
Towards Fully-Autonomous Ultralight Drones

Mihir Bala

CMU-CS-25-111

April 2025

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Mahadev Satyanarayanan, Chair

David O’Hallaron
Jeff Schneider

Padmanabhan Pillai

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2025 Mihir Bala

This material is based upon work supported by the U.S. Army Research Office and the U.S. Army Futures Com-
mand under Contract No. W519TC-23-C-0003 and by the National Science Foundation under grant number CNS-
2106862. The content of the information does not necessarily reflect the position or the policy of the government
and no official endorsement should be inferred. This work was done in the CMU Living Edge Lab, which is sup-
ported by Intel, Arm, Vodafone, Deutsche Telekom, CableLabs, Crown Castle, InterDigital, Seagate, Microsoft, the
VMware University Research Fund, IAI, and the Conklin Kistler family fund.

Any opinions, findings, conclusions or recommendations expressed in this document are those of the author and do
not necessarily reflect the view(s) of their employers or the above funding sources.



Keywords: Autonomous Drones, Robotics, Mobile Computing, Edge Computing



For my dad.



iv



Abstract
Autonomous drones have emerged as an exciting new technology which could

revolutionize infrastructure inspection, military reconnaissance, and police surveil-
lance. However, the vast majority of today’s platforms are heavy, costly, and difficult
to operate. This restricts them from use in many mission settings, such as in densely
populated environments, where government regulation forbids autonomous opera-
tion of heavy drones near people. Much of this weight comes from the onboard
compute resources required for these drones to run the critical computer vision algo-
rithms that provide situational awareness. In this dissertation, I show how autonomy
can be induced on lightweight drones using edge computing, offloading high com-
pute jobs to a network-proximal server. I demonstrate how this technique can lead
to autonomous aircraft that fly much closer to the FAAs regulatory limits at accept-
able performance cost. I also reveal a new operating system designed to unify the
disparate landscape of drones under a single, easy-to-program API. I show how this
can be leveraged to create heterogeneous collaborative drone swarms on commercial
off-the-shelf hardware.
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Chapter 1

Introduction

Unmanned aerial vehicles, commonly known as drones, are a disruptive technology that have re-
cently seen widespread use. In civilian settings, they enable cheap and safe completion of tasks
such as infrastructure inspection, agriculture monitoring, wildfire control, and police surveil-
lance. In military settings, they are a vital tool for advance reconnaissance. For most use cases
today, drones are deployed with a human pilot who is in constant control of the aircraft.

In recent years, research efforts have pushed towards drones capable of fully-autonomous
flight. The term fully-autonomous flight is defined by the National Institute of Science and Tech-
nology (NIST) as “pre-programmed flight without a remote human pilot, including mission-
specific actions in response to runtime observations” [68]. There are two main benefits to this
approach. First, it decreases costs and frees human attention. Second, it allows the practical op-
eration of drone swarms, large groups of aircraft that cooperatively execute tasks. Drone swarms
open the door to many missions that could revolutionize several civilian and military sectors [22].

A key driver for fully-autonomous drones is the completion of active vision tasks [6, 93].
Active vision tasks require a drone to react in real time to its current scene interpretation. For
instance, it may drop down to lower altitude without human intervention “to take a closer look”
before the scene changes. It may then return to its original altitude to continue monitoring the
scene. This narrow scope of tasks characterizes many fundamental drone operations like follow-
ing a target and evading obstacles.

Weight is a fundamental impediment to fully-autonomous drone adoption. Greater intelli-
gence correlates with more powerful (and hence heavier) on-board computing and richer sensing.
An on-board GPU, for example, brings with it a long logistical tail: heatsinks, cooling fans, and
larger batteries. Increased weight brings with it regulatory challenges for flights over civilian
areas. Since 2021, the FAA has pre-authorized flights over people and vehicles by drones with
a total weight of less than 250 g [50]. Heavier drones require explicit FAA approval for such
flights, conditional upon mitigation measures for collisions and free fall. Even above this limit,
regulatory approval for autonomous BVLOS (beyond visual line of sight) flight in urban settings
is easier to obtain for lighter drones than for heavier drones. This regulation has proven to be a
major obstacle for several civilian projects. In military settings, weight is also a crucial consid-
eration. Heavy aircraft complicate logistics and often require dedicated transportation [73].
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Other major limitations to autonomous drone adoption are software portability, accessibility,
mission versatility, and unit cost. While there have been attempts to bring all drones under a uni-
fied programming ecosystem, it is still the norm for drone companies to develop their own SDKs
for their platforms. This makes it difficult to port code written for one ecosystem to another
which divides the development community. Existing fully-autonomous drones also require users
to have significant flight experience to ensure safe operation, a serious barrier to accessibility.
Many lack versatility, and cannot be configured to perform missions outside of a small, manu-
facturer specified set. Lastly, the unit cost for current autonomous drones is several times higher
than manually piloted equivalents. Such prices hurt the economic viability of swarm operations
where individual aircraft losses are not only likely but expected.

The core contribution of this work is SteelEagle, a hardware-agnostic autonomous drone
system which attempts to surmount these obstacles by leveraging edge computing and a new
modular drone autonomy stack. Edge computing enables a drone to offload compute-intensive
real-time operations over a low-latency, high-bandwidth wireless network to a powerful ground-
based server (cloudlet) which is usually located near a cell tower. This reduces the need for
heavy on-board computing hardware. In parallel, the SteelEagle operating system is designed to
be drone agnostic, developer friendly, and mission centric.

A key consideration of this system is the use of commercial off-the-shelf [49] (COTS) drones
and computing / communication payloads. This approach avoids customization of hardware
(e.g., drone modifications) and modification of privileged software (e.g., “rooting” a device)
which lowers cost and greatly increases accessibility. It also avoids the need for re-certification
(e.g., by the FAA or the FCC). However, a COTS approach also introduces new obstacles. Ther-
mal limitations of lightweight COTS communications devices pose latency, frame rate, and qual-
ity challenges, and force such systems to intelligently manage communication, computation, and
prediction.

1.1 Thesis Statement
In this dissertation, I demonstrate SteelEagle as a capable alternative to existing autonomous
drone systems, despite the inherent latency and bandwidth limitations of offloading. I show how
it improves over other platforms in the following design categories:

1. Weight: the overall weight of the aircraft, including batteries and payload.

2. Accessibility: the barrier-for-entry to operate the aircraft.

3. Versatility: the diversity of tasks which the system can execute.

4. Portability: the ease with which the system can be ported to new hardware.

5. Cost: the overall cost of the aircraft, including batteries and payload.

In particular, I claim that:
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It is feasible to construct an ultra-light flight platform for autonomous active vision
tasks in beyond visual line-of-sight (BVLOS) settings that only uses commercial off-the-
shelf (COTS) drones and COTS computing/communication payloads. The most serious
obstacle to this goal, namely the weight of computing hardware necessary to achieve auton-
omy, can be overcome using edge computing. I posit that such a flight platform can emulate
the performance of heavier autonomous drones on active vision tasks, despite bandwidth,
latency and connectivity challenges.

Why is this thesis important? If this statement were true, then such edge-enabled drones
could see widespread adoption for BVLOS missions in urban environments. They would have
lower operation costs and increased safety compared to traditional autonomous drones. Tasks
such as structure inspection, police surveillance, and traffic monitoring could directly benefit
from this. Drone swarms over public infrastructure would become safer.

Why does it not follow trivially from what is already known? Existing work in this space is
limited since most current research focuses on improving drone capabilities rather than decreas-
ing their weight. There are no commercial drones under the FAA threshold of 250 g that possess
onboard intelligence capable of autonomously executing missions. There are limited drones that
are edge-enabled, but these drones are heavy (more than 500 g) and expensive (over $3,000).
There has been some academic research on using drones in conjunction with edge computing,
with full details provided in Section 3.2. However, these efforts focused on large, heavy drones
which used onboard hardware in addition to supplemental edge offload. None identified weight
as a dominant design consideration. SteelEagle, by contrast, is designed primarily around re-
ducing weight without compromising capability. It is my belief that this is critical to drive large
scale adoption of autonomous drones.

The main contributions of this thesis are as follows:

1. I describe a fully-autonomous flight platform capable of executing active vision tasks on
lightweight COTS drones using edge computing. I show why this platform is an improve-
ment over prior work in terms of its weight, accessibility, versatility, portability, and cost.

2. I provide a measurement study quantifying this platform’s performance using a novel
benchmarking suite.

3. I show how this platform can be extended to a heterogeneous drone swarm ecosystem.

1.2 Thesis Overview
The remainder of this dissertation is organized as follows:

• In Chapter 2, I provide background on the development history of autonomous drones and
summarize related research in this area. I show how SteelEagle builds on this existing
research.

• In Chapter 3, I discuss how to connect lightweight COTS drones to the edge. I outline the
design challenges and formulate a criteria for choosing an edge communication payload
that flies with the drone.

• In Chapter 4, I provide the overall design of SteelEagle including its advantages and dis-
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advantages over current systems. I demonstrate a SteelEagle drone performing several
autonomous tasks and provide some performance analysis.

• In Chapter 5, I introduce a new edge communication payload that improves on the earlier
prototype. I show how this new payload can reduce the OODA (Observe Orient Decide
Act) loop of the system, and thus greatly increase autonomous performance.

• In Chapter 6, I describe a family of benchmarks for measuring edge-based and fully-
onboard autonomous drone performance on several key tasks. These benchmarks stress
the OODA loop of the given test platform and are useful for understanding the impact of
high latency and low throughput on edge offloading.

• In Chapter 7, I show how SteelEagle can be deployed on a variety of drone hardware and
control schemes by using a driver-based approach. I illustrate how my system adapts to a
new drone and lay the groundwork for disconnected operation.

• Finally, in Chapter 8, I conclude the dissertation and explain future work with a summary
of contributions.
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Chapter 2

Background and Related Work

Autonomous drones are an emerging field in both civilian and military sectors. The investment
in Zipline, DJI, and other similar companies, show that there is a lucrative market for urban
autonomous drone applications such as same-day drone delivery, automated infrastructure in-
spection, and programmable aerial surveillance [4, 60]. The rise of companies like Anduril and
recent geopolitical events like the War in Ukraine also hint at the wider role that autonomous
drones will play in future armed conflicts [24, 114].

Even with this demand, the quest to make smaller, lightweight autonomous drones is ongoing.
Weight scales closely with the capability of onboard compute. Improvements in the artificial
intelligence algorithms used for drone perception continue to require more computation to run.
This combination of factors makes the prospect of creating a drone system with real-time access
to such algorithms challenging.

In this chapter, I provide background on current autonomous drone platforms and outline
how some of the obstacles impeding their practical deployment can be overcome. In Section 2.1,
I briefly describe the history of drone development and regulation. In Section 2.2, I outline the
different categories of modern drones and the types of missions they are used for. In Section 2.3,
I explain the various problems holding these systems back from widespread adoption. In Section
2.4, I discuss prior research that has attempted to solve these problems, and its limitations.

2.1 The Development of Modern Drones

Research into drone technology started in the 1930s when during the interwar period, British en-
gineers created a radio controlled plane, nicknamed the “Queen Bee”, to train their anti-aircraft
gunnery [70]. The Queen Bee’s name would spawn the colloquial “drone” moniker when re-
ferring to radio-controlled aircraft, a reference to worker drones in bee colonies. Over the next
several decades, militaries around the world began incorporating drones into their arsenals; first,
as pilotless training targets but later, as remotely operated observation and strike aircraft. By the
1990s, drones had become very sophisticated, equipped with multiple onboard sensors which
enabled these platforms to conduct aerial reconnaissance at great distances [119]. Despite these
advances, one core design tenet remained unchanged: drones were controlled in every respect by
a remote human pilot. Such pilots would be referred to as the remote pilot-in-command (RPIC).
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(a) The British-made ”Queen Bee”, introduced in
1935, was one of the first radio operated aircraft
and served as an anti-aircraft practice target [70].

(b) The RQ-4 Global Hawk, introduced in 1998, is
a currently operated US Air Force reconnaissance

drone with a range of over 14,000 miles [119].

(c) The Skydio 2 platform, released in 2019,
provides a small set of semi- and

fully-autonomous capabilities like person tracking
and obstacle avoidance [110, 111].

(d) The DJI Matrice 600, released in 2016, is a
fully-programmable autonomous drone with

support for native onboard GPUs. Its huge size
limits practical deployment [36].

Figure 2.1: Evolution of Drone Technology
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The main components of a modern consumer drone:
1. rotors, 2. hot-swappable battery, 3. autopilot, 4. sensor module,

5. companion computer, 6. stereo cameras, 7. gimbal camera.

Figure 2.2: Quadrotor Drone Anatomy [37]

In the mid 2010s, drone technology started to shift away from exclusive manual piloting.
The release of commercial autopilots (§2.1.1) like PX4 and Ardupilot enabled the rise of minia-
turized (under 2 kg) multirotor drones which could perform limited autonomous flight such as
following preset GPS waypoints [12, 43]. Later, this was extended to semi-autonomous visual
tracking and autonomous obstacle avoidance in quadrotor offerings like the DJI Phantom 4 and
the Skydio 2 [38, 110]. At the same time, growing investment in commercial fully-autonomous
drones yielded the first off-the-shelf products. The DJI Matrice series was the most prominent
of these, and it offered fully-autonomous capabilities using an onboard embedded computer, the
DJI Manifold [36].

While the drone space is diverse in both aircraft size and type, this dissertation will focus
on quadrotor drones. Quadrotors are by far the most common drone type and have a number
of advantages over fixed-wings and helicopters. Namely, they are affordable, easy to use, and
are very stable in multi-directional flight. These make them perfect for tasks involving aerial
imagery analysis which are the main focus of this dissertation. For the rest of this document, all
mention of “drones” will refer to quadrotor aircraft.

2.1.1 Anatomy of a Drone
Modern drones are made up of several core components. Broadly, these accomplish one of four
tasks: low-level flight control, high-level flight control, power, and sensing. Figure 2.2 uses the
DJI Mini 4 Pro [37], a popular consumer drone, to illustrate these components:

1. Rotors (low-level flight control): provide lift to the aircraft. Opposing pairs counter-rotate
to provide stability [106]. Rotors are coordinated by the electronic speed controller (ESC),
a micro-controller connected to the Autopilot module [78].
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Figure 2.3: Types of Line-of-Sight Operation [54]

2. Battery (power): delivers power to all components. In many consumer drones, like the
DJI Mini 4 Pro, the battery is a separate part which can be easily swapped out in the field.

3. Autopilot (low-level flight control): works with the ESC to execute flight maneuvers. Uses
telemetry from the Sensor Module to compensate against the wind and maintain a stable
hovering position. Acts as a software abstraction layer over all drone sensors and hard-
ware. Also manages the radio connection to the pilot. Popular offerings are PX4 and
ArduPilot [12, 43].

4. Sensor Module (sensing): provides information about the drone’s position and orienta-
tion, also known as telemetry. Usually made up of a GPS antenna, an inertial measurement
unit (IMU) [75], an altimeter, and a compass.

5. Companion Computer (high-level flight control): responsible for high-level autonomous
decision-making. Runs computer vision or sensor fusion algorithms, then sends actuation
commands to the Autopilot based on the outputs.

6. Stereo Cameras (sensing): gives a real-time depth map of the drone’s surroundings [32].
On the DJI Mini 4 Pro, six overlapping stereo cameras enable full 360-degree obstacle
avoidance. Not a feature on all consumer drones but becoming increasingly common.

7. Gimbal Camera (sensing): the main camera through which the drone visually senses its
surroundings. Able to pitch, yaw, or roll as commanded by the Autopilot.

In some cases, drones may be equipped with special equipment like LIDAR, time-of-flight sen-
sors, RTK modules, and cellular modems. These are rare and are usually a feature of purpose-
built aircraft for specific mission sets.
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2.1.2 Regulation in Civilian Airspace
Drones like the DJI Mini 4 Pro and others are available globally for purchase, generally with-
out the need for a license. This has led to a rapid dissemination of drones to consumers across
the world and has spurred government regulators into action. This regulation serves one major
purpose: to prevent potential damage to people or property due to in-flight emergencies. In the
United States, the Federal Aviation Administration (FAA) introduced the Part 107 regulation in
2016 [52]. This explicitly outlined the classes of UAVs allowed to fly over people, citing that
only aircraft under 0.55 lbs or 250 g enjoyed near-unconditional approval [50]. In Europe, the
European Union Aviation Safety Agency (EASA) has introduced similar regulation, only per-
mitting flights over uninvolved pedestrians for drones under 250 g [47]. Flights over assemblies
of people are not allowed for any weight class. In other countries, drones under 250 g are not
regulated at all [117, 118].

In addition to weight regulation for flights over people, most countries also have restrictions
on beyond visual line-of-sight (BVLOS) operation of heavy drones. Figure 2.3 shows the differ-
ent classes of line-of-sight operations. Visual line-of-sight (VLOS) operation requires the drone
pilot to be within direct line-of-sight of the drone. Extended visual line-of-sight (EVLOS) opera-
tion permits the pilot to lose visual contact with the drone but requires other human spotters, also
known as “visual observers” to be within line-of-sight of the drone and in constant radio contact
with the pilot. BVLOS operation does not require the pilot or any visual observers to be within
line-of-sight of the drone [2]. This makes BVLOS flights dangerous; if a collision is imminent,
there is no guarantee that the pilot will be notified in time to stop it. Consequently, regulations
are stringent for heavier drones due to their greater damage potential.

2.2 The Current COTS Drone Market
As a result of both regulation and consumer demand, the current commercial-off-the-shelf [49]
(COTS) drone market is segmented into three loose categories: fully-autonomous, semi-autonomous,
and manually piloted drones. Each of these inhabits a different weight and mission class, and
are designed to operate in different regulatory environments. Table 2.1 exhibits the main ap-
plications that drones are designed for. Generally, depending on regulation in the mission area,
either a fully-autonomous (heavily-regulated) or semi-autonomous (lightly-regulated) drone will
be used.

1. Manually-Piloted Drones: Manually-piloted drones are designed for hobbyist consumers,
usually for the purpose of drone racing or recreational RC flight. They have no onboard
compute, are not programmable, and must be manually piloted at all times to function. An
example of a manually-piloted drone is the iFlight Cidora. This class of drone is extremely
lightweight and very affordable compared to both semi- and fully-autonomous drones. The
iFlight Cidora weighs 115 g and costs $295 per unit [92]. Most manually-piloted drones
are so light that they avoid regulation. However, they are the least accessible of the three
drone classes. This is because they lack any auto-stabilization, and must be flown by an
experienced pilot to avoid crashes.

2. Semi-Autonomous Drones: Semi-autonomous drones have limited onboard compute and
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cannot perform active vision tasks without a human in the loop. They are typically equipped
with a commercial autopilot like PX4 which enables autonomous following of GPS way-
points. They are not intended to operate BVLOS and often require a constant link to the
RPIC (remote pilot in command). This is because their main use case is aerial photography
and videography. For this reason, this class of drones is commonly referred to as photog-
raphy drones. An example of a photography drone is the Parrot Anafi. It is programmable
and has no onboard compute, but can follow GPS waypoints and perform limited visual
tracking by utilizing compute resources on the RPIC’s remote controller. Photography
drones are lightweight and affordable compared to fully-autonomous drones, and can usu-
ally be flown in dense urban environments with minimal regulatory hurdles. The Parrot
Anafi, for instance, weighs 320 g and costs $470 per unit [101]. They are also the most
accessible of the three drone classes since they are designed to be flown by non-pilots
and are by far the most widely-used of the three classes. They usually feature excellent
stabilization, good safety characteristics, and a simple user experience.

3. Fully-Autonomous Drones: Fully-autonomous drones have significant compute resources
onboard and are able to analyze their own sensor streams in real time. They can perform
active vision tasks without human assistance and can operate BVLOS. They also are fully-
programmable, outfitted with an onboard computer and a flight control API. An example
of a fully-autonomous drone is the DJI Matrice series. This class of drone is typically
heavy and expensive. The Matrice 30, for instance, is over 3.5 kg and over $10,000 per
unit [39]. Because of their size and weight, fully-autonomous drones are generally limited
to use in rural areas away from people or property. They are also highly inaccessible, since
their large size and complicated user interfaces often require experienced programmers
and mission planners to operate safely.

In reality, most drones share traits from all three of these categories, and seldom fit into one
cleanly. This motivates viewing the drone space as a “spectrum of autonomy”. Typically, this
spectrum is segmented into six levels of increasing automation: levels 0-1 corresponding to
manually-piloted, levels 2-3 corresponding to semi-autonomous, and levels 4-5 corresponding
to fully-autonomous [30]. This is similar to the levels of automation for self-driving cars [46].
Figure 2.4 shows the capabilities of several drones and where they would lie on this spectrum.

2.3 What is Holding Back Drones?

As presented by Table 2.1, there are many applications where drones have been useful. Yet it is
my belief that they still have not lived up to their true potential. Many of the listed tasks, such
as aerial surveys, building inspection, and police surveillance, are still done using full manual
or human-assisted control in densely populated areas. Yet many if not all of these tasks could
benefit greatly from full-autonomy, especially in or around cities. Surveys or inspection flights
could be performed daily, without human supervision, with an auto-generated report sent out for
engineers to look over. This could greatly reduce costs and prevent critical infrastructure fail-
ures, potentially saving lives [42]. Automated police surveillance could free up officers, reduce
training overhead, and provide round-the-clock monitoring without any risk of fatigue. So why
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* Precision
Agriculture

Drones are very useful for precision agriculture, with uses in monitoring, plant-
ing, irrigation, and pollination. They are easily scalable for large crop fields and
can cover more area than ground-based solutions [33]. Most drone agriculture
solutions use heavy, fully-autonomous platforms since rural areas have less strict
regulation.

* Search and
Rescue

Aerial vehicles have historically been a vital component in search and rescue.
Drones fit nicely into this role, allowing search and rescue teams to scan an area
at a much lower altitude than they could with traditional aircraft. They have seen
real world use in the wake of the 2010 Haiti earthquake and other natural disas-
ters [131].

Package
Delivery

For many years, drones have been touted as the future of last mile package de-
livery. This is because they can operate with higher cost-efficiency for small size
items and can reach areas that are not well-connected by traditional infrastruc-
ture [82]. Companies like Zipline have had some success creating a commercial
product, using drones to make 1 million deliveries to remote areas [10].

* Structure
Inspection

Recently, drones have emerged as a useful tool for structure inspection. They
are able to reach inaccessible sections of structures due to their small size and
maneuverability. More importantly, they are much safer and efficient than a hu-
man inspector. In 2022, the U.S. Bureau of Labor Statistics estimated that 1 in
every 5 construction workplace deaths was due to falls [19]. Drones allow view-
ing of unsafe areas with no personal risk. This has increased the frequency of
building inspection checkups, ensuring prompt, safe maintenance on failing in-
frastructure [5].

* Aerial
Surveys

While aerial surveys and 3D scans have been conducted for decades, drones are
a new, more cost effective tool for this task [99]. Their ability to provide a high
resolution, bird’s eye view of an area combined with their flight stability, make
them ideal candidates for survey work.

* Aerial
Reconnaissance

Modern drones have revolutionized police and military aerial reconnaissance.
Their small size allows them to be easily carried to mission areas and deployed
on-the-fly when necessary [127]. Both U.S. police and military forces have heav-
ily invested in such platforms [127, 130].

Suicide
Aircraft

Suicide drones have been one of the most impactful new weapons in the War in
Ukraine. Both Russian and Ukrainian forces have used small quadcopters like
the DJI Mavic 3 to deliver bomb payloads [14]. These have been very effective
against slow moving targets like tanks [72]. Some fear that this technology could
lead to a new breed of terrorist attacks [115].

* Anti-Drone
Defense

As the threat of drones has increased, the investment in drone defense systems has
surged. Companies like Anduril have tackled this problem by using specialized
drones to take down other hostile drones. Their Anvil kinetic interceptor destroys
other UAVs by smashing into them at high speeds [8].

* These tasks are within the scope of this work since they do not require additional payload.

Table 2.1: Drone Applications
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Drone Autopilot Avoidance Tracking Programmable Compute Weight
iFlight Cidora None None None No None 115 g
DJI Avata 2 Yes Partial None No None 377 g
Parrot Anafi Yes None Assisted Yes None 320 g

DJI Mini 4 Pro Yes Yes Assisted Partially None 249 g
Skydio X10 Yes Yes Yes Partially Yes 2110 g

DJI Matrice 30 Yes Yes Yes Yes Yes 3770 g

Capabilities are colored according to whether they are typically associated with manually-piloted (red),
semi-autonomous (yellow), or fully-autonomous (green) drones.

Based on their capabilities, I have placed each drone on the spectrum of autonomy, broken down by
level [30]. This placement is subjective, but it gives some reference for the differing levels of automation

between commercial drone offerings.

Figure 2.4: The Spectrum of Autonomy [35, 37, 39, 92, 101, 112]
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have fully-autonomous platforms failed to see widespread use in these urban applications, when
they have been used with great success elsewhere?

The answer is complicated, but I believe that there are five clear problems facing fully-
autonomous drones in dense urban settings:

• Weight: fully-autonomous aircraft are heavy, as discussed in Section 2.2. This is because
they require onboard compute like GPUs to operate which drive up weight. This directly
clashes with most international drone regulation which becomes progressively more re-
strictive over 250 g.

• Accessibility: fully-autonomous drones, due to their size and weight, require experienced
pilots to operate safely. They demand careful flight planning and program verification
before flight, since a loss of aircraft could be hazardous to people and property. This
restricts fully-autonomous drones to a small user-base.

• Versatility: there is a major trade-off in current fully-autonomous drone products between
weight and versatility. Heavy platforms which carry generalized compute hardware like
CPUs and GPUs are versatile since they can run most kinds of software natively. On
the other hand, lightweight platforms cannot carry generalized compute due to weight
constraints, and thus usually carry specialized compute for only one or two mission types.

• Portability: drone manufacturers have their own, tightly integrated software stack that
does not work with other drone models. This all-or-nothing approach means that a con-
sumer must stick within the hardware ecosystem or be forced to buy an entirely new fleet
of drones.

• Cost: fully-autonomous drones typically cost around ten times the cost of comparable
semi-autonomous drones. This makes them much less economically viable at scale.

If we could solve these five challenges, it is my belief that autonomous drones would see widespread
use, even in dense urban environments. At the time of writing this document, no such commercial
product or research prototype exists.

2.4 Prior Research on Autonomous Drones

In parallel to commercial efforts, autonomous drone research has surged in recent years. Real-
time execution of active vision tasks has been a key driver. Schedl et al proposed an au-
tonomous drone design for classification-driven adaptive search and rescue in densely forested
environments [108]. George et al demonstrated a drone inspection system which could local-
ize the drone’s camera view onto a 3D model of a target structure in real time [57]. Chen et
al showed an efficient drone onboard computation model for visual object tracking [28]. Many
other projects have explored similar applications in surveillance, wildlife monitoring, and rac-
ing [7, 11, 34, 79, 123].

A growing number of researchers have identified some of the problems outlined in Sec-
tion 2.3 (weight, accessibility, versatility, portability, and cost) as important research areas. In
this section, I will present projects that attempt to solve these problems. I will also discuss their
limitations and why their solutions have not fully addressed the issues I outlined.
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2.4.1 Weight
Since as early as 2009, the drone research community has recognized the importance of lightweight
aircraft in real world applications [22, 23]. Lightweight (≤ 450 g) autonomous drones have many
benefits over their heavier counterparts: they are safer to operate, have simpler transportation lo-
gistics, and have a lower noise profile. It was theorized that achieving such lightweight autonomy
would enable the vision of cooperative drone swarms [53]. Since the mid 2010s, much work has
focused on bringing high-level autonomy to small, lightweight drones. Schmid et al proposed
a sub-1 kg aircraft design which could perform unassisted visual navigation [109]. Palossi et
al developed visual navigation and human pose estimation software which runs onboard 27 g
drones [97, 98]. Müller et al demonstrated a depth-based obstacle avoidance system for 35 g
drones [91]. Many of these projects suffer from similar issues of portability; they either use
purpose-built aircraft or function on only one type of aircraft. There is little ability to deploy
these systems to different drone hardware, a drawback in an ever-changing drone landscape.

2.4.2 Accessibility
In the current drone research space, accessibility is not a first-order consideration. Many projects
use custom-built aircraft with no guidance on how to replicate the platform for other researchers.
In some cases, these custom drones require low-level electrical engineering experience to ensure
safe and stable operation. On the other hand, there has been some effort to increase accessibility
for drone programming. Beseda et al presented a mission-oriented control infrastructure for eas-
ily managing swarms of autonomous UAVs [16]. Mottola et al proposed a simple but expressive
API for drone team control [90]. Tilley et al developed a block programming language that could
allow children to program autonomous drones [116]. While this work is useful, these projects
do not present a practical integration strategy with real consumer drones, nor do they circumvent
the difficulties of custom-built research platforms.

2.4.3 Versatility
Mission versatility is a feature that most heavy fully-autonomous drones already possess, since
they carry generalized compute like CPUs and GPUs which can run GPLs (general-purpose pro-
gramming languages) and inference deep neural networks with relatively low latency. Achieving
this versatility on lightweight drones is an enduring challenge. This is because miniaturizing
generalized compute hardware is difficult, and weight-optimized compute hardware is inflexi-
ble [67]. Still, many have tried to modify lightweight onboard hardware to be able to run heavy-
weight computer vision algorithms. Albanese et al propose a neural accelerator modification
to a Raspberry Pi which could be flown onboard small UAVs [3]. Zhang et al demonstrate an
FPGA architecture for drones that can inference neural networks with much lower power de-
mand than GPUs [133]. None of these projects have gained much traction, likely due to their
poor practicality and usability.

Corporate research projects have yielded promising results, such as the ModalAI Starling
series and the Bitcraze Crazyflie shown in Figure 2.5. These both use custom compute hardware
to provide a Linux programming environment in an ultra-lightweight package [17, 86]. Still,
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(a) Bitcraze Crazyflie [17]
(27 g)

(b) ModalAI Starling [86]
(280 g)

Figure 2.5: Consumer Drone Development Platforms

these systems do not truly capture the versatility of CPU/GPU-based systems, and neither fully
support the open-source libraries which drive most computer vision research, like OpenCV and
PyTorch. This significantly hinders practical use.

2.4.4 Portability
The ability to seamlessly switch underlying drone hardware has only recently become a hot re-
search topic. This is motivated by greater research impact; cross-platform drone work has a much
wider reach. One example of such work is BeeCluster, a drone-agnostic swarm orchestration tool
with a simplified task programming interface [65]. BeeCluster supports drones that talk using
the BeeCluster protocol, and provides a high-level API wrapper over this protocol. As of the
time of writing this document, no guidance has been provided by the authors on how to integrate
a new drone platform into BeeCluster, but the framework theoretically allows for heterogeneous
swarm operation [85].

2.4.5 Cost
Driving down cost has been an enduring goal of the drone research community. Eller et al de-
signed a low-cost autonomous platform for under $225 [45]. Hardy et al used a sub-$1,000 drone
to map malaria breeding grounds [63]. Sørensen et al proposed an $800 aircraft for mobile re-
mote sensing [113]. Projects like these aim to make drones more economically viable, especially
in regions with less purchasing power. However, none are concerned with the other important
challenges outlined, like weight.
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Chapter 3

Towards Better Autonomous Drones

The key factors of weight, accessibility, versatility, portability, and cost all hinder autonomous
drone development and deployment, yet no proposed system has solved all of these issues simul-
taneously. Clearly, significant research effort has been spent on solving these problems; so why
does no such system exist? Central to the answer is what I call the onboard compute trade-off.
The onboard compute trade-off is a property of unmanned aerial platforms that claims:

Traditional hardware, like CPUs and GPUs, offers the benefit of versatile, software
portable, cost-effective compute power at the expense of weight. Specialized hard-
ware offers the benefit of light weight at the expense of versatile, software portable,
cost-effective compute power. Thus, in order to reduce weight, versatility, portabil-
ity, and cost must be compromised.

This fact has limited the development of lightweight fully-autonomous drones and it is chiefly
responsible for the gap that exists in the drone market today. Unfortunately, even with recent
technological advances, it is unclear whether this challenge can be solved. But, there may be
ways it can be circumvented.

In this chapter, I will introduce SteelEagle, a drone autonomy system designed to bring intel-
ligence to lightweight, commercial-off-the-shelf (COTS) drones. SteelEagle skirts the need for
heavy onboard compute by leveraging edge computing, a computational model that involves of-
floading work from a less powerful device over a low latency network link to a nearby powerful
device which finishes the work and returns the result. In this way, SteelEagle aims to solve the
onboard compute trade-off and lower the weight-barrier to drone autonomy. In Section 3.1-3.5, I
explain the background and prior research that drove the creation of SteelEagle. In Sections 3.6-
3.10, I discuss the many failed prototypes I tested before arriving at an initial working solution.

3.1 The Advent of Edge Computing

Over the past few years, a new computational paradigm has emerged called edge computing.
Edge computing gives mobile devices access to strong computational resources at low latency by
offloading to a network-proximal server [107]. In many ways, this is similar to cloud computing.
The theory is that mobile devices will always be resource-poor compared to data centers. By
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Figure 3.1: Edge Computing Paradigm

sending compute jobs over the network, running on the vast compute of a data center, and getting
the result back, mobile devices can mitigate their computational deficiencies.

The insight of edge computing is that some computation is latency-sensitive. That is, the
faster the result is returned to the user, the better the system performs. This is usually the case for
interactive applications, like augmented reality, or for reactive applications, like robotic actuation
in response to visual stimuli. In these cases, sending a compute job to the cloud may be too slow.
Edge computing positions smaller groups of servers, called cloudlets, physically closer to mobile
clients, usually co-located with cell towers. This hugely decreases latency without sacrificing
much per-user compute power, since cloudlets, due to their smaller reach, have fewer tenants
than cloud servers [25, 41].

3.2 Autonomous Drones and the Edge
Edge computing offers a compelling alternative to the onboard compute trade-off. Instead of
miniaturizing compute to fly with a drone, it is much easier to relocate heavyweight compute to
the edge so that it is accessible with low latency. This has a number of important advantages over
traditional onboard computation paradigms:

• The underlying hardware where compute runs is well-understood and general purpose
(server-grade CPUs and GPUs). This hugely increases portability and offers a developer-
friendly programming environment.
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Figure 3.2: SteelEagle Autonomy Model

• The cost of edge-enabled drones is low; there is no longer a need for expensive lightweight
compute hardware, only a relatively cheap modem to communicate with the edge. This
greatly increases scalability and thus the economic viability of drone swarms.

• Server-grade compute power will always vastly exceed mobile compute power [103]. This
opens the door to real-time inference of heavy models like transformers [120].

An edge computing approach is not without its drawbacks. The drone is now fully reliant
on its communication link with the cloudlet, meaning it is susceptible to service disruptions and
bandwidth constraints. This is no worse than manually-piloted drones, which are also dependent
on a communication link to the RPIC. Still, these factors must be accounted for in any successful
edge-based drone system.

Edge-enabled drones are not a new idea. For several years, researchers at the intersection
of edge computing and robotics have published many influential papers on the topic [13, 15,
58, 121]. In these projects, drones use a ground station or cloudlet in conjunction with other
nearby aircraft to offload high compute loads. However, this previous work either focused on the
theory of how such a system should be designed or on solutions using custom components. None
identified weight as a major constraint, and so they failed to present a practical, fully-functional
system for public flight operations.

3.3 SteelEagle: Inducing Autonomy on Lightweight Drones

I introduce SteelEagle, a drone-agnostic framework for inducing full autonomy on lightweight
drones using edge computing. In contrast to previous work, SteelEagle is built on top of commercial-
off-the-shelf (COTS), semi-autonomous, photography drones (§2.2), which are supplemented
with a 4G [48] connection to the edge to provide the computation needed for fully-autonomous
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operation (Figure 3.2). COTS photography drones are typically cheaper, more accessible, and
much lighter than fully-autonomous platforms. With this approach, SteelEagle presents the best
of both worlds: lightweight, cheap drones with powerful real time computation capabilities.
SteelEagle’s backend also supports a plug-and-play approach, allowing developers to swap out
underlying drone hardware form beneath its abstraction layer. This makes the system highly
portable and versatile, able to adapt to the rapid pace of AI innovation. With respect to the
challenges outlined earlier (§2.3), SteelEagle addresses them all:

• Weight: SteelEagle is designed to work with lightweight, commercial-off-the-shelf (COTS)
photography drones, many of which are under 400 g. These drones typically would be
categorized as semi-autonomous, but edge offloading enables them to become fully au-
tonomous.

• Accessibility: COTS photography drones are designed to be accessible, since they are
marketed to everyday consumers. Thus, they are much easier to work with and safer to fly.
In addition, the programming environment and abstractions provided by SteelEagle make
it easy to develop new drone applications.

• Versatility: SteelEagle’s edge backend runs on traditional compute hardware which en-
sures maximum versatility and full access to popular AI libraries like PyTorch. This
encourages rapid development and evolution through preexisting AI tool chains. It also
eliminates the need to squeeze models onto constrained drone hardware.

• Portability: SteelEagle abstracts away drone-facing hardware and has no restrictions on
the drone control stack. This promotes portability and makes SteelEagle drone-agnostic.

• Cost: COTS photography drones are some of the most cost-optimized drones on the mar-
ket, due to their target mass-market audience. As a result, the unit cost for SteelEagle
drones can be several orders of magnitude lower than typical fully-autonomous platforms.

As with all edge-based systems, SteelEagle must plan for and adapt to changing network
environments. More critically, its performance on common drone tasks like object tracking and
obstacle performance must come close to matching that of existing autonomous drones to be
useful, despite bandwidth and latency challenges inherent in offloading solutions.

3.4 Design Goals of SteelEagle
Establishing a connection to the edge on any current COTS drone hardware is non-trivial. Doing
so on a COTS photography drone is near impossible out-of-the-box. This is the case for the
following reasons:

• Photography drones are tightly-integrated, black boxes with no ability to change onboard
software or hardware. This is because they are meant to be used by novice pilots and so
they simplify the user experience at the cost of customizability.

• Photography drones usually require a constant connection to the pilot via a controller. This
not only mandates a human-in-the-loop but also prevents BVLOS operation.

• Photography drones are not designed to carry much payload. They provide no means to
power any payload either since their batteries are closed off during flight.
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Figure 3.3: Parrot Remote Control Setup [101]

Feature Description
Weight 320 g

Cost $470
Flight Time Up to 25 min, in reality 20 min

Camera 4K photo/video
Video Stream 720p 30fps

Autopilot* Custom
API Parrot Olympe / GroundSDK

Connectivity WiFi

Table 3.1: Parrot Anafi Specifications

These are challenges that any prototype must overcome, regardless of underlying drone platform.
For SteelEagle, drones connect to the edge over public 4G/5G cellular. Cellular has excellent

coverage in populated areas, support for device mobility, and favorable penetration character-
istics [51]. This ensures good service wherever SteelEagle drones fly, especially in urban or
suburban settings. Unfortunately, at the time of writing this dissertation, no lightweight COTS
photography drones are equipped with cellular connectivity; they are designed to be operated
within visual line-of-sight of a pilot, a task for which WiFi or RC is well-suited. For my proto-
type to work, I will have to bring cellular connectivity to a COTS drone without modifying its
internal components.

3.5 Initial Hardware

For my initial prototype, I chose to work with the Parrot Anafi [101]. The Anafi is a COTS
photography drone that weighs 320 g and costs $470. It is equipped with an autopilot that can
follow GPS waypoints and perform automatic stabilization. This stabilization involves increasing
thrust of rotors to compensate for wind, allowing the drone to maintain its position even in windy
conditions. Table 3.1 shows a more detailed specification of the aircraft.
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3.5.1 Control Scheme
The Anafi is designed to be controlled by a human pilot using a remote controller with an at-
tached mobile phone (the Parrot Skycontroller) or exclusively using a mobile phone over WiFi.
Alternatively, the drone can also be controlled over WiFi with a Python API called Parrot Olympe
or an Android API called Parrot GroundSDK. They are based on the ubiquitous MAVLink pro-
tocol [83]. Both these APIs grant users high-level flight control and access to telemetry.

Olympe and GroundSDK support two main command types: manual and guided. Manual
commands directly actuate the drone. For instance, moving the left stick upwards on the con-
troller would send a manual command to “increase throttle”. Guided commands, on the other
hand, provide the drone with a target to actuate towards. For example, a “move to GPS location”
message is a guided command since the drone self-actuates towards the specified target.

3.5.2 Networking
The drone hosts a WiFi network which supports up to two attached clients. A controller must
connect to the WiFi network in order to talk to the drone. This channel may be configured to be
either 2.4 GHz or 5 GHz. As reported by Parrot, the connection range of the WiFi channel is
around 4 km [101]. From my testing, this can fall to around 0.5 km in areas with high wireless
interference.

3.5.3 Video Stream
A 720p 30fps video stream is generated by the drone and transmitted on its WiFi network via the
real-time streaming protocol (RTSP) [84]. The settings of this stream are not configurable. It is
encoded using an intra-refresh slice-decode scheme which is designed to be resilient to packet
loss [31]. I will cover the drone’s video stream in more detail in Section 3.8.

3.5.4 Magnetometer
Most drones are equipped with a magnetometer for discerning bearing. The Parrot Anafi has an
unusually sensitive magnetometer. If the drone’s magnetometer detects sufficient interference
(e.g. caused by nearby ferromagnetic material [12]), it refuses to fly any guided commands
and cancels any guided actuation. This is for safety; if the drone does not have an accurate
understanding of its bearing, it may not actuate correctly towards its target and therefore increase
the probability of a crash.

3.6 Achieving Cellular Connectivity
The Parrot Anafi, like most photography drones, only supports WiFi connectivity and mandates
a constant connection to the pilot controller. As stated earlier, the goal of SteelEagle is to use
this drone without modification and with an entirely COTS payload. Thus, any prototype must
operate within these constraints. In order to integrate a cellular connection into the loop, it must
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Figure 3.4: Android Phone Control [101]

ensure that from the drone’s perspective, it is always connected to what it thinks is a human pilot.
One possibility is to mount a router-like device onboard which connects to the drone WiFi and
also maintains a cellular connection to the edge. Such a device would have to be light enough
to fly but also would need to be able to power itself for the duration of a flight. Ideally, it would
also have some internal compute so it can still control the drone during brief network outages.

3.6.1 Mobile Phone

In the COTS mobile device space, one of the best SWaP (size, weight, and power) optimized
devices is the mobile phone. Mobile phones have grown immensely powerful in recent years,
with some rivaling the power of laptop computers. Furthermore, they are lightweight (usually
under 200 g), have a full-featured software development environment, and can power themselves
for several hours, even under load. Their connectivity over WiFi and cellular is highly reliable
and extensively tested.

In the context of the Parrot Anafi, an Android phone would work well for this purpose, since
the Anafi supports an Android API, Parrot GroundSDK. This motivates the following model:
an Android phone flies onboard the Parrot Anafi, acting as both a router and a stand-in for the
remote controller. By running GroundSDK, the phone will work within the Parrot ecosystem
and will therefore maintain the pilot connection that the drone necessitates (Figure 3.4). To save
weight, I selected one of the lightest widely-available Android phones on the market for this task:
the Google Pixel 4a. The Pixel 4a weights 143 g and has both 4G and 5G connectivity.

Now that I had selected a device, it was time to mount it onboard the drone. For my initial
mount, to save weight, I used industrial strength velcro and rubber bands. The drone was able to
fly autonomously with the phone onboard and offload its video stream to the edge. However, I
observed strange flight characteristics which caused several crashes. Upon further investigation, I
determined that the phone was interfering with the magnetometer on the drone. This was causing
the drone to lose track of its bearing mid-flight and veer off course.

To solve this magnetic interference, I added a layer of EMI (electro-magnetic interference)
shielding between the phone and the drone chassis. The shielding was made of Mu-metal, a
nickel-iron ferromagnetic alloy used to absorb electro-magnetic radiation [96]. After testing,
I determined that this mostly negated the observed interference. Unfortunately, it also added
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Figure 3.5: Android Watch Control [101]

significantly to the payload weight, so much so that it exceeded the maximum takeoff mass
(MTOM) of the aircraft. Once an aircraft’s payload surpasses MTOM, it cannot fly because the
lift it generates is no longer greater than its weight. Even with the lightest Android smartphones
available, like the 61 g Unihertz Jelly Pro, the added weight of EMI shielding exceeded the
Anafi’s MTOM.

As a result of the interference and MTOM restrictions, I was forced to abandon the phone pro-
totype. It was too heavy for the Parrot Anafi hardware. I began searching for an alternative COTS
device, much lighter than the Pixel 4a, but with the same broad specifications (self-contained,
WiFi and cellular, self-powered, able to run Parrot GroundSDK or Olympe).

3.6.2 Smartwatch

While mobile phones are the best SWaP-optimized devices on the market, smartwatches are by
far the lightest, self-contained, commercially available computers. For many years, they were de-
signed to operate in tandem with a phone, acting as a kind of always-visible secondary display.
As time progressed, smartwatches grew more independent, incorporating more connectivity op-
tions and mounting more internal compute. The fitness community was a driving force behind
this transformation. Many runners, for example, wanted a very small, lightweight, wearable de-
vice that could track their progress, contact emergency services, and play music on the move. In
the late 2010s and early 2020s, this resulted in smartwatch products with cellular connectivity
and enough local compute to run basic applications.

In many ways, smartwatches are the perfect device for SteelEagle’s use case. They are ex-
tremely lightweight (less than 30 g compared to over 100 g for a phone), self-powered, cellular
and WiFi-enabled, and able to run a slimmed-down Android (WearOS). For my smartwatch-
based prototype, I chose the Samsung Galaxy Watch 4. At the time, this was the lightest cellular-
capable Android smartwatch available. The Samsung Galaxy Watch 4 weighs just 25 g.

After porting Parrot GroundSDK to WearOS, I was able to establish a 4G connection from
the edge to the watch while autonomously piloting the drone via onboard software (Figure 3.5).
Now, all that was left to do was to physically mount the watch on the drone. I used a 3D-printed
harness for this task, which clips onto the Parrot Anafi’s removable battery. The harness weighs
an additional 14 g, bringing the total payload weight to 39 g. Figure 3.6 shows the full assembly
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Figure 3.6: Drone with Watch-Harness Payload

mounted on the aircraft. This brings the total take-off weight to 359 g, just 109 g above the 250 g
FAA regulation threshold. Through rigorous testing, I determined that the watch payload did not
exhibit the same negative flight characteristics as the Pixel 4a payload. It did not create as much
EMI, likely because of its smaller size and lower power draw, and thus no shielding was needed.
Additionally, the weight of the payload was far below the Anafi’s MTOM, even with the added
3D printed mount to securely fasten it onboard.

The Samsung Galaxy Watch 4 finally yielded a successful prototype. The watch payload was
able to autonomously fly the drone while maintaining a cellular connection to the edge. However,
much work still remained unfinished. In particular, the drone’s RTSP video stream would need
to be transmitted to the edge in order to run the AI algorithms responsible for true autonomy:
object detection, image segmentation, and obstacle avoidance among others. This would prove
to be a formidable obstacle that pushed the watch hardware to its limit.

3.7 An Austere Computing Environment

The watch is an austere computing environment with a dual-core 1.18 GHz ARM Cortex-A55
processor, 1.5 GB RAM, and 16 GB flash. Table 3.7 compares its attributes to the Google Pixel
4a and to the Unihertz Jelly Pro, the lightest-available Android smartphone. As wearable hard-
ware, the watch has stringent thermal protection to shut itself down if its temperature approaches
hardware limits. In addition, since wearables are meant to be worn, these hardware temperature
limits must be much lower than traditional computers to prevent skin burns [66]. Both computing
and network transmission cause watch temperature to rise significantly.

This is a major problem, especially since in my design, the watch offloads the drone video
stream to the edge. Typically, streaming tasks are both compute and transmission intensive. The
act of sending frames too often or decoding frames onboard could cause overheating. In the
case of the Samsung Galaxy Watch 4, overheating is detected by the operating system which in
turn triggers a thermal shutdown. If this occurs, all currently running applications are suspended
and the watch goes into hibernation until it is cool enough to proceed. A thermal shutdown in-
flight would turn off the Parrot GroundSDK software running onboard and would thus trigger a
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Samsung Unihertz Google
Galaxy Jelly Pixel
Watch 4 Pro 4a

Weight 26 g 61 g 143 g
CPU cores 2 4 8
CPU speed 1.18 GHz 1.45 GHz 2.2 GHz
Memory 1.5 GB 3 GB 6 GB

Figure 3.7: Austerity of Mobile Hardware

pilot disconnection event on the drone. When this occurs, the drone returns automatically to its
takeoff GPS location and lands. While this is far from disastrous, it would certainly be a serious
handicap. As a result, the watch must be conservative in its network transmission and onboard
computation in order to prevent overheating.

On the other hand, the agility and accuracy of the computer vision algorithms running at the
edge are critically dependent on the attributes of the video stream. These algorithms determine
the overall performance of the system; they are the “brain” that enables fully-autonomous opera-
tion. If the video stream delivered to them is hindered, performance will be directly affected. In
order for this system to be effective, the watch must deliver as high fidelity a stream to the edge
as possible without compromising its thermal limits. This is a delicate balancing act.

3.8 Anatomy of the Parrot Anafi Video Stream
The Parrot Anafi produces an encoded 720p 30fps video stream. It is produced on the drone’s
hardware and thus cannot be modified. It is generated over the drone’s WiFi network and can
only be consumed by a single client on the network. Unlike most video streams, this stream uses
an intra-refresh slice-decode encoding scheme. An intra-refresh slice-decode encoding scheme
is a streaming paradigm designed to minimize the visual impact of packet loss.

To understand this special encoding scheme, first consider a normal H.264 video stream. The
encoding scheme for these streams involves two types of data: complete frames (I frames) and
inter frames (P and B frames). A complete frame is a full photo capture of a moment in time.
When a complete frame is transmitted, it typically requires no additional data to decode. The
trade-off is that complete frames are bandwidth hungry. An individual 720p complete frame can
be several KBs of data. By contrast, inter frames only capture the change from the previous
frame. They require reference data in order to decode, and are meaningless on their own. Their
advantage is that they are very bandwidth efficient, sometimes on the order of a few hundred
bytes in size. An H.264 video stream operates by transmitting a complete frame followed by a
set amount of inter frames before looping back. This preserves fidelity by smoothing out gaps be-
tween complete frames with inter frames but also preserves bandwidth by sparingly transmitting
complete frames.

There is one major negative of typical H.264 video streams in the context of mobile devices:
they are not resilient to packet loss. On the Internet, which is a mostly wired network, this is not a
serious problem. But, over the air, packet loss is frequent. If a complete frame is lost, viewing or
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I frames are full frames which are interleaved with partial frames called P frames and B frames. These
are frames that contain predicted motion based on previous frames and future frames within the

transmission buffer.

Figure 3.8: Video Compression Frame Types (Adapted from [124])

processing of this kind of stream must be skipped until a new complete frame can be broadcast;
all following inter frames will have no complete frame to refer to and will be rendered useless.
Usually this can take a whole second or more, during which a drone pilot, for example, would
not be able to see.

An intra-refresh slice-decode scheme takes a different approach. Instead of complete frames
and inter frames, this scheme splits a single frame into slices. These slices capture a sliver of
data horizontally across a frame. When a frame is transmitted, the encoder allocates one slice to
be the “complete slice” (I slice) and the rest to be “inter slices” (P slices). Figure 3.9 shows a
breakdown of how each set of frames transmitted by the Anafi are organized. Each inter slice is
only dependent upon its section of the frame; they are completely independent of each other.

This has two positive attributes. The first is that this minimizes the impact of packet loss
on a single frame. If a single frame is dropped, only one slice of the frame loses its complete
slice reference. In this case, that section of the frame is corrupted until a new complete slice is
sent. Otherwise, the rest of the frame is decoded normally. The second benefit of this approach
is that it keeps bandwidth usage consistent. With a traditional stream, bandwidth usage spikes
when complete frames are sent but then plummets when inter frames are sent. In this scheme,
since every frame has approximately the same size (one complete slice with the rest being inter
slices), bandwidth usage stays somewhat constant. This is useful because other applications can
now plan around its tight usage bound.

3.9 Processing The Video Stream on the Watch

There are two obvious methods for offloading the drone video stream from the watch to the edge.
The first is to decode the drone stream on the watch and then ship the decoded frames to the edge.
This allows the watch to throttle its send rate to account for 4G transmission overheating. The
second is to directly offload the stream packets from the drone network to the cloudlet, where
they can then be decoded. This involves the least amount of computation power on the watch, but
requires a higher transmission rate. I will refer to these as decode-on-device and decode-on-edge
respectively.
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Each segment of three frames contains one I-slice (shown in orange) and transmits the remaining slices
as P-slices (shown in blue). The I-slice that is sent is chosen from the center of the frame going outward.

After 30 frames, the process starts from the beginning.

Figure 3.9: Intra-Refresh Slice-Decode Stream
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Decode Time
Samsung Galaxy Watch 55ms
Unihertz Jelly Pro 35ms
Google Pixel 4a 25ms

Red denotes a decode rate that is too slow at 30 FPS.

Table 3.2: Average Decoding Time by Platform

Sleep Payload Size
Interval 35 KB 100 KB

33 ms ✕ ✕

100 ms ✕ ✕

500 ms ✕ ✕

800 ms ✕ ✕

1000 ms ✔ ✔

✕ thermal shutdown
✔ no thermal shutdown

Table 3.3: Effect of Sleeps

3.9.1 Method 1: Decode-on-Device
Decode-on-device involves the watch decoding the drone video stream then sending decoded
frames individually to the edge. This allows for some pre-processing on the watch side, such as
downscaling or stream throttling for bandwidth saving. Unfortunately, the Anafi’s intra-refresh
slice-decode stream poses a major hurdle to this method’s success: due to its construction, every
frame must be decoded in order to maintain a coherent stream. This is in stark contrast to a
typical stream, which only requires the I frames (usually generated at around 1 fps) to be decoded
to maintain coherence. As such, any device consuming the drone stream must decode one frame
every 33 ms on average to keep up with the 30 fps output and prevent drifting latency, regardless
of cellular transmission throughput. Drifting latency is a phenomenon where latency increases
over time due to queueing delay. If a device drops packets to keep up with this strict time bound,
it could cause some loss of quality as important I slices are discarded. On most devices, this is not
an issue. But on the constrained compute of the Galaxy Watch 4, even relatively light workloads
are considered difficult. Table 3.2 shows the time taken to decode a frame of the Anafi’s video
stream by the watch, the Pixel 4a, and the Unihertz Jelly Pro. As shown, both the watch and the
Jelly Pro cannot decode fast enough to maintain stable latency.

3.9.2 Method 2: Decode-on-Edge
Decode-on-edge avoids decoding on device by directly sending the drone stream packets over
cellular to the cloudlet, where they can then be decoded. With this method, computation on
the device is minimal but network transmission is much more frequent. This is a good trade-
off in many cases, but on the watch, heavy transmission workloads may cause overheating. To
determine the effect of transmission on the watch thermals, I devised a simple experiment: the
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The drone camera captures UNIX time displayed on a monitor that is connected to the cloudlet. It then
sends the video stream over the device to the cloudlet. The total latency is the difference between the

observed time in the stream versus the actual time the frame was received.

Figure 3.10: Streaming Experiment

watch sends a variable size packet, representing typical stream packet sizes (35KB up to 100KB),
over the network with variable sleep times in between sends. There is no video stream or other
onboard computation involved, only raw transmission. Table 3.3 shows the results of this exper-
iment. It is clear that the bottleneck on the watch is not the packet size but the send rate. Any
send rate above 1 Hz causes thermal shutdown. This means that decode-on-edge streaming is
mostly out of the question.

3.10 The Quest for a Working Stream

A successful stream to the cloudlet must have acceptable latency, throughput, and image quality.
Without these aspects, the stream will not be usable by AI algorithms running on the edge and
therefore cannot contribute to fully-autonomous operation. Specifically, the stream must have:

• Sustainability: the watch stream must sustain itself for the duration of a drone flight (at
least 20 minutes).

• Stable Latency: the watch stream must process frames on average equal to or faster than
33 ms to keep up with the 30 fps stream from the drone.

• High-Quality Frames: the watch stream must deliver “quality” images to the cloudlet that
lack significant visual artifacts and can thus be used by computer vision algorithms.
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Pass- Decode Decode Decode
Through No 3 fps 1 fps
Stream Throttle Throttle Throttle

Samsung Galaxy Watch 4 68 s 380 s 565 s DNO
Unihertz Jelly Pro DNO TT TT DNO
Google Pixel 4a DNO DNO DNO DNO

Time in seconds before the device experiences a thermal shutdown. DNO means that the device did not
overheat for the duration of the experiment (20 minutes). TT means that the device experienced

thermal-related CPU throttling which affected performance.

Table 3.4: Experiment 1: Sustainability

The austere environment on the watch makes achieving such a stream a challenge. The watch
cannot decode frames fast enough to maintain stable latency, and thus cannot decode-on-device
and send at a throttled framerate. It also cannot transmit consistently enough to decode-on-edge.
To discover a path forward, I devised a set of experiments that would better characterize the
bottlenecks in the system. By understanding these bottlenecks, an effective solution could be
found.

3.10.1 Experimental Setup
For each of the following experiments, the setup is identical. The drone is started so that its RTSP
stream and WiFi network are initialized. Then, the client device is connected to the drone’s
WiFi network and the stream application is launched on the device. The application uses a
variable method to stream image data from the drone to a cloudlet. When the frame arrives
at the cloudlet, it is saved along with its time of arrival. The drone’s camera is pointed at a
screen connected directly to the cloudlet which is displaying the current UNIX timestamp. This
effectively timestamps each frame produced by the drone, a feature not present in the closed
source stream hardware. By comparing the UNIX timestamp in the received image and its time
of arrival, the transmission latency can be determined in post processing. The UNIX timestamp
can also be used to determine the time at which thermal shutdown occurs. Figure 3.10 shows
the experimental setup. For experiment 1 and 2, I provide two other devices, the Google Pixel
4a and the Unihertz Jelly Pro as baselines. The duration of the experiments in all cases is the
duration of a drone flight: 20 minutes.

3.10.2 Experiment 1: Sustainability
In this experiment, I timed each device running either decode-on-device §3.9.1 or decode-on-
edge §3.9.2. For the decode-on-device runs, I added additional tests with throttling. In these
cases, the device decodes at the full frame rate but only sends to the cloudlet at the specified
framerate. Table 3.4 shows the results of the experiment. The watch clearly cannot sustain
decode-on-edge streaming for any significant duration (about 1 minute), and can sustain non-
throttled and 3 fps throttled streaming for up to 9 minutes. However, the 1 fps throttled stream
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Pass- Decode Decode Decode
Through No 3 fps 1 fps
Stream Throttle Throttle Throttle

Samsung Galaxy Watch 4 DRIFT DRIFT DRIFT DRIFT
Unihertz Jelly Pro DRIFT DRIFT DRIFT 1 s
Google Pixel 4a DRIFT 1 s 1 s 1 s

Latency in seconds. DRIFT means that the latency increased over the duration of the experiment
(20 minutes).

Table 3.5: Experiment 2: Stable Latency

c = 1 c = 2 c = 3 c = 4

d = 1 7 s, 80% 7 s, 80% 8s, 90% 8 s, 70%
d = 2 7 s, 80% 7 s, 80% 7 s, 90% 7 s, 80%
d = 3 1 s, 30% 1 s, 99% 4 s, 60% 4 s, 50%
d = 4 ≤ 5% 1 s, 50% 1 s, 10% 6 s, 30%

Latency in seconds followed by the approximate percentage of visual-artifact-free frames produced
during the test. Combinations off the grid did not produce acceptable results, either due to drifting

latency or poor quality. Visual quality is determined subjectively.

Table 3.6: Experiment 3: High-Quality Frames

did not overheat for the duration of the test. This implicates 4G transmission as the main thermal
bottleneck and sets an upper-bound for transmission frequency at 1 Hz. The Google Pixel 4a,
unsurprisingly, breezed through all four tests. The Jelly Pro had trouble with the higher send rate
of some decode-on-device tests but was overall good. This shows that slightly better thermals
would drastically improve sustainable performance on the watch.

3.10.3 Experiment 2: Stable Latency

In this experiment, I setup each device running the same methods as in Section 3.10.2. This
time, I measured the stream latency over the course of the test. Table 3.5 shows the results
of the experiment. No method provided a stream with stable latency on the watch. On the
Jelly Pro, only the 1 fps throttled stream did. This implies that for the non-throttled and 3 fps
throttled stream, the network transmission affected the decoding performance, slowing it down
and causing latency to drift. On the Pixel 4a, all decode-on-device methods provided stable
latency. No device successfully performed decode-on-edge streaming without drift. Clearly, a
different approach is needed on the watch to guarantee consistent latency.
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The red square at the end of the 2 fps temperature curve indicates a thermal shutdown occurred. The
0.7 fps graph continues without overheating.

Figure 3.11: Watch Temperature at Different Throttling Levels

3.10.4 Experiment 3: High-Quality Frames
If the watch decodes the stream as outlined in §3.9.1, it produces very high-quality images with
no visual artifacts at the cost of drifting latency. This is not acceptable by the standards outlined
earlier in Section 3.10. Even so, room for compromise remains. While not desirable, intentional
packet dropping of the video stream prior to decoding is an effective way to reduce latency at the
cost of quality, since fewer stream packets reduces the time spent decoding. In this experiment, I
determine how much packet dropping is acceptable to preserve quality. I test the watch under the
1 fps throttled decode-on-device workload, decoding chunks of c packets and then subsequently
dropping d packets. For example, a c = 2, d = 2 scheme would involve decoding 2 out of every 4
packets. Table 3.6 shows the results of the experiment. As d increases, quality drops but latency
decreases as the average time to decode shrinks. In the other direction, as c increases, latency
generally increases too since the average time to decode grows. At c = 2, d = 3, there is a
sweet-spot where the watch latency is minimal and the impact on frame quality is also minimal.
It is this combination that finally produces a workable stream.

3.10.5 The Stream in Practice
Putting together the results of the three experiments, a working solution emerges. It solves each
of the requirements presented in Section 3.10:

• Sustainability: the watch stream must sustain itself for the duration of a drone flight (at
least 20 minutes). The watch throttles sending frames to the cloudlet to 1 Hz which is
sustainable for 20 minutes.
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• Stable Latency: the watch stream must process frames on average equal to or faster than
33 ms to keep up with the 30 fps stream from the drone. The watch drops 3 packets for
every 2 it decodes which reduces the average decode time enough to keep up with the
drone stream.

• High-Quality Frames: the watch stream must deliver “quality” images to the cloudlet
that lack significant visual artifacts and can thus be used by computer vision algorithms.
The watch decodes enough packets to maintain a high-quality stream.

Integrated into the larger application, parts of this streaming scheme must be modified to make
way for other compute resources. In particular, throttling to 1 fps proves too demanding once
other processes are factored in. Once throttling is dropped to 0.7 fps, the stream once again is
functional. Figure 3.11 shows the watch temperature over time with a 2 fps and a 0.7 fps throttled
stream within the larger application. At 2 fps, the stream experiences thermal shutdown once the
watch reaches an external temperature of 108°F. At 0.7 fps, the watch maintains an external
temperature under 105°F for 20 minutes without ever experiencing a thermal shutdown.

3.11 Summary
The core insight of SteelEagle is that heavy onboard compute can be avoided by offloading
computation from drones over a cellular network to a cloudlet. As a first demonstration of this
concept, I successfully connected the Parrot Anafi to a cloudlet via the Galaxy Watch 4. The
watch, despite its thermal constraints, can offload the drone’s video stream over 4G at 0.7 fps
with 1 s latency while simultaneously sending actuation commands. The drone can also operate
BVLOS without the need for any connected human pilots. Now, all that is needed is a comple-
mentary edge software backend that can provide the drone with the intelligence required for full
autonomy.
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Chapter 4

The SteelEagle Backend

Fully-autonomous drones are only as effective as the artificial intelligence software and decision-
making protocols they use. SteelEagle is no different; its performance is tightly correlated with
the sensor processing and control algorithms running on the edge. However, its offload-based
design poses additional constraints: all sensor data from the drone is inherently latent and may
have suboptimal throughput. Furthermore, cloudlets may be required to serve multiple drones,
and may have to deal with changing network conditions that hamper bandwidth.

In this chapter, I will discuss my architecture for the SteelEagle backend. I will show how it
addresses these unique problems and how it adapts to its network environment. In Section 4.1, I
outline the overall design of the system and its interaction with drone clients. In Section 4.2-4.4,
I evaluate the system on a few basic tasks to understand its capabilities.

4.1 An Edge Intelligence Framework for Drones
The SteelEagle backend is made up of three main modules: compute, command and control, and
storage. To handle transmission between these modules and between the cloudlet and external
clients, traffic is split into two channels, the data plane and the control plane. Each channel uses
a different communication protocol to suit their specific quality-of-service demands. Figure 4.1
shows the full system architecture. The overall system is characterized by two main data flows:
the remote processing flow through the data plane and the remote control flow through the control
plane. I will outline both to illustrate how the system operates.

4.1.1 Remote Processing Flow

Perhaps the most important data flow in SteelEagle is the remote processing flow, outlined in
blue in Figure 4.1. The role of this flow is straightforward: retrieve sensor data and telemetry
from the drone, run the requested algorithm by the current mission, return results to relevant
clients, repeat. Yet there are additional considerations that complicate this seemingly simple
picture. First, bandwidth is a precious resource for mobile systems, and availability may vary
highly based on current network conditions [55]. For this reason, it is important that the stream
retrieval portion of the data flow can cope with bandwidth constriction without introducing too
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The remote processing flow, which handles the processing of the drone’s sensor stream and the delivery
of generated results, is highlighted in blue. The remote control flow, which delivers all commander

messages and auto-generated commands from the command and control module, is highlighted in red.

Figure 4.1: SteelEagle System Architecture

In the case of SteelEagle, the Wearable Device is replaced with a drone communicating over cellular.
The User Guidance VM not only sends processing results back to the drone through the data server (as

shown in Figure 4.1), but also stores results in the storage module.

Figure 4.2: Gabriel Cognitive Assistance Model (Adapted from [62])
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much latency. Second, many DNNs require vast computational resources to run quickly. Some
may not be able to sustain sufficient throughput to keep up with the drone’s stream. If the data
flow takes on multiple tenants without adapting its inference rate to model throughput, it could
lead to queueing delay and thus added latency.

Gabriel and the Cognitive Assistance Model

To address both of these problems, the SteelEagle remote processing flow leverages the Gabriel
Cognitive Assistance model [62]. Proposed in 2014, Gabriel is a bandwidth-adaptive edge in-
telligence system that provides near real-time sensor processing results to mobile clients (Fig-
ure 4.2). Gabriel is bandwidth-adaptive and model-throughput-adaptive thanks to its token-based
flow control protocol. Token-based flow control is a technique for avoiding queueing delay in a
client-producer server-consumer system using data objects called tokens. Tokens are a certificate
that signal the server or client to act; if the server has a token, it has client data that needs to be
processed and if the client has a token, it must send its most recently produced data to the server.
Additionally, it limits the number of outstanding requests which avoids excessive queueing when
the client and server operate at different rates.

At system start, a set number of tokens is agreed upon between the server (also called the
control VM in Figure 4.2) and client. The server and client exchange these tokens based on their
individual processing rates. For instance, if the client’s send rate outpaces the server’s processing
rate, the server will be in possession of a large share of the tokens and vice versa. If no tokens
remain on the client side, the client drops the current payload until it sees a new token. If no
tokens remain on the server side, it waits to receive new client data. In this model, the client only
ever sends the most recently produced payload which prevents the server from receiving highly
latent data.

In Gabriel, each distinct sensor processing algorithm is called a “cognitive engine”. Gabriel
supports running several cognitive engines simultaneously, and manages their input data queues.
Each cognitive engine is run in a separate container on the host machine, and is shipped data via
an inter-process communication channel. Gabriel’s tokens are shared among the engines which
effectively bottlenecks the client send rate to the throughput of the fastest engine. On slower
engines, queued data is dropped to ensure the latest data available is processed.

SteelEagle Upgrades to Gabriel

Gabriel is designed for mobile clients that have stable connections to the edge over WiFi. Due
to this, underlying connections are made via websockets. Websockets are a point-to-point con-
nection medium that are intended for web browser to server links. They are performant but must
be modified to properly deal with disconnections. In the case of SteelEagle, cellular links to
the backend can be easily disrupted by drone motion or interference. This renders websockets
sub-optimal. To fix this, SteelEagle replaces the underlying communication in Gabriel with Ze-
roMQ sockets that provide auto-reconnection among other quality-of-service guarantees [132].
Other connections within SteelEagle that are not Gabriel-regulated use pure ZeroMQ sockets
(Figure 4.1).
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Within SteelEagle, the Gabriel control VM is called the data server and cognitive engines are
managed by an entity called the compute module (see Figure 4.1). In most cases, the compute
module will spawn a pre-specified set of algorithms demanded by a drone at mission start. In
the future, I envision that it may also support runtime configuration of cognitive engines and
dynamic scale-out at runtime to adapt to constrained resources or new mission parameters.

Unlike the default Gabriel implementation, SteelEagle supports multiple consumer clients of
processing results (generated by the User Guidance VM in Figure 4.2). The main consumer of
these results other than the drone is the storage module (see Figure 4.1). The storage module is a
database responsible for logging all processed results in addition to the raw sensor and telemetry
sent by the drone. This can be read by other monitoring clients such as the command and control
module if needed for orchestration purposes.

Supported Cognitive Engines

As a result of its Gabriel-based design, SteelEagle supports a wide range of cognitive engines.
To add new engines, users simply need to work within the Gabriel cognitive engine interface and
connect to the Gabriel server [62]. The server will automatically configure the requested type
of sensor stream and manage timely delivery of data to the engine. For initial evaluation pur-
poses, I have configured two engines useful for drone operations: object detection and obstacle
avoidance. I will detail their implementation in Section 4.2.

4.1.2 Remote Control Flow
The remote control flow handles interactions between humans and SteelEagle drones. Within the
SteelEagle ecosystem, since the drones are fully-autonomous, there are no conventional human
pilots. Instead, humans who interact with SteelEagle drones are referred to as “commanders”.
Commanders create missions, send missions to aircraft, and monitor telemetry data to ensure
continued safe operation. They also have the ability to manually pilot a connected aircraft in
case of emergency. A user interface provides continuous feedback on the progress of the mission
on a map. It also displays live sensor streams, including video, transmitted by the drone. It
includes several buttons to upload missions, take manual control of one or more aircraft, and
order one or more aircraft to return home.

Messages sent by commanders are aggregated in the command and control module (see Fig-
ure 4.1). Here, messages are relayed to the control server which then sends them to the target
aircraft over a direct, unregulated socket connection. This is in contrast to the data server, which
uses token-based flow control socket connections. The reason for this difference is that messages
sent by commanders, especially emergency commands, are deemed to be high priority and must
therefore be forced over the link as quickly as possible without any regard for bandwidth.

The command and control module also acts as an air traffic controller. That is, it manages the
airspace inhabited by connected aircraft to ensure there are no mid-air collisions. For instance, it
allocates non-intersecting altitude slices to different drones operating in the same mission area to
ensure they are flying at different altitudes. The command and control module maintains up-to-
date telemetry from all connected drone clients via the storage module and can therefore detect
potential crashes before they happen.
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Drone Missions

Prior to flight, a mission is planned using a toolchain that starts with Google MyMaps. The flight
route can be specified using waypoints, line segments and polygons. Actions such as capturing
images, tracking particular objects, or avoiding obstacles can be associated with parts of the
route, and can be linked together to form a primitive behavior tree. Behavior trees are a common
way of expressing missions in a variety of robotics settings [59]. An offline compilation step,
usually performed on a commander computer, transforms the high-level specification into low-
level drone-specific runtime actions on the cloudlet and on the drone. In the case of the Parrot
Anafi-Galaxy Watch 4 prototype, the compiler output is expressed via Ground SDK API Java
classes and packaged into an Android DEX file. A drone simulator can be used for testing and
visualization of this output.

In its current form, SteelEagle assumes a one-to-one correspondence of drones and missions.
In particular, each drone executes its given mission in isolation, without cooperation. In future, to
support swarm operations, this would change. For now, this simple abstraction provides enough
for basic autonomous drone operations.

4.2 Evaluation

Given the prototype constraints discussed in Section 3.7 and my proposed backend architecture,
I ask the following question: “Can my flight platform, with severe constraints on both local
compute and edge offload, achieve autonomy for active vision?” Recall, active vision tasks are
those that require the drone to react in real time to its surroundings [6, 93]. To answer this
question, I conduct experiments with a series of tasks of increasing difficulty that probe and
quantify the limits of my flight platform:

• Task-1: Detecting a moving object while hovering.
• Task-2: Detecting and tracking an object by yawing to keep it in the field of view (FOV)

as it moves.
• Task-3: Detecting and tracking an object by following it at a fixed leash distance as the

object moves.
• Task-4: Detecting a moving object from high altitude, and then descending to closely

inspect it.
• Task-5: Detecting and avoiding static obstacles.

My goal is to perform these tasks from takeoff to landing with no human intervention. Where
possible, I test my system against the Parrot Anafi Ai, a semi-autonomous COTS drone with LTE
support, limited onboard tracking and obstacle avoidance. It weighs more than twice as much as
my flight platform, and costs over five times as much (Figure 4.1). A less-constrained platform
can clearly do more, but it may weigh more too. My focus is on whether my 360 g drone-watch
platform is too weak or just enough.

The cloudlet used in the following experiments has 36 CPU cores, 128 GB of RAM and an
NVIDIA GeForce GTX 1080 Ti GPU. It is capable of using a private CBRS LTE network for
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My Platform Base Parrot Anafi Parrot Anafi Ai
Cost $769 $469 $4,500
Weight 360 g 320 g 898 g
Detection Yes No No
Tracking Yes Yes* Yes*
Avoidance Yes No Yes
Programmable Yes Yes Yes
4G/5G Yes No Yes

* Requires assistance from the pilot for initial object detection.

Table 4.1: Flight Platforms Relevant to my Experiments

0 g 40 g % Reduction 60 g % Reduction
Battery 1 21:04 18:43 11.16% 17:18 17.88%
Battery 2 22:54 19:35 14.48% 18:57 17.25%
Battery 3 17:57 14:23 19.87% 13:00 27.58%
Battery 4 20:00 16:43 16.42% 15:12 24.00%

Table 4.2: Flight Duration by Payload Weight

low end-to-end latency. However, since the Galaxy Watch is not able to connect over CBRS, all
presented results are based on public cellular network infrastructure.

4.2.1 Flight Duration
Since my platform consists of mounting external components on an existing drone, a reduction
in flight duration is expected. This reduction is important to quantify, as it directly impacts my
platform’s range and practicality. In Figure 4.2, I show the hover time of the Parrot Anafi with a
0 g, 40 g, and 60 g payload weight. The Galaxy Watch with harness is around a 40 g payload. It
is clear that the watch payload reduces battery life by 10% to 20% on average.

4.2.2 Event-to-Detection Latency
The agility of my system is limited by the end-to-end latency of the processing pipeline (Fig-
ure 4.1). Events closer in time than this limit may not be resolvable. For example, a surveillance
target with a jerky motion will be perceived as moving more smoothly. Large, but brief, devia-
tions from the smoothed path may not be detected. The larger the end-to-end latency, the greater
the need for predictive approaches in tracking fast-moving targets. This, in turn, leads to greater
likelihood of errors due to mis-prediction.

The base end-to-end latency of the pipeline can by replicating the experiment described in
Section 3.10.1 and Figure 3.10. The drone is kept stationary in a lab setting, with its camera
pointing at a display attached to the cloudlet. Except for the fact that the drone is not flying,
everything else (hardware, software, and network) is identical to Figure 4.1. The cloudlet-
connected display shows the current time at millisecond granularity. An image of this times-
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Figure 4.3: Distribution of Detection Latency (Galaxy Watch)

tamp is captured by the drone’s camera, transmitted downstream, and recovered at the end of the
pipeline. Its difference from current time at recovery gives the end-to-end latency. Figure 4.3
presents my results from 30 samples. The distribution is heavy-tailed, with a mean of 1138 ms
and a standard deviation of 157 ms. The high mean and variability arise from jitter in LTE trans-
mission, as well as from processing and scheduling delays on the drone, watch, and cloudlet.

4.2.3 Task-1: Object Detection While Hovering

Task Description

The accuracy of the computer vision pipeline complements its speed. Both are important for
active vision. A simple test is the detection of a target on the ground when it moves into the
camera’s FOV. The problem is harder from higher altitude because objects are smaller and DNNs
perform poorly on objects that are just a few pixels in size [69]. Figure 4.4 shows the DJI
Robomaster S1 robot [40] used as the detection target in my experiments. It is roughly the
size of a small dog, and can be remote-controlled over WiFi by a human driver. It can also be
programmed to follow a predefined route, with speed variation in different route segments.

For Task-1, the robot is manually operated on a freeform path that overlaps the FOV of the
drone that is hovering at fixed altitude. In postprocessing, I compare ground truth (GT) on each
processed frame with the output of the processing pipeline. The object detection DNN was
created via transfer learning from SSD-ResNet50 [95] pre-trained on the COCO dataset. The
training set was created from drone-captured images of the target shown in Figure 4.4.

Results

I perform this experiment at altitudes of 5 m, 10 m, and 15 m. Accuracy is high at 5 m; a typical
result is Figure 4.5(a), where the bounding box indicates detection followed by correct target
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432 x 330 x 304 mm
(17 x 13 x 12 in)

Figure 4.4: COTS Target

classification at high confidence (0.98). The person at the top right and the distractor object
at the top middle are correctly ignored. At 10 m, accuracy is slightly lower. An example of
an erroneous result at 10 m is Figure 4.5(b), which shows a true positive (TP) (the target) at
confidence 0.95 at bottom center, and a false positive (FP) (a person misclassified as the target at
confidence 0.82) at center left. At 15 m, accuracy suffers significantly. An example of an error
at 15 m is Figure 4.5(c). This shows an FP at center right (a person misclassified as the target
at confidence 0.86), and also a false negative (FN) (missed target) at center left. Altitudes of
15 m and higher are clearly challenging for this combination of target size, optical system, and
processing pipeline.

Table 4.3 (a) shows the confusion matrix for Task-1 at a confidence threshold of 0.7. The
scoring of images used in this matrix requires explanation. Classic measures of precision and
recall address scene classification, where an entire image is correctly or incorrectly classified. In
contrast, my setting involves object detection. It is possible for a single image to have both a
FP and a TP or FN. Figure 4.5(a) contains a single TP, and no errors. This is scored as a TP in
the confusion matrix. Figure 4.5(b) contains both a TP and an FP; this is scored as an FP since
errors trump correctness. When there are multiple errors, the worst error determines the score.
Figure 4.5(c), for example, contains both an FP and an FN. I view FNs (hurting recall) as more
serious errors than FPs (hurting precision), and therefore score the whole image as an FN. These
rules preserve the invariant

GTP +GTN = TP + TN + FP + FN

where GTP and GTN refer to ground truth positives and negatives, and TN refers to true negatives
(no target in image).

At 5 m, a total of 85 frames are processed. The column labeled “Ground Truth” shows that
all 85 contain a target instance. The “Detected” columns show that 71 out of the 85 are correctly
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(a) Altitude = 5m

(b) Altitude = 10m

(c) Altitude = 15m

Figure 4.5: Task-1 Images
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Alti- Ground Detected
tude Truth Pos Neg.
5 m Pos. 85 71 13

Neg. 0 1 0
10 m Pos. 90 55 30

Neg. 0 5 0
15 m Pos. 85 24 48

Neg. 0 13 0
Threshold = 0.7

(a) Detection Results

Alti- Prec- Re-
tude ision call
5 m 0.99 0.85
10 m 0.92 0.65
15 m 0.65 0.33

(b) Precision and
Recall

Table 4.3: Task-1 Results

detected and classified (TPs), but 13 are missed (FNs). At 10 m, all 90 processed frames contain
an instance of the target, but only 55 of them are correctly detected (TPs). There are 30 FNs and
5 FPs. At 15 m, accuracy suffers considerably. Out of 85 total processed frames, all are GT-
positive. However, only 24 of them are correctly detected (TPs). There are 48 FNs and 13 FPs.
Table 4.3 (b) shows the precision and recall resulting from these detection results. These values
are excellent at 5 m. Recall is noticeably degraded at 10 m. Both precision and recall suffer at
15 m. These results suggest the importance of active vision. Dropping to a lower altitude could
confirm or refute the sighting of an object from higher altitude.

4.2.4 Task-2: Keeping Sight of a Moving Object

Task Description

Processing a frame in Task-1 does not lead to actuation of the drone. In contrast, Task-2 rep-
resents a simple form of active vision. After detecting a moving target, the drone yaws to keep
the target visible in the frame. There is no forward or backward motion, only rotation to keep
the object in the FOV. To find the target in frame, Target speed and motion predictability clearly
influence this task. A fast-moving target that unpredictably and frequently changes its path is
clearly hard to track. As discussed earlier (§ 4.2.2), the end-to-end latency of processing con-
strains tracking agility. With the help of the pilot (using the FreeFlight app), the Anafi Ai can
also perform this task and thus I use it as a benchmark for my platform.

As shown in Figure 4.6, I set up a rectangular (approximately 20 m x 15 m) course marked
by 4 cones. The drone is placed near the center of the rectangle and takes off to a fixed altitude
of 2 meters. A 2 m tall by 0.5 m wide foam pillar is placed to occlude the target along the center
of the back edge. For each run, the target moves along the right, back, and left edges in a u-shape
two times. To test the ability of each platform to reacquire lost targets, I vary the time spent
being occluded, starting with no pause, then pausing for 2 seconds behind the pillar, and finally a
5 second pause. Three runs of each delay were recorded. For the Anafi Ai, the pilot must draw a
bounding box around the target in order to start tracking; my platform automatically acquires and
re-acquires the target. Since my platform is constrained to below 1 fps, we compare results from
the two platforms on frames that are one second apart. The Anafi Ai captures video at 30 fps, so
I expect its responsiveness in this task to be significantly better.
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Figure 4.6: Target Occlusion

Algorithm

Edge offload to a powerful cloudlet enables tracking via DNN inferencing on every frame re-
ceived. This “brute force” approach eliminates the need for predictive heuristics, such as those
based on optical flow algorithms. Heuristics are often needed by on-board tracking implementa-
tions because the computational demand would otherwise be too high. The brute force approach
makes tracking robust with respect to transient occlusions. Flow-based approaches, in contrast,
are typically unable to reacquire the target after occlusion ends.

In my system, the cloudlet inferences each frame through an object detection DNN. The
highest confidence bounding box is then chosen as the target, and its offset from the center of the
frame is calculated in field-of-view degrees. The drone then actuates according to a PID-loop [9]
based on the offset error. This simple approach provides a good baseline at low complexity.

Results

For successful tracking, both sensing and actuation are important. If the drone is sluggish in
executing a yaw command, even perfect processing may not keep the target in the FOV at all
times. Four outcomes are possible for each processed frame:

• the target is visible in the frame (“Success”).
• the target is missing in this frame because of slow actuation, but present in the next (“Slow

Actuation”).
• the target is missing both in this frame and the next. This is scored as a tracking failure

(“Fail”).
• the target is occluded. This is not included in the frame total and is omitted from the

results.
Table 4.4(a) and (b) compare the results for my platform and the Anafi Ai. At 0 s occlusion,

my platform performs well, but run 3 experiences some tracking failures. My system’s low
framerate stream accounts for these failures. None of the frames received by the cloudlet included
the target as it traversed the last corner of the pattern. In contrast, the Anafi Ai experiences no
failures at 0 s occlusion. At 2 s occlusion, both my platform and the Anafi Ai perform very well.
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Success Slow
Occlusion Run Total (Target Present) Act- Fail

(s) Frames Present
Total uation

1 63 60 3 0
0 2 62 62 91.2% (11.4%) 0 0

3 60 47 0 13
1 58 56 2 0

2 2 58 57 98.3% (1.7%) 1 0
3 64 64 0 0
1 59 53 0 6

5 2 53 53 90.3% (9.4%) 0 0
3 53 43 0 10

Figures in parentheses are standard deviations.
(a) SteelEagle

Success Slow
Occlusion Run Total (Target Present) Act- Fail

(s) Frames Present
Total uation

1 76 76 0 0
0 2 78 78 100% (0%) 0 0

3 80 80 0 0
1 79 79 0 0

2 2 80 80 100% (0%) 0 0
3 86 86 0 0
1 78 32 0 46

5 2 77 29 39.4% (1.7%) 0 48
3 81 32 0 49

Figures in parentheses are standard deviations.
(b) Anafi Ai

Table 4.4: Task-2 Results
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Figure 4.7: Tracking Patterns

However, my platform experiences a few instances of slow actuation. Both platforms are able
to reliably reacquire the target as it reappears from behind the obstacle. At 5 s occlusion, the
limitations of the Anafi Ai are exposed. Such a long period of occlusion causes the Ai’s optical
flow tracking algorithm to become confused, often mistaking the pillar or background objects
for the target. my platform’s DNN tracking handles the increased occlusion well, with only a
modest increase in the number of failures.

4.2.5 Task-3: Following at a Fixed Leash Distance
Task Description

Only limited actuation is needed to keep the target in the drone’s FOV in Task-2. More substantial
actuation is required for Task-3. After detecting a moving target, the drone moves to keep it at a
preset leash distance. This compounds latency issues as the drone must now yaw and reposition
itself correctly when the target maneuvers quickly. At high target speeds (over 2.5 m/s), this can
prove difficult because even small actuation mistakes can result in total loss of visual contact.
Although the Anafi Ai can statically track moving objects, it does not have a following feature
which makes a direct comparison of its performance infeasible.

I programmed the target to move at a constant speed over flat ground in a specified pattern.
I used speeds of 1.5 m/s (slow), 2.5 m/s (medium), and 3.5 m/s (fast). These speeds roughly
correspond to a person walking, jogging slowly, and running. Two patterns were used: a square
of side 10 m (Figure 4.7(a)), and a cross with four arms of 5 m each (Figure 4.7(b)). The
square embodies abrupt change of trajectory after 10 m of straight line travel, while the change
of trajectory in the cross occurs after only 5 m. As in Task-1, the drone is initially hovering
at fixed altitude. I used altitudes of 5 m and 10 m in my experiments, but omitted 15 m since
Section 4.2.3 indicates poor performance at this altitude.

Algorithm

The algorithm used for this experiment is a modified version of the one used in Section 4.2.4.
Once the target is detected, the drone tracks it by centering the bounding box in the frame. At the
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Speed Run Total Success Slow Fail
(m/s) Frames (Target Present) Act-

Present
Total uation

1 82 80 1 1
1.5 2 85 76 95.2% (5%) 0 9

3 77 76 1 0
1 82 49 2 31

2.5 2 84 50 55% (8%) 4 30
3 83 38 0 45
1 87 46 2 39

3.5 2 84 60 62.7% (9.3%) 1 23
3 83 53 4 26

Figures in parentheses are standard deviations.
Abnormally high LTE latency was observed during the red highlighted run. This is always a possibility

when using public cellular infrastructure. During high latency events, the performance of the system
suffers considerably.

Table 4.5: Task-3 Results (Altitude = 5 m, Pattern = Square)

same time, it estimates its distance to the target, and moves such that it preserves a preset leash
distance. This leash distance is chosen before the experiment to adequately frame the target at
the specified altitude. If the drone loses sight of the target, it hovers until the object moves back
into its FOV. No active search is made by the drone to reacquire a lost target.

Results

I use the same scoring rubric of “Success,” “Slow Actuation,” and “Fail” as for Task-2. At a
target speed of 1.5 m/s, the results for all runs in Table 4.5 confirm successful tracking with only
occasional failure. When speed increases to 2.5 m/s, and then to 3.5 m/s, the number of failures
increases sharply. This is consistent with the computer vision processing pipeline following real-
world scene changes too slowly, due to the very low frame rate (0.7 fps). I show later (§4.4) that
increasing frame rate improves tracking. The effects of anomalously high LTE latency are visible
in Run 3. This points to the challenge of using public cellular networks which can experience
unpredictable changes in bandwidth and latency.

Table 4.6 presents Task-3 results when the pattern used is a cross rather than a square. Com-
paring the “Fail” columns of Tables 4.5 and 4.6, there is a noticeable decrease in failures at
speeds of 2.5 m/s and 3.5 m/s when the pattern is a cross. These results are consistent with the
cross being less demanding than the square for tracking.

At an altitude of 10 m, the drone’s FOV is increased, but there is a significant drop in pre-
cision and recall as shown in Table 4.3 (b). This leads to an increase in the number of tracking
failures relative to 5 m, regardless of the target pattern or speed. The effect is most apparent at
the slowest speed: the results for 1.5 m/s in Table 4.7 show higher failures than the results at
1.5 m/s in Table 4.5. Similarly, the results for 1.5 m/s in Table 4.8 show higher failures than
the results for 1.5 m/s in Table 4.6. These effects persist at higher speeds, but are less obvious.
The improvement at 2.5 m/s between Tables 4.5 and 4.7 is due to the high-latency LTE anomaly
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Speed Run Total Success Slow Fail
(m/s) Frames (Target Present) Act-

Present
Total uation

1 83 83 0 0
1.5 2 88 88 100% (0%) 0 0

3 78 78 0 0
1 85 67 0 18

2.5 2 80 75 88.6% (8.5%) 0 5
3 88 82 1 5
1 82 82 0 0

3.5 2 85 59 89% (17%) 1 25
3 86 84 2 0

Figures in parentheses are standard deviations.

Table 4.6: Task-3 Results (Altitude = 5 m, Pattern = Cross)

Speed Run Total Success Slow Fail
(m/s) Frames (Target Present) Act-

Present
Total uation

1 83 65 1 17
1.5 2 78 74 81.6% (12%) 0 4

3 88 63 3 19
1 82 52 2 39

2.5 2 83 48 62.3% (4%) 1 34
3 87 57 0 30
1 88 57 1 30

3.5 2 83 45 64.8% (10.5%) 1 37
3 89 67 3 19

Figures in parentheses are standard deviations.

Table 4.7: Task-3 Results (Altitude = 10 m, Pattern = Square)
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Speed Run Total Success Slow Fail
(m/s) Frames (Target Present) Act-

Present
Total uation

1 80 75 0 5
1.5 2 85 85 87.3% (16.8%) 0 0

3 85 58 0 27
1 84 67 0 17

2.5 2 81 81 86.6% (11.6%) 0 0
3 85 68 0 17
1 86 62 0 24

3.5 2 86 85 82.9% (14.1%) 1 0
3 86 67 1 18

Figures in parentheses are standard deviations.

Table 4.8: Task-3 Results (Altitude = 10 m, Pattern = Cross)

mentioned earlier.

4.2.6 Task-4: Close Inspection

Task Description

Task-4 corresponds to the classic active vision tactic of “taking a closer look” that was mentioned
earlier (§1). It begins with the drone hovering at 15 m. As in Task-1, the target moves in a
freeform path that is manually controlled over WiFi. When the target is detected in the FOV of
the drone, confirmation at the lower altitude of 5 m is attempted. During the descent, the target
is kept in the FOV using yaw and gimbal actuation; the drone’s pitch and roll are not modified.
If multiple targets are detected at 15 m, only confirmation of the highest-confidence detection is
attempted.

Results

The results for Task-4 are shown in Table 4.9. The row labeled “Static 15 m” correspond to
the 15 m results from Table 4.3 (b). Relative to that baseline, both precision and recall improve
by nearly 30% by “taking a closer look.” There is, of course, a cost in time because actuation
involves physical motion of the drone to the lower altitude. Further, the increased FOV at higher
altitude offers wider coverage. For these reasons, better accuracy at higher altitude will always
be valuable. However, when such improvement is not possible due to limitations of the drone’s
optical system or processing pipeline, autonomously descending to a lower altitude for target
confirmation can be effective.
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Altitude Precision Recall
Close Inspection (15m-5m) 0.94 0.68

Static 15 m (§4.2.3) 0.65 0.33

Table 4.9: Task-4 Results

(a) Raw Input (b) Output of MiDaS

Figure 4.8: Bridge Obstacle Avoidance

4.2.7 Task-5: Obstacle Avoidance

Task Description

Task-5 compares my platform’s monocular obstacle avoidance, using my visual pipeline at
0.7 fps, with the stereoscopic obstacle avoidance of the Anafi Ai using on-board computing
at 30 fps. I place the 2 m tall by 0.5 m wide foam pillar used in Task-2 (§4.2.4) directly in the
drone’s path. The drone is instructed to fly at 1 m/s at a fixed altitude of 1 m directly towards the
obstacle. I capture a trace of the drone’s flight path across 3 different runs.

Algorithm

Some drones utilize stereo cameras or LIDAR to detect and avoid obstacles. These give accu-
rate depth data (i.e., distance to objects), allowing the drone to map out its environment and to
calculate optimal collision-free trajectories. Since my drone is only equipped with a monocular
camera, it cannot infer depth via simple geometric methods. I therefore use a DNN-based al-
gorithm called MiDaS [104] to provide relative depth estimates. Using MiDaS on each frame
received by the cloudlet, we construct the inverse relative depth map. Based on the rate of change
of relative depth across frames, we identify obstacles in the flight path and actuate away from
them. Figure 4.8(a) shows an input frame from one of my flights, as the drone approaches the
obstacle course. Figure 4.8(b) shows the depth-encoded output of my algorithm on this frame.
The drone actuates towards the green dot using a tuned PID-loop [9] to avoid the closest flags.
Once past these flags, it re-computes a new safe objective towards which it can fly to avoid the
second tier of flags. It repeats these steps until it is past all obstacles. This simple approach to
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(a) SteelEagle (b) Anafi Ai

Figure 4.9: Task-5 Results

obstacle avoidance serves as a good experimental baseline.

Results

Figure 4.9(a) plots the flight path of each run for my platform, along with the position of the
pillar. Figure 4.9(b) plots the flight paths of the Anafi Ai on the same task. Both platforms
successfully avoid the obstacle in all cases, but do so using very different tactics. The low frame
rate and high end-to-end latency of my pipeline forces my platform to be very conservative, and
to give the obstacle a wide berth. Well past the obstacle, the drone has not yet returned to its
original flight path. In contrast, the stereoscopic cameras, high frame rate and low end-to-end
processing latency of the Anafi Ai together enable it to be much less conservative in obstacle
avoidance. The flight paths cluster more tightly around the obstacle, and the drone soon returns
to its original flight path.

4.3 Summary of Results

My evaluation began with a single top-level question. Could autonomous active vision be suc-
cessfully implemented on a drone with severe constraints on both local compute and offload-
ing? The maximum offloading throughput of 0.7 fps imposed by LTE thermal constraints on the
watch (§3.10.5) is a severe bottleneck. The heavy-tailed distribution of end-to-end processing
pipeline latency, with a mean of over 1 s (§4.2.2), is another bottleneck. Combined with limi-
tations of onboard processing on the watch and the quality of the drone’s optical system, these
constraints pose a formidable barrier.
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Frame Run Total Success Slow Fail
Rate Frames (Target Present) Act-
(fps) Present

Total uation
1 361 283 1 77

3 2 360 342 83.7% (9.8%) 1 17
3 361 280 0 82
1 87 46 2 39

0.7 2 84 60 62.7% (9.3%) 1 23
3 83 53 4 26

Speed was 3.5 m/s. Figures in parentheses are standard deviations.

Table 4.10: Increased Frame Rate (Altitude = 5 m, Pattern = Square)

In spite of this barrier, the results presented (§4.2.3 to §4.2.7) show that active vision capa-
bilities such as tracking a moving object and confirming object detection by dropping to lower
altitude are feasible at credible target speeds. Even with the current implementation, one can per-
form useful tasks involving active vision. The range of feasible tasks can be broadened via hard-
ware advancements in the drone and the watch, combined with more sophisticated algorithms
that can then be supported. Progress on this front would also enable the superior resources of
the cloudlet to be better utilized. Right now, the benefit of the cloudlet is being muted by the
low sustainable offloading rate. Even so, thanks to the modular design of SteelEagle, it is still
possible to port new AI algorithms with minimum effort into the pipeline which could perform
better on this limited stream.

4.4 Benefit of Increased Frame Rate

The results for Task-3 (§4.2.5) make it clear that the drone’s frame rate of 0.7 fps is a major
limiting factor for tracking. When tracking high speed objects that perform erratic maneuvers,
the drone often only has one or two detections to actuate upon. It often does not get feedback on
actuation errors until the target has exited the frame entirely. Once that happens, tracking fails
and the target is lost.

To quantify the benefits of a higher frame rate, I repeated the most difficult combination of
speed and pattern in my Task-3 experiments: 3.5 m/s for a square pattern. Instead of using the
watch, I used a ground-based laptop to play exactly the same role. The laptop connects to the
drone over WiFi, and connects to the cloudlet via a commercial cellular LTE network. In every
respect other than the fact that the laptop is not flying with the drone, the processing pipeline
is unchanged from Figure 4.1. The tracking algorithm is also unchanged from that described
for Task-3 (§ 4.2.5). Although the laptop experiences the same WiFi, RTSP video stream, and
LTE conditions as the watch did, it does not suffer from the same processing or LTE thermal
limitations. This enables offloading of video processing to the cloudlet a much higher frame
rate. I chose a figure of 3 fps since I believe that this is realistically achievable with slightly
better watch hardware. Even the Samsung Galaxy 4 watch can sustain 3 fps for over two minutes
if it is pre-cooled with an ice pack. This is the full length of one run of Task-3 (§ 4.2.5).
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Platform Weight (g) Throughput (fps)
Galaxy Watch 4 26 1

Future Offload Device <50 3
Pixel 4a 143 5

Dell Latitude 5420 Laptop 2500+ 6

Table 4.11: Throughput and Weight by Platform

Inference Effective Throughput
(ms) (fps)

Object 56.3 17.8
Detection (5.9)
Obstacle 124.3 8.1

Avoidance (4.9)
Standard deviation in parentheses.

Table 4.12: Cloudlet Performance

Table 4.10 presents my results for an altitude of 5 m. For easy comparison, the 3.5 m/s results
from Table 4.5 are reproduced below the new results. Increasing the frame rate from 0.7 fps to
3 fps greatly improves tracking — almost a 20% increase in the “Success” column. Even the
worst run at 3 fps achieves 77.5% success which is 6.1% better than the best run at 0.7 fps at
71.4% success. This improvement is obtained without modifying my tracking algorithm.

Since frame rate is such an important factor in successful tracking, it is natural to speculate
on what might be possible with future hardware advancements. For example, if a future offload
device was no heavier than it is today but had the processing power of today’s smartphones,
how much better could it do tracking? To gain some insight into these speculative questions, I
tested the processing pipeline of Figure 4.1 using different offload platforms. Experiments were
performed with an identical setup as in Section 4.2.2.

Table 4.11 shows the throughput in fps and the weight of various computing platforms today.
The first two rows are the current platform and a theoretical future offload device. The third row
is a Pixel 4a smartphone, which is able to sustain 5 fps. At 143 g, it is too heavy for my drone
to carry, but its 5x improvement in throughput is very attractive for robust tracking. The fourth
row is a Dell Latitude 5420 laptop, which is able to sustain 6 fps; clearly, its 2.5 kg weight is far
beyond the payload lift of any ultra-light drone. Since the laptop can decode video and transmit
it over WiFi at 30 fps, the bottleneck shifts to the LTE link and the cloudlet’s DNN inference
time. As Table 4.12 shows, the cloudlet is able to inference at roughly 17.8 fps for object detec-
tion (Task-1 to Task-4) and 8.1 fps on obstacle avoidance (Task-5). Thus, an improved offload
device on the drone could take better advantage of cloudlet resources. In the next chapter, I
explore possible replacement devices for the watch in order to quantify this improvement.
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Chapter 5

A Relay Device with Higher Throughput

The watch prototype is severely limited in its ability to deliver a high throughput and low latency
video stream to the edge, hindering the benefits of edge computing. In order to better take
advantage of cloudlet resources, a new offload device is needed which can transmit the video
stream without the thermal restrictions of the watch. As discussed in Section 3.6, there are no
current Android products other than smart watches that satisfy the stringent weight requirements
of the Parrot Anafi platform. The only path forward is to explore other segments of the mobile
computing landscape.

In this chapter, I propose a new offload device which fixes some of the shortcomings of the
watch prototype. I will show how it improves upon the watch in some ways but fails to match its
capabilities in others. In Section 5.1-5.2, I explain the process of choosing a new device. I give
a breakdown of its control model and how it differs from the watch. In Section 5.3-5.5, I use an
agility analysis framework to compare the overall performance of each prototype.

5.1 Finding a Watch Replacement

For any device to replace the watch, it must satisfy three main requirements of the SteelEagle
pipeline: WiFi connectivity, cellular connectivity, and light weight. The first two requirements,
WiFi and cellular connectivity, are relatively easy to find within the mobile device space. Meeting
the weight requirement is much harder. The Parrot Anafi was able to fly with the watch payload,
around 39 g, but was unable to fly with the Unihertz Jelly Pro payload, around 90 g with EMI
shielding included. This gives an approximate weight range for a watch replacement.

Outside of smart watches, the only devices that lie within this weight range are single-board
computers (SBCs). SBCs are small form factor computers which live on a board about the size
of a credit card. They are widely used for internet of things (IoT) projects because of their
small size, low power draw, and connectivity (usually WiFi but sometimes cellular as well). The
most popular SBC at the time of writing this dissertation is the Raspberry Pi [105]. The Pi
is an Ubuntu SBC available in several sizes, the lightest of which is the Pi Zero 2 W at 16 g
(Figure 5.1). The Zero is equipped with a quad-core 1 GHz CPU and 512 MB of RAM. It
has built-in WiFi connectivity but must be augmented with a dongle for cellular connectivity.
Additionally, it does not come with an integrated battery, so it must be powered by an external
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The Pi Zero 2 W is 16 g but lacks cellular connectivity and requires an external power source.

Figure 5.1: Raspberry Pi Zero 2 W [105]

The Onion Omega is 20 g with embedded WiFi and 4G. It requires a 3.3 V, 0.5 A power source.

Figure 5.2: Onion Omega 2 LTE [94]

power pack that provides 1.2 A at 5.5 V. I determined that EMI shielding was not needed since
the Pi did not create enough interference to hinder the Anafi’s compass. With a power pack, 4G
LTE dongle, and mount included, a Pi Zero payload for the Anafi would reach around 80 g. From
experimentation, I found this was too heavy as the drone exhibited poor flight characteristics. A
lighter alternative was needed.

After an extensive search, I settled on the 20 g Onion Omega 2 LTE (Figure 5.2) [94]. The
Omega is another SBC with built-in WiFi and 4G LTE connectivity. It runs OpenWRT Linux
and is equipped with a single-core 580 MHz CPU and 128 MB of RAM. This makes it much
less powerful, on paper, than the Galaxy Watch 4 (1.18 GHz dual-core CPU, 1.5 GB RAM). It
also does not have an integrated battery, and like the Pi, does not create enough interference to
warrant EMI shielding. However, unlike the Pi, the Onion only requires 0.5 A at 3.3 V which
allows it to be powered by a much smaller, lighter power pack. This means, after adding a mount,
power pack, and antennas, the Onion payload is a much slimmer 53 g. Through experimentation,
I found this weight to be viable for sustained flight without adverse flight effects.
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The Onion acts as a pure relay, ferrying low-level command packets from the drone to the cloudlet.
There, they are collected by a “drone proxy” which acts similarly to the watch in Figure 4.1.

Figure 5.3: SteelEagle System Architecture with Onion Omega

5.2 The Onion Omega Payload

The Onion’s onboard compute resources are much worse than the Galaxy Watch 4. Its advantage
is its thermals; it can run much, much hotter than the watch before overheating. This is mainly
because it is not designed to be worn, and thus does not need to worry about burning its wearer.
As a result, the Onion can transmit over its 4G link at a high rate without restrictions.

The Onion cannot run a full-featured local application like the watch can, but its ability
to use cellular connectivity without constraints suggests a different control paradigm. Rather
than controlling the drone locally from the watch and only sending frames to the cloudlet to
run computer vision algorithms, the Onion can act as a pure relay, ferrying telemetry and video
packets upstream while delivering command packets downstream. In this system, the watch
application would migrate to the cloudlet and would communicate with the drone over the Onion
(Figure 5.3). This is known as the “thin client” computational paradigm.

This approach has some advantages. First, it theoretically allows the cloudlet to receive
the raw video stream from the drone at full frame rate and relatively low latency (compared
to the watch). Since the Onion does no video decoding, the latency cost paid is simply the
transmission delay from the drone to the Onion over WiFi and from the Onion to the cloudlet
over 4G. Second, the mission application lives on the cloudlet and so it can get computer vision
results with negligible latency.

On the other hand, this setup has significant drawbacks compared to the watch. The Onion
payload is not as robust as the watch payload. It has exposed electronics and requires the use of a
flammable LiPo power pack to use, whereas the watch is a consumer device that is easy to charge
and is fully weatherproofed. Furthermore, since the Onion acts as a pure relay, it is at the mercy
of its cellular connection. It cannot function separately from the cloudlet, while the watch can
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still pilot the drone without computer vision assistance. It also cannot adapt the video stream to
reduced bandwidth by throttling, and must transmit the whole stream to produce usable frames
on the backend.

Despite these problems, the Onion presents an opportunity to establish an upper bound for
SteelEagle’s performance. Where are the current bottlenecks in the system, and how can they be
fixed? What is the best latency and throughput the system can achieve? How agile is the system
at reacting to new stimuli?

5.3 A Framework for Understanding Agility: the OODA Loop

To answer these questions, I introduce the concept of a drone OODA loop. Originally conceived
in the 1950s to characterize man-machine symbiosis in combat aircraft, this concept has since
been extended to many other domains [18, 21, 74]. The components of an OODA loop (“Ob-
serve”, “Orient,” “Decide,” and “Act”) define the stages of any reactive pipeline that involves
a human in the loop. I extend this concept from its cyber-human origins to the cyber-physical
context of an autonomous drone. Viewing an AI pipeline through the lens of an OODA loop
better explains its performance attributes. It can tease apart latency and throughput limitations at
fine granularity, thus enabling bottlenecks to be identified and optimized.

An OODA loop’s attributes directly limit drone agility. As discussed in Section 4.2.2,
throughput limitations may cause closely-spaced real-world events to not be resolvable as sep-
arate events. High end-to-end latency may cause slow reactions and punish mis-predictions.
SteelEagle’s OODA loop includes: (a) on-drone sensing, (b) on-drone pre-processing, (c) trans-
mission to cloudlet, (d) processing on a (possibly multi-tenant) cloudlet, (e) transmission to
drone, (f) on-drone post-processing, and (g) drone actuation. I will profile and optimize these
components through experimentation.

5.4 Profiling & Optimizing the SteelEagle OODA Loop

For the following experiments, I replicate the setup in Section 4.2.2. The drone is kept stationary
in a lab setting and is connected to the cloudlet via the Onion over public cellular. On the
backend, I use an identical spec cloudlet as in Section 4.2: 36 CPU cores, 128 GB of RAM, and
an NVIDIA GeForce GTX 1080 Ti GPU.

5.4.1 Mapping the OODA Loop

Figure 5.4 maps the end-to-end pipeline to OODA loop components. Components (a), (b) and
(c) together map to the “Observe” phase; component (d) maps to its “Orient” and “Decide”
phases; and, components (e), (f) and (g) together map to the “Act” phase. Due to closed-source
restrictions of the COTS pipeline, some OODA loop components have to be aggregated for
purposes of measurement, as shown by Figure 5.5. Total end-to-end latency is given by the sum
of these components; total throughput is that of its bottleneck.
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Figure 5.5: Measurable Components of Our OODA Loop
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Figure 5.6: Observeab Measurements

The earliest point in the pipeline where software instrumentation can be inserted is between
the WiFi and 4G interfaces on the Onion Omega. The WiFi part of this pipeline is thus attributed
to Observeab rather than to Observec. Similarly, on the return path, the WiFi part is attributed to
Actfg rather than to Acte. Only 4G transmission is attributed to Observec and Acte. The resulting
error is likely to be very small since WiFi is much more performant than 4G. I present detailed
measurements in §5.4.2 to §5.4.6.

5.4.2 Observeab
As discussed in Section 3.8, the drone’s video stream generator is a black box that cannot be
modified. This makes attribution of latency costs difficult. It is not possible to insert instrumen-
tation to separate (a) and (b); they merge into an indivisible component.

Figure 5.6 presents my measurements. The latency distribution has a mean of 253 ms, with
a standard deviation of 12 ms and a p99 of 277 ms. Throughput, with network jitter factored in,
has a mean of 31 fps, with a standard deviation of 5 fps and a p1 of 22 fps. Due to pipelining,
throughput can be higher than the reciprocal of latency. The short WiFi Observeab segment is
partly responsible for this observed variation.

5.4.3 Observec
The wireless network path from drone to cloudlet consists of a very short WiFi segment, transit
through the Onion router carried as payload, and then a longer 4G LTE segment to the cloudlet.
Figure 5.7 presents the latency and throughput distributions of Observec. Its latency has a mean
of 39 ms, with a standard deviation of 8 ms and a p99 of 60 ms. Instantaneous throughput has
a mean of 16.3 Mbps, with a standard deviation of 1 Mbps and a p1 of 14.4 Mbps. Since 720p
video at 30 fps only demands an average bit rate of about 6.5 Mbps [1], Observec is definitely
not the bottleneck.
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Figure 5.7: Observec Measurements

5.4.4 Orient+Decided
Processing on the cloudlet involves three stages:

• Stage-1: Decoding the UDP packet stream to produce individual frames from H.264 video.
• Stage-2: Application-specific processing of each frame to interpret its contents. For ex-

ample, this could involve DNN inferencing with a pre-trained model to detect objects of
interest currently visible to the drone.

• Stage-3: Application-specific logic to determine salient changes revealed by Stage-2. This
early part of Stage-3, together with Stage-1 and Stage-2, constitute the “Orient” part of
the OODA loop. The rest of Stage-3 is the “Decide” part. Drone actuation (if any) is
determined, and the command to perform this actuation is generated. For example, Stage-
2 may show that an object being tracked has moved and the gimbal has to be adjusted to
re-center the object in the camera’s field of view (FOV).

Stage-2 can be viewed as perception and Stage-3 as cognition. The latency and throughput of
Stage-1 constrain the performance of Orient+Decided since decoding has to be performed even
if Stage-2 and Stage-3 take a negligible amount of time.

Figure 5.8 presents my measurements of Stage-1. The magnitude of the latency, with a mean
of 541 m, is surprising. The cloudlet has 36 CPU cores and a powerful GPU whcih should
be ample for efficient software decoding of an H.264 video stream, as confirmed by the mean
throughput of 62 fps shown in Figure 5.8(b). The high latency observed has no obvious explana-
tion, but it has a large negative impact on the OODA pipeline.

To verify the latency impact of cloudlet hardware on Stage-1, I additionally measured its
performance on two different AWS VM configurations. One configuration, “AWS Small,” is a
g4dn.xlarge EC2 VM with 4 vCPUs, 16 GiB of memory and an NVIDIA T4 GPU. The
other configuration, “AWS Big,” is a g4dn.16xlarge EC2 VM with 64 vCPUs, 256 GiB
main memory, and an NVIDIA T4 GPU. Figure 5.1 presents the results. Astonishingly, the best
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Figure 5.8: Original FFmpeg-based Stage-1 Performance

Hardware vCPUs Memory Mean p99
(GB) (ms) (ms)

Cloudlet 72 128 541 ±22 620
AWS Big 64 256 532 ±13 561

AWS Small 4 16 140 ±16 194

Table 5.1: Stage-1 Latency versus Cloudlet Hardware

performance is obtained on the configuration with the fewest cores (AWS Small). Drilling down
deeper into this anomaly, the widely-used open source ffmpeg video decoding software is the
culprit. Figure 5.9 shows how ffmpeg per-frame decoding time varies as a function of number
of threads used. As the figure shows, ffmpeg demonstrates negative latency scale-out attributes
— adding more threads makes latency worse. I posit that this suboptimal behavior has not been
reported before because ffmpeg has not been widely used in latency-critical settings.

By switching to different decoding software [100] tailored for the drone stream, I was able to
reduce the latency from a mean of 541 ms in Figure 5.8(a) to a mean of 32 ms in Figure 5.10(a).
This has been achieved with a mean throughput of 37 fps (Figure 5.10(b)), which is well above
the demand of 31 fps from Observeab. Assuming negligible processing in Stage-2 and Stage-3,
Figure 5.10 shows the best-case latency and throughput of Orient+Decided.

5.4.5 Acte

Figure 5.11 presents my measurements of the wireless network path from cloudlet to drone.
The latency has a mean of 30 ms, with a standard deviation of 4 ms and a p99 of 49 ms. The
throughput has a mean of 28 Mbps, with a standard deviation of 3.7 Mbps and a p1 of 19 Mbps.
Since no video is transmitted back to the drone, Acte is not a bottleneck.
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Figure 5.9: Negative Scale-out of FFmpeg Latency
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Figure 5.10: Improved Performance With FFmpeg Alternative
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Figure 5.11: Acte Measurements

Run Latency (ms)
1 188
2 170
3 162
4 189
5 155

Mean 173 ±15

Table 5.2: Actfg Latency

5.4.6 Actfg
Black box hardware and software on the drone seamlessly integrate components (f) and (g).
All that is externally visible is a set of commands that are accessible via the drone’s SDK. The
processing of a command and initiation of actuation are integrated into Actfg in Figure 5.5. In this
context, latency corresponds to the time difference between the receipt of an actuation command
by the drone, and the start of actuation. To measure this difference, I position the stationary drone
in front of a display connected to the cloudlet, similar to the setup in Section 4.2.2. The display
shows the current timestamp in milliseconds. I send a command to the drone to move its camera
gimbal, while recording the display and gimbal using a slow-motion video camera. In post-
processing, I manually identify the timestamp of the command and that of the first video frame
showing gimbal movement. Actfg latency is the difference between these two timestamps. The
slow-motion camera operates at 240 fps, resulting in a frame interval of ˜4 ms. The measurement
has an error margin of ˜5 frames, translating to experimental error of ˜20 ms.

Figure 5.2 presents my measurements. The latency distribution has a mean of 173 ms, with
a standard deviation of 15 ms. Electromechanical actuation is far slower than processing or net-
work transmission. The experiments do not involve back-to-back actuations without intervening
sensing or processing. Hence, throughput is best interpreted as the reciprocal of latency.
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negligible application-specific processing. For the electromechanical actuation represented by
component Actfg, the reciprocal of its latency is used as its throughput.

Figure 5.12: OODA Loop Latency & Throughput

5.5 The Full OODA Loop
Using the same notation as Figure 5.5, a visual summary of the measurements reported in §5.4.2
to §5.4.6 is shown in Figure 5.12. This captures the best-case OODA loop, where no time is
spent in Stage-2 and Stage-3 of Orient+Decided. In practice, it is those stages that perform
the processing for drone autonomy such as object detection, object tracking, Kalman filtering,
and route planning. They also do the processing to generate the commands for drone actua-
tion such as gimbal movement, flight path alteration, or altitude change. The height and width
of the resulting Orient+Decided component in Figure 5.12 would need to be scaled to include
such application-specific processing. In some cases, that component may dominate the entire
OODA loop.

In a typical application, many iterations of the OODA loop may involve no actuation, thus
eliminating Acte and Actfg. For example, consider a target that is moving in a straight line at
constant speed. Successive OODA loops of a drone that is following that target only need to
confirm that it remains centered in the FOV. Only abrupt change of motion by the target will
stress the OODA loop. Fast reaction is then needed to discover that the target is off-center, and
to actuate the gimbal or drone to re-center it before it is lost from the FOV. Figure 5.12 shows that
the latency and throughput of Observeab are the limiting constraint in uneventful settings. It is
thus the inherent attributes of the drone, rather than network bandwidth or the cloudlet processing
power, that limit this system.
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Chapter 6

Benchmarking the SteelEagle Pipeline

While the OODA loop provides a broad understanding of drone reaction time, it does little
to measure agility in real-world flight operations. In practice, it is performance on the latter
that actually matters. Unfortunately, measuring this performance is difficult because there is no
existing metric that defines the units in which to express an answer.

Agility is a complex emergent cyber-physical property that depends both on cyber properties
such as latency, throughput, and accuracy of the OODA loop, as well as physical properties
such as the drone’s size, weight, thrust, lift, drag and moment of inertia. Under benign condi-
tions, a non-agile drone may do as well as an agile one. Only under adversarial conditions does
agility become valuable. The cost to achieve this agility may include increased size, weight, and
bandwidth/latency demand arising from the need to be faster and more accurate in sensing and
actuation. The only way to quantify this complex property is to stress a drone on a precisely-
defined task in a reproducible environment, and to use task-level metrics as surrogates for agility.
This leads directly to the creation of benchmarks for evaluating autonomous drone agility.

In this chapter, I define two agility benchmarks for measuring drone agility. The first bench-
mark embodies tracking of an object that moves in an unpredictable manner, with many abrupt
changes. The adversarial aspect of this benchmark lies in the existence of an active mobile agent
that randomly changes its trajectory. The second benchmark embodies obstacle avoidance in
tight spaces. The adversarial aspect of this benchmark lies in the close proximity of obstacles,
the need to sense them in real time (e.g., to account for wind effects), and occlusion that pre-
vents full foreknowledge of the optimal flight path. Both benchmarks are parameterized, thereby
enabling many levels of difficulty within a common benchmark framework. In Section 6.1, I
discuss previous work related to real drone flight benchmarking in reactive scenarios, and how
my work improves upon it. In Section 6.4-6.6, I outline my benchmarks for object tracking and
obstacle avoidance respectively and the results from my experiments using them.

6.1 Prior Work on Drone Benchmarks

There have been many efforts in the computer vision and machine learning community to create
benchmarks for comparing drone performance on specific tasks. These focus exclusively on the
accuracy of algorithms such as drone-based object tracking and face recognition, ignoring system
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attributes such as agility and end-to-end processing latency. Du et al [44], Li et al [80], Kalra et
al [76], and Zhao et al [134] are examples of this genre.

Many drone benchmarks do measure agility but involve only simulated tests. MAVBench [20]
is one popular example. It consists of a closed-loop simulator and end-to-end application bench-
mark suite of five workloads pertaining to scanning, aerial photography, package delivery, 3D
Mapping, and Search and Rescue. These workloads lack customization options, and often repre-
sent a specific simulated scenario which can only give limited perspective on real performance.
Another simulation-based benchmark, FlightBench [129], has agility workloads which provide
several levels of difficulty. However, this difficulty is determined arbitrarily by the authors and
the obstacle courses are too complex to practically replicate outside of the simulator. Addi-
tionally, simulations typically do not fully capture real flight performance, where sensors can
experience noise which can influence actuation.

There are live flight drone benchmarks that measure agility, but they are not as common. One
example is the disturbance benchmark proposed by Wu et al [126] which uses an indoor course
along with a fan to emulate obstacle avoidance in windy conditions. The course is fixed and
does not provide guidance for replicating the described experiments. For this reason, while it is
useful for evaluating the paper’s proposed trajectory planner, it is not as useful for measuring the
performance differences between different avoidance methods.

Koubaa et al [77] describe an experimental study that compares on-board drone processing
versus offloading to the cloud. The metrics of interest in their work are energy cost, bandwidth
demand, and timeliness of results. The last of these metrics is closest to our focus on the agility
of drones. However, the experiments described do not include drone actuation in response to
real-time observations. They are purely open loop experiments, with timeliness to cloud users
being the metric of interest. Further, this work only provides micro-benchmarks to evaluate these
metrics. There are no end-to-end benchmarks that include the full OODA pipeline of sensing,
processing and drone actuation.

Beyond these experimental efforts is a vast body of published literature on analytical or
simulation-based evaluations of algorithms for specific drone tasks. Examples include the work
of Chen et al [27], Hayat et al [64], Wang et al [122], and Wu et al [125]. These studies abstract
away the physical drone, relying instead on hypothetical cost models of processing and commu-
nication. AdaDrone [26] is a slightly more realistic approach that leverages a drone simulator.
None of these efforts use real drones, with their intrinsic limitations of weight and maneuver-
ability. In contrast to these prior works, I focus on providing parameterized and reproducible
benchmarking of drones in actual flight.

6.2 Visual Object Tracking Benchmark
In visual object tracking, a drone follows a moving target and tries to keep it centered in its FOV.
Many surveillance-related instances of this task, where the target may be adversarial and actively
try to escape tracking, occur in law enforcement and military settings. The task is also relevant
to wildlife conservation research, where an animal of an endangered species is identified and
followed in the wild. It is also used in filmmaking to capture evolving scenes. In such use cases,
using an autonomous drone for tracking could reduce attention demand on mission personnel.
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6.2.1 Benchmark Requirements
A good benchmark for a task must capture the essential characteristics of successful completion.
The size and visual appearance of a target plays an important role in tracking success. An object
that is just a few pixels in size from the altitude of the drone will be inherently difficult to
detect [69]. Poor contrast with the background, as happens when camouflaged, also contributes
to poor detection. Objects that are hard to detect are also hard to track, since actuating to re-
center the target in each frame is key to success. The object being tracked and the background
on which it moves both need to be specified. Only when these factors and drone optics are held
constant will OODA loop performance come to the fore in determining tracking performance.

The benchmark should also be parameterized, so that it is easy to vary the difficulty of the
benchmark. The benchmark should only use standardized, off-the-shelf components that can
be easily purchased or fabricated. There should be no ambiguity in the experimental setup or
interpretation of results, thereby simplifying independent attempts to reproduce published exper-
imental results.

6.2.2 Benchmark Description
The object followed in my tracking benchmark is a DJI Robomaster S1 robot [40] as in Sec-
tion 4.2.5. Tracking is done on a level, green background such as a football field. For this
combination of target and background, DNN-based object detection from an altitude of 10 m is
successful at a confidence level of 0.9 or higher on frames from my drone’s video camera.

My benchmark is a random walk with turns in a randomly-chosen cardinal direction at each
step. Figure 6.1(a) shows one example with 5 steps, and Figure 6.1(b) shows other examples
with more steps. The benchmark has three parameters: the number of steps; the mean length of
each step; and the target speed of 1.5 m/s, 2.5 m/s, or 3.5 m/s. The benchmark could be made
more complex by making the turns to be at any angle rather than just cardinal directions, and by
making step size and target speed non-uniform. All my experiments were conducted across the
full range of speeds, using a stepcount of 35 steps and stepsize set to 5 m.

To execute the benchmark, the target is placed in a large open outdoor area. The drone is
manually piloted to the desired altitude, and its FOV is adjusted to center the target. Once the
drone has locked onto its target, the target is instructed to start its pre-programmed random walk
and a timekeeper starts a stopwatch. The experiment continues until one minute has elapsed or
the drone loses the target from its FOV. The termination time and the black box footage of the
flight are logged for post-flight scoring (§6.2.3).

6.2.3 Benchmark Scoring
In post-processing after a flight, I score the recorded video footage using an automated process.
Figures 6.2 to 6.4 show the scoring calculation, using Figure 6.5 as an example. On each frame,
a DNN is first used to create a bounding box around the target. With the center of the frame
as the origin, the relative distance of the target from the origin is obtained. Using the notation
shown in Figure 6.2, the pixel offset vector, O⃗, gives the L2 distance of the target’s centroid from
the origin. This is scaled to the diagonal length of the bounding box, D⃗, to give the centering
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(a) Detail for 5-Step Example (b) Other Examples

Figure 6.1: Parameterized Random Walk

Figure 6.2: O⃗ & D⃗

ci =
∥∥∥O⃗i

∥∥∥ / ∥∥∥D⃗i

∥∥∥ (6.1)

si = 1.1−ci (6.2)

savg =
Σn
i si
n

(6.3)

Figure 6.3: Calculating Score∥∥∥O⃗∥∥∥ = 0.11,
∥∥∥D⃗∥∥∥ = 0.03, c = 3.67

s10 = 1.1−c = 0.70
s20 = 1.2−c = 0.51
s30 = 1.3−c = 0.38

Figure 6.4: Scoring Figure 6.5
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Figure 6.5: Example Frame for Scoring

Model Latency Throughput mAP
(ms) (fps)

YOLOv5s 28 25 56.8
YOLOv5m 37 20 64.1
YOLOv5l 42 20 67.3

The inference and throughput were obtained on the cloudlet (§5.4.4). The mean average precision (mAP)
is from the YOLO documentation [128].

Table 6.1: YOLOv5 Performance in the SteelEagle Pipeline

ratio ci (formula 6.1). I then calculate the score of the frame, si, by using an inverse exponential,
as shown in formula 6.2. The rationale for using an exponential is to super-linearly penalize
distance from origin. I use a compounding 10% penalty in reporting my results, leading to the
value of 1.1 in formula 6.2. Using sn to denote a penalty of n%, Figure 6.4 shows the scores for
penalties of 10%, 20% and 30% for the example frame in Figure 6.5. A score of zero is awarded
when the frame does not contain the target at all, or if the target is too small to be detected in
post-processing by a specified model. In my case, this model is YOLOv5x trained on aerial
images of the target. This scoring is meant to award high scores to targets that are centered in
frame but take up most of the frame real estate.

From the per-frame scores, the entire flight is scored by simple averaging (formula 6.3). The
overall score, savg, lies between 0 and 1, with higher being better. For example, an average score
of 0.70 based on s10 is achieved when the drone is able to keep the target within about three
normalized lengths of the center of the FOV for the entire duration of the flight.
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6.2.4 Tracking Algorithm

For this benchmark, I use the tracking algorithm used described in Section 4.2.5. Figure 6.1
shows the latency, throughput and accuracy of the three DNN models that are used for tracking in
my system, each trained on the Robomaster target. Even using the slowest of these as Stage-2 of
Orient+Decided only adds 42 milliseconds of latency to the base value of 527 ms (Figure 5.12).
Its throughput of 20 fps is well above that of the bottleneck (Actfg). However, there may be
situations where load on a multi-tenant cloudlet may need to be reduced, and the smaller models
may be valuable for that purpose.

6.2.5 Experimental Setup

I use the Onion-based architecture discussed in Section 5.2 and shown in Figure 5.3. I also
use the same cloudlet as in Section 5.4, with 36 CPU cores, 128 GB of RAM, and an NVIDIA
GeForce GTX 1080 Ti GPU. For the underlying drone hardware, I use a different version of the
Parrot Anafi, the Anafi USA. This variant is slightly larger and heavier (550 g vs. 360 g), but
maintains the same SDK and flight control structure. Its larger size allows it to carry the Onion
Omega payload for longer without battery swaps.

6.3 Visual Object Tracking: Results

The basic question I ask about tracking is as follows:
• How well does my platform follow a target that makes random, rapid changes in direction?

As Figure 6.6 shows, my platform is able to track the target on my benchmark even at the fastest
speed (3.5 m/s) without ever completely losing it. However, as the scores show, the target is
off-center in some frames at all speeds. As target speed decreases, the score achieved shows a
modest improvement. The results shown here are based on the best model for each speed. This
dependence is explored further in §6.3.1.

Since humans are the standard against which AI systems are measured, I ask how a human
pilot does under identical conditions. To explore this, I manually pilot the drone through the
benchmark for the same parameters. I am an experienced pilot on the Parrot Anafi platform with
over a dozen hours of flight time. The OODA loop is now cyber-human: I uses the drone’s
live video stream to manually fly it. Figure 6.7 shows how well I scored on the benchmark.
Comparing Figures 6.6 and 6.7, the autonomous drone and I are comparable at 1.5 m/s, but at
higher speeds the autonomous drone outperforms me. I cannot actuate fast enough to keep up
with the rapidly shifting target.

6.3.1 Impact of Model Accuracy

Since multiple DNN models are available to use in tracking (Figure 6.1), I ask the following
question:

• Does the use of a better model improve tracking?
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Figure 6.8: Impact of YOLO Model on Tracking Benchmark
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Figure 6.8 presents my results. For any given speed, there is little difference across models.
The increased cloudlet load of a more accurate model does not pay off. However, it should be
noted that this observation may only be true for this specific tracking benchmark. As described
in §6.2.2, the benchmark is defined as being conducted in an open area free of clutter. If I were
to create a different tracking benchmark that embodies extensive clutter (such as that of a busy
street filled with moving cars, bicycles, and pedestrians, along with static objects such as parked
cars and trees), the results may be quite different. In that case, the improved accuracy of the
larger models may prove decisive. The creation of such a benchmark could be a subject of future
work.

6.3.2 Impact of Latency & Throughput
As in the case of obstacle avoidance (§6.5.2), I ask:

• What is the impact of latency or throughput degradation of the OODA loop on benchmark
score?

Figure 6.9(a) shows what happens when additional latency of 250 ms and 500 ms are added
to the OODA loop. For all target speeds and models, there is a noticeable drop in benchmark
score. The drop is worse at higher speeds. This is directly attributable to the inability of the more
sluggish OODA loop to keep the target centered in the FOV. At higher speeds, the drone often
loses sight of the target early in the tracking. This results in a zero score for the remaining frames
of that experiment, and hence an overall low average score.

Figure 6.9(b) shows the same trend when OODA loop throughput is artificially throttled to
3 fps or 1 fps. At all target speeds and for all models, there is a noticeable drop in benchmark
score. This drop is greater at higher speeds.

The results in Figures 6.9(a) and (b) confirm that both end-to-end latency and bottleneck
throughput are important independent factors in determining tracking ability. Optimizing one at
the cost of the other, as occurs when using strategies such as batching of operations, is unlikely
to be beneficial.

6.4 Obstacle Avoidance Benchmark
Obstacle avoidance is vital for drone flights at low altitude (up to a few hundred feet) in urban
or forested settings. Otherwise, being restricted to only high altitude flight impairs visual detec-
tions and hides many details. The most dangerous obstacles are typically trees, lightposts, and
telephone poles, which can easily reach altitudes usually used by drones. Being relatively thin,
they are difficult to detect from afar.

Efficient avoidance of such obstacles is a challenge. Since drone flight is limited by battery
life (typically on the order of 30-50 minutes), bypassing obstacles without wasting too much
flight time is important. If flight is too slow or avoidance maneuvers are too convoluted, mission
performance will be impaired. At the same time, reckless flight could be catastrophic. Striking
the right balance between safety and speed for the given flight conditions is essential. Since
effective but rapid avoidance of obstacles is a valuable capability in a drone, this task is a good
candidate for an agility benchmark.
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Figure 6.9: Impact of Latency and Throughput on Tracking
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Figure 6.10: Obstacle Course Layout

6.4.1 Benchmark Requirements

The benchmark requirements for avoidance are similar to those described for tracking (§6.2.1).
Parameterization that controls the difficulty of the task is valuable. Use of standardized, off-the-
shelf components and careful attention to reproducibility of results are important. Capturing the
essential difficulty of the task is vital.

6.4.2 Benchmark Description

To emulate tall and skinny obstacles such as lightposts, I use 1.8 m long drone racing flags.
The flags are arranged in a precisely-defined slalom pattern (Figure 6.10), that forces a drone
to sequentially evade several obstacles. The difficulty of the course is controlled by a spacing
parameter, w, that determines the separation of the flags along both the azimuth and range axes.
A smaller value of w defines a more difficult course because of higher density of obstacles in both
directions. All my experiments were conducted with 4 tiers of obstacles. Adding more tiers to
make the obstacle course longer, while preserving obstacle spacing, would add further difficulty
to the course. The drone’s goal is to navigate the course as fast as possible, without touching the
flags or striking a flagpole. The metric of interest is the transit time through the course.

To execute this benchmark, the obstacle course is set up as in Figure 6.10. The drone is
placed on a pad that is centered 4 m in front of the leading line of flags. A human spotter stands
a safe distance behind the drone, and a human timekeeper is positioned along the finish line. The
remote pilot-in-command (RPIC) continuously monitors the video stream from the drone, and
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Model Latency (ms) Throughput (fps)
MiDaS Small 61 10
DPT Hybrid 105 8
DPT Large 132 7

These numbers were obtained on the cloudlet described in §5.4.4

Table 6.2: Inference Speeds of MiDaS DNN Models

stands ready to wrest back manual control if the drone’s autonomous flight software appears to
be getting it into trouble. Such a manually aborted flight is scored as “Did Not Finish (DNF).” A
flight in which the drone touches a flag or pole is also scored as DNF.

The drone takes off and then hovers at an altitude of 1 m. It is then directed to autonomously
move to a destination beyond the obstacle course. When forward motion begins, the spotter
visually signals the timekeeper to start a stopwatch. The spotter then follows the drone through
the course, warning the RPIC of imminent collision, if any. Such a warning aborts the experiment
without damage to the drone. On a successful flight, timing is stopped as soon as the trailing end
of the drone crosses the finish line. We deem an obstacle spacing, w, as viable if the drone
successfully flies through the course on at least 80% of its attempts. The average time of these
successful flights at the smallest viable w is the figure of merit. For small values of w, a more
agile drone can fly more aggressively and therefore requires less time to complete the benchmark.
However, at higher values of w, agility may not be important because the obstacle course easier.

6.4.3 Benchmark Scoring

The average time, tavg, for multiple experimental runs at the lowest viable w is a raw measure
of agility. However, this needs to be normalized with respect to attributes other than agility. For
example, a drone whose top speed is low relative to other drones may be penalized unfairly when
measuring agility. A low value of tavg in that case is not due to a poor OODA loop, but simply
reflects the “brute force” attribute of top speed. The normalization is performed by removing
flags from the course and conducting a control experiment at top speed. We denote the average
time for multiple runs of the control experiment as tmin. The score, Sw, is then given by:

Sw =
tmin

tavg
(6.4)

Scores for this benchmark thus lie in the interval 0 < Sw ≤ 1 where Sw = 1 is the best possible
score. A score of 0 is awarded when a drone cannot achieve a successful completion rate of at
least 80% of the runs for the given value of w.

6.4.4 Depth Sensing

I use the same MiDaS-based avoidance algorithm described in Section 4.2.7. For this task, the
OODA loop determines the speed and accuracy with which the drone can acquire fresh frames,
execute the MiDaS algorithm on them, calculate new headings for safety, and perform actuations
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(a) Raw Input (b) Output of MiDaS

Figure 6.11: MiDaS Running on the Benchmark Course

towards those headings. In the context of §5.4.4, MiDaS represents Stage-2 of cloudlet process-
ing. Stage-3 is the processing of MiDaS output to determine a new heading, and generating the
actuation command. Figure 6.11 shows the algorithm running on a setup benchmark course.

I explore three DNN variants of MiDaS that vary in accuracy and speed: MiDaS Small, DPT
Hybrid, and DPT Large. MiDaS Small prioritizes throughput and inference latency at the cost
of lower accuracy. DPT Hybrid strikes a compromise between speed and accuracy. DPT Large
prioritizes accuracy above all else. Figure 6.2 shows the inference latency and throughput of
these three models on my cloudlet. I explore the use of all three in my experiments.

6.4.5 Experimental Setup

The experimental setup for this benchmark is identical to that in Section 6.2.5.

6.5 Obstacle Avoidance: Results
The most basic questions in my evaluation are as follows:

• What is the smallest value of w for which the drone can successfully complete the bench-
mark?

• At that w, how fast is benchmark completion?
• As w is increased, how much faster is the drone able to complete the benchmark?
Initial experiments showed that 2 m is the smallest value of w that meets my criterion for

successful benchmark completion (i.e., at least 80% of the flights are successful). Using the
scoring criterion described in §6.4.3, Figure 6.12 shows how well the drone did for w set to
2 m, 2.5 m, and 3.0 m. The results shown are the mean of 5 runs of each experiment. For each
value of w, the drone results were obtained with the choice of MiDaS model that gave the best
results. These choices were DPT Large for w =2 m, and MiDaS Small for w = 2.5 m and
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Figure 6.12: Baseline Scores

Human Pilot
0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

0.46 0.51

0.76

2m 2.5m 3m

Figure 6.13: Human Pilot

w = 3 m. The scores of 0.13 to 0.2 show that the drone suffers almost an order of magnitude
slowdown when avoiding obstacles, relative to its unimpeded traversal of the course. This is the
price of having to execute the OODA loop shown in Figure 5.12, with the additional Stage-2 and
Stage-3 processing for depth estimation described in §6.4.4. As w is increased from 2 m to 3 m,
Figure 6.12 shows the score improving from 0.13 to 0.2. This confirms my expectation that less
challenging courses are faster to traverse.

As in the case of obstacle avoidance, I ask how well an experienced human pilot performs
under identical conditions. To explore this, I again piloted the drone through the benchmark. Of
course, a human also has foreknowledge of the obstacle course and can subconsciously leverage
that knowledge in planning the drone’s flight. In contrast, the autonomous drone is purely reac-
tive — what it sees right now is all that it knows. This is a limitation of the benchmark, since it
cannot tease apart the effects of agility versus better path planning.

Figure 6.13 presents my results. Relative to unimpeded traversal of the course, the scores of
0.76 to 0.46 show that even I suffer a slowdown. However, the slowdown is much smaller than
that suffered by the autonomous drone in Figure 6.12. Clearly, when it comes to avoidance, my
drone system is not yet as good as a human pilot. This is in contrast to tracking (Figures 6.6 and
6.7), where the human was bested by the autonomous drone. I conjecture that at least part of
this difference is attributable to the fact that the obstacle course is static, and hence subconscious
pre-planning by the human helps in navigating it. In contrast, the human is no better than the
drone in anticipating random turns made by the target. At higher speeds, raw reaction speed (i.e.,
the OODA loop) is all that matters, and the autonomous drone proves to be better in this regard.

6.5.1 Impact of Model Accuracy
The availability of the different MiDaS models shown in Table 6.2 leads to the question:

• Is accuracy or speed more important?
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Figure 6.14: Impact of MiDaS Model on Avoidance Benchmark

My experiments indicate that there is no simple answer to this question. The results in Fig-
ure 6.12 were obtained using the best MiDaS model for each value of w. MiDaS Small performs
the best on the 3 m course but worst on the 2 m course. DPT Large is the inverse, performing
best on the 2 m course and worst on the 3 m course. DPT Hybrid stays consistently in the middle
for all three courses. The fact that different models had to be used in each case to obtain the best
results indicates that there is no single “best” model.

I conducted a set of experiments to better understand this tradeoff space. The results in
Figure 6.14 show the score achieved on the benchmark for each model and value of w. Since
MiDaS Small focuses on throughput and low latency over accuracy, a drone that uses it is able to
sustain a higher maximum speed than one using DPT Large. At w =3 m, the course is sufficiently
easy that the increased risk of collision is small. The higher accuracy of a better model is not
useful. However, at w =2 m, the increased likelihood of collisions makes higher model accuracy
worthwhile. Now, DPT Large attains the highest score. For a tight course, it is difficult to travel
at high speed without collisions. Hence, a model that can navigate the gaps better gets a higher
score.

6.5.2 Impact of Latency & Throughput
The results presented so far reflect best-case conditions. In practice, the wireless network or the
cloudlet may suffer degradation due to multi-tenancy. This leads to the question:

• What is the impact of latency or throughput degradation of the OODA loop on benchmark
score?

The baseline scores reflect what is achievable with an OODA loop whose latency is the sum of
three components:

80



2m
(DPT Large)

2.5m
(MiDaS Small)

3m
(MiDaS Small)

0.00

0.05

0.10

0.15

0.20

0.25
S

co
re

0.13 0.13

0.20

0.07 0.07
0.09

0.00

0.06 0.07

Base +250ms +500ms

(a) Additional Latency

2m
(DPT Large)

2.5m
(MiDaS Small)

3m
(MiDaS Small)

0.00

0.05

0.10

0.15

0.20

0.25

S
co

re

0.13 0.13

0.20

0.06
0.08

0.11

0.00

0.08
0.10

Base 3 fps 1 fps

(b) Reduced Throughput

Figure 6.15: Impact of Latency and Throughput on Avoidance
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Architecture Efficiency (GFLOP / J)
CPU (Core i7) 1.14
FPGA (Xilinx LX760) 3.62
GPU (NVIDIA GTX285) 6.78
GPU (AMD R5870) 9.87
ASIC 50.73

Source: Table 4 in Chung et al [29]

Figure 6.16: Matrix Multiplication Kernel Implementations

• a lower bound of 527 ms (Figure 5.12).
• the latency of the relevant MiDaS model (Table 6.2).
• a small additional overhead (<1 ms) for Stage-3 processing in the Decide part of the

OODA loop.
This total end-to-end latency is on the order of 600–650 ms. For OODA loop iterations

that involve drone actuation, the bottleneck throughput is the smaller of 6 fps for Actfg (§5.4.6)
and the throughput of the MiDaS model (Table 6.2). This is effectively 6 fps, regardless of
model. If no drone actuation is involved, the bottleneck throughput becomes that of the MiDaS
model. Since even MiDaS Small has lower throughput than Observeab, Observec, or best-case
Orient+Decided, throughput is always in the 6–10 fps range.

Figure 6.15(a) shows how benchmark score drops as latency is artificially added to the
OODA loop. Even 250 ms of additional latency (i.e., a roughly 35–40% increase from base-
line) causes benchmark score to drop to nearly half its baseline value, for all values of w and
regardless of MiDaS model. If 500 ms of latency is added, the score drops further. For the most
challenging course (w = 2 m), the score drops to zero because not even 80% of the flights are suc-
cessful. These results are consistent with a long-standing design principle of deeply-immersive
closed-loop interactive systems: increased latency is deadly, even if throughput remains good.

Figure 6.15(b) shows how benchmark score drops as the throughput of the OODA loop is
artificially reduced from its baseline value. Reducing throughput to 3 fps causes benchmark score
to drop to nearly 40–50% of its baseline value. A further drop is observed when throughput is
reduced to 1 fps. For w = 2 m, the benchmark score drops to zero. These results confirm that
latency is not the sole determinant of task performance in an OODA loop — throughput also
matters.

6.6 Value of On-board Drone Intelligence

Edge computing allows use of compute resources that are far larger and heavier than could be
carried by an ultralight drone. In the context of AI, this translates to generality and versatility.
Purely through software development on the cloudlet, it is easy to re-purpose the drone for new
tasks that were not anticipated earlier.

The drone marketplace, however, is moving in the opposite direction. Drone vendors are
constantly identifying specific new functionality to add to drones. There is a well-understood
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Figure 6.17: On-Board Obstacle Avoidance

tradeoff between generality, energy-efficiency, development cost, and weight/size that applies in
this context. As Figure 6.16 from Chung et al [29] shows, an ASIC is by far the most energy
efficient alternative for a given functionality. It is also likely to have the lowest weight. But, it
takes much longer to develop, is much more expensive to create than pure software, and only
provides fixed functionality.

To quantify the value of on-board intelligence, I re-ran my obstacle avoidance benchmark
using a DJI Mini 4 Pro drone, seen in Figure 2.2. This consumer photography drone weighs
249 g, and is equipped with 6 stereo cameras and an onboard obstacle avoidance system. It
has two modes, Normal and Nifty. Normal prioritizes safe flight while Nifty attempts to pass
obstacles as quickly as possible. The obstacle avoidance feature of this drone is intended as a
form of “pilot assist.” The RPIC flies the drone without worrying about obstacles. The drone’s
builtin capability performs all the necessary sensing and actuation needed to avoid collisions.

Figure 6.17 presents the scores obtained by the DJI Mini 4 Pro on my obstacle avoidance
benchmark. The baseline results for my platform from Figure 6.12 are also shown for compar-
ison. For all values of w, the DJI Mini 4 Pro is at a clear advantage. This the direct result of
additional sensors and a much faster OODA loop that avoids edge offload.

These results suggest that even when using edge offload, there is very clear value in taking
advantage of on-board capabilities when they are available. The “pilot assist” approach to obsta-
cle avoidance implemented by the DJI Mini 4 Pro could equally well be used by cloudlet-based
software to control the drone’s flight path. Only the macro components of that flight path would
incur the overhead of the OODA loop from drone to cloudlet. The micro components of the
flight path that maneuver the drone around obstacles would only be subject to its much tighter
on-board OODA loop.

Complementing on-board fixed functionality with edge offload provides extensibility and
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versatility. The DJI Mini 4 Pro, for example, is unable to do general-purpose object detection
even though it can detect people and vehicles. It cannot detect the Robomaster target, and is
hence unable to execute my tracking benchmark. Edge offload could remedy that limitation,
thereby increasing the versatility of the drone.

6.7 Summary
The parameterizable agility benchmarks presented in this chapter are the first reproducible method
to compare autonomous drone performance in real flight. SteelEagle’s scores, especially on the
avoidance benchmark, show that there is vast room for improvement in the platform OODA loop.
However, its good performance on tracking demonstrates the usefulness of the platform, outper-
forming the human pilot analog. The success of the DJI Mini 4 Pro on avoidance further suggests
that onboard compute cannot be entirely ignored; for some tasks, it bests an edge computing ap-
proach. This motivates a system evolution of SteelEagle, which can not only adapt to varied
drone hardware but also use available resources to its advantage. In the next chapter, I create a
design sketch of such a system, and explore how to make it truly drone agnostic.
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Chapter 7

Drone Agnostic Flight Operations

Portability is one of the many absent features of fully-autonomous drones today (§2.3). Most
consumer drone manufacturers lock their products in to a closed-source, proprietary SDK which
cannot be used on other platforms. This is an economic decision; drone companies make profits
by selling drone hardware, and so there is little incentive to build companion software which
could also be used with competing aircraft.

From its inception, SteelEagle was positioned as a drone agnostic system, able to support
many different classes of drone hardware. Theoretically, this could allow users to press disparate
drones into service to fulfill demand, or operate heterogeneous drone swarms using aircraft with
complementary capabilities. Thus far, I have only demonstrated the system on the Parrot Anafi
and the Parrot Anafi USA, which share the same control paradigm.

In this chapter, I show how SteelEagle can adapt to different drone hardware. In Section 7.1,
I discuss how disparate platforms can be made to work within its ecosystem, and the types of
drone control schemes which can be supported. In Section 7.5, I walk through the process of
integrating a new drone and run it through my benchmark suite (§6.2, §6.4).

7.1 Need for a Hardware-Adaptive Software Architecture

A vital component of SteelEagle is the companion application software which links the edge
with the underlying drone hardware and runs mission logic. For the watch prototype, this was an
Android application running on-device. For the Onion prototype, this was an application running
on the cloudlet that talked to the drone over the network. In both cases, this application served
the same role: relay video and telemetry from the drone to the edge, run missions, and send
commands to the drone using its SDK.

From the perspective of the backend, the companion application, denoted by the “Mission”
label, is abstracted behind the data and control servers. This is clear in both the Onion (Fig-
ure 5.3) and watch (Figure 4.1) architecture diagrams; everything to the right of the data and
control server is identical. There is a shared protocol for sending commands on the control plane
and for receiving data on the data plane but there are no assumptions made about the makeup
of the application. In this way, the companion application represents a kind of drone abstraction
layer that enables the drones it interacts with to plug into SteelEagle.
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Figure 7.1: Drone Control Schemes

The design of this abstraction layer is difficult. Drones not only have different flight proper-
ties, SDKs, and sensors, but also often have divergent control methods, as shown in Figure 7.1.
For instance, some drones may require a radio controller to be connected at all times, even when
autonomous commands are sent by an onboard application. Others necessitate a pilot to take-
off manually before autonomous flight can begin. These safeguards can rarely be circumvented
without serious modification of the drone hardware, a non-starter for a project focused on acces-
sibility and easy portability.

In addition, the current Parrot Anafi prototype with the Onion payload lacks onboard com-
pute, but this is not the case for all drones. Some have stereo cameras and onboard obstacle
avoidance like the Parrot Anafi Ai. A few may even have generalized computation resources like
GPUs which could run lightweight versions of the models on the cloudlet. These drones could
even support disconnected operation.

The only way to reconcile these differences is to design around them. Ideally, the companion
application should be itself highly portable, able to work with many different drones, each using
a completely distinct control model. It should take advantage of onboard compute and support
disconnected operation. All the while, it must maintain a unified interface for the backend,
allowing these drones to gain the benefits of edge-based autonomy.

7.2 The SteelEagle Operating System
To address the above design constraints, it is helpful to view the companion application as the
SteelEagle Operating System. As with other popular operating systems like Linux, the SteelEa-
gle Operating System (SteelEagle OS) must manage varied underlying hardware (drone control
schemes) and run user code (missions). It also has to ensure safe operation via monitoring, inter-
rupts, and permissions. This further motivates separating such an operating system into logical
units like the kernel, userspace, memory, and drivers.
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The SteelEagle OS can live on the cloudlet, on an RC controller, or on an onboard device. This supports
the majority of COTS drone control schemes on the market today.

Figure 7.2: SteelEagle OS Placement for Different Control Schemes

Dashed connections represent external links, as seen in Figure 7.2. All SteelEagle OS modules are
assumed to be collocated. The SteelEagle API (shown as SE API) is described in detail in Section 7.3.

Figure 7.3: Architecture of the SteelEagle OS
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The SteelEagle OS architecture, shown in Figure 7.3, is organized in a hierarchical structure,
with the kernel acting as the command center, and the userspace and drivers using the kernel for
system calls. SteelEagle OS, as illustrated in Figure 7.2, can be configured in one of three modes.
For a thin client drone (Figure 7.2(a)), SteelEagle OS can run on the cloudlet as a proxy with
the drone driver talking to the aircraft over cellular. For a RC controller-dependent drone (Fig-
ure 7.2(b)), SteelEagle OS can run on the RC controller, using native RC to connect to the drone
and cellular to communicate with the cloudlet. For a drone with sufficient compute resources
onboard (Figure 7.2(c)), SteelEagle OS can be deployed onboard, sending commands directly
to the drone autopilot over a wired connection while using an onboard modem to communicate
with the cloudlet.

All communication between SteelEagle OS modules is done via a unified system call API
called the SteelEagle API (shown as the SE API in Figure 7.3) which will be further discussed
in Section 7.3. This is a near-identical structure to other popular operating systems today. Each
driver is designed to interface with one of the pieces of hardware within the overall system. For
example, the drone driver is solely responsible for handling all interactions with the physical
aircraft and autopilot. There are no constraints on how modules are written, only that it follows
the schema of the SteelEagle API. This promotes maximum portability and gives SteelEagle OS
the widest possible compatibility umbrella.

There are three primary data flows within SteelEagle OS: the manual control flow (Sec-
tion 7.2.1), the autonomous control flow (Section 7.2.2), and the computation flow (Section 7.2.3).
I will step through each flow to show how modules interact with each other.

7.2.1 Manual Control Flow
The manual control flow is responsible for giving a remote commander manual control over a
drone in case of emergency or in case human assistance is needed. When a commander requests
manual control of a drone, a control message is sent from the commander client through the
backend over the control server to the SteelEagle OS instance, where it arrives in the kernel
module. The kernel is responsible for maintaining this link, and if this link is over the air, its
reliability is directly tied to the reliability of the underlying network.

Once the manual control request arrives at the kernel, it immediately revokes actuation per-
mission from the userspace and prepares for further instructions. Actuation permission gives a
module authority to control the drone. The kernel is the only module that always has this per-
mission and it decides when to grant or revoke it for other modules. Any actuation requests
received from non-permitted sources are ignored. In this case, if actuation requests arrive from
the backend, they are promptly converted into SteelEagle API messages by the kernel, relayed to
the drone driver, and executed. Meanwhile, the kernel continues sending telemetry via the data
server to the backend which is eventually displayed to the commander client.

7.2.2 Autonomous Control Flow
The autonomous control flow is responsible for running autonomous missions within SteelEagle
OS. When a commander sends a mission to a drone, a control message containing compiled
mission logic is sent from the commander client through the backend over the control to the
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kernel. Upon receiving the mission, the kernel sends it to the userspace module and grants the
userspace actuation permission. The sole task of the userspace is to configure, monitor, and run
autonomous missions. Once the userspace has the mission, it configures all computation relevant
to the mission through the SteelEagle API (Section 7.3). For instance, if the mission involves
tracking a human target, the userspace may provision an object detector trained for the specified
class of human. These messages are sent to the kernel where they are then passed on to the local
and remote compute drivers. All compute results will eventually be stored in the kernel cache
which can be read by the userspace on demand while it has actuation permission.

As soon as the appropriate computation requests have been acknowledged, the userspace
starts the mission. During its lifetime, the mission may actuate the drone by sending SteelEagle
API actuation requests, or query computation results by sending SteelEagle API computation
requests. All messages are sent to the kernel where they are then delivered to the intended
recipient. Fundamentally, this design mirrors the design of the userspace in modern operating
systems. Since user code is not trusted, all system-level calls must be validated by the kernel
before they are executed. At mission end, the userspace notifies the kernel which then revokes
actuation permission and signals an end of mission to the commander.

7.2.3 Computation Flow
The computation flow is responsible for configuring compute resources and delivering computa-
tion results to consumers like the userspace. Computation configuration messages are generated
by the userspace during mission setup. These messages, in the case of object detection, contain
the model type, camera sensor identification, target class, and confidence score. This will change
depending on the task. For example, an obstacle avoidance task may request a MiDaS avoid-
ance model which would be specified with just the model type and camera sensor identification.
Regardless, these configuration messages are delivered to the local and remote compute drivers.

After the local and remote compute drivers receive a computation configuration message,
they set up the corresponding model, if they have access to it. For the local compute driver, this
could be a pruned, less accurate model which can run on constrained mobile hardware. For the
remote compute driver, it will request the full size model to be provisioned by the SteelEagle
backend. By default, SteelEagle OS attempts to set up appropriate computation resources both
locally and remotely. This gives the drone a local fallback model for disconnected operation in
case remote resources are inaccessible. As the mission is executed, frames are constantly ferried
from the drone driver to the compute drivers via the kernel. There frames are then inferenced
using the configured compute, and results are cached on the kernel’s datastore. Compute requests
sent from the userspace to the kernel can then read these results, indexed by model type.

7.3 SteelEagle API Design
The SteelEagle API forms the backbone of all communication within SteelEagle OS. It is, at its
core, a list of synchronous and asynchronous remote procedure calls (RPCs) that modules can
invoke on each other. For example, the userspace may make an RPC actuation request to the
kernel to move the drone to a GPS location. This request contains the move to GPS actuation
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Type Message Response Payload
Telemetry get telemetry telemetry frame Empty
Telemetry telemetry frame None Aircraft telemetry
Telemetry get sensor sensor frame Sensor ID
Telemetry sensor frame None Sensor content

Actuation actuation request actuation ack Actuation type†

Actuation actuation ack None Success or failure

Compute compute configuration compute ack Model, sensor, class, confidence
Compute compute request compute result Model, sensor, class, confidence
Compute compute result None Inference result

Mission mission start mission ack SteelEagle mission
Mission mission stop mission ack Empty
Mission mission ack None Success or failure

†Actuation requests roughly follow the format of the MAVLink API [83]. This is the canonical way in
which quadrotor drones are controlled.

Table 7.1: High-Level Overview of the SteelEagle API

type, followed by relevant parameters. In this instance, the parameters would include the target
latitude, longitude, and altitude. The actuation request API closely follows the MAVLink API in
its overall structure, but drivers can implement the API using a custom SDK of choice [83]. Once
a request is sent from the userspace to the kernel, it is then forwarded to the drone driver which
completes the action and returns an acknowledgment. In this way, modules are easily separable;
so long as they communicate using the SteelEagle API, they can be written in any format or
language.

RPC calls within the SteelEagle API are divided into four categories: telemetry, actuation,
compute, and mission. Telemetry messages are for sending sensor data and the video stream from
the drone driver to other customer modules. Actuation messages are for requesting actuation on
the drone. Mission control messages relay directives to the userspace from the commander. Com-
pute messages request computation from local or remote engines. Since SteelEagle API RPCs
are based on the Protocol Buffer data packaging system, more message types can be added later
without breaking compatibility [102]. Table 7.1 shows a high-level overview of the SteelEagle
API and its associated messages.

7.4 Implementation Considerations
As mentioned earlier, portability and flexibility are first class design considerations for SteelEa-
gle OS. For this reason, all OS modules are deployed as containers which can run on a variety
of host operating systems. On Linux, Windows, or Mac based hardware, setup is trivial. This
covers a broad range of devices, including mobile single-board computers like the Raspberry
Pi and most consumer computers. In some cases, the host operating system may not support

90



Figure 7.4: ModalAI Starling 2 Max [87]

containers. As a result, SteelEagle OS cannot be set up in its container configuration. Instead,
it must be rewritten and optimized for the new environment while maintaining all external ab-
stractions. This is not ideal as it promotes fragmentation of the code base when confronted with
incompatible devices. However, this is a necessary concession to ensure SteelEagle can function
in almost every case.

If a drone has sensing or actuation capabilities beyond the scope of the SteelEagle API,
SteelEagle OS supports freeform RPC calls which can be forwarded from customized mission
code to the drone driver. This is similar to ioctl(2) in Linux which gives the operating system
flexibility when dealing with specialized drivers [81]. Using this system, SteelEagle OS can take
advantage of exotic drones without needing to change the SteelEagle API. The API can always
be extended later if a critical mass of compatible drones requires this RPC feature. In the case
of custom ASICs or local computation, the local compute driver can be written to support any
associated API. This is where the language agnosticism of each module becomes advantageous;
modules can be written in completely distinct ways as long as they follow their RPC interface.

7.5 Integrating a New Drone into SteelEagle

The only true test of SteelEagle’s drone agnostic design is to successfully integrate a new drone
into the system. In this section, I will walk through the integration of the ModalAI Starling 2
Max [87], a drone with completely distinct hardware from the Parrot Anafi series. I will show
where development effort needs to be spent and where my design simplifies this task.

7.5.1 Hardware and Software Overview

The Starling 2 Max, shown in Figure 7.4, is a quadcopter with a rich sensor suite and significant
onboard compute. It is equipped with a downward-facing fisheye visual inertial odometry (VIO)
camera for GPS-denied localization, front-facing stereo cameras for obstacle avoidance, and a
front-facing RGB camera for perception. Providing onboard intelligence is the VOXL 2 chip,
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A small selection of the servers avaiable within the default MPA configuration. Each server is started as a
UNIX service and can be accessed via UNIX pipes.

Figure 7.5: ModalAI Pipe Architecture (MPA) (Adapted from [89])

a collaboration with Qualcomm to build a SWaP (size, weight, and power) optimized robotics-
focused single-board computer. The VOXL 2 sports a smartphone caliber CPU in the QRB5165,
and hosts a proprietary GPU which can inference weight-optimized models in real time [88]. It
also has an embedded 4G modem which can communicate with the cloudlet out-of-the-box.

The VOXL runs an Ubuntu [56] distribution and uses standard UNIX services to run its
in-flight processes. These services communicate with each other using the ModalAI Pipe Ar-
chitecture (MPA), an IPC mechanism built on UNIX pipes [89]. Figure 7.5 shows a simplified
diagram of the MPA. For instance, to send commands to the autopilot, an autopilot service, called
the MAVLink service, must first be started. Then, commands can be fed over a UNIX pipe to the
service and the drone will actuate.

The VOXL 2 is equipped with PX4 autopilot software which handles all low level flight
control [43]. PX4 is a well-known open source autopilot, and it is compatible with the ubiquitous
MAVLink protocol [83].

7.5.2 Development and Deployment Experience

There are two main aspects that differentiate the software environment of the Starling from the
Parrot Anafi series. First, it has onboard compute and thus requires a compute driver. Second, its
control scheme depends on pure MAVLink rather than Parrot Olympe. Thus, a new drone driver
and local compute driver must be created. Once this is done, all components of SteelEagle OS
can be deployed onboard as Docker containers. Figure 7.6 shows the integrated system diagram.

Drone Driver

As mentioned above, MAVLink is the canonical protocol used to communicate with PX4 autopi-
lots. The MAVLink API is very similar to the Parrot Olympe API; this is not surprising since
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Red arrows show communication using the SteelEagle API. Green arrows show communication using
VOXL MPA pipes [89].

Figure 7.6: VOXL Integration into SteelEagle OS

Olympe is a modified MAVLink wrapper. To convert the existing Olympe driver into a MAVLink
driver, only slight modifications are needed.

Local Compute Driver

The VOXL 2 has a Tensorflow inference server that can be automatically started on boot. The
inference server consumes frames over an MPA pipe and sends out results over a different MPA
pipe. A compatible compute driver only needs to transform SteelEagle API compute requests
into MPA data to send over the pipe and vice versa. The MPA API is most easily compatible
with C/C++ while the rest of SteelEagle OS is written in Python. Thanks to its modular language
agnostic design, this is not an issue, and the local compute driver can be written in a different
language than the rest of the pipeline without compromising abstraction layers.

7.6 Validation
I have successfully tested the ModalAI Starling 2 Max flying autonomously via SteelEagle both
in simulation and in real flight. This proof of concept could be extended to drones running
ArduPilot [12] or other drone families like DJI.
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Chapter 8

Conclusion and Future Work

In the previous chapters, I have shown that SteelEagle is an effective solution to the onboard
compute tradeoff. By taking advantage of edge computing, it can induce full autonomy on
lightweight COTS drones without demanding heavy onboard compute. I showed how to con-
nect COTS drones to the edge using off-the-shelf relays, and how to design an edge backend
that could support autonomous operation. I also evaluated the system on a set of benchmarks
to show its capabilities. Lastly, I demonstrated how SteelEagle could be easily ported to new
drone hardware. In this chapter, I will summarize the major contributions of this dissertation and
suggest future research directions.

8.1 Summary of Contributions

8.1.1 Active Vision with Ultralight Drones

Current autonomous drones have seen limited use in urban settings because their heavy weight
exceeds government regulatory limits. SteelEagle presents a way to achieve full autonomy on
lightweight drones within these limits by offloading computation normally done on heavy on-
board resources to a nearby cloudlet via a cellular connection. I demonstrated how such a con-
nection can be established on consumer drones and I showed that an initial proof-of-concept
system was able to execute active vision tasks. My lightest prototype had a takeoff weight of
just 360 g, only 110 g over the FAA regulatory cutoff, which is much closer than traditional
autonomous drones that typically weigh over 1 kg. I expect that future improvements in drone
and mobile hardware may drive this number down considerably.

8.1.2 Autonomy on COTS Hardware

Most drone research tends to focus on custom-built hardware that is tailor made for its intended
task. SteelEagle, by contrast, is designed to work with commercial off-the-shelf (COTS) com-
ponents to promote easy deployment. Critically, my prototypes show that it is possible to induce
full autonomy on COTS drones that have no cellular connection or compute by mounting a
lightweight COTS relay device on board which acts as an intermediary between the drone and
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the cloudlet. To my knowledge, this has never been done before. This control paradigm has
the potential to be disruptive, possibly introducing a new market segment of lightweight, COTS
edge-based UAVs.

8.1.3 An Open-Source Edge Pipeline for Drone Intelligence
While edge-based drone intelligence is not new, many solutions either have a narrow range of
compatibility or are closed-source. SteelEagle represents the first open-source edge intelligence
framework that is designed to support a wide range of AI backends. Its cognitive engine ap-
proach, borrowed from Gabriel [62], creates a plug-and-play development environment which
can easily integrate new AI models into the processing pipeline and ride the wave of AI innova-
tion in algorithms and hardware accelerators.

8.1.4 Benchmarks for Autonomous Drone Agility
Existing benchmarks for drone agility often leverage simulated environments to encourage ac-
cessibility and reproducibility. However, in my experience, simulations struggle to capture the
flight dynamics of real aircraft. My benchmark suite attempts to find a middle ground by pro-
viding a reproducible and accessible setup while testing drones in real flight. To the best of my
knowledge, it is the first such benchmark suite of its kind. Over time, more benchmarks can be
added to the suite and scoring can be refined. Additionally, as more drones are incorporated into
SteelEagle, each can be scored on the suite. The benchmarks are parameterized so that future
versions can easily increase in difficulty as drone technology improves.

8.1.5 Hardware Agnostic Operations
Today, the drone space is fragmented with dozens of custom SDKs and autopilots, each used for
a specific set of aircraft. Without a unified development environment, it is impossible to port
code written for one class of drone to another. SteelEagle attempts to solve this by introducing
SteelEagle OS, an operating system designed to integrate varied drone SDKs under a single
unified API. The architecture of SteelEagle OS is also built to support as wide a range of control
schemes as possible, including those that include a local RC controller. This system, if seen
through to its full potential, could be the primary development tool for mission-centric drone
programming within the research community and in industry practice.

8.2 Future Work

8.2.1 Other Robotic Platforms
Quadcopters are not the only types of robotic platforms that can benefit from edge computing.
Rovers, fixed-wing aircraft, helicopters, sea vehicles, and more could all leverage edge comput-
ing in a similar way to SteelEagle drones. MAVLink, the ubiquitous UAV control protocol, is
actually designed to work with many of these platforms, and sees actual use in these settings
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today. SteelEagle could replicate the success of MAVLink, and could open the door for multi-
domain robotic cooperation between compatible systems.

8.2.2 Drone Swarms
The majority of this dissertation is concerned with testing the performance of a single drone.
However, most drone research is now headed towards drone swarms. With drone swarms, dozens
of aircraft, much like a swarm of bees, collaborate towards a shared goal. The idea is that such
aircraft would be cheaper and less capable than larger platforms, but would perform equivalently
in aggregate. This perfectly fits the ethos of SteelEagle which seeks to connect small, cheap
drones to powerful compute without increasing cost or weight. Thus the logical next step is to
make drone swarms a first-class citizen of SteelEagle. In the future, this could mean heteroge-
neous swarms of cheap, insect-like aircraft coordinated by one or several cloudlets for building
inspection, surveillance, or weather monitoring.

8.2.3 Expressive Mission Specifications
In order to achieve collaboration between swarm aircraft, changes must be made to the SteelEa-
gle mission specification. Currently, it is a static script that the drone follows until completion.
While this can support some dynamic action, it lacks the structure to cleanly integrate collabo-
rative behavior. One option is to shift from a static flight script to a finite state machine, where
behaviors are linked together by a pre-defined transition function. This could eventually turn
into an independent domain-specific language which, when integrated with the SteelEagle API,
could be a cross-platform coding tool that spans many drone control paradigms.

8.2.4 On-Demand Edge Deployment
For real flight operations, especially in adversarial environments, it is rarely the case that com-
pute resources are pre-provisioned for missions. Instead, they must be allocated on demand to
support the current task. In its present configuration, the SteelEagle backend has no mechanism
for dynamic deployment; it must be set up on a machine manually and then drones must be
notified of its address within the network for the system to function. In the future, this startup
routine could become more dynamic. For example, when a drone requests computation, a cen-
tral authority could find the closest cloudlet and provision a SteelEagle backend for the drone. It
could also respond to heightened demand through server replication, or migrate cloudlet sessions
across servers as drones are in flight [61].

8.2.5 Leveraging Onboard Compute
As shown by Section 6.6, onboard compute can sometimes outperform edge-based solutions. In
these situations, the SteelEagle OS local compute driver is responsible for taking over compu-
tation duties from the remote compute driver. However, there are times when the separation be-
tween what should be done onboard versus on the cloudlet is not cleanly separated. In particular,
prior work has shown the benefits of a collaborative approach in which local computation informs
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when data is promising enough to be shipped to the cloudlet for further analysis [71, 121]. This
approach, known as “offload shaping” can save bandwidth and energy. Currently, SteelEagle OS
cannot use offload shaping, but it can be extended to support it.

8.2.6 Transient Disconnected Operation
A major weakness of SteelEagle is its dependence on its connection to the edge. If network
disconnection occurs, SteelEagle OS is designed to safely return the drone to its launch point.
This is the only possible course of action for thin client drones. Even so, for more capable
clients, limited disconnected operation could be possible. One can imagine a drone with marginal
onboard compute that could try to seek out the last location where it had service, or alternatively
continue its mission with degraded performance until reconnection occurs. Such functionality
could be critical for real world deployments of SteelEagle, especially in adversarial settings,
where consistent connectivity cannot be expected.

8.3 Closing Thoughts
SteelEagle presents the first open-source attempt at bringing full autonomy to lightweight, COTS
drone platforms. It promotes portability with its hardware-agnostic modular design, and is posi-
tioned well to take advantage of future research. My hope is that its accessibility could make it a
“Linux for drones”, the default platform that drone autonomy developers the world over deploy
their projects on. Such democratization could herald a new era of drone innovation, unbound
by the constraints of proprietary SDKs while preserving public safety consistent with existing
government regulation.
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