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Abstract
Recent advances in machine learning for personalized medicine have created a

need to determine when observational healthcare data can reliably inform treatment
policies. This thesis examines methods for evaluating whether treatment variation in
medical datasets is sufficient for developing dependable clinical policies. Through
three complementary approaches, we investigate methods to detect and measure
meaningful action diversity in healthcare data:

First, we analyze the MIMIC sepsis dataset using transformer-based dynamics
models. Our findings reveal that including action information provides minimal im-
provement in outcome predictions across the entire dataset. This suggests limited
meaningful treatment diversity when analyzed in aggregate. Second, in our con-
trolled simulation experiments with a one-dimensional GridWorld environment, we
demonstrate that comparing prediction performance between models with and with-
out action inputs effectively identifies regions where treatments meaningfully impact
outcomes. Finally, we present a novel interactive visualization tool that employs t-
SNE dimensionality reduction and intuitive diversity metrics to help researchers ex-
plore action diversity across patient state spaces. This tool helps identify subgroups
where treatment policies can be reliably learned.

Our findings demonstrate that dynamics model comparisons can effectively iden-
tify regions where treatment policies can be reliably learned, enabling more targeted
and trustworthy deployment of machine learning in healthcare. This framework pro-
vides researchers with practical tools to evaluate data sufficiency before deploying
treatment recommendation systems, potentially improving both the reliability of AI
assistance in clinical decision-making and, ultimately, patient outcomes.
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Chapter 1

Introduction

1.1 Background and Motivation

Current healthcare practice relies largely on standardized clinical guidelines that may not fully
account for individual patient differences and contexts. This approach provides a foundation
for treatment decisions, but often falls short of optimal care for individual patients. Recent
advances in machine learning and the increasing availability of electronic health records have
created new opportunities for data-driven personalized medicine. This wealth of observational
data has sparked numerous machine learning approaches for learning treatment policies, opening
the possibility of truly personalized treatment recommendations that could significantly improve
patient outcomes. However, we must be certain of the reliability of any learned treatment poli-
cies as incorrect treatment recommendations could lead to adverse outcomes or patient harm.
Although we have access to more medical data than ever before, we lack robust methods to de-
termine when this data is sufficient for learning reliable treatment policies. This gap between
data availability and our ability to verify policy reliability remains a critical challenge in the
advancement of personalized medicine.

1.2 Problem Statement and Goal

Learning reliable treatment policies from observational data presents several fundamental chal-
lenges. In clinical practice, clinicians understandably follow standard protocols and guidelines,
leading to limited exploration of alternative treatments. This creates a key methodological chal-
lenge: we can only observe the outcomes of treatments that were actually administered, not the
potential outcomes of alternative choices. Moreover, even when there are variations in treatment
choices, we currently lack established methods to determine whether these variations are suffi-
cient for learning reliable policies. This makes it difficult to identify which regions of the patient
state space have enough treatment diversity to support reliable policy learning. Therefore, there
is a critical need for methods that can help researchers identify when and where learned treatment
policies can be trusted.
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1.3 Contribution
This thesis introduces several key contributions to address these challenges. First, we propose
action diversity as a metric to evaluate treatment variation in medical datasets, providing a quan-
titative way to assess whether we have observed enough variation in treatment choices to learn
meaningful policies. Second, we develop simulation methods to identify specific subgroups
within datasets where action diversity exists, allowing a more targeted analysis of where treat-
ment policies could be reliably learned. Third, we create an interactive visualization tool that
allows researchers to explore action diversity across different regions of the patient state space,
helping them understand where they have enough data to learn reliable policies. Together, these
contributions provide researchers with systematic ways to evaluate the suitability of their datasets
for learning treatment policies and identify potential limitations in their analyses.
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Chapter 2

Related Works

2.1 Related Work

2.1.1 Reinforcement Learning in Healthcare
Many studies have explored reinforcement learning (RL) to derive treatment policies from obser-
vational data, particularly for critical care scenarios such as sepsis. The AI Clinician [14] applied
tabular Q-learning to learn policies from retrospective ICU data, sparking significant interest in
offline RL for healthcare. Extensions have incorporated deep learning methods [17, 22], physio-
logical constraints [16], and improved sample efficiency [12, 15]. More recently, [20] proposed
factored action spaces to better model the combinatorial nature of clinical decisions.

Despite these advances, several critiques have emerged. [13] showed that even high-capacity
models struggle to learn meaningful state representations tied to outcomes. [9] demonstrated
how reward misspecification can lead RL agents to recommend dangerous treatments. Other
work has proposed better policy evaluation methods [7] and interpretability tools [10]. However,
the underlying assumption in these works is that sufficient treatment variation exists to support
reliable learning.

2.1.2 Causal Inference and Identifiability
Causal inference approaches aim to estimate treatment effects from observational data while
addressing confounding and selection bias. A common challenge in this domain is the over-
lap assumption which assumes that each patient has a nonzero probability of receiving any of
the available treatments [8]. When this assumption is violated, which often occurs in clinical
datasets with protocol-driven treatments, treatment effect estimates become unreliable.

Recent work has focused on identifying subgroups where treatment effects differ significantly
and can be more reliably estimated. For instance, Wang and Rudin [21] and Bargagli-Stoffi et al.
[1] propose interpretable rule-based models to discover patient subgroups with heterogeneous
treatment effects. These models help address the problem of non-uniform treatment support by
isolating regions of the data where meaningful comparisons can be made. Similarly, Bayesian
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Additive Regression Trees (BART) [8] provide a flexible, nonparametric approach for estimating
individualized treatment effects, while accounting for uncertainty.

Our work is complementary to these efforts: rather than estimating treatment effects directly,
we focus on detecting regions of the state space where treatment variation is both present and
predictive of patient outcomes. This provides a diagnostic tool for assessing when observational
data is suitable for learning policies, especially in the presence of limited overlap.

2.2 Visualization and Interpretability
Interpretable models and visualizations are essential in clinical settings, where understanding
why a model makes a specific recommendation is often as important as the prediction itself.
Several prior works have focused on improving model transparency to build clinician trust and
support decision-making.

Caruana et al. [4] developed generalized additive models with pairwise interactions (GA2Ms)
to predict pneumonia risk and hospital readmission, demonstrating that intelligible models can
match the accuracy of black-box models while offering direct insight into feature contributions.
Che et al. [6] proposed interpretable deep models using recurrent neural networks for ICU out-
come prediction, incorporating mechanisms such as attention and feature-level regularization to
enhance interpretability without sacrificing performance.

More recently, Caicedo-Torres and Gutierrez [3] introduced ISeeU, a deep convolutional model
for ICU mortality prediction that uses coalitional game theory to provide visual explanations for
predictions. Their approach offers clinicians a clearer understanding of how the model weights
various input features in making life-critical decisions.

These works illustrate the growing emphasis on interpretability and visualization in clinical ma-
chine learning. Our thesis builds on this direction by introducing a t-SNE-based interactive tool
that helps researchers explore where treatment effect estimation may be trustworthy, particularly
by highlighting state regions with varying levels of treatment impact.

4



Chapter 3

Measuring Action Diversity Through
Dynamics Models

3.1 Introduction

Within the broader context of learning reliable treatment policies from observational data, sepsis
represents both a compelling use case and a significant challenge. Sepsis treatment recommen-
dation is a particularly promising area for machine learning research, given both the severity of
the condition and the lack of well-established treatment guidelines. Improving treatment strate-
gies for patients with sepsis is a challenge of considerable interest in applied machine learning
(ML). Sepsis is a leading cause of death in hospitals, and there is currently little clinical con-
sensus around best practices for treatment [5]. Several recent works have applied reinforcement
learning (RL) methods in efforts to support clinician decision making in sepsis patients in the
intensive care unit (ICU).

While these algorithms have shown promise when evaluated using off-policy policy evaluation
(OPE) methods, off-policy evaluation presents a critical challenge in this domain. These meth-
ods attempt to assess how a new policy would perform if deployed, using only historical data
collected under different policies. Although this is necessary for ethical evaluation of treatment
policies without patient experimentation, OPE methods are subject to important limitations [].
Beyond methodological concerns with OPE, recent analyses of specific RL models for sepsis
treatment have revealed more troubling issues. Several studies have shown that these models
often recommend treatments that deviate significantly from clinical practice, sometimes in ways
that appear potentially dangerous [9, 19].

These findings raise a fundamental question central to this thesis: Is it possible to learn effec-
tive RL treatment policies from publicly available datasets such as MIMIC (Medical Information
Mart for Intensive Care)? A key limitation may be insufficient action diversity—the variation
in treatment decisions for similar patient states—within these observational datasets. If clini-
cians consistently follow similar treatment strategies for patients with comparable conditions,
the dataset may lack the exploratory richness needed for effective policy learning. As discussed
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in the broader thesis introduction, for RL to learn optimal counterfactual policies, we propose
that patient trajectory datasets should exhibit diversity in observed actions that correlates with
differences in outcomes conditioned on a particular state.

In the RL formulation shown in Fig. 3.1, we assume that for a given state st we can estimate not
only the cumulative reward of taking observed action at, but also the reward for taking a different
action a′t. This would allow the offline-trained RL agent to accurately choose between at or a′t
despite having only observed directly the results of the former action. Since directly proving

......

State input Future action input

Target: Change in disease severity 

Figure 3.1: Markov decision process model for patients with sepsis in the ICU. st represents the
patient state at time t, at represents a treatment action, and yt represents a function of the state
that captures the patient’s disease severity. Brackets indicate how these values are used in our
experiment.

the impossibility of learning effective policies is challenging, we approach this question by fo-
cusing on the relationship between patient states and treatment actions in these open datasets.
Specifically, we utilize dynamics models built with state-of-the-art transformer architectures to
investigate whether treatment actions contain additional predictive information beyond what is
available in the patient state. Our reasoning follows the framework outlined in the thesis introduc-
tion: if clinician actions are diverse and have an effect on outcomes, then the action information
should improve a model’s ability to predict future observed disease severity.

This chapter presents a detailed exploration of action diversity in sepsis treatment datasets. By
examining the predictive power of treatment actions, we provide a concrete case study demon-
strating how action diversity can be measured and interpreted in a high-stakes medical domain.
Our findings have important implications for the feasibility of reinforcement learning in this con-
text and contribute directly to the thesis goal of developing methods to identify when and where
learned treatment policies can be trusted.
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3.2 Methodology

3.2.1 Data and Preprocessing

Patient trajectory data was extracted following [14] and [13] from MIMIC-IV [11] and the eICU
Collaborative Research Database [18].12 Data was aggregated at one-hour intervals, and patients
with more than 14 days in the ICU were excluded. Missing data was imputed using a transformer-
based autoencoder model. This resulted in a total of 2,060,446 timesteps from 33,779 patients.

We employed a transformer model to impute missing values, in contrast to prior approaches
which use a combination of carrying forward the last known value and k-nearest neighbor impu-
tation. To ensure the robustness and generalizability of the imputation model, it was trained on
the available data and evaluated using artificially created missing values.

The state space for our models consisted of 60 normalized observation variables (vitals, labs,
prior treatments, and fluid balances) and 35 demographic variables (age, gender, and Elixhauser
comorbidities). The action space comprised log-transformed continuous-valued dosages of IV
fluids and vasopressors. Three widely-used severity metrics were used as outcomes: the Sequen-
tial Organ Failure Assessment (SOFA) score, the Systemic Inflammatory Response Syndrome
(SIRS) score, and Shock Index. Actions and disease severity were z-transformed for model
input and output.

3.2.2 Models

Model Selection

To assess the suitability of different models for predicting patient outcomes, we conducted a com-
parative study using transformer-based, RNN-based, and linear-regression-based models. This
experiment was conducted using a subset of the MIMIC-III [? ] database containing patients
with sepsis.

We trained and evaluated sixteen models in total: two transformer models (with 4 and 16 atten-
tion heads), one RNN model, and one linear regression model—each tested across four different
embedding sizes. We used the Adam optimizer and negative log-likelihood as the loss function,
with training conducted over 20 epochs and a batch size of 32. Model performance was assessed
using both training and validation loss.

1While previous work has generally used MIMIC-III, the AI Clinician modeling procedure has been shown to
yield consistent results in the two versions of MIMIC [19].

2Preprocessing and modeling code available at https://github.com/cmudig/
AI-Clinician-MIMICIV.
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Dynamics models

Our experiment utilized decoder-only transformer models, where each input “token” comprised
embeddings of the patient’s observed state, demographics, and actions.3 The model consisted of
two transformer blocks, each comprising 4 self-attention layers, each with 16 attention heads and
a total dimension of 1024. The first transformer block took the state and demographic embed-
dings as input, while the second transformer block added embedded clinician actions. Models
were trained on the future disease severity task along with three other proxy tasks: (1) predict-
ing the current state of the patient, (2) predicting whether the current state is the last step in
the patient’s trajectory, and (3) predicting whether two embeddings correspond to states that are
adjacent in time. The proxy tasks were included only to improve the model’s convergence and
generalizability, and results for these tasks are not shown.

The dynamics models were trained using a multitask learning approach, using two regression
tasks and two binary classification tasks: (1) predicting the current state of the patient, (2) fore-
casting future disease severity (the target of interest), (3) predicting whether the current state is
the last step in the patient’s trajectory, and (4) predicting whether two embeddings correspond
to states that are adjacent in time. Losses from the four tasks were aggregated and used to train
the dynamics model until loss did not decrease for three epochs (between 10-20 epochs per
model). Both regression tasks were trained using mean squared error (MSE) loss, while binary
cross-entropy loss was utilized for the binary classification tasks.

Behavior cloning

While the dynamics models described above aimed to predict the difference in disease severity
as a function of states and actions, we also trained behavior cloning models to predict clinician
actions as a function of states. These models utilized the first transformer block from above to
encode the state observations and demographics, then applied a two-layer feedforward network
to simultaneously predict fluid and vasopressor dosages at one-hour intervals up to 6 hours ahead.
Models were trained with MSE loss until the loss did not decrease for three consecutive epochs.

Behavior Cloning is a method based on imitation learning, which tries to predict which action a
clinician would take given a patient state. It’s different from the other methods in that it doesn’t
try to improve on the clinician action, but rather to replicate it. We can use this as a baseline for
other deep learning-based methods.

3.3 Results

3.3.1 Dynamics model Selection
As shown in Figure 3.2, transformer-based models consistently demonstrated lower training and
validation losses compared to RNN and linear models. Among the transformer variants, models

3We conducted the same experiments with linear and recurrent networks as well as XGBoost models, but found
that transformers yielded the best performance.
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with 16 attention heads generally outperformed those with 4 heads. For both RNN and linear
models, an embedding size of 256 minimized losses. Error bars in the RNN loss curves suggest
higher variance, indicating less stable performance. Based on this analysis, we selected the
transformer-based dynamics model with 16 heads and an embedding size of 512 as the most
appropriate model for downstream evaluation.

Figure 3.2: Training and validation loss for different dynamics models.

3.3.2 Influence of Action Inputs on Disease Severity Predictions

To assess the impact of incorporating clinician actions on the predictive performance of transformer-
based dynamics models, we conducted an experiment comparing models trained with and with-
out action data. Our objective was to determine whether the inclusion of treatment actions en-
hances the models’ ability to predict future disease severity.

We trained a total of 81 dynamics models across three experimental groups to predict changes in
future disease severity. The first group was trained with both patient state and future action infor-
mation. The second group, with identical architectures, had all future actions set to mean values
(effectively removing them from training). The last group also shared identical architectures, but
was trained without the information about states.

For each configuration, we predicted disease severity changes using three metrics (SOFA, SIRS,
and Shock Index) at three future time points (6, 12, and 18 hours ahead). Each model configu-
ration was trained and evaluated across three random weight initializations. We conducted four
distinct evaluations by generating predictions on different variants of the test dataset:

• True: Using the original treatment actions from clinical records
• Zero: Setting all dosage values to zero
• Shuffled: Using real but randomly permuted dosages
• Mean: Replacing all actions with mean dosage values

9



Figure 3.3: Left: RMSE (lower is better) of the predicted change in disease severity across
training schemes (“Train Actions”, “Train States,” and “Train States + Actions”) and action
inputs at test time (True, Zero, Shuffled, and Mean). Error bars indicate the standard deviation
across three random weight initializations. Note that all units are in z-scaled space, so an RMSE
of 1 corresponds to 1 standard deviation in the severity metric. Right: example histograms
comparing true and predicted changes in SOFA score at 12 hours ahead, in the True and Shuffled
evaluation conditions.

Figure 3.3 presents the root mean squared error (RMSE) of these predictions in z-scaled
space, along with example comparisons between model predictions and ground-truth values.
Overall, RMSE remained nearly constant across training conditions and action input types, with
the exception of the Mean condition. The Mean condition generally exhibited higher error and
greater variance across initializations when actions were included in training, likely because con-
sistently receiving nonzero fluids and vasopressors represents a highly unusual clinical scenario.
Among the other three conditions (True, Zero, and Shuffled), the range of RMSEs was within
0.05 for SIRS and Shock Index, and within 0.1 for SOFA. Notably, performance in the True
condition was highly similar whether or not actions were provided during training. This null re-
sult suggests that actions did not substantially improve model fit, consistent with our hypothesis
that they are not diverse enough for policy learning. Additionally, models trained without state
information showed similar trends, indicating that action information is largely redundant with
patient states.

For models trained with action data, the MSEs of validation datasets with altered action in-
formation (Zero, Shuffled, Mean) were higher compared to the True validation dataset. This
indicates that inaccurate or manipulated action information negatively affects predictive perfor-
mance. Conversely, for models trained without action data, MSEs remained consistent across
all validation datasets, confirming that these models do not utilize any information regarding
clinician actions.
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Figure 3.4: Example histograms comparing the true change in SOFA score to the predicted
change at 12 hours ahead, when the model was given the True action compared to the Mean
action.

3.3.3 Prediction of Future Actions with Behavior Cloning

To directly evaluate the predictability of actions from states, we trained three replicates of a be-
havior cloning model with different random weight initializations. If these models showed a
strong fit to the data, it would suggest that actions were fully consistent and predictable across
clinicians.

Fig. 3.5 shows that the average R2 correlations between the true and predicted actions (in log-
transformed and z-scaled units) were generally low, particularly after several hours. IV fluid
predictions were notably less correlated with the true values than vasopressor predictions. This
difference may be due to two factors: (1) vasopressors are more commonly zero than fluids,
increasing the overall predictability of vasopressor use, or (2) the amount of IV fluid used is gen-
erally more clinician-dependent. The regression models also appeared to struggle with the wide
range of fluid dosage values, tending to predict values within a more constrained range (Fig. 3.5,
third panel).
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Figure 3.5: Left: correlations between true and predicted normalized actions from 1 to 6 hours
ahead. Right: example histograms of correlations between true and predicted normalized actions
at 6 hours.
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Aside from the possible modeling issues in the IV fluid predictions, the low correlations
across both treatments suggest there is in fact some diversity in clinician actions that could ben-
efit policy learning. However, action diversity does not necessarily correspond to observable
differences in outcomes, since there is likely a range of treatment dosages that correspond to
similar effects for a given patient state. The results in the preceding section suggest that even
when dosage differences exist, they may not yield sufficient differences in outcomes to provide
a useful signal to an RL agent.

3.4 Discussion
This work explored the impact of clinician actions on the predictability of future changes in
sepsis disease severity, seeking to determine whether actions have sufficient diversity to support
accurate RL-based policies. Our findings revealed that action information does not confer sub-
stantive improvements in dynamics model fit. Transformer models could predict future disease
severity almost equally well with or without true actions as input.

Taken alone, the dynamics model results in Section 3.3.2 might suggest that actions are fully
predictable from patient states, and there was no need to learn from the action inputs. This
observation echoes results from [2], who critique patient risk predictions as “looking over the
shoulders of clinicians.” However, our action prediction results (Section 3.3.3) showed fairly
noisy predictions, indicating that while variation in actions exists, it is not sufficient to cause
measurable differences in outcomes in our sepsis cohort. Rather, the outcome differences we
observe may be more driven by unobserved patient variables or natural random variation.

The observed lack of diversity in actions within MIMIC data may stem from several inherent
challenges in working with patient trajectories:

• There may only be a small number of treatment possibilities that are clinically feasible and
safe, limiting the space of actions that clinicians could take

• Clinicians may follow predictable treatment patterns (such as monotonically increasing or
decreasing dosages) that appear diverse yet lead to consistent outcomes

• Missing data imputation could have caused patient states and actions to appear more con-
sistent than they truly are

These obstacles are likely to exist in any patient treatment dataset, underscoring the importance
of using learning methods that are robust to missingness and a constrained action space.

Another possible explanation for our results is that our models simply didn’t learn to use actions
effectively, and a better model formulation might yield more pronounced differences between
the “Train States” and “Train States + Actions” models. While it is impossible to determine
a priori whether there exists a more effective way to use actions, we conjecture that if such a
method exists, it would likely require more clinically-informed descriptions of actions than what
has currently been explored in the literature. For instance, models could use other treatments
such as antibiotics and mechanical ventilation, contextualize actions using the patient’s physio-
logical state, or limit the training data to only the most important decision points. Future work
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should incorporate clinician guidance on how to meaningfully encode treatments to further test
the effects of action information.

This work highlights the importance of diversity in data sources when building medical rec-
ommendation models. While it has been extremely valuable in developing and exploring ways
to improve sepsis treatment, the MIMIC dataset is sourced from a single well-resourced hospital
in Boston [11], where clinicians are likely to be consistent and compliant with existing practice
guidelines. Human-centered ML efforts undertaken in collaboration with clinicians and medical
data experts can also inspire more clinically-relevant and performant model formulations, such
as focusing on the emergency department (a higher-stress environment that is less specialized to-
wards sepsis than the ICU) or building smaller models that are relevant to specific subgroups of
patients [19]. Through these research directions, applied ML efforts may be able to better utilize
available observational data to improve sepsis treatment recommendation while accounting for
the inherent limitations in action diversity present in clinical datasets.
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Chapter 4

Analyzing Action Diversity Through
Controlled Simulation

4.1 Introduction

In the previous chapter, we examined whether reinforcement learning approaches could effec-
tively learn treatment policies for sepsis using observational data from the MIMIC dataset. Our
analysis revealed a significant challenge: when evaluated across the entire dataset, treatment ac-
tions did not substantially improve the predictive performance of dynamics models for patient
outcomes. This finding suggested that either clinician actions were highly predictable from pa-
tient states, or that the observable impact of diverse actions on outcomes was limited. However,
this aggregate analysis may obscure important heterogeneity within the dataset. A critical ques-
tion remains: Could there exist specific subgroups of patients or clinical contexts where action
diversity is more pronounced and has measurable effects on outcomes?

To address this question, we require methods capable of systematically identifying and charac-
terizing regions of action diversity. However, developing and validating such methods directly on
complex clinical data presents significant challenges. The high dimensionality of patient states,
the presence of unmeasured confounders, and the intricate relationships between treatments and
outcomes make it difficult to isolate the effects of action diversity. Furthermore, without ground
truth knowledge, it is challenging to evaluate whether our methods correctly identify regions of
meaningful action diversity.

In this chapter, we take a step back and adopt a controlled simulation approach. We created
a simplified GridWorld-based environment which allows explicit control over state-action rela-
tionships. This allows us to systematically study patterns of action diversity and evaluate methods
for detecting these patterns.
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4.2 Methodology

4.2.1 Simulation Environment Design

We implemented a one-dimensional GridWorld using the Gymnasium framework, consisting of
N discrete states, where each state represents a simplified abstraction of a patient’s state. States
are arranged sequentially from 0 to N − 1. The environment supports multiple actions, simulat-
ing different treatment options. Each action is assigned a specific reward value that determines
the patient’s next state. For example, an action with a reward of +2 would shift the patient’s state
two positions forward, while an action with a reward of -1 would move the patient one position
backward.

We implemented two distinct state types to model different patterns of action diversity:

• Action-diverse states: States where patient trajectories are directly affected by action
choices. In these states, the next state transition is determined by the specific reward value
associated with the selected action.

• Non-diverse states: States where patient trajectories follow their own fixed probability
pattern regardless of the action taken. In these states, the transition is determined by a
state-specific reward value, and the action input is ignored.

This binary classification of states allows us to create a controlled environment with regions of
clear action diversity and regions where actions have no impact on outcomes. Each state is ran-
domly assigned one of these two types during environment initialization.

Our simulation environment defines state transition dynamics that vary depending on whether
the current state is action-diverse or not. For action-diverse states, the state transition is calcu-
lated as st+1 = st+reward[at], where reward is a vector mapping each action to a specific reward
value. These reward values are randomly initialized within the range [−2, 2] and determine how
far and in which direction the patient’s state moves. For non-diverse states, the state transition is
calculated as st+1 = st + reward[st]. If a transition would move the patient’s state outside the
valid range [0, N−1], the trajectory is terminated and marked with a special terminal state value.
At each timestep, actions were selected with equal probability from the available action space,
regardless of the state type. This approach provides a baseline scenario where all actions have
equal representation in the dataset, allowing us to focus on the effects of state-dependent action
efficacy rather than action selection bias.

4.2.2 Synthetic Dataset Generation

Using the defined GridWorld environment, we generated synthetic datasets to evaluate our meth-
ods for detecting action diversity. Each dataset consisted of multiple simulated trajectories, with
each trajectory beginning from a randomly selected initial state. At each timestep, the current
state st was recorded, an action at was selected uniformly at random, and the next state st+1 was
determined according to the transition dynamics. The process was repeated until the trajectory
reached its maximum length or transitioned to a terminal state.
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The resulting dataset captured a detailed history of each simulated patient trajectory. For every
step, we recorded the trajectory ID, the timestep, the current state, the ground truth state type,
the selected action, and the resulting reward. In addition to the trajectory-level data, we stored
metadata describing the environment configuration, including the assignment of state types, the
reward mappings, and the simulation parameters used for each dataset. This structure allowed
for consistent evaluation and interpretability across different experimental runs.

4.2.3 Dynamics Model

Model Architecture

Following the same methodological approach used in Part 1 of this thesis, we trained two variants
of predictive models to detect action diversity: one that incorporates action information and one
that does not. The with-actions models take both state and action inputs to predict future patient
states or state changes. In contrast, the without-actions models use only the state as input, with
the action channel replaced by zeros. Comparing the performance of these two variants allows
us to identify regions where action information contributes predictive value.

We implemented this approach using XGBoost regression models, which provide a fast and
interpretable baseline for learning state transitions. Inputs were one-hot encoded, and the target
variable was the change in state over a specified future interval.

To assess short- and long-term effects, both model types were trained to predict outcomes at
multiple future horizons, ranging from one to four timesteps ahead. This involved shifting the
target state forward and predicting the delta. This setup enabled a comprehensive evaluation of
the robustness of action diversity detection across architectures and prediction horizons.

Training and Evaluation

All synthetic datasets were split into training (50%) and validation (50%) sets based on trajectory
IDs. XGBoost models were trained using default hyperparameters with the ‘hist’ tree method.
The models were trained to minimize mean squared error (MSE) between predicted and actual
future states or state changes.

To evaluate model performance, we computed root mean squared error (RMSE), which we cal-
culated for both with-action and without-action models on the training set, the full validation
set, and separately on action-diverse and non-diverse subsets of the validation data. By com-
paring the performance metric, we can identify where action information significantly improves
predictions, indicating meaningful action diversity.
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4.2.4 Classifying State Diversity via Predictive Model Error Differences

To further validate whether action diversity can be detected from model behavior, we trained a
classifier to predict whether a given state is action-diverse or not, based on the performance of
dynamics models.

Dataset Construction for Classification

We first constructed a new dataset based on the outputs of the with-actions and without-actions
XGBoost models described above. For each timestep in each trajectory, we recorded the absolute
prediction errors from both models. We then computed a boolean label indicating which model
performed better. These features were then joined with the ground truth StateType labels
from the simulation to create a labeled classification dataset suitable for training and evaluation.

Classifier Training

We trained a simple XGBoost binary classification model to predict whether a given state is
action-diverse or non-diverse. The input feature vector included the absolute prediction errors
from both models, the difference between the two errors, a binary indicator of which model had
lower error, and one-hot encoded representations of the current state and action. The classifier
was trained on 70% of the data, with the remaining 30% held out for validation. Model per-
formance was evaluated using classification accuracy and the area under the ROC curve (AUC),
allowing us to assess the effectiveness of model behavior as a proxy for detecting action diversity.

4.3 Results

To evaluate whether action information improves the predictability of patient state transitions,
we conducted a series of experiments using synthetic data generated by our GridWorld simula-
tion environment. Specifically, we compared two types of dynamics models—one that included
action inputs and one that did not—over multiple prediction horizons. In addition, we trained a
model to classify states as action-diverse or not, based on the relative performance of the dynam-
ics models.

4.3.1 Simulation Behavior and Dataset Properties

Our simulation environment successfully generated synthetic patient trajectories with distinct
action-diverse from non-diverse states. Each environment consisted of 20 discrete states, with
an equal split: 10 states were randomly designated as action-diverse and 10 as non-diverse. In
action-diverse states, transitions depended on the chosen action, whereas in non-diverse states,
transitions were determined solely by the current state and were independent of action. This
setup provided a well-defined ground truth structure for evaluating model performance.
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4.3.2 Dynamics Model Performance
XGBoost Models

We evaluated XGBoost-based dynamics models by measuring their root mean square error (RMSE)
in predicting state transitions across various horizons and state types. As shown in Table 4.1,
models trained with action inputs consistently outperformed their counterparts in action-diverse
states, but underperformed in non-diverse states.

Table 4.1: RMSE values for XGBoost models across 1–4 future timesteps.

Horizon Action-Diverse Non-Diverse
With Action Without Action With Action Without Action

1-step 1.42 2.53 3.59 3.28
2-step 2.64 3.21 3.74 3.39
3-step 3.38 3.60 3.54 3.11
4-step 3.54 3.79 3.66 3.42

In action-diverse states, incorporating the action input significantly improved model perfor-
mance across all time horizons. For example, at the 1-step horizon, the RMSE dropped from
2.53 (without action) to 1.42 (with action). Although the performance gap narrowed over longer
horizons, the advantage of using action remained consistent; at 4 steps ahead, the RMSE was
3.54 with action compared to 3.79 without.

In contrast, the trend reversed in non-diverse states: here, models with action input tended to
perform slightly worse. For instance, at the 1-step horizon, the RMSE increased from 3.28
(without action) to 3.59 (with action). This pattern was consistent across all horizons, suggesting
that including irrelevant action information introduces noise, worsening predictive accuracy in
states where action has no effect.

Figure 4.1 illustrates the relationship between model predictions and true values, with each point
corresponding to a particular state and timestep. We can see that the predictions are more accu-
rate and correlated for the models trained with action inputs compared to those trained without
action. The scatterplots are organized into three columns: the leftmost column shows all states
in the validation set, while the right two columns separate the states into action-diverse and
non-diverse categories, as determined by our classifier. For action-diverse states—where varied
actions lead to varied rewards—models trained with action inputs show more accurate and tightly
correlated predictions. In contrast, for non-diverse states—where actions do not significantly af-
fect outcomes—there is less correlation between predictions and true values, and the inclusion
of action can even degrade performance. The clustering patterns reveal that in diverse states,
actions meaningfully inform transitions, whereas in non-diverse states, they do not.

Together, these results support our central hypothesis: action inputs improve dynamics model
performance only in regions where actions influence transitions. When action is relevant, mod-
els that incorporate it produce more accurate predictions. When it is irrelevant, including it

19



Figure 4.1: Scatterplot of model prediction errors across diverse and non-diverse states.

can harm performance. These insights emphasize the importance of selectively modeling action
effects—an idea we further explore through the use of a classifier.

4.3.3 Action Diversity Classifier Performance

To test whether model performance differences can be used to identify action-diverse states di-
rectly, we trained a classifier to predict state type using features derived from dynamics model
errors. For each timestep, we computed the absolute errors from both models, their difference,
and an indicator of which model performed better. These were combined with one-hot encodings
of the current state and action to form the feature set for an XGBoost classifier.

The classifier achieved an accuracy of 86% on a held-out validation set for 1 timestep, indi-
cating that model behavior can be reliably used to infer underlying state properties. Table 4.2
summarizes the classification performance across different prediction horizons. These results
demonstrate that action diversity can be inferred from model performance patterns. This pro-
vides a promising foundation for identifying subpopulations in real clinical data where machine
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learning methods may be more effective and trustworthy.

Table 4.2: Classifier performance over different future prediction intervals.
Time (hrs) Train Accuracy Validation Accuracy ROC AUC

1 0.872 0.861 0.832
2 0.803 0.791 0.769
3 0.802 0.809 0.692
4 0.796 0.819 0.686

4.4 Discussion
This section introduced a novel framework for assessing when observational medical data is suit-
able for learning treatment policies. Through a controlled simulation environment, we demon-
strated that the difference in predictive performance between models trained with and without
action input reliably signals whether a state is action-diverse.

In regions where actions affect outcomes, models incorporating action information performed
better. In contrast, in states where actions had no effect on transitions, including action input
provided no benefit. These patterns were consistent across model types and prediction horizons.

Building on these observations, we constructed a second-level model to classify state diversity
based on dynamics model outputs. Our classifier achieved high accuracy using simple features
derived from prediction error differences. This result suggests that we may be able to identify
reliable subspaces for learning purely from model behavior.

While our experiments were conducted in a controlled synthetic environment, which enabled
access to ground truth labels, the real-world applicability of this framework remains to be tested.
Clinical datasets are noisier, less balanced, and subject to confounding factors that are not cap-
tured in our simulation. Applying this method to real data will be a key next step in validating
its utility in practice. Additionally, future work could extend this framework to account for con-
tinuous state spaces.
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Chapter 5

Exploring Action Diversity Through
Interactive Visualization

5.1 Introduction
The previous chapters of this thesis investigated action diversity in healthcare datasets through
aggregate statistics and controlled simulations. The results from Parts 1 and 2 of this thesis
highlight a critical challenge in applying reinforcement learning to healthcare: the variation in
treatment choices across similar patient states is often limited and unevenly distributed across the
state space. While our simulation experiments demonstrated that it is possible to detect regions
of meaningful action diversity using model-based signals, applying these techniques to real clin-
ical datasets introduces additional complexity. Real-world data is high-dimensional, noisy, and
lacks ground truth annotations, making it difficult to interpret where and why action diversity
exists.

In this chapter, we present an interactive visualization tool designed to address this challenge. By
combining dimensionality reduction techniques with intuitive visual representations of treatment
patterns and model performance, this tool enables researchers to identify and explore regions
where treatment diversity exists and meaningfully impacts patient outcomes. This approach com-
plements our earlier methods by providing a more exploratory and human-centered approach to
detecting action diversity.

5.2 Methodology

5.2.1 Data Preparation
The foundation of our visualization tool is the MIMIC dataset. For our analysis, we extracted se-
quential patient data including demographics, vital signs, laboratory measurements, medications,
and SOFA scores. Each datapoint represents a specific patient state at a given timestep, identified
by a unique patient ID and timestep indicator. The SOFA score, ranging from 0 to 24 with higher
values indicating greater organ dysfunction, was used as our primary clinical outcome measure.
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Dimensionality Reduction

A transformer-based autoencoder with 4 encoder layers, 8 attention heads, and 32-dimensional
embeddings was employed to encode the high-dimensional clinical states into latent representa-
tions. These encodings were further reduced to two dimensions using t-SNE with cosine similar-
ity as the distance metric, enabling visualization of patient states in a 2D space while preserving
the complex relationships between clinical variables.

Figure 5.1: Left: t-SNE scatterplot of patient states. Right: Interactive selection of a patient
subgroup.

Figure 5.2: Color-coding of scatterplot by (left to right): fluid dosage, SOFA score severity, and
vasopressor level.
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Outcome Prediction Models

To evaluate the role of treatment actions in predictive modeling, we trained two outcome predic-
tion models. A with-action model that predicts future SOFA scores using both the patient state
and treatment action as input, and a without-action model that uses only the patient state. Each
model was applied to every datapoint to generate predicted SOFA scores, which were then used
to assess the impact of action inputs on model performance.

Data Integration and Storage

The processed dataset was stored in Google Cloud BigQuery to support efficient querying and
scalability. Each row in the dataset includes the following fields:

• Patient ID and timestep
• 2D coordinates from t-SNE projection
• Administered treatments (fluid and vasopressor levels)
• AI-recommended treatments (from the AI Clinician)
• Predicted SOFA scores from both the with-action and without-action models
• Actual observed SOFA score

The AI Clinician recommendations were derived from a reinforcement learning model trained
on the MIMIC dataset to optimize patient outcomes, as detailed in [14].

5.2.2 Visualization Components
The core of our tool is a suite of interactive visualizations that enable researchers to explore the
dataset dynamically. These components update in real-time based on user interaction, allowing
for intuitive exploration of patient subgroups and model behavior.

t-SNE Scatterplot

The 2D scatterplot visualizes individual patient states using the t-SNE coordinates. Each point
represents a single patient-timestep. Color-coding schemes allow users to highlight different
clinical attributes:

• SOFA score severity (quartile-based gradient from green to red)
• Fluid dosage level (4-level categorical scale)
• Vasopressor dosage level (3-level categorical scale)

Users can interactively select clusters via click-and-drag, which dynamically updates the treat-
ment and model performance visualizations described below as shown in figures 5.1 and 5.2).
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Treatment Heatmaps

Two side-by-side 4×3 grid heatmaps represent treatment distributions for the selected patient
states:

• Actual Treatment Distribution: Shows the frequency of administered fluid (0–3 levels)
and vasopressor (0–2 levels) combinations.

• AI-Recommended Treatment Distribution: Displays the treatments that the AI Clinician
would have recommended for the same patient states.

Color intensity reflects normalized frequency, and the scale is shared between the two heatmaps
to allow for direct visual comparison. Each cell also displays the precise count value.

Figure 5.3: Comparison of actual vs. AI-recommended treatments across selected patient states.

Prediction Error Histograms

To compare the performance of the with-action and without-action models, we provide two his-
tograms showing the distribution of SOFA score prediction errors:

• With-Action Model: Error = Actual SOFA - Predicted SOFA (with action)
• Without-Action Model: Error = Actual SOFA - Predicted SOFA (without action)

The x-axis represents prediction error, and the y-axis shows frequency count. Binning and axis
scaling are kept consistent across the two plots to facilitate direct comparison.
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Figure 5.4: Histogram comparison of prediction errors for with-action and without-action mod-
els.

5.2.3 Implementation Details

The interactive visualization tool is implemented using a combination of web technologies:
• Svelte for UI reactivity and state management
• regl for WebGL-based high-performance rendering
• D3.js for data-driven SVG and DOM manipulation

Figure 5.5: Overview of the complete visualization interface, including scatterplot, treatment
heatmaps, and error histograms.
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5.3 Results
We demonstrate the capabilities of our interactive visualization tool through example use cases
that highlight its utility for exploring action diversity and treatment variability in clinical data.
The results below illustrate how different components of the system work together to support
intuitive, flexible, and interpretable analysis.

5.3.1 Use Case Demonstrations

Understanding Patient State Space

Using t-SNE projections of transformer-encoded latent states, the scatterplot component revealed
coherent structure in the clinical state space. Clusters of similar patient states—particularly those
with similar SOFA score ranges—emerged naturally. Color-coded overlays enabled rapid iden-
tification of high-risk regions, and interactive selection allowed focused exploration of specific
subgroups. For example, users could isolate a cluster of high-severity patients (top SOFA quar-
tile) and examine their treatment patterns and model prediction errors using the linked views.

Analyzing Treatment Patterns

The treatment heatmaps provided immediate visual feedback on discrepancies between clinician-
administered treatments and AI Clinician recommendations. In selected clusters, actual treat-
ments often skewed toward higher fluid usage, while AI suggestions leaned more conservative.

Maintaining consistent color scales across heatmaps made it easy to spot areas of agreement
or divergence. This supported hypothesis generation around potential over- or under-treatment
and contextualized clinician behavior.

Evaluating Model Performance

Prediction error histograms compared with-action vs. without-action models across patient sub-
groups. In many high-SOFA clusters, with-action models showed lower error variance—implying
that treatments influenced predictive accuracy. In other areas, similar histograms indicated that
actions had limited impact.

This functionality supports a deeper understanding of when treatment information is useful for
outcome prediction, aligning with our broader thesis on the selective value of action data.

5.3.2 System Responsiveness and Usability

The system remained responsive with datasets exceeding 40,000 timesteps. Google Cloud Big-
Query integration enabled efficient queries and dynamic updates during interaction.

Preliminary feedback from peers indicated that the visualizations made action diversity more
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tangible. Users appreciated the ability to identify regions of disagreement between AI and clini-
cian behavior, and the linked visualizations helped them interpret model performance in context.

5.4 Discussion
This work presents an interactive visualization framework designed to support exploration of
action diversity in clinical datasets. By integrating a transformer-based autoencoder, dimension-
ality reduction via t-SNE, and interactive linked views, our tool enables researchers to identify
regions of the patient state space where treatment actions significantly affect outcomes. Through
intuitive interaction and real-time updates, users can isolate subgroups of interest, examine dis-
crepancies between clinician and AI treatment strategies, and assess where treatment actions
meaningfully impact predictive performance.

There are several possible directions for future improvement of the system. One opportunity
is to extend the 2D scatterplot to a 3D projection using t-SNE or UMAP, which may better
preserve structural relationships in the latent space and provide richer spatial context for explo-
ration. Additional color-coding options—such as by patient ID, cluster assignment, or model
performance—could offer users more flexible ways to interpret the data.

We also see potential for refining the visualization of model performance differences. For exam-
ple, replacing side-by-side histograms with more integrated or compact alternatives (e.g., violin
plots or density curves) may improve comparability and interpretability.

Finally, while this work focuses on tool development and internal analysis, future work could
include formal user studies with clinical or machine learning researchers to assess usability,
interpretability, and the tool’s impact on real-world decision support or model validation work-
flows.
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Chapter 6

Conclusion

Through three complementary approaches, we have demonstrated methods to detect and measure
meaningful treatment variation in medical datasets, providing researchers with practical tools to
evaluate when observational data can reliably inform treatment policies.

Our analysis of the MIMIC sepsis dataset using transformer-based dynamics models revealed
limited meaningful treatment diversity when analyzed in aggregate. Including action informa-
tion provided minimal improvement in outcome predictions, suggesting that the observable im-
pact of treatment choices on outcomes may be constrained within this dataset. In our controlled
simulation experiments, we successfully demonstrated that comparing prediction performance
between models with and without action inputs can effectively identify regions where treatments
meaningfully impact outcomes. This approach achieved high classification accuracy, providing
a robust method for detecting action diversity without requiring ground truth labels. Finally, our
interactive visualization tool offers researchers an intuitive way to explore action diversity across
patient state spaces and identify promising subgroups for policy learning.

Together, these findings address a fundamental gap in the application of machine learning to
healthcare: determining when datasets contain sufficient treatment variation to support reliable
policy learning. By providing methods to identify regions of meaningful treatment variation, this
work enables more targeted and trustworthy deployment of machine learning in healthcare. Re-
searchers can focus on subpopulations where data supports reliable policy learning, potentially
improving both the effectiveness of AI assistance in clinical decision-making and, ultimately,
patient outcomes.

Future work can extend these methods to other clinical domains beyond sepsis, explore how to
incorporate domain knowledge to enhance action diversity detection, and investigate approaches
for augmenting datasets in regions with insufficient diversity. By continuing to develop ro-
bust methods for evaluating data sufficiency, we can ensure that machine learning approaches
in healthcare are deployed responsibly, focusing on areas where they can provide the most reli-
able guidance to clinicians.

31



32



Bibliography

[1] Francesco Joseph Bargagli-Stoffi, Riccardo Cadei, Kewen Lee, and Francesca Dominici.
Causal rule ensemble: Interpretable discovery and inference of heterogeneous treatment
effects. arXiv preprint arXiv:2009.09036, 2024. URL https://arxiv.org/abs/
2009.09036. 2.1.2

[2] Brett K. Beaulieu-Jones, William Yuan, Gabriel A. Brat, Andrew L. Beam, Griffin We-
ber, Marshall Ruffin, and Isaac S. Kohane. Machine learning for patient risk stratification:
standing on, or looking over, the shoulders of clinicians? npj Digital Medicine, 4(1):
1–6, March 2021. ISSN 2398-6352. doi: 10.1038/s41746-021-00426-3. URL https:
//www.nature.com/articles/s41746-021-00426-3. Publisher: Nature Pub-
lishing Group. 3.4

[3] William Caicedo-Torres and Jairo Gutierrez. Iseeu: Visually interpretable deep learning for
mortality prediction inside the icu. arXiv preprint arXiv:1901.08201, 2019. URL https:
//arxiv.org/abs/1901.08201. 2.2

[4] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie Elhadad.
Intelligible models for healthcare: Predicting pneumonia risk and hospital 30-day readmis-
sion. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1721–1730. ACM, 2015. 2.2

[5] Centers for Disease Control and Prevention. What is sepsis?, 2021. 3.1

[6] Zhengping Che, Sanjay Purushotham, Robinder Khemani, and Yan Liu. Interpretable
deep models for icu outcome prediction. AMIA Annual Symposium Proceedings,
2016:371–380, 2016. URL https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC5333206/. 2.2

[7] Omer Gottesman, Joseph Futoma, Yao Liu, Sonali Parbhoo, Leo Anthony Celi, Emma
Brunskill, and Finale Doshi-Velez. Interpretable off-policy evaluation in reinforcement
learning by highlighting influential transitions. 37th International Conference on Machine
Learning, ICML 2020, PartF16814:3616–3625, 2020. arXiv: 2002.03478. 2.1.1

[8] Jennifer Hill, Antonio Linero, and Jared Murray. Bayesian additive regression trees: A
review and look forward. Annual Review of Statistics and Its Application, 7(1):251–278,
2020. doi: 10.1146/annurev-statistics-031219-041110. 2.1.2

[9] Russell Jeter, Christopher Josef, Supreeth Shashikumar, and Shamim Nemati. Does the
”Artificial Intelligence Clinician” learn optimal treatment strategies for sepsis in intensive
care? arXiv, November 2019. ISSN 1078-8956. doi: 10.1038/s41591-018-0213-5. arXiv:

33

https://arxiv.org/abs/2009.09036
https://arxiv.org/abs/2009.09036
https://www.nature.com/articles/s41746-021-00426-3
https://www.nature.com/articles/s41746-021-00426-3
https://arxiv.org/abs/1901.08201
https://arxiv.org/abs/1901.08201
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333206/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5333206/


1902.03271. 2.1.1, 3.1

[10] Christina X. Ji, Michael Oberst, Sanjat Kanjilal, and David Sontag. Trajectory Inspec-
tion: A Method for Iterative Clinician-Driven Design of Reinforcement Learning Studies.
AMIA ... Annual Symposium proceedings. AMIA Symposium, 2021(i):305–314, 2021. ISSN
1942597X. arXiv: 2010.04279. 2.1.1

[11] A Johnson, L Bulgarelli, T Pollard, S Horng, L A Celi, and R Mark. MIMIC-IV (version
1.0), 2020. 3.2.1, 3.4

[12] Song Ju, Yeo Jin Kim, Markel Sanz Ausin, Maria E. Mayorga, and Min Chi. To Reduce
Healthcare Workload: Identify Critical Sepsis Progression Moments through Deep Rein-
forcement Learning. Proceedings - 2021 IEEE International Conference on Big Data, Big
Data 2021, pages 1640–1646, 2021. doi: 10.1109/BigData52589.2021.9671407. Pub-
lisher: IEEE. 2.1.1

[13] Taylor W. Killian, Haoran Zhang, Jayakumar Subramanian, Mehdi Fatemi, and Marzyeh
Ghassemi. An Empirical Study of Representation Learning for Reinforcement Learning in
Healthcare. pages 1–22, 2020. URL http://arxiv.org/abs/2011.11235. arXiv:
2011.11235. 2.1.1, 3.2.1

[14] Matthieu Komorowski, Leo A. Celi, Omar Badawi, Anthony C. Gordon, and A. Aldo
Faisal. The Artificial Intelligence Clinician learns optimal treatment strategies
for sepsis in intensive care. Nature Medicine, 24(11):1716–1720, 2018. ISSN
1546170X. doi: 10.1038/s41591-018-0213-5. URL http://dx.doi.org/10.
1038/s41591-018-0213-5. arXiv: 1902.03271 Publisher: Springer US. 2.1.1, 3.2.1,
5.2.1

[15] Dayang Liang, Huiyi Deng, and Yunlong Liu. The treatment of sepsis: an episodic
memory-assisted deep reinforcement learning approach. Applied Intelligence, 2022. ISSN
15737497. doi: 10.1007/s10489-022-04099-7. Publisher: Applied Intelligence. 2.1.1

[16] Thesath Nanayakkara, Gilles Clermont, Christopher James Langmead, and David Swigon.
Unifying cardiovascular modelling with deep reinforcement learning for uncertainty
aware control of sepsis treatment. PLOS Digital Health, 1(2):e0000012, 2022. doi:
10.1371/journal.pdig.0000012. URL http://dx.doi.org/10.1371/journal.
pdig.0000012. arXiv: 2101.08477. 2.1.1

[17] Xuefeng Peng, Yi Ding, David Wihl, Omer Gottesman, Matthieu Komorowski, Li Wei H.
Lehman, Andrew Ross, Aldo Faisal, and Finale Doshi-Velez. Improving Sepsis Treatment
Strategies by Combining Deep and Kernel-Based Reinforcement Learning. AMIA ... Annual
Symposium proceedings. AMIA Symposium, 2018:887–896, 2018. ISSN 1942597X. arXiv:
1901.04670. 2.1.1

[18] Tom J Pollard, Alistair E W Johnson, Jesse D Raffa, Leo A Celi, Roger G Mark, and
Omar Badawi. The eICU Collaborative Research Database, a freely available multi-center
database for critical care research. Scientific data, 5(1):1–13, 2018. 3.2.1

[19] Venkatesh Sivaraman, Leigh A. Bukowski, Joel Levin, Jeremy M. Kahn, and Adam Perer.
Ignore, Trust, or Negotiate: Understanding Clinician Acceptance of AI-Based Treatment
Recommendations in Health Care. volume 1. Association for Computing Machinery, 2023.

34

http://arxiv.org/abs/2011.11235
http://dx.doi.org/10.1038/s41591-018-0213-5
http://dx.doi.org/10.1038/s41591-018-0213-5
http://dx.doi.org/10.1371/journal.pdig.0000012
http://dx.doi.org/10.1371/journal.pdig.0000012


doi: 10.1145/3544548.3581075. arXiv: 2302.00096 Publication Title: Conference on Hu-
man Factors in Computing Systems - Proceedings Issue: 1. 3.1, 1, 3.4

[20] Shengpu Tang, Maggie Makar, Michael W. Sjoding, Finale Doshi-Velez, and Jenna Wiens.
Leveraging Factored Action Spaces for Efficient Offline Reinforcement Learning in Health-
care, May 2023. URL http://arxiv.org/abs/2305.01738. arXiv:2305.01738
[cs]. 2.1.1

[21] Tong Wang and Cynthia Rudin. Causal rule sets for identifying subgroups with enhanced
treatment effects. INFORMS Journal on Computing, 34(3):1626–1643, 2022. doi: 10.
1287/ijoc.2021.1143. 2.1.2

[22] Chao Yu, Guoqi Ren, and Jiming Liu. Deep inverse reinforcement learning for sepsis
treatment. 2019 IEEE International Conference on Healthcare Informatics, ICHI 2019,
pages 31–33, 2019. doi: 10.1109/ICHI.2019.8904645. Publisher: IEEE. 2.1.1

35

http://arxiv.org/abs/2305.01738

	1 Introduction
	1.1 Background and Motivation
	1.2 Problem Statement and Goal
	1.3 Contribution

	2 Related Works
	2.1 Related Work
	2.1.1 Reinforcement Learning in Healthcare
	2.1.2 Causal Inference and Identifiability

	2.2 Visualization and Interpretability

	3 Measuring Action Diversity Through Dynamics Models
	3.1 Introduction
	3.2 Methodology
	3.2.1 Data and Preprocessing
	3.2.2 Models

	3.3 Results
	3.3.1 Dynamics model Selection
	3.3.2 Influence of Action Inputs on Disease Severity Predictions
	3.3.3 Prediction of Future Actions with Behavior Cloning

	3.4 Discussion

	4 Analyzing Action Diversity Through Controlled Simulation
	4.1 Introduction
	4.2 Methodology
	4.2.1 Simulation Environment Design
	4.2.2 Synthetic Dataset Generation
	4.2.3 Dynamics Model
	4.2.4 Classifying State Diversity via Predictive Model Error Differences

	4.3 Results
	4.3.1 Simulation Behavior and Dataset Properties
	4.3.2 Dynamics Model Performance
	4.3.3 Action Diversity Classifier Performance

	4.4 Discussion

	5 Exploring Action Diversity Through Interactive Visualization
	5.1 Introduction
	5.2 Methodology
	5.2.1 Data Preparation
	5.2.2 Visualization Components
	5.2.3 Implementation Details

	5.3 Results
	5.3.1 Use Case Demonstrations
	5.3.2 System Responsiveness and Usability

	5.4 Discussion

	6 Conclusion
	Bibliography

