
Democratizing On-Device LLM Inference
with Machine Learning Compilers

and Web Technologies

Charlie F. Ruan

CMU-CS-25-112

May 2025

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Tianqi Chen, Chair

Zhihao Jia

Submitted in partial fulfillment of the requirements
for the degree of Masters of Science in Computer Science.

Copyright © 2025 Charlie F. Ruan

Keywords: Large Language Models, LLM Inference, Machine Learning Compiler, We-
bAssembly, WebGPU, Edge Computing

To my dear friends and family.

iv

Abstract
Large language models (LLMs) have traditionally relied on cloud-based infer-

ence due to their high computational and memory demands. However, recent ad-
vances in small LLMs and consumer hardware capabilities have made on-device in-
ference increasingly practical. Among potential deployment targets, the web browser
stands out as a uniquely compelling platform: it is universally accessible, naturally
abstracts out hardware heterogeneity, requires no dependency installation for web
applications, and provides a natural agentic environment for task automation.

WebLLM is a high-performance TypeScript framework that enables LLM in-
ference entirely within client-side web browsers. WebLLM compiles LLMs ahead
of time using the MLC-LLM and Apache TVM compiler stack to generate opti-
mized WebGPU kernels and a portable WebAssembly runtime. WebLLM exposes
a familiar OpenAI-style API, supports efficient GPU acceleration, and integrates
seamlessly with browser environments using Web Workers and WebAssembly. To
enable structured generation, which is especially challenging for small LLMs, We-
bLLM incorporates XGrammar, an efficient grammar-constrained decoding engine,
allowing developers to enforce output formats such as JSON or DSLs with near-zero
overhead. Together, these components demonstrate a path toward democratizing
LLM access, making intelligent, private, and responsive AI experiences universally
available through the web.

vi

Acknowledgments
First and foremost, I would like to thank my advisor, Tianqi Chen, for inviting

me into the world of machine learning systems research. His mentorship guided my
career; his passion has made every project a joy; his builder’s mindset has shaped
my own; and his detailed feedback—on both research and engineering—has taught
me how to create and steward open-source software. I could not have asked for a
better mentor at this stage of my journey.

I am grateful to Zhihao Jia for his patient advice on the disaggregated serving
system project. I learned a lot from his research style, especially on how to spot
emerging interesting research directions.

The work presented in this thesis, WebLLM, stands on the shoulders of giants.
Building MLC-LLM with the MLC community in 2023–24 was a delight; special
thanks to Ruihang Lai for his immensely patient guidance and David Pissarra for
the pleasant collaboration. I further thank Ruihang, Hongyi Jin, and Bohan Hou for
the initial scaffolding on the WebGPU front, and every collaborator on WebLLM—
Nestor Qin, Rick Zhou, and many more. I am indebted to the Apache TVM com-
munity for the infrastructure that underpins this thesis. I also thank the XGram-
mar team, especially Yixin Dong, for enabling reliable structured generation, and
the MicroServe team—including Hongyi, Ruihang, Yingcheng Wang and Xupeng
Miao—for insightful discussions.

From my MSCS program, I would like to thank David Eckhardt, Ruben Martins,
and Angy Malloy for all their help.

Finally, my deepest gratitude goes to my family and close friends. I would not
have come this far without their unwavering support. Thank you, Ryan, Vincent, and
Danny for being such great friends. Thank you, Stephanie, for always being there
for me.

viii

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Browser as a Platform . 1
1.2 Overview . 2

2 Background 3
2.1 LLM Inference and On-device Deployment . 3
2.2 Web Technologies . 4

2.2.1 WebAssembly . 4
2.2.2 WebGPU . 4
2.2.3 Web Worker . 5

2.3 Machine Learning Compilers . 5

3 WebLLM Core Design 7
3.1 Challenges and Design Principles . 7
3.2 Systems Architecture . 8
3.3 API Design . 9
3.4 GPU Acceleration . 10
3.5 Adapting to Browser Runtime . 10
3.6 Evaluation of WebLLM . 11

4 Machine Learning Compiler and Runtime 13
4.1 MLC-LLM as a Compiler for WebLLM . 13
4.2 TVMjs . 14

5 Structured Generation with XGrammar 17
5.1 Motivation and Background . 17
5.2 XGrammar Core Design . 18
5.3 Evaluation of XGrammar on WebLLM . 20

6 Future Directions 21
6.1 Hybrid Inference . 21
6.2 Browser Agent Environment . 23

ix

7 Conclusion 25

Bibliography 27

x

List of Figures

3.1 Systems Architecture of WebLLM [14]. 8
3.2 WebLLM engine’s API follows that of OpenAI. A streaming request imple-

mented in TypeScript. 9
3.3 The same request but ensures the output to be in JSON. 10

4.1 Compilation flow of MLC-LLM. Adapted from [10]. 13
4.2 Example implementation of a decoding function with DSL in MLC-LLM. 14
4.3 The corresponding WebGPU kernel generated by MLC-LLM’s compilation flow. 14
4.4 An example of how WebLLM uses TVMjs for host-side runtime support. 15

5.1 Constrained decoding. Adapted from [5]. 17
5.2 A context-free grammar with an example matching stack. The CFG is translated

to the pushdown automaton in Figure 5.3. Adapted from [5]. 18
5.3 Flow of XGrammar. Adapted from [5]. 19
5.4 Overlapping of LLM GPU workload and XGrammar CPU workload. Adapted

from [5]. 19
5.5 Performance on WebLLM with structured generation turned on and off. Adapted

from [5]. 20

6.1 Systems architecture of MicroServe. Adapted from [9]. 21
6.2 Prefill-decode disaggregation expressed in MicroServe’s APIs. Adapted from [9]. 22

xi

xii

List of Tables

3.1 Performance comparison with decoding speed between WebLLM (v0.2.75) and
MLC-LLM (at commit d23d6f5). WebLLM runs on Chrome Canary 133.0.6870.0
(arm64). Adopted from [14]. 11

xiii

xiv

Chapter 1

Introduction

1.1 Motivation

Large language models (LLMs) have rapidly advanced in capability over the past few years,
not only being used for chatbots but increasingly as components in agentic systems. Due to
their massive parameter counts (e.g., 70 billion or even 405 billion), these models are typically
deployed on cloud servers, which provide the computational and memory resources necessary
for inference using server-grade GPUs.

Recently, however, open-source model providers have begun releasing smaller models—ranging
from 7 billion to 1.5 billion parameters and even less—enabled by techniques such as model dis-
tillation ([6], [15], [18], [1]). In parallel, there has been a surge in specialized models, including
those for coding and math tasks ([19], [21], [13]). On the other hand, consumer devices (e.g.,
Apple’s M-series MacBooks) continue to grow in computing capability. These trends together
make on-device LLM inference an increasingly viable and attractive direction. Potential ben-
efits include privacy, personalization, cost reduction, and even lower latency depending on the
workload. Therefore, we motivate a fundamental question:

How can we bring the power of modern LLMs directly onto consumer devices—without
sacrificing performance and developer ergonomics?

1.1.1 Browser as a Platform

The web browser stands out as a compelling platform for on-device LLM deployment. First,
browsers provide a natural agentic environment where users already perform various tasks, such
as booking calendar events or composing emails—tasks that can potentially be automated by
in-browser agents. Second, browsers offer universal accessibility: users can access applications
simply by opening a URL, with no need for additional installations. Finally, the browser serves
as a natural abstraction layer for developers. Web technologies like WebAssembly ([7]) and
WebGPU ([17]) are backend-agnostic by design, enabling LLM workloads to target a single
runtime interface (e.g., WebGPU) rather than maintaining multiple backend implementations
(e.g., CUDA, Metal).

1

1.2 Overview
In this thesis, we focus on the design and implementation of WebLLM, a high-performance
in-browser LLM engine [14]. WebLLM provides a framework that empowers web developers
to integrate on-device LLM inference directly into their web applications. Its design centers
around three key principles: a standardized and user-friendly API, efficient GPU acceleration,
and effective integration with the browser runtime environment (Chapter 3).

WebLLM builds upon machine learning compiler frameworks MLC-LLM and Apache TVM
to generate optimized WebGPU kernels ([10], [3]). While MLC-LLM is best known as a backend-
agnostic LLM inference engine for both cloud and edge, WebLLM repurposes it as a compiler
that precompiles WebGPU kernels ahead of time (AOT) and hosts them online, ready to be
downloaded by the browser when needed. TVM, besides being the compiler backend for MLC-
LLM that enables its backend-agnostic compilation flow, also provides necessary runtime (host-
side) support for LLM inference, such as kernel launching and tensor manipulation with TVMjs
(Chapter 4).

To support structured generation—especially important for smaller LLMs that struggle with
format consistency—WebLLM integrates XGrammar, an efficient structured generation frame-
work using context-free grammars for constrained decoding ([5]). Ported to WebAssembly,
XGrammar allows web applications to use LLMs to generate outputs conforming to strict gram-
mars (e.g., JSON), expanding their use cases well beyond chatbots (Chapter 5).

Finally, we explore future directions such as hybrid inference, which disaggregates compu-
tation across cloud and edge backends to exploit the heterogeneous nature of LLM workloads
([9]). We also discuss opportunities in building agentic environments within the browser to allow
LLM-based agents navigate webpages to automate tasks more easily (Chapter 6).

2

Chapter 2

Background

2.1 LLM Inference and On-device Deployment
LLM inference refers to the process of using a trained large language model to generate out-
puts (such as text completions or answers) given an input prompt. Under the hood, inference
involves performing a forward pass through the model’s neural network layers. Modern LLMs
are typically transformer-based architectures with dozens of layers of self-attention and feed-
forward networks ([16]). Performing inference on a large model is computationally intensive
and requires significant memory to store the model’s parameters and intermediate activations. In
a cloud setting, inference is often optimized by using batches of inputs processed together on
powerful GPUs, and by using techniques like caching recurrent computations across tokens to
streamline the generation of long outputs.

Running LLMs locally on consumer devices (such as a laptop) introduces new challenges and
opportunities. The primary challenge is the limited compute and memory resources compared
to cloud servers. A high-end GPU in a server might have 80 GB of VRAM and thousands
of computation units (e.g., CUDA cores), whereas a laptop GPU has much less memory and
compute throughput. To make large models runnable on smaller devices, several strategies are
employed:

• Model size reduction: using smaller architectures or reducing the number of parameters
(for example, choosing a 7B parameter model instead of a 70B model). Techniques like
model distillation is popular to enable such a reduction ([6]).

• Quantization: representing model weights with lower precision (8-bit or 4-bit integers in-
stead of 16-bit or 32-bit floats) to shrink model memory footprint and improve throughput
at the cost of some precision loss. This can dramatically reduce memory usage and can
even increase speed if the hardware supports fast low-precision arithmetic.

• Efficient architectures and kernels: using optimized implementations of the model’s oper-
ations (for instance, efficient attention mechanisms) that run faster on the given hardware
([4]).

These innovations have enabled surprisingly capable LLMs to run on consumer devices.
Quantized models with a few billion parameters can reach interactive speeds on laptops. Local
deployment offers significant benefits: privacy, since data processing stays on the user’s machine;

3

personalization, as the model could adapt or fine-tune to user-specific data or preferences that
never leave the device; and availability, since the model can function without internet access or
when cloud services are offline. It also reduces reliance on a central service and can save cost
for users (especially if the alternative is paying for API calls to a cloud LLM). However, local
inference must work within the constraints of device hardware, which may involve trade-offs in
model size or speed, and typically must handle one request at a time.

2.2 Web Technologies

2.2.1 WebAssembly

WebAssembly (WASM) is a binary instruction format for a virtual machine that runs in web
browsers [7]. It is designed as a portable target for compiling high-level languages like C, C++
or Rust, so that they can execute on the web at near-native speed. WebAssembly is safe (running
in a sandboxed environment), compact, and efficient. In the context of machine learning, heavy
computations that would be too slow in JavaScript can be implemented in C++ or Rust, compiled
to WASM, and then run in the browser faster than pure JavaScript would allow. In WebLLM,
many parts of the runtime (especially those not run on the GPU) are handled by a WASM runtime
library TVMjs, which is essentially a version of the TVM runtime for JavaScript environments
[3]. This library can perform tensor allocations and copies, KV cache management, and ker-
nel invocation, all within the browser environment. Because WebAssembly is platform-neutral,
the same WASM code runs on Windows, macOS, Linux, or mobile browsers, ensuring broad
compatibility.

2.2.2 WebGPU

WebGPU is a new Web standard (and the successor to WebGL) that provides a modern, high-
performance API for GPU programming in web browsers [17]. Whereas WebGL was primarily
aimed at drawing graphics, WebGPU is designed to expose general-purpose GPU computing ca-
pabilities as well as advanced graphics. WebGPU’s API is based on contemporary GPU APIs like
Vulkan, Metal, and Direct3D 12, and it allows developers to write compute shaders—programs
that run on the GPU for arbitrary computations (not just graphics). This is crucial for machine
learning workloads, as we can offload tensor operations to the GPU for acceleration. With We-
bGPU, a web application can request the creation of a GPU device, allocate GPU buffers, and
run compiled shader code. In practice, one writes shader programs in a language called WGSL
(WebGPU Shading Language), which is then compiled by the browser’s graphics driver to the
native GPU instructions. WebLLM uses WebGPU to run the neural network operations (matrix
multiplications, attention, etc.) on the graphics hardware, which is orders-of-magnitude faster
than doing the same operations on the CPU in JavaScript.

One of the powerful aspects of WebGPU in the context of deploying ML models is its
backend-agnostic nature. A WebGPU shader can run on any GPU (from any vendor) that the
browser supports, without the developer needing to tailor the code to each specific GPU type.
This means a single implementation can target many platforms. However, a challenge is that, un-

4

like established ML frameworks on native platforms (which have libraries like cuBLAS, cuDNN,
etc. for NVIDIA GPUs or similar libraries for other backends), the web environment doesn’t
come with an existing library of highly optimized tensor operations for WebGPU. This is where
ML compilers and frameworks step in—they must generate efficient GPU code because we can-
not rely on linking against vendor-specific libraries in the browser. WebLLM’s use of a compiler
to produce WebGPU code aims to fill this gap, by compiling WebGPU kernels that are potentially
as optimized as if one had hand-tuned them.

2.2.3 Web Worker
The W3C specification defines Web Workers as an API for spawning background worker scripts
that run alongside the main page script. In essence, a web worker executes code in a separate
thread, distinct from the single-threaded JavaScript main thread, which handles the UI. This
mechanism allows computationally heavy tasks to be offloaded to a background thread, prevent-
ing the user interface from freezing. Communication between the main script and a web worker
occurs via asynchronous message passing. Web workers effectively introduce a form of multi-
threaded execution in browsers, which is especially useful for performance-intensive operations.
Developers use them to handle tasks like data parsing, image processing, or complex compu-
tations without interrupting user interactions. WebLLM leverages web workers to run LLM
inference in a background thread, avoiding blocking the UI due to the heavy LLM computations.

2.3 Machine Learning Compilers
Machine learning compilers are specialized compilers or frameworks that take high-level de-
scriptions of ML models (often as computational graphs) and generate low-level optimized code
for a given hardware target. Examples of ML compilers include torch.compile and Apache TVM
([2], [3]). The motivation for ML compilers is that modern deep learning models consist of many
operations (matrix multiplications, convolutions, element-wise ops, etc.), and there are numerous
possible ways to implement and optimize these operations on different hardware. Rather than
writing each kernel by hand for each platform, a compiler can automate this process: it can ap-
ply optimizations like kernel fusion (merging multiple operations into one to avoid intermediate
memory writes), tiling and vectorization (to better use caches or SIMD units), unrolling, mem-
ory layout transformations, and use hardware-specific intrinsics. By doing so, the compiler can
often approach or exceed the performance of hand-tuned libraries, especially for novel model
architectures where hand-written kernels do not yet exist.

In WebLLM, the use of a compiler is essential because we do not have access to highly
optimized BLAS libraries or vendor-specific ML runtimes in the browser. By using TVM and
MLC-LLM, WebLLM essentially pre-builds its own optimized kernels. The TVMjs runtime
then loads those kernels in the browser and executes them. This approach was shown to yield
performance close to native: WebLLM retained around 71–80% of the throughput of a native
engine on the same device, which is impressive given the overheads of running inside a browser.

5

6

Chapter 3

WebLLM Core Design

3.1 Challenges and Design Principles
Building a high-performance LLM inference engine that runs entirely inside a web browser re-
quired us to address several key challenges. We identified three overarching challenges and
corresponding design principles in the development of WebLLM:

1. Standardized, Easy-to-use API Web developers should be able to use the on-device LLM
as seamlessly as they would call a cloud API. This means exposing a clear and simple in-
terface for sending prompts to the model and receiving generated text, ideally following
conventions that developers are already familiar with. The design principle here is to ab-
stract away the complexity of the underlying model and compiler, and present a friendly
API (we chose to emulate OpenAI’s API style) that returns results in a straightforward
format (in JSON). By standardizing the API, we also future-proof the system: improve-
ments or changes under the hood shouldn’t require changes in how developers integrate
the engine.

2. Adaptation to the Browser Runtime The browser environment is quite different from a
typical native runtime. There are restrictions on threading, memory, and execution time
(to avoid freezing the page). Also, computations run in the main thread can block the
user interface, harming the user experience. Thus, WebLLM’s design principle is to fully
integrate with the browser runtime model, using features like Web Workers (background
threads) to offload heavy computations away from the main UI thread. In addition, We-
bLLM extensively leverages WebAssembly to port existing codebase implemented in C++
for both code reuse and efficient execution of non-GPU workload in LLM inference.

3. Efficient GPU Acceleration Performance is paramount given the scale of LLMs. To get
usable speeds, we must efficiently use the device’s GPU whenever available. However,
the challenge is that in a browser we cannot simply use existing GPU libraries—we must
rely on WebGPU and our own optimized kernels. The design principle is to embrace ML
compilers to generate high-performance GPU code. We also aimed to achieve near-native
performance compared to that of a native backend on the same device.

These principles guided the architecture of WebLLM. By focusing on API simplicity, en-
vironment integration, and performance, we set the stage for an engine that could be both

7

developer-friendly and efficient in practice.

3.2 Systems Architecture

Download once
and cache locallyopenaiResponse

ServiceWorkerMLCEngine MLCEngine
openaiRequest

wasm lib

weights

quantize weight
optimize
operators
generate wgsl
compile wasm
…

Web App Web Workers
Hosted Wasm
and Weights

Open LLMs
(Llama3, Phi3, …)

WGSL kernels
(prefill, decode, …)

Non-kernel functions
(BNFGrammar, NDArray, …)

Locally in Browsers
Compile AOT
w/ MLC-LLM

const engine = new webllm.ServiceWorkerMLCEngine();
await engine.reload("Llama-3.1-8B-Instruct-q4f16_1-MLC");

async function main() {
 const stream = await engine.chat.completions.create({
 messages: [{ role: "user", content: "Hello!" }],
 stream: true,
 });
 for await (const chunk of stream) {
 updateUI(chunk.choices[0]?.delta?.content || "");
 }
}

@compute @workgroup_size(24, 1, 10)
fn batch_decode_paged_kv_kernel(...)

const tensor = wasmLib.emptyNDArray(...);
tensor.copyFrom(inputTokens);
this.decodeKernel(tensor);

Calls function
in WASM

GPU

CPU

Figure 3.1: Systems Architecture of WebLLM [14].

To address the challenges above, WebLLM’s system architecture (illustrated in Figure 3.1)
cleanly separates responsibilities into three main components:

1. ServiceWorkerMLCEngine (User-Facing Engine) This is a lightweight engine in-
stance that lives in the web application’s context. The web developer interacts with this
engine as if it were a remote service. From the developer’s perspective, they initialize the
engine, ask it to load a particular model (which triggers downloading the model artifacts
or loading from browser cache), then send inference requests and receive responses. The
ServiceWorkerMLCEngine is designed to feel like calling an endpoint: the API calls
and responses use a consistent JSON schema that mirrors OpenAI’s API. Internally, how-
ever, this engine does not do heavy work; it primarily forwards requests to the background
worker and streams back results.

2. MLCEngine in Web Worker (Backend Engine) This is the component that actually
carries out the inference workload. It runs in a Web Worker thread, which means it op-
erates off the main thread, ensuring that intensive computation does not block the UI.
When the ServiceWorkerMLCEngine receives a request, it message-passes it to the
MLCEngine in the worker. The MLCEngine manages the loaded model, runs the infer-
ence by invoking the appropriate compiled kernels (via the TVM runtime), and streams
the output tokens back to the frontend engine as they are produced. By encapsulating the
MLCEngine in a worker, we isolate the computational workload.

3. Ahead-of-Time Compiled Kernels and Artifacts Such artifacts include the precompiled
WebGPU kernels, compiled WebAssembly for runtime support, and LLM weights con-
verted to MLC-LLM’s format. All of these artifacts are compiled ahead of time by MLC-

8

LLM and TVM. They are hosted online (GitHub and HuggingFace) and downloaded once
an engine requests to load the model. They are cached in the end user’s browser after the
initial download. Therefore, the first time an application uses a model, there is a loading
delay, but afterwards it can run offline. Besides, developers can easily host new models
without needing to ship huge binaries in the app bundle; they just point WebLLM to the
URL of the model artifacts.

This architecture is illustrated in Figure 3.1. In summary, the web application talks to a local
service endpoint, which delegates to a background thread running the model, which in turn uses
precompiled GPU code to do the heavy workload. This design maps to the three challenges: the
Service Worker interface provides the standardized API; the use of a Web Worker adapts to the
browser runtime model; and the precompiled kernels enable efficient GPU acceleration.

3.3 API Design
WebLLM’s API is modeled after the well-known OpenAI API as shown below. The motivation
behind this design choice is to lower the barrier for adoption: many developers are already
familiar with OpenAI API and how the requests and responses look like (with knobs such as
n, temperature, etc.). By providing a similar interface locally, WebLLM allows developers
to swap out the backend from a cloud API to an on-device engine with minimal changes to their
code. Besides, the use of an engine makes the API behave like an endpoint (Figure 3.2). The
JSON-in-JSON-out interface allows the engine behaviors to be easily well-defined.

import { MLCEngine } from "@mlc-ai/web-llm";

const engine = new MLCEngine();
async function main() {
 await engine.reload("Llama-3-8B-Instruct-MLC");
 const stream = await engine.chat.completions.create({
 messages: [{ role: "user", content: "Introduce yourself!" }],
 stream: true, temperature: 1.2,
 });
 let finalMessage = "";
 for await (const chunk of stream) {
 finalMessage += chunk.choices[0]?.delta?.content || "";
 }
}

Figure 3.2: WebLLM engine’s API follows that of OpenAI. A streaming request implemented in
TypeScript.

Such an API design can also easily extend to new features. For instance, WebLLM supports
structured generation that enforces the LLM to generate response in a specified format (e.g.,
JSON). With a single line of change, the code in Figure 3.3 ensures that the output is in JSON
format.

The same API can also extend to other features such as supporting embedding models, vision-
language models, loading multiple models in the same engine (e.g., for RAG), and function
calling.

9

const stream = await engine.chat.completions.create({
 messages: [{role: "user", content: "Introduce yourself!"}],
 stream: true, temperature: 1.2,
 response_format: { type: "json_object" },
});

Figure 3.3: The same request but ensures the output to be in JSON.

3.4 GPU Acceleration
Achieving good performance for LLM inference in the browser hinges on making maximal use
of the GPU via WebGPU. As shown in Figure 3.1, WebLLM leverages MLC-LLM and Apache
TVM to achieve this. WebLLM treats the MLC-LLM framework as a black box, which compiles
any LLM it supports into kernels for a specified backend (e.g., CUDA, ROCm, Metal), and We-
bGPU is one of the backends supported by MLC-LLM. The user (or WebLLM developer) feeds
a model from HuggingFace to the MLC-LLM framework, which produces a set of optimized
WebGPU kernels for the model, CPU runtime support compiled into WebAssembly, and model
weights converted into MLC-LLM’s format. We elaborate on this in Chapter 4.

3.5 Adapting to Browser Runtime
While most LLM frameworks are implemented in either Python or C++, WebLLM is imple-
mented in TypeScript and runs in the browser environment. This unconventional environment
requires us to adapt to the unique characteristics of browsers. We leverage three key web tech-
nologies in WebLLM.

WebGPU We have discussed extensively about WebGPU so far. It is a required technology
because we want to leverage GPUs for the heavy LLM computations whenever possible. Besides
performance, WebGPU provides a natural abstraction for the wide range of consumer devices.
This standard allows us to only compile a single set of kernels that can be deployed on all devices,
regardless of their native backends.

WebAseembly While WebGPU kernels handle the heavy lifting of the LLM workloads, We-
bLLM also relies on WebAssembly for various aspects of the system. This is because there are
many non-GPU workloads required in LLM inference. TVMjs is a web runtime library com-
piled from the C++ code in TVM into WebAssembly. It provides a set of functions for allocating
tensors, launching GPU kernels, and performing any CPU-side computation needed. In addi-
tion, for structured generation, we compile the XGrammar library into WebAssembly as well,
for performant constrained decoding support. This will be elaborated in Chapter 5.

Web Worker Finally, as discussed in Section 3.2, web applications prefer offloading the heavy
computation to an asynchronous thread called the web worker. The goal is to prevent the heavy
workloads from blocking the UI flow, which may cause the web page to freeze. The majority

10

of WebLLM’s workload is carried out in the web worker, as we have a frontend engine and a
backend engine, as shown in Figure 3.1.

3.6 Evaluation of WebLLM
We evaluate the performance of WebLLM. This is especially interesting because, while We-
bGPU provides a convenient standard that can work across different devices, such abstraction
must come at a cost. That is, we cannot use backend-specific features, nor can we tune to the
preference of a specific backend.

Model WebLLM (tok/s) MLC-LLM (tok/s) Perf. Retained

Llama-3.1-8B 41.1 57.7 71.2%
Phi-3.5-mini (3.8B) 71.1 89.3 79.6%

Table 3.1: Performance comparison with decoding speed between WebLLM (v0.2.75) and MLC-
LLM (at commit d23d6f5). WebLLM runs on Chrome Canary 133.0.6870.0 (arm64). Adopted
from [14].

We run WebLLM and MLC-LLM on the same MacBook Pro M3 Max 64GB device. While
WebLLM uses WebGPU kernels, MLC-LLM uses the native Metal kernels. Both kernels are
generated by MLC-LLM. The result demonstrates that WebLLM can maintain up to 80% of the
native performance. There are still many potential techniques to further close this gap, including
offloading more workload to the GPU (e.g., sampling and penalties application) and leveraging
more advanced WebGPU features (e.g., subgroup shuffle). We could also compile two sets of
WebGPU kernels: one for the lower-end consumer devices like phones, and one for the more
performant devices like MacBooks, where the latter allows more aggressive WebGPU settings
such as a higher number of threads per thread block.

11

12

Chapter 4

Machine Learning Compiler and Runtime

4.1 MLC-LLM as a Compiler for WebLLM

operator fusion
memory planning
hardware-aware optims
...

Python / CLI / Server
mlc_llm serve

Android
MLC JVM

iOS
MLC Swift

Web browsers
WebLLM

➂ Platform-native runtimes➀ Weight conversion ➁ Model compilation

Pre-converted
weights

model weight conversion
and quantization
(Llama, Mixtral, …)

Original model
weights

or

download

convert &

quantize
model-

weights-mlc model-lib

Figure 4.1: Compilation flow of MLC-LLM. Adapted from [10].

MLC-LLM is a framework that is developed to enable LLM inference on a variety of plat-
forms (from cloud GPUs to mobile phones) using a unified approach based on ML compilation.
It stands for “Machine Learning Compilation for LLMs.” At its core, MLC-LLM takes a model
implemented in a domain-specific language (DSL) in Python and compiles that model to a cho-
sen target backend via TVM (Figure 4.1). In the case of WebLLM, we use MLC-LLM to target
the WebGPU backend. Below we demonstrate an example model definition in MLC-LLM (the
input, Figure 4.2), and the corresponding WebGPU kernel generated (the output, Figure 4.3).

While MLC-LLM is an LLM serving engine itself, WebLLM views it more as a compiler
for WebGPU kernels. However, we could also potentially port MLC-LLM’s runtime logics (e.g.,
serving engine state management, request scheduling) to WebAssembly to use in WebLLM.
WebLLM did not go with that option since most on-device use cases do not require sophisticated
request batching logics (unlike the cloud counterpart). Therefore, WebLLM implemented the
engine logic in a lightweight format in TypeScript instead of relying on MLC-LLM.

13

def batch_decode(self, input_embeds, paged_kv_cache, logit_pos):
 op_ext.configure()
 hidden_states = self.model(input_embeds, paged_kv_cache)
 if logit_pos is not None:
 hidden_states = op.take(hidden_states, logit_pos, axis=1)
 logits = self.get_logits(hidden_states)
 return logits

Figure 4.2: Example implementation of a decoding function with DSL in MLC-LLM.

fn batch_decode_paged_kv_kernel(
 @builtin(workgroup_id) blockIdx : vec3<u32>,
 @builtin(num_workgroups) gridDim : vec3<u32>,
 @builtin(local_invocation_id) threadIx : vec3<u32>,
) {
 if (blockIdx.z * gridDim.x + blockId.x > podArgs.packGridDimX) {
 return;
 }
 let v__1 : i32 = i32(blockIdx.z * gridDim.x + blockIdx.x);
 var kv_chunk_len : array<i32, 1>;
 var st_m : array<f32, 1>;
 var st_d : array<f32, 1>;
 var O_local : array<vec4<f32>, 1>;
 ...
}

Figure 4.3: The corresponding WebGPU kernel generated by MLC-LLM’s compilation flow.

4.2 TVMjs
Besides WebGPU kernels (generated by MLC-LLM) and engine serving logic (re-implemented
in WebLLM), we also need other runtime components. Specifically, the host needs to invoke
the generated WebGPU kernels during runtime. This also requires manipulating tensors (which
are passed as inputs and outputs of kernels) and copying from JavaScript arrays to such tensors
(hence host-device communication).

Fortunately, TVM already provides a set of viable runtime supports, where the PackedFunc
mechanism plays a crucial role. Since TVM’s runtime logics are all implemented in C++, we
can port them to WebAssembly with Emscripten [20]. In addition, we also need WASI to call
into system library calls (malloc, stderr) [8]. Packing these components, along with other
support such as WebGPU device management, we have the TVMjs library.

Below is an example of how WebLLM leverages TVMjs to call the compiled kernels (Fig-
ure 4.4). wasmSource is essentially the artifact compiled by MLC-LLM in Figure 4.1. Func-
tions like this.tvm.empty() call the underlying C++ implementation in TVM runtime,
while this.embed() points to the WebGPU kernels.

14

this.tvm = await tvmjs.instantiate(new Uint8Array(wasmSource));
this.device = this.tvm.webgpu();

/**
 * Given input tokens, return embeddings of them
 * by calling the embed kernel.
 */
private getTokensEmbeddings(
 inputTokens: number[]
): tvmjs.NDArray {
 this.tvm.beginScope();
 const inputData = this.tvm.empty(
 [inputTokens.length],
 "int32",
 this.device,
);
 inputData.copyFrom(inputTokens);
 const embed: tvmjs.NDArray = this.tvm.detachFromCurrentScope(
 this.embed!(inputData, this.params),
);
 this.tvm.endScope();
 this.tvm.attachToCurrentScope(embed);
 return embed;
}

Figure 4.4: An example of how WebLLM uses TVMjs for host-side runtime support.

15

16

Chapter 5

Structured Generation with XGrammar

5.1 Motivation and Background
Modern LLMs not only emit free–form natural language alone, they are increasingly expected
to return structured responses such as JSON objects, SQL queries, or domain-specific language
that can be consumed programmatically. Smaller on-device models—the focus of this thesis—
tend to break syntax more often than their larger cloud counterparts, making it difficult to deploy
LLMs as a standardized tool (rather than just a chatbot) in consumer devices. Therefore, we need
a mechanism to enforce structured generation.

0 0 0 0

Softmax

Sampler

3

Prob. Distribution

Output Logits

Masked Logits

Sampled
Token

Per-token Mask

Structure Prior
Output

LLM Inference

0.76 0.130.1 1e-3

-∞ -∞ -∞ -∞

-1-2 4 5 1.1 3.2 -53

5 3.23 -1

0 0 0 01 11 1

Figure 5.1: Constrained decoding. Adapted from [5].

The standard technique is constrained decoding: before sampling each token, the engine
masks out vocabulary items that would violate a user-specified grammar (Figure 5.1). For ex-
pressive formats, we need the full power of a context-free grammar (CFG), which can be
executed via a byte-level pushdown automaton (PDA) (Figures 5.2, 5.3). During an LLM
generation, each autoregressive step will correspond to a state in the automata. Then, at each
step, we check each token in an LLM’s vocabulary. If the token would lead to an invalid se-
quence, it will be masked before sampling. Then we perform sampling, and the sampled token
(guaranteed to obey the specified structure) will advance the state of the automata, repeating the
steps until the generation stops.

17

main ::= <array> | <str>
array ::= '[' (<str> | <array> ',')*
 <str> | <array> ']'
str ::= '"' [^"\]* '"'

[0]<array>

[3]<str>

Node l

Matching Stacks for Input

Expanding edge
[3] <str>

Now at node l
of rule <str>

[0]<array>

[5]<str>

Node l

Expanding edge
[0] <array>

Expanding edge
[5] <str>

Now at node l
of rule <str>

Expanding edge
[0] <array>

Context-free Grammar

["a

Figure 5.2: A context-free grammar with an example matching stack. The CFG is translated to
the pushdown automaton in Figure 5.3. Adapted from [5].

However, this checking can be very slow if done naively, especially because modern LLMs
have a large vocabulary size (e.g., 128K for Llama3.2). XGrammar is built to support structured
generation with LLM efficiently.

5.2 XGrammar Core Design

XGrammar is a portable C++ library designed to enable LLM structured generation with near-
zero overhead. It leverages a combination of techniques such as pre-computation, data-structure
engineering, and CPU-GPU overlapping. The key flow of XGrammar is illustrated in Figure 5.3.
Below, we present the key insights and optimizations from XGrammar.

Adaptive Token-Mask Cache The key observation is that, at each PDA node, usually more
than 99% of the tokens can be classified as accept/reject without inspecting the stack. XGrammar
pre-computes these context-independent tokens once, stores them in a compressed cache, and
only checks the context-dependent remainder at runtime, dramatically decreasing the overhead.

Context Expansion For each rule, XGrammar statically infers the set of suffixes that can
legally follow it. Any token whose suffix cannot match is rejected up-front, cutting context-
dependent tokens by up to 90%.

18

[0] array

[3] str

Node l

[0]<array>

[3]<str>

Node l

a b

[0] <array>

[1] <str>

main:

g

c [2] '['array:

[4] <array>

d

','

e

[5] <str>

[7] ']'

f

mh [8] '"'str:

[9] [^"\]

l [10] '"'

[3] <str>

[6] <array>

Pushdown Automata

Context-independent:
Fetched from cache

(fast, majority)

Context-dependent:
Checked at runtime

(slow, minority)

Known rejected
Known accepted

Vocabulary

Use pushdown
automata to parse

Efficient Mask Generation

Complete
Token Mask

Prior LLM
Output

Matching Stack States

Partial
Token Mask

Retrieve token mask cache
from stack top

Vocabulary

["a

Context-dependent tokens (minority)

Adaptive
Token Mask Cache
● Preprocessed for
 every node (§3.1)
● Enhanced with
 context expansion
 (§3.2)

● Maintained by
 persistent execution stacks
 (§3.3)

● Automata
 optimization (§3.4)

Context-independent tokens

● Overlapping
 with LLM
 engine (§3.5)

Figure 5.3: Flow of XGrammar. Adapted from [5].

Persistent Execution Stack Runtime stacks (including parallel stacks arising from ambiguous
grammars) are stored in a tree that supports fork and rollback. This de-duplicates common pre-
fixes when scanning many candidate tokens, reducing memory footprint and enabling advanced
features such as speculative decoding.

Automata-Level Optimizations Inlining tiny fragment rules and merging equivalent PDA
states shrink both nodes and edges, reducing stack explosion and token checks further.

LLM Prefilling

Build Mask CacheCPU

GPU

Mask
Gen

Sampling LLM Decoding

Mask
Gen

Sampling

Sync

Sync

Figure 5.4: Overlapping of LLM GPU workload and XGrammar CPU workload. Adapted from
[5].

CPU-GPU Overlap The token checking and automata maintenance are purely done on the
CPU. Therefore, XGrammar overlaps mask generation with GPU compute and only synchro-
nizes before sampling. Because a mask is ready before GPU decoding finishes, structured gen-
eration adds virtually no critical-path time (Figure 5.4).

19

5.3 Evaluation of XGrammar on WebLLM
Since XGrammar is implemented purely in C++, we leverage Emscripten [20] to port it to We-
bAssembly and build a TypeScript library around it that can be used by WebLLM.

Llama-3.1-8B
(M3 Max)

Qwen-2.5-0.5B
(iPhone 14 Pro Max)

0

200

400

600

800

1000

1200

1400

1600
Ti

m
e

to
 Fi

rs
t T

ok
en

 (m
s)

1531.9

1179.1

1365.1

955.5

Llama-3.1-8B
(M3 Max)

Qwen-2.5-0.5B
(iPhone 14 Pro Max)

0

10

20

30

40

50

60

Ti
m

e
pe

r O
ut

pu
t T

ok
en

 (m
s)

31.9

48.1

29.7

47.3

Structured w/ XGrammar Unstructured

Figure 5.5: Performance on WebLLM with structured generation turned on and off. Adapted
from [5].

We evaluate the performance of WebLLM when using XGrammar and without using XGram-
mar on both MacBook M3 Max and iPhone 14 Pro Max. Across an 8B model and a 0.5B model,
we demonstrate that the overhead of XGrammar is near-negligible (especially for the time per
output token).

20

Chapter 6

Future Directions

The combination of WebLLM, MLC-LLM, Apache TVM, and XGrammar demonstrates that
high-quality language-model inference is now possible directly inside consumer browsers. Nonethe-
less, several open questions remain to be worth exploring. This chapter outlines two particularly
interesting avenues for future work:

• Hybrid inference, which dynamically partitions computation between the client and the
cloud.

• In-browser agent environments, specifically providing small local models with semanti-
cally rich coarse-grained actions for web tasks automation.

6.1 Hybrid Inference
While WebLLM focuses on fully on-device execution, many real-world applications can benefit
from an edge–cloud strategy that adaptively offloads portions of the workload. Recent work such
as Minions [12] illustrates how a carefully designed hybrid architecture can improve both cost
efficiency—by invoking cloud models only when necessary—and privacy—by keeping sensitive
user data local.

Data Parallel

P D P D

P-D disaggregation

P D

…

Existing
Approaches

Our approach

Programmable
Router

Data Parallel

P D P D
P-D Disaggregation

P D

Dynamic Reconfiguration
through fine-grained REST API

 Fine-grained REST API
 prep_recv
 remote_send
 start_generate

LLM Microserving Engine

Radix
Tree

KV
Cache

Unified
KV interface

kv.new_sequence
kv.fork_sequence
kv.begin_forward
kv.mark_send
kv.prep_recv
kv.attention

Coarse-grained
REST API

P-D Balance

P P D …

Configured within
service in startup time

LLM Serving
Engine

 REST API
 generate

Figure 6.1: Systems architecture of MicroServe. Adapted from [9].

MicroServe is a system that exemplifies this disaggregated inference paradigm by introduc-
ing a microservice-inspired architecture for LLM inference. Rather than treating the model as

21

a monolithic black box, it decomposes inference into fine-grained microservices that cooper-
ate over a lightweight REST interface (Figure 6.1). Concretely, the framework exposes three
primitive APIs:

• prep recv: prepare to receive key/value cache (essentially allocate and get ready to
accept some portion of the prompt’s KV).

• remote send: prefill the prompt and send a portion of (or all of) the key/value cache
from one engine to another.

• star generate: begin the generation (which could include both finishing prefilling the
prompt and then decoding tokens).

Compared with a coarse-grained request/response interface, these primitives give system
builders explicit control over how work is partitioned. They enable, for example, prefill–decode
disaggregation, distributed KV-cache management, or elastic data-parallel scaling—each of which
can be expressed by different compositions of the three calls. Figure 6.2 demonstrates achieving
prefill-decode disaggregation using MicroServe’s APIs.

async def prefill_decode(
 request
) -> AsyncGenerator[Chunk, Any]:
 kv_addr_info, _ = decode_engine.prep_recv(
 request.prompt, end=-1, seq_id=request.id
)
 await prefill_engine.remote_send(
 request.prompt, kv_addr_info, decode_engine_id,
 begin=0, end=-1, seq_id=request.id
)
 async for chunk in decode_engine.start_generate(
 request.prompt, begin=-1, seq_id=request.id
):
 yield chunk

P D

Router prep_recv(prompt, end=-1)
remote_send(prompt, kv_addr_info,
 recv_peer, begin=0, end=-1)
start_generate(prompt, begin=-1)

12 3

1
2

3prompt

Figure 6.2: Prefill-decode disaggregation expressed in MicroServe’s APIs. Adapted from [9].

Extending WebLLM with a MicroServe-style runtime would let browsers collaborate with
remote engines opportunistically: a local model could handle typical requests offline or under
privacy constraints, while seamlessly delegating complex planning or long-context processing
to more capable cloud models. Achieving this will require a scheduling policy that balances
latency, bandwidth, output quality, and cost.

22

6.2 Browser Agent Environment
Beyond hybrid inference, another path toward truly agentic web applications is to enrich the
action space available to in-browser LLMs. Existing work such as Browser Use [11] lets a
model operate directly on low-level actions such as “click on a certain element”. Although
expressive, this granularity places a heavy reasoning burden on small on-device models, which
must plan long sequences of atomic manipulations.

We hypothesize that introducing a library of coarse-grained, semantically meaningful ac-
tions can bridge this capability gap. For a given website, developers—or even the broader
community—could implement JavaScript “macros” such as open-menu, type-search-query,
or add-item-to-cart. Exposing these macros as callable functions reduces multi-step plan-
ning to a single action selection, allowing lightweight models to succeed where they would oth-
erwise struggle.

In the longer term, a powerful foundation model could automatically explore a site and syn-
thesize the macro library. Small client-side models would then invoke these macros through
function calling (validated by XGrammar). Key research questions include automated discovery
of robust action abstractions, security of generated JavaScript, and adaptive fallback strategies
when a macro fails due to page layout changes.

23

24

Chapter 7

Conclusion

This thesis examined whether modern large language models (LLMs) can run entirely inside con-
sumer devices’ web browsers without prohibitive loss of performance or developer ergonomics.
The question arises from two converging trends: (i) smaller LLMs now deliver strong quality,
and (ii) laptops and phones continue to gain compute power. Because browsers are universally
available and backend-agnostic, they present a natural platform for on-device inference.

We provide a positive answer with WebLLM, an open-source TypeScript system that achieves
near-native performance (up to 80%) for on-device inference by leveraging machine learning
compilers (MLC-LLM and Apache TVM) and web technologies (WebGPU and WebAssembly).
To broaden practical use cases, we integrated XGrammar for grammar-constrained decoding,
enabling reliable structured outputs such as JSON.

Taken together, these contributions lower technical barriers to privacy-preserving, cost-effective,
and universally accessible AI applications on everyday devices. We hope this work encourages
further exploration of on-device inference and its role in democratizing LLMs and AI.

25

26

Bibliography

[1] Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gu-
nasekar, Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al.
Phi-4 technical report. arXiv preprint arXiv:2412.08905, 2024. 1.1

[2] Jason Ansel, Edward Yang, Horace He, Natalia Gimelshein, Animesh Jain, Michael Voz-
nesensky, Bin Bao, Peter Bell, David Berard, Evgeni Burovski, et al. Pytorch 2: Faster
machine learning through dynamic python bytecode transformation and graph compilation.
In Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, pages 929–947, 2024. 2.3

[3] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen,
Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}: An automated {End-
to-End} optimizing compiler for deep learning. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18), pages 578–594, 2018. 1.2, 2.2.1, 2.3

[4] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast
and memory-efficient exact attention with io-awareness. Advances in neural information
processing systems, 35:16344–16359, 2022. 2.1

[5] Yixin Dong, Charlie F. Ruan, Yaxing Cai, Ruihang Lai, Ziyi Xu, Yilong Zhao, and Tianqi
Chen. Xgrammar: Flexible and efficient structured generation engine for large language
models, 2024. URL https://arxiv.org/abs/2411.15100. (document), 1.2, 5.1,
5.2, 5.3, 5.4, 5.5

[6] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The
llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024. 1.1, 2.1

[7] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to speed with
webassembly. In Proceedings of the 38th ACM SIGPLAN conference on programming
language design and implementation, pages 185–200, 2017. 1.1.1, 2.2.1

[8] Pat Hickey, Jakub Konka, Dan Gohman, Sam Clegg, Andrew Brown, Alex Crichton, Lin
Clark, Colin Ihrig, Peter Huene, Yuji YAMAMOTO, Denis Vasilik, Josh Triplett, Sergey
Rubanov, Syrus Akbary, Mike Frysinger, Aaron Turner, Alon Zakai, Andrew Mackenzie,
Benjamin Brittain, Casper Beyer, David McKay, Leon Wang, Marcin Mielniczuk, Mendy
Berger, PTrottier, Piotr Sikora, Till Schneidereit, Katelyn Martin, and Nasso. WebAssem-
bly/WASI: snapshot-01. URL https://doi.org/10.5281/zenodo.4323447.

27

https://arxiv.org/abs/2411.15100
https://doi.org/10.5281/zenodo.4323447

4.2

[9] Hongyi Jin, Ruihang Lai, Charlie F. Ruan, Yingcheng Wang, Todd C. Mowry, Xupeng
Miao, Zhihao Jia, and Tianqi Chen. A system for microserving of llms, 2024. URL
https://arxiv.org/abs/2412.12488. (document), 1.2, 6.1, 6.2

[10] MLC team. MLC-LLM, 2023-2025. URL https://github.com/mlc-ai/
mlc-llm. (document), 1.2, 4.1

[11] Magnus Müller and Gregor Žunič. Browser use: Enable ai to control your browser, 2024.
URL https://github.com/browser-use/browser-use. 6.2

[12] Avanika Narayan, Dan Biderman, Sabri Eyuboglu, Avner May, Scott Linderman, James
Zou, and Christopher Re. Minions: Cost-efficient collaboration between on-device and
cloud language models, 2025. URL https://arxiv.org/abs/2502.15964. 6.1

[13] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen
Tan, Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foun-
dation models for code. arXiv preprint arXiv:2308.12950, 2023. 1.1

[14] Charlie F. Ruan, Yucheng Qin, Xun Zhou, Ruihang Lai, Hongyi Jin, Yixin Dong, Bohan
Hou, Meng-Shiun Yu, Yiyan Zhai, Sudeep Agarwal, Hangrui Cao, Siyuan Feng, and Tianqi
Chen. Webllm: A high-performance in-browser llm inference engine, 2024. URL https:
//arxiv.org/abs/2412.15803. (document), 1.2, 3.1, 3.1

[15] Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona
Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al.
Gemma 3 technical report. arXiv preprint arXiv:2503.19786, 2025. 1.1

[16] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2.1

[17] World Wide Web Consortium (W3C). Webgpu. https://www.w3.org/TR/
webgpu/, 2023. Accessed: 2025-05-06. 1.1.1, 2.2.2

[18] An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. arXiv preprint
arXiv:2412.15115, 2024. 1.1

[19] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng
Liu, Jianhong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: To-
ward mathematical expert model via self-improvement. arXiv preprint arXiv:2409.12122,
2024. 1.1

[20] Alon Zakai. Emscripten: an llvm-to-javascript compiler. In Proceedings of the ACM inter-
national conference companion on Object oriented programming systems languages and
applications companion, pages 301–312, 2011. 4.2, 5.3

[21] Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun
Li, Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-
source models in code intelligence. arXiv preprint arXiv:2406.11931, 2024. 1.1

28

https://arxiv.org/abs/2412.12488
https://github.com/mlc-ai/mlc-llm
https://github.com/mlc-ai/mlc-llm
https://github.com/browser-use/browser-use
https://arxiv.org/abs/2502.15964
https://arxiv.org/abs/2412.15803
https://arxiv.org/abs/2412.15803
https://www.w3.org/TR/webgpu/
https://www.w3.org/TR/webgpu/

	1 Introduction
	1.1 Motivation
	1.1.1 Browser as a Platform

	1.2 Overview

	2 Background
	2.1 LLM Inference and On-device Deployment
	2.2 Web Technologies
	2.2.1 WebAssembly
	2.2.2 WebGPU
	2.2.3 Web Worker

	2.3 Machine Learning Compilers

	3 WebLLM Core Design
	3.1 Challenges and Design Principles
	3.2 Systems Architecture
	3.3 API Design
	3.4 GPU Acceleration
	3.5 Adapting to Browser Runtime
	3.6 Evaluation of WebLLM

	4 Machine Learning Compiler and Runtime
	4.1 MLC-LLM as a Compiler for WebLLM
	4.2 TVMjs

	5 Structured Generation with XGrammar
	5.1 Motivation and Background
	5.2 XGrammar Core Design
	5.3 Evaluation of XGrammar on WebLLM

	6 Future Directions
	6.1 Hybrid Inference
	6.2 Browser Agent Environment

	7 Conclusion
	Bibliography

