoral vessels and affords minimal tolerance for error, as imprecise needle
placement can result in complications as severe as catastrophic hemorrhage. In austere environ-
ments, autonomous robotic systems can be used to substantially automate vascular access with
minimal supervision, yet ensuring precise identification of the optimal needle insertion site with-
out human oversight is an ongoing challenge. To address this, we propose MSU-Net, a novel
multistage deep learning framework focused on the first and foundational step of this proce-
dure: high-precision segmentation of femoral vessels. Despite the complexity of this task, our
approach achieves a 92.5% Dice Score Coefficient (DSC), along with a statistically significant
reduction in false negative rates at the 95% confidence level—key metrics for minimizing the
risk of misidentified vessels.
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Crucially, our framework advances model trustworthiness, demonstrating a 20.9% improve-
ment in the discrimination of epistemic uncertainty estimates between correct and incorrect pre-
dictions. This enhanced calibration is critical for clinician trust in AI-assisted decision-making.
Our findings have direct and immediate relevance for the development of safe, autonomous
needle-insertion systems. By accurately delineating vascular structures and reducing prediction
ambiguity, our method contributes to safer procedural planning by minimizing the risk of punc-
ture in high-risk areas such as the femoral bifurcation. We lay the groundwork for dependable
AI-clinician collaboration in time-sensitive trauma care scenarios.

1.1.2 Democratizing Preventative Care via Telemedicine
Delivering timely, high-quality care through telemedicine has the potential to significantly en-
hance patient outcomes and strengthen clinician-patient relationships. As telehealth continues to
redefine healthcare as fast, accessible, and increasingly remote, the integration of AI systems into
virtual clinical workflows becomes critical—particularly for the early detection and treatment of
rare, debilitating conditions such as Cutaneous Dermatomyositis (CDM). In this work, we pro-
pose a novel image-based predictive modeling pipeline that leverages BERT-style self-supervised
pretraining to autonomously estimate rash severity in CDM patients. Our approach achieves a
40.6% improvement in accuracy over traditional transfer learning methods and demonstrates
strong generalization in out-of-distribution patients. These results exceed clinician standards,
suggesting the feasibility of deploying our system in the University of Pittsburgh Medical Center
(UPMC) telemedicine platforms to support personalized care.
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Chapter 2

Trauma Care in a Rucksack

2.1 Introduction

Trauma, the leading cause of death among young individuals in the U.S. (Wallace and Regu-
nath, 2025), often results in blood loss, which requires rapid fluid resuscitation for vital organ
oxygenation. In severe cases, hemorrhage is one of the leading causes of death within the first
hour (Verhoeff et al., 2018). Endovascular resuscitation is the most popular approach, with vas-
cular access being the critical first step. Femoral arterial and venous access is the most practical
approach (Manning et al., 2021), requiring methodical identification of the femoral vessels to
assess the optimal location for needle insertion for cannulation. Compared to other points of ac-
cess, femoral vessels provide an easily accessible and relatively safe route for rapid intravenous
access. However, due to the loss of pulses that can make arterial localization challenging, this
procedure requires the expertise of a trained physician.

In austere settings, access to timely medical care and expertise is difficult due to limited ac-
cess, dangerous conditions, time constraints, and the lack of medical infrastructure. A U.S. De-
partment of Defense analysis of battlefield mortality found that one in four pre-hospital combat
deaths and one in two in-hospital combat deaths were potentially preventable (Latif et al., 2023),
most of which were attributable to traumatic hemorrhage. During battlefield triage, environments
can become hazardous for human intervention due to exposure to chemical or nuclear waste, poor
air quality, and the presence of flammable or explosive materials. Autonomous robotic systems
can assist in intravenous fluid administration when medical experts are unavailable, providing
support in emergencies. These systems can also guide non-experts in accurately performing
phlebotomy tasks, empowering them to contribute effectively in dire medical situations.

Ultrasound (US) imaging is widely used for femoral vessel localization for several reasons.
First, its affordability, speed, safety and portability make it ideal for interventions, unlike cumber-
some CT or MRI imaging systems that use ionizing radiation. Second, US-guided catheterization
is commonly used to help distinguish artery from vein in order to prevent inadvertent punctures
(Manning et al., 2021). Third, US guidance can help locate the vessel bifurcation; a safe needle
insertion location is at least 2 cm away from this critical landmark. Despite advances in au-
tonomous needle insertion systems (Chen et al., 2022), a critical challenge persists: inaccurate
vessel predictions can have life-threatening consequences. For example, the incorrect prediction
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Figure 2.1: Ultrasound scanning apparatus for vessel localization. Our apparatus uses (a)
5 MHz linear transducer to scan a phantom model simulating femoral vessels, producing two-
dimensional transverse images and recording (b) the US probe trajectory simultaneously. (c)
Expert clinicians annotate each image using CVAT and (d) illustrates the ideal femoral arterial
puncture site (Chen et al., 2022).

of two adjacent vessels as a single vessel could lead to laceration of the vessel wall and cause
hemorrhage upon needle insertion. In severe cases, such hemorrhage can lead to death.

Accurate vessel segmentation is a crucial precursor to vessel localization. First, the US probe
scans the patient’s femoral region to collect two-dimensional (2D) transverse US images along-
side their poses (see Figure 2.1a-c). Next, vessel segmentations are performed for each 2D slice
to discriminate vessels from the background. Finally, using both robot poses and our predicted
segmentation masks, we can apply interpolation heuristics to localize the bifurcation in order to
identify the optimal insertion position.

Uncertainty estimation is essential in vessel segmentation as it provides insight into the re-
liability of the model’s predictions. In cases where the model predicts poor segmentations,
uncertainty estimation can help identify regions of the prediction that are less certain or more
error-prone. By quantifying uncertainty, the model can highlight areas where further attention
or caution is needed, guiding non-experts to avoid making decisions based on unreliable pre-
dictions. It follows that uncertainty estimation not only improves model performance, but also
ensures patient safety by reducing the risk of harmful, incorrect interventions.

Hence, we introduce MSU-Net, a novel MultiStage Monte Carlo U-Net, performing accurate
and efficient semantic vessel segmentations. We equip our models with the capacity to commu-
nicate model uncertainty, enabling transparent communication of the model’s limitations. Our
contributions include (1) identifying the first known improvement in uncertainty estimation for
ultrasound images and (2) demonstrating significant improvements in model performance with
MSU-Net. In addition to quantitative achievements, our method produces visual uncertainty
maps that are consistent with clinician evaluations of vessels. Notably, we achieve these results
with little additional resources required. Thus, our research addresses the following questions:
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❖ RQ1: How can we accurately model complex vessel structures using automated systems?

❖ RQ2: How can we improve the reliability of uncertainty quantification methods in US
image segmentation?

❖ RQ3: How can we translate quantitative or qualitative uncertainty estimates into intuitive
results for non-experts?

2.2 Uncertainty Quantification in Deep Learning

Figure 2.2: Aleatoric and epistemic uncer-
tainty in deep learning. We utilize a synthetic
regression dataset from (Wilson and Izmailov,
2020) to illustrate aleatoric and epistemic uncer-
tainties. We generate a deep ensemble of 50 in-
dependently trained regression neural networks.
Each network consists of fully-connected lay-
ers with ReLU activations and weights follow-
ing a Gaussian prior ωj ∼ N (0, σ2). A lack of
data manifests as high epistemic uncertainty, ev-
idenced by high variability in the predictions of
each network.

Uncertainty quantification is vital for assessing model reliability. Traditionally, the frequen-
tist approach relies on a single point estimate of network weights and uses class likelihoods as
confidence measures. Consider a segmentation model f ω̂ with learned weights ω̂. Given some
input x(i) ∼ D sampled from our training dataset D and an activation function σA : R → [0, 1]
applied element-wise

p̂(i) ≜ σA

(
f ω̂
(
x(i)
))

(2.1)

where p̂(i) represents the confidence of the model prediction. These probabilities can be further
binarized to generate our class predictions. However, these likelihoods often overestimate accu-
racy (Guo et al., 2017), and the popular metric used to quantify confidence, Expected Calibration
Error (ECE), has been criticized for bias and inconsistency (Gruber and Buettner, 2022). This
motivates the need for alternative approaches to accurately quantify model uncertainty. Predic-
tive uncertainty decomposes into aleatoric and epistemic components (Ghoshal et al., 2019).
Aleatoric uncertainty accounts for inherent noise in observations, while epistemic uncertainty
arises from limited training data and model parameter uncertainty. We illustrate these uncertain-
ties through a toy univariate regression dataset in Figure 2.2. Recent advancements in Bayesian
inference and Bayesian neural networks have provided robust frameworks to quantify both forms
of uncertainty by estimating posterior distributions over model weights.
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2.2.1 Exact Bayesian Inference is Intractable
We wish to compute the posterior predictive distribution

p(y|x,D) :=
∫
ω

p(y|ω,x,D)p(ω|D)dω ≈ 1

T

∑
t

p(y|ωt,x,D) for wt ∼ p(ω|D) (2.2)

but integrating over the state space of ω is computationally intractable, requiring the Monte Carlo
Integration (MCI) of T random samples described at the end of Equation 2.2. This equation is
also referred to as the Bayesian model average (BMA). MCI estimates the integration over ω by
averaging the values of model predictions p(y(i)|x(i), ωt) evaluated at random samples. Although
in expectation MCI converges to the true predictive distribution, it is infeasible to generate a suf-
ficient number of random samples in practice. Markov Chain Monte Carlo (MCMC) is a popular
alternative in which dependent samples are generated by a Markov chain, and the samples con-
verge to the target posterior distribution. Yet, MCI and MCMC are only worth the prohibitive
cost for experiments with shallow networks when substantial computational resources are avail-
able. Next, we see how variational inference can address these limitations.

2.2.2 Variational Inference

Figure 2.3: Visualizing variational inference
(VI). We posit a family of approximate dis-
tributions Q and select our initial distribution
qϕ(0)(ω) ∈ Q. VI iteratively minimizes the
KL divergence between the approximating dis-
tribution and the conditional likelihood p(ω|D)
to find the optimal qϕ∗(ω) that lies within Q.
In practice, however, we equivalently maximize
the ELBO criterion (Equation 2.3).

Consider parameterizing the (often) intractable posterior p(ω|D) from Equation 2.2 by a family
of approximate densitiesQ. Hence, we can reformulate approximating the posterior as a standard
optimization problem by minimizing the divergence between the true posterior and our parame-
terized version qϕ(ω). Kullback-Leibler (KL) divergence is a natural choice for this criterion, as
it measures the dissimilarity between two probability distributions p and q. However, in practice,
we maximize the evidence lower bound (ELBO) as a proxy for the sake of tractability

ELBO(qϕ) := Eqϕ [log p(ω,D)]− Eqϕ [log qϕ(ω)] (2.3)

which is equivalent to minimizing the KL divergence (see Appendix A.1.2 for derivation). Fi-
nally, we optimize for

qϕ∗(ω) ≜ argmax
qϕ(ω)∈Q

ELBO(qϕ) (2.4)
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This procedure is known as Variational Inference (VI), and the member qϕ∗ ∈ Q that achieves
the tightest bound serves as our best approximation.

However, there are inherent limitations to this approach. VI is sensitive to the choice of
parameterization. If the variational family cannot adequately capture the true posterior, the ap-
proximation will be poor, leading to biased or inaccurate results. Furthermore, while VI tends to
be faster than MCMC, it does not benefit from the asymptotic guarantee of achieving the target
distribution that MCMC is guaranteed (Blei et al., 2017).

2.2.3 Monte Carlo Dropout
(Gal and Ghahramani, 2016) introduced Monte Carlo Dropout (MCD) for approximate Bayesian
inference in deep neural networks, using dropout to generate stochastic forward passes that ap-
proximate the VI solution. In dropout, for a given layer ℓ in a neural network, the nodes in ℓ are
randomly retained with a probability of p and dropped with a probability of 1 − p. (Damianou
and Lawrence, 2013) showed that dropout at every weight layer is mathematically equivalent to
an approximation of a probabilistic deep Gaussian process.

Formulating MCD for convolutional neural networks relies on strategic modifications to the
standard architecture. First, dropout layers must be situated at each convolutional and fully-
connected layer. Here, the node retention rate pℓ for each layer ℓ acts as a tunable hyperparameter.
Next, training the network with L2 weight decay and dropout is equivalent to minimizing the
ELBO criterion, which is the desired VI objective. In this way, dropout implicitly optimizes a
variational approximation to the desired posterior distribution.

Bayesian approximation using MCD has been extensively applied: (Kendall et al., 2016)
developed Bayesian SegNet for scene understanding, while (Dechesne et al., 2021) used it in U-
Net for high-accuracy image segmentation. Yet, single-model architectures are now supplanted
by model ensembles due to difficulties in capturing inherent variability.

2.2.4 Deep Ensembles
An alternative to multiple forward passes of the same network through MCD is to train multi-
ple independent networks to assemble a deep ensemble. Deep ensemble members, formed by
Maximum A Posteriori (MAP) retraining of the same architecture multiple times, converge at
different local minima. It follows that deep ensembles are BMA (Wilson and Izmailov, 2020).

(Lakshminarayanan et al., 2017) found that deep ensembles produced more accurate and
better calibrated predictive distributions compared to MCD. Figure 2.4 illustrates the ability of
deep ensembles to identify multiple modes of the loss landscape over MCD.

Ensemble performance improvements are positively correlated with the diversity of its mem-
bers. Ensembling multiple models offers various strategies to encourage diversity and general-
izability. Techniques such as bagging (Breiman, 1996), stacking (Wolpert, 1992), and boosting
(Freund and Schapire, 1999) achieve this diversity. In their work, (Lakshminarayanan et al.,
2017) found that selecting different random weight initializations achieved the best performance.

Of course, this technique is considerably more computationally intensive than MCD, as it
requires training and storing multiple models for inference. However, training can be easily par-
allelized with multiple GPUs and (Lakshminarayanan et al., 2017) found that performance gains
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plateaued after an ensemble size of M = 10 deep networks. In contrast, M >> 100 non-DL
models are required to achieve comparable performance on the same task. We acknowledge that
this technique may not be computationally feasible in all contexts. However, for our purposes,
the benefits of deep ensembles are worth the relatively minimal increase in computational costs.

Figure 2.4: Monte carlo dropout vs.
deep ensembles in the loss landscape.
Toy illustration from (Fort et al., 2020).
x-axis indicates ω values and y-axis plots
the NLL. Deep ensembles formed by
MAP estimation are more likely to iden-
tify different modes of loss compared to
dropout which relies on approximating
local variational inference methods.

2.3 Related Work

2.3.1 Image Segmentation
The popular U-Net architecture (Ronneberger et al., 2015) continues to be the gold standard
for medical image semantic segmentation. The U-Net is a convolutional neural network consist-
ing of a contracting path to capture context and a symmetric expanding path to enable precise
localization. Together, these paths constitute its distinct encoder-decoder structure.

The encoder consists of convolutional layers followed by max-pooling layers to downsam-
ple and extract hierarchical features. Each layer learns a different part-based representation of
the original input; shallow layers extract low-level features such as edges, textures, and shapes,
whereas deeper layers extract full object components. Subsequently, the decoder gradually in-
creases the spatial resolution of feature maps through upsampling and skip connections to re-
construct the final segmentation mask. As a result, the U-Net produces a predicted map of size
(H ×W × L) for an input of size (H ×W ) with L distinct semantic classes.

The U-Net architecture features a copy-and-crop operation enabling it to segment fine-grained
details and learn precise boundaries, making it an ideal choice for our application. First, skip con-
nections between the encoder and decoder components help the model retain important spatial
information from the encoder, which is essential for accurate segmentation of fine structures in
medical images. The encoder processes the image and progressively reduces its spatial resolu-
tion to capture high-level features. The features of each encoder block are then copied to the
symmetric decoder block, allowing the decoder to use this high-resolution information during
upsampling. This enables the decoder to focus on more precise localization of objects. To adjust
for different sizes of outputs due to a loss of spatial resolution, a crop operation is utilized to
align the spatial dimensions of the feature maps of the encoder and decoder.

The U-Net is particularly effective due to its strong performance in limited data environments.
This is beneficial for supervised medical imaging tasks that require costly expert annotations. Its

10



ability to perform with limited data can considerably reduce the time that expert clinicians spend
on the laborious task of manually generating annotations.

The U-Net architecture has been successfully integrated in a variety of medical image seg-
mentation tasks. In 2022 alone, almost 3,000 research works cited U-Net as a baseline (Azad
et al., 2024). (Zhang et al., 2024) devised VM-UNet, leveraging state-space models to address
limitations in long-range modeling capabilities and demonstrating competitive results in skin le-
sion segmentation on the ISIC 2017 and 2018 archive datasets. (AL Qurri and Almekkawy,
2023) improved U-Net performance on CT scan and US datasets by incorporating attention and
spatial normalization mechanisms. (Arun et al., 2023) evaluated 3D Bayesian U-Nets on point-
of-care ultrasound (POCUS), motivating further exploration in austere settings.

2.3.2 Multistage Neural Network Ensembles

Although deep ensembles improve uncertainty estimation over single models (Lakshminarayanan
et al., 2017), they are limited by naı̈ve aggregation strategies such as simple or weighted averag-
ing or majority vote. (Yang et al., 2002) improves traditional ensembles by using a secondary
neural network to adaptively assign weights, leveraging the flexibility and nonlinear modeling of
neural networks. (Lai et al., 2006) designed a multistage reliability-based neural network en-
semble learning approach to discriminate good from poor creditors. Similarly, (Yin et al., 2022)
designed Paw-Net, a two-stage ensemble for semantic segmentation, which achieves higher
Intersection-over-Union (IoU) scores by integrating outputs of multiple U-Nets specialized in
different classes.

2.4 Multistage Monte Carlo U-Net (MSU-Net)

Our MSU-Net architecture draws on these prior works to leverage the capabilities of both deep
ensembles and MCD for effective vessel segmentation. First, we overproduce a set of candidate
U-Net models. Next, we select members with the strongest diversity based on our decorrelation
maximization algorithm to construct a deep ensemble. Finally, we combine their outputs using a
final U-Net fitted with MCD for precise segmentation. This constitutes our three-stage strategy,
as shown in Figure 2.5.

2.4.1 Bootstrapping Diverse Networks

Ensemble strength is determined by member diversity. (Lakshminarayanan et al., 2017) suggests
using random weight initializations to achieve this diversity. However, to manage limitations due
to data scarcity, we leverage encoder weights pretrained on the ImageNet1k dataset for each U-
Net. Fine-tuning from pretrained weights is common practice to achieve faster convergence
speed and improved performance on the target task (Hidy et al., 2024). As a consequence, di-
versity through different weight initializations is inapplicable. Instead, we train multiple models,
or candidates, using bootstrapping, inspired by the “bootstrap aggregating” (bagging) proce-
dure. This is achieved by repeatedly sampling the training dataset with replacement to generate
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Figure 2.5: Proposed MultiStage Monte Carlo U-Net (MSU-Net) architecture. Candidate U-
Nets are trained on bootstrap samples from the original training set (TR) and externally validated
on VS1. Decorrelated ensemble members are chosen using VS2 to compose our final deep
ensemble. A Monte Carlo U-Net (MCU-Net), shown on the right, is trained on ensemble outputs
to predict the final segmentation mask. We rigorously validate our results on an independent,
held-out testing set (TS).
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M training subsets, each as large as the original training dataset (further details provided in
Appendix A.3).

We train M = 15 bootstrapped models (Lakshminarayanan et al., 2017) and optimize hy-
perparameters, such as training epochs, using the held-out VS1 validation set. Early stopping
is implemented to prevent each candidate model from overfitting. We will refer to the set of M
candidates by {f ω̂1 , f ω̂2 , · · · , f ω̂M}.

2.4.2 Decorrelation Maximization

In stage 2, we select K ≤M candidates to form a diverse and efficient ensemble, aiming to min-
imize correlation and reduce computational costs. Using a modified decorrelation maximization
method from (Lai et al., 2006), we compute the Brier score loss matrix on {f ω̂1 , f ω̂2 , · · · , f ω̂M}
using a validation set VS2 within a specified region of interest (ROI) selected to address class im-
balance (refer to Appendix A.4.2 for details). We calculate the mean, variance, and covariance
of the Brier scores to build the correlation matrix R, which quantifies the strength of correlations
within model pairs. The matrix R is represented in block form for each candidate f ω̂i as

R
extract principal submatrix−−−−−−−−−−−−−→

[
R−i ri
rTi 1

]
(2.5)

where R−i is the principal submatrix of R resulting from deleting the ith row and ith column.
Subsequently, we compute the plural-correlation coefficient

ρ2i := rTi R
−1
−i ri (2.6)

by which candidate f ω̂i is kept if ρ2i ≤ γ for some threshold γ, else discarded, in order to build
our final ensemble. Empirical trials testing γ thresholds indicate that K = 3 performs almost
equally as well as K = 15, suggesting that minimal additional training will suffice for our new
architecture. Our full procedure is detailed in Algorithm 1.

Figure 2.6: Pair-wise correlation matrix of
brier score loss error on VS2. Each candi-
date U-Net is evaluated on VS2 and the cor-
relation of their losses is subsequently com-
puted. Darker colors indicate stronger posi-
tive correlation, whereas lighter colors indi-
cate weaker correlation. Thus, loss correla-
tion is utilized as a viable proxy for model
diversity. We aim to select models that min-
imize loss correlation.
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Algorithm 1 Decorrelation maximization
1: Input: Candidate models {f ω̂1 , f ω̂2 , · · · , f ω̂M}, correlation matrix R, threshold γ
2: Output: Chosen ensemble members {f ∗

1 , f
∗
2 , · · · , f ∗

K}
3: ensemble← []
4: for f ω̂i in {f ω̂1 , f ω̂2 , · · · , f ω̂M} do

5: Rewrite R in block matrix form for candidate model f ω̂i , i.e. R→
[
R−i ri
rTi 1

]
6: ρ2i ← rTi R

−1
−i ri

7: if ρ2i ≤ γ then
8: ensemble.append

(
f ω̂i
)

9: else
10: Discard f ω̂i

11: end if
12: end for
13: return ensemble

We illustrate pair-wise correlations of our candidate U-Nets in Figure 2.6. Note that lighter
colors denote weaker correlations and vice versa. For example, f ω̂15 appears to have the weakest
correlations with all other candidates. We present a detailed analysis of patterns in loss correla-
tions in Appendix A.4.1.

2.4.3 Monte Carlo U-Net (MCU-Net)
In stage 3, we train a final Monte Carlo U-Net (MCU-Net) combiner taking ensemble member
outputs as inputs and outputting segmentation and uncertainty maps.

We introduce stochasticity into our inference process by situating dropout layers after the
ReLU activation in each convolutional and fully-connected layer of the U-Net architecture. Em-
pirical tests indicate that drop rates of 0.4 and 0.5 provide the most training stability while en-
abling enough stochasticity for meaningful results. These dropout layers are turned on during
both training and inference. We then perform T forward passes, or Monte Carlo samples, of
the MCU-Net during inference to compute (1) the average model prediction and (2) the model
uncertainty maps. Our empirical results show no significant improvement beyond T = 30. The
average model prediction is computed by

p̄(i) ≜
1

T

T∑
t=1

σA

(
f ω̂t
(
x(i)
))

(2.7)

for an input image x(i) and activation function σA : R → [0, 1] applied element-wise. Notice
how our predicted probability map in Equation 2.7 is equivalent to the frequentist notion of
confidence defined in Equation 2.1.

Predictive uncertainty. We can generate pixel-wise predictive uncertainty maps during infer-
ence. In the binary segmentation problem, each pixel can be treated as an independent binary
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classification instance, making y discrete. Thus, our predictive uncertainty decomposes to

V arΩ(y) ≜
1

T

T∑
t=1

[
diag {p(y | x, ω̂t} − p(y | x, ω̂t)

⊗2
]

︸ ︷︷ ︸
aleatoric uncertainty

+
1

T

T∑
t=1

[p(y | x, ω̂t)− pω̂(y | x)]⊗2

︸ ︷︷ ︸
epistemic uncertainty

(2.8)

for some parameterization ω ∈ Ω where p⊗2 ≜ ppT . Let p̂t represent the predicted probability
maps from the t-th forward pass, thus we substitute p̂t for p(y | x, ω̂t) in Equation 2.8. Ad-
ditionally, MCD computes an approximation to the predictive posterior distribution, hence we
can substitute in Equation 2.7 for pω̂(y | x) above. Aleatoric uncertainty captures the inherent
randomness within our data, while epistemic uncertainty captures uncertainty across the chosen
model parameters.

Since our baseline is a single MCU-Net, we compute the segmentation and uncertainty maps
of our baseline analogously to MSU-Net.

2.5 Fine-tuning Setup
For image segmentation, we use U-Net with a ResNet34 backbone in Pytorch from the Segmen-
tation Models library (Iakubovskii, 2019) with encoders pretrained on ImageNet1k. We perform
fine-tuning experiments using NVIDIA RTX A6000 GPUs.

2.5.1 Dataset
We used a US scanning system to scan the CAE Blue Phantom anthropomorphic gel model
simulating human femoral vessels. Equipped with a 5MHz linear transducer, the system can
scan up to 5 cm in depth, producing 2D transverse ultrasound images (see setup in Figure 2.1).
Expert clinicians annotate these images using the Computer Vision Annotating Tool (CVAT)
(Sekachev et al., 2020), which are subsequently cropped and resized to 256 × 256 pixels. The
dataset is divided into training, validation, and testing subsets. The validation set is further
randomly divided into two disjoint sets, VS1 and VS2.

2.5.2 Loss Specification
We place a Gaussian prior on the weights of each candidate U-Net in stage 1 by optimizing with
L2 weight decay to mimic MAP estimation. This is necessary to allow members to explore dif-
ferent basins of attraction. We similarly train the final MCU-Net combiner in stage 3 with added
dropout to implicitly optimize a variational approximation to the posterior predictive distribu-
tion. For binary segmentation, we utilize the binary cross-entropy loss criterion. However, our
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dataset exhibits severe class imbalance due to a considerably larger proportion of background
(negative) pixels than vessels per frame. On average, less than 4% of all pixels are vessels (see
Appendix A.4.2). To alleviate class imbalance, we also include a term for Dice loss, which is
robust and beneficial for segmentation tasks with imbalanced labels. We combine both losses to
balance between achieving pixel-wise accuracy and boundary alignment

Lseg ≜ −
1

N

N∑
k=1

yk · log p̂k + (1− yk) · log (1− p̂k)︸ ︷︷ ︸
LBCE

+1− 2
∑N

k=1 ykp̂k + ϵ∑N
k=1 y

2
k +

∑N
k=1 p̂k

2 + ϵ︸ ︷︷ ︸
LDICE

+
λ

2
||ω||22

(2.9)
where ϵ is added to maintain numerical stability during training. For smoothed Dice loss, we set
ϵ = 1.0. For competitive convergence rates, we opt for the AdamW optimizer initialized with
β1 = 0.9, β2 = 0.999 exponential decay rates, and a learning rate of 1e−4. Appendix A.4.4
specifies the exact hyperparameter settings for the experimental results found in Section 2.7.

2.6 Evaluation

2.6.1 Quantifying Uncertainty Quality
In the frequentist paradigm, given p̂ij = σA

(
f ω̂(xij)

)
, the Expected Calibration Error (ECE)

ECE :=
M∑

m=1

|Bm|
n

abs

 1

|Bm|
∑
i∈Bm

1 [bin(p̂ij) = yij]︸ ︷︷ ︸
acc(Bm)

− 1

|Bm|
∑
i∈Bm

p̂ij︸ ︷︷ ︸
conf(Bm)

 (2.10)

is commonly used to evaluate model calibration. However, deep networks notoriously overes-
timate their prediction accuracy, resulting in statistically biased ECE estimates. An apparent
source of bias is extreme class imbalance, which is particularly relevant to our problem context.
The vast number of “easy” background pixels can artificially inflate the proportion of highly con-
fident predictions, reducing the ECE. We illustrate this deficiency in Appendix A.6.1. Moreover,
the ECE value is highly sensitive to the bin count M .

However, Bayesian (and adjacent) approaches do not have well-defined or consistent metrics
to evaluate the quality of model uncertainty estimates, evidently due to the “black-box” nature of
DL. Model quality depends on accurately reflecting uncertainty: low for correct predictions and
high for incorrect ones, improving calibration and user trust. As such, we devise a novel two-fold
approach that evaluates both the strength and quality of the model uncertainty estimates. First,
we use the Rényi divergence (RD) statistic, a generalization of KL divergence, to measure the
dissimilarity between the epistemic uncertainty distributions of correct (p) from incorrect (q)
predictions. RD quantifies the compression gain achievable by mixing two codes p and q (van
Erven and Harremos, 2014). Second, we examine whether the mean epistemic uncertainty for
the set of correct predictions is significantly lower than the mean of incorrect predictions.
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Distribution divergence estimation. We use a nonparametric estimator of RD that is con-
ditionally L2-consistent using only k-nearest-neighbor statistics to reduce computational effort
(Poczos and Schneider, 2011). For i.i.d. samples X1:n0 = (X1, · · · , Xn0) from a distribution
with density p and Y1:n1 = (Y1, · · · , Yn1) from a distribution with density q, ρk(i) denotes the
k-th nearest neighbor of observation Xi in X1:n0 and vk(i) the k-th nearest neighbor of Xi in
Y1:n1 . With Bk,α = Γ(k)2

Γ(k−α+1)Γ(k+α−1)
where Γ(x) = (x− 1)!, we can estimate RD by

R̂α(p || q) ≜
1

α− 1
log

(
n−1
0

n0∑
i=1

(
(n0 − 1)ρk(i)

n1vk(i)

)1−α

Bk,α

)
(2.11)

The hyperparameter α controls how much the divergence measure weighs different parts of the
distributions. We select k = 4 for k-nearest neighbors and α = 0.85 (Poczos and Schnei-
der, 2011) for numerical stability and robustness against heavy tails. We develop a vectorized
approach to computing estimated RD, achieving up to 176x faster execution (Appendix A.2).

Distribution mean estimation. In addition to measuring the distributional divergence, we also
verify whether the mean epistemic uncertainty for correct predictions is significantly lower than
the mean uncertainty for incorrect predictions. To do so, we use kernel density estimation with a
Gaussian kernel and the optimal bandwidth via Silverman’s rule of thumb over 100, 000 samples.
We quantify the difference in mean epistemic uncertainty by

∆µ̂ ≜ (µ̂incorr − µ̂corr) (2.12)

2.6.2 Model Performance Metrics
Dice score coefficient (DSC). DSC is a similarity metric commonly used in image segmenta-
tion to measure the degree of overlap between two sets A and B. In the segmentation context,
we can flatten the binarized predictions p̂ and ground truth masks y and evaluate the DSC by

DSC :=
2
∑N

k=1 ykp̂k + ϵ∑N
k=1 y

2
k +

∑N
k=1 p̂k

2 + ϵ
(2.13)

Jaccard index. Commonly referred to as the Intersection-over-Union (IoU) score, the Jaccard
index is another popular metric to evaluate model performance in image segmentation tasks. IoU
and DSC are very similar, however IoU penalizes under- and over-segmentation more than DSC.
We evaluate IoU for the sake of completeness by

IoU :=
DSC

2−DSC
(2.14)

Type I and Type II errors. We compute the true negatives (TN), true positives (TP), false
negatives (FN) and false positives (FP) by considering individual pixels as independent binary
classification instances. We then calculate the type I error rate, or the rate of false positives
(FPR), and the type II error rate, or the rate of false negatives (FNR).
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2.6.3 Bootstrapping 95% Confidence Intervals

Apart from leveraging bootstrapping to inject diversity into our ensemble members, we also use
bootstrapping to construct confidence intervals on our test statistics. Using the bootstrapping
procedure described in Section A.3, we construct B = 1000 bootstrap samples of the testing set,
{DTS

′1,DTS
′2, · · · ,DTS

′B} on which we evaluate our metrics defined in Section 2.6.2. Setting
α = 0.05, we use the percentile method to construct (1− α)% confidence intervals

[Qt̃(α/2), Qt̃(1− α/2) ] (2.15)

where Qt̃ is the quantile function on our test statistic t̃.
Unfortunately, while the naı̈ve bootstrap is a powerful inferential tool, it cannot be employed

to construct 95% confidence intervals on our RD estimator. Nearest neighbor estimators are
sensitive to perturbations in the underlying distribution, therefore their limited variance cannot
be consistently estimated by a naı̈ve Efron-type bootstrap (Abadie and Imbens, 2008). Since this
behavior may result in a non-negligible positive bias in bootstrap estimates, we instead apply a
direct M-out-of-N (MooN) type bootstrap (Walsh and Jentsch, 2023) shown in Algorithm 2.

Algorithm 2 M-out-of-N (MooN) bootstrapping
1: Input: Distributions p, q, degree of undersampling γ ∈ (0, 1]
2: Output: Bootstrap estimates of nonparametric Rényi divergence statistic
3: n0, n1 ← |p|, |q|
4: αn ← n0

n1

5: N∗ ←
⌊
(n0 + n1)

γ + 1
2

⌋
6: n∗

0 ←
⌊

αn

1+αn
N∗ + 1

2

⌋
7: n∗

1 ← N∗ − n∗
0

8: samples← []
9: for i in range 1000 do

10: boot p← resample(p, n samples=n∗
0) with replacement

11: boot q← resample(q, n samples=n∗
1) with replacement

12: samples
+
= [R̂α=0.85(boot p, boot q)]

13: end for
14: return samples

For MooN-type bootstrap, γ = 0.8 is selected to maintain the largest proportion of original data
while achieving the closest coverage probability of 0.950 for 95% confidence intervals.

Finally, we conduct permutation tests to assess the statistical deterministicity of our model
quality results. For total B = 1000 iterations, we combine all correct and incorrect predictions
into a single pool, randomly assign labels as if there were no significant differences between the
two groups, and calculate the approximate RD value. We can then compute the empirical p-value
from all B iterations to assess the likelihood of achieving our results.
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2.7 Results

2.7.1 Improving Clinical Relevance via Model Precision

Figure 2.7: Training and validation curves for MSU-Net vs. MCU-Net. (a) Training (left) and
validation (right) curves for MSU-Net and MCU-Net. Combined loss and DSC values computed
on VS1 are plotted at the end of every epoch. Early stopping is delineated by gray lines. (b)
Precision-recall curves indicate improved MSU-Net performance.

Figure 2.7a shows training behavior for both models. MSU-Net shows a more stable conver-
gence and consistently outperforms MCU-Net during validation performed after each epoch. We
additionally utilize precision-recall curves, seen in Fig. 2.7b, which are resilient to unbalanced
classes since they only focus on positive class predictions. Performance results are displayed
in Table 2.1. MSU-Net achieves a 27.7% better mean DSC and 18.1% better mean IoU. We
achieve significant improvements in sensitivity and false negative rate scores at alpha level 0.05,
while other metrics remain similar. We refer to Appendix A.5.1 for confusion matrices for both
architectures.

DSC(↑) IoU(↑) Specificity(↑) Sensitivity(↑) FPR(↓) FNR(↓)

MCU-NET 0.648 0.679 0.998 0.673 0.002 0.327
MSU-NET 0.925 0.860 0.996 0.890 0.004 0.110

Table 2.1: Model performance on test dataset. Arrow indicates direction of better performance.

2.7.2 Improving Reliability of Epistemic Uncertainties
Our model quality results are shown in Table 2.2. Permutation tests for MCU-Net and MSU-Net,
p-val ≤ 0.003 for both, indicate that the observed separation between correct and incorrect pre-
dictions is statistically significant. At the 95% confidence level, we see no overlap between their
confidence intervals, revealing that the ability of MSU-Net to distinguish correct from incorrect
predictions is significantly better than that of MCU-Net. We verify this in Figure 2.8.
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Figure 2.8: Epistemic uncertainty distributions for correct and incorrect segmentations for
(a) MCU-Net and (b) MSU-Net. Our approach yields a markedly better differentiation of incor-
rect (orange) from correct (blue) predictions.

µ̂corr µ̂incorr ∆µ̂(↑) R̂α(corr || incorr)(↑) 95% CI on R̂α p-val(↓)

MCU-NET 7.230 11.229 3.999 0.429 [0.426, 0.453] 0.003
MSU-NET 20.783 33.876 13.093 0.638 [0.603, 0.667] 0.003

Table 2.2: Model quality on test dataset. Arrows indicates direction of better performance.

Qualitative uncertainty maps visually validate our findings and capture local variations in
model performance. MCU-Net exhibits indiscriminately low epistemic uncertainty in large
patches where the model fails to segment a vessel and is highly sensitive to noise in the back-
ground class as shown by high aleatoric uncertainty outside of the vessels in Fig. 2.9. In contrast,
MSU-Net provides more interpretable uncertainty values, demonstrating increased epistemic un-
certainty for semantically challenging pixels at the bottom of vessels and decreased epistemic
uncertainty for clearer vessel tops. Furthermore, MSU-Net excels by capturing the intrinsic vari-
ability in vessel shapes. This is evident from the increased aleatoric uncertainty around vessel
walls, reflecting the diverse vessel structures inherent to each subject.

We provide additional examples of our vessel segmentations along with the corresponding
epistemic uncertainty maps in Appendix A.6.2.

2.7.3 Effects of Ablating Model Stages on Segmentation Capabilities

We methodically test the individual effects of each stage through ablation studies. We validate
the following meaningful configurations of stages 1, 2, and 3 using the DSC and IoU metrics on
the VS1 validation set:

• MCU-Net: Our baseline (single network)
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Figure 2.9: Qualitative epistemic and aleatoric uncertainty maps for (a) MCU-Net and (b)
MSU-Net. Darker colors indicate lower uncertainty, while lighter colors indicate higher uncer-
tainty. Evaluations are confined to white-outlined region of interest to address class imbalance.

• Deep Ensemble: A deep ensemble of M = 15 bagged networks
• Decorrelated Deep Ensemble: A deep ensemble of K = 3 bagged networks optimally

selected through decorrelation maximization
• MSU-Net: Our proposed framework with a decorrelated ensemble of bagged networks

and a final MCU-Net combiner

Model Stage 1 Stage 2 Stage 3 DSC(↑) ∆DSC IoU(↑) ∆IoU

MCU-NET ✗ ✗ ✓ 0.649 −0.272 0.534 −0.310

DEEP ENSEMBLE ✓ ✗ ✗ 0.782 −0.139 0.689 −0.155

DECORRELATED DEEP

ENSEMBLE
✓ ✓ ✗ 0.821 −0.100 0.742 −0.102

MSU-NET ✓ ✓ ✓ 0.921 +0.0 0.844 +0.0

Table 2.3: Results from ablation studies on MSU-Net model stages. While MSU-Net outper-
forms all other configurations, we find that our decorrelation maximization algorithm consider-
ably improves the performance of naı̈ve deep ensembles. Stage 2 is not evaluated independently,
as decorrelation is only meaningful when used in conjunction with ensembles.

The addition of each stage improves both DSC and IoU scores on the VS1 validation set.
Deep ensembles improve segmentation performance over a single Monte carlo network. Inter-
estingly, our decorrelation procedure that reduces the size of the ensemble to K = 3 networks
exhibits a 3.9% increase in DSC and 3.5% increase in IoU over the original deep ensemble of
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M = 15 networks. These results suggest that training more models is not always the optimal
strategy. Rather, training a robust, diverse ensemble can provide stronger predictive power. There
is benefit in motivating networks to explore different local minima of the loss landscape.

MSU-Net generally outperforms MCU-Net. Although it performs marginally worse at speci-
ficity and false positive rates (FPR), the precision-recall curves from Fig. 2.7b indicate that MSU-
Net achieves an average precision score of 0.936, which is 18% higher than MCU-Net’s score of
0.755, compared to the baseline score of 0.09 for a “no-skill” classifier. As such, at the same level
of recall, MSU-Net correctly classifies a higher proportion of pixels that are actually vessels than
MCU-Net. Crucially, MSU-Net achieves a considerably lower false negative rate (FNR) than
MCU-Net. In this context, not recognizing a real vessel can have more severe consequences for
a critically injured person than mistakenly identifying a vessel that is not actually there. MSU-
Net improves credibility not only through higher quality results, but also through more accurate
results while avoiding potentially disastrous deficiencies of predictive modeling in the context of
medical image segmentation.

2.8 Discussion and Future Work
Our proposed multistage learning ensemble framework, MSU-Net, significantly improves un-
certainty quantification and accuracy in femoral vessel segmentation in ultrasound images, out-
performing traditional Monte Carlo U-Nets. The integration of bagging and decorrelation tech-
niques ensures that the ensemble models are diverse and robust. We empirically show that deep
ensembles strongly benefit from diversity and provide an intuitive decorrelation maximization
algorithm to produce well-calibrated, high performing deep ensembles. Our results indicate a
27.7% improvement in the mean DSC, with better sensitivity and lower false negative rates,
increasing transparency and trustworthiness. These advancements are achieved despite mini-
mal additional training, making it a valuable tool for guiding autonomous systems and assisting
non-experts in high-stakes medical environments. MSU-Net’s differentiation between correct
and incorrect predictions, measured by Rényi divergence and observed in qualitative uncertainty
maps, highlights its ability to identify and address segmentation errors. Our qualitative maps
enable clinicians to interpret model uncertainty results without requiring expertise in DL. Future
research will focus on refining ensemble selection and validating our findings on live animal and
human data, extending beyond the current phantom data and binary segmentation context.
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Chapter 3

Advancing AI Trust in Personalized
Medicine

3.1 Introduction

3.1.1 Dermatomyositis
Dermatomyositis (DM) is a type of Idiopathic Inflammatory Myopathies (IIMs, myositis), char-
acterized by progressive muscle weakness and inflammatory rashes and other organ involvement
(DeWane et al., 2020). Rashes are often pruritic, photosensitive, and considerably impact pa-
tients’ quality of life (QOL) (Goreshi et al., 2011; Kleitsch et al., 2023). DM patients experience
a poorer QOL across all subscales of the Short Form 36, particularly in the areas of vitality and
mental health, compared to the general population. (Hundley et al., 2006) evaluated 71 patients
with DM or DM sine myositis against two QOL measures, Skindex-16 and Dermatology Life
Quality Index, identifying a strong correlation between DM symptoms and higher (worse) QOL
scores, especially in women. In addition, their scores are markedly lower than those of other
chronic diseases such as psoriasis and atopic dermatitis. Treatment options for DM are currently
limited, often accompanied by significant side effects and inadequate efficacy, highlighting the
critical need for novel therapies through well-designed randomized controlled trials. However,
improvements in DM activity can lead to a statistically significant reduction in associated pruri-
tus (Robinson et al., 2015), the main contributor to the worsening of psychological symptoms
in affected patients and their ability to function in daily tasks. Evidently, there is an incentive for
early detection of DM to mitigate harmful symptoms that generally intensify over time.

3.1.2 DART Study
Cutaneous dermatomyositis (CDM) is the skin manifestation of dermatomyositis, where the rash
is the most prominent feature. Although most commonly evaluated on the hand, rashes may
also occur on the face, neck, upper chest, and back, and may be accompanied by swelling in
these affected areas. Traditional in-clinic diagnosis requires clinical evaluations of rashes, which
are expert-dependent, subjective, semi-quantitative, and have variable inter-rater reliability. Our
investigation of the level of agreement between two rheumatologists (MDs) for CDM severity
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Figure 3.1: Dermatomyositis Assessment of Rash via Telemedicine (DART) study design.
Each participant completes two clinic visits, with the second occurring approximately six months
after the first visit. Demographics, disease characteristics, and classification of disease are col-
lected in clinic visit 1. All outcome evaluations, including physician assessment, imaging proce-
dures and PROMs are conducted during both clinic visit 1 and 2, except for physician and patient
global impression of change conducted only in visit 2 (Aggarwal and Pongtarakulpanit, 2025).
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scoring found the weighted Cohen’s kappa to be 0.561 ± 0.0615 at the 95% confidence level.
(Landis and Koch, 1977) identifies a Cohen’s kappa value of 0.41–0.60 as moderate agreement.
These limitations may be amplified in larger multicenter clinical trials, especially in centers
lacking expertise in the field.

Rapid advancements in image-based machine learning technologies present an attractive so-
lution for enhancing the reliability and reproducibility of rheumatological assessment. There-
fore, clinicians from the Division of Rheumatology and Clinical Immunology at the Univer-
sity of Pittsburgh Medical Center (UPMC) are exploring the feasibility of ML applications in
telemedicine to assess CDM skin rashes compared to traditional in-clinic evaluations. CDM pa-
tients have been prospectively enrolled in an observational study called DART (Dermatomyositis
Assessment of Rash via Telemedicine), with eligiblity determined by the 2017 EULAR/ACR
criteria. DART aims to demonstrate automated, objective, quantitative, and reproducible image-
based ML outcome measures of CDM disease activity using (1) in-clinic 3D imaging, (2) in-
clinic 2D smartphone imaging, and (3) patient 2D self-imaging using mobile applications (Ag-
garwal and Pongtarakulpanit, 2025).

In this study, two independent MDs (MD1 and MD2) of varying expertise in myositis assess
participants’ rash manifestations during both in-clinic and telemedicine visits, spaced approxi-
mately 2-4 weeks apart. A second in-clinic visit is conducted approximately 6 months from the
first visit. The Cutaneous Dermatomyositis Disease Area and Severity Index (CDASI) (Tiao
et al., 2017) is used to score the severity of hand rashes during these evaluations by rating dis-
ease severity and activity. In addition, patient-reported outcome measures (PROMs) are acquired
during in-clinic visits. Figure 3.1 illustrates the DART study design.

However, several challenges persist in applying ML towards the task of automated CDM rash
severity scoring. First, the prevalence of DM, and specifically CDM, is quite rare; A retrospective
study in the U.S., including subjects of all ages based on hospital discharge diagnoses from 1963
to 1982, reported an annual incidence of dermatomyositis and polymyositis of 5.5 cases per
million inhabitants (Oddis et al., 1990). The rarity of CDM, the specialized expertise required
to assess rash severity, and the time-consuming labeling procedure contribute to data scarcity.
Second, inconsistencies during image acquisition can negatively affect model training. The 2D
and 3D images are collected through different imaging technologies, lacking the standardization
required for robust model performance (Rodrı́guez-Rodrı́guez et al., 2024).

To address these challenges, we contribute a novel DL framework that leverages powerful
pretraining capabilities to overcome data scarcity, generating relevant and reliable severity pre-
dictions. Our fully-automated system predicts scores comparable to the standard expert-rated
CDASI, exceeding accuracy thresholds set by current DM experts. We aim to answer the follow-
ing research questions:

❖ RQ1: Which modeling paradigms can overcome data scarcity issues?

❖ RQ2: How do we overcome a lack of diversity in our limited dataset?

❖ RQ3: How reliable are the uncertainty estimates of our model under dataset shift?
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Figure 3.2: Examples of image modalities in DART study for Patient 001DM1031. We
explore the following three modalities from left to right: in-clinic 3D imaging, in-clinic 2D
smartphone imaging, and telemedicine (at-home) 2D smartphone imagining.

3.2 Data Collection

3.2.1 Image Modalities

In-clinic 3D imaging. The VECTRA H1 handheld imaging system provides high-resolution,
clinical quality 3D imaging with minimal staff training required (Scientific, 2024). We lever-
age its proprietary RBX technology to separate unique color signatures of Red and Brown skin
components for unequalled visualization of skin conditions. A designated research coordinator
acquires 3D images from the VECTRA H1 camera, which are further annotated and exported as
2D images by attending physicians.

In-clinic 2D smartphone imaging. In-clinic 2D images are acquired in a separate room from
VECTRA H1 3D images. Hand placement within the images appears consistent among the in-
clinic smartphone images. However, images differ in background setting; acquisition artifacts,
such as marker labels, are visible in some images but not all.

Telemedicine 2D smartphone imaging. Patients upload telemedicine images using the SkinIO
smartphone application (SkinIO, 2024). We observe that these images lack consistency, exhibit-
ing noticeable variations in background, lighting, and angle. As such, their quality is consider-
ably lower than that of the in-clinic data.

Clinicians evaluate scores using the CDASIver02 form, a partially-validated DM-specific instru-
ment designed to capture the extent of cutaneous disease (Anyanwu et al., 2015). CDASI scores
for hand images range from 0 to 14, with higher scores indicating greater severity. Images of the
right and left hands are evaluated simultaneously and given one CDASI score to maintain con-
sistency, since rashes tend to distribute symmetrically across hands. Examples of our collected
datasets can be found in Appendix B.1 Figure B.1.

26



3.2.2 Dataset Limitations

In the initial study, a total of 27 CDM patients underwent evaluation, of which 26 were Caucasian-
American and 1 African-American. Approximately 82.6% of the patients were female. The
patients had a mean age of 48.6± 17.4 years and a median disease duration of 38 months.

Upon further examination, 12 of the 88 initial images appeared to have discrepancies of 2
points or more on the CDASI scale between the two rheumatologists. After consulting with
the clinicians, we agreed to remove these from our dataset to prevent the high uncertainty and
disagreement from affecting our model calibration. This process resulted in a final set of 76
images from 23 patients. Furthermore, MD1 scores were designated as the reference standard
for CDASI scoring, given the increased frequency of patient interactions and greater familiarity
with MD1. Figure 3.3 displays our data analysis on the final set of 76 images.

Figure 3.3: Exploratory data
analysis of demographics for
post-processed DART data.
Distribution of (a) age and sex
demographics and (b) ground
truth labels after removing four
patients with large MD rating dis-
crepancies during both in-clinic
visits.

Evidently, this process further imbalances our dataset. The only African-American patient
in our original dataset was removed due to high variability in CDASI scores between MDs. In
addition, the label distribution is unimodal with a peak at CDASI of 0, with a strong right skew
due to a single outlying patient with a CDASI of 11 during their first visit. The overwhelming
majority of “normal” (CDASI of 0) patients in our dataset is likely to have a non-negligible
impact on our model predictions.

One technique to alleviate data scarcity is to upsample the original dataset with data augmen-
tations. We choose the following augmentations: horizontal flip, vertical flip, 90◦ counterclock-
wise (CCW) rotation, 180◦ CCW rotation, and 270◦ CCW rotation, adding 5 new augmented
images per original image in our dataset. This process increased our data set by 6x, resulting in
a total of 456 images available for analysis.

3.3 Ordinal Regression Experiments
We first explore rash severity scoring as an ordinal regression problem to leverage the natural
ordering of CDASI scores 0 ≺ 1 ≺ · · · ≺ 14, where low scores represent mild severity, and
high scores indicate more severe cases of CDM. However, “distances” between categories may
not necessarily be equal. In particular, differences between intermediate scores have smaller
distances than differences between higher CDASI scores. Standard approaches for modeling
ordinal data involve fitting parallel separating hyperplanes that optimize a certain loss function.
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This setup offers efficient learning via strong inductive biases (Lu et al., 2022). For our setting,
linear threshold models are most appropriate (Wang et al., 2023), which simultaneously learn
an output mapping and thresholds to partition the output in order to make ordinal predictions.
The cumulative formulation of the model is particularly convenient for parameter interpretation
and data simulation (Gambarota and Altoè, 2024), although adjacent categories (Fullerton and
Xu, 2018) and continuation odds ratio (Cole and Ananth, 2001) models are heavily cited in the
literature as well.

3.3.1 Regression Formulation
Our formulation is derived from the assumption of an underlying latent regression model with a
continuous response. Let Y ∗ represent the underlying latent variable and consider Yk to be the
observed ordinal variable with K = 15 coarse, categorical levels. Analogously to the standard
regression formulation, Y ∗ is a function of the linear predictor ηi, thus Y ∗ = ηi+ϵi where ϵi is the
irreducible error of the model. We must define an appropriate link function to map probabilities
to the linear predictor, F (p) = η. Probabilities can be subsequently extracted using the inverse
function p = F−1(η). Consequently, the log-odds ratio can be modeled by

log

(
Pr(Y ≤ k)

1− Pr(Y ≤ k)

)
:= αk − βTxi, k = {1, 2, · · · , K − 1} (3.1)

with ηi = βTxi, and the logit link F = log
(

uk

1−uk

)
. Equivalently, we can directly model the

cumulative probabilities by taking the inverse of the link function

Pr(Y ≤ k) := F−1(αk − βTxi) k = {1, 2, · · · , K − 1} (3.2)

The cumulative probit uses the (inverse) standard normal distribution link and is another popular
choice. Here, F = Φ−1(p) = 1√

2π

∫ p

−∞ e−z2/2dz. However, probit and logit links usually produce
similar statistical results, and we observe negligible differences in our analysis when switching
between the two.

Requiring the coefficients of each predictor to be identical across categories results in a cru-
cial simplification of the cumulative logit model to a proportional odds cumulative logit model.
The proportional odds assumption (POA) significantly reduces model complexity and conver-
gence speed, only requiring us to model (K − 1) unique intercepts and K + p + 1 coefficients
for p total predictors. POA is a frequently made assumption in healthcare studies (Afroja et al.,
2020; Ayyaz et al., 2021; Lall et al., 2002).

3.3.2 Utilizing Clinically-Relevant Handcrafted Features
Earlier investigations reveal crucial correlations between visual image-based features and expert
scores: rash area and rash redness had a 0.722 and 0.721 Spearman’s Rho correlation value with
respect to MD evaluations, respectively. This indicates a substantial degree of association be-
tween rash area and redness and CDASI scores. Furthermore, rash redness and area showed a
strong positive correlation with patient self-assessment scores, with values of 0.648 and 0.636, re-
spectively. Clinicians additionally hypothesized correlations between hand textures and CDASI
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scores during their assessment. To this end, we construct the following handcrafted redness and
textural features for each image

❖ The ratio between the rash area and hand area

❖ The average redness of the rash, measured as the average a*b* value of the rash-only pixels
in the L*a*b* color space1

❖ The ratio between the average redness of the rash and the average redness of the hand,
computed as specified above

❖ Texture features extracted from gray level co-occurrence matrices (GLCMs) (Haralick
et al., 1973), which are histograms of co-occurring grayscale values at varying offsets over
an image

Two key characteristics of DM motivate the inclusion of additional demographic features:
(1) a higher prevalence in females and (2) a bimodal distribution of incidence rates, with peaks
in childhood and between the ages of 40 and 60 years in adulthood (Mainetti et al., 2017). Thus,
we collect additional demographic information from patients including their age, sex, height,
weight, race, and the presence/absence of antibodies related to CDM manifestation as additional
predictors in our model.

3.3.3 Automating Hand Rash Localization
The computation of handcrafted features requires two steps, first determining the hand and gen-
eral rash region within the image, and then further identifying precise rash clusters. By restricting
our analysis to a more fine-grained region of interest and only extracting features from this rel-
evant region, we can successfully reduce the influence of irrelevant background pixels, leading
to more accurate feature representations. Evidently, calculating the above features requires ade-
quate segmentations of the hand and rash regions.

As such, we first use the Python rembg package (Qin et al., 2020) to remove the back-
ground and isolate the hand in each image. However, identifying the rash region within the hand
requires a more sophisticated supervised learning approach. For this task, we perform semantic
segmentation on our new images to classify pixels as either rash or non-rash. Clinicians used
the Pixlr2 image editing software to manually label coarse rash regions, which we use as ground
truth masks for image segmentation.

Coarse rash recognition. The DeepLabV3+ model (Chen et al., 2018) builds on the stan-
dard encoder-decoder architecture using atrous convolutions in its encoder to capture multiscale
contexts and to expand the receptive field without reducing spatial resolution. Atrous convolu-
tions particularly aid in improved segmentation accuracy at object boundaries, enabling precise
rash ROI segmentations. We choose the Xception architecture with pretrained weights as our

1The L*a*b* color space, also referred to as the CIELAB color space, is a perceptually uniform color space
defined by the International Commission on Illumination in 1976. It decomposes colors based on its luminance
(L*), red-green (a*), and blue-yellow (b*) components. This is crucial since our fine-grained K-means clustering
algorithm relies on Euclidean distance between color values to identify rash regions.

2https://pixlr.com
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encoder for feature extraction. Initial segmentation results reveal a systematic inability to predict
empty masks for “normal” patients without hand rashes. Hence, we add an auxiliary classifica-
tion head to our encoder composed of a global average pooling layer, dropout with p = 0.2, and
a fully-connected layer to output binary classification predictions corresponding to the presence
(1) or absence (0) of rashes. We additionally modify our loss function to simultaneously train
our encoder for classification while also learning precise segmentations from the decoder output

Lmulti-task loss ≜ LDice + LCE︸ ︷︷ ︸
segmentation loss

+ LBCE︸︷︷︸
classification loss

(3.3)

We refer back to Equation 2.9 for definitions of our loss terms. As in Section 2.5.2, we use a
combined cross-entropy and Dice loss for segmentation to address the under-representation of
target pixels in our images. Notably, if our encoder predicts an absence of rashes for an image,
the corresponding segmentation mask from the decoder is appropriately zeroed out to reflect our
classification prediction. In this way, positive segmentations for “normal” patients incur a heavy
loss penalty. We achieve an average DSC improvement of 25.4% using multi-task loss, validated
on held-out images during group k-fold cross-validation (see Section 3.3.4), increasing from
45.0% to 65.4%.

Fine-grained rash localization. Manually annotating ground truth masks for our segmenta-
tion training is costly, and thus we reconcile with coarser masks for our training procedure above.
After segmentation, we further employ the unsupervised K-means clustering algorithm (Lloyd,
1982) on our predicted segmentation masks to extract a more accurate delineation of the rash
clusters. We posit that capturing fine-grained clusters induces more precise extraction of hand-
crafted features. Starting from a random initialization of cluster centroids, the K-means algo-
rithm iteratively partitions a set of data points into k clusters that minimize inertia. We utilize the
Euclidean distance between the mean a*b* color values of each centroid to improve our model
fit. Finally, we select the cluster with the highest a*b* centroid value, as it is most likely to
correspond to the rash region. We refer to Appendix B.2.2 for examples of K-means rash lo-
calization maps. Our handcrafted features are computed from the final rash regions after coarse
segmentation and K-means localization. We detail our complete handcrafted feature extraction
pipeline in Appendix B.2.1.

3.3.4 Regression Training
Normal k-fold cross validation allows for images from the same patient to leak from training to
validation sets. This results in biased and optimistic evaluations of model capabilities. Instead,
patients are randomly partitioned into k groups by ID to perform group k-fold cross-validation.
For each fold, we fit a cumulative logistic regression model on a training set of 19 patients using
the clm function in R’s ordinal package, and validate our fit on a test set of 4 patients. A
modified Newton algorithm is utilized to find the maximum likelihood estimates of the model
parameters. Given our large cohort of predictors, we perform (bidirectional) stepwise regression
on the Akaike Information Criterion (AIC) to determine a parsimonious proportional odds model
with the largest predictive power.
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However, our predictors suffer from almost perfect multicollinearity, which poses significant
challenges for training stability and convergence. To improve model stability across runs, we
opt to first run Principal Component Analysis (PCA) to project our original features onto the di-
rections of highest variance, thereby removing feature correlations. PCA projections align with
clinical hypotheses: the first two principal components (PCs) suggest strong positive correla-
tions between the rash redness ratio, rash area ratio, contrast, and dissimilarity, and between the
demographic features of age, height, and weight. From Figure 3.4, we can observe that PC1
represents the redness and texture of the hand rash, while PC2 captures key demographics of a
patient. We outline our regression procedure in Algorithm 3.

Figure 3.4: PCA biplot pro-
jecting training samples with
handcrafted features onto the
first two principal components.
Strong positive correlations ob-
served among rash redness and
rash area features and also be-
tween demographic features of
age, height, and weight.

Algorithm 3 PCA-based CLM with Stepwise Regression
1: Input: Images D = {(x(i), y(i)) : i = 1, 2, · · · , N}, corresponding PIDs, number of

grouped folds K
2: Output: T model evaluation metrics (e.g., off-by-j-accuracy, Spearman ranked correlation)
3: Split images into K folds based on PIDS
4: for k in range K do
5: 1. Partition data into training set D−k

train and testing set Dk
test

6: 2. Perform PCA on D−k
train to achieve Φ−k

train = {(ϕ(x(i)), y(i)) : i = 1, 2, · · · , N},
7: where ϕ projects each sample to the first ℓ PCs explaining at most 90% of the
8: original variance
9: 3. Apply the same transformation on the test set to achieve Φk

test
10: 4. init.modelk ← clm(Φ−k

train)
11: 5. stepwise.modelk← stepAIC(init.modelk, direction = "both")
12: 6. Evaluate stepwise.modelk performance on Φk

test using selected metrics
13: 7. Store evaluation metrics for fold k, {M1k,M2k, · · · ,MTk}
14: end for
15: Compute { 1

K

∑K
k=1 Mtk} for all Mtk for t = 1, 2, · · ·T, k = 1, 2, · · · , K

16: return {M1∗,M2∗, · · · ,MT∗}
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3.3.5 Regression Predictions Correlate with Clinician Assessments
Our ordinal regression predictors differ between PCA and non-PCA settings. Non-PCA regres-
sion has a wider selection of predictors for stepwise regression, whereas PCA is limited to only
continuous predictors. The full list of available predictors in the non-PCA setting is detailed
in Appendix B.2.3. During non-PCA regression, our clm consistently identifies the first three
principal components to be statistically significant via F -tests during stepwise regression. We
plot our group k-fold cross-validation results for PCA regression in Figure 3.5.

Figure 3.5: k-fold cross
validation results for PCA-
transformed ordinal regres-
sion. We evaluate our clm
model on a held-out PCA-
transformed test set using
accuracy, correlation, and MAE.

Our results show moderate variability in accuracy and Spearman’s rho values across the five
folds. Interestingly, accuracy appears to be negatively associated with Spearman’s rho values;
Higher correlation values tend to be associated with lower accuracy scores. However, this is most
likely due to a lack of statistical power caused by a limited sample size. The worst-performing
model occurs in Fold 3, with a 28.6% accuracy and MAE of 1.904. The test patients have CDASI
scores of 0, 2, 7 and 8, so we attribute the low performance on this fold to its test set having a
higher proportion of severe patients (≈ 50%) compared to other folds. We provide additional
regression results in Table B.1 (Appendix B.2.4). The ability of our ordinal regression model to
generalize to different levels of rash severity given our featurization seems limited. Our features
are highly sensitive to perturbations in hand images within the same class. For example, the
K-means algorithm performs poorly on old, mature skin due to roughened skin texture. Hence, a
younger patient with the same CDASI as an older patient is likely to have considerably different
feature values.

Figure 3.6: t-SNE plot captures CDASI class
separability in two dimensions. Each color
corresponds to a unique CDASI score. Extreme
score values (i.e., CDASI= {0, 11}) exhibit dis-
tinct, compact clusters in two dimensions and
the largest inter-cluster distance than any other
pair of scores.

The t-SNE plot in Figure 3.6 shows a high separability of the CDASI score classes in a
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Figure 3.7: Density plots computed from posterior draws with all chains merged for PCA-
transformed Bayesian ordinal regression. (a) PSIS diagnostic plot and (b) 95% credible pos-
terior interval estimates. The diagnostic plot verifies the reliability of our interval estimates.

reduced-dimensional space. Despite our model’s low statistical power, our PCA-transformed
handcrafted features provide strong discrimination between CDASI score classes, which can be
captured despite dimensionality reduction. Extreme scores (i.e., very low or very high CDASI)
generally form distinct, compact clusters, while intermediate scores are grouped in adjacent
clusters. This is consistent with clinical rash assessments, with extreme cases being easier to
diagnose than minimal to moderate cases. However, the “normal” class appears to have greater
intra-cluster variability than any other class. Although we improve our rash segmentations with
a multi-task loss function, our model still predicts several false positive masks, which contributes
to the high variability in feature representations of “normal” patients.

3.3.6 Bayesian Ordinal Regression
To assess the credibility of our model estimates, we fit a Bayesian ordinal regression model
over our PCA-transformed predictors using the stan polr package in R. We specify a jointly
uniform Dirichlet prior on the probability of falling in each of the 15 CDASI score categories and
a Beta prior on the coefficient of determination such that R2 ∼ Beta(p/2, 2p), where p is the total
number of predictors. Our Beta prior enables regularization on our coefficient values. We then
estimate posterior distributions over the selected PCs in our ordinal regression model by drawing
Markov Chain Monte Carlo (MCMC) samples. We run 4 chains for 1, 000 warm-up iterations
followed by 1, 000 additional iterations. (Vehtari et al., 2024) determines that the diagnostic
threshold for Pareto k depends on the sample size S. If k < min(1 − 1/ log10(S), 0.7), we can
confirm that the PSIS estimate and the corresponding Monte Carlo standard error estimates are
reliable. From Figure 3.7a, we validate that Pareto k < 0.61, therefore we can meaningfully
interpret the quantile-based posterior interval estimates in Figure 3.7b.

Demographics play a vital role in determining rash severity. Our results present strong pos-
terior evidence that decreasing PC1 values and increasing PC2 values are significantly associated
with an increase in rash severity at the 95% credible level. Therefore, we verify that rash red-
ness and textural information (PC1) and demographic information (PC2) are likely to have a
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significant effect on rash severity. Although it is intuitive that the visual characteristics of rashes
influence the predicted CDASI score, the impact of demographic information on the score is sur-
prising. However, considering the higher prevalence of DM among women and the elderly, it is
evident that patient demographics play a crucial role in understanding rash manifestation.

3.3.7 Limitations

Our handcrafted feature extraction pipeline benefits from being clinically-motivated and intu-
itive. Parameter estimates are highly interpretable and have a strong correlation with feature
importance. Moreover, our model is compact enough to enable Bayesian methods for predictive
uncertainty estimation without incurring excessive computational costs. Our regression pipeline
enables clinicians to understand how their hypothesized features quantitatively affect CDASI
scores. However, this contextualization has several compelling drawbacks. Most prominent is
our strict inductive biases. Our proportional odds model makes the limiting assumption that the
log-odds of having a certain CDASI score versus all lower scores are a linear function of the in-
put features. Furthermore, POA assumes that the difference between adjacent scores is roughly
equivalent across all CDASI scores. This is inconsistent with clinical evaluations suggesting
rash redness affects higher scores more than lower scores near zero. Furthermore, our selected
handcrafted features may provide at best a limited featurization of the original image. Since
our pipeline is not trained end-to-end, it is likely that our selected features, although clinically
motivated, may not be adequately tuned for our regression setting. This motivates the need to
explore models with less restrictive inductive biases to enable enough flexibility to capture po-
tential non-linear relationships in the image data. Naturally, convolutional neural networks are
an attractive alternative, providing automated hierarchical feature extraction without requiring
explicit domain expertise.

3.4 Related Work

Data scarcity is a pervasive challenge in the development of large-scale machine learning mod-
els. More data exposes a model to a wider variety of potential inputs, enabling improved pattern
recognition and generalizability, reduced tendency to overfit, and robustness against noise and
outliers. Conversely, a lack of data significantly hinders the application of models, often resulting
in ineffectual learned feature representations (Alzubaidi et al., 2021), poor out-of-distribution
detection (Li et al., 2021), or limited representation of a larger population (Habehh and Gohel,
2021). Transfer learning (Torrey and Shavlik, 2010) is the most prominent technique for over-
coming these challenges without requiring additional labeled data. Transfer learning leverages
knowledge gained through one task or dataset towards improving model performance on other re-
lated tasks or datasets. Several strategies within transfer learning can help reduce computational
costs, data scarcity, and generalizability (IBM, 2025), including feature extraction (Belinkov,
2022), self-supervised pretraining (Zoph et al., 2020), and unsupervised pretraining (Ge et al.,
2023). In the following sections, we review the strengths and limitations of these methodologies.
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3.4.1 Feature Extraction

We can reimagine a CNN model as a feature extractor f by removing its classification head. f
generates intermediate representations y′ ∈ R(B×M) of our input x ∈ R(B×H×W ) in some lower-
dimensional latent space. After pretraining its featurization capabilities through supervised or
unsupervised learning, f can be utilized as an “off-the-shelf” model for domain-specific tasks by
training a shallow classification head h with the appropriate number of classes for the specialized
task. Thus, our classification prediction becomes y = (h ◦ f)(x). In particular, this approach
freezes the convolutional layers in the model, only using f to generate generic features from the
image data while training h to adjust the parameters for the downstream classification task. The
feature extraction framework assumes several benefits: It allows the domains, tasks, and distribu-
tions used in training and testing to be different (Pan and Yang, 2010), requires minimal training
of a shallow network which reduces computational costs (IBM, 2025), and learns particularly
useful feature representations in the medical imaging domain (Agarwal et al., 2021; Kim et al.,
2022; Weiss et al., 2016). However, this method is limited by the quality and applicability of
common latent features extracted by f . Since f is often trained on generic and broad source
datasets, such as COCO or ImageNet, its output features are not guaranteed to be effective for
all types of target tasks. When the visual characteristics of the target task are not accurately
represented by the source tasks, it is recommended to resort to costly fine-tuning from scratch in
order to achieve satisfactory performance (Kim et al., 2022).

3.4.2 Self-Supervised Pretraining

Models trained through supervised learning (SL) often struggle to generalize across diverse tar-
get tasks, as they tend to learn feature representations that are highly correlated with the original
source tasks (Wolf et al., 2023). Self-supervised learning (SSL) addresses these issues by en-
couraging the model to efficiently learn useful and generic feature representations from large,
unlabeled datasets to prime the fine-tuning of a downstream task. Notably, this technique elim-
inates the need for costly manual image annotation. Self-supervised pretraining follows a two-
stage process: First, the DL model is pretrained with SSL to capture general high-level features
of the images. Next, the model is fine-tuned on a small labeled dataset using SL to adjust the
learned features to the target domain. SSL has been extensively applied in the medical image
domain, demonstrating superior performance over training from scratch (Chen et al., 2021; Du-
fumier et al., 2021; Ghesu et al., 2022; Tang et al., 2022). Two approaches dominate the literature
in self-supervised pretraining: Contrastive learning and masked image modeling.

Contrastive learning is based on the principle that similar images should map to similar em-
beddings. Hence, it learns features that maximize mutual information between representations at
different spatial locations (Henaff, 2020) or views (Tian et al., 2020) of an image. In this frame-
work, a chosen data sample is referred to as the anchor, with samples from the same distribution
as the anchor being classified as positive samples, while those from a different distribution are
considered negative samples. The goal of contrastive learning is to minimize (or maximize) the
distance between the anchor and positive (negative) samples. SimCLR (Chen et al., 2020) seeks
to maximize agreement between different augmented versions of the anchor, Nearest-Neighbor
Contrastive Learning (NNCLR) (Dwibedi et al., 2021) diversifies the positive sample space by
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sampling the nearest neighbor from the latent space of the original image, and ORE (Joseph
et al., 2021) incrementally expands the feature space based on semantic similarity by adding
“unknown” classes to learn new ones. However, contrastive learning often requires additional
augmentations of the existing dataset, which multiplies its effective size. For example, Sim-
CLR trains with twice the number of images, requiring additional computational resources that
may not be readily available. In addition, newer methods, such as masked autoencoders, have
been found to outperform state-of-the-art contrastive techniques (He et al., 2022) without the
prohibitive cost.

Pretraining paradigms for natural language processing (NLP) have been extensively studied
since the advent of transformer-based architectures. That is, NLP models benefit from BERT-
style pre-training (Devlin et al., 2019), where the model randomly masks some of the original
input tokens and then attempts to predict the vocabulary id of the masked tokens based only on
its context. In their seminal paper, (Bao et al., 2022) extends this technique to vision transform-
ers (ViTs), forming the masked image modeling (MIM) framework. MIM involves partitioning
an image into masked and visible patches, using the well-known reconstruction loss (see Section
3.5.3) to predict masked patches from visible patches similar to BERT. This technique has re-
cently gained traction and several extensions have followed (He et al., 2022; Xie et al., 2022).
Most notably, (Tian et al., 2023) introduced Sparse masKed modeling (SparK), leveraging sparse
convolutions for MIM during BERT-style pretraining for CNN-based architectures. SparK uses
an encoder with a lightweight decoder for pretraining, gathering all unmasked image patches
into a sparse image before applying sparse convolutions to encode it. In this way, convolutions
are adapted to handle irregular masked inputs. (Tian et al., 2023) validate their findings on the
ImageNet1k classification task, and (Wolf et al., 2023) showed improvements using SparK on
two different downstream medical imaging tasks with CT scans: identifying brain hemorrhages
(145 images) and multi-class classification of 11 different body organs (13, 952 images). Al-
though model performance on various downstream tasks has been widely studied, to the best of
our knowledge, there has been no investigation into the quality of uncertainty estimates using the
SparK framework.

3.5 Self-Supervised Pretraining is Key

3.5.1 Pretraining Setup

As in (Tian et al., 2023), we use a modified UNet architecture for pretraining, consisting of
a ResNet-style model for the encoder Pθ and a lightweight decoder Qω. The ResNet encoder
produces feature maps at 4 different resolutions: H

4
×W

4
, H

8
×W

8
, H
16
×W

16
, and H

32
×W

32
. The decoder

contains three successive blocks to upsample sparse feature maps back to the original input space.
Prior to image reconstruction, the decoder performs densifying by filling in the empty positions
in the sparse feature maps. Thus, given an input x, we generate our reconstruction by x′ =
Qω(Pθ(x)).
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Figure 3.8: Pretrained datasets ranked in relevance to fine-tuning dataset. (Ordered from left
to right) ImageNet1k dataset has the least semantic relevance, while UPMC dataset has highest
relevance to the DART hand dataset used for the downstream task of rash severity classification.

3.5.2 Pretraining Datasets

ImageNet1k. The full ImageNet dataset is currently the most comprehensive and diverse vi-
sual recognition database in the image world (Deng et al., 2009). It boasts a total of 14.2 million
cleanly annotated images spread over 21, 841 categories (i.e., house finch, table lamp, volcano,
promontory). In computer vision applications, typically only 1, 000 of the high-level categories
are used, termed ImageNet1k. This subset consists of approximately 1.28 million images. Train-
ing on ImageNet1k enables the model to learn robust and generalizable features to improve the
convergence of training on most downstream tasks.

MIT Fitzpatrick17k. The Fitzpatrick17k dataset contains 16, 577 clinical images with skin
condition labels and skin type labels based on the Fitzpatrick scoring scale (Groh et al., 2021,
2022), a photo-typing scale to measure the response of skin types to UV radiation. This six-point
scale is generally used to classify human skin color. To evaluate the diagnostic accuracy of this
dataset, a board-certified dermatologist manually verified 3% of the dataset. It contains images
in 22 diverse categories of skin conditions, however, to retain as much semantic similarity to our
target dataset, we only use 10, 886 of the images labeled inflammatory.

Google SCIN. SCIN contains 10, 379 images of skin, nail, or hair conditions, directly con-
tributed by individuals experiencing them (Ward et al., 2024). It consists largely of common
allergic, inflammatory, and infectious conditions, most of which show early-stage concerns. Rel-
evant categories include eruptions (56.4%) and contact dermatitis (10.5%). Additionally, the
dataset provides an approximately balanced distribution of images for each Fitzpatrick skin type.

UPMC Rheumatology. We incorporate additional data collected by our rheumatologists for
pretraining. While we focus our fine-tuning analysis on the in-clinic 3D images captured by the
VECTRA H1 camera, we reserve the in-clinic and telemedicine 2D smartphone images (UPMC-
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Smartphone) for pretraining. We also utilize images depicting DM manifestations across the
body (UPMC-Body). Although these images do not contain hand rashes, they still provide valu-
able semantic information about rash appearance, texture, and size, which can enhance our fine-
tuning process. After removing images with identifiable information, we are left with 411 im-
ages. Including in-clinic and telemedicine images, we have a total of 599 images.

Pretraining Dataset n images

ImageNet1k 1, 281, 167
Fitzpatrick17k 10, 886
SCIN 10, 379
UPMC

UPMC-Body 411
UPMC-Smartphone 188

Table 3.1: Number of images in each pretraining dataset.

Examples of each of the pretrained datasets are shown in Figure 3.8 and the sizes of each are pro-
vided in Table 3.1. The diversity in images of different skin tones is highly advantageous for our
research, as our processed DART hand dataset currently contains images from only Caucasian-
American patients. Due to limited dataset availability, our selected datasets have varying degrees
of semantic similarity to our DART hand dataset. We collaborate with UPMC clinicians to assess
the relevance of each pretraining dataset to our fine-tuning DART dataset. Clinicians identify Im-
ageNet1k to have the least semantic similarity to our dataset, whereas the UPMC dataset has the
most. All images are standardized using ImageNet1k statistics to ensure consistency of the input
data distribution.

3.5.3 Loss Specification
We upsample the decoder output until we achieve the original resolution of the input x ∈ RH×W .
As per (He et al., 2022), we compute per-patch normalized pixels as targets for L2-loss, calcu-
lating errors only on the masked positions. Let φ represent the function that extracts masked
positions from an image. Given target t, a trainable encoder Pθ, and decoder Qω, we minimize

Lrecon ≜
1

N

N∑
n=1

φ(t(n))− φ
[
Qω(Pθ(x

(n)))
]︸ ︷︷ ︸

x(n)′


2

(3.4)

3.5.4 Results for Pretraining via Hierarchical Masked Image Modeling
Without ImageNet1k, our aggregated pretraining dataset (21, 864 images) is insufficient to de-
velop a robust inductive bias for effective fine-tuning. As such, we perform a two-stage in-
cremental strategy: First, we initialize pretrained weights on ImageNet1k from (Tian et al.,
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Figure 3.9: Pretraining ResNet-18 vs. ResNet-50 architectures using hierarchical masked
image modeling. (a) Pretraining curves for two SOTA convolutional neural networks, ResNet-
18 and ResNet-50. (b) Example masked reconstruction from SparK encoder-decoder model after
pretraining.

2023). Next, we perform additional pretraining for 700 epochs on our domain-specific aggre-
gated datasets from Section 3.5.2. Our training curves are shown in Figure 3.9a. We observe
that ResNet-18 exhibits faster pretraining convergence and consistently achieves a lower recon-
struction loss at the end of each epoch over ResNet-50. After 700 pretraining epochs, ResNet-18
achieves a loss of 0.300, whereas ResNet-50 achieves only 0.311. In Figure 3.9b we show the re-
sults of masked reconstruction after pretraining. We set the mask ratio to 0.6, indicating that 60%
of the image patches should be hidden randomly. Our model is able to recover hidden patches
during reconstruction (right), despite masking (middle) a majority of patches in our original in-
put (left). ResNet-50 is more susceptible to memorization due to its increased complexity, with
approximately 13.87 million more parameters than ResNet-18. Hence, we use the ResNet-18
encoder for the downstream severity scoring task.

Optimizing pretraining epochs. To identify the optimal pretraining epochs, we perform lin-
ear probing after the following epochs: [75, 150, 225, 300, 375, 450, 525, 600, 675, 700] by fine-
tuning only the classification head on top of the ResNet-18 encoder for a total of 75 epochs
each (see Figure 3.10). We achieve the best validation accuracy and the second-best validation
MAE after only pretraining for 75 epochs. Model performance on the downstream CDASI clas-
sification task appears to degrade after 300 epochs. Thus, self-supervised pretraining for 75-300
epochs with our aggregated dataset is ideal. Evidently, our model learns relevant domain-specific
features with minimal pretraining required. For the analyses in the next section, we choose to
initialize our fine-tuning procedure with weights obtained after 75 pretraining epochs.

3.6 Fine-tuning for Automated Severity Scoring

3.6.1 Fine-tuning Dataset

UPMC DART. Since we use in-clinic 3D images converted to 2D to fine-tune our encoder (see
leftmost pair in Figure 3.2), we must preprocess our images as described in Section 3.2.2. To
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Figure 3.10: Hyperparameter optimization for pretraining epoch. Validation accuracy is
maximized after only 75 epochs.

enhance our current augmented dataset, we additionally utilize AutoAugment3 from the timm
(PyTorch Image Models) library. AutoAugment searches for the optimal combination of transfor-
mation policies for a specific dataset, aiming to enhance the generalization ability our model by
creating more diverse training samples. We also enable Mixup (Zhang et al., 2017) during train-
ing to prevent memorization and sensitivity to adversarial examples. Mixup is a data-agnostic
data augmentation routine that constructs virtual training examples x̃ as linear combinations of
existing samples (x(i),y(i)), (x(j),y(j)) by

x̃ = λx(i) + (1− λ)x(j)

ỹ = λy(i) + (1− λ)y(j)
(3.5)

where λ ∼ Beta(0.1, 0.1). However, linear interpolations generated by Mixup tend to be locally
ambiguous and unnatural. To balance this effect, we also utilize CutMix (Yun et al., 2019),
which replaces an image region with a patch from another training image to generate more natural
images. From existing samples, we generate new samples in CutMix by

x̃ = M⊙ x(i) + (1−M)⊙ x(j)

ỹ = λy(i) + (1− λ)y(j)
(3.6)

where M ∈ {0, 1}W×H denotes a binary mask indicating where to drop out and fill in from
two images and λ ∼ Unif(0, 1) represents the combination ratio. Similarly to pretraining, we
standardize the DART dataset using ImageNet1k statistics to ensure data distribution consistency.

Due to the varying number of samples for each CDASI score, we employ pseudo-randomized
group k-fold cross-validation to prevent patient data leakage between training and testing datasets.
Specifically, we randomly select groups to ensure that CDASI 11, which contains only a single
patient, is not included in the test set. Without this precaution, we would risk evaluating the
model on a class it has never encountered during training, thereby distorting its performance.

After pretraining, we discard the decoder and solely fine-tune the encoder on our DART
dataset.

3https://timm.fast.ai/AutoAugment
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Figure 3.11: Proposed Monte Carlo (MC) SparKNet pretraining and fine-tuning frame-
work. Encoder-decoder model is pretrained using BERT-style self-supervised learning on
domain-relevant images, then encoder is fine-tuned on DART hand rash dataset. Dropout layers
are situated in encoder to perform MC dropout.

3.6.2 Loss Specification

We optimize our encoder Pθ using cross-entropy loss

Lclassification := −
N∑

n=1

C∑
c=1

y(n)
c log ŷ(n)

c (3.7)

and utilize the Layer-wise Adaptive Moments optimizer for Batch training (LAMB) (You et al.,
2020) to prevent very large or very small updates during optimization. We initialize the hyperpa-
rameters β1 = 0.9, β2 = 0.999 and use the square root learning rate scaling rule and linear epoch
warm-up scheduling to automatically adjust the learning rate.

3.7 Experiments

3.7.1 Unsupervised Pretraining Improves Fine-tuning Capabilities

Transfer learning strategies. To assess the effects of SparKNet on our fine-tuning dataset, we
evaluate three different transfer learning strategies:

(1) Feature extraction (Fe): All ResNet layers are frozen except for the classification head

(2) Partial fine-tuning (PFt): Earlier convolutional blocks are frozen to preserve feature ex-
traction capabilities, and the last few blocks are trainable. For example, “PFt-3-4” indicates
that the last two blocks are unfrozen during fine-tuning

(3) Full fine-tuning (FFt): All ResNet layers are unfrozen and trainable
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Figure 3.12: Training and validation curves for full fine-tuning (FFt) paradigm. We show
curves for (a) self-supervised (SSL) pretraining and (b) supervised (SL) pretraining. Gray line
delineates early stopping epoch identified by loss on the validation set. Validation MAE appears
to decrease as our encoder is trained for longer for both supervised and self-supervised pretrain-
ing. While our validation accuracy does not exceed 32% after 120 training epochs for SSL, we
cannot achieve beyond 20.5% accuracy for SL during the entire fine-tuning process.
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All experiments are conducted on the ResNet-18 architecture, the smallest model in the ResNet
family, chosen to avoid overfitting given the limited size of the training dataset. We fine-tune
our encoder for 300 total epochs for each strategy and perform early stopping using the held-out
validation set to prevent the model from overfitting to the training data. The mean absolute error
(MAE), Root Mean Squared Error (RMSE) and model accuracy are evaluated at the end of each
training epoch. Although we are treating this as a classification problem, we aim to take advan-
tage of the natural ordering of the rash severity scores when evaluating our model’s performance.
The MAE and RMSE enable us to assess the relative distance between our predictions and the
target score, unlike the accuracy. Figure 3.12 illustrates the training and validation curves for
the full fine-tuning technique. Fine-tuning after self-supervised pretraining (SparKNet) appears
to be more stable than fine-tuning after supervised pretraining, consistently achieving higher val-
idation accuracy than the baseline model after 120 epochs. Additionally, SparKNet demonstrates
faster convergence, beginning to overfit after at most 60 epochs, compared to 185 epochs for the
baseline model. Across all transfer learning strategies, we observe that our models typically be-
gin to overfit after approximately 75 epochs. Furthermore, SparKNet does not achieve accuracy
greater than 32% on the validation set beyond 120 training epochs. Our inspection of the valida-
tion sets indicates that they frequently contain patients with CDASI scores absent in the training
dataset, leading to an underestimation of the model’s true performance. We show the results for
all transfer learning strategies on the test set averaged across five different runs in Table 3.2.

Model
Pretraining (Pt) Finetuning (Ft)

Supervised? Pt Dataset TL Strategy MAE(↓) Accuracy(↑)

ORDREG

(ours)
None - FFt 1.160± 0.518 0.484± 0.187

RESNET-18 ✓ ImageNet1k
Fe 1.775± 0.117 0.442± 0.022

FFt 1.850± 0.101 0.383± 0.034

SPARKNET-
18 (ours) ✗

ImageNet1k,
SCIN,

Fitz17k,
UPMC

Fe 2.344± 0.080 0.169± 0.014

PFt-4 1.867± 0.293 0.469± 0.075

PFt-3-4 1.167± 0.237 0.775± 0.041

PFt-2-3-4 1.042± 0.195 0.683± 0.059

FFt 1.008± 0.187 0.789± 0.039

Table 3.2: ResNet-18 and SparKNet-18 model performance results across five runs for dif-
ferent fine-tuning strategies. SparKNet-18 with full fine-tuning achieves the highest perfor-
mance (highlighted), with partial fine-tuning with the last two blocks unfrozen achieving the
second highest accuracy (underlined). We evaluate using MAE(↓) and accuracy(↑) metrics.

SparKNet outperforms costly supervised pretraining strategies. Compared to the baseline
FFt model using supervised pretraining, our SparkNet FFt model using self-supervised pretrain-

43



ing achieves a 40.6% improvement in accuracy and a 0.842 reduction in average MAE when
evaluated on the test sets. Additionally, this improvement is accompanied by faster convergence:
The supervised pretraining model takes 185 epochs to train, while fine-tuning our self-supervised
model requires only 60 epochs. As a result, we achieve a speed-up in both the pretraining and
fine-tuning stages. Our self-supervised approach bypasses the costly and time-consuming label-
ing process during pretraining, while learning richer and domain-specific representations. This
allows the model to reach strong performance in fewer epochs compared to the supervised pre-
training baseline. Despite the improvements in the FFt approach, we observe poorer performance
in SparKNet when all layers are frozen and only the classification head is fine-tuned. Our base-
line achieves 44.2% accuracy averaged across the test sets, whereas SparKNet only achieves
about 16.9% accuracy. Supervised learning relies on explicit labels, which likely helps our base-
line model learn more discriminative features for classification tasks. In contrast, self-supervised
learning may be less structured, potentially leading to less effective feature extraction.

Freezing layers tends to restrict fine-tuning performance. From Table 3.2, we observe that
a decrease in the number of trainable parameters in our model is associated with a decrease
in model performance. FFt consistently outperforms Fe during each run, with FFt achieving a
78.9% accuracy on the held-out test set and Fe only achieving 16.9%. Furthermore, FFt achieves
the lowest MAE of 1.008 compared to 2.344 for Fe. PFt is the only strategy that does not
consistently improve by unfreezing additional layers. In fact, although unfreezing the last two
blocks performs almost as well as FFt, we observe a degradation in performance when unfreezing
the last three blocks. It is possible that pretraining the last two blocks balances learning high-
level features without overfitting the task-specific details learned in the final block. This may
help the model retain useful transferable features while avoiding over-specialization.

SparKNet exceeds clinical performance expectations. Our rheumatologists require a model
accuracy of at least 70%-75% to achieve clinical relevance and consider adoption in telehealth
services. Both our partial fine-tuning and full fine-tuning strategies exceed clinical expectations,
achieving an average accuracy of 77.5% and 78.9%, respectively. In addition, we observe a
considerable 30.5% improvement in accuracy over our ordinal regression model, demonstrating
superior discrimination of visual rash characteristics at different CDASI score values.

We recognize that clinicians do not make a clear distinction between pairs of successive
CDASI scores, motivating a coarser scale of rash severity scores. Therefore, we also analyze
model performance after reducing the granularity of the classes to help interpret rash severity in
broader terms. We evaluate off-by-k accuracy for k = {0, 1, 2}, which considers predictions to
be correct as long as they are within k classes from the target, providing a more lenient evaluation
of the classifier’s performance (Table 3.3). Off-by-0 accuracy is considered exact accuracy. As
expected, both SparKNet and the baseline ResNet show improved accuracy scores as we simplify
the CDASI scoring scale. Our results indicate a higher performance for SparkNet across all
scales, suggesting stronger generalization capabilities than the baseline ResNet.
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Model Exact Accuracy(↑) Off-by-1 Accuracy(↑) Off-by-2 Accuracy(↑)

RESNET-18 0.383± 0.034 0.454± 0.040 0.458± 0.042

SPARKNET-18 0.789± 0.039 0.796± 0.047 0.819 ± 0.042

Table 3.3: Comparison of baseline ResNet-18 and SparKNet-18 models across different
levels of CDASI score granularity. SparKNet-18 (ours) consistently achieves higher accuracy
(↑) for each scale.

3.7.2 Uncertainty Quantification with SparKNet

Why SparKNet? The Monte Carlo Dropout (MCD) technique for uncertainty quantification
relies on situating dropout layers after each convolutional and fully-connected layer (see Section
2.2.3). Thus, MCD cannot be implemented in a meaningful or effective manner in transformer-
based models, such as Vision Transformers (ViTs), which lack convolutional backbones. When
applied, dropout in transformer ViTs is often structured and token-specific, which fails to induce
meaningful stochasticity in the final output distribution required for the MCD technique.

SparKNet addresses these challenges by leveraging the benefits of BERT-style pretraining,
commonly used in transformer-based models, while maintaining the capability to perform deep
uncertainty quantification. To implement MCD, we situate dropout layers after each sparse
convolutional layer and the classification head in our SparKNet model. We set the drop rate to
p = 0.2 for each dropout layer and train with weight decay to enforce L2 regularization on our
model weights. During inference, T = 50 Monte Carlo samples are generated. We refer to our
model with MCD as MC-SparKNet.

SparKNet ensembles. In addition to MCD, we also train a deep ensemble of SparKNet mod-
els to assess the relative reliability of uncertainty estimates. However, unlike our approach in
(Banerjee et al., 2025), we cannot use weight initialization or bootstrapping techniques to in-
troduce diversity into our ensemble, as our current method hinges on utilizing self-supervised
pretrained weights. Instead, we opt to slightly perturb the pretrained weights of each ensemble
member with Gaussian noise to push each member to explore different basins of attraction during
fine-tuning. Evidently, overly distorting the weights can lead an ensemble member to converge
at a suboptimal minimum. To prevent this, we use the standard deviation (SD) of the parame-
ters as the SD hyperparameter of Gaussian noise. Our noise injection procedure is detailed in
Algorithm 4. We empirically find that scaling our noise term ηℓ,j by γℓ = 0.05 at each layer ℓ
produces the most reliable ensemble predictions. As in MCD, we train each ensemble member
with weight decay to enable MAP estimation for model weights. We refer to our Deep Ensemble
as DE-SparKNet.

MC-SparKNet provides more reliable uncertainty estimates. We evaluate both model per-
formance and uncertainty estimation quality for both uncertainty quantification techniques: DE-
SparKNet and MC-SparKNet (Table 3.4). Both models are fine-tuned using the full-finetuning
(FFt) transfer learning strategy. MC-SparKNet outperforms DE-SparKNet with a 20.3% im-
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Algorithm 4 Gaussian Noise Injection on Pretrained Weights
1: Input: Trainable parameters ωℓ,j for each tensor element j in layer ℓ ∈ {1, 2, · · · , L}.
2: Output: Perturbed weights ω̃ℓ,j

3: for layer ℓ in range L do
4: σℓ ← sd(ωℓ,∗)
5: for element j in range J do
6: ω̃ℓ,j ← ωℓ,j + γℓ · ηℓ,j, ηℓ,j ∼ N (0, σ2

ℓ ) ▷ additive Gaussian noise
7: end for
8: end for
9: return New weight initialization ω̃ℓ,j for fine-tuning

provement in accuracy, alongside notable reductions in MAE and RMSE.
To assess uncertainty quality, we compute the estimated Rényi divergence across fifteen dif-

ferent model runs. MC-SparKNet exhibits a 38.2% higher divergence than DE-SparKNet, in-
dicating a stronger ability to distinguish between correct and incorrect predictions. In contrast,
DE-SparKNet suffers from a 16.1% reduction in accuracy relative to the single FFt SparKNet,
suggesting a considerable drop in performance when ensembling. This performance degrada-
tion is unexpected, as ensembles typically benefit from averaging the outputs of multiple well-
performing models. However, in our case, the ensemble constituents likely converge to disparate
and sub-optimal local minima. This divergence reduces the ensemble’s predictive coherence and
contributes to its poorer discrimination between correct and incorrect predictions (Figure 3.13b).

Compared to deep ensembles, MC Dropout maintains a more consistent inductive bias across
forward passes, since all predictions are drawn from the same weight space with randomized
dropout masks. This structural consistency may lead to more reliable epistemic uncertainty es-
timates, especially when fine-tuning on small datasets. In contrast, ensemble members trained
independently can drift toward different subspaces of the loss landscape, introducing more vari-
ance but not necessarily capturing meaningful uncertainty. MC Dropout may offer superior un-
certainty calibration in low-data or transfer learning settings.

Model Performance Model Quality

Model Accuracy(↑) MAE(↓) RMSE(↓) R̂α(incorr || corr)(↑)

SPARKNET ✝ 0.789± 0.039 1.008± 0.187 2.369± 0.573 −
DE-SPARKNET 0.628± 0.038 1.471± 0.205 2.557± 1.147 0.307± 0.140
MC-SPARKNET 0.831± 0.042 1.017± 0.255 2.470± 1.237 0.689± 0.083

✝ represents our single FFt SparKNet model from Table 3.2.

Table 3.4: Model performance and quality evaluation across single SparKNet, DE-
SparKNet, and MC-SparKNet architectures. MC-SparKNet exhibits best accuracy (bold) and
second best (underline) MAE and RMSE scores evaluated on held-out test patients. Compared to
DE-SparKNet, it provides stronger discrimination between incorrect and correct classifications.
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Figure 3.13: Epistemic uncertainty distributions for correct and incorrect classifications for
(a) MC-SparKNet and (b) DE-SparKNet. Although both techniques exhibit moderate overlap,
MC-SparKNet provides slightly stronger discrimination between correct and incorrect predic-
tions.

3.7.3 Out-of-Distribution Detection
Out-of-distribution (OOD) detection refers to a model’s ability to detect anomalous data that is
inconsistent with the training data distribution. Models that have strong generalizability tend to
have robust OOD detection capabilities. In this section, we examine the OOD detection capabil-
ities of SparKNet versus the baseline ResNet against two different forms of OOD samples:

(1) Same imaging conditions, but different visual characteristics (African-American patient)

(2) Same visual characteristics, but different imaging conditions (UPMC-Smartphone dataset)

SparKNet improves out-of-distribution detection performance. Our results in Table 3.5
evaluate model performance on several semantically challenging out-of-distribution (OOD) cases:
two OOD-lighting patients (P1005 and P1035), the full set of OOD-lighting patients, and the
only available African-American patient (OOD-AA). The notation DART→OOD-* refers to
fine-tuning on the DART hand dataset and evaluating on the specified OOD dataset.

Across all OOD-lighting patients, SparKNet achieves a substantial reduction in prediction
error, reducing MAE by 0.43 and RMSE by 0.65 compared to our ResNet baseline. Notably,
even in the more challenging setting of the OOD-AA patient, SparKNet reduces MAE by 0.28
and RMSE by 0.51. These improvements highlight SparKNet’s enhanced ability to generalize
beyond the distribution trained on during fine-tuning.

Crucially, this generalizability can be attributed in part to pretraining on datasets with diverse
skin tones, such as SCIN and Fitzpatrick17k. Although the downstream DART dataset con-
tains only Caucasian-American patients, pretraining on demographically diverse images enables
SparKNet to better handle variations in skin tone and lighting at inference time. This result un-
derscores the importance of incorporating diversity during pretraining—not only for inclusivity,
but also for improving the robustness of underrepresented groups in downstream tasks.
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Model Metric
DART→OOD-Lighting DART→OOD-AA

P1005 P1035 All P1009

RESNET-18
MAE(↓) 2.567±0.25 3.795±0.21 2.494±0.14 2.750±0.53

RMSE(↓) 2.944±1.52 3.844±1.18 3.120±1.13 3.011±1.61

MAE(↓) 2.405±0.55 2.750±0.40 2.062±0.14 2.475±0.24
SPARKNET-18

RMSE(↓) 2.632±1.30 2.915±1.55 2.466±0.77 2.505±1.08

Table 3.5: Preliminary out-of-distribution (OOD) detection evaluation for baseline ResNet-
18 and SparKNet-18. We compute MAE(↓) and RMSE(↓) values for both models for two
individual OOD-lighting patients (PIDs P1005 and P1035), all OOD-lighting patients at once,
and the single available African-American (OOD-AA) patient. SparKNet-18 consistently ex-
hibits lower error across all OOD patients.

SparKNet uncertainties are effective out-of-distribution detectors. We observe two inter-
esting patterns in Figure 3.14: First, OOD samples categorized by camera lighting (green) gener-
ally exhibit similar aleatoric uncertainty but considerably higher epistemic uncertainty compared
to in-distribution (IND) samples from the same patients. In contrast, OOD samples based on
skin tone (orange) tend to show more pronounced aleatoric uncertainty with similar levels of
epistemic uncertainty. These observations intuitively align with the definitions of aleatoric and
epistemic uncertainty. The distribution of OOD-lighting samples is not present in the training set,
leading to high epistemic uncertainty during inference. However, images of African-American
patients are captured with the same VECTRA H1 camera as the training images, meaning they
primarily exhibit higher variability compared to the training set. Thus, while the epistemic uncer-
tainties are similar to those of IND samples, their aleatoric uncertainties are more pronounced.

Figure 3.14: MC-SparKNet uncertainty esti-
mates for in-distribution (IND) and out-of-
distribution (OOD) samples. IND samples
(blue) tend to have lower aleatoric and epistemic
uncertainties. OOD samples, either due to skin
tone (OOD-AA) or lighting (OOD-lighting) dif-
ferences, tend to have more extreme uncertainty
values, indicating well-calibrated uncertainties to
the input distribution.
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Figure 3.15: Grad-CAM visualizations highlight salient regions that contribute to
SparKNet’s predictions. (a) and (b) demonstrate a correlation between localized rash areas
and the regions that SparKNet focuses on for predictions. (c) For mature skin, the focus region
exhibits greater variability, likely due to added complexity from more textured skin.

3.7.4 Assessing Model Explainability

The previous sections stressed the implications of evaluating model interpretability. However,
we now shift our focus to evaluating model explainability. Interpretability centers on simplifying
the mechanisms or structures to make a model’s decision-making process more easily understood
by humans, whereas explainability focuses on providing clear, human-understandable rationale
for why a model made a particular decision or prediction.

Gradient-Weighted Class Activation Mapping (Grad-CAM) (Gildenblat and contributors,
2021) is a widely-used post-hoc explainable AI (XAI) technique, leveraging the gradients of a
particular class to produce intuitive saliency maps that highlight the key regions of an image
relevant to that class. This technique is valuable for visualizing which areas of the image are
influential in the model’s decision. By incorporating Grad-CAM, we can provide clinicians with
enhanced transparency and insight into our model’s reasoning, which is essential for building
trust and facilitating its integration into clinical practice.

We illustrate examples of Grad-CAM saliency maps on our DART hand images in Figure
3.15. First, we observe strong correlations between rash redness and area with the regions high-
lighted by Grad-CAM, indicating that SparKNet relies on the precise rash regions when making
its classification prediction. Additionally, regions of higher focus appear on the knuckles and
joints of the hand. This provides evidence that SparKNet’s DL features are correlated with the
original handcrafted features we explored earlier. Second, mature skin appears to be more chal-
lenging for SparKNet than younger skin, as the highlighted region in Figure 3.15c is less precise
and has greater variability than (a) or (b).

Thus, our results indicate a strong potential for exploring the relationship between DL and
handcrafted clinical features as a part of future work.

3.8 Future Work

Limitations. We provide the foundation for the development of uncertainty-guided AI systems
for automated cutaneous dermatomyositis rash severity prediction. Our evaluations are limited to
the small number of existing patients in the DART study and we intend to assess the robustness
of our proposed methodologies on a larger cohort of patients when available. In the future, we
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aim to broaden our scope to include a wider range of clinics, enhancing the generalizability of
our models across diverse data distributions.

Future work. First, we want to further investigate the effects of self-supervised learning on our
target task of CDASI severity scoring to better understand (a) the effect of semantic relevance of
pretraining dataset on our downstream performance and (b) whether the minimum number of tar-
get samples to achieve reasonable performance is the same between pretraining with supervised
learning or with self-supervised learning.

Second, we plan to evaluate the performance of our SparKNet framework directly against that
of UPMC clinicians using the same test datasets. This comparison aims to provide an objective
assessment of our model framework relative to expert human judgment, strengthening insights
into the clinical applicability and reliability of our system.
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Chapter 4

Conclusion

Our research seeks to identify contexts that make machine learning particularly challenging in
healthcare settings. At every stage, we make sure to ask the right questions: Can our models
account for data scarcity? How can we convey the uncertainty of our predictions to non-experts
in a meaningful way? We particularly remain cognizant of this last challenge, as we expect that
non-experts should be able to interact with machine learning systems without a literacy barrier.
Building human-AI trust in an intuitive way is essential for AI adoption in high-stakes clinical
settings.

Designing for healthcare settings introduces additional constraints. Two primary limita-
tions make integrating deep learning systems into healthcare challenging: (1) a lack of qual-
ity data and (2) a lack of model transparency. It is imperative to innovate new techniques to
improve model robustness without requiring expensive labeled data. Self-supervised learning
(SSL) and unsupervised learning (UL) techniques can learn rich, transferable representations
from unlabeled data, which are often more abundant than labeled data in medical settings. These
techniques prime models for efficient and effective downstream task performance.

Uncertainty quantification in deep learning. Monte Carlo dropout (MCD) and deep ensem-
bles represent two leading Bayesian approximation methodologies to assess parameter uncer-
tainty in deep neural networks. Deep ensembles involve training multiple networks indepen-
dently, with the expectation that, given sufficient diversity, these networks will converge to dis-
tinct basins of attraction within the loss landscape. However, if some ensemble members become
sub-optimal, the ensemble’s aggregate performance may deteriorate along with the quality of
uncertainty estimates. In such scenarios, MCD can offer a more robust alternative. These un-
certainty quantification techniques not only provide valuable diagnostic insights into model con-
fidence, but also facilitate more informed decision-making in safety-critical applications, model
calibration, and out-of-distribution detection.

Engineering interpretable-by-design AI is challenging. Although both are desirable, model
performance and the quality of uncertainty estimates assess distinct aspects of a model’s behav-
ior. As such, strong predictive accuracy does not imply high-quality uncertainty estimates, and
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improvements in one do not necessarily translate to improvements in the other. Although our
proposed frameworks demonstrate clinical relevance, additional considerations are required to
ensure the reliability of their uncertainties. We saw how this challenge was particularly pro-
nounced in the context of predictive modeling of dermatomyositis. Similarly, using XAI tools
like Grad-CAM enhances model transparency for end users. These visualizations are crucial for
giving clinicians insight into the model’s reasoning.

Evaluating AI performance against clinical assessment induces reliability. Directly com-
paring AI models to clinician performance is a parallel step toward establishing the reliability and
trustworthiness of automated systems in healthcare. By benchmarking MSU-Net and SparKNet
against practicing UPMC clinicians, we aim to quantify the alignment between human and AI
judgment. This approach not only provides an objective measure of the model’s capabilities but
also highlights scenarios where AI may offer complementary strengths or require further refine-
ment. When combined with uncertainty quantification, these insights can guide clinicians to in-
terpret AI judgments with appropriate caution, especially in high-uncertainty scenarios, thereby
reducing the risk of overreliance and promoting more informed, collaborative decision-making.

Ultimately, our goal is to design reliable, interpretable-by-design AI systems that perform well
in real-world applications, not just in theory. Communicating expectations with clinicians is the
first foundational step toward achieving clinical relevance with our algorithms. After all,

Acknowledging what you don’t know is as vital, if not more so,
as acknowledging what you do know.
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Appendix A

Trauma Care in a Rucksack

A.1 Bayesian Variational Inference

A.1.1 Bayesian learning
Consider learnable weights ω and our dataset D. Given some prior over the weights p(ω), we
can iteratively compute the posterior p(ω|D) using the likelihood p(D | ω) by

p(ω | D) = p(D | ω)p(ω)
p(D)

=
p(D | ω)p(ω)∫

ω′ p(D | ω′)p(ω′)dω′ (A.1)

This computation is often referred to as exact inference and requires the specification of both the
prior and likelihood.

A.1.2 Minimizing KL divergence is equivalent to maximizing ELBO
Consider the KL divergence of qϕ(ω) from p(ω|D), where qϕ is a member of the family of
distributionsQ. We show that minimizing this expression is equivalent to maximizing for ELBO.
First, using Equation A.1 from above

KL(qϕ(ω) || p(ω | D)) =
∫
ω

qϕ(ω) log
qϕ(ω)

p(ω | D)

=

∫
ω

qϕ(ω) log qϕ(ω)−
∫
ω

qϕ(ω) log p(ω | D)

= Eqϕ [log qϕ(ω)]−
∫
ω

qϕ(ω) log
p(ω,D)
p(D)

= Eqϕ [log qϕ(ω)]−
∫
ω

qϕ(ω) log p(ω,D) + log p(D)

= Eqϕ [log qϕ(ω)]− Eqϕ [log p(ω,D)]︸ ︷︷ ︸
−ELBO

+ log p(D)

Although log p(D) is intractable, we observe that it has no relation to the parameters of qϕ. When
optimizing with respect to ϕ, this term can be treated as a constant and effectively ignored, hence
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argmin
ϕ

KL(qϕ(ω) || p(ω | D)) ≡ argmax
ϕ

ELBO(qϕ)

A.2 Rényi Divergence Estimation

A.2.1 Vectorized implementation
Our contribution (Table A.1) reduces the total execution time to compute the Rényi divergence
estimator (Poczos and Schneider, 2011) from more than 100 minutes to just under 1.5 minutes
with negligible loss of accuracy on large datasets using a single NVIDIA RTX A6000 GPU.
Thus, when used in the boostrapping procedure, we reduce the computation time of our boot-
strapped confidence interval from > 70 days to just 22 hours.

Sample size N Init. exec. time(s) Vec. exec. time(s) Speedup

2000 0.326 0.00297 122.02x
20000 3.657 0.0208 176.15x
200000 36.314 0.2709 134.02x
15100000 6017.9 80.97 74.32x

Table A.1: Improved execution times for vectorized computation of non-parametric Rényi
divergence estimator. Our vectorized approach achieves between 75 to 175 times the speedup
over the baseline implementation.

A.3 Bootstrapping

A.3.1 Naı̈ve Efron-type bootstrap
The naı̈ve Efron-type bootstrap requires sampling our original dataset D of size n with replace-
ment until we generate n new samples to form our bootstrapped dataset D′:

Algorithm 5 Naı̈ve Efron-type bootstrap
Input: D = {x(i),y(i) | ∀i} and n = |D|
Output: Bootstrapped dataset D′

D′ ← {}
for i = 1, 2, · · · , n do

Uniformly sample (x′(i),y′(i)) ∼ D
Add (x′(i),y′(i)) to D′

Replace (x′(i),y′(i)) in D
end for
return D′
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Figure A.1: Visualizing the M-out-of-N (MooN) bootstrap. Instead of sampling from the
original sets we instead subsample the sets at the same rate to form p′, q′ and compute the Rényi
divergence estimator on the new sets.

The success of the bootstrap, particularly in injecting diversity across different runs of Algorithm
5, results from the observation that D′ contains only ≈ 63.2% samples from the original dataset
D. Consider the following informal proof: Since we are uniformly sampling from D, in any
iteration i a sample t has exactly 1

n
chance of being selected and thus 1 − 1

n
chance of not

being selected. Furthermore, since we are sampling with replacement, subsequent draws are
independent, and we can calculate the probability of never selecting sample t as (1− 1

n
)n. Now

consider increasing our dataset size n. As n tends to infinity, we observe that our probability of
never selecting sample t converges to

lim
n→∞

(
1− 1

n

)n

=
1

e
≈ 0.368

It follows that the chance of seeing samples from the original dataset is approximately 63.2%.

A.3.2 M-out-of-N (MooN) bootstrap
An alternative to the non-parametric bootstrap is the M-out-of-N (MooN) bootstrap, particularly
in cases involving a non-smooth estimator, such as extreme order statistics. Instead of sam-
pling from the original set D of size n, we instead subsample D forming D′. Theoretically, our
subsample size m = |D′| is determined by the estimator’s convergence rate. However, in prac-
tice we select a value for m that maintains the appropriate (1 − α) coverage probability for a
(1 − α) ∗ 100% confidence interval. Our implementation for the Rényi divergence estimator is
detailed in Algorithm 2 and visualized in Figure A.1.

A.4 Training Details

A.4.1 Model error as a proxy for diversity
In Section 2.4.2 we discuss the procedure of decorrelation maximization to prune our set of
candidates. In particular, we leverage model error as a proxy for model diversity. (Lai et al.,
2006) describes using binarized errors
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error(xij, yij, f
ω̂m) = 1

[
bin
[
σA

(
f ω̂m (xij)

)]
̸= yij

]
(A.2)

where bin
[
σA

(
f ω̂m (xij)

)]
= 1 when σA

(
f ω̂m (xij)

)
≥ 0.5 and 0 otherwise. However, Brier

score loss provides a more fine-grained representation of the model prediction error as it uses
prediction probabilities

BS(xij, yij, f
ω̂m) =

(
σA

(
f ω̂m (xij)

)
− yij

)2
(A.3)

and we choose to evaluate correlations with Brier score loss instead. We note that each pair
(xij, yij) corresponds to a single pixel and its ground truth label, and σA refers to the sig-
moid activation function. As an example, consider three models predicting the following prob-
abilities of five pixels: f1 → {0.9, 0.8, 0.9, 0.95, 0.97}, f2 → {0.5, 0.98, 0.6, 0.52, 0.75} and
f3 → {0.89, 0.81, 0.93, 0.95, 0.97}. f1 and f3 evidently appear to be highly correlated com-
pared to f2 and f3, yet all three will exhibit the same error profile when using binarized errors.
Fortunately, Brier score loss can account for this kind of behavior.

We then use Equation A.3 to generate our loss correlation matrix in Figure 2.6. We refer
to Figure A.2 to better illustrate the patterns in Brier scores for different pairs of models with
varying strengths in correlations.

Figure A.2: Visualizing model er-
ror patterns as a proxy for ensem-
ble diversity. (Top) Brier score loss
patterns of three different U-Net can-
didates across a subset of images in
VS2. Visually, f ω̂8 appears to have a
stronger correlation with f ω̂12

than f ω̂15 . (Bottom) From left to right:
Brier score loss plotted for pairs of
models with little, medium, and strong
positive correlation.

From Figure A.2 it is evident that f ω̂8 and f ω̂12 produce errors of similar magnitudes for the
same images, whereas the errors between f ω̂8 and f ω̂15 appear fairly distinct. From these results,
our decorrelation maximization algorithm will keep f ω̂15 in the final ensemble over f ω̂8 or f ω̂12 .

A.4.2 ROI for class imbalance
Our dataset in particular suffers from severe class imbalance, since an overwhelming proportion
of total pixels constitute the background and not the vessel. The table in Figure A.3 categorizes
the average proportion of pixels labeled vessels at different stages of the US scan, denoted as
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“pre-bifurc”, “mid-bifurc”, and “post-bifurc”. Evidently, at most about 3.8% of pixels on average
during any particular stage are labeled as vessels. In addition to adding a Dice loss term during
optimization to alleviate this issue, we additionally constrain our evaluations to a predefined
region of interest (ROI) illustrated on the left in Figure A.3. These boundaries are chosen such
that the vessel pixels never exceed this ROI during the entire US scan.

Average % of pixels labeled as vessels

Pre-bifurc Mid-bifurc Post-bifurc

Training Set (TR) 0.84 1.75 1.62
Validation Set (VS) 3.50 3.42 2.28
Testing Set (TS) 3.45 3.78 2.46

Figure A.3: Predefined region of interest (ROI) to account for severe class imbalance. (Left)
Illustration of the ROI on an example ground truth post-bifurcation segmentation mask. (Right)
Average percentage of pixels labeled as vessels for different stages of the US scan. For example,
“pre-bifurc” stands for the entire sequence of frames pre-bifurcation.

A.4.3 Dataset distribution
We divide frames from the US scan into different datasets for segmentation training as shown in
Table A.2.

Dataset n images

Training Set (TR) 1392
Validation Set (VS)

VS1 453
VS2 454

Testing Set (TS) 856

Table A.2: Number of images in each dataset subset.
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Figure A.4: Confusion matrices for MCU-Net vs. MSU-Net. MSU-Net predicts a larger
number of true and false positives compared to MCU-Net. However, MSU-Net reduces the
number of false negatives by almost 3x from MCU-Net.

A.4.4 Selected hyperparameters

Table A.3 details the optimal hyperparameters used in our experiments.

Task Hyperparameter Value

MCU-Net MSU-Net

Model architecture
Ensemble size 1 3
Ensemble technique - Bagging
Correlation metric - Plural-correlation coefficient

Drop rates Conv1 Layer 0.5 0.4
Conv2 Layer 0.5 0.5

Model training Early stopping epoch 15 150

AdamW optimizer
lr 1e−4 1e−3

β1 0.9 0.9
β2 0.999 0.999

Table A.3: Selected hyperparameters for each model architecture. MCU-Net shows signs of
overfitting considerably earlier than MSU-Net. Drop rates are identified through empirical tests
to find the optimal balance between training stability and performance.

A.5 Model Performance

A.5.1 Confusion matrices

We show the confusion matrices for MCU-Net vs. MSU-Net in Figure A.4.
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A.6 Predictive Uncertainty

A.6.1 Expected calibration error
Our results in Figure A.5 indicate that the baseline MCU-Net is as well-calibrated as MSU-
Net, as both models have approximately 1% ECE. However, our evaluations in Section 2.7
demonstrate that the ECE fails to capture the potentially catastrophic deficiencies of MCU-Net.

Figure A.5: Reliability diagrams for MCU-Net vs. MSU-Net. Confidence values on the x-axis
are binned and plotted against accuracy on the y-axis for MCU-Net (left) and MSU-Net (right).
Values closer to the diagonal indicate better calibration.

A.6.2 Additional vessel segmentation examples
We show several examples of predictions and their corresponding model (epistemic) uncertainty
maps in Figure A.6. MSU-Net achieves high precision in predicting vessel boundaries and is
able to effectively capture bifurcation behavior.
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Figure A.6: Example MSU-Net vessel segmentations with corresponding qualitative epis-
temic uncertainty maps. Segmentations are provided during (a) pre-bifurc, (b) mid-bifurc, and
(c) post-bifurc stages. Qualitative maps appropriately indicate lower uncertainty for correct pre-
dictions within vessels and higher uncertainty for incorrect predictions near outer vessel walls.
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Appendix B

Advancing AI Trust in Personalized
Medicine

B.1 Dermatomyositis Rash Manifestation

Figure B.1 illustrates the datasets we collected over the course of this project. As part of the
DART study, we collected in-clinic and telehealth images using two different imaging modalities.
In-clinic VECTRA H1 images are used as our fine-tuning dataset, while in-clinic smartphone,
telehealth, and body images are used during SSL pretraining.

B.2 Ordinal Regression with Handcrafted Clinical Features

B.2.1 Pipeline

See Figure B.2 for the full ordinal regression pipeline. We first segment the hand and coarse
rash region from the image. Then, we apply the K-means algorithm to the predicted segmen-
tation masks, enabling detailed rash localization. We compute our clinically-motivated, hand-
crafted features, which are then transformed through PCA to remove multicollinearity issues.
Our engineered features are finally used as predictors in ordinal regression.

B.2.2 K-means improves rash region localization

We show examples of the K-means rash localization algorithm in Figure B.3. First, we attempt
to find a large number of clusters in the a*b* channels of the CIELab color space through K-
means. However, if this fails to meaningfully extract the localized rash region, we reduce the
number of clusters and re-run the K-means algorithm until the predictions are coherent.

B.2.3 Ordinal regression predictors

Redness features. mean.rash.redness, rash.area.ratio, rash.redness.ratio
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Figure B.1: UPMC datasets utilized in study. Images from the VECTRA H1 camera were
converted from 3D to 2D. All other images were taken on smartphone devices.

Figure B.2: Full ordinal regression pipeline using clinically motivated, handcrafted fea-
tures. We segment the coarse rash regions from input images, followed by K-means to identify
fine-grained rash areas. We construct our handcrafted features from the fine-grained rash areas,
which are then concatenated with demographics features, such as antibody expression and age
(see Appendix B.2.3), and passed into our regression algorithm.
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Figure B.3: Example K-means fine-
grained rash region localization proce-
dure in handcrafted regression pipeline.
Example images (left) displayed alongside
segmented coarse masks (middle) and pre-
dicted K-means clusters overlaid in white
(right). K-means can identify fine-grained
regions of rash manifestation using the rel-
ative pixel redness, even when the rash is
not directly on the hand. The top patient
exhibits severe rash manifestations on the
wrist, which is still captured by K-means.

Texture features. contrast, dissimilarity, homogeneity, energy,
correlation

Demographic features. Ab, Jo, PL7, PL12, EJ, PMScl, Ku, U1, U2, Ro
TIF, MJ, MDA, Sex, Age, Weight, Height

Ab-MDA are myositis-specific autoantibodies associated with phenotypical features (Marasan-
dra Ramesh et al., 2022). They are often used for sub-classification of DM patients. Several of
the original features are removed since they only contain one level, thus acting like a constant,
and do not contribute any predictive power to the model.

B.2.4 Additional ordinal regression results

Model Metrics

MAE(↓) Exact Acc(↑) Off-by-1 Acc(↑) Off-by-2 Acc(↑)

POM-REG 1.722± 0.840 0.416± 0.194 0.547± 0.148 0.781± 0.145
PCA-REG 1.160± 0.518 0.484± 0.187 0.624± 0.118 0.852± 0.114

Table B.1: Evaluating ordinal regression strategies for predicting CDASI score for rash
severity. POM-REG performs ordinal regression directly on the original predictors, hence suf-
fers convergence issues due to high multicollinearity. PCA-REG addresses these challenges by
performing principal component analysis (PCA) dimensionality reduction on the predictors prior
to model fit. We observe that PCA-REG consistently outperforms POM-REG across four differ-
ent performance metrics. ORDREG in Table 3.2 refers to PCA-REG.
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