
Mimetic Initialization for Deep Neural
Networks

Asher James Trockman

CMU-CS-25-114

May 2025

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
J. Zico Kolter, Chair

Albert Gu
Aditi Raghunathan

Sébastien Bubeck (OpenAI)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science.

Copyright © 2025 Asher James Trockman

This research was sponsored by the Air Force Research Laboratory under award number FA87501720152; Robert
Bosch GMBH under award number 0087016732PCRPO0087023984; Robert Bosch LLC under award number
OSP00009188; and the Defense Advanced Research Projects Agency under award numbers HR00112020006 and
HR00112320029. The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: Deep Learning, Computer Vision, Convolutional Neural Networks, Vision Trans-
formers, Self-Attention, State Space Models, Multilayer Perceptrons, Initialization

For Mom and Dad —
and for Aunt Marsha

iv

Abstract
While neural network weights are typically initialized randomly from univariate

distributions, pre-trained weights often have visually-discernible multivariate struc-
ture. We propose a technique called “mimetic initialization” that aims to replicate
such structures when initializing convolutional networks (CNNs), Transformers, and
State Space Models (SSMs). For CNNs, we handcraft a class of multivariate Gaus-
sian distributions to initialize filters for depthwise convolutional layers; for Trans-
formers, we initialize the query and key weights for self-attention layers such that
their product approximates the identity; and for SSMs, we initialize layers to ap-
proximate simple linear attention. Mimetic initialization substantially reduces train-
ing time and increases final accuracy on various common small-scale benchmarks.
Our technique enables us to almost close the gap between untrained and pre-trained
Vision Transformers on small datasets like CIFAR-10, achieving up to a 6% gain in
accuracy through initialization alone. For convolutional networks like ConvMixer
and ConvNeXt, we observe improvements in accuracy and reductions in training
time, even when convolutional filters are frozen (untrained) after initialization. For
SSMs, mimetic initialization substantially improves generalization abilities on syn-
thetic language tasks like copying and associative recall. Overall, our findings sug-
gest that some of the benefits of pre-training may be explained by it serving as a
good initialization, whose structure is simple enough to (at least partially) capture
by hand in closed form.

vi

Acknowledgments
Foreword to the acknowledgment: It feels funny to write an acknowledgment for

such a modest contribution to the science of deep learning. After all, I just did the
research that seemed the most fun at the time. So my acknowledgment is not just
for the work presented in this document, but rather for the past nearly six years of
graduate school. Even when life got harder, as it did for a substantial part of those
six years, my time at Carnegie Mellon remained a consistent source of enjoyment.

That said, I would first like to thank my mom, Lisa Trockman, for her endless
support, advice, and reassurance. The past six years were hard for both of us, but
we have gotten through them together. And I thank my dad, James (Jim) Trockman,
for inspiring in me the thing that makes someone want to spend six years doing
research in graduate school— appreciation of beauty, curiosity, language, meditative
work. . . And I thank my aunt, Marsha Trockman, for encouraging me to explore and
experience the world, even when it’s not comfortable. I also want to thank Aunt Jane,
Uncle Barry, and my sisters: Jami, Joni, and Jordyn.

I also want to thank the many good friends I have made here and in related
endeavors—you all made this a great time. My friends from my cohort: Lucio
Dery, Justin Whitehouse, Praneeth Kacham, Siddharth Prasad. And from around
Carnegie Mellon: David Widder, Rijnard van Tonder, Ian Waudby-Smith, Likhitha
Chintareddy, Sang Choe, Courtney Miller, Tanya Marwah. My friends and collab-
orators from my lab: Gaurav Manek, Jeremy Cohen, Avi Schwarzschild, Yash Sa-
vani, Joshua Williams, Zhili Feng, Alex Robey, Marc Finzi. And from internships:
Nicholas Roberts, Jessica Yin, Chris Choi, Bingbin Liu, Changming Xu. And from
conferences: Felix Petersen, Kelsey Doerksen. Thank you all, I’ve enjoyed all the
good times.

I was also fortunate to be advised by Zico Kolter for the past six years; it has
been a pleasure to be immersed in some of the coolest ideas in machine learning.
I appreciated your support and understanding in the more difficult years, and the
freedom to choose my own direction in the easier years. I’ve enjoyed working on our
many projects, even the ones that didn’t work. I was also fortunate to be mentored
by Bogdan Vasilescu and Christian Kästner in Carnegie Mellon’s REUSE program
in the summer of 2017, two years before starting graduate school; that summer has
been paying dividends for eight years! Thanks, Bogdan, for our many chats over the
years.

Between the aforementioned summer and now, it feels like I’ve been here forever.
I’m sad to go, but I didn’t want to take up the Computer Science Department on its
maximum offer of ten years. I’m looking forward to what’s next.

viii

Contents

1 Initializing deep neural networks 1
1.1 Introduction . 1

1.1.1 Thesis overview . 2

2 ConvMixer, the simple CNN 5
2.1 Patches are all you need? . 5

2.1.1 Introducing ConvMixer: a simple convolutional network 6
2.1.2 ImageNet experiments on ConvMixer 7
2.1.3 Visual recognition architecture background 9
2.1.4 Comparison to related architectures . 10
2.1.5 Small-scale experiments on ConvMixer 13
2.1.6 Inspecting the structure of ConvMixer’s weights 15
2.1.7 Summary of contributions . 18

3 Mimetic initialization 21
3.1 Understanding the Covariance Structure of Convolutional Filters 21

3.1.1 The empirical covariances of trained convolutional filters 23
3.1.2 D.I.Y. Filter Covariances . 27
3.1.3 Initializing using our filter covariance structure 29
3.1.4 An efficient convolutional filter dilation schedule 35
3.1.5 Summary of contribution . 36

3.2 Mimetic Initialization of Self Attention Layers 37
3.2.1 The difficulty of training Vision Transformers 38
3.2.2 Query and key weights are correlated in pretrained models 40
3.2.3 Mimetic init for self-attention layers . 40
3.2.4 Accelerating ViT training with mimetic init 43
3.2.5 Why does this initialization work? . 48
3.2.6 Language modeling explorations . 49
3.2.7 Summary of contributions . 51

3.3 Mimetic Initialization for State Space Models 51
3.3.1 State space model background . 53
3.3.2 Initializing state space layers to be more like attention 56
3.3.3 State Space Models want to be Transformers:

Mimetic Initialization lets them get closer 59

ix

3.3.4 Mimetic init experiments across architecture settings 60
3.3.5 Investigation of pretrained SSMs . 62
3.3.6 Summary of contributions . 64

3.4 Mimetic initialization for MLPs . 65
3.4.1 Understanding the covariance structure of trained MLPs 66
3.4.2 Experiments on channel plus spatial mixing mimetic init 67
3.4.3 Further structures in the weight space covariance 69
3.4.4 Summary of contributions . 70

4 Conclusion 73
4.1 Future work . 73

A Implementations 75
A.1 ConvMixer Implementation . 75
A.2 Implementation: Mimetic initialization for convolutional layers 77

B Additional Experiments 79
B.1 Covariance Structure: Hyperparameter Grid Searches & Experimental Setup . . . 79

B.1.1 CIFAR-10 Grid Searches . 79
B.1.2 ImageNet Grid Searches . 85

B.2 Shift Function Definition & Proof . 86
B.3 Additional ImageNet Experiments on Mimetic Initialization for Convolutional

Layers . 87
B.4 Additional CIFAR-10 Tables for Mimetic Initialization for Convolutional Layers 90

x

List of Figures

2.1 Accuracy vs. parameters, trained and evaluated on ImageNet-1k. 5
2.2 ConvMixer uses “tensor layout” patch embeddings to preserve locality, and then

applies d copies of a simple fully-convolutional block consisting of large-kernel
depthwise convolution followed by pointwise convolution, before finishing with
global pooling and a simple linear classifier. 7

2.3 Implementation of ConvMixer in PyTorch; see Appendix A.1 for more imple-
mentations. 7

2.4 Patch embedding weights for a ConvMixer-1024/20 with patch size 14 (see Ta-
ble 2.2). 17

2.5 Patch embedding weights for a ConvMixer-768/32 with patch size 7 (see Table 2.2). 18
2.6 Random subsets of 64 depthwise convolutional kernels from progressively deeper

layers of ConvMixer-1536/20 (see Table 2.1). 19

3.1 In pre-trained models, the covariance matrices of convolutional filters are highly-
structured. Filters in earlier layers tend to be focused, becoming more diffuse as
depth increases. Observing the structure of each sub-block, we note that there
is often a static, centered negative component and a dynamic positive compo-
nent that moves according to the block’s position. Often, covariances are higher
towards the center of the filters. 24

3.2 The backward pass is faster with frozen filters. 24
3.3 CIFAR-10 accuracy for uniform initialization (A), baseline covariance transfer

(B-D), and our custom initialization results (E). 26
3.5 Kronecker-factorized covariances. 26
3.4 CIFAR-10 experimental results from initializing via convariances from narrower

(top) and shallower (bottom) models. The numeric annotations represent the
width (top) and depth (bottom) of the pre-trained model we use to intialize. U
represents uniform initialization. 27

3.6 Our convolutional covariance matrix construction with σ = π/2. 29
3.7 How our initialization changes with depth. Variance increases quadratically with

depth according to a schedule which can be chosen through visual inspection of
pre-trained models or through grid search. Here we use the parameters
σ0 = .5, vσ = .5, aσ = 3. 29

xi

3.8 Filters learned or generated for ConvMixer-256/8 with 2 × 2 patches and 9 × 9
filters trained on CIFAR-10: learned filters (left), filters sampled from the Gaus-
sian defined by the empirical covariance matrix of learned filters (center), and
filters from our initialization technique (right). 30

3.9 Our init also improves ConvNeXt’s accuracy on CIFAR-10 (group E vs. A). . . . 31
3.10 Convergence plots: each data point runs through a full cycle of the LR schedule,

and all points are averaged over three trials with shaded standard deviation. . . . 32
3.11 Initializing via covariances from models with different patch (left) and filter sizes

(right). Left: Lowercase denotes initializing from patch size 1×1, and uppercase
2× 2. Right: Annotations denote the reference filter size, U is uniform. 32

3.12 Using filter distributions from pre-trained ImageNet models to initialize models
trained on CIFAR-10 is also effective (represented by groups E and F, with hatch
marks). 33

3.13 Our initialization is also effective for 5× 5 filters. (The same legends in Fig. 3.3
apply.) . 33

3.14 Convergence plots: each data point runs through a full cycle of the LR schedule,
and all points are averaged over three trials with shaded standard deviation. . . . 33

3.15 Covariance matrices from a ConvMixer trained on ImageNet exhibit similar
structure to those of ConvMixers trained on CIFAR-10; however, later layers
tend to have more structure, including a “checkerboard” pattern in each sub-
block. 34

3.16 Changing the dilation schedule of 3×3 convolutions in line with our initialization
observations can—to a lesser extent—improve performance, especially or short-
duration training times on CIFAR-10. The effect is most obvious for ConvMixer-
256/8 with patch size 1× 1, in the upper left. The custom schedules (C-H) tend
to either be better than or comparable to the default schedule A. Simply using
larger dilations throughout (B, C) actually harms performance. See Table 3.2 for
a description of the dilation schedules A-H. 36

3.17 Self-attention weights of an ImageNet-pretrained ViT-Tiny. Pictured are 3 heads
for each of the 12 layers. Clipped to 64x64. 38

3.18 Attention maps computed from one CIFAR-10 batch for ViT-Tiny (a) untrained
(b) CIFAR-10 trained (c) ImageNet pretrained (d) using our init (e) our init and
then CIFAR-10 trained.
Rows: ↓ Layers #1, 4, 11 . 41

3.19 Possible α, β for different weight constructions. 42
3.20 Increasing the scale of the position embeddings improves CIFAR-10 perfor-

mance (ViT-Tiny). 45
3.21 Training curves for DeiT-Tiny in a (a) ResNet-style training pipeline and a (b)

DeiT-style pipeline. In the ResNet pipeline, we see a 4.1% improvement, com-
pared to a 0.5% improvement in the DeiT pipeline. 46

3.22 Adjusting the number of training points on CIFAR-10. 47
3.23 A pretrained GPT-2 shows considerably different patterns in the products of

WQW
T
K and WVWproj , compared to ViTs. 50

xii

3.24 Mambas initialized with our technique learn to copy more effectively than those
with default initialization. We see evidence of copying ability in the Mamba
attention maps; see Layer 1. 53

3.25 A hybrid Mamba architecture with one Self-Attention layer easily learns to copy.
Dotted lines: performance on training length (50), solid: 2× length generaliza-
tion (100). 54

3.26 Testing the four components of our initialization on Mamba 1 & 2 for 10 seeds. . 57
3.27 Mimetically initialized Mamba layers learn similar operations to Self-Attention

layers in the same location naturally with no additional supervision on several
tasks. Dotted lines: accuracy at training length (50), solid lines: generalizing to
length 100. 58

3.28 Simple linear attention underperforms Mamba even for very high head dimen-
sion, especially at generalization. Dotted lines: accuracy at length 100, solid: at
length 200; train length: 50. 59

3.29 Mamba 2 with mimetic init can learn to copy even for large vocabulary sizes. . . 61
3.30 Mimetic initialization allows for better use of the state size for copying; capacity

grows roughly linearly with state size, compared to almost not at all with default
init. 61

3.31 Mimetic initialization vs. Mamba 1/2 architecture sizes. 62
3.32 Mimetic init lets us nearly perfectly fit in-distribution even for long sequences

on copying (left) and MQAR (right), and also boosts generalization performance
(1024-dim 2-layer Mamba 2). 63

3.33 Pretrained 768-dim. 24-layer Mamba 1 vs. from-scratch training (w/ mimetic init). 63
3.34 The copying ability of a pretrained Mamba may be attributable to a fraction of

its layers. 64
3.35 Full empirical covariance matrices for unrolled MLP weights W1,W2 (jointly). . 66
3.36 CIFAR-10 experiments for ConvNeXt and ViT in conjunction with previous

mimetic inits for convolutional and self-attention layers. The effect of the MLP
init is significant in early training, but eventually evens out. The effect of conv.
and attn. mimetic init, however, remains. Note: each point in the graph repre-
sents the accuracy of a completed training run of x epochs, mean/std. reported
over 5 seeds. 68

3.37 Our MLP init improves early ImageNet-1k training in a data-efficient ViT, and
maintains a 0.5% advantage over baseline for the full training time. 68

3.38 Sweep of the bias parameter b of our init; across several baselines, b = 0 is
noticeably suboptimal. Mean/std. over 5 seeds per b. 68

3.39 The empirical covariance matrix of ≈16,000 tiny 4-layer ConvNeXts trained
on CIFAR-10, including convolution weights, MLP weights, biases, and Layer-
Norm weights. The second weight matrices (the one that “writes” to the residual
stream) of the MLP layers are correlated across layers to some extent. (We may
recommend folding in the LayerNorm weights.) 71

xiii

3.40 The central pixel of the cth convolutional filter is correlated with the cth diagonal
of the product of the weight matrices of the downstream MLP layer. Based on the
population-level empirical covariance calculated from ≈16,000 ConvNeXt train-
ing runs on CIFAR-10. This has not yielded an effective initialization strategy
(yet). 72

A.1 A more readable PyTorch (Paszke et al., 2019) implementation of ConvMixer,
where h = dim, d = depth, p = patch size, k = kernel size. 75

A.2 An implementation of our model in less than 280 characters, in case you happen
to know of any means of disseminating information that could benefit from such
a length.
All you need to do to run this is from torch.nn import *. 76

A.3 Implementation of our convolution covariance construction in NumPy. 77
A.4 Code to use our covariance construction and variance schedule to initalize depth-

wise convolutional layers in PyTorch. wconv is the weight of a depthwise con-
volutional layer (nn.Conv2d), and d ∈ [0, 1] is its depth as a fraction of the
total depth. 77

B.1 Grid search over initialization parameters σ0, vσ, aσ for ConvMixer-258/8 with
9×9 frozen filters and 2×2 patches trained for 20 epochs on CIFAR-10. Note that
the performance of uniform initialization is only ≈85%, i.e., almost all choices
result in some improvement. 80

B.2 Grid search over initialization parameters σ0, vσ, aσ for ConvMixer-258/8 with
9×9 frozen filters and 1×1 patches trained for 20 epochs on CIFAR-10. Note that
the performance of uniform initialization is only ≈88%, i.e., almost all choices
result in some improvement. 81

B.3 Grid search over initialiation parameters σ0, vσ, aσ for ConvNeXt-atto on CIFAR-
10 with frozen filters and 1 × 1 patches trained for 20 epochs on CIFAR-10.
Note the baseline performance with uniform initialization is around 80%, i.e.,
compared to ConvMixer there are more potentially disadvantageous parameter
combinations. 82

B.4 Grid search over initialiation parameters σ0, vσ, aσ for ConvNeXt-atto on CIFAR-
10 with frozen filters and 1 × 1 patches trained for 20 epochs, using the “saw-
tooth” variance schedule (see Fig B.5) to account for downsampling layers. While
this perhaps shows better robustness to parameter changes than Fig. B.3, the ef-
fect could also be due to effectively dividing the parameters by two. 83

B.5 Proposed stepwise variance schedule for ConvNeXt, i.e., a model including down-
sampling layers. In our experiments, we saw no advantage to using this scheme. . 84

B.6 Frozen filters: Grid search over initialization parameters for ConvMixer-512/12
with 14× 14 patches and 9× 9 filters, 10 epochs. Zeros indicate that the experi-
ment did not run. 85

B.7 Thawed filters: Grid search over initialization parameters for ConvMixer-512/12
with 14× 14 patches and 9× 9 filters, 10 epochs. 85

xiv

List of Tables

2.1 Models trained and evaluated on 224 × 224 ImageNet-1k only. See more in
Appendix 2.1.4. 8

2.2 Throughputs measured on an RTX8000 GPU using batch size 64 and fp16. Con-
vMixers and ResNets trained ourselves. Other statistics: DeiT (Touvron et al.,
2021b), ResMLP (Touvron et al., 2021a), Swin (Liu et al., 2021c), ViT (Dosovit-
skiy et al., 2020), MLP-Mixer (Tolstikhin et al., 2021), Isotropic MobileNets (San-
dler et al., 2019). We think models with matching colored dots (•) are informa-
tive to compare with each other. †Throughput tested, but not trained. Activations:
ReLU, GELU.
⋆Using new regularization hyperparameters based on Wightman et al. (2021)’s
A1 procedure. 11

2.3 Small ablation study of training a ConvMixer-256/8 on CIFAR-10. 14
2.4 Investigation of ConvMixer design parameters h, d, p, k and weight decay on

CIFAR-10 . 16

3.1 ImageNet-1k accuracy from various architectures and initializations. “Ours” de-
notes our proposed initialization. Bold indicates best within architecture and
category (frozen or thawed). 32

3.2 Dilation schedules for an 8-layer ConvMixer — we split the network into quar-
ters, so this may be extrapolated easily to deeper ConvMixers as well. The di-
lation schedules mimic the increasing filter size used in our initialization and
observed in pretrained ConvMixers. 37

3.3 100 epoch CIFAR-10 classification (ViT-Tiny). 43
3.4 Ablations on CIFAR-10, ViT-Ti . 44
3.5 ImageNet Results . 45
3.6 Our initialization on other datasets (ViT-Tiny, 100 epochs). 48
3.7 Other initializations . 49
3.8 Language results . 51

B.1 ConvMixer performance on ImageNet-1k training with 10 epochs. Our initial-
ization performs comparably to loading covariance matrices from previously-
trained models (which were trained for 150 epochs). 87

B.2 ImageNet 10-epoch training . 87
B.3 ImageNet 10-epoch training . 87
B.4 ImageNet 10-epoch training . 88

xv

B.5 ImageNet 10-epoch training . 88
B.6 ImageNet 50-epoch training . 89
B.7 ImageNet 50-epoch training . 89
B.8 ImageNet 50-epoch training . 89
B.9 CIFAR-10 results for ConvMixer-256/8 with patch size 2. Bold denotes the high-

est per group, and blue bold denotes the second highest. 91
B.10 CIFAR-10 results for ConvMixer-256/24 with patch size 2. Bold denotes the

highest per group, and blue bold denotes the second highest. 92
B.11 CIFAR-10 results for ConvMixer-256/8 with patch size 1. Bold denotes the high-

est per group, and blue bold denotes the second highest. 93
B.12 CIFAR-10 results for ConvNeXt-atto with patch size 1. Bold denotes the highest

per group, and blue bold denotes the second highest. 94
B.13 CIFAR-10 results for ConvNeXt-atto with patch size 2. Bold denotes the highest

per group, and blue bold denotes the second highest. 94

xvi

Chapter 1

Initializing deep neural networks

1.1 Introduction
Initialization was at one point crucial for training very deep neural networks. Early works in
this area attempted to address the problems of vanishing and exploding gradients, initializing the
weights so that the variance of activations and gradients was bounded from layer to layer (He
et al., 2015; Glorot and Bengio, 2010). Historically, the weights of deep neural networks are
initialized at random from univariate distributions with variance dependent on the hidden di-
mension of the layer at hand. In particular, most work initializes weights W ∈ Rm×n in order
to preserve the variance of inputs x ∈ Rn. For illustrative purposes, we could say that these
weights W for a particular layer are drawn from a multivariate Gaussian with fixed variance
α ∝ Hidden Dimension, i.e., with a diagonal covariance matrix:

vec(W) ∼ N (0, αI) . (1.1)

This formulation captures the most common strategies for initialization of deep networks, which
are typically only concerned with the particular setting of α given the shape of W ; in particular,
it is common to set α = n− 1

2 , which preserves the variance of the inputs. This comes from the
following fact, where we assume x,W ∼ N (0, 1) for the purpose of illustration:

Var(n− 1
2Wx) = Var(x). (1.2)

Kaiming initialization (He et al., 2015), the predominant strategy in deep learning libraries such
as PyTorch, further accounts for the effect of the ReLU activation function which, intuitively
speaking, halves the variance of its inputs, setting α = 2

1
2n− 1

2 .
While initialization using such heuristics is still important, techniques such as adaptive opti-

mizers and normalization layers have made it less critical to the trainability of deep neural net-
works Kingma and Ba (2017); Ioffe and Szegedy (2015). These methods ensure that gradients
and activations do not explode or vanish even for sub-optimal choices of α.

As another perspective on initialization, the most common paradigm in deep learning cur-
rently involves pretraining neural networks on large, general datasets and then finetuning them
on downstream tasks (Kolesnikov et al., 2020; Bommasani et al., 2021)—that is, pretraining

1

serves as a kind of smart initialization. This leads to much better performance than directly train-
ing on the downstream tasks: for language, learning tasks such as copying and recall within state
space models seems to be near-impossible without pretraining (Jelassi et al., 2024), and in vision
we see especially large improvements for more flexible architectures such as Vision Transform-
ers (Dosovitskiy et al., 2020), which are notoriously difficult to train from scratch on small-scale
datasets. This seems to be the case even when the downstream task is substantially different from
the pretraining dataset (Kolesnikov et al., 2020), especially for larger architectures (Raghu et al.,
2019). In fact, recent work has suggested that one should “never train from scratch” (Amos et al.,
2023).

The prevailing wisdom is that pretraining is about storing transferrable knowledge or learning
representations that can be leveraged on downstream tasks (Bommasani et al., 2021). However,
some work has hypothesized that some of the benefits of pretraining may be due to the fact that
it serves as a good initialization, in that pretrained networks are simply easier to optimize than
their untrained counterparts (Zhang et al., 2022; Neyshabur et al., 2020).

We hypothesized that it would be possible to extract this good initialization component from
pretraining in closed-form through studies of pretrained neural networks, rather than through
mathematical first principles as in work on signal propagation (He et al., 2023; Xiao et al., 2018;
Martens et al., 2021). From such studies, perhaps we can obtain new initialization schemes that
significantly improve training even with the full suite of tricks in modern deep learning such as
BatchNorm and Adam and variants.

As a first step towards investigating our hypothesis, we propose a simple ansatz of the form
of the good initialization component of pretraining which is more flexible than the formulation
in Eq. 1.1:

vec(W) ∼ N (0,Σ) , (1.3)

for a specifically-structured or even unconstrained covariance matrix Σ, whose structure we set
through inspiration from studies of pretrained networks. In some cases, we study the joint distri-
bution of related or adjacent layers Wa,Wb instead:

[vec(Wa); vec(Wb)] ∼ N (0,Σab) . (1.4)

In the work that follows, we show that by using this more general initialization scheme that
allows for high-dimensional statistical dependencies between weights, we can considerably im-
prove neural network performance in a variety of settings. We conclude by presenting some
observations of the covariance structure of the entire weight space of small convolutional net-
works.

1.1.1 Thesis overview
We begin by proposing a novel and extremely simple convolutional neural network architecture
called ConvMixer, whose simplicity will lead us to propose the first mimetic initialization for
convolutional layers. Unlike previous convolutional networks, ConvMixer separates convolu-
tional layers into depthwise and pointwise convolutions, where depthwise convolutions mix over
the spatial dimension with a single independent filter per channel and pointwise convolutions
mix over channel dimensions (equivalently to linear layers). Also unlike previous convolutional

2

networks, ConvMixer uses large 9×9 filters rather than stacks of smaller 3×3 filters. In our ini-
tial study on ConvMixer, we notice that these filters contain interesting and perhaps interpretable
structures after training.

Inspired by the structures we observed in ConvMixer filters, we propose the first “mimetic
initialization” for convolutional filters, which decreases training time, increases data efficiency,
and results in higher final accuracy compared to traditional univariate initializations. We then ex-
tend our method to self-attention layers in vision transformers, which successfully addresses the
gap in data efficiency between vision transformers and convolutional networks. Then, leveraging
the connection between self-attention layers and state space layers, we demonstrate that mimetic
initialization allows state space models (namely Mamba version 1 and 2) to more easily learn to
do tasks such as copying and associative recall. Finally, we attempt to extend mimetic initial-
ization beyond spatial mixing layers (convolution layers, attention layers, state space layers) to
channel mixing layers, and we propose a very simple mimetic initialization scheme for multilayer
perceptrons that can be combined with the previous spatial mixing layer mimetic initialization
techniques.

3

4

Chapter 2

ConvMixer, the simple CNN

2.1 Patches are all you need?

0 20 40 60 80 100 120
Parameters (Millions)

72

74

76

78

80

82

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

(%
)

ConvMixer ResMLP DeiT ResNet

Figure 2.1: Accuracy vs. parameters,
trained and evaluated on ImageNet-1k.

For many years, convolutional neural networks have
been the dominant architecture for deep learning sys-
tems applied to computer vision tasks. But recently,
architectures based upon Transformer models, e.g., the
so-called Vision Transformer architecture (Dosovitskiy
et al., 2020), have demonstrated compelling perfor-
mance in many of these tasks, often outperforming clas-
sical convolutional architectures, especially for large
data sets. An understandable assumption, then, is that
it is only a matter of time before Transformers become
the dominant architecture for vision domains, just as
they have for language processing. In order to ap-
ply Transformers to images, however, the representa-
tion had to be changed: because the computational cost
of the self-attention layers used in Transformers would
scale quadratically with the number of pixels per image if applied naively at the per-pixel level,
the compromise was to first split the image into multiple “patches”, linearly embed them, and
then apply the transformer directly to this collection of patches.

In this work, we explore the question of whether, fundamentally, the strong performance of
vision transformers may result more from this patch-based representation than from the Trans-
former architecture itself. We develop a very simple convolutional architecture which we dub
the “ConvMixer” due to its similarity to the recently-proposed MLP-Mixer (Tolstikhin et al.,
2021). This architecture is similar to the Vision Transformer (and MLP-Mixer) in many re-
spects: it directly operates on patches, it maintains an equal-resolution-and-size representation
throughout all layers, it does no downsampling of the representation at successive layers, and it
separates “channel-wise mixing” from the “spatial mixing” of information. But unlike the Vi-
sion Transformer and MLP-Mixer, our architecture does all these operations via only standard
convolutions.

5

The chief result we show in this paper is that this ConvMixer architecture, despite its ex-
treme simplicity (it can be implemented in ≈ 6 lines of dense PyTorch code), outperforms both
“standard” computer vision models such as ResNets of similar parameter counts and some cor-
responding Vision Transformer and MLP-Mixer variants, even with a slate of additions intended
to make those architectures more performant on smaller data sets. Importantly, this is despite the
fact that we did not design our experiments to maximize accuracy nor speed, in contrast to the
models we compared against. Our results suggest that, at least to some extent, the patch repre-
sentation itself may be a critical component to the “superior” performance of newer architectures
like Vision Transformers. While these results are naturally just a snapshot, and more experiments
are required to exactly disentangle the effect of patch embeddings from other factors, we believe
that this provides a strong “convolutional-but-patch-based” baseline to compare against for more
advanced architectures in the future.

2.1.1 Introducing ConvMixer: a simple convolutional network
Our model, dubbed ConvMixer, consists of a patch embedding layer followed by repeated ap-
plications of a simple fully-convolutional block. We maintain the spatial structure of the patch
embeddings, as illustrated in Fig. 2.2. Patch embeddings with patch size p and embedding di-
mension h can be implemented as convolution with cin input channels, h output channels, kernel
size p, and stride p:

z0 = BN (σ{Convcin→h(X,stride=p,kernel size=p)}) (2.1)

The ConvMixer block itself consists of depthwise convolution (i.e., grouped convolution with
groups equal to the number of channels, h) followed by pointwise (i.e., kernel size 1 × 1) con-
volution. As we will explain in Sec. 2.1.2, ConvMixers work best with unusually large kernel
sizes for the depthwise convolution. Each of the convolutions is followed by an activation and
post-activation BatchNorm:

z′l = BN (σ{ConvDepthwise(zl−1)}) + zl−1 (2.2)
zl+1 = BN (σ{ConvPointwise(z′l)}) (2.3)

After many applications of this block, we perform global pooling to get a feature vector of size
h, which we pass to a softmax classifier. See Fig. 2.3 for an implementation of ConvMixer in
PyTorch.

Design parameters. An instantiation of ConvMixer depends on four parameters: (1) the
“width” or hidden dimension h (i.e., the dimension of the patch embeddings), (2) the depth d,
or the number of repetitions of the ConvMixer layer, (3) the patch size p which controls the in-
ternal resolution of the model, (4) the kernel size k of the depthwise convolutional layer. We
name ConvMixers after their hidden dimension and depth, like ConvMixer-h/d. We refer to the
original input size n divided by the patch size p as the internal resolution; note, however, that
ConvMixers support variable-sized inputs.

Motivation. Our architecture is based on the idea of mixing, as in Tolstikhin et al. (2021). In
particular, we chose depthwise convolution to mix spatial locations and pointwise convolution
to mix channel locations. A key idea from previous work is that MLPs and self-attention can

6

Residual connection

+

D
ep
th
w
is
e

C
on

vo
lu

tio
n

G
EL

U

Ba
tc

hN
or

m

G
EL

U

Ba
tc

hN
or

m

P
oi
nt
w
is
e

C
on

vo
lu

tio
n

ConvMixer Layer

depth

G
lo

ba
l A

ve
ra

ge
 P

oo
lin

g

Fu
lly

-C
on

ne
ct

ed

C
la

ss

G
EL

U

Ba
tc
hN

or
m

Pa
tc

h
Em

be
dd

in
g

Figure 2.2: ConvMixer uses “tensor layout” patch embeddings to preserve locality, and then
applies d copies of a simple fully-convolutional block consisting of large-kernel depthwise con-
volution followed by pointwise convolution, before finishing with global pooling and a simple
linear classifier.

1 def ConvMixer(h, depth, kernel_size=9, patch_size=7, n_classes=1000):
2 Seq, ActBn = nn.Sequential, lambda x: Seq(x, nn.GELU(), nn.BatchNorm2d(h))
3 Residual = type('Residual', (Seq,), {'forward': lambda self, x: self[0](x) + x})
4 return Seq(ActBn(nn.Conv2d(3, h, patch_size, stride=patch_size)),
5 *[Seq(Residual(ActBn(nn.Conv2d(h, h, kernel_size, groups=h, padding="same"))),
6 ActBn(nn.Conv2d(h, h, 1))) for i in range(depth)],
7 nn.AdaptiveAvgPool2d((1,1)), nn.Flatten(), nn.Linear(h, n_classes))

Figure 2.3: Implementation of ConvMixer in PyTorch; see Appendix A.1 for more implementa-
tions.

mix distant spatial locations, i.e., they can have an arbitrarily large receptive field. Consequently,
we used convolutions with an unusually large kernel size to mix distant spatial locations.

While self-attention and MLPs are theoretically more flexible, allowing for large receptive
fields and content-aware behavior, the inductive bias of convolution is well-suited to vision tasks
and leads to high data efficiency. By using such a standard operation, we also get a glimpse
into the effect of the patch representation itself in contrast to the conventional pyramid-shaped,
progressively-downsampling design of convolutional networks.

2.1.2 ImageNet experiments on ConvMixer
Training setup. We primarily evaluate ConvMixers on ImageNet-1k classification without
any pretraining or additional data. We added ConvMixer to the timm framework (Wight-
man, 2019) and trained it with nearly-standard settings: we used RandAugment (Cubuk et al.,
2020), mixup (Zhang et al., 2017), CutMix (Yun et al., 2019), random erasing (Zhong et al.,
2020), and gradient norm clipping in addition to default timm augmentation. We used the
AdamW (Loshchilov and Hutter, 2018) optimizer and a simple triangular learning rate sched-
ule. Due to limited compute, we did absolutely no hyperparameter tuning on ImageNet and
trained for fewer epochs than competitors. Consequently, our models could be over- or under-
regularized, and the accuracies we report likely underestimate the capabilities of our model.

Results. A ConvMixer-1536/20 with 52M parameters can achieve 81.4% top-1 accuracy
on ImageNet, and a ConvMixer-768/32 with 21M parameters 80.2% (see Table 2.1). Wider

7

Current “Most Interesting” ConvMixer Configurations vs. Other Simple Models

Network
Patch
Size

Kernel
Size

Params
(×106)

T.hput
(img/sec)

Act.
Fn. # Epochs

ImNet
top-1 (%)

ConvMixer-1536/20 7 9 51.6 134 G 150 81.37
ConvMixer-768/32 7 7 21.1 206 R 300 80.16

ResNet-152 – 3 60.2 828 R 150 79.64
DeiT-B 16 – 86 792 G 300 81.8
ResMLP-B24/8 8 – 129 181 G 400 81.0

Table 2.1: Models trained and evaluated on 224 × 224 ImageNet-1k only. See more in Ap-
pendix 2.1.4.

ConvMixers seem to converge in fewer epochs, but are memory- and compute-hungry. They
also work best with large kernel sizes: ConvMixer-1536/20 lost ≈ 1% accuracy when reducing
the kernel size from k = 9 to k = 3 (we discuss kernel sizes more in Section 2.1.4 & 2.1.5).
ConvMixers with smaller patches are substantially better in our experiments, similarly to Sandler
et al. (2019); we believe larger patches require deeper ConvMixers. With everything held equal
except increasing the patch size from 7 to 14, ConvMixer-1536/20 achieves 78.9% top-1 accuracy
but is around 4× faster. We trained one model with ReLU to demonstrate that GELU (Hendrycks
and Gimpel, 2016), which is popular in recent isotropic models, isn’t necessary.

Comparisons. Our model and ImageNet1k-only training setup closely resemble that of re-
cent patch-based models like DeiT (Touvron et al., 2021b). Due to ConvMixer’s simplicity, we
focus on comparing to only the most basic isotropic patch-based architectures adapted to the
ImageNet-1k setting, namely DeiT and ResMLP. Attempting a fair comparison with a standard
baseline, we trained ResNets using exactly the same parameters as ConvMixers; while this choice
of parameters is suboptimal (Wightman et al., 2021), it is likely also suboptimal for ConvMixers,
since we did no hyperparameter tuning.

Looking at Table 2.1 and Fig. 2.1, ConvMixers achieve competitive accuracies for a given
parameter budget: ConvMixer-1536/20 outperforms both ResNet-152 and ResMLP-B24 despite
having substantially fewer parameters and is competitive with DeiT-B. ConvMixer-768/32 uses
just a third of the parameters of ResNet-152, but is similarly accurate. Note that unlike Con-
vMixer, the DeiT and ResMLP results involved hyperparameter tuning, and when substantial
resources are dedicated to tuning ResNets, including training for twice as many epochs, they
only outperform an equivalently-sized ConvMixer by ≈ 0.2% (Wightman et al., 2021). How-
ever, ConvMixers are substantially slower at inference than the competitors, likely due to their
smaller patch size; hyperparameter tuning and optimizations could narrow this gap. For more
discussion and comparisons, see Table 2.2 and Section 2.1.4.

Hyperparameters. For experiments presented in the main text, we used only one set of
“common sense” parameters for the regularization methods. Recently, we adapted parameters

8

from the A1 procedure in Wightman et al. (2021), published after our work, which were better
than our initial guess, e.g., giving +0.8% for ConvMixer-1536/20, or 82.2% top-1 accuracy (see
Section 2.1.4).

CIFAR-10 Experiments. We also performed smaller-scale experiments on CIFAR-10, where
ConvMixers achieve over 96% accuracy with as few as 0.7M parameters, demonstrating the data
efficiency of the convolutional inductive bias. Details of these experiments are presented in Sec-
tion 2.1.5.

2.1.3 Visual recognition architecture background
Isotropic architectures. Vision transformers have inspired a new paradigm of “isotropic” ar-
chitectures, i.e., those with equal size and shape throughout the network, which use patch em-
beddings for the first layer. These models look similar to repeated transformer-encoder blocks
(Vaswani, 2017) with different operations replacing the self-attention and MLP operations. For
example, MLP-Mixer (Tolstikhin et al., 2021) replaces them both with MLPs applied across dif-
ferent dimensions (i.e., spatial and channel location mixing); ResMLP (Touvron et al., 2021a)
is a data-efficient variation on this theme. CycleMLP (Chen et al., 2021), gMLP (Liu et al.,
2021a), and vision permutator (Hou et al., 2021), replace one or both blocks with various novel
operations. These are all quite performant, which is typically attributed to the novel choice of
operations. In contrast, Melas-Kyriazi (2021) proposed an MLP-based isotropic vision model,
and also hypothesized patch embeddings could be behind its performance. ResMLP tried replac-
ing its linear interaction layer with (small-kernel) convolution and achieved good performance,
but kept its MLP-based cross-channel layer and did not explore convolutions further. As our
investigation of ConvMixers suggests, these works may conflate the effect of the new operations
(like self-attention and MLPs) with the effect of the use of patch embeddings and the resulting
isotropic architecture.

A study predating vision transformers investigate isotropic (or “isometric”) MobileNets (San-
dler et al., 2019), and even implements patch embeddings under another name. Their architecture
simply repeats an isotropic MobileNetv3 block. They identify a tradeoff between patch size and
accuracy that matches our experience, and train similarly performant models (see Section 2.1.4,
Table 2.2). However, their block is substantially more complex than ours; simplicity and moti-
vation sets our work apart.

Patches aren’t all you need. Several papers have increased vision transformer performance
by replacing standard patch embeddings with a different stem: Xiao et al. (2021) and Yuan et al.
(2021a) use a standard convolutional stem, while Yuan et al. (2021b) repeatedly combines nearby
patch embeddings. However, this conflates the effect of using patch embeddings with the effect
of adding convolution or similar inductive biases e.g., locality. We attempt to focus on the use of
patches.

CNNs meet ViTs. Many efforts have been made to incorporate features of convolutional
networks into vision transformers and vice versa. Self-attention can emulate convolution (Cor-
donnier et al., 2019) and can be initialized or regularized to be like it (d’Ascoli et al., 2021);
other works simply add convolution operations to transformers (Dai et al., 2021; Guo et al.,
2021), or include downsampling to be more like traditional pyramid-shaped convolutional net-
works (Wang et al., 2021). Conversely, self-attention or attention-like operations can supplement

9

or replace convolution in ResNet-style models (Bello et al., 2019; Ramachandran et al., 2019;
Bello, 2021). While all of these attempts have been successful in one way or another, they are
orthogonal to this work, which aims to emphasize the effect of the architecture common to most
ViTs by showcasing it with a less-expressive operation.

2.1.4 Comparison to related architectures
Experiment overview. We did not design our experiments to maximize accuracy: We chose
“common sense” parameters for timm and its augmentation settings, found that it worked well
for a ConvMixer-1024/12, and stuck with them for the proceeding experiments. We admit this is
not an optimal strategy, however, we were aware from our early experiments on CIFAR-10 that
results seemed robust to various small changes. We did not have access to sufficient compute to
attempt to tune hyperparameters for each model: e.g., larger ConvMixers could probably benefit
from more regularization than we chose, and smaller ones from less regularization. Keeping
the parameters the same across ConvMixer instances seemed more reasonable than guessing for
each.

However, to some extent, we changed the number of epochs per model: for earlier experi-
ments, we merely wanted a “proof of concept”, and used only 90–100 epochs. Once we saw
potential, we increased this to 150 epochs and trained some larger models, namely ConvMixer-
1024/20 with p = 14 patches and ConvMixer-1536/20 with p = 7 patches. Then, believing
that we should explore deeper-but-less-wide ConvMixers, and knowing from CIFAR-10 that the
deeper models converged more slowly, we trained ConvMixer-768/32s with p = 14 and p = 7
for 300 epochs. Of course, training time was a consideration: ConvMixer-1536/20 took about
9 days to train (on 10× RTX8000s) 150 epochs, and ConvMixer-768/32 is over twice as fast,
making 300 epochs more feasible.

If anything, we believe that in the worst case, the lack of parameter tuning in our experiments
resulted in underestimating the accuracies of ConvMixers. Further, due to our limited compute
and the fact that large models (particularly ConvMixers) are expensive to train on large data sets,
we generally trained our models for fewer epochs than competition like DeiT and ResMLP (see
Table 2.2).

In this revision, we have added some additional results (denoted with a ⋆ in Table 2.2) using
hyperparameters loosely based on the precisely-crafted “A1 training procedure” from Wightman
et al. (2021). In particular, we adjusted parameters for RandAug, Mixup, CutMix, Random
Erasing, and weight decay to match those in the procedure. Importantly, we still only trained for
150 epochs, rather than the 600 epochs used in Wightman et al. (2021), and we did not use binary
cross-entropy loss nor repeated augmentation. While we do not think optimal hyperparameters
for ResNet would also be optimal for ConvMixer, these settings are significantly better than
the ones we initially chose. This further highlights the capabilities of ConvMixers, and we are
optimistic that further tuning could lead to still-better performance. Throughout the paper, we
still refer to ConvMixers trained using our initial “one shot” selection of hyperparameters.

A note on throughput. We measured throughput using batches of 64 images in half precision
on a single RTX8000 GPU, averaged over 20 such batches. In particular, we measured CUDA
execution time rather than “wall-clock” time. We noticed discrepancies in the relative through-
puts of models, e.g., Touvron et al. (2021b) reports that ResNet-152 is 2× faster than DeiT-B,

10

Comparison with other simple models trained on ImageNet-1k only with input size 224.

Network
Patch
Size

Kernel
Size

Params
(×106)

Throughput
(img/sec)

Act.
Fn.

#
Epochs

ImNet
top-1 (%)

ConvMixer-1536/20⋆ 7 9 51.6 134 G 150 82.20
ConvMixer-1536/20 • 7 9 51.6 134 G 150 81.37
ConvMixer-1536/20⋆ 7 3 49.4 246 G 150 81.60
ConvMixer-1536/20 7 3 49.4 246 G 150 80.43
ConvMixer-1536/20 14 9 52.3 538 G 150 78.92
ConvMixer-1536/24⋆ 14 9 62.3 447 G 150 80.21
ConvMixer-768/32 • 7 7 21.1 206 R 300 80.16
ConvMixer-1024/16 7 9 19.4 244 G 100 79.45
ConvMixer-1024/12 7 8 14.6 358 G 90 77.75
ConvMixer-512/16 7 8 5.4 599 G 90 73.76
ConvMixer-512/12 • 7 8 4.2 798 G 90 72.59
ConvMixer-768/32 14 3 20.2 1235 R 300 74.93
ConvMixer-1024/20 • 14 9 24.4 750 G 150 76.94

ResNet-152 • – 3 60.2 828 R 150 79.64
ResNet-101 • – 3 44.6 1187 R 150 78.33
ResNet-50 – 3 25.6 1739 R 150 76.32

DeiT-B† 7 – 86.7 83 G – –
DeiT-S† 7 – 22.1 174 G – –
DeiT-Ti† 7 – 5.7 336 G – –
DeiT-B • 16 – 86 792 G 300 81.8
DeiT-S • 16 – 22 1610 G 300 79.8
DeiT-Ti • 16 – 5.7 2603 G 300 72.2

ResMLP-S12/8 • 8 – 22.1 872 G 400 79.1
ResMLP-B24/8 • 8 – 129 181 G 400 81.0
ResMLP-B24 16 – 116 1597 G 400 81.0

Swin-S • 4 – 50 576 G 300 83.0
Swin-T • 4 – 29 878 G 300 81.3

ViT-B/16 • 16 – 86 789 G 300 77.9

Mixer-B/16 • 16 – 59 1025 G 300 76.44

Isotropic MobileNetv3 • 8 3 20 – R – 80.6
Isotropic MobileNetv3 • 16 3 20 – R – 77.6

Table 2.2: Throughputs measured on an RTX8000 GPU using batch size 64 and fp16. ConvMix-
ers and ResNets trained ourselves. Other statistics: DeiT (Touvron et al., 2021b), ResMLP (Tou-
vron et al., 2021a), Swin (Liu et al., 2021c), ViT (Dosovitskiy et al., 2020), MLP-Mixer (Tol-
stikhin et al., 2021), Isotropic MobileNets (Sandler et al., 2019). We think models with matching
colored dots (•) are informative to compare with each other. †Throughput tested, but not trained.
Activations: ReLU, GELU.
⋆Using new regularization hyperparameters based on Wightman et al. (2021)’s A1 procedure.

11

but our measurements show that the two models have nearly the same throughput. We therefore
speculate that our throughputs may underestimate the performance of ResNets and ConvMixers
relative to the transformers. The difference may be due to using RTX8000 rather than V100
GPUs, or other low-level differences. Our throughputs were similar for batch sizes 32 and 128.

ResNets. As a simple baseline to which to compare ConvMixers, we trained three standard
ResNets using exactly the same training setup and parameters as ConvMixer-1536/20. Despite
having fewer parameters and being architecturally much simpler, ConvMixers substantially out-
perform these ResNets in terms of accuracy. A possible confounding factor is that ConvMixers
use GELU, which may boost performance, while ResNets use ReLU. In an attempt to rule out
this confound, we used ReLU in a later ConvMixer-768/32 experiment and found that it still
achieved competitive accuracy. We also note that the choice of ReLU vs. GELU was not impor-
tant on CIFAR-10 experiments (see Table 2.3). However, ConvMixers do have substantially less
throughput.

DeiTs. We believe that DeiT is the most reasonable comparison in terms of vision transform-
ers: It only adds additional regularization, as opposed to architectural additions in the case of
CaiT (Touvron et al., 2021c), and is then essentially a “vanilla” ViT modulo the distillation token
(we don’t consider distilled architectures). In terms of a fixed parameter budget, ConvMixers
generally outperform DeiTs. For example, ConvMixer-1536/20 is only 0.43% less accurate than
DeiT-B despite having over 30M fewer parameters; ConvMixer-768/32 is 0.36% more accurate
than DeiT-S despite having 0.9M fewer parameters; and ConvMixer-512/16 is 0.39% more accu-
rate than DeiT-Ti for nearly the same number of parameters. Admittedly, none of the ConvMixers
are very competitive in terms of throughput, with the closest being the ConvMixer-512/16 which
is 4× slower than DeiT-Ti.

A confounding factor is the difference in patch size between DeiT and ConvMixer; DeiT uses
p = 16 while ConvMixer uses p = 7. This means DeiT is substantially faster. However, Con-
vMixers using larger patches are not as competitive. While we were not able to train DeiTs with
larger patch sizes, it is possible that they would outperform ConvMixers on the parameter count
vs. accuracy curve; however, we tested their throughput for p = 7, and they are even slower than
ConvMixers. Given the difference between convolution and self-attention, we are not sure it is
salient to control for patch size differences.

DeiTs were subject to more hyperparameter tuning than ConvMixers, as well as longer train-
ing times. They also used stochastic depth while we did not, which can in some cases contribute
percent differences in model accuracy (Touvron et al., 2021a). It is therefore possible that further
hyperparameter tuning and more epochs for ConvMixers could close the gap between the two
architectures for large patches, e.g., p = 16.

ResMLPs. Similarly to DeiT for ViT, we believe that ResMLP is the most relevant MLP-
Mixer variant to compare against. Unlike DeiT, we can compare against instances of ResMLP
with similar patch size: ResMLP-B24/8 has p = 8 patches, and underperforms ConvMixer-
1536/20 by 0.37%, despite having over twice the number of parameters; it also has similarly low
throughput. ConvMixer-768/32 also outperforms ResMLP-S12/8 for millions fewer parameters,
but 3× less throughput.

ResMLP did not significantly improve in terms of accuracy for halving the patch size from
16 to 8, which shows that smaller patches do not always lead to better accuracy for a fixed
architecture and regularization strategy (e.g., training a p = 8 DeiT may be challenging).

12

Swin Transformers. While we intend to focus on the most basic isotropic, patch-based
architectures for fair comparisons with ConvMixer, it is also interesting to compare to a more
complicated model that is closer to state-of-the-art. For a similar parameter budget, ConvMixer
is around 1.2-1.6% less accurate than the Swin Transformer, while also being 4-6× slower. How-
ever, considering we did not attempt to tune or optimize our model in any way, we find it sur-
prising that an exceedingly simple patch-based model that uses only plain convolution does not
lag too far behind Swin Transformer.

Isotropic MobileNets. These models are closest in design to ours, despite using a repeating
block that is substantially more complex than the ConvMixer one. Despite this, for a similar
number of parameters, we can get similar performance. Notably, isotropic MobileNets seem to
suffer less from larger patch sizes than ConvMixers, which makes us optimistic that sufficient
parameter tuning could lead to more performant large-patch ConvMixers.

Other models. We included ViT and MLP-Mixer instances in our table, though they are
not competitive with ConvMixer, DeiT, or ResMLP, even though MLP-Mixer has comparable
regularization to ConvMixer. That is, ConvMixer seems to outperform MLP-Mixer and ViT,
while being closer to complexity to them in terms of design and training regime than the other
competitors, DeiT and ResMLP.

Kernel size. While we found some evidence that larger kernels are better on CIFAR-10,
we wanted to see if this finding transferred to ImageNet. Consequently, we trained our best-
performing model, ConvMixer-1536/20, with kernel size k = 3 rather than k = 9. This resulted
in a decrease of 0.94% top-1 accuracy, which we believe is quite significant relative to the mere
2.2M additional parameters. However, k = 3 is substantially faster than k = 9 for spatial-
domain convolution; we speculate that low-level optimizations could close the performance gap
to some extent, e.g., by using implicit instead of explicit padding. Since large-kernel convolutions
throughout a model are unconventional, there has likely been low demand for such optimizations.

2.1.5 Small-scale experiments on ConvMixer
Residual connections. We experimented with leaving out one, the other, or both residual con-
nections before settling on the current configuration, and consequently chose to leave out the
second residual connection. Our baseline model without the connection achieves 95.88% accu-
racy, while including the connection reduces it to 94.78%. Surprisingly, we see only a 0.31%
decrease in accuracy for removing all residual connections. We acknowledge that these findings
for residual connections may not generalize to deeper ConvMixers trained on larger data sets.

Normalization. Our model is conceptually similar to the vision transformer and MLP-Mixer,
both of which use LayerNorm instead of BatchNorm. We attempted to use LayerNorm instead,
and saw a decrease in performance of around 1% as well as slower convergence (see Table 2.3).
However, this was for a relatively shallow model, and we cannot guarantee that LayerNorm
would not hinder ImageNet-scale models to an even larger degree. We note that the authors of
ResMLP also saw a relatively small increase in accuracy for replacing LayerNorm with Batch-
Norm, but for a larger-scale experiment (Touvron et al., 2021a). We conclude that BatchNorm is
no more crucial to our architecture than other regularizations or parameter settings (e.g., kernel
size).

Having settled on an architecture, we proceeded to adjust its parameters h, d, p, k as well

13

Ablation of ConvMixer-256/8 on CIFAR-10

Ablation
CIFAR-10
Acc. (%)

Baseline 95.88

– Residual in Eq. 2.2 95.57
+ Residual in Eq. 2.3 94.78
BatchNorm → LayerNorm 94.44
GELU → ReLU 95.51

– Mixup and CutMix 95.92
– Random Erasing 95.24
– RandAug 92.86
– Random Scaling 86.24
– Gradient Norm Clipping 86.33

Table 2.3: Small ablation study of training a ConvMixer-256/8 on CIFAR-10.

as weight decay on CIFAR-10 experiments. (Initially, we took the unconventional approach
of excluding weight decay since we were already using strong regularization in the form of
RandAug and mixup.) We acknowledge that tuning our architecture on CIFAR-10 does not
necessarily generalize to performance on larger data sets, and that this is a limitation of our
study.

Results. ConvMixers are quite performant on CIFAR-10, easily achieving > 91% accuracy
for as little as 100, 000 parameters, or > 96% accuracy for only 887, 000 parameters (see Ta-
ble 2.4). With additional refinements e.g., a more expressive classifier or bottlenecks, we think
that ConvMixer could be even more competitive. For all experiments, we trained for 200 epochs
on CIFAR-10 with RandAug, mixup, cutmix, random erasing, gradient norm clipping, and the
standard augmentations in timm. We remove some of these augmentations in Table 2.3, finding
that RandAug and random scaling (“default” in timm) are very important, each accounting for
over 3% of the accuracy.

Scaling ConvMixer. We adjusted the hidden dimension h and the depth d, finding that deeper
networks take longer to converge while wider networks converge faster. That said, increasing the
width or the depth is an effective way to increase accuracy; a doubling of depth incurs less
compute than a doubling of width. The number of parameters in a ConvMixer is given exactly
by:

#params = h[d(k2 + h+ 6) + cinp
2 + nclasses + 3] + nclasses, (2.4)

including affine scaling parameters in BatchNorm layers, convolutional kernels, and the classi-
fier.

Kernel size. We initially hypothesized that large kernels would be important for ConvMixers,
as they would allow the mixing of distant spatial information similarly to unconstrained MLPs

14

or self-attention layers. We tried to investigate the effect of kernel size on CIFAR-10: we fixed
the model to be a ConvMixer-256/8, and increased the kernel size by 2s from 3 to 15.

Using a kernel size of 3, the ConvMixer only achieves 93.61% accuracy. Simply increasing
it to 5 gives an additional 1.50% accuracy, and further to 7 an additional 0.61%. The gains
afterwards are relatively marginal, with kernel size 15 giving an additional 0.28% accuracy. It
could be that with more training iterations or more regularization, the effect of larger kernels
would be more pronounced. Nonetheless, we concluded that ConvMixers benefit from larger-
than-usual kernels, and thus used kernel sizes 7 or 9 in most of our later experiments.

It is conventional wisdom that large-kernel convolutions can be “decomposed” into stacked
small-kernel convolutions with activations between them, and it is therefore standard practice to
use k = 3 convolutions, stacking more of them to increase the receptive field size with additional
benefits from nonlinearities. This raises a question: is the benefit of larger kernels in ConvMixer
actually better than simply increasing the depth with small kernels? First, we note that deeper
networks are generally harder to train, so by increasing the kernel size independently of the depth,
we may recover some of the benefits of depth without making it harder for signals to “propagate
back” through the network. To test this, we trained a ConvMixer-256/10 with k = 3 (698K
parameters) in the same setting as a ConvMixer-256/8 with k = 9 (707K parameters), i.e., we
increased depth in a small-kernel model to roughly match the parameters of a large-kernel model.
The ConvMixer-256/10 achieved 94.29% accuracy (1.5% less), which provides more evidence
for the importance of larger kernels in ConvMixers. Next, instead of fixing the parameter budget,
we tripled the depth (using the intuition that 3 stacked k = 3 convolutions have the receptive field
of a k = 9 convolution), giving a ConvMixer-256/24 with 1670K parameters, and got 95.16%
accuracy, i.e., still less.

Patch size. CIFAR-10 inputs are so small that we initially only used p = 1, i.e., the patch
embedding layer does little more than compute h linear combinations of the input image. Using
p = 2, we see a reduction in accuracy of about 0.80%; this is a worthy tradeoff in terms of train-
ing and inference time. Further increasing the patch size leads to rapid decreases in accuracy,
with only 92.61% for p = 4.

Since the “internal resolution” is decreased by a factor of p when increasing the patch size,
we assumed that larger kernels would be less important for larger p. We investigated this by
again increasing the kernel size from 3 to 11 for ConvMixer-256/8 with p = 2: however, this
time, the improvement going from 3 to 5 is only 1.13%, and larger kernels than 5 provide only
marginal benefit.

Weight decay. We did many of our initial experiments with minimal weight decay. However,
this was not optimal: by tuning weight decay, we can get an additional 0.15% of accuracy for no
cost. Consequently, we used weight decay (without tuning) for our larger-scale experiments on
ImageNet.

2.1.6 Inspecting the structure of ConvMixer’s weights

15

Tiny ConvMixers trained on CIFAR-10.

Width
h

Depth
d

Patch
Size p

Kernel
Size k

Params
(×103)

Weight
Decay

CIFAR-10
Acc. (%)

128 4 1 8 103 0 91.26
128 8 1 8 205 0 93.83
128 12 1 8 306 0 94.83
256 4 1 8 338 0 93.37
256 8 1 8 672 0 95.60
256 12 1 8 1006 0 96.39
256 16 1 8 1339 0 96.74
256 20 1 8 1673 0 96.67

↓ Kernel adjustments

256 8 1 3 559 0 93.61
256 8 1 5 592 0 95.19
256 8 1 7 641 0 95.80
256 8 1 9 707 0 95.88
256 8 1 11 788 0 95.70
256 8 1 13 887 0 96.04
256 8 1 15 1001 0 96.08

↓ Patch adjustments

256 8 2 9 709 0 95.00
256 8 4 9 718 0 92.61
256 8 8 9 755 0 85.57

↓ Weight decay adjustments

256 8 1 9 707 1× 10−1 95.88
256 8 1 9 707 1× 10−2 96.03
256 8 1 9 707 1× 10−3 95.76
256 8 1 9 707 1× 10−4 95.63
256 8 1 9 707 1× 10−5 95.88

↓ Kernel size adjustments when p = 2

256 8 2 3 561 0 94.08
256 8 2 5 594 0 95.21
256 8 2 7 643 0 95.35
256 8 2 9 709 0 95.00
256 8 2 11 791 0 95.14

↓ Adding weight decay to the above

256 8 2 3 561 1× 10−2 94.69
256 8 2 5 594 1× 10−2 95.26
256 8 2 7 643 1× 10−2 95.25
256 8 2 9 709 1× 10−2 95.06
256 8 2 11 791 1× 10−2 95.17

Table 2.4: Investigation of ConvMixer design parameters h, d, p, k and weight decay on CIFAR-
10

16

Figure 2.4: Patch embedding weights for a ConvMixer-1024/20 with patch size 14 (see Ta-
ble 2.2).

In Figure 2.4 and 2.5, we visualize the (complete) weights of the patch embedding layers of
a ConvMixer-1536/20 with p = 14 and a ConvMixer-768/32 with p = 7, respectively. Much
like Sandler et al. (2019), the layer consists of Gabor-like filters as well as “colorful globs”
or rough edge detectors. The filters seem to be more structured than those learned by MLP-
Mixer (Tolstikhin et al., 2021); also unlike MLP-Mixer, the weights look much the same going
from p = 14 to p = 7: the latter simply looks like a downsampled version of the former. It is
unclear, then, why we see such a drop in accuracy for larger patches. However, some of the filters
essentially look like noise, maybe suggesting a need for more regularization or longer training,
or even more data. Ultimately, we cannot read too much into the learned representations here.

In Figure 2.6, we plot the hidden convolutional kernels for successive layers of a ConvMixer.
Initially, the kernels seem to be relatively small, but make use of their allowed full size in later
layers; there is a clear hierarchy of features as one would expect from a standard convolutional
architecture. Interestingly, Touvron et al. (2021a) saw a similar effect for ResMLP, where earlier
layers look like small-kernel convolution, while later layers were more diffuse, despite these

17

Figure 2.5: Patch embedding weights for a ConvMixer-768/32 with patch size 7 (see Table 2.2).

layers being representated by an unconstrained matrix multiplication rather than convolution.

2.1.7 Summary of contributions

We presented ConvMixers, an extremely simple class of models that independently mixes the
spatial and channel locations of patch embeddings using only standard convolutions. We also
highlighted that using large kernel sizes, inspired by the large receptive fields of ViTs and MLP-
Mixers, provides a substantial performance boost. While neither our model nor our experiments
were designed to maximize accuracy or speed, i.e., we did not search for good hyperparame-
ters, ConvMixers outperform the Vision Transformer and MLP-Mixer, and are competitive with
ResNets, DeiTs, and ResMLPs.

We provided evidence that the increasingly common “isotropic” architecture with a simple
patch embedding stem is itself a powerful template for deep learning. Patch embeddings allow
all the downsampling to happen at once, immediately decreasing the internal resolution and thus
increasing the effective receptive field size, making it easier to mix distant spatial information.

18

(a) Layer 1 (b) Layer 4 (c) Layer 6

(d) Layer 9 (e) Layer 11 (f) Layer 13

(g) Layer 15 (h) Layer 17 (i) Layer 19

Figure 2.6: Random subsets of 64 depthwise convolutional kernels from progressively deeper
layers of ConvMixer-1536/20 (see Table 2.1).

Our title, while an exaggeration, points out that attention isn’t the only export from language pro-
cessing into computer vision: tokenizing inputs, i.e., using patch embeddings, is also a powerful
and important takeaway.

While our model is not state-of-the-art, we find its simple patch-mixing design to be com-
pelling. We hope that ConvMixers can serve as a baseline for future patch-based architectures
with novel operations, or that they can provide a basic template for new conceptually simple and
performant models.

19

Future work. We are optimistic that a deeper ConvMixer with larger patches could reach a
desirable tradeoff between accuracy, parameters, and throughput after longer training and more
regularization and hyperparameter tuning, similarly to how Wightman et al. (2021) enhanced
ResNet performance through carefully-designed training regimens. Low-level optimization of
large-kernel depthwise convolution could substantially increase throughput, and small enhance-
ments to our architecture like the addition of bottlenecks or a more expressive classifier could
trade simplicity for performance.

Due to its large internal resolution and isotropic design, ConvMixer may be especially well-
suited for semantic segmentation, and it would be useful to run experiments on this task with
a ConvMixer-like model and on other tasks such as object detection. More experiments could
be designed to more clearly extricate the effect of patch embeddings from other architectural
choices. In particular, for a more in-depth comparison to ViTs and MLP-Mixers, which excel
when trained on very large data sets, it is important to investigate the performance of ConvMixers
in the regime of large-scale pre-training.

20

Chapter 3

Mimetic initialization

3.1 Understanding the Covariance Structure of Convolutional
Filters

Early work in deep learning for vision demonstrated that the convolutional filters in trained neural
networks are often highly-structured, in some cases being qualitatively similar to filters known
from classical computer vision (Krizhevsky et al., 2017). However, for many years it became
standard to replace large-filter convolutions with stacked small-filter convolutions, which have
less room for any notable amount of structure. But in the past year, this trend has changed with
inspiration from the long-range spatial mixing abilities of vision transformers. Some of the most
prominent new convolutional neural networks, such as ConvNeXt and ConvMixer, once again
use large-filter convolutions. These new models also completely separate the processing of the
channel and spatial dimensions, meaning that the now-single-channel filters are, in some sense,
more independent from each other than in previous models such as ResNets. This presents an
opportunity to investigate the structure of convolutional filters.

In particular, we seek to understand the statistical structure of convolutional filters, with the
goal of more effectively initializing them. Most initialization strategies for neural networks focus
simply on controlling the variance of weights, as in Kaiming (He et al., 2015) and Xavier (Glorot
and Bengio, 2010) initialization, which neglect the fact that many layers in neural networks are
highly-structured, with interdependencies between weights, particularly after training. Conse-
quently, we study the covariance matrices of the parameters of convolutional filters, which we
find to have a large degree of perhaps-interpretable structure. We observe that the covariance of
filters calculated from pre-trained models can be used to effectively initialize new convolutions
by sampling filters from the corresponding multivariate Gaussian distribution.

We then propose a closed-form and completely learning-free construction of covariance ma-
trices for randomly initializing convolutional filters from Gaussian distributions. Our initializa-
tion is highly effective, especially for larger filters, deeper models, and shorter training times; it
usually outperforms both standard uniform initialization techniques and our baseline technique
of initializing by sampling from the distributions of pre-trained filters, both in terms of final
accuracy and time-to-convergence. Models using our initialization often see gains of over 1%
accuracy on CIFAR-10 and short-training ImageNet classification; it also leads to small but sig-

21

nificant performance gains on full-scale, ≈ 80%-accuracy ImageNet training. Indeed, in some
cases our initialization works so well that it outperforms uniform initialization even when the
filters aren’t trained at all. And our initialization is almost completely free to compute.

Related work Saxe et al. (2013) proposed to replace random i.i.d. Gaussian weights with
random orthogonal matrices, a constraint in which weights depend on each other and are thus,
in some sense, “multivariate”; Xiao et al. (2018) also proposed an orthogonal initialization for
convolutions. Similarly to these works, our initialization greatly improves the trainability of
deep (depthwise) convolutional networks, but is much simpler and constraint-free, being just a
random sample from a multivariate Gaussian distribution. Martens et al. (2021) uses “Gaus-
sian Delta initialization” for convolutions; while largely unrelated to our technique both in form
and motivation, this is similar to our initialization as applied in the first layer (i.e., the lowest-
variance case). Zhang et al. (2022) suggests that the main purpose of pre-training may be to find
a good initialization, and crafts a mimicking initialization based on observed, desirable informa-
tion transfer patterns. We similarly initialize convolutional filters to be closer to those found in
pre-trained models, but do so in a completely random and simpler manner. Romero et al. (2021)
proposes an analytic parameterization of variable-size convolutions, based in part on Gaussian
filters; while our covariance construction is also analytic and built upon Gaussian filters, we use
them to specify the distribution of filters.

Our contribution is most advantageous for large-filter convolutions, which have become
prevalent in recent work: ConvNeXt (Liu et al., 2022b) uses 7 × 7 convolutions, and Con-
vMixer (Trockman and Kolter, 2022) uses 9 × 9; taking the trend a step further, Ding et al.
(2022) uses 31× 31, and Liu et al. (2022a) uses 51× 51 sparse convolutions. Many other works
argue for large-filter convolutions (Wang et al., 2022; Chen et al., 2022; Han et al., 2021).

Preliminaries This work is concerned with depthwise convolutional filters, each of which is
parametrized by a k × k matrix, where k (generally odd) denotes the filter’s size. Our aim is
to study distributions that arise from convolutional filters in pretrained networks, and to explore
properties of distributions whose samples produce strong initial parameters for convolutional
layers. More specifically, we hope to understand the covariance among pairs of filter parameters
for fixed filter size k. This is intuitively expressed as a covariance matrix Σ ∈ Rk2×k2 with block
structure: Σ has k × k blocks, where each block [Σi,j] ∈ Rk×k corresponds to the covariance
between filter pixel i, j and all other k2 − 1 filter pixels. That is, [Σi,j]ℓ,m = [Σℓ,m]i,j gives the
covariance of pixels i, j and ℓ,m.

In practice, we restrict our study to multivariate Gaussian distributions, which by convention
are considered as distributions over n-dimensional vectors rather than matrices, where the dis-
tribution N (µ,Σ′) has a covariance matrix Σ′ ∈ Sn

+ where Σ′
i,j = Σ′

j,i represents the covariance
between vector elements i and j. To align with this convention when sampling filters, we convert
from our original block covariance matrix representation to the representation above by simple
reassignment of matrix entries, given by

Σ′
ki+j,kℓ+m := [Σi,j]ℓ,m for 1 ≤ i, j, ℓ,m ≤ k (3.1)

or, equivalently,
Σ′

ki+j,: := vec ([Σi,j]) for 1 ≤ i, j ≤ k. (3.2)

22

In this form, we may now generate a filter F ∈ Rk×k by drawing a sample f ∈ Rk2 from
N (µ,Σ′) and assigning Fi,j := fki+j . Throughout the paper, we assume covariance matrices
are in the block form unless we are sampling from a distribution, where the conversion between
forms is assumed.

Scope We restricted our study to networks made by stacking simple blocks which each have
a single depthwise convolutional layer (that is, filters in the layer act on each input channel
separately, rather than summing features over input channels), plus other operations such as
pointwise convolutions or MLPs; the depth of networks throughout the paper is synonymous
with the number of depthwise convolutional layers, though this is not the case for neural networks
more generally. All networks investigated use a fixed filter size throughout the network, though
the methods we present could easily be extended to the non-uniform case. Further, all methods
presented do not concern the biases of convolutional layers.

3.1.1 The empirical covariances of trained convolutional filters
In this section, we propose a simple starting point in our investigation of convolutional filter
covariance structure: using the distribution of filters from pre-trained models to initialize filters
in new models, a process we term covariance transfer. In the simplest case, we use a pre-trained
model with exactly the same architecture as the model to be initialized; we then show that we
can actually transfer filter covariances across very different models.

Basic method. We use i ∈ 1, . . . , D to denote the ith depthwise convolutional layer of a model
with D layers. We denote the j ∈ 1, . . . , H filters of the ith pre-trained layer of the model by
Fij for a model with H convolutional filters in a particular layer (i.e., hidden dimension H) and
F ′ to denote the filters of a new, untrained model. Then the empirical covariance of the filters in
layer i is

Σi = Cov[vec(Fi1), . . . , vec(FiH)], (3.3)

with the mean µi computed similarly. Then the new model can be initialized by drawing filters
from the multivariate Gaussian distribution with parameters µi,Σi:

F ′
ij ∼ N (µi,Σi) for j ∈ 1, . . . , H, i ∈ 1, . . . , D (3.4)

Note that in this section, we use the means of the filters in addition to the covariances to define
the distributions from which to initialize. However, we found that the mean can be assumed to be
zero with little change in performance, and we focus solely on the covariance in later sections.

Experiment design. We test our initialization methods primarily on ConvMixer since it is sim-
ple and exceptionally easy to train on CIFAR-10. We use FFCV (Leclerc et al., 2022) for fast data
loading using our own implementations of fast depthwise convolution and RandAugment (Cubuk
et al., 2020). To demonstrate the performance of our methods across a variety of training times,
we train for 20, 50, or 200 epochs with a batch size of 512, and we repeat all experiments with
three random seeds. For all experiments, we use a simple triangular learning rate schedule with

23

Figure 3.1: In pre-trained mod-
els, the covariance matrices of
convolutional filters are highly-
structured. Filters in earlier lay-
ers tend to be focused, becom-
ing more diffuse as depth in-
creases. Observing the struc-
ture of each sub-block, we note
that there is often a static, cen-
tered negative component and
a dynamic positive component
that moves according to the
block’s position. Often, co-
variances are higher towards the
center of the filters.

0.58.517.526.535.544.553.562.571.580.5

0.5
8.5

17.5
26.5
35.5
44.5
53.5
62.5
71.5
80.5

Un
no

rm
al

ize
d

Depth

Layer #1 of 8

0.58.517.526.535.544.553.562.571.580.5

0.5
8.5

17.5
26.5
35.5
44.5
53.5
62.5
71.5
80.5

ConvMixer-256/8, Patch Size 1x1, Kernel Size 9x9 (CIFAR-10)

Layer #5 of 8

0.58.517.526.535.544.553.562.571.580.5

0.5
8.5

17.5
26.5
35.5
44.5
53.5
62.5
71.5
80.5

Layer #8 of 8

0.58.517.526.535.544.553.562.571.580.5

0.5
8.5

17.5
26.5
35.5
44.5
53.5
62.5
71.5
80.5

0.58.517.526.535.544.553.562.571.580.5

0.5
8.5

17.5
26.5
35.5
44.5
53.5
62.5
71.5
80.5

0.58.517.526.535.544.553.562.571.580.5

0.5
8.5

17.5
26.5
35.5
44.5
53.5
62.5
71.5
80.5

No
rm

al
ize

d
Pe

r-B
lo

ck

45 54 63

the AdamW optimizer, a learning rate of .01, and weight decay of .01 as in Trockman and Kolter
(2022).

3 5 7 9 11 13 15
Filter Size

0
10

0
20

0
30

0
CU

DA
 T

im
e

(m
s)

CM-512/12 1x1 Patches Grad. Step

Filters
Frozen
Thawed

Figure 3.2: The backward
pass is faster with frozen fil-
ters.

Most of our CIFAR experiments use a ConvMixer-256/8 with ei-
ther patch size 1 or 2; a ConvMixer-H/D has precisely D depth-
wise convolutional layers with H filters each, ideal for testing our
initial covariance transfer techniques. We train ConvMixers using
popular filter sizes 3, 7, and 9, as well as 15 (see Figure 3.13 for
5). We also test our methods on ConvNeXt (Liu et al., 2022b),
which includes downsampling unlike ConvMixer; we use a patch
size of 1 or 2 with ConvNeXt rather than the default 4 to acco-
modate relatively small CIFAR-10 images, and the default 7 × 7
filters.

For most experiments, we provide two baselines for compari-
son: standard uniform initialization, the standard in PyTorch (He
et al., 2015), as well as directly transferring the learned filters from a pre-trained model to the
new model. In most cases, we expect new random initializations to fall between the performance
of uniform and direct transfer initializations. For our covariance transfer experiments, we trained
a variety of reference models from which to compute covariances; these are all trained for the
full 200 epochs using the same settings as above.

Frozen filters. Cazenavette et al. noticed that ConvMixers with 3× 3 filters perform well even
when the filters are frozen; that is, the filter weights remain unchanged over the course of train-
ing, receiving no gradient updates. As we are initializing filters from the distribution of trained
filters, we suspect that additional training may not be completely necessary. Consequently, in
all experiments we investigate both models with thawed filters as well as their frozen counter-
parts. Freezing filters removes one of the two gradient calculations from depthwise convolution,

24

resulting in substantial training speedups as kernel size increases (see Figure 3.2). ConvMixer-
512/12 with kernel size 9× 9 is around 20% faster, while 15× 15 is around 40% faster. Further,
good performance in the frozen filter setting suggests that an initialization technique is highly
effective.

Covariance transfer across width, depth, patch size, and kernel size

The simplest case of covariance transfer (from exactly the same architecture) is a fairly effective
initialization scheme for convolutional filters. In Fig. 3.3, note that this case of covariance trans-
fer (group B) results in somewhat higher accuracies than uniform initialization (group A), partic-
ularly for 20-epoch training; it also substantially improves the case for frozen filters. Across all
trials, the effect of using this initialization is higher for larger kernel sizes. In Fig. 3.10, we show
that covariance transfer (gold) initially increases convergence, but the advantange over uniform
initialization quickly fades. As expected, covariance transfer tends to fall between the perfor-
mance of direct transfer, where we directly initialize using the filters of the pre-trained model,
and default uniform initialization (see group D in Fig. 3.3 and the green curves in Fig. 3.10).

However, we acknowledge that it is not appealing to pre-train models just for an initialization
technique with rather marginal gains, so we explore the feasibility of covariance transfer from
smaller models, both in terms of width and depth.

Narrower models. We first see if it’s possible to train a narrower reference model to calculate
filter covariances to initialize a wider model; for example, using a ConvMixer-32/8 to initialize a
ConvMixer-256/8. In Figure 3.4, we show that the optimal performance surprisingly comes from
the covariances of a smaller model. For filter sizes sizes greater than 3, the covariance transfer
performance increases with width until width 32, and then decreases for width 256 for both the
thawed and frozen cases. We plot this method in Fig. 3.3 (group C), and note that it almost
uniformly exceeds the performance of covariance transfer from the same-sized model. Note that
the method does not change; the covariances are simply calculated from a smaller sample of
filters.

Shallower models. Covariance transfer from a shallow model to a deeper model is somewhat
more complicated, as there is no longer a one-to-one mapping between layers. Instead, we lin-
early interpolate the covariance matrices to the desired depth. Surprisingly, we find that this
technique is also highly effective: for example, for a 32-layer-deep ConvMixer, the optimal co-
variance transfer result is from an 8-layer-deep ConvMixer, and 2- and 4-deep models are also
quite effective (see Figure 3.4).

Different patch sizes. Similarly, it is straightforward to transfer covariances between models
with different patch sizes. We find that initializing ConvMixers with 1 × 1 patches from filter
covariances of ConvMixers with 2 × 2 patches leads to a decrease in performance relative to
using a reference model of the correct patch size; however, using the filters of a 1× 1 patch size
ConvMixer to initialize a 2 × 2 patch size ConvMixer increases performance (see group b vs.
group B in Fig. 3.11). Yet, in both cases, the performance is better than uniform initialization.

25

3x3 7x7 9x9 15x15
Filter Size

0.85

0.90

0.95
Te

st
 A

cc
ur

ac
y

(\%
) A B C D E A B C D E A B C D E

A
B C D E A B C D E

A
B C D E

A B C D E

A
B C D

E

ConvMixer-256/8 Patch Size 2x2

Epochs: 20 50 200
A Uniform
B Cov. transfer from CM-256/24

C Cov. transfer from CM-32/24
D Direct transfer from CM-256/24

E Ours
Thawed FrozenThawed Frozen

3x3 7x7 9x9 15x15
Filter Size

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y
(\%

)

A B C D E A B C D E A B C D E

A B C D
E A B C D

E

A
B C D

E
A B C D

E

A
B C D

E

ConvMixer-256/24 Patch Size 2x2

Epochs: 20 50 200
A Uniform
B Cov. transfer from CM-256/24

C Cov. transfer from CM-32/24
D Direct transfer from CM-256/24

E Ours
Thawed FrozenThawed Frozen

3x3 7x7 9x9 15x15
Filter Size

0.875

0.900

0.925

0.950

Te
st

 A
cc

ur
ac

y
(\%

)

A B C D
E A B C D E

A B C D E
A B C D E

A B C D E

A
B C D E A B C D

E

A

B
C D E

ConvMixer-256/8 Patch Size 1x1

Epochs: 20 50 200
A Uniform
B Cov. transfer from CM-256/24

C Cov. transfer from CM-32/24
D Direct transfer from CM-256/24

E Ours
Thawed Frozen

Figure 3.3: CIFAR-10 accuracy for uniform initialization (A), baseline covariance transfer (B-
D), and our custom initialization results (E).

Different filter sizes. Covariance transfer between models with different filter sizes is more
challenging, as the covariance matrices have different sizes. In the block form, we mean-pad or
clip each block to the target filter size, and then bilinearly interpolate over the blocks to reach
a correctly-sized covariance matrix. This technique is still better than uniform initialization for
filter sizes larger than 3 (which naturally has very little structure to transfer), especially in the
frozen case (see Fig. 3.11)

9x9
Filter Size

0.850

0.875

0.900

0.925

Te
st

 A
cc

ur
ac

y
(\%

)

A B C
A B C

ConvMixer-256/8 - Patch Size 2x2

A Exact covariance (C)
B Kronecker factorized (C A A)
C Kronecker factorized (C A B)

Figure 3.5: Kronecker-
factorized covariances.

Kronecker-factored covariance structure. As a first step towards
modeling the structure of filter covariances, we replaced covariances
with their Kronecker-factorized counterparts using the rearranged
form of the covariance matrix defined in Eq. (3.1), i.e., Σ = A ⊗ A
where A ∈ Rk×k. Surprisingly, this slightly improved performance
over unfactorized covariance transfer (see Fig. 3.5), suggesting that
filter covariances are not only eminently transferrable for initialization,
but that their core structure may be simpler than meets the eye. Kro-
necker factorizations were computed via gradient descent minimizing
the mean squared error.

26

3x3 7x7 9x9 15x15
Kernel Size

0.85

0.90

0.95
Te

st
 A

cc
ur

ac
y

(\%
) 2 4 8 1632256

2
4 8 1632256

2 4 8 1632256

2

4
8 1632256 2 4 8 1632256

2 4
8

1632256 2 4 8 1632256

2

4
8 1632

256

Covariance transfer from narrower models: ConvMixer-{2, 4, 8, 16, 32, 256}/8 ConvMixer-256/8 (Patch Size 2x2)

Epochs: 20 50
Thawed Frozen

3x3 7x7 9x9 15x15
Kernel Size

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y
(\%

)

U 4 8 162432U 4 8 162432 U 4 8 162432
U

4 8 162432 U 4 8 162432
U

4 8 162432 U 4 8 162432

U

4 8 1624
32

Covariance transfer from shallower models: ConvMixer-256/{4, 8, 16, 24, 32} ConvMixer-256/32 (Patch Size 2x2)

Epochs: 20 50 200
Thawed Frozen

Figure 3.4: CIFAR-10 experimental results from initializing via convariances from narrower
(top) and shallower (bottom) models. The numeric annotations represent the width (top) and
depth (bottom) of the pre-trained model we use to intialize. U represents uniform initialization.

Discussion. We have demonstrated that it is possible to initialize filters from the covariances
of pre-trained models of different widths, depths, patch sizes, and kernel sizes; while some of
these techniques perform better than others, they are almost all better than uniform initialization.
Our observations indicate that the optimal choice of reference model is narrower or shallower,
and perhaps with a smaller patch size or kernel size. We also found that covariance transfer from
ConvMixers trained on ImageNet led to greater performance still (Figure 3.12). This suggests
that the best covariances for filter initialization may be quite unrelated to the target model, i.e.,
model independent.

3.1.2 D.I.Y. Filter Covariances

Ultimately, the above methods for initializing convolutional filters via transfer are limited by
the necessity of a trained network from which to form a filter distribution, which must be ac-
cessible at initialization. We thus use observations on the structure of filter covariance matrices
to construct our own covariance matrices from scratch. Using our construction, we propose a
depth-dependent but simple initialization strategy for convolutional filters that greatly outper-
forms previous techniques.

Visual observations. Filter covariance matrices in pre-trained ConvMixers and ConvNeXts
have a great deal of structure, which we observe across models with different patch sizes, archi-
tectures, and data sets; see Fig. 3.1 and 3.15 for examples. In both the block and rearranged forms
of the covariance matrices, we noticed clear repetitive structure, which led to an initial investi-
gation on modeling covariances via Kronecker factorizations; see Figure 3.5 for experimental
results. Beyond this, we first note that the overall variance of filters tends to increase with depth,

27

until breaking down towards the last layer. Second, we note that the sub-blocks of the covariances
often have a static negative component in the center, with a dynamic positive component whose
position mirrors that of the block itself. Finally, the covariance of filter parameters is greater in
their center, i.e., covariance matrices are at first centrally-focused and become more diffuse with
depth. These observations agree with intuition about the structure of convolutional filters: most
filters have the greatest weight towards their center, and their parameters are correlated with their
neighbors.

Constructing covariances. With these observations in mind, we propose a construction of
covariance matrices. We fix the (odd) filter size k ∈ N+, let 1 ∈ Rk×k be the all-ones matrix,
and, as a building block for our initialization, use unnormalized Gaussian-like filters Zσ ∈ Rk×k

with a single variance parameter σ, defined elementwise by

(Zσ)i,j := exp

(
−
(i− ⌊k

2
⌋)2 + (j − ⌊k

2
⌋)2

2σ

)
for 1 ≤ i, j,≤ k. (3.5)

Such a construction produces filters similar to those observed in the blocks of the Layer #5
covariance matrix in Fig. 3.1.

To capture the dynamic component that moves according to the position of its block, we
define the block matrix C ∈ Rk2×k2 with k × k blocks by

[Ci,j] = Shift(Zσ, i− ⌊k
2
⌋, j − ⌊k

2
⌋) (3.6)

where the Shift operation translates each element of the matrix i and j positions forward in
their respective dimensions, wrapping around when elements overflow; see Appendix B.2 for
details. We then define two additional components, both constructed from Gaussian filters: a
static component S = 1⊗Zσ ∈ Rk2×k2 and a blockwise mask component M = Zσ⊗1 ∈ Rk2×k2 ,
which encodes higher variance as pixels approach the the center of the filter.

Using these components and our intuition, we first consider Σ̂ = M ⊙ (C − 1
2
S), where ⊙

is an elementwise product. While this adequately represents what we view to be the important
structural components of filter covariance matrices, it does not satisfy the property [Σi,j]ℓ,m =
[Σℓ,m]i,j (i.e., covariance matrices must be symmetric, accounting for our block representation).
Consequently, we instead calculate its symmetric part, using the notation as follows to denote a
“block-transpose”:

ΣB = Σ′ ⇐⇒ [Σi,j]ℓ,m =
[
Σ′

ℓ,m

]
i,j

for 1 ≤ i, j, ℓ,m ≤ k. (3.7)

Equivalently, this is the perfect shuffle permutation such that (X ⊗ Y)B = Y ⊗X with X, Y ∈
Rk×k. First, we note that CB = C due to the definition of the shift operation used in Eq. 3.6 (see
Appendix B.2). Then, noting that SB = M and MB = S by the previous rule, we define our
construction of Σ to be the symmetric part of Σ̂ (where C, S,M are implicitly parameterized by
σ, similarly to Zσ):

Σ = 1
2
(Σ̂ + Σ̂B) = 1

2

[
M ⊙ (C − 1

2
S) + (M ⊙ (C − 1

2
S))B

]
(3.8)

= 1
2

[
M ⊙ (C − 1

2
S) + (MB ⊙ (CB − 1

2
SB))

]
= M ⊙ (C − 1

2
S) + S ⊙ (C − 1

2
M) (3.9)

= 1
2
[M ⊙ (C − S) + S ⊙ C] . (3.10)

28

Σ

=

M

⊙

(C

−

S)
+

C

⊙

S

Figure 3.6: Our convolutional covariance matrix construction with σ = π/2.

0.0 0.2 0.4 0.6 0.8 1.0
Depth

0

1

2

Va
ria

nc
e

Variance Schedule
Figure 3.7: How our initial-
ization changes with depth.
Variance increases quadrati-
cally with depth according to a
schedule which can be chosen
through visual inspection of
pre-trained models or through
grid search. Here we use the
parameters
σ0 = .5, vσ = .5, aσ = 3.

While Σ is now symmetric (in the rearranged form of Eq. 3.1), it is not positive semi-definite,
but can easily be projected to Sk2

+ , as is often done automatically by multivariate Gaussian pro-
cedures. We illustrate our construction in Fig. 3.6, and provide an implementation in Fig. A.3.

Completing the initialization. As explained in Fig. 3.1, we observed that in pre-trained mod-
els, the filters become more “diffuse” as depth increases; we capture this fact in our construction
by increasing the parameter σ with depth according to a simple quadratic schedule; let d be the
percentage depth, i.e., d = i−1

D−1
for the ith convolutional layer of a model with D total such

layers. Then for layer i, we parameterize our covariance construction by a variance schedule:

σ(d) = σ0 + vσd+
1
2
aσd

2 (3.11)

where σ0, vσ, aσ jointly describe how the covariance evolves with depth. Then, for each layer i ∈
1, . . . , D, we compute d = i−1

D−1
and initialize the filters as Fi,j ∼ N (0,Σ′

σ(d)) for j ∈ 1, . . . , H .
We illustrate our complete initialization scheme in Figure 3.7.

3.1.3 Initializing using our filter covariance structure
In this section, we present the performance of our initialization within ConvMixer and ConvNeXt
on CIFAR-10 and ImageNet classification, finding it to be highly effective, particularly for deep
models with large filters. Our new initialization overshadows our previous covariance transfer
results.

Settings of initialization hyperparameters σ0, vσ, and aσ were found and fixed for CIFAR-10
experiments, while two such settings were used for ImageNet experiments. Appendix B.1 con-
tains full details on our (relatively small) hyperparameter searches and experimental setups, as
well as empirical evidence that our method is robust to a large swath of hyperparameter settings.

29

Empirical Covariance Our Covariance

Layer #1 of 8

Learned Filters

Sampled Filters Sampled Filters

Empirical Covariance Our Covariance

Layer #4 of 8

Learned Filters

Sampled Filters Sampled Filters

Empirical Covariance Our Covariance

Layer #8 of 8

Learned Filters

Sampled Filters Sampled Filters

Figure 3.8: Filters learned or generated for ConvMixer-256/8 with 2 × 2 patches and 9 × 9
filters trained on CIFAR-10: learned filters (left), filters sampled from the Gaussian defined
by the empirical covariance matrix of learned filters (center), and filters from our initialization
technique (right).

30

1x1 2x2
Patch Size

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y
(\%

)

A B C D E

A
B C D E

A B C D E

A

B C D E

ConvNeXt-atto

Epochs: 20 50 200

A Uniform
B Cov. transfer (same width)
C Cov. transfer (1/8th width)

D Direct transfer
E Ours

Figure 3.9: Our init also improves ConvNeXt’s accuracy on CIFAR-10 (group E vs. A).

CIFAR-10 Results

Thawed filters. In Fig. 3.3, we show that large-kernel models using our initialization (group E)
outperform those using uniform initialization (group A), covariance transfer (groups B, C), and
even those directly initializing via learned filters (group D). For 2×2-patch models (200 epochs),
relative to uniform, our initialization causes up to a 1.1% increase in accuracy for ConvMixer-
256/8, and up to 1.6% for ConvMixer-256/24. The effect size increases with the the filter size,
and is often more prominent for shorter training times. Results are similar for 1× 1-patch mod-
els, but with a smaller increase for 7× 7 filters (0.15% vs. 0.5%). Our initialization has the same
effects for ConvNeXt (Fig. 3.9). However, our method works poorly for 3 × 3 filters, which we
believe have fundamentally different structure than larger filters; this setting is better-served by
our original covariance transfer techniques.

In addition to improving the final accuracy, our initialization also drastically speeds up con-
vergence of models with thawed filters (see Fig. 3.10), particularly for deeper models. A ConvMixer-
256/16 with 2 × 2 patches using our initialization reaches 90% accuracy in approximately 50%
fewer epochs than uniform initialization, and around 25% fewer than direct learned filter transfer.
The same occurs, albeit to a lesser extent, for 1 × 1 patches—but note that for this experiment
we used the same initialization parameters for both patch sizes to demonstrate robustness to
parameter choices.

Frozen filters. Our initialization leads to even more surprising effects in models with frozen
filters. In Fig. 3.3, we see that frozen-filter 2 × 2-patch models using our initialization often
exceed the performance of their uniform, thawed-filter counterparts by a significant margin of
0.4% – 2.0% for 200 epochs, and an even larger margin of 0.6% – 5.0% for 20 epochs (for large
filters). That is, group E (frozen) consistently outperforms groups A-D (thawed), and in some
cases even group E (thawed), especially for the deeper 24-layer ConvMixer. While this effect
breaks down for 1 × 1 patch models, such frozen-filter models still see accuracy increases of
0.6%–3.5%. However, the effect can still be seen for 1 × 1-patch ConvNeXts (Fig. 3.9). Also
note that frozen-filter models can be up to 40% faster to train (see Fig. 3.2), and may be more
robust (Cazenavette et al.).

31

0 20 40 60 80 100
Epochs

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y
(%

)

ConvMixer-256/16 Patch Size: 2x2, Filter Size: 9x9

Filter Initialization
Uniform
Cov. transfer
Direct transfer
Ours

0 20 40 60 80 100
Epochs

90

91

92

93

94

95

Te
st

 A
cc

ur
ac

y
(%

)

ConvMixer-256/16 Patch Size: 1x1, Filter Size: 9x9

Filter Initialization
Uniform
Cov. transfer
Direct transfer
Ours

Figure 3.10: Convergence plots: each data point runs through a full cycle of the LR schedule,
and all points are averaged over three trials with shaded standard deviation.

Table 3.1: ImageNet-1k accuracy from various architectures and initializations. “Ours” de-
notes our proposed initialization. Bold indicates best within architecture and category (frozen or
thawed).

Model THAWED FROZEN

Architecture
Filter

Size

Patch

Size

#

Epochs
Uniform

Ours

.15 .5 .25

Ours

.15 .25 1.0
Uniform

Ours

.15 .5 .25

Ours

.15 .25 1.0

ConvMixer-512/12 9 14 50 67.03 67.41 67.34 60.47 64.43 64.12
ConvMixer-512/24 9 14 50 67.76 69.60 69.52 62.50 66.57 66.38
ConvMixer-512/32 9 14 50 65.00 68.78 68.84 55.79 66.59 66.32
ConvMixer-1024/12 9 14 50 73.55 73.62 73.75 68.96 71.48 71.30
ConvMixer-1024/24 9 14 50 74.19 75.33 75.50 69.65 73.42 74.31
ConvMixer-1024/32 9 14 50 72.18 74.98 74.95 64.94 73.00 73.12
ConvMixer-512/12 9 7 50 72.05 71.92 72.32 67.25 68.91 68.92
ConvNeXt-Atto 7 4 50 69.96 67.84 68.06 51.43 64.52 64.43
ConvNeXt-Tiny 7 4 50 75.99 76.08 77.11 64.17 74.62 75.21
ConvMixer-1536/24 9 14 150 80.11 80.28
ConvNeXt-Tiny 7 4 150 79.74 79.81

9x9 15x15
Filter Size

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y
(\%

)

a b c A B C
a b c A B C a b c A B C

a
b c A B C

Cov. transfer across patch sizes: ConvMixer-256/8 Patch Size: 2x2

a Cov. CM-256/8 1x1
b Cov. CM-32/8 1x1
c Tfr. CM-256/8 1x1

A Cov. CM-256/8 2x2
B Cov. CM-32/8 2x2
C Tfr. CM-256/8 2x2

9x9 15x15
Filter Size

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y
(\%

)

U 3 7 9 15
U 3 7 9 15

U 3
7 9 15

U
3

7 9
15

Cov. transfer across filter sizes: ConvMixer-256/8 Patch Size: 2x2

Epochs: 20 50 200
Thawed Frozen

Figure 3.11: Initializing via covariances from models with different patch (left) and filter sizes
(right). Left: Lowercase denotes initializing from patch size 1× 1, and uppercase 2× 2. Right:
Annotations denote the reference filter size, U is uniform.

32

9x9
Filter Size

0.80

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y
(\%

)

A B C D E F

A
B C D E F

ConvMixer-256/12 Patch Size 2x2

Epochs: 20 50 200
A Uniform
B Cov. from CM-256 (CIFAR)

C Cov. from CM-32 (CIFAR)
D Direct tfr. from CM-256 (CIFAR)

E Cov. from CM-512 (ImNet)
F Cov. from CM-64 (ImNet)

9x9
Filter Size

0.85

0.90

0.95

Te
st

 A
cc

ur
ac

y
(\%

)

A B C D E F
A B C D E F

ConvMixer-256/12 Patch Size 1x1

Epochs: 20 50 200
A Uniform
B Cov. from CM-256 (CIFAR)

C Cov. from CM-32 (CIFAR)
D Direct tfr. from CM-256 (CIFAR)

E Cov. from CM-512 (ImNet)
F Cov. from CM-64 (ImNet)

Figure 3.12: Using filter distributions from pre-trained ImageNet models to initialize models
trained on CIFAR-10 is also effective (represented by groups E and F, with hatch marks).

5x5
Filter Size

0.90

0.92

0.94

Te
st

 A
cc

ur
ac

y
(\%

) A B C D E

A
B C D

E

ConvMixer-256/8 Patch Size 2x2

5x5
Filter Size

0.90

0.92

0.94

Te
st

 A
cc

ur
ac

y
(\%

) A B C D E

A
B C D E

ConvMixer-256/16 Patch Size 2x2

Figure 3.13: Our initialization is also effective for 5 × 5 filters. (The same legends in Fig. 3.3
apply.)

0 20 40 60 80 100
Epochs

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y
(%

)

ConvMixer-256/8 Patch Size: 2x2, Filter Size: 9x9

Filter Initialization
Uniform
Cov. transfer
Direct transfer
Ours

0 20 40 60 80 100
Epochs

90

91

92

93

94

Te
st

 A
cc

ur
ac

y
(%

)

ConvMixer-256/8 Patch Size: 1x1, Filter Size: 9x9

Filter Initialization
Uniform
Cov. transfer
Direct transfer
Ours

Figure 3.14: Convergence plots: each data point runs through a full cycle of the LR schedule,
and all points are averaged over three trials with shaded standard deviation.

33

0.58.517.526.535.544.553.562.571.580.5

0.5
8.5

17.5
26.5
35.5
44.5
53.5
62.5
71.5
80.5

Un
no

rm
al

ize
d

Depth

Layer #1 of 12

0.58.517.526.535.544.553.562.571.580.5

0.5
8.5

17.5
26.5
35.5
44.5
53.5
62.5
71.5
80.5

ConvMixer-512/12, Patch Size 7x7, Kernel Size 9x9 (ImageNet-1k)

Layer #7 of 12

0.58.517.526.535.544.553.562.571.580.5

0.5
8.5

17.5
26.5
35.5
44.5
53.5
62.5
71.5
80.5

Layer #12 of 12

0.58.517.526.535.544.553.562.571.580.5

0.5
8.5

17.5
26.5
35.5
44.5
53.5
62.5
71.5
80.5

0.58.517.526.535.544.553.562.571.580.5

0.5
8.5

17.5
26.5
35.5
44.5
53.5
62.5
71.5
80.5

0.58.517.526.535.544.553.562.571.580.5

0.5
8.5

17.5
26.5
35.5
44.5
53.5
62.5
71.5
80.5

No
rm

al
ize

d
Pe

r-B
lo

ck

45 54 63

Figure 3.15: Covariance matri-
ces from a ConvMixer trained
on ImageNet exhibit similar
structure to those of ConvMix-
ers trained on CIFAR-10; how-
ever, later layers tend to have
more structure, including a
“checkerboard” pattern in each
sub-block.

ImageNet Experiments

Our initialization performs extremely well on CIFAR-10 for large-kernel models, almost always
helping and rarely hurting. Here, we explore if the performance gains transfer to larger-scale
ImageNet models. We observe in Fig. 3.15, Appendix B.3 that filter covariances for such mod-
els have finer-grained structure than models trained on CIFAR-10, perhaps due to using larger
patches. Nonetheless, our initialization leads to quite encouraging improvements in this setting.

Experiment design. We used the “A1” training recipe from Wightman et al. (2021), with cross-
entropy loss, fewer epochs, and a triangular LR schedule as in Trockman and Kolter (2022).
We primarily demonstrate our initialization for 50-epoch training, as the difference between
initializations is most pronounced for lower training times. We also present two full, practical-
scale 150-epoch experiments on large models. We also included covariance transfer experiments
in Appendix B.3.

Thawed filters. On models trained for 50 epochs with thawed filters, our initialization im-
proves the final accuracy by 0.4%−3.8% (see Table 3.1). For the relatively-shallow ConvMixer-
512/12 on which we tuned the initialization parameters, we see a gain of just 0.4%; however,
when increasing the depth to 24 or 32, we see larger gains of 1.8% and 3.8%, respectively, and a
similar trend among the wider ConvMixer-1024 models. Our initialization also boosts the accu-
racy of the 18-layer ConvNeXt-Tiny from 76.0% to 77.1%; however, it decreased the accuracy of
the smaller, 12-layer ConvNeXt-Atto. This is perhaps unsurprising, seeing as our initialization
seems to be more helpful for deep models, and we used hyperparameters optimized for a model
with a substantially different patch and filter size.

Our initialization is also beneficial for more-practical 150-epoch training, boosting accuracy
by around 0.1% on both ConvMixer-1536/24 and ConvNeXt-Tiny (see Table 3.1, bottom rows).
While the effect is small, this demonstrates that our initialization is still helpful even for longer

34

training times and very wide models. We expect that within deeper models and with slightly
more parameter tuning, our initialization could lead to still larger gains in full-scale ImageNet
training.

Frozen filters. Our initialization is extremely helpful for models with frozen filters. Using our
initialization, the difference between thawed and frozen-filter models decreases with increasing
depth, i.e., it leads to 2 − 11% improvements over models with frozen, uniformly-initialized
filters. For ConvMixer-1024/32, the accuracy improves from 64.9% to 73.1%, which is over
1% better than the corresponding thawed, uniformly-initialized model, and only 2% from the
best result using our initialization. This mirrors the effects we saw for deeper models on our
earlier CIFAR-10 experiments. We see a similar effect for ConvNeXt-Tiny, with the frozen
version using our initialization achieving 75.2% accuracy vs. the thawed 76.0%. In other words,
our initialization so effectively captures the structure of convolutional filters that it is hardly
necessary to train them after initialization; one benefit of this is that it substantially speeds up
training for large-filter convolutions.

3.1.4 An efficient convolutional filter dilation schedule

An important detail of the previously-presented initialization is that the variance of the filters
increase with depth within the network; see Figure 3.7 and Appendix B.1.1. We investigate
whether this observation could have broader consequences for efficient neural architecture de-
sign. In particular, increasing the variance of the filters corresponds to increasing their “receptive
field”, so one could use smaller and more efficient 3 × 3 filters early in the network and larger,
e.g., 9 × 9 filters in final layers. Alternatively, the dilation of the filters could be increased in
deeper layers, allowing for a larger receptive field without significantly changing memory- or
compute-overhead (Yu and Koltun, 2015). A convolutional layer with dilation factor d inserts
d − 1 zero or padding pixels between the filter pixels, resulting in a layer with larger receptive
field. That is, a convolutional layer with kernel size k × k and dilation factor d will have a new
kernel size K ×K, where K = k − (k − 1)(d− 1).

In Figure 3.16, we show the effect of using various custom depth-dependent convolution
dilation schedules on training ConvMixers on CIFAR-10; the dilation schedules are listed in
Table 3.2. Schedules A-C correspond to constant dilation factors 1-3, i.e., schedule A is the
baseline. By increasing dilation in later layers (schedules D-H), we can increase test accuracy,
especially for short-duration training (pink), and in some cases even improve accuracy for long-
duration training (purple; upper left). For example, schedule E uses d = 1 (no dilation) in the first
50% of the layers, then uses d = 2 for the next 25% and d = 3 for the final 25%; this mimics the
increasing filter sizes we saw in the earlier initialization, as well as the tendency for unconstrained
networks like ResMLP (Touvron et al., 2021a) to learn convolution-like layers with increasing
receptive fields. This schedule (E) results in a nearly 1% improvement in accuracy for all training
durations for ConvMixer-256/8 with 1 × 1 patches, though the effect is less obvious for larger
patches and deeper networks.

This shows evidence that the observations behind mimetic initialization may be useful beyond
initialization itself, e.g., for efficient architecture design, by anticipating the weight structure that

35

A B C D E F G H
Dilation Schedule

0.800

0.825

0.850

0.875

0.900

0.925

0.950
Te

st
 A

cc
ur

ac
y

(\%
)

ConvMixer-256/8: Patch Size 1x1

Epochs: 20 50 200Epochs: 20 50 200

A B C D E F G H
Dilation Schedule

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Te
st

 A
cc

ur
ac

y
(\%

)

ConvMixer-256/16: Patch Size 1x1

Epochs: 20 50 200Epochs: 20 50 200

A B C D E F G H
Dilation Schedule

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Te
st

 A
cc

ur
ac

y
(\%

)

ConvMixer-256/8: Patch Size 2x2

Epochs: 20 50 200Epochs: 20 50 200

A B C D E F G H
Dilation Schedule

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Te
st

 A
cc

ur
ac

y
(\%

)

ConvMixer-256/16: Patch Size 2x2

Epochs: 20 50 200Epochs: 20 50 200

Figure 3.16: Changing the dilation schedule of 3× 3 convolutions in line with our initialization
observations can—to a lesser extent—improve performance, especially or short-duration training
times on CIFAR-10. The effect is most obvious for ConvMixer-256/8 with patch size 1 × 1, in
the upper left. The custom schedules (C-H) tend to either be better than or comparable to the
default schedule A. Simply using larger dilations throughout (B, C) actually harms performance.
See Table 3.2 for a description of the dilation schedules A-H.

final trained models “want” to have. There is similar evidence from He and Hofmann (2023),
jointly with Trockman and Kolter (2023), which suggests to remove the projection weight (and
a residual connection) from transformers based on the observation that the product of the value
and projection weights in self-attention layers often has negative-identity-like structure; i.e., this
negative identity may cancel out a residual connection in the self-attention block. Studying the
structure of the weights of trained models may therefore be a powerful way to design more
efficient architectures.

3.1.5 Summary of contribution
In this paper, we proposed a simple, closed-form, and learning-free initialization scheme for large
depthwise convolutional filters. Models using our initialization typically reach higher accuracies
more quickly than uniformly-initialized models. We also demonstrated that our random initial-

36

Table 3.2: Dilation schedules for an 8-layer ConvMixer — we split the network into quarters, so
this may be extrapolated easily to deeper ConvMixers as well. The dilation schedules mimic the
increasing filter size used in our initialization and observed in pretrained ConvMixers.

Schedule Dilation Pattern

A 1 1 1 1 1 1 1 1

B 2 2 2 2 2 2 2 2

C 3 3 3 3 3 3 3 3

D 1 1 2 2 3 3 3 3

E 1 1 1 1 2 2 3 3

F 1 1 2 2 2 2 2 2

G 1 1 1 1 2 2 2 2

H 1 1 1 1 1 1 2 2

ization of convolutional filters is so effective, that in many cases, networks perform nearly as well
(or even better) if the resulting filters do not receive gradient updates during training. Moreover,
like the standard uniform initializations generally used in neural networks, our technique merely
samples from a particular statistical distribution, and it is thus almost completely computation-
ally free. In summary, our initialization technique for the increasingly-popular large-kernel
depthwise convolution operation almost always helps, rarely hurts, and is also free.

3.2 Mimetic Initialization of Self Attention Layers

Despite their excellent performance in the regime of large-scale pretraining, Transformers are
notoriously hard to train on small-scale datasets Dosovitskiy et al. (2020). In this setting, convo-
lutional networks such as the ResNet tend to massively outperform Vision Transformers, with the
gap only being closed by the addition of techniques such as self-supervised pretraining, auxiliary
losses, convolution-inspired tokenizers, or the addition of other architectural components that
promote convolution-like inductive biases. Similar effects are seen in language modeling, where
classic models such as LSTMs outperform vanilla Transformers without extreme regularization
and long-duration training.

In this work, we take a step towards bridging this gap via a novel initialization technique for
Transformers. We focus primarily on Vision Transformers (ViTs), though we also investigate
our technique in the context of language modeling. We note that in pretrained ViTs, the weights
of self-attention layers are often quite correlated, in that WQW

T
K ∝ I + ϵ and WVWproj ∝ ϵ− I .

Our proposal is merely to initialize the self-attention weights to mimick this observation, with
the added caveat of requiring standard sinusoidal position embeddings. While we propose only
one technique here, we believe that this concept is worthy of future research, as it may enhance

37

(a) WQW
T
K often has a noticeable positive diagonal. → Layers 1-12

(b) WV Wproj often has a prominent negative diagonal. Here, we sum over heads.

Figure 3.17: Self-attention weights of an ImageNet-pretrained ViT-Tiny. Pictured are 3 heads
for each of the 12 layers. Clipped to 64x64.

the understanding of the inner-workings of deep models and lead to cheaper training and bet-
ter optima. We propose to call this type of technique mimetic initialization, as we initialize by
mimicking the structures and patterns observed in the weights of pretrained models. Importantly,
the sort of mimetic initialization we propose seeks to mimic solely through hand-crafted, inter-
pretable formulas: it involves absolutely no pretraining and is practically compute-free; i.e., there
is no learning procedure involved.

Fundamentally, we seek to investigate the question proposed by Zhang et al. (2022): might
some of the benefits of pretraining actually just be a result of it serving as a good initialization?
Our approach is to attempt to find good initializations that do not involve pretraining to begin to
explore this question.

Our initialization shows strong advantages for ViTs, allowing gains of up to 5% when training
on small datasets like CIFAR-10, and up to 4% for larger datasets, i.e., ImageNet-1k within a
standard ResNet-style training pipeline. We also see smaller performance gains on language
modeling tasks such as WikiText-103.

TOOD

3.2.1 The difficulty of training Vision Transformers

It is conventional wisdom that CNNs have a stronger inductive bias than ViTs. In practice, this
means that CNNs perform particularly well on small datasets, while ViTs only surpass their per-
formance when pretrained on very large (e.g., ImageNet-21k- or JFT-300B-scale) datasets. To
remedy this situation, numerous works have proposed to integrate convolutions explicitly into
ViTs: Dai et al. (2021) introduces CoAtNet, which directly integrates depthwise convolution and
self-attention. Wu et al. (2021) introduces CvT, a Transformer modification involving convo-
lutional tokenization and projections. Yuan et al. (2021a) proposes the Convolution-enhanced
Image Transformer (CeiT), which makes various modifications to bring about CNN-like induc-

38

tive bias. These techniques are uniformly effective: ViT/CNN hybrids tend to achieve higher
accuracies with less data than their vanilla ViT counterparts. In contrast to these works, we seek
to make ViTs more trainable without the use of convolutions, guided by the observation that
pretrained ViTs eventually become effective without them given sufficient training time.

There are relatively few works on initializing Transformers; these works tend to be theoreti-
cal, focusing on eliminating normalization or skip connections. Huang et al. (2020) investigates
training Transformers without learning rate warmup and normalization, and proposed a rescaling
of weights that allows these to be removed. He et al. (2023) extends work on Deep Kernel Shap-
ing to train Transformers without normalization and skip connections. Rather than initializing
WQ,WK in a particularly structured or principled way, they ensure the product is zero and in-
stead add a controllable bias inside the softmax of the self-attention layers. Similarly, Zhao et al.
(2021) proposes to set the query and key weights to zero and the identity, respectively; however,
the product of these weights remains zero.

In contrast, we attempt to better-initialize standard vanilla Transformers, which use skip
connections and normalization. Moreover, we do so by controlling the behavior of the query
and key weights themselves, aiming to replicate the behavior of pretrained models without any
training.

Touvron et al. (2021c) proposes LayerScale, which multiplies the skip connections by a learn-
able diagonal matrix; though this is an actual architectural change and not an initialization, we
will discuss the potential (albeit weak) connection to our initialization in Sec. 3.2.5. Cordonnier
et al. (2019) and d’Ascoli et al. (2021) propose a scheme to initialize self-attention to implement
convolution; however, this requires the use of relative positional embeddings and the (gated) self-
attention layers proposed must have a particular number of heads to match the kernel size. In
contrast, our scheme makes no architectural changes to the Transformer and still achieves com-
parable performance. Importantly, we do not seek to make self-attention emulate convolution
explicitly, but rather emulate the behavior of self-attention itself after large-scale pretraining.

An inspiration for our work, Zhang et al. (2022) proposed a so-called “mimicking initializa-
tion” as an alternative to large-scale pretraining for language models. However, this technique
actually trains self-attention layers to mimick the behavior of a handcrafted, convolution-like
target similar to attention maps seen in trained models; in contrast, we attempt to bring about
desirable behavior of self-attention entirely by hand, without any form of training. In that sense,
our method is vaguely similar in spirit to Trockman et al. (2022), who propose a learning-free,
structured multivariate initialization for convolutional filters.

Many works have modified Vision Transformers to more effectively train on small-scale
datasets. Gani et al. (2022) proposes to learn the weight initialization in a self-supervised fashion,
noting that ViTs are highly sensitive to initialization. This achieves good results on CIFAR-10
and other small-scale datasets. Cao et al. (2022) proposes another self-supervised technique for
from-scratch training. Hassani et al. (2021) proposes a Compact Convolutional Transformer that
can perform well on small datasets, which involves the use of a convolutional tokenizer. Lee et al.
(2021) improves performance on small-scale datasets by introducing Shifted Patch Tokenization
and Locality Self-Attention. Liu et al. (2021b) proposes a “dense relative localization” auxil-
iary task which improves the performance of transformers on small-scale datasets. In contrast to
these works, which introduce auxiliary tasks or novel components, we use standard ResNet-style
training and still achieve good results on small datasets with completely vanilla Transformers.

39

3.2.2 Query and key weights are correlated in pretrained models
Preliminaries We denote the query and key weight matrices for a single head of self-attention
by WQ,WK ∈ Rd×k, where d is the dimension (or width) of the Transformer and k = d/#heads
is the head dimension. We consider the value and projection matrices to be full-rank: WV ,Wproj ∈
Rd×d. For inputs X ∈ Rn×d with additive positional embeddings P ∈ Rn×d, we denote the “at-
tention map” as follows:

Softmax
(

1√
k
XWQW

T
KX

T
)
.

Our initialization is based on mimicking the patterns we observed in pre-trained vision trans-
formers. In Fig. 3.17, we visualize said patterns for a ViT-Tiny, pretrained on ImageNet. The
diagonal of the product of WQ and W T

K is noticeably positive in many cases. Similarly, and
somewhat surprisingly, the product of WV and Wproj tends to have a noticeably negative diago-
nal. This similarly holds for ViTs of different sizes. This suggests that, in rough approximation,
WQ and WK may be the “same” low-rank random normal matrix, as such matrices are approx-
imately semi-orthogonal. This is based on the fact that an appropriately-scaled random normal
matrix is approximately orthogonal. That is, if Z ∈ Rd×k and Z ∼ N (0, I/k), then ZZT ≈ I .
On language models (see Fig. 3.23), we see a similar, albeit not quite so clear pattern. In contrast,
the products WQ and W T

K are often negative instead of positive, and vice versa for WV and Wproj .
In Figure 3.18, we show the attention maps in a ViT-Tiny for a variety of training settings,

averaged over the three heads and over a batch of CIFAR-10 inputs. Note the difference between
the untrained model (a) and the untrained one using our initialization (d). Further, there is some
degree of similarity between the ImageNet-pretrained model (c) and our untrained one (d). After
training our initialized ViT on CIFAR-10, the early layers are similar to those of the ImageNet-
pretrained ViT while the later layers are more like those of the only-CIFAR-trained ViT (b). The
last layers of the ImageNet-pretrained ViT implement a kind of broadcasting operation which we
do not attempt to mimick.

3.2.3 Mimetic init for self-attention layers
We note that there are two relatively simple choices for modeling WQW

T
K and WVWproj . The

simplest technique is to merely set the two matrices in the product to the same random normal
matrix, i.e., WQ = WK = N(0, I/k), which is scaled by the Transformer head dimension k so
that the average magnitude of the diagonal is ≈ 1. In the case of the value/projection matrices,
whose diagonal we want to be negative, this would be

Z := N(0, I/d),WV = Z,Wproj = −Z.

However, no matter how we scale the random normal matrix, the ratio between the magnitude of
the on-diagonal and the off-diagonal noise remains the same.

To gain more flexibility in the prominence of the diagonal, we instead propose to use a slightly
more involved technique. Here, we explicitly model the products as follows:

WQW
T
K ≈ α1Z1 + β1I (3.12)

WVW
T
proj ≈ α2Z2 − β2I (3.13)

40

(a) (b) (c) (d) (e)

Figure 3.18: Attention maps computed from one CIFAR-10 batch for ViT-Tiny (a) untrained
(b) CIFAR-10 trained (c) ImageNet pretrained (d) using our init (e) our init and then CIFAR-10
trained.
Rows: ↓ Layers #1, 4, 11

41

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0
Reduced Rank (Normal)

0.00 0.25 0.50 0.75 1.00

Reduced Rank (SVD)

0.00 0.25 0.50 0.75 1.00

Full Rank

Figure 3.19: Possible α, β for different weight constructions.

where Zi ∼ N (0, 1
d
I) and αi, βi ∈ [0, 1]. That is, we explicitly control the tradeoff between the

noise Zi and the diagonal I by choosing the parameters αi, βi. In order to recover the factors
WV ,Wproj , we use the singular value decomposition:

α1Z1 + β1I = U1Σ1V
T
1 (3.14)

WV := U1Σ1,Wproj := V1Σ
1/2
1 , (3.15)

and for the low-rank factors WQ,W
T
K , the reduced SVD:

α2Z2 + β2I = U2Σ2V
T
2 (3.16)

WQ := U2[:, : k]Σ2[: k, : k]
1/2 (3.17)

WK := V2[:, : k]Σ2[: k, : k]
1/2. (3.18)

Note that we resample Z2 for each head.
In Fig. 3.19, we show the different α, β that can be achieved through the two methods pro-

posed above. Using equal random normal matrices, there is a linear relationship between α
and β, for both low-rank and full-rank matrices. Using the SVD technique, we achieve a wider
variety of selections even in the low-rank case. Consequently, we use this in all experiments.

Attention map structure In practice, our initialization results in attention maps that with a
strong diagonal component which reflect the structure of the position embeddings, which we
denote by P ∈ Rn×d. We show this visually in Fig. 3.18, though it is also possible to (roughly)
compute their expected value.

Assuming that X ∈ Rn×d and X ∼ N (0, I) (which is a reasonable assumption due to the
use of LayerNorm), and assuming WQ,WK are full-rank and WQW

T
K = αZ + βI due to our

initilization, we can show E[(X+P)(αZ+βI)(X+P)T] = βdI+βPP T , as the only products
with non-zero mean are XXT ≈ I (on the diagonal) and PP T . Thus, roughly speaking, our
initialization results in expected attention maps of the form

Softmax
(

1√
k
(β1dI + β1PP T)

)
. (3.19)

That is, our initialization may bias attention maps towards mixing nearby tokens according to the
structure of PP T , which can be seen in Fig. 3.18.

42

Table 3.3: 100 epoch CIFAR-10 classification (ViT-Tiny).

Width Depth Heads
Acc.

(Base)
Acc.
(Init) ∆ Acc.

96 6 3 84.75 87.90 3.15
96 12 3 84.75 88.84 4.09
192 6 3 85.85 89.68 4.63
192 12 1 85.25 89.88 4.63
192 12 3 86.07 90.78 4.71
192 12 6 86.74 91.38 4.64
192 24 3 86.36 91.85 5.49
384 12 3 86.26 91.56 5.30
384 12 6 84.40 92.17 7.77
384 12 12 86.39 92.30 5.91

3.2.4 Accelerating ViT training with mimetic init
CIFAR-10

Training vanilla ViTs from scratch on CIFAR-10 is notoriously difficult, requiring semi-supervised
pretraining techniques, additional inductive bias, or heavy data augmentation with long training
times Liu et al. (2021b); Lee et al. (2021); Gani et al. (2022); Hassani et al. (2021). In this
section, we demonstrate the substantial benefits of using our initialization for vanilla ViTs on
from-scratch CIFAR-10 training.

Setup We train all ViTs using a simple pipeline: we use RandAugment and Cutout for aug-
mentation, a batch size of 512, AdamW with 3 × 10−3 learning rate, 0.01 weight decay, and
100 epochs. We use a vanilla ViT with embedding dimension 192, depth 12, patch size 2, and
input size 32 unless otherwise noted (ViT-Tiny). We use a class token and sinusoidal position
embeddings. We use α1 = β1 = 0.7 and α2 = β2 = 0.4 for all experiments.

Basic results In Table 3.6, we show our main results for CIFAR-10. Across a variety of ViT
design parameters, our initialization results in substantial accuracy gains between 2.5-6%. While
the benefit of our initialization is quite significant in all cases, we note that it seems to have the
most benefit for larger models. For example, we see an improvement of over 6% for a ViT with
dimension (width) 384, depth 12, and 6 heads (a ViT-Small), while we see a smaller 4.8% gain
for a model with dimension 192 and 3 heads, and a 4.1% gain for dimension 96.

Ablations In Table 3.4, we show some ablations of our initialization technique. If we use the
default normal initialization for WQ,WK , we see a substantial loss of accuracy of nearly 2%;
similarly, if we use default initialization for WV ,Wproj , we see an even greater hit to accuracy of
around 3.5%. Using neither (just sinusoidal position embeddings), we lose almost 4% accuracy.

43

Table 3.4: Ablations on CIFAR-10, ViT-Ti

Ablation Acc.

Our initialization 91.38

Random pos. embeddings 88.70
No init (only sinusoidal pos. embeddings) 87.39
Init only WQ,WK 89.17
Init only WV ,Wproj 87.23
WV Wproj ∝ −cI =⇒WV Wproj ∝ +cI 89.65

GPSA (8 heads) 90.03
GPSA (4 heads) 90.83

+ WV Wproj ∝ −cI 91.21

Pretrained
WK ,WQ,WV ,Wproj & pos. embed

91.15

Further, setting the diagonal of WV ,Wproj to be negative rather than positive is in fact quite
important, accounting for around 1.5% accuracy. These results suggest that all of the components
of our initialization work together, and all are very important. We note that in Fig. 3.17 the
prominence of the diagonal tends to fade with depth; we saw no improvement from mimicking
this.

GPSA comparison GPSA (Gated Positional Self-Attention) was proposed for use in the Con-
ViT model by Cordonnier et al. (2019). This self-attention variation has two attention maps, one
of which is initialized with “soft” convolutional inductive biases to emulate convolution. The
effect of each attention map is determined by a learnable gating parameter.

While our goal was to improve Transformers without architectural modifications, this tech-
nique is the most similar to our own. (Though it requires, e.g., a particular number of heads
and a new, custom layer.) We replaced all self-attention layers with GPSA layers. With 4 heads
(approximately 2x2 convolution), accuracy comes fairly close to our own by around 0.6%. In-
terestingly, adding our WVWproj initialization to GPSA further narrows the gap by around 0.4%.
This shows that our technique may even be useful for self-attention variants. More importantly,
it shows that our technique is competitive even with those requiring more extensive architectural
changes or explicitly-constructed convolutional biases.

Pretrained weights Our initialization technique only considers position embeddings and the
query, key, value, and projection weights. Consequently, we consider transfering just these
weights from an ImageNet-pretrained ViT as a baseline initialization technique. This achieves
91.15% accuracy, which is marginally lower than our own initialization. While this does not say
anything about the initialization of the patch embedding and MLP layers, this may provide some
evidence that our self-attention initialization is close to optimal.

44

0 1 2 3 4
Position Embedding Scale

89

90

91

Te
st

 A
cc

ur
ac

y
Figure 3.20: Increasing the scale of the position embeddings improves CIFAR-10 performance
(ViT-Tiny).

Table 3.5: ImageNet Results

Arch.
Patch
Size

Batch
Size

Input
Size

Acc.
(Base)

Acc.
(Init)

∆
Acc.

↓ ResNet-style Training Pipeline (150 epochs) ↓

Vit/Ti 16 640 224 70.28 73.08 2.8
Vit/Ti 16 1024 224 67.80 71.92 4.1

↓ DeiT-style Training Pipeline (300 epochs) ↓

Vit/Ti 16 1024 224 72.08 72.65 0.57
Vit/S 16 1024 224 79.83 80.36 0.53

Position embeddings According to Table 3.4, the use of sinusoidal position embeddings in-
stead of randomly-initialized ones is crucial for our initialization. Using random rather than
sinusoidal position embeddings with our initialization is disastrous, resulting in a decrease of 3%
in accuracy. However, only initializing the position embeddings is not helpful either; ablating the
rest of the init gives a similar performance decrease. In other words, it is the interaction of our
initialization with the position embeddings which is useful. Consequently, with Eq. 3.19 in mind,
we investigated the scale of the position embeddings, which changes their importance relative to
the inputs themselves.

Position embedding scale Adding a new hyperparameter, we multiplied the embeddings by
a factor γ, and tried several choices as shown in Fig. 3.20. Increasing the scale from 1 to ≈ 2
substantially improves performance, by around 0.5%.

Internal resolution ViTs are typically trained using high-resolution inputs and large patch
sizes. In contrast, we trained most of our models on CIFAR-10 using small 32 × 32 inputs
and 2 × 2 patches. Consequently, we investigate how the choice of patch and input size affects

45

0 25 50 75 100 125 150
Epoch

0
10
20
30
40
50
60
70

To
p-

1
Te

st
 A

cc

ViT-Tiny Training (ResNet Pipeline)

Default init
Our init

0 50 100 150 200 250 300
Epoch

0
10
20
30
40
50
60
70

To
p-

1
Te

st
 A

cc

ViT-Tiny Training (DeiT Pipeline)

Default init
Our init

Figure 3.21: Training curves for DeiT-Tiny in a (a) ResNet-style training pipeline and a (b)
DeiT-style pipeline. In the ResNet pipeline, we see a 4.1% improvement, compared to a 0.5%
improvement in the DeiT pipeline.

performance. In Appendix ??, Table ??, we can see that our initialization is quite beneficial for
many such combinations.

Data efficiency We hypothesize that our initialization leads ViTs to have an inductive bias
more suitable for images, and thus would expect the initialiation to be associated with especially
high performance gains on small datasets. Consequently, we trained on a variety of subsets of
CIFAR-10 (see Fig. 3.22). Surprisingly, we did not see performance gains inversely propor-
tional to the size of the dataset. More research, e.g., on larger datasets, would be necessary to
understand how our initialization changes the data requirements of ViTs.

Other Transformer initializations While the motivation of our initialization is substantially
different from that of other Transformer initialization techniques, we provide some comparisons
in Table 3.7. T-Fixup (Huang et al., 2020) and ZerO (Zhao et al., 2021) focus on initializing the
whole network rather than just the self-attention layers. For ZerO initialization, we only apply
the initialization to self-attention layers. For T-Fixup, we apply the initialization to both self-
attention and MLPs. Nonetheless, T-Fixup harms performance relative to the baseline, and ZerO
offers only a small improvement.

Tuning hyperparameters It is infeasible for us to search over all combinations of αi and βi,
so we first fixed α1 and β1 according to a guess of (0.6, 0.3), and then tuned α2 and β2. From
this, we chose α2, β2. Then, holding this fixed, we tuned α1, β1. Our grid search was performed
for 100-epoch CIFAR-10 training on a ViT-Tiny.

ImageNet

Here, we show that our initialization benefits training ViTs from scratch on another relatively
“small” dataset (for Transformers): ImageNet-1k. We test two settings: a ResNet-style Wight-

46

0 10000 20000 30000 40000 50000
Data Points

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

CIFAR-10 Data Efficiency

Initialization
None
Ours

Figure 3.22: Adjusting the number of training points on CIFAR-10.

man et al. (2021) training pipeline with 150 epochs and standard cross-entropy loss (i.e., the
technique of Trockman and Kolter (2022)), and the 300-epoch DeiT training pipeline from Tou-
vron et al. (2021b). In both cases, we see significant improvements for using our initialization,
with gains between 2.8-4.1% for a ViT-Tiny in the ResNet-style pipeline and around 0.5% in the
DeiT pipeline. We find it surprising that we see relatively high gains even for very-long train-
ing times. Notably, we used the same hyperparameters as found for the CIFAR-10 experiments,
though with a position embedding scale of 1.

The large performance in the ResNet-style training pipeline is particularly notable. One of
the main contributions of Touvron et al. (2021b) was to propose a particular training pipeline
which was effective for training ViTs on ImageNet-scale datasets, as ViTs did not work well in
ResNet-style training pipelines. However, our initialization provides a major boost in accuracy
for ViT-Tiny in this setting, suggesting that it begins to bridge the gap between ViT and ResNet
training.

In Fig. 3.21, we show training progress for both ViT training pipelines; the difference is
smaller for the DeiT pipeline, which has a larger batch size and more epochs.

Other Datasets

To further show that our initialization is not overfit to CIFAR-10 or ImageNet in particular, we
present results for CIFAR-100, SVHN, and Tiny ImageNet using our initialization. We use
the same settings as before with a ViT-Tiny, though with 4 × 4 patches for TinyImageNet. In
Table 3.6, we see that our initialization leads to improvements in test accuracy over 5% for Tiny
ImageNet and CIFAR-100, but only 0.39% for the perhaps-easier SVHN dataset.

47

Table 3.6: Our initialization on other datasets (ViT-Tiny, 100 epochs).

Dataset
Acc.

(Base)
Acc.
(Init) ∆ Acc.

Tiny ImageNet 45.24 50.87 5.63
CIFAR-100 60.94 67.33 6.39
SVHN 96.40 96.79 0.39

3.2.5 Why does this initialization work?
We have shown that our mimetic initialization is quite effective for enhancing visual recognition
on small datasets. Here, we propose some additional explanations for why our method is effec-
tive. The first section concerns the query and key weights, while the next two investigate the
somewhat-more-mysterious negative diagonal of the value and projection product.

Near-identity attention maps. In Fig. 3.18 and Eq. 3.19, we see that our initialization, much
like pretraining, makes the attention maps somewhat similar to identity matrices, particularly
in earlier layers. The resemblance of our attention maps using our initialization to those in
pretrained models is notable in itself. He et al. (2023) notes that forcing attention maps to be the
identity avoids rank collapse, which can otherwise prevent trainability. However, they note that
exact-identity attention cannot pass gradients to the query and key parameters, meaning it is not
actually a viable initialization technique. We hypothesize that our initialization strikes a balance
between untrained attention maps (as in Fig. 3.18a) and identity attention maps.

LayerScale analogy In Touvron et al. (2021c), a simple technique called LayerScale is pro-
posed to train deeper Transformers more effectively, in which the layer at a skip connection is
multiplied by a learnable diagonal scaling matrix D:

X ′
l = Xl +D · SelfAttn(η(Xl)) (3.20)

where η denotes LayerNorm. Here, we show that the way we initialize WV ,Wproj has a relatively
weak resemblance to this technique. Considering Eq. 3.19, we approximate the attention maps
after our initialization as being close to the identity, and assume that η(Xl) ≈ Xl:

X ′
l = Xl + SelfAttn(η(Xl)) (3.21)
≈ Xl + Iη(Xl)WVWproj (3.22)
≈ Xl + Iη(Xl)(αZ − βI) (due to our init) (3.23)
≈ (I − β)Xl + αη(Xl)Z (3.24)

Scaling Xl by (I−β) is similar in spirit to LayerScale, except in our case we are multiplying
the left-hand instead of the right-hand term in the skip connection. This motivates us to compare
our technique for setting to WVWproj to using LayerScale, or our variant of LayerScale above.

48

Table 3.7: Other initializations

T-Fixup ZerO
LayerScale

Original
LayerScale
Our Version

Our
Initialization

85.38 87.41 89.90 88.68 91.38

We searched ten choices of initialization for the diagonal elements in [0, 1] for both Layer-
Scale techniques, replacing our WVWproj initialization, and report the best results in Table 3.7.
Note we leave our WQW

T
K initialization unchanged. Neither method achieves the performance

of ours (with a difference of about 1.5%) though LayerScale comes closest. We conclude that
the benefits of our initialization extend beyond its possible similarity to LayerScale.

Convolution analogy. Many works which successfuly train ViTs on small datasets do so by
adding aspects of convolution, whether implicitly or explicitly. Here, we explore adding locality
to self-attention through convolutional biases:

Softmax
(
XWQW

T
KX

T + γC
)
, (3.25)

where C is a doubly-block circulant convolution matrix and γ is a learnable scalar. Here, C is
reminiscent of the PP T term in Eq. 3.19. This achieves 87.5% accuracy on CIFAR-10 within
our usual training pipeline (without our init). For comparison, plain self-attention with no special
initialization achieves 88.1% accuracy. Next, we move the convolution outside the softmax:

Softmax
(
XWQW

T
KX

T
)
+ γC, (3.26)

This has a more considerable advantange, resulting in 89.9% accuracy. Then, if we instead use
C ′ = Softmax(γC) to restrict C ′ to be all-positive, we achieve 75% accuracy. That is, it appears
that the negative component of the convolution matrix is necessary.

Thus, we hypothesize that initializing WVWproj to have a negative diagonal is perhaps bene-
ficial for the same reason: this allows for some degree of “negative” or edge-detector-like spatial
mixing to occur, a potentially useful starting point for the purpose of visual recognition.

3.2.6 Language modeling explorations
While our method was primarily inspired by pretrained Vision Transformers, in this section
we investigate its potential for use in language models. As noted in Sec. 3.2.2 and seen in
Fig. 3.23, we do not see precisely the same pattern in a pre-trained GPT-2 model as we do in a
ViT. Nonetheless, we use the same technique here without modification; we saw no improvement
from, e.g., attempting to model the positive diagonals of WVWproj .

Small-scale Generally, it is hard to train Transformers from scratch on small language tasks Dai
et al. (2019); it requires substantial regularization, e.g., in the form of dropout. For word-level

49

(a) WQW
T
K has a wider array of diagonal magnitudes (first 3 heads shown). → Layers 1-12, ↓ Attention

Heads 1-3 of 12

(b) WV Wproj becomes positive in deeper layers.

Figure 3.23: A pretrained GPT-2 shows considerably different patterns in the products of WQW
T
K

and WVWproj , compared to ViTs.

modeling on Penn TreeBank (PTB), we thus add one regularization tweak: word-level embed-
ding dropout (i.e., dropout of entire embedding vectors). This allows us to achieve sub-100
perplexity.

We use a training setup identical to that of Bai et al. (2018), training for 100 epochs and
reducing the learning rate when it plateaus. We used a vanilla Transformer with sinusoidal posi-
tion embeddings, with embedding dimension 384, 12 layers, 8 attention heads, and weight-tied
embeddings.

First, on char-level PTB we did a small-scale hyperparameter search for those αi, βi yielding
the best validation BPC. We chose α1 = 0, β1 = 0.5, and α2 = β2 = 0.2. We used these
parameters on subsequent word-level modeling tasks. On char-level PTB, we see a small but
significant reduction in BPC from 1.233 to 1.210 through using our initialization. Similarly, we
see a small reduction in perplexity on word-level PTB, from 84.84 to 82.34. (For both tasks,
smaller is better.)

While our initialization does not make a large amount of difference for these small-scale
language tasks as it does for vision tasks, it does show a small amount of improvement. We
suspect that it may be the case that a mimetic initialization scheme more finely-tuned to the
language setting may show still better performance.

Medium-scale Next, we tried our initialization on a larger-scale task, WikiText-103. Here, we
used an embedding dimension of 410 with 16 layers, 10 heads, and sinusoidal embeddings, with
the same hyperparameters as for the previous task. As this dataset is around 110 times larger
than PTB, we trained for only 50 epochs. Here, we see a more significant performance gain from
using our initialization, reducing the test perplexity from 28.87 to 28.21 (see Table 3.8). While
this is not a massive improvement, this is consistent with our observation on vision tasks that the
improvement from our technique may be more significant for larger models. Further, we also

50

Table 3.8: Language results

Task Metric Base Init

Char-level PTB bpc 1.233 1.210
Word-level PTB ppl 84.84 82.34
WikiText-103 ppl 28.87 28.21

note that in this case the number of parameters being initialized is quite small relative to the total
number of parameters of the language model due to the word embedding weights, something
which does not occur with vision models.

3.2.7 Summary of contributions
Our proposed initialization technique for Transformers is particularly effective at improving per-
formance on small-scale image recognition tasks, leading to an increase of over 5% accuracy in
some cases. In other words, we address the problem that Vision Transformers are hard to train in
ResNet-style pipelines solely through a structured initialization of the weights, without need for
any kind of pretraining or architectural modifications. To a lesser extent, we demonstrated that
our initialization leads to non-trivial gains on WikiText-103, showing that it also has potential to
similarly improve language modeling on relatively small datasets. More broadly, we proposed a
class of techniques we call mimetic initialization, in which we attempt to gain some benefits of
pretraining by mimicking the surface-level qualities of pretrained models. We speculate that it
may be possible to use domain knowledge to “program” models before training in order to reach
more desirable optima that may have been out of reach with a completely random initialization.
With better structured initialization techniques like our own, perhaps Transformers really are the
universal architecture.

3.3 Mimetic Initialization for State Space Models
State Space Models (SSMs) show promise as a potential replacement for Transformers (Vaswani,
2017) with substantially lower inference costs (Gu and Dao, 2023; Dao and Gu, 2024). While
Transformer memory grows linearly with the input sequence length, SSMs use only a constant
amount, compressing all the context into a fixed-size state. SSMs perform comparably to Trans-
formers on a variety of common benchmarks. However, recent research has highlighted a set of
tasks on which SSMs perform substantially worse than Transformers (Waleffe et al., 2024), par-
ticularly those involving copying or recall (Jelassi et al., 2024; Arora et al., 2024). This is perhaps
unsurprising, as it is harder to recall from a compressed, fixed-size representation, particularly as
its length grows.

Nevertheless, SSMs use relatively large state sizes in practice, and we wonder if their poor
performance on tasks such as copying could be due to training difficulties rather than funda-
mental capacity constraints. We present a qualitative study of the failure modes of SSMs on

51

the copying task. In particular, we inspect the time-dependent linear transformation matrix of
Mamba layers, which is analogous to the attention map of self-attention layers. We compare
these layers to their counterparts in self-attention/Mamba hybrid architectures that successfully
learn to copy, and based on these comparisons, we propose a structured initialization technique
that allows Mamba layers to more readily mimic self-attention. Our technique makes use of the
fact that state space layers can be seen as a form of linear attention with a learnable, structured
causal mask. We find evidence that such linear-attention-like Mamba layers arise naturally after
large-scale pretraining, suggesting that this pattern may be fundamental to the recall abilities of
SSMs.

The proposed mimetic initialization allows Mamba to quickly learn to copy and do
associative recall on up to 4× longer strings, and we show for the first time that SSMs can
achieve 2× length generalization or more. Mimetic initialization is essentially compute-free,
but we show it is comparable to pretraining in allowing Mamba to learn to copy and recall.
Our work helps to better understand the capacity of SSMs relative to Transformers in practice
and can assist in further studies of their capabilities, which may have been underestimated by
previous research.

Related work Recently, Jelassi et al. (2024) did a thorough investigation of the ability of state
space models (in particular Mamba 1) to copy in comparison to Transformers. Their theoretical
results demonstrate that SSMs with a fixed state size have fundamentally limited copying capac-
ity, unlike Transformers which can strongly generalize. Empirically, they find that Transformers
(especially with their proposed custom position embeddings) vastly outperform SSMs on copy-
ing, both in terms of learning and length generalization. They note that in practice, SSMs may
be better at copying than expected due to their relatively large state sizes, but do not observe very
good copying performance in their experiments. Similarly, Arora et al. (2024) note that SSMs
struggle on recall tasks due to their limited state size. They propose an effective intervention
in the form of interleaved kernelized linear attention layers that boost recall performance. The
second, improved version of the Mamba architecture improves upon associative recall ability,
although the authors note that this task remains difficult for SSMs (Dao and Gu, 2024).

Initialization has been important for SSMs since their introduction to deep sequence model-
ing by Gu et al. (2021); a structured initialization of the state matrix was crucial to the perfor-
mance of these earlier time-invariant SSMs (Gu et al., 2020; Gupta et al., 2022; Gu et al., 2022;
Smith et al., 2023). Our work further demonstrates the importance of initialization for SSMs,
taking inspiration from mimetic initialization (Trockman and Kolter, 2023; Trockman et al.,
2022), which uses pretrained models as case studies of good initialization. For example, pre-
vious work noted that self-attention layers in pretrained Vision Transformers may try to imitate
the local mixing ability of convolutions, which is reflected in the correlations between query/key
and value/projection weights; initializing weights with statistical structure that mimics this pat-
tern greatly improved trainability. We follow a similar methodology to propose a novel mimetic
initialization technique for state space layers based on our observations that (1) these layers can
represent linear attention, which can improve recall and (2) they sometimes approximate linear
attention in pretrained models.

52

Layer 0 Layer 1 Layer 2 Layer 3

0 1000 2000 3000 4000 5000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

.-L
ev

el
 A

cc
.

Learning to copy

(a) Training a Mamba with default initialization to copy.
Layer 0 Layer 1 Layer 2 Layer 3

0 1000 2000 3000 4000 5000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

.-L
ev

el
 A

cc
.

Learning to copy with mimetic init

(b) Mamba with mimetic initialization learns to use its attention-like abilities.

Figure 3.24: Mambas initialized with our technique learn to copy more effectively than those
with default initialization. We see evidence of copying ability in the Mamba attention maps; see
Layer 1.

3.3.1 State space model background
Recently, state space models have become popular as a choice of token mixing layer, i.e., as a
replacement for self-attention. We refer to layers that use state space models for this purpose as
state space layers. As it is common in the literature, with a slight abuse of definitions, we refer
to architectures like Mamba 1 & 2 that use state space layers only for sequence mixing as state
space models.

State space models For a scalar sequence x ∈ RT, SSMs are linear recurrences of the form

ht+1 = Āht + B̄xt, yt = Cht, (3.27)

where ht ∈ RN is a hidden state, and Ā ∈ RN×N, B̄ ∈ RN×1, C ∈ R1×N are the state space
model parameters. Traditionally, SSMs are continuous systems, and the bar notation refers to the
discretized form of parameters A and B, which depend on the step size ∆ that is used to sample
an implicit underlying continuous signal xt = x(∆t). Typically, some structure is imposed
on A ∈ RN×N, such as diagonal-plus-low-rank (S4), diagonal (Mamba), or scalar-times-identity
(Mamba 2).

In contrast, selective SSMs such as the S6 layer in Mamba allow the parameters Āt, B̄t, Ct

to vary with time, i.e., depend on xt. The particular state space layer in Mamba operates on
sequences of D-dimensional tokens X ∈ RD×T. Indexing tokens with t and channels with d, it
computes

h(t+1),d = Ātdhtd + B̄tdXtd, ytd = Cthtd, (3.28)

where Ātd, B̄td, Ct depend on all channels of input xt, but with different discretization pa-
rameters ∆td, hence the dependence of Ātd and B̄td on d. Define the underlying parameters

53

0 1000 2000 3000 4000 5000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

.-L
ev

el
 A

cc
.

Learning to copy

Mamba, Mimetic Init (L. 4)
Hybrid, Self Attention (L. 4)
Mamba, Baseline

Layer 4 (Mamba/Mimetic) Layer 4 (Self Attn.)

Figure 3.25: A hybrid Mamba architecture with one Self-Attention layer easily learns to copy.
Dotted lines: performance on training length (50), solid: 2× length generalization (100).

WB,WC ∈ RN×D, and A ∈ RD×N. Let W∆ ∈ RD×D be a rank-r matrix, and bias b∆ ∈ RD. Then
the continuous state space model parameters are computed as Bt = W T

BX:,t and Ct = W T
CX:,t.

The parameters of the discretized state space models are then computed as follows:

∆t,d = softplus(W T
∆dX:,t + b∆,d), Ātd = exp(Ad∆t,d), B̄td = Bt∆t,d. (3.29)

Please refer to Dao and Gu (2024) for a more detailed discussion on selective SSMs.

Matrix form of SSMs The operations of Eq. 3.29 can be written concisely in matrix form:

∆ := softplus (W∆X + b∆) ∈ RD×T (3.30)
B̄d := WBX ⊙ 1n∆d ∈ RN×T (3.31)
C := WCX ∈ RN×T (3.32)

Ād := exp
(
AT

d∆d

)
∈ RN×T (3.33)

As noted first by Ali et al. (2024), the time-varying discrete recurrence ht+1 = Ātht+B̄txt, yt =
Cht can be unrolled and viewed as a matrix operation. Namely, channel d of the output of
an SSM layer, denoted with Yd ∈ RT, can be written as Yd := MdX , where Md ∈ RT×T is
a matrix transformation dependent on d. Each matrix Md represents a time-dependent linear
transformation, much like attention maps in self-attention. For i, j ∈ [T], the Md matrix of the
Mamba state space layer for channel d can be expressed as follows, where 1{i ≤ j} does causal
masking:

Md,i,j = CT
:,i

(
Πi

k=j+1diag(Ād,:,k)
)
B̄d,:,j × 1{i ≤ j}. (3.34)

Eq. 3.34 can be viewed as a linear attention matrix computed from B̄ and C with a learnable
causal mask parameterized by Ā (Dao and Gu, 2024). As it will be useful later, we note that
in practice, A is parameterized as A := − exp(Alog) with Alog ∈ RD×N. The selective state
space layer of Mamba 2 is broadly similar to that of Mamba 1; it follows equations 3.30–3.33,
but instead of having D different Ad and ∆d, it has H independent A and ∆, each of which are
repeated D/H times to construct Ad and ∆d. Each of these H independent A are parameterized as
scalar-times-identity matrices, resulting in just H parameters. These H components correspond
to “heads”, leading to only H unique Ād and B̄d parameters, and only H “attention matrices” Md

(c.f. Eq. 3.34), as in multi-head attention.

54

Mamba architecture Mamba 1 and 2 are prominent sequence modeling architectures that
combine selective state space layers (as the sequence mixer) with more standard layers. We
describe below the Mamba 1 block, and refer the reader to (Dao and Gu, 2024) for details on
Mamba 2, which are not essential to our work. Omitting the final LayerNorm, the Mamba block
is a composition of two sequence mixer layers (1D convolution and a selective SSM layer) a
gated linear block:

W3{SSM [σ(DepthwiseConv1d(W1X))]⊙ σ(W2X)}+X, (3.35)

where σ is SiLU (Elfwing et al., 2018). Mamba 2 simplifies this block, merging all projections
into W1. For both, the convolution layer before the SSM will be considered in our initialization.

Mamba attention maps Throughout this work, we visually inspect Md to better understand the
operation implemented by Mamba layers. However, it is infeasible to look at all D maps, and we
instead visualize and report the average over channels 1

D

∑D

d=1Md, which we hereafter refer to as
the attention map of a Mamba layer. In practice, the inter-channel variation in maps is relatively
small, as the behavior of Md is dominated by B̄d and C. We also sometimes find it useful
to inspect the average attention mask 1

DN

∑D

d=1

∑N

n=1(Π
i
k=j+1diag(Ād,:,k))n,n to approximately

determine the effective receptive field of the Mamba layer (i.e., how far into the past it can look).

Copying task Most of our experiments focus on copying, a simple task where SSMs are known
to fall far behind Transformers. We train the model to predict the paste string given the copy
string, emitting a stop token at completion.

abcdefghijk︸ ︷︷ ︸
copy string

| abcde ?︸ ︷︷ ︸
paste string

· · ·□ (3.36)

Since Transformers cache the whole sequence, it is easy for them to learn the task and to general-
ize far beyond the training length. However, since SSMs compress tokens into a fixed-size state,
it is hard for them to store and decode back long sequences. We consider copying sequences of
varying length and of different vocabulary size, drawing tokens uniformly at random. We also
investigate stack-order copying, where the paste string needs to be generated in the reverse order.

Multi-query associative recall Another synthetic task that has been shown to be an important
discriminator between Transformer and SSM abilities is multi-query associative recall, which
tests models’ ability to store and recall many key-value pairs. Transformers are well-suited for
this task, as they can implement induction heads easily (Olsson et al., 2022).

a1 b2 c3 d4︸ ︷︷ ︸
key−value pairs

| c3 b ?︸ ︷︷ ︸
queries

· · ·□ (3.37)

Similarly to copying, we investigate length generalization on multi-query associative recall.
In our implementation, each key may occur only once, i.e., it cannot be overwritten by later
key/value pairs.

55

3.3.2 Initializing state space layers to be more like attention

To better understand why Mamba often fails to learn to copy, we start by examining a small
model trained to copy 50-character strings. In Figure 3.24a, we can see that Mamba plateaus.
Visual inspection of its attention maps reveals that it has probably failed to learn an interpretable
copying operation.

Attention enables copying To explore what Mamba might be missing to allow it to copy, we
trained a hybrid eight-layer Mamba whose fourth layer is single-head self-attention. As shown in
Fig. 3.25, this one layer enables perfect copying performance, both on in-distribution length-50
strings (dotted lines) and generalizing to length-100 strings (solid lines). The softmax attention
head learns a sharp “look-behind” operation, constructing the paste string by directly attending
to the copy string, likely exploiting an implicit position embedding learned by the preceding
Mamba layers. We propose two initialization changes that allow state space layers to better use
their state capacity.

1. State space layers can be linear attention While there is likely more than one way to learn
to copy, we suspected that Mamba’s copying ability is tied to its ability to represent a similar
operation to the one in this self-attention layer. Notably, in Figure 3.24a, the Mamba layers tend
to look only into the recent past, while the self-attention layer in Figure 3.25 can attend all the
way to the beginning of the string. While SSMs cannot look arbitrarily far into the past because
of their fixed state size, even in the simplest time-invariant SSMs, the amount of history stored in
the state is controlled by the parameter A, whose initialization was crucial to the initial success
of these models (Gu et al., 2021).

Consequently, we focus on the state matrix A, which controls the “receptive field” of the
state space layer. Note in Eq. 3.34 that if Ād ≈ 1, then Md,i,j ≈ CT

:,iB̄d,:,j . That is, the state
space layer’s attention map resembles a product of queries and keys. The only inter-channel
variation in this equation is from ∆d in Eq. 3.31, so that if ∆d ≈ 1 then B̄d ≈ WBX , which
results in M = XTW T

CWBX , which is simple linear attention before applying the causal mask.
Thus, if we set parameters so that ∆d, Ād = 1, the state space transformation is the same for
every channel, and it is simple (non-kernelized) linear attention with head dimension N and no
value/projection matrices:

∆d, Ād ≈ 1 =⇒ Y ≈ X · CausalMask
(
XTW T

CWBX
)
∈ RD×T. (3.38)

However, both Ād and ∆d are parameterized and input-dependent, so we cannot directly set them
to one. We use details of the Mamba implementation: To make Ād = exp(AT

d∆d) ≈ 1, we pa-
rameterize A = − exp(−cAlog), which is nearly 0 for large c, making AT

d∆d ≈ 0 in Eq. 3.33. We
choose c from {2, 4, 8}. We then set W∆ ≈ 0 and b∆ = softplus−1(1) ≈ 0.54 in Eq. 3.30 so ∆d ≈
1. This makes the state space layer close to its linear attention counterpart at initialization.

2. Correlated tokens should attend to each other Having shown that state space layers can
mimic linear attention, we now try to make them mimic attention layers that can copy, such as the

56

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

. A
cc

ur
ac

y

Neither Init

False True
CBT Init?

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

. A
cc

ur
ac

y

A Init

False True
CBT Init?

A Init, Init

Mamba 1 Mimetic Init Components
Copying: Train Len. = 50, Test Len. = 100

Default Conv. Init Identity Conv. Init

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

. A
cc

ur
ac

y

Neither Init

False True
CBT Init?

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

. A
cc

ur
ac

y

A Init

False True
CBT Init?

A Init, Init

Mamba 2 Mimetic Init Components
Copying: Train Len. = 50, Test Len. = 100

Default Conv. Init Identity Conv. Init

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

. A
cc

ur
ac

y

Neither Init

False True
CBT Init?

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

. A
cc

ur
ac

y

A Init

False True
CBT Init?

A Init, Init

Mamba 2 Mimetic Init Components
Copying: Train Len. = 50, Test Len. = 300

Default Conv. Init Identity Conv. Init

Figure 3.26: Testing the four components of our initialization on Mamba 1 & 2 for 10 seeds.

one in Fig. 3.25, which implements a look-behind operation. We focus on a single linear atten-
tion/state space layer, assuming the layers before it learned a representation amenable to copying.
Consider a copying example of length n, where we have already copied k < n of the D-dim. to-
kens past the delimiter x∥ and want to copy the (k+1)st one: X = (x1, · · · , xn, x∥, x1, · · · , xk) ∈
R(n+k+1)×D. We assume that preceding layers f have learned to superimpose a position embed-
ding as follows:

f(X) = (x1 + p1, · · · , xn + pn, x∥ + p1, x1 + p2, · · · , xk + pk+1) = X + P ∈ R(n+k+1)×D,

so that token with index k in the paste string will attend to token k + 1 in the copy string be-
cause (xi+1 + pi+1)

T (xi + pi+1) > 0, assuming xT
i+1xi, x

T
j pj ≈ 0 (uncorrelated) and pTj pj = 1

(correlated). That is, f(X)Tf(X) ≈ P TP will have similar structure to that in Fig. 3.25. In this
case, copying behavior will arise in our state space/linear attention layer if P TW T

CWBP ≈ P TP ,
i.e., when W T

CWB ≈ I . Since WC ,WB are low rank (N < D), their product cannot be exactly
the identity; using the fact that random Gaussian matrices are semi-orthogonal, we could set
WC := WB to get W T

CWB ≈ I . Initializing the queries and keys to be correlated was also noted
by Trockman and Kolter (2023), who suggest these weights should not be strictly equal, so we
instead set WC := 1

2
(W ′

C + WB). In summary, assuming the model has learned a useful corre-
lation structure between tokens, setting W T

CWB ≈ I ensures this structure can be leveraged by
attention. For similar reasons, we experiment with initializing the convolution in Mamba layers
to the identity.

Initialization Purpose

A ≈ 1 Approximate
linear attn∆ ≈ 1

WT
CWB ≈ I Encourage

recallConv1d ≈ I

Which of these components matter? In Fig. 3.26, we investigate
the interaction of these four possible mimetic initialization compo-
nents, displaying all sixteen possible off/on combinations. We in-
vestigate copying on 50-long strings and generalizing to 100- and
300-long strings for a 24-layer Mamba with hidden size 1024 as
in Jelassi et al. (2024). For the A and ∆ initializations, we fix c = 8
and b∆ = 0.54. For Mamba 1, we see that there is only a significant

57

0 1000 2000 3000 4000 5000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

.-L
ev

el
 A

cc
.

Learning to copy (stack order)

Mamba, Mimetic Init (L. 4)
Hybrid, Self Attention (L. 4)
Mamba, Baseline

Layer 4 (Mamba/Mimetic) Layer 4 (Self Attn.)

0 1000 2000 3000 4000 5000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

.-L
ev

el
 A

cc
.

Learning to associatively recall

Mamba, Mimetic Init (L. 4)
Hybrid, Self Attention (L. 4)
Mamba, Baseline

Layer 4 (Mamba/Mimetic) Layer 4 (Self Attn.)

0 1000 2000 3000 4000 5000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

.-L
ev

el
 A

cc
.

Learning to sort

Mamba, Mimetic Init (L. 4)
Hybrid, Self Attention (L. 4)
Mamba, Baseline

Layer 4 (Mamba/Mimetic) Layer 4 (Self Attn.)

Figure 3.27: Mimetically initialized Mamba layers learn similar operations to Self-Attention
layers in the same location naturally with no additional supervision on several tasks. Dotted
lines: accuracy at training length (50), solid lines: generalizing to length 100.

effect when setting A ≈ 1, with no apparent benefit to setting ∆ ≈ 1; while setting W T
CWB ≈ 1

has only a tiny effect, using identity convolution initialization seems somewhat harmful.

For Mamba 2, we see a similar advantage to using A ≈ 1 initialization, and a advantage
to W T

CWB ≈ 1 even without A ≈ 1, and the two interact to create even better models. Adding
identity convolution initialization leads to much better performance still, reaching 100% accuracy
in many cases. The positive interaction between A ≈ 1 and W T

CWB ≈ 1 and identity convolution
is especially apparent for 300-long strings.

The difference in the best initialization strategy for the two architectures is likely explained by
the removal of linear blocks after the convolutional layer in Mamba 2, as well as the addition of
multiple state space heads. Unless otherwise noted, we use the observations above to determine
our initialization strategy depending on the Mamba version: For Mamba 1, we use A,∆ ≈
1,W T

CWB ≈ I , and for Mamba 2 we add identity convolution initialization.

58

0 1000 2000 3000 4000 5000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

.-L
ev

el
 A

cc
.

Learning to copy (2x, 4x Train Len)

Linear Attn. D = 8 (L. 4)
Linear Attn. D = 32 (L. 4)
Linear Attn. D = 1024 (L. 4)
Mamba, Mimetic Init D = 32 (L. 4)
Mamba, Mimetic Init D = 64 (L. 4)

D = 64

Layer 4 (Mamba/Mimetic)

D = 1024

Layer 4 (Linear Attn.)

Figure 3.28: Simple linear attention underperforms Mamba even for very high head dimension,
especially at generalization. Dotted lines: accuracy at length 100, solid: at length 200; train
length: 50.

3.3.3 State Space Models want to be Transformers:
Mimetic Initialization lets them get closer

Mimetic initialization leads to immediate and significant improvements in copying ability. In
Fig. 3.24b, we can see that mimetic initialization allows a small 4-layer Mamba to learn to copy
strings with twice the training length with reasonable accuracy in just a few hundred steps, which
is far better than the tens of thousands of steps reported in previous work (Jelassi et al., 2024).
Note that mimetic initialization leads to Mamba learning a state space layer whose attention
map replicates the structure of that of self-attention in Fig 3.25; i.e., this layer has learned to
(continue to) implement linear attention. Mimetic initialization allows Mamba to quickly learn
to copy from scratch.

One mimetic init is all you need? We continue our investigation of using mimetic initializa-
tion to help Mamba learn recall tasks: Given our observations that a single self-attention layer is
sufficient to learn these tasks to high fidelity, and that a single Mamba layer can roughly approx-
imate this attention, we use mimetic init for just one layer in the same position (Layer 4) of an
8-layer Mamba.

In addition to copying (Fig. 3.25), we present results for additional three synthetic tasks
in Fig. 3.27. First, we investigate copying in stack order, as unpacking the compressed string
in most-recently-added order is potentially easier for SSMs. Unlike normal copying, baseline
Mamba is able to fit to the training length, but it fails to generalize. Mamba with mimetic init fits
the training length much faster and generalizes better, while the self-attention hybrid generalizes
nearly immediately. The story is similar for multi-query associative recall – mimetic initializa-
tion leads to rapid learning and generalization to twice the length. We also consider the sorting
task, where tokens are sampled without replacement from a vocab of size 512. Surprisingly,
Mamba with mimetic init does even better than self-attention. Mimetic initialization results in
large improvements for all synthetic tasks considered.

Is Mamba with mimetic init just linear attention? In Figures 3.25 & 3.27, notice that the
mimetic initialized Mamba layer tends to mimic the corresponding self-attention layer in the

59

hybrid model; the resemblance is clear for copying in normal and stack order. For associative
recall, it is less clear, but the Mamba layer looks significantly more like it could implement a
induction-head-like function than typical Mamba layers. Similarly, the interpretation is unclear
for sorting, but the overall structure matches. At a high level, it seems like Mamba attempts to
learn an approximation to self-attention, but has much less capacity and sharpness. Consequently,
we ask if our initialization merely turns state space layers into single-head linear attention layers.

In Figure 3.28, we present an ablation study where we replace the target Mamba layer in our
copying experiment with simple causal linear attention with various head dimensions. Accord-
ing to Eq. 3.38, we may expect mimetic init to make Mamba layers equivalent to unkernelized
linear attention layers with head dimension equal to the state dimension. Consequently, we
compare Mamba with state size 32 to linear attention with head dimension 32, which comes
relatively close. We plot generalization to 2× and 4×-length in Fig. 3.28, as the difference for
fitting to the training length is small. Nonetheless, Mamba still performs somewhat better than
linear attention. Linear attention performance depends on the head dimension, with dimension
8 severely underperforming Mamba and dimension 1024 barely exceeding the performance of
32. In contrast, doubling the state dimension of Mamba to 64 substantially improves general-
ization performance. We visualize the difference in attention maps for the two operations; we
can see that Mamba’s is perhaps sharper/more consistent like that of self-attention. Combined
with better performance on copying, we conclude that mimetic init Mamba layers are not just
linear attention, but rather a related and superior (for this task) non-linear operation. The cor-
relation between this “sharpness” and linear attention performance has been exploited by recent
work (Zhang et al.).

3.3.4 Mimetic init experiments across architecture settings

Mimetic initialization improves the recall abilities of Mamba 1 and 2 over a variety of architec-
ture settings and sequence lengths. For all Mamba 1 experiments, we use state size 32, though
we explore different state sizes for Mamba 2, which has state size 128 unless otherwise noted.
For Mamba 2, we use head dimension 64 for all experiments. All trials are for 5000 steps unless
otherwise noted, and we swept over a small set of learning rates; our training pipeline is taken
from Jelassi et al. (2024). Note: While mimetic initialization has a strong effect size for Mamba
1, the architecture generally struggles to copy for larger vocab sizes in the training lengths stud-
ied, so we present Mamba 2 results for most larger-scale experiments in the paper. Error bars are
computed over five seeds.

Vocabulary sizes The larger the vocabulary, the more bits it should take to encode content of a
token to enable copying, and the harder it may be to memorize and copy the sequence. While the
previous work on copying focused on small vocabularies, we showcase the ability of mimetic init
to improve copying even for large vocabularies in Fig. 3.29. For Mamba 1, mimetic init allows
decent copying performance up until a point, and then degrades. In contrast, baseline never learns
to generalize. For Mamba 2, mimetic init enables consistent 2× length generalization across
sequence lengths, preventing the degradation with vocab size demonstrated by the baseline.

60

32 64 128 256 512 1k 2k 4k 8k 16k 32k
Vocab Size

0.0

0.2

0.4

0.6

0.8

1.0
Ch

ar
. A

cc
ur

ac
y

Mamba 1 Effect of Vocab Size
Copying : Train Len. = 50, Test Len. = 100

Mimetic Init Baseline

32 64 128 256 512 1k 2k 4k 8k 16k 32k
Vocab Size

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

. A
cc

ur
ac

y

Mamba 2 Effect of Vocab Size
Copying : Train Len. = 50, Test Len. = 100

Mimetic Init Baseline

Figure 3.29: Mamba 2 with mimetic init can learn to copy even for large vocabulary sizes.

0 50 100 150 200 250 300
Eval. @ Length

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

. A
cc

ur
ac

y

Train
Length

Baseline
State Dim

4
8
16
32
64
128
256
512

0 50 100 150 200 250 300
Eval. @ Length

Train
Length

Mimetic Init
State Dim

4
8
16
32
64
128
256
512

Mamba 2 : Copying Generalization (Embed Size = 1024, Layers = 4)

(a) State size vs. evaluation length

2 3 4 5 6 7 8 9
log2 State Size

0

50

100

150

200

M
ax

 G
en

. L
en

gt
h

Train Length

Mamba 2 : State Size vs. Copying Generalization
Vocab Size: 1024

Mimetic Init Baseline
(b) State size vs. max > 99% gen. length

Figure 3.30: Mimetic initialization allows for better use of the state size for copying; capacity
grows roughly linearly with state size, compared to almost not at all with default init.

State dimension The copying ability of Mamba should be directly related to its state size,
according to Jelassi et al. (2024). This allows Mamba to more easily approximate self-attention-
like maps, as we saw earlier. We show this is indeed the case in Fig. 3.30a. Indeed, for baseline
Mamba 2, perfect copying at training length 50 is only possible for sufficiently large state size.
However, if we use mimetic initialization, the additional capacity from the state size is much
more efficiently used, and generalization (measured with the area under the curve) is far stronger
– N = 32 with mimetic init achieves performance comparable to N = 512 with baseline init,
a 16× improvement in the use of capacity. We show another view on this data in Fig. 3.30b;
generalization length hardly grows with the log of the state size using baseline initialization,
while it grows linearly only after using mimetic initialization. Mimetic init allows Mamba 2 to
get closer to its true compression/copying capacity.

Architecture size In Figure 3.31, we investigate mimetic init over different Mamba sizes (di-
mension, layers). Surprisingly, a mere two layers seems to be sufficient, with deeper networks
improving generalization beyond 2× length. With embedding size 1024, Mamba 2 can copy
very well for a variety of depths; for multi-query associative recall, slightly deeper networks
seem preferable. In almost all cases, mimetic initialization leads to superior generalization per-
formance.

61

2 4 8 12 16
Layers

0.0

0.2

0.4

0.6

0.8

1.0
Ch

ar
. A

cc
ur

ac
y

Embedding Size: 256

2 4 8 12 16
Layers

Embedding Size: 512

2 4 8 12 16
Layers

Embedding Size: 1024

Mamba 2 Copying | Train Len. = 50, Test Len. = 100, Vocab Size = 512

Mimetic Init Baseline

2 4 8 12 16
Layers

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

. A
cc

ur
ac

y

Embedding Size: 256

2 4 8 12 16
Layers

Embedding Size: 512

2 4 8 12 16
Layers

Embedding Size: 1024

Mamba 2 Copying | Train Len. = 50, Test Len. = 300, Vocab Size = 512

Mimetic Init Baseline

2 4 8 12 16
Layers

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

. A
cc

ur
ac

y

Embedding Size: 256

2 4 8 12 16
Layers

Embedding Size: 512

2 4 8 12 16
Layers

Embedding Size: 1024

Mamba 2 MQAR | Copying : Train Len. = 50, Test Len. = 200, Vocab Size = 8192

Mimetic Init Baseline

Figure 3.31: Mimetic initialization vs. Mamba 1/2 architecture sizes.

Sequence length Mimetic initialization lets us nearly perfectly fit to the training length even
for longer strings for both copying and multiquery associative recall (Fig. 3.32). While baseline
tends to struggle to learn to copy even 1000-long strings, mimetic initialization allows fitting
to around 4000-long strings. For MQAR, baseline breaks down around 900-long strings, while
mimetic initialization allows fitting to 1800-long or more. The benefits apply for better gen-
eralization as well, though Mamba still cannot strongly generalize to much longer strings than
trained on.

3.3.5 Investigation of pretrained SSMs

Mimetic init mimics benefits of pretraining We hypothesized that Mamba’s difficulty in
copying may be an optimization issue rather than fundamental capacity limitations. That is,
a Mamba that was first pretrained on a general text corpus may be a better representation of true
copying abilities; i.e., one should never train from scratch (Amos et al., 2023). In Fig. 3.33, we
see that finetuning a pretrained 130M Mamba to copy or do associative recall on 50-character
strings results in good generalization, but training from scratch with mimetic init achieves sim-
ilar results. Note that the pretrained Mamba had a much longer (> 1k) training length than our
from-scratch trials. Considering this, our mimetic init results get impressively close (esp. for
shorter strings; dotted lines).

62

100 400 800 1.2k 1.6k 2.0k 2.4k 2.8k 3.2k 3.6k 4.0k 4.4k 4.8k
Train Length

0.0

0.2

0.4

0.6

0.8

1.0
Ch

ar
. A

cc
ur

ac
y

Mamba 2 Test Length = Train Length
Vocab Size: 4096

Mimetic Init Baseline

100 400 800 1.2k 1.6k 2.0k 2.4k 2.8k 3.2k 3.6k 4.0k 4.4k 4.8k
Train Length

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

. A
cc

ur
ac

y

Mamba 2 Test Length = 2 × Train Length
Vocab Size: 4096

Mimetic Init Baseline

100 300 500 700 900 1.1k 1.3k 1.5k 1.7k
Train Length

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

. A
cc

ur
ac

y

Mamba 2 Test Length = Train Length (MQAR)
Vocab Size: 8192

Mimetic Init Baseline

100 300 500 700 900 1.1k 1.3k 1.5k 1.7k
Train Length

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

. A
cc

ur
ac

y

Mamba 2 Test Length = 2 × Train Length (MQAR)
Vocab Size: 8192

Mimetic Init Baseline

Figure 3.32: Mimetic init lets us nearly perfectly fit in-distribution even for long sequences on
copying (left) and MQAR (right), and also boosts generalization performance (1024-dim 2-layer
Mamba 2).

0 1000 2000 3000 4000 5000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

.-L
ev

el
 A

cc
.

Learning to copy: 2x, 4x length (Vocab Size: 32)

Mamba, Mimetic Init (All)
Mamba, Pretrained
Mamba, Baseline

0 1000 2000 3000 4000 5000
Step

0.0

0.2

0.4

0.6

0.8

1.0
Learning to MQAR: 1x, 2x length (Vocab Size: 1024)

Mamba, Mimetic Init (L. 2)
Mamba, Pretrained
Mamba, Baseline

Figure 3.33: Pretrained 768-dim. 24-layer Mamba 1 vs. from-scratch training (w/ mimetic init).

Localizing the benefit of pretrained weights Based on our linear attention observations, the
copying abilities of a pretrained Mamba may be localized to a few layers, so we explore the
capabilities of individual layers: We use a pretrained teacher Mamba with layers Ti : i ∈ [L],
and then train L student Mambas where each of the Sj : j ∈ [M] layers is initialized with
Sj := Ti for i ∈ [L]. In this case, L = 48 and M = 12. Using these pretrained weights can make
it much easier to learn to copy (Fig. 3.34a), but the effect size stands out for some particular
layers, such as T31.

We inspected the weights and attention maps of these layers to see what might be behind
the improved performance; see some examples in Fig. 3.34b. Some layers such as T31 look like
our mimetic initialized layers, with nearly all-ones average attention masks, correlated WC ,WB

weights, and lower diagonal structure, similarly to self-attention layers in hybrid Mambas earlier.
That is, the structure our initialization provides seems to arise naturally in Mambas trained on
sufficiently large and varied corpora, and may be fundamental to Mamba’s copying and recall

63

0 250 500 750 1000 1250 1500 1750 2000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ch
ar

.-L
ev

el
 A

cc
.

25
11
31
36

20

16
7
12

Init from a single pretrained layer (1-48)

(a) The weights of some pretrained Mamba
layers serve as a good initialization for copy-
ing, even when those weights are repeated uni-
formly for all layers in the “student” model.
The layers that work well as an initialization for
copying tend to have correlated C, B weights
and nearly-all-ones masks, such as Layer 31.

Avg. S6 Attn Map CBT Learnable Mask

0.0

0.2

0.4

0.6

0.8

1.0
Layer 31

Avg. S6 Attn Map CBT Learnable Mask

0.0

0.2

0.4

0.6

0.8

1.0
Layer 7

(b) Some pretrained Mamba layers have structure
conducive to copying (Layer 31); others merely mix
tokens with their nearby neighbors; from a 26-char
test string.

Figure 3.34: The copying ability of a pretrained Mamba may be attributable to a fraction of its
layers.

abilities.

3.3.6 Summary of contributions

We presented mimetic initialization for state space layers, a simple and closed-form technique
to greatly improve the copying and recall abilities of state space models. Mimetic initializa-
tion makes state space layers mimic linear attention at initialization time, and also mimics the
structure of state space layers that contribute to copying and recall abilities in pretrained mod-
els. Our technique allows to estimate capabilities of SSMs more accurately, which have been
alternatively over- and under-estimated in the literature (Jelassi et al., 2024; Waleffe et al., 2024).
Using a better initialization such as ours may assist in developing new architectures starting from
a smaller scale, allowing for better predictions of their full-scale performance, as is often done
in practice in testbeds (Poli et al., 2024). From a theoretical perspective, our particular construc-
tion may provide insights into the tradeoffs between state space layers and attention, and may
help to study the recall vs. non-recall capabilities of state space layers. Improving the ability
of state space layers to approximate attention has already been noted in followup work to the
original Mamba architecture (Dao and Gu, 2024), and our initialization supports this concept.
More broadly and together with previous work on mimetic initialization, our work helps to bet-
ter understand pretraining, to some extent disentangling its dual purposes of storing knowledge
and serving as a good initialization.

64

3.4 Mimetic initialization for MLPs

Mimetic initialization uses pretrained models as case studies of good initialization, using obser-
vations of structures in trained weights to inspire new, simple initialization techniques. So far, it
has been applied only to spatial mixing layers, such convolutional, self-attention, and state space
layers. In this work, we present the first attempt to apply the method to channel mixing layers,
namely multilayer perceptrons (MLPs). Our extremely simple technique for MLPs—to give the
first layer a nonzero mean—speeds up training on small-scale vision tasks like CIFAR-10 and
ImageNet-1k. Though its effect is much smaller than spatial mixing initializations, it can be used
in conjunction with them for an additional positive effect.

Background Neural network weights are typically initialized at random from univariate dis-
tributions, as in Xavier Glorot and Bengio (2010) and Kaiming He et al. (2015) initializations.
These techniques focus on the signal propagation perspective, where the variance of the univari-
ate random weights is scaled according to the dimensions of the layer weights with the goal of
preventing vanishing and exploding gradients.

However, modern deep networks use normalization layers such as BatchNorm (Ioffe and
Szegedy, 2015) and LayerNorm (Lei Ba et al., 2016) in addition to adaptive optimizers like
Adam (Kingma and Ba, 2017); taken together, these methods make precise control of scale at
initialization somewhat less critical. Of course, scale still plays an important role (Kunin et al.,
2024).

The most effective initialization is pretraining, or transfer learning Kolesnikov et al. (2020);
pretrained networks have stored transferrable knowledge that can be leveraged to quickly adapt
to downstream tasks. Consequently, pretrained networks are much easier to train. But could it
be that this transferrable knowledge is only part of the story— that the geometry of the weight
space of pretrained networks simply makes them easier to optimize, in a way we could capture
or study without pre-training?

Related work Recently, several works on mimetic initialization have proposed that the effect
of pretraining can be decomposed into two components: (1) storing knowledge and (2) serving
as a good initialization (Zhang et al., 2022; Trockman et al., 2022; Trockman and Kolter, 2023;
Trockman et al., 2024; Krizhevsky et al., 2017). Moreover, it seems that to some extent, the
hypothesized good initialization component can be disentangled from the other by “hand”, in
closed form. Mimetic initialization uses pretrained models as case studies of good initialization,
and summarizes the weight space structures observed in simple but multivariate initialization
schemes that specify the high-dimensional statistical dependence between weights.

A mimetic initialization for convolutions Trockman et al. (2022) specified the structure of
weights for individual filters depending on the depth of the layer. Mimetic initialization for
self-attention layers Trockman and Kolter (2023) attempted to make self-attention more “con-
volutional” (localized receptive field) at initialization, among other observations: the query and
key weights should be correlated, value and projection weights anti-correlated, and sinusoidal
position embeddings should be used at initialization; see also Zheng et al. (2024). Most recently,
mimetic initialization for state space layers Trockman et al. (2024) used the correspondence

65

(a) ConvNeXt (b) ViT (enhanced; may need to zoom for structure)

Figure 3.35: Full empirical covariance matrices for unrolled MLP weights W1,W2 (jointly).

between state space layers and linear self-attention layers to leverage the previous technique.
These methods allow training networks in fewer steps and to higher final accuracies, especially
in small-scale and data-limited settings.

This work All previous work on mimetic initialization has focused on spatial mixing layers,
i.e., large-filter convolutions, self-attention layers, and state space layers. In this work, we inves-
tigate whether the same technique may apply to some channel mixing layers, in particular MLPs,
one of the most important primitives in deep learning, i.e., y = W2σ(W1x) for nonlinear activa-
tion function σ and projections W1 ∈ Rp×n, W2 ∈ Rn×p and x ∈ Rn. The importance of the
initialization of the value and projection weights in Trockman and Kolter (2023) could be viewed
as an application of mimetic init to channel mixing layers; however, this finding only held in con-
junction with the attention map (query/key) init itself. In contrast, we focus on MLPs in isolation.
While we observe interesting statistical structure in trained MLPs, our only empirically-backed
finding so far suggests a modification to the mean of W1.

3.4.1 Understanding the covariance structure of trained MLPs

Previous work on mimetic initialization has focused on the covariance structure of pretrained
weights. Trockman et al. (2022) studied the covariance structure of convolutional filters within
single networks, i.e., a network with embedding dimension n has n filter samples per l layers,
from which one can calculate l empirical covariance matrices. Trockman and Kolter (2023) study
the cross-covariance of query/key and value/projection weights, again focusing on samples of
rows or columns within individual networks.

66

In this work, we adopt a somewhat more powerful technique; instead of studying empirical
covariances calculated within single networks over slices of weights (rows, columns, filters, etc.),
we study empirical covariances calculated over populations of networks. That is, we study the
distribution of [⃗(W1) (⃗W2)] ∈ R2np rather than, say, [W1[i] W2[:, i]] ∈ R2n.

We start our investigation using by training tiny ConvNeXt (Liu et al., 2022b) models, a
simple convolutional architecture similar to ConvMixer (Trockman and Kolter, 2022) that uses
isolated MLP layers (alternately with depthwise convolution) instead of linear layers. We train
≈ 104 such models on CIFAR-10 classification to estimate weight space covariances; as this is
computationally expensive, we use models with only a few thousand or up to ≈ 104 parameters.
For example, we use just 3–4 layers and an internal dimension of around 16–32 with MLP
expansion factor 2. We train over thousands of different seeds and unroll the MLP weights
W1,W2 to compute the full empirical covariances of each weight Cov(⃗W) and cross covariance
Cov(⃗W1 ,⃗ W2).

In Fig. 3.35a, we show the full empirical covariance matrix of [⃗(W1) (⃗W2)]. Notably, the
covariances corresponding to each weight matrix are striped. This suggests that the rows or
columns (depending on row/column major order for unrolling) are correlated in trained MLPs.
For example, each row or column could have a nonzero “group mean” while the overall weight
matrix still has a global/“grand” mean of zero. This group mean could itself be randomly dis-
tributed with mean zero. We also note that the stripes tend to be more pronounced in Cov(W1)
than in Cov(W2).

We attempt to mimic this very simple structure at initialization time. We add a small amount
of random noise to bn ∼ N (0, σIn) to W1, broadcasting over rows:

W ′
1 = W1 + 1pb

T
n . (3.39)

This mimics the structure seen in pretrained weights, and we find that it also speeds up training
considerably. However, we note that an even simpler solution exists to mimic the structure in
Fig. 3.35a: simply add a single, constant small bias term b ∈ R to W1:

W ′
1 = W1 + b1p1

T
n . (3.40)

Both strategies result in randomly-sampled matrices with significant stripes as in Fig. 3.35a. In
our experiments, this extremely simple tweak is surprisingly effective at increasing the trainabil-
ity of small ConvNeXts.

In Fig. 3.35b, we do the same analysis for a small Vision Transformer (ViT) trained in the
same setup. We see the same patterns as in Fig. 3.35a; moreover, we see that W1 and W2

weights are apparently anti-correlated as noted for the value and projection weights in previous
work (Trockman and Kolter, 2023); that is, a mimicking initialization may be: W ′

1 = 1
2
(W1 −

W2). We do not see this pattern within ConvNeXt. Further, we saw no benefit to initializing MLP
weights to be anticorrelated, unlike our W1-mean initialization above.

3.4.2 Experiments on channel plus spatial mixing mimetic init
We test our technique on small ConvNeXt and ViT models trained on CIFAR-10 with RandAug-
ment, using the same pipeline as in (Trockman et al., 2022). We made some noteworthy changes

67

0 10 20 30 40 50
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 A
cc

ur
ac

y

ConvNeXt-256/8 Training Speedup (CIFAR-10)

Initialization
Mimetic (MLPs)
Uniform
Mimetic (Conv.)
Mimetic (Conv. + MLPs)

20 22 24
0.90

0.92

0.94

10 15 20 25 30 35 40 45 50
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 A
cc

ur
ac

y

ViT-Micro Training Speedup (CIFAR-10)

Initialization
Mimetic (MLPs)
Uniform
Mimetic (Attn.)
Mimetic (Attn. + MLPs)

Figure 3.36: CIFAR-10 experiments for ConvNeXt and ViT in conjunction with previous
mimetic inits for convolutional and self-attention layers. The effect of the MLP init is signif-
icant in early training, but eventually evens out. The effect of conv. and attn. mimetic init,
however, remains. Note: each point in the graph represents the accuracy of a completed training
run of x epochs, mean/std. reported over 5 seeds.

0 20 40 60 80 100
Epochs

0

10

20

30

40

50

60

70

to
p-

1
Te

st
 A

cc
ur

ac
y

DeiT-Small (ImageNet-1k)

Initialization
Mimetic (MLPs)
Uniform
Mimetic (Attn.)
Mimetic (Attn. + MLPs)

70 72 74 76

64

66

68

Figure 3.37: Our MLP init improves early
ImageNet-1k training in a data-efficient ViT,
and maintains a 0.5% advantage over baseline
for the full training time.

0.1
00

0.0
75

0.0
50

0.0
25

0.0
00

0.0
25

0.0
50

0.0
75

0.1
00

Bias
0.82

0.84

0.86

0.88

0.90

Te
st

 A
cc

ur
ac

y

ConvNeXt-128/8: 10 Epoch Training (CIFAR-10)

Default ConvNeXt Init + Mimetic MLP
Uniform + Mimetic MLP
Uniform + Mimetic MLP + Biases Inited to Const. 0.1
Uniform + Mimetic MLP + Biases Inited to Const. 0.01
Uniform + Mimetic MLP + Single Learnable Bias

Figure 3.38: Sweep of the bias parameter b of
our init; across several baselines, b = 0 is no-
ticeably suboptimal. Mean/std. over 5 seeds
per b.

68

to the default initialization scheme of ConvNeXt, beyond our proposed technique: we replaced
the truncated normal initialization with fixed standard deviation σ = 0.02 and zero bias initializa-
tion with the standard Kaiming uniform initialization in PyTorch; this lead to broadly improved
accuracies for our training setup. The CIFAR-10 models presented use 2× 2 patches for 32× 32
inputs, and the ImageNet models 16× 16 for 224× 224 inputs.

We find that the simple initialization tweak in Eq. 3.40 improves ConvNeXt and ViT results
for small scale and short-duration training. In Fig. 3.38, we show accuracy for a variety of
settings of b; a wide variety of settings improve performance, with a notable dip at b = 0.
However, unlike previous work on mimetic initialization, it seems that advantage of using our
proposed MLP init decreases with increasing training time (see Fig. 3.36).

ConvNeXt results In Fig. 3.36, we show the effect of training with various mimetic init tech-
niques compared to uniform (default) initialization, on an isotropic ConvNeXt-256/8 with 7× 7
filters. Our MLP init significantly increases accuracy for short-duration training (such as 10-
20 epochs), though the effect tapers off for longer training times (such as 50). The MLP init
also works with the convolution init from Trockman et al. (2022), together outperforming either
mimetic init alone; but in contrast, the convolution init maintains an advantage over uniform even
after many epochs.

ViT results We also trained tiny ViTs with mimetic initialization, which have dimension 192,
depth 8, and 3 heads; see Fig. 3.36. The benefit of our MLP init persists for longer training times
compared to ConvNeXt, but the additive effect with self-attention mimetic init may be smaller.
In Fig. 3.37, we trained a DeiT-Small (22M params) on ImageNet-1k using the training pipeline
from Touvron et al. (2021b). Our init results in considerable initial gains in accuracy, though
the difference narrows significantly with training time; using our MLP init with self-attention
mimetic init results in rather small gains. The difference may be larger in a simpler ResNet-
style training pipeline, as in Trockman and Kolter (2023). Nonetheless, our method results in a
consistent advantage of 0.5% over 100 epochs, achieving 68.8% over the course of 100 epochs,
compared to 68.4% for the baseline.

Is it really the init? We thought our method may just be compensating for the default linear
layer bias of zero in the ConvNeXt implementation, but this was not the case— see Fig. 3.38.
One baseline is to simply add a learnable scalar bias per W1, as b1p1

T
nx = b · sum(x) · 1p. This

does not absorb the effect of our init (see Fig. 3.38). We also attempted to change the init of the
bias of the linear layer itself to a small constant. However, no baselines explain the effect of our
MLP init.

3.4.3 Further structures in the weight space covariance

While we computed the empircal covariance matrices of entire networks, we have only so far
used the blocks of the covariance matrix corresponding to individual MLP layers: the covari-
ance and (within-layer) cross covariance of their weights W1 and W2. In this section, we point

69

out some notable structures from our investigate that have not (yet) yielded useful initialization
schemes.

In Figure 3.39, we show the entire covariance matrix for the full weight vector of a tiny, four-
layer ConvNeXt trained on CIFAR-10. One minor but notable observation is that biases tend to
be correlated with adjacent weights. But more significantly, we note that weights are actually
correlated across layers: the second-layer MLP weights W2 are sometimes slightly correlated
across distant layers, as highlighted in orange in Figure 3.39. For example, the last block’s
MLP W2 is anticorrelated with the first block’s MLP W2. Downstream weights are also often
correlated with the weights in the patch embedding layer (first row of Figure 3.39). We did
not attempt to use any of these observations to create an initialization technique, but they may
provide insights into neural network training dynamics.

We also investigated empirical covariance matrices including some computed properties of
the weights, for example, the product of adjacent weights. In Figure 3.40, we show the correla-
tion between convolutional filter weights and the product of adjacent downstream MLP weights.
We note that (central) filter pixels are anticorrelated with the magnitude of the corresponding
diagonal of the product W1W2. For example, if the filter in channel c tends to increase the mag-
nitude of its input, the net effect of applying the MLP is to compensate by decreasing magnitude
(roughly speaking) in channel c. We attempted to use this observation in an initialization where
filter weights are correlated with MLP weights, but found no significant results. Nonetheless, we
think this is an interesting observation about the structure of the weight space in some convolu-
tional networks.

3.4.4 Summary of contributions
We presented a simple concept for a mimetic initialization for MLPs; our method is to simply
initialize the first layer of MLPs with a small nonzero mean. We have a small amount of pre-
liminary evidence to suggest that using Eq. 3.39 instead of Eq. 3.40 for larger-scale training may
be better; Eq. 3.39 maintains the global mean of zero and may encode a weaker inductive bias
than Eq. 3.40. However, more research at larger scale is necessary to draw conclusions. While
our results are not as robust as those in the mimetic initialization works for spatial mixing layers,
we think our finding is nonetheless interesting in terms of understanding the “good initialization”
component of pretraining. We also suspect that, like previous work, our technique would be most
important in data-limited settings.

We tried to exploit one of the simplest structures we have seen in the weight space, but many
others exist, such as the anticorrelation of weights in ViT MLPs. More generally, we think that
our method of studying populations of pretrained network weights, as opposed to samples of
weights within single networks, could lead to further insights in the growing field of weight
space learning and analysis.

70

Figure 3.39: The empirical covariance matrix of ≈16,000 tiny 4-layer ConvNeXts trained on
CIFAR-10, including convolution weights, MLP weights, biases, and LayerNorm weights. The
second weight matrices (the one that “writes” to the residual stream) of the MLP layers are
correlated across layers to some extent. (We may recommend folding in the LayerNorm weights.)

71

Figure 3.40: The central pixel of the cth convolutional filter is correlated with the cth diagonal of
the product of the weight matrices of the downstream MLP layer. Based on the population-level
empirical covariance calculated from ≈16,000 ConvNeXt training runs on CIFAR-10. This has
not yielded an effective initialization strategy (yet).

72

Chapter 4

Conclusion

In the preceding three works, we have provided evidence that our hypothesized good initial-
ization component of pretraining can be captured in closed form. In particular, we diagnosed
the notable difficulty of training Vision Transformers on small-scale datasets through our struc-
tured initialization; we demonstrated that there may exist convolutional filters that are better than
those traditionally found by gradient descent which are enabled through our initialization; and we
showed our first results on mimetic initialization for language modeling by enhancing the recall
and copying abilities of State Space Models. We also explored the covariance structure of the
entire weight space of small neural networks, finding a simple mimetic initialization technique
for MLPs in addition to other surprising details about cross-layer dependencies.

While our mimetic initialization techniques work well for vision tasks even at moderately
large scale, e.g., for large models on ImageNet-1k, we do not yet have evidence that our ini-
tialization is beneficial for very large-scale training, particularly on general language modeling.
However, our promising vision results suggest that a good initialization may lead to fundamen-
tally better local optima than one could attain with random initialization alone, and we think
more research is warranted to better understand mimetic initialization and to attempt to apply it
to large-scale language modeling. We propose some future directions below.

4.1 Future work

Understanding the good initialization component of pretraining. The previous three works
on mimetic initialization have used a constructive approach: inspired by the qualitative structure
of the weights in pretrained models, we proposed particular structure for the covariance of the
weights, and empirically validated its effectiveness. In contrast, we propose to isolate the initial-
ization component of pretraining in future work; for example, Neyshabur et al. (2020) suggested
as future work that one could reuse only the top singular values and directions from a pretrained
model for an initialization scheme. One could perform various ablations (e.g., random permuta-
tions) to retain only the high-level statistical properties of the weights to attempt to localize the
initialization-based components of pretraining.

73

Mimetic initialization across layers. In our study of the covariance structure of the entire
weight space, we have found correlations between weights across layers, for example, between
adjacent convolutional and MLP layers, or even as distant as between the first and last layer
MLPs. It may be possible to use these observations to create a mimetic initialization that takes
the structure of the entire network into account.

Mimetic initialization for self-attention in language models. In our first work on mimetic
initialization for self-attention layers, we found that the story was more complicated for language
models compared to vision models, and we subsequently found only marginal effects from our
technique on language tasks. However, our recent work on state space layers uses largely the
same techniques, leading to substantial improvements on synthetic language benchmarks. We
speculate that a more comprehensive study of mimetic initialization for self-attention layers may
reveal significant effects, at least on the level of synthetic benchmarks, which could inform how
to modify the initialization for large-scale pre-training. We have limited, preliminary evidence
that mimetic initialization can benefit larger-scale language pretraining in two settings: (1) using
mimetic initialization for just 1-2 early layers, or even just a few heads, may improve pretraining
performance in Mamba architectures (2) mimetic initialization may have nontrivial effect size
for language pretraining if the embedding layer is recycled from another model.

Weight recycling and cross-architecture weight transfer. During our research on mimetic
initialization, we have found that pretrained weights are simply easier to optimize, even after
various permutations and slices. For example, one can train small models to initialize larger
ones, or subsample weights from pretrained networks to initialize smaller ones. Convolutional
filters may be upsampled, downsampled, or padded and reused in networks with different design
choices. Just one pretrained layer radically impacts training, allowing untrained layers to learn
faster. Even more surprisingly, we have found that weights can actually be transferred across
operations, in particular, between self-attention and state space layers; self-attention query and
key weights are an excellent choice of initialization for state space layer weights, and this obser-
vation partially led to our investigation of mimetic initialization for state space models. We think
this direction is worth future work.

74

Appendix A

Implementations

A.1 ConvMixer Implementation

1 import torch.nn as nn
2

3 class Residual(nn.Module):
4 def __init__(self, fn):
5 super().__init__()
6 self.fn = fn
7

8 def forward(self, x):
9 return self.fn(x) + x

10

11 def ConvMixer(dim, depth, kernel_size=9, patch_size=7, n_classes=1000):
12 return nn.Sequential(
13 nn.Conv2d(3, dim, kernel_size=patch_size, stride=patch_size),
14 nn.GELU(),
15 nn.BatchNorm2d(dim),
16 *[nn.Sequential(
17 Residual(nn.Sequential(
18 nn.Conv2d(dim, dim, kernel_size, groups=dim, padding="same"),
19 nn.GELU(),
20 nn.BatchNorm2d(dim)
21)),
22 nn.Conv2d(dim, dim, kernel_size=1),
23 nn.GELU(),
24 nn.BatchNorm2d(dim)
25) for i in range(depth)],
26 nn.AdaptiveAvgPool2d((1,1)),
27 nn.Flatten(),
28 nn.Linear(dim, n_classes)
29)

Figure A.1: A more readable PyTorch (Paszke et al., 2019) implementation of ConvMixer, where
h = dim, d = depth, p = patch size, k = kernel size.

75

1 def ConvMixer(h,d,k,p,n):
2 S,C,A=Sequential,Conv2d,lambda x:S(x,GELU(),BatchNorm2d(h))
3 R=type('',(S,),{'forward':lambda s,x:s[0](x)+x})
4 return

S(A(C(3,h,p,p)),*[S(R(A(C(h,h,k,groups=h,padding=k//2))),A(C(h,h,1)))
for i in range(d)],AdaptiveAvgPool2d(1),Flatten(),Linear(h,n))

↪→

↪→

Figure A.2: An implementation of our model in less than 280 characters, in case you happen to
know of any means of disseminating information that could benefit from such a length.
All you need to do to run this is from torch.nn import *.

This section presents an expanded (but still quite compact) version of the terse ConvMixer
implementation that we presented in the paper. The code is given in Figure A.1. We also present
an even more terse implementation in Figure A.2, which to the best of our knowledge is the first
model that achieves the elusive dual goals of 80%+ ImageNet top-1 accuracy while also fitting
into a tweet.

76

A.2 Implementation: Mimetic initialization for convolutional
layers

1 def ConvCov(k, s):
2 C = np.zeros((k**2,)*2)
3 for i, j in np.ndindex(k,k):
4 C[k*i:k*i+k,k*j:k*j+k] = Gauss(k,j,i,s)
5 Z,l = Gauss(k,k//2,k//2,s),np.ones((k,k))
6 S, M = np.kron(l, Z),np.kron(Z, l)
7 return 0.5 * (M * (C - S) + C * S)

1 def Gauss(k, mx, my, s):
2 res = np.zeros((k, k))
3 for i, j in np.ndindex(k,k):
4 cx,cy = (j-mx-k//2-1)%k,(i-my-k//2-1)%k
5 z = ((cx-k//2)**2+(cy-k//2)**2)/s
6 res[i, j] = np.exp(-0.5*z)
7 return res.reshape(k, k)

Figure A.3: Implementation of our convolution covariance construction in NumPy.

1 def Initialize(wconv, d, s0, sv, sa):
2 c, _, ks, _ = wconv.shape
3 s = s0 + sv * d + 0.5 * sa * d**2
4 cov = ConvCov(ks, s).reshape((ks,)*4).transpose(0,2,1,3).reshape((ks**2,)*2)
5 filters = np.random.multivariate_normal(np.zeros(ks**2), cov, size=(c,))
6 wconv.data = torch.tensor(filters.reshape(c,1,ks,ks),dtype=wconv.dtype,device=wconv.device)
7

8 # Find depthwise convolutional layers
9 convs = [x for x in model.modules() if isinstance(x, nn.Conv2d) \

10 and len(x.weight.shape) == 4 and x.weight.shape[1] == 1]
11

12 # Initialize them according to variance schedule
13 for i, conv in enumerate(convs):
14 Initialize(conv.weight, i / (len(convs) - 1), 0.16, 0.32, 2.88)

Figure A.4: Code to use our covariance construction and variance schedule to initalize depth-
wise convolutional layers in PyTorch. wconv is the weight of a depthwise convolutional layer
(nn.Conv2d), and d ∈ [0, 1] is its depth as a fraction of the total depth.

77

78

Appendix B

Additional Experiments

B.1 Covariance Structure: Hyperparameter Grid Searches &
Experimental Setup

CIFAR-10 hyperparameter search. We chose an initial setting of our method’s three hy-
perparameters via visual inspection, and then refined them via small-scale grid searches. For
CIFAR-10 experiments, we searched over parameters for ConvMixer-256/8 with frozen 9 × 9
filters trained for 20 epochs, and chose σ0 = .08, vσ = .37, aσ = 2.9 for 2× 2-patch models, and
found the optimal parameters for 1 × 1-patch models to be approximately doubled. However,
note that our initialization is quite robust to different parameter settings, with the difference from
our doubling choice being less than 0.1% (see Figure B.1). We used the same parameters across
all kernel sizes, as well as for ConvNeXt, a choice which is likely sub-optimal; our search only
serves as a rough heuristic.

ImageNet-1k hyperparameter search. We did a small grid search using a ConvMixer-512/12
with 14× 14 patches and 9× 9 filters trained for 10 epochs on ImageNet-1k (see Appendix B.3),
from which we chose two candidate settings: σ0 = .15, vσ = .5, aσ = .25 for frozen-filter mod-
els and σ0 = .15, vσ = 0.25, aσ = 1.0 for thawed models. We use these parameters for all the
ImageNet experiments, even for models with different patch and kernel sizes (e.g., ConvNeXt).
This demonstrates that hyperparameter tuning is optional for our technique; its transferability is
not surprising given our results in Sec. 3.1.1.

B.1.1 CIFAR-10 Grid Searches

79

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 0.928 1.04
Velocity

0.
02

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.875 0.885 0.893 0.895 0.896 0.898 0.898 0.902 0.9 0.902

0.884 0.892 0.894 0.897 0.897 0.899 0.9 0.901 0.9 0.901

0.891 0.893 0.897 0.899 0.9 0.902 0.904 0.903 0.905 0.903

0.894 0.898 0.899 0.9 0.901 0.902 0.901 0.903 0.901 0.904

0.897 0.897 0.898 0.901 0.901 0.9 0.901 0.9 0.899 0.9

0.897 0.897 0.896 0.896 0.897 0.898 0.896 0.896 0.894 0.895

0.89 0.892 0.891 0.891 0.889 0.89 0.89 0.889 0.887 0.888

0.886 0.887 0.885 0.884 0.886 0.886 0.885 0.884 0.883 0.882

0.884 0.879 0.881 0.88 0.879 0.879 0.877 0.878 0.879 0.878

0.878 0.875 0.876 0.872 0.878 0.876 0.877 0.875 0.871 0.873

Acceleration: 0.48 (Patch Size 2x2)

0.870

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 0.928 1.04
Velocity

0.
02

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.889 0.892 0.896 0.898 0.899 0.9 0.903 0.901 0.902 0.902

0.89 0.893 0.897 0.899 0.902 0.903 0.901 0.901 0.9 0.9

0.899 0.898 0.901 0.902 0.903 0.902 0.903 0.904 0.903 0.905

0.9 0.9 0.901 0.903 0.902 0.903 0.904 0.905 0.904 0.904

0.9 0.9 0.902 0.901 0.902 0.901 0.899 0.9 0.898 0.899

0.896 0.897 0.896 0.897 0.896 0.896 0.895 0.896 0.894 0.893

0.893 0.891 0.893 0.89 0.891 0.889 0.887 0.887 0.887 0.888

0.887 0.886 0.886 0.884 0.885 0.882 0.886 0.886 0.882 0.885

0.882 0.882 0.881 0.88 0.878 0.879 0.883 0.877 0.88 0.876

0.878 0.877 0.874 0.878 0.874 0.873 0.873 0.873 0.873 0.872

Acceleration: 0.96 (Patch Size 2x2)

0.870

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 0.928 1.04
Velocity

0.
02

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.892 0.897 0.898 0.9 0.899 0.902 0.9 0.9 0.903 0.9

0.894 0.898 0.9 0.9 0.902 0.902 0.902 0.901 0.902 0.903

0.9 0.903 0.901 0.901 0.903 0.902 0.905 0.902 0.903 0.901

0.901 0.902 0.901 0.903 0.903 0.905 0.904 0.901 0.902 0.904

0.9 0.901 0.9 0.901 0.9 0.902 0.899 0.901 0.901 0.898

0.9 0.896 0.897 0.897 0.897 0.895 0.896 0.893 0.897 0.896

0.893 0.892 0.892 0.891 0.889 0.889 0.888 0.889 0.888 0.888

0.886 0.886 0.886 0.888 0.886 0.885 0.885 0.881 0.88 0.881

0.882 0.882 0.881 0.88 0.88 0.878 0.876 0.877 0.879 0.876

0.878 0.877 0.875 0.877 0.876 0.873 0.875 0.872 0.87 0.871

Acceleration: 1.44 (Patch Size 2x2)

0.870

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 0.928 1.04
Velocity

0.
02

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.899 0.901 0.901 0.9 0.902 0.901 0.901 0.902 0.899 0.9

0.901 0.899 0.9 0.901 0.901 0.901 0.902 0.899 0.902 0.903

0.901 0.903 0.904 0.906 0.904 0.904 0.904 0.903 0.902 0.903

0.904 0.905 0.903 0.906 0.904 0.906 0.903 0.903 0.902 0.902

0.904 0.901 0.901 0.901 0.9 0.9 0.9 0.899 0.898 0.9

0.896 0.897 0.895 0.898 0.895 0.896 0.894 0.893 0.892 0.892

0.893 0.889 0.891 0.89 0.892 0.889 0.889 0.885 0.888 0.888

0.887 0.885 0.884 0.887 0.882 0.883 0.883 0.883 0.884 0.882

0.88 0.881 0.876 0.88 0.88 0.879 0.876 0.877 0.876 0.876

0.875 0.876 0.873 0.875 0.875 0.872 0.874 0.873 0.872 0.871

Acceleration: 2.88 (Patch Size 2x2)

0.870

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 0.928 1.04
Velocity

0.
02

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.901 0.902 0.901 0.9 0.9 0.9 0.895 0.897 0.896 0.895

0.901 0.899 0.9 0.898 0.899 0.899 0.9 0.897 0.897 0.898

0.902 0.903 0.902 0.901 0.902 0.901 0.899 0.9 0.898 0.899

0.903 0.903 0.903 0.901 0.903 0.901 0.899 0.901 0.901 0.896

0.898 0.9 0.897 0.9 0.898 0.896 0.898 0.896 0.898 0.895

0.894 0.893 0.892 0.892 0.893 0.89 0.892 0.889 0.89 0.892

0.889 0.886 0.887 0.886 0.886 0.884 0.884 0.884 0.885 0.881

0.882 0.881 0.881 0.88 0.88 0.88 0.881 0.878 0.878 0.878

0.878 0.875 0.876 0.876 0.875 0.872 0.874 0.872 0.87 0.871

0.875 0.871 0.872 0.871 0.869 0.871 0.869 0.87 0.868 0.868

Acceleration: 8.00 (Patch Size 2x2)

0.870

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910

Figure B.1: Grid search over initialization parameters σ0, vσ, aσ for ConvMixer-258/8 with 9× 9
frozen filters and 2 × 2 patches trained for 20 epochs on CIFAR-10. Note that the performance
of uniform initialization is only ≈85%, i.e., almost all choices result in some improvement.

80

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 0.928 1.04
Velocity

0.
02

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.848 0.871 0.89 0.895 0.9 0.902 0.904 0.906 0.904 0.905

0.862 0.879 0.891 0.897 0.899 0.902 0.904 0.905 0.908 0.905

0.881 0.889 0.897 0.901 0.903 0.904 0.906 0.907 0.907 0.91

0.896 0.9 0.903 0.904 0.906 0.907 0.91 0.909 0.91 0.911

0.902 0.905 0.906 0.907 0.908 0.91 0.909 0.909 0.911 0.91

0.903 0.904 0.906 0.906 0.907 0.909 0.907 0.907 0.908 0.909

0.904 0.905 0.906 0.906 0.907 0.907 0.902 0.906 0.906 0.905

0.903 0.902 0.904 0.904 0.902 0.905 0.901 0.904 0.903 0.903

0.903 0.904 0.904 0.899 0.901 0.899 0.901 0.902 0.902 0.901

0.902 0.901 0.9 0.9 0.9 0.901 0.902 0.901 0.899 0.901

Acceleration: 0.48 (Patch Size 1x1)

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 0.928 1.04
Velocity

0.
02

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.879 0.89 0.896 0.9 0.901 0.904 0.907 0.907 0.908 0.908

0.883 0.893 0.898 0.901 0.902 0.906 0.907 0.907 0.907 0.909

0.894 0.898 0.903 0.907 0.906 0.907 0.908 0.908 0.909 0.909

0.901 0.905 0.908 0.906 0.909 0.909 0.909 0.909 0.911 0.912

0.905 0.91 0.909 0.909 0.91 0.909 0.909 0.91 0.909 0.91

0.906 0.908 0.908 0.908 0.907 0.909 0.907 0.907 0.906 0.908

0.906 0.906 0.904 0.905 0.905 0.904 0.906 0.905 0.905 0.906

0.903 0.905 0.905 0.904 0.903 0.906 0.904 0.905 0.902 0.904

0.904 0.903 0.904 0.903 0.901 0.903 0.902 0.9 0.903 0.9

0.9 0.9 0.9 0.9 0.901 0.903 0.901 0.899 0.9 0.898

Acceleration: 0.96 (Patch Size 1x1)

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 0.928 1.04
Velocity

0.
02

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.891 0.897 0.902 0.903 0.904 0.905 0.907 0.905 0.906 0.906

0.893 0.899 0.902 0.905 0.903 0.907 0.909 0.908 0.908 0.909

0.9 0.903 0.904 0.91 0.909 0.909 0.909 0.908 0.909 0.909

0.906 0.907 0.908 0.91 0.911 0.909 0.91 0.911 0.911 0.91

0.909 0.909 0.909 0.91 0.909 0.911 0.911 0.909 0.91 0.912

0.909 0.906 0.908 0.907 0.912 0.908 0.909 0.908 0.91 0.907

0.907 0.908 0.907 0.906 0.906 0.906 0.906 0.907 0.906 0.906

0.905 0.904 0.903 0.904 0.904 0.904 0.902 0.904 0.903 0.902

0.902 0.906 0.904 0.904 0.903 0.901 0.901 0.901 0.904 0.9

0.902 0.903 0.903 0.9 0.902 0.902 0.899 0.898 0.899 0.9

Acceleration: 1.44 (Patch Size 1x1)

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 0.928 1.04
Velocity

0.
02

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.904 0.905 0.906 0.907 0.908 0.908 0.908 0.909 0.907 0.909

0.905 0.906 0.909 0.909 0.907 0.91 0.907 0.91 0.91 0.909

0.908 0.909 0.908 0.909 0.91 0.912 0.911 0.91 0.911 0.91

0.91 0.912 0.913 0.911 0.913 0.912 0.911 0.913 0.913 0.912

0.909 0.913 0.912 0.913 0.91 0.913 0.91 0.91 0.91 0.912

0.909 0.909 0.909 0.909 0.909 0.91 0.909 0.908 0.908 0.909

0.909 0.908 0.907 0.907 0.906 0.907 0.907 0.904 0.903 0.907

0.905 0.905 0.905 0.905 0.905 0.905 0.904 0.902 0.902 0.902

0.903 0.903 0.902 0.903 0.903 0.904 0.902 0.902 0.899 0.901

0.902 0.901 0.901 0.899 0.902 0.9 0.899 0.899 0.9 0.899

Acceleration: 2.88 (Patch Size 1x1)

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 0.928 1.04
Velocity

0.
02

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.908 0.909 0.909 0.91 0.907 0.908 0.908 0.908 0.909 0.909

0.91 0.911 0.908 0.909 0.91 0.909 0.909 0.91 0.909 0.909

0.912 0.912 0.911 0.91 0.913 0.912 0.912 0.91 0.914 0.913

0.912 0.913 0.914 0.913 0.914 0.914 0.912 0.914 0.912 0.912

0.913 0.913 0.913 0.912 0.913 0.911 0.911 0.91 0.91 0.91

0.91 0.907 0.909 0.907 0.908 0.91 0.91 0.909 0.91 0.91

0.904 0.906 0.907 0.905 0.908 0.907 0.907 0.907 0.906 0.906

0.904 0.907 0.905 0.905 0.905 0.904 0.903 0.902 0.903 0.904

0.903 0.9 0.901 0.9 0.899 0.901 0.901 0.899 0.901 0.9

0.9 0.9 0.901 0.898 0.901 0.898 0.899 0.897 0.899 0.896

Acceleration: 5.76 (Patch Size 1x1)

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 0.928 1.04
Velocity

0.
02

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.907 0.906 0.909 0.908 0.909 0.909 0.906 0.908 0.907 0.907

0.909 0.91 0.909 0.911 0.909 0.908 0.907 0.909 0.907 0.908

0.913 0.912 0.91 0.912 0.912 0.912 0.909 0.91 0.911 0.913

0.913 0.913 0.914 0.913 0.913 0.912 0.912 0.913 0.912 0.91

0.913 0.912 0.912 0.911 0.91 0.912 0.913 0.909 0.913 0.91

0.908 0.909 0.907 0.909 0.909 0.909 0.909 0.909 0.906 0.907

0.905 0.906 0.907 0.906 0.906 0.905 0.904 0.906 0.905 0.904

0.903 0.903 0.904 0.903 0.904 0.903 0.903 0.903 0.902 0.9

0.902 0.904 0.899 0.901 0.899 0.902 0.902 0.902 0.901 0.9

0.899 0.901 0.9 0.898 0.9 0.896 0.898 0.9 0.898 0.898

Acceleration: 8.00 (Patch Size 1x1)

0.85

0.86

0.87

0.88

0.89

0.90

0.91

Figure B.2: Grid search over initialization parameters σ0, vσ, aσ for ConvMixer-258/8 with 9× 9
frozen filters and 1 × 1 patches trained for 20 epochs on CIFAR-10. Note that the performance
of uniform initialization is only ≈88%, i.e., almost all choices result in some improvement.

81

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 1.632 3.264
Velocity

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.734 0.821 0.838 0.844 0.853 0.853 0.855 0.858 0.852 0.816

0.804 0.835 0.856 0.855 0.856 0.859 0.86 0.861 0.851 0.82

0.848 0.855 0.856 0.852 0.864 0.863 0.864 0.86 0.853 0.836

0.855 0.859 0.858 0.856 0.857 0.861 0.854 0.854 0.843 0.827

0.851 0.854 0.852 0.85 0.846 0.848 0.844 0.837 0.836 0.825

0.843 0.841 0.839 0.842 0.84 0.828 0.836 0.822 0.825 0.807

0.829 0.836 0.829 0.823 0.828 0.823 0.823 0.823 0.813 0.798

0.826 0.827 0.813 0.815 0.815 0.81 0.811 0.811 0.806 0.793

0.804 0.812 0.809 0.807 0.811 0.809 0.805 0.804 0.8 0.766

Acceleration: 0.00 (Patch Size 1x1)

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 1.632 3.264
Velocity

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.826 0.84 0.847 0.847 0.847 0.851 0.861 0.857 0.854 0.817

0.84 0.854 0.854 0.862 0.857 0.858 0.866 0.859 0.85 0.828

0.861 0.856 0.855 0.856 0.864 0.864 0.861 0.859 0.846 0.84

0.858 0.86 0.858 0.857 0.854 0.856 0.849 0.852 0.841 0.827

0.849 0.851 0.852 0.845 0.847 0.845 0.845 0.838 0.829 0.811

0.838 0.84 0.837 0.836 0.831 0.829 0.825 0.832 0.811 0.818

0.823 0.822 0.827 0.821 0.812 0.828 0.811 0.817 0.812 0.806

0.823 0.807 0.821 0.814 0.812 0.803 0.812 0.813 0.801 0.797

0.805 0.807 0.81 0.804 0.804 0.807 0.806 0.806 0.787 0.773

Acceleration: 0.48 (Patch Size 1x1)

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 1.632 3.264
Velocity

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.842 0.841 0.849 0.846 0.858 0.853 0.861 0.866 0.849 0.822

0.849 0.848 0.855 0.857 0.863 0.855 0.85 0.859 0.846 0.826

0.86 0.857 0.859 0.862 0.861 0.862 0.858 0.854 0.842 0.836

0.862 0.863 0.859 0.849 0.852 0.854 0.848 0.851 0.842 0.822

0.851 0.846 0.842 0.845 0.834 0.843 0.841 0.844 0.823 0.818

0.841 0.843 0.827 0.832 0.832 0.817 0.83 0.83 0.82 0.802

0.828 0.826 0.826 0.828 0.827 0.817 0.826 0.82 0.808 0.792

0.816 0.816 0.81 0.807 0.81 0.81 0.813 0.795 0.804 0.788

0.8 0.81 0.808 0.803 0.793 0.808 0.805 0.81 0.8 0.776

Acceleration: 1.44 (Patch Size 1x1)

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 1.632 3.264
Velocity

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.843 0.844 0.842 0.845 0.857 0.858 0.86 0.852 0.847 0.82

0.849 0.856 0.859 0.859 0.859 0.86 0.853 0.856 0.843 0.823

0.864 0.863 0.864 0.864 0.857 0.862 0.86 0.851 0.844 0.829

0.86 0.854 0.858 0.851 0.854 0.846 0.847 0.842 0.831 0.829

0.845 0.844 0.839 0.841 0.835 0.841 0.84 0.837 0.826 0.809

0.836 0.83 0.831 0.831 0.835 0.819 0.826 0.825 0.823 0.813

0.82 0.815 0.819 0.817 0.821 0.819 0.821 0.819 0.801 0.795

0.812 0.813 0.814 0.806 0.809 0.807 0.808 0.808 0.799 0.791

0.808 0.806 0.805 0.802 0.792 0.805 0.792 0.805 0.795 0.778

Acceleration: 2.88 (Patch Size 1x1)

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 1.632 3.264
Velocity

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.842 0.843 0.846 0.855 0.843 0.849 0.847 0.849 0.833 0.809

0.855 0.85 0.853 0.857 0.844 0.849 0.845 0.844 0.836 0.811

0.851 0.854 0.846 0.853 0.849 0.846 0.848 0.846 0.838 0.827

0.84 0.842 0.845 0.839 0.841 0.842 0.842 0.833 0.834 0.821

0.826 0.838 0.835 0.83 0.83 0.83 0.831 0.828 0.825 0.815

0.827 0.829 0.818 0.819 0.824 0.821 0.823 0.823 0.81 0.812

0.809 0.809 0.815 0.804 0.819 0.817 0.81 0.813 0.804 0.791

0.802 0.807 0.808 0.803 0.8 0.797 0.804 0.792 0.798 0.788

0.799 0.796 0.793 0.783 0.794 0.791 0.8 0.792 0.785 0.775

Acceleration: 8.00 (Patch Size 1x1)

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

Figure B.3: Grid search over initialiation parameters σ0, vσ, aσ for ConvNeXt-atto on CIFAR-10
with frozen filters and 1 × 1 patches trained for 20 epochs on CIFAR-10. Note the baseline
performance with uniform initialization is around 80%, i.e., compared to ConvMixer there are
more potentially disadvantageous parameter combinations.

82

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 1.632 3.264
Velocity

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.65 0.785 0.81 0.824 0.836 0.839 0.847 0.851 0.851 0.861

0.788 0.824 0.835 0.845 0.847 0.849 0.853 0.86 0.857 0.843

0.841 0.848 0.856 0.857 0.859 0.861 0.859 0.862 0.858 0.853

0.852 0.849 0.855 0.858 0.855 0.852 0.861 0.858 0.853 0.847

0.854 0.85 0.855 0.849 0.847 0.852 0.852 0.846 0.841 0.836

0.835 0.841 0.838 0.837 0.842 0.839 0.837 0.838 0.831 0.827

0.839 0.832 0.827 0.831 0.828 0.828 0.831 0.826 0.825 0.816

0.821 0.823 0.822 0.823 0.82 0.823 0.817 0.819 0.806 0.791

0.816 0.813 0.806 0.791 0.81 0.812 0.808 0.808 0.804 0.8

Acceleration: 0.00 (Patch Size 1x1)

0.65

0.70

0.75

0.80

0.85

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 1.632 3.264
Velocity

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.771 0.812 0.82 0.83 0.838 0.839 0.842 0.853 0.848 0.858

0.815 0.831 0.841 0.845 0.848 0.854 0.857 0.853 0.855 0.85

0.852 0.85 0.86 0.856 0.86 0.865 0.859 0.853 0.855 0.862

0.851 0.861 0.856 0.856 0.85 0.858 0.854 0.846 0.855 0.849

0.849 0.853 0.849 0.848 0.85 0.837 0.851 0.845 0.846 0.837

0.843 0.845 0.84 0.837 0.841 0.839 0.834 0.837 0.834 0.821

0.832 0.83 0.823 0.828 0.824 0.829 0.829 0.825 0.829 0.819

0.821 0.822 0.819 0.821 0.814 0.821 0.823 0.811 0.809 0.802

0.811 0.805 0.811 0.802 0.807 0.814 0.806 0.801 0.803 0.793

Acceleration: 0.48 (Patch Size 1x1)

0.65

0.70

0.75

0.80

0.85

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 1.632 3.264
Velocity

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.819 0.823 0.837 0.837 0.84 0.843 0.85 0.85 0.851 0.852

0.832 0.841 0.852 0.844 0.847 0.85 0.854 0.854 0.853 0.848

0.858 0.857 0.858 0.857 0.861 0.856 0.859 0.861 0.849 0.855

0.859 0.86 0.855 0.851 0.858 0.858 0.857 0.849 0.853 0.85

0.855 0.851 0.849 0.855 0.852 0.848 0.851 0.849 0.84 0.838

0.842 0.838 0.838 0.834 0.835 0.836 0.837 0.84 0.832 0.821

0.828 0.827 0.823 0.825 0.826 0.835 0.83 0.828 0.819 0.809

0.818 0.826 0.809 0.812 0.817 0.808 0.82 0.812 0.814 0.803

0.814 0.807 0.808 0.817 0.799 0.81 0.811 0.796 0.794 0.795

Acceleration: 1.44 (Patch Size 1x1)

0.65

0.70

0.75

0.80

0.85

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 1.632 3.264
Velocity

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.829 0.835 0.836 0.843 0.842 0.844 0.849 0.851 0.856 0.849

0.84 0.848 0.851 0.85 0.856 0.854 0.854 0.855 0.853 0.857

0.855 0.856 0.853 0.856 0.858 0.862 0.86 0.868 0.851 0.848

0.858 0.855 0.855 0.858 0.857 0.852 0.851 0.846 0.848 0.845

0.857 0.852 0.849 0.846 0.85 0.846 0.842 0.84 0.835 0.837

0.842 0.832 0.835 0.834 0.837 0.837 0.838 0.84 0.829 0.82

0.833 0.833 0.831 0.823 0.824 0.834 0.82 0.814 0.822 0.813

0.823 0.82 0.822 0.812 0.819 0.818 0.817 0.814 0.804 0.812

0.809 0.808 0.813 0.809 0.804 0.808 0.807 0.811 0.8 0.788

Acceleration: 2.88 (Patch Size 1x1)

0.65

0.70

0.75

0.80

0.85

0.032 0.144 0.256 0.368 0.48 0.592 0.704 0.816 1.632 3.264
Velocity

0.
04

0.
08

0.
16

0.
32

0.
48

0.
64

0.
8

0.
96

1.
12

St
ar

t V
ar

ia
nc

e

0.841 0.838 0.841 0.843 0.848 0.849 0.847 0.854 0.851 0.856

0.852 0.85 0.853 0.854 0.849 0.852 0.855 0.856 0.852 0.844

0.857 0.862 0.852 0.857 0.858 0.863 0.855 0.85 0.859 0.855

0.858 0.854 0.847 0.854 0.844 0.857 0.845 0.853 0.849 0.848

0.847 0.851 0.846 0.836 0.847 0.837 0.847 0.846 0.838 0.829

0.833 0.837 0.838 0.829 0.835 0.83 0.837 0.834 0.829 0.822

0.834 0.822 0.825 0.821 0.827 0.829 0.826 0.826 0.821 0.809

0.814 0.816 0.823 0.813 0.814 0.812 0.816 0.811 0.808 0.81

0.807 0.811 0.812 0.809 0.813 0.8 0.794 0.796 0.802 0.799

Acceleration: 8.00 (Patch Size 1x1)

0.65

0.70

0.75

0.80

0.85

Figure B.4: Grid search over initialiation parameters σ0, vσ, aσ for ConvNeXt-atto on CIFAR-
10 with frozen filters and 1 × 1 patches trained for 20 epochs, using the “sawtooth” variance
schedule (see Fig B.5) to account for downsampling layers. While this perhaps shows better
robustness to parameter changes than Fig. B.3, the effect could also be due to effectively dividing
the parameters by two.

83

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
ConvMixer Depth

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

ConvNeXt "Depth"

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4
ConvMixer Init. Variance

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

ConvNeXt Init. Variance

Figure B.5: Proposed stepwise variance schedule for ConvNeXt, i.e., a model including down-
sampling layers. In our experiments, we saw no advantage to using this scheme.

84

B.1.2 ImageNet Grid Searches

0.1 0.25 0.5 1.0 2.0 4.0 6.0 8.0
Variance Acceleration

0.
0

0.
01

0.
1

0.
2

0.
25

0.
3

0.
4

0.
5

Va
ria

nc
e

Ve
lo

cit
y

0 0 50.8 51.4 51.7 52.1 51.9 51.9

0 0 51.3 51.5 51.9 52.2 52 51.6

0 0 51.6 51.8 52.4 52.1 52.1 51.7

0 0 52.1 51.8 52 52 51.7 51.7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Start Variance: 0.100

51.0

51.2

51.4

51.6

51.8

52.0

52.2

52.4

0.1 0.25 0.5 1.0 2.0 4.0 6.0 8.0
Variance Acceleration

0.
0

0.
01

0.
1

0.
2

0.
25

0.
3

0.
4

0.
5

Va
ria

nc
e

Ve
lo

cit
y

0 0 51.7 51.7 52.1 52.1 52 51.9

0 0 51.6 52 52.1 52.3 52 51.9

0 0 51.9 52.1 52.4 52.1 52 51.7

0 0 52.5 52.2 52.5 52.4 51.9 51.6

52 52.2 52.1 52.2 52.3 0 0 0

51.8 52.4 52.2 52.3 52.4 0 0 0

52.4 52.4 52.2 52.1 51.9 0 0 0

52 52.4 52.2 52.2 52.3 0 0 0

Start Variance: 0.150

51.0

51.2

51.4

51.6

51.8

52.0

52.2

52.4

0.1 0.25 0.5 1.0 2.0 4.0 6.0 8.0
Variance Acceleration

0.
0

0.
01

0.
1

0.
2

0.
25

0.
3

0.
4

0.
5

Va
ria

nc
e

Ve
lo

cit
y

0 0 51.8 52.2 52.1 52 51.7 51.4

0 0 51.6 52 52.1 52.1 51.8 51.2

0 0 52.3 51.7 52.1 51.8 51.7 52

0 0 51.9 52.3 52.1 52 51.8 51.4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Start Variance: 0.200

51.0

51.2

51.4

51.6

51.8

52.0

52.2

52.4

Figure B.6: Frozen filters: Grid search over initialization parameters for ConvMixer-512/12
with 14× 14 patches and 9× 9 filters, 10 epochs. Zeros indicate that the experiment did not run.

0.1 0.25 0.5 1.0 2.0 4.0 6.0 8.0
Variance Acceleration

0.
0

0.
01

0.
1

0.
2

0.
25

0.
3

0.
4

0.
5

Va
ria

nc
e

Ve
lo

cit
y

0 0 54.8 54.8 54.6 54.3 54.2 53.9

0 0 54.9 55 54.9 54.4 53.9 54.1

0 0 55 54.7 54.8 54.6 54.2 54.1

0 0 55.2 54.8 54.9 54.2 54.1 53.7

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Start Variance: 0.100

53.75

54.00

54.25

54.50

54.75

55.00

55.25

55.50

0.1 0.25 0.5 1.0 2.0 4.0 6.0 8.0
Variance Acceleration

0.
0

0.
01

0.
1

0.
2

0.
25

0.
3

0.
4

0.
5

Va
ria

nc
e

Ve
lo

cit
y

0 0 55.3 55.1 54.9 54.4 54.1 53.9

0 0 55.2 55.2 54.9 54.5 54.3 53.7

0 0 55.4 55.4 54.9 54.4 54.1 53.7

0 0 0 55.4 55.1 54.6 54.3 53.8

55.1 55.4 55.4 55.5 0 0 0 0

55.5 55 55.4 55.2 54.9 0 0 0

55.4 55.4 55 55.2 54.7 0 0 0

55.3 55.5 55.2 55.4 54.8 0 0 0

Start Variance: 0.150

53.75

54.00

54.25

54.50

54.75

55.00

55.25

55.50

0.1 0.25 0.5 1.0 2.0 4.0 6.0 8.0
Variance Acceleration

0.
0

0.
01

0.
1

0.
2

0.
25

0.
3

0.
4

0.
5

Va
ria

nc
e

Ve
lo

cit
y

0 0 55.1 55.3 55.1 54.8 54.3 53.6

0 0 55.2 55.2 55.1 54.4 54.3 53.7

0 0 55.5 55.3 55 54.2 54.2 53.7

0 0 55.4 55.1 54.9 54.3 54.3 53.6

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Start Variance: 0.200

53.75

54.00

54.25

54.50

54.75

55.00

55.25

55.50

Figure B.7: Thawed filters: Grid search over initialization parameters for ConvMixer-512/12
with 14× 14 patches and 9× 9 filters, 10 epochs.

85

B.2 Shift Function Definition & Proof
For a given matrix Z ∈ Rk×k (e.g., a Gaussian kernel centered at the top left of the filter), we
define the Shift operator as follows:

Shift(Z,∆x,∆y)i,j = Z(i+∆x) mod k,(j+∆y) mod k. (B.1)

Note that this can be achieved using np.roll in NumPy. Then, if

[Ci,j] = Shift(Zσ, i, j) (B.2)

and the operation (.)B is defined by

ΣB = Σ′ ⇐⇒ [Σi,j]ℓ,m =
[
Σ′

ℓ,m

]
i,j

for 1 ≤ i, j, ℓ,m ≤ k, (B.3)

then

[Ci,j]ℓ,m = Shift(Z, i, j)ℓ,m = Z(i+ℓ) mod k,(j+m) mod k (B.4)
= Z(ℓ+i) mod k,(m+j) mod k = Shift(Z, ℓ,m)i,j = [Cℓ,m]i,j, (B.5)

which shows that [Ci,j]ℓ,m = [Cℓ,m]i,j for all 1 ≤ i, j, ℓ,m ≤ k, i.e., C is “block-symmetric”, or
C = CB. □

86

B.3 Additional ImageNet Experiments on Mimetic Initializa-
tion for Convolutional Layers

ConvMixer-512/12: Patch Size 14, Kernel Size 9 Thawed Frozen
Uniform init 54.5 47.4
Stats from CM-512/12 55.5 53.4
Stats from CM-64/12 55.2 52.7
Filters transferred from CM-512/12 55.1 54.4
Our init (.15, .3, .5) 55.4 52.2
Our init (.15, .5, .25) 55.5 52.4

Table B.1: ConvMixer performance on ImageNet-1k training with 10 epochs. Our initializa-
tion performs comparably to loading covariance matrices from previously-trained models (which
were trained for 150 epochs).

ConvMixer-512/12: Patch Size 7, Kernel Size 9 Thawed Frozen
Uniform init 61.87 56.73
Stats from CM-512/12 62.56 60.79
Stats from CM-64/12 62.72 60.86
Filters transferred from CM-512/12 62.81 61.83
Our init (.15, .3, .5) 62.49 58.94
Our init (.15, .5, .25) 62.59 59.31

Table B.2: ImageNet 10-epoch training

ConvMixer-512/24: Patch Size 14, Kernel Size 9 Thawed Frozen
Uniform init 50.40 43.00
Stats from CM-512/12 53.03 51.45
Stats from CM-64/12 53.16 51.25
Filters transferred from CM-512/12 52.87 52.12
Our init (.15, .3, .5) 53.80 51.16
Our init (.15, .5, .25) 53.76 50.81

Table B.3: ImageNet 10-epoch training

87

ConvNeXt-Atto Thawed Frozen
Uniform init 31.37 23.63
Stats from the same arch 33.44 40.41
Stats from 1/8th-width arch 29.81 31.47
Filters transferred from same arch 31.68 40.48
Our init (.15, .3, .5) 37.64 34.59
Our init (.15, .5, .25) 31.34 34.23
Our init (.15, .25, 1.0) 38.01 33.98

Table B.4: ImageNet 10-epoch training

ConvNeXt-Tiny Thawed Frozen
Uniform init 32.51 25.94
Stats from the same arch 42.78 41.54
Stats from 1/8th-width arch 44.60 42.86
Filters transferred from same arch 31.01 45.32
Our init (.15, .3, .5) 35.64 35.04
Our init (.15, .5, .25) 40.17 38.91
Our init (.15, .25, 1.0) 40.78 36.62

Table B.5: ImageNet 10-epoch training

88

ConvNeXt-Atto Thawed Frozen
Uniform init 69.96 51.43
Stats from the same arch 68.83 66.71
Stats from 1/8th-width arch 68.69 66.31
Filters transferred from same arch 68.01 67.29
Our init (.15, .3, .5) 65.55 63.48
Our init (.15, .5, .25) 67.84 64.52
Our init (.15, .25, 1.0) 68.06 63.43

Table B.6: ImageNet 50-epoch training

ConvMixer-512/12: Patch Size 14, Kernel Size 9 Thawed Frozen
Uniform init 67.03 60.47
Stats from the same arch 67.13 65.08
Stats from 1/8th-width arch 66.75 64.94
Filters transferred from same arch 67.28 66.11
Our init (.15, .3, .5) 66.12 64.39
Our init (.15, .5, .25) 67.41 64.43
Our init (.15, .25, 1.0) 67.34 64.12

Table B.7: ImageNet 50-epoch training

ConvMixer-512/24: Patch Size 14, Kernel Size 9 Thawed Frozen
Uniform init 67.76 62.50
Stats from the same arch 68.92 67.91
Stats from 1/8th-width arch 68.78 67.36
Filters transferred from same arch 69.42 68.66
Our init (.15, .3, .5) 69.05 66.20
Our init (.15, .5, .25) 69.60 66.57
Our init (.15, .25, 1.0) 69.52 66.38

Table B.8: ImageNet 50-epoch training

89

B.4 Additional CIFAR-10 Tables for Mimetic Initialization for
Convolutional Layers

90

Ta
bl

e
B

.9
:C

IF
A

R
-1

0
re

su
lts

fo
rC

on
vM

ix
er

-2
56

/8
w

ith
pa

tc
h

si
ze

2.
B

ol
d

de
no

te
s

th
e

hi
gh

es
tp

er
gr

ou
p,

an
d

bl
ue

bo
ld

de
no

te
s

th
e

se
co

nd
hi

gh
es

t.

T
H

A
W

E
D

F
R

O
Z

E
N

Fi
lt.

Si
ze

E
ps

U
ni

fo
rm

C
ov

.t
ra

ns
fe

r
C

ov
.t

ra
ns

fe
r

(1 8
w

id
th

)
D

ir
ec

tt
ra

ns
fe

r
O

ur
in

it
U

ni
fo

rm
C

ov
.t

ra
ns

fe
r

C
ov

.t
ra

ns
fe

r
(1 8

w
id

th
)

D
ir

ec
tt

ra
ns

fe
r

O
ur

in
it

3
20

8
9
.6
9
±

.2
0

9
0
.0
8
±

.3
9

8
9
.7
6
±

.1
4

9
0
.0
2
±

.1
4

8
9
.6
4
±

.1
3

8
8
.9
9
±

.4
1

8
9
.5
6
±

.1
1

8
9
.5
4
±

.4
0

8
9
.9
4
±

.0
8

8
8
.9
4
±

.2
5

50
9
1
.9
2
±

.0
3

9
2
.0
1
±

.2
1

9
1
.8
3
±

.0
2

9
1
.6
9
±

.1
8

9
1
.6
3
±

.0
7

9
1
.1
2
±

.2
2

9
1
.4
2
±

.1
5

9
1
.3
4
±

.2
7

9
1
.6
2
±

.1
7

9
1
.0
2
±

.2
5

20
0

9
3
.0
8
±

.1
6

9
2
.9
4
±

.2
6

9
2
.9
2
±

.1
9

9
2
.9
7
±

.1
8

9
2
.8
4
±

.1
1

9
2
.3
8
±

.2
7

9
2
.5
5
±

.0
9

9
2
.2
7
±

.2
1

9
2
.4
7
±

.1
9

9
2
.0
9
±

.1
3

7
20

8
9
.6
6
±

.2
1

8
9
.9
1
±

.0
9

9
0
.6
3
±

.1
0

9
0
.4
8
±

.2
6

9
0
.7
9
±

.2
4

8
6
.7
3
±

.2
7

8
8
.8
6
±

.3
6

8
9
.3
6
±

.0
9

9
0
.0
0
±

.2
7

9
0
.2
2
±

.0
3

50
9
1
.8
1
±

.1
5

9
1
.7
7
±

.2
6

9
1
.8
8
±

.1
9

9
1
.9
1
±

.2
0

9
2
.4
8
±

.0
8

8
9
.4
4
±

.2
3

9
0
.7
2
±

.1
3

9
1
.0
5
±

.1
2

9
1
.5
4
±

.3
7

9
2
.0
2
±

.2
3

20
0

9
2
.8
6
±

.1
5

9
2
.7
7
±

.2
8

9
2
.7
4
±

.1
5

9
2
.7
2
±

.0
6

9
3
.4
0
±

.2
0

9
0
.7
0
±

.1
2

9
1
.6
8
±

.1
6

9
1
.8
4
±

.0
5

9
2
.3
6
±

.2
0

9
2
.8
3
±

.2
4

9
20

8
9
.2
6
±

.3
5

8
9
.7
0
±

.0
6

9
0
.2
2
±

.3
6

9
0
.1
4
±

.0
6

9
0
.8
5
±

.1
4

8
4
.9
7
±

.0
3

8
8
.1
8
±

.1
2

8
9
.6
7
±

.0
7

8
9
.5
0
±

.3
7

9
0
.5
6
±

.0
9

50
9
1
.7
4
±

.1
2

9
1
.6
3
±

.1
5

9
2
.1
1
±

.1
8

9
1
.7
9
±

.1
8

9
2
.5
4
±

.1
6

8
8
.2
5
±

.3
9

9
0
.2
2
±

.0
9

9
1
.0
1
±

.1
2

9
1
.2
3
±

.1
3

9
1
.9
6
±

.1
2

20
0

9
2
.6
5
±

.1
6

9
2
.5
3
±

.1
3

9
2
.8
5
±

.1
2

9
2
.6
2
±

.2
6

9
3
.2
1
±

.0
9

9
0
.0
4
±

.3
3

9
1
.3
4
±

.0
8

9
2
.0
0
±

.1
8

9
2
.0
5
±

.2
8

9
3
.0
0
±

.0
5

15
20

8
6
.6
4
±

.3
0

8
8
.1
9
±

.5
1

8
9
.2
7
±

.0
5

8
9
.1
7
±

.1
9

9
0
.3
3
±

.2
2

8
1
.9
9
±

.2
1

8
6
.3
1
±

.1
5

8
7
.5
2
±

.2
3

8
8
.3
9
±

.2
8

9
0
.3
8
±

.0
6

50
8
9
.9
4
±

.4
5

9
0
.2
6
±

.1
6

9
0
.8
1
±

.2
6

9
0
.7
9
±

.2
4

9
2
.1
7
±

.2
3

8
5
.0
5
±

.3
3

8
8
.7
1
±

.0
8

8
9
.5
1
±

.0
6

9
0
.0
8
±

.0
9

9
2
.1
1
±

.2
4

20
0

9
1
.7
9
±

.2
3

9
1
.6
0
±

.2
1

9
2
.0
1
±

.1
9

9
1
.8
7
±

.2
6

9
2
.9
4
±

.1
1

8
7
.6
4
±

.0
5

8
9
.9
3
±

.2
5

9
0
.6
1
±

.1
7

9
0
.9
4
±

.1
2

9
3
.0
2
±

.0
9

91

Table
B

.10:
C

IFA
R

-10
results

for
C

onvM
ixer-256/24

w
ith

patch
size

2.B
old

denotes
the

highestper
group,and

blue
bold

denotes
the

second
highest.

T
H

A
W

E
D

F
R

O
Z

E
N

Filt.
Size

#E
ps

U
niform

C
ov.transfer

C
ov.transfer
(
18

w
idth)

D
irecttransfer

O
urinit

U
niform

C
ov.transfer

C
ov.transfer
(
18

w
idth)

D
irecttransfer

O
urinit

3
20

8
8
.3
7
±

.1
1

8
8
.7
9
±

.0
7

8
8
.9
7
±

.1
3

8
9
.2
2
±

.2
6

8
8
.4
2
±

.1
4

8
7
.7
4
±

.3
2

8
8
.6
3
±

.2
0

8
8
.8
0
±

.1
2

8
8
.9
5
±

.1
1

8
8
.0
5
±

.0
9

50
9
2
.3
8
±

.1
5

9
2
.3
0
±

.2
4

9
2
.4
6
±

.0
7

9
2
.5
6
±

.1
9

9
2
.1
9
±

.2
4

9
1
.8
6
±

.1
8

9
2
.0
2
±

.3
2

9
2
.3
7
±

.0
3

9
2
.3
1
±

.1
4

9
2
.0
0
±

.2
3

200
9
4
.1
3
±

.0
7

9
4
.3
2
±

.1
2

9
4
.4
1
±

.1
1

9
4
.3
7
±

.0
3

9
4
.1
6
±

.2
0

9
3
.7
1
±

.1
5

9
3
.9
1
±

.1
3

9
4
.2
8
±

.2
0

9
3
.9
5
±

.2
3

9
3
.8
4
±

.1
0

7
20

8
8
.4
9
±

.4
6

8
9
.0
8
±

.1
5

8
9
.9
0
±

.1
4

8
9
.8
1
±

.1
6

9
0
.2
8
±

.1
8

8
5
.8
1
±

.0
5

8
7
.9
8
±

.0
8

8
9
.1
9
±

.1
2

8
9
.3
4
±

.4
0

9
0
.0
9
±

.2
2

50
9
1
.9
0
±

.1
7

9
1
.7
3
±

.2
6

9
2
.3
9
±

.1
7

9
2
.2
5
±

.1
2

9
3
.1
5
±

.0
8

8
9
.9
4
±

.1
7

9
0
.8
6
±

.0
7

9
1
.5
6
±

.0
9

9
1
.9
1
±

.0
8

9
2
.8
0
±

.2
7

200
9
3
.5
7
±

.0
8

9
3
.4
3
±

.2
1

9
3
.7
1
±

.2
0

9
3
.6
2
±

.1
9

9
4
.4
4
±

.2
6

9
1
.7
8
±

.2
2

9
2
.7
8
±

.1
6

9
3
.2
4
±

.2
5

9
3
.0
0
±

.2
5

9
4
.0
3
±

.2
3

9
20

8
7
.9
9
±

.4
1

8
8
.2
5
±

.1
3

8
9
.4
4
±

.0
3

8
9
.4
2
±

.2
6

9
0
.5
4
±

.1
5

8
3
.4
2
±

.3
3

8
7
.3
8
±

.1
8

8
8
.4
6
±

.4
5

8
8
.9
0
±

.5
2

9
0
.3
1
±

.1
2

50
9
1
.0
6
±

.1
1

9
1
.3
6
±

.1
7

9
1
.8
7
±

.1
1

9
1
.6
9
±

.0
6

9
3
.0
3
±

.1
0

8
8
.3
8
±

.0
8

9
0
.2
5
±

.3
4

9
1
.1
2
±

.1
6

9
1
.0
4
±

.1
8

9
2
.7
8
±

.2
7

200
9
3
.1
2
±

.3
7

9
3
.0
8
±

.1
7

9
3
.4
2
±

.2
1

9
3
.1
6
±

.2
1

9
4
.1
2
±

.1
8

9
0
.8
6
±

.0
7

9
1
.8
6
±

.2
8

9
2
.6
0
±

.0
9

9
2
.5
3
±

.1
5

9
4
.0
3
±

.0
9

15
20

8
4
.9
5
±

.5
0

8
5
.8
0
±

.4
8

8
6
.6
7
±

.2
9

8
7
.6
9
±

.5
7

9
0
.0
8
±

.2
3

8
0
.7
2
±

.2
0

8
4
.2
7
±

.4
1

8
5
.7
0
±

.2
5

8
6
.7
5
±

.5
2

9
0
.0
3
±

.0
6

50
8
9
.7
4
±

.1
1

8
9
.6
8
±

.1
5

9
0
.1
0
±

.1
2

9
0
.2
2
±

.2
7

9
2
.3
0
±

.1
6

8
5
.1
0
±

.2
7

8
8
.0
5
±

.1
1

8
8
.7
8
±

.3
3

8
9
.7
2
±

.2
1

9
2
.9
3
±

.2
4

200
9
2
.0
3
±

.1
0

9
2
.0
2
±

.2
3

9
2
.2
2
±

.1
8

9
2
.2
0
±

.0
3

9
3
.6
6
±

.3
3

8
8
.1
8
±

.1
6

9
0
.1
9
±

.3
2

9
0
.6
7
±

.1
8

9
1
.1
9
±

.2
0

9
4
.1
6
±

.1
2

92

Ta
bl

e
B

.1
1:

C
IF

A
R

-1
0

re
su

lts
fo

rC
on

vM
ix

er
-2

56
/8

w
ith

pa
tc

h
si

ze
1.

B
ol

d
de

no
te

s
th

e
hi

gh
es

tp
er

gr
ou

p,
an

d
bl

ue
bo

ld
de

no
te

s
th

e
se

co
nd

hi
gh

es
t.

T
H

A
W

E
D

F
R

O
Z

E
N

Fi
lt.

Si
ze

E
ps

U
ni

fo
rm

C
ov

.t
ra

ns
fe

r
C

ov
.t

ra
ns

fe
r

(1 8
w

id
th

)
D

ir
ec

tt
ra

ns
fe

r
O

ur
in

it
U

ni
fo

rm
C

ov
.t

ra
ns

fe
r

C
ov

.t
ra

ns
fe

r
(1 8

w
id

th
)

D
ir

ec
tt

ra
ns

fe
r

O
ur

in
it

3
20

9
0
.4
1
±

.1
1

9
0
.6
0
±

.3
1

9
0
.7
8
±

.2
2

9
0
.6
6
±

.1
8

8
9
.8
4
±

.2
7

8
9
.3
9
±

.0
9

9
0
.3
7
±

.0
6

9
0
.1
4
±

.0
3

9
0
.6
4
±

.1
7

8
9
.0
7
±

.2
1

50
9
1
.8
9
±

.0
6

9
2
.0
0
±

.2
3

9
2
.0
9
±

.1
8

9
2
.0
5
±

.2
0

9
1
.4
9
±

.1
0

9
0
.9
7
±

.1
9

9
1
.8
7
±

.0
9

9
1
.6
5
±

.1
0

9
1
.9
0
±

.2
6

9
0
.7
3
±

.2
6

20
0

9
2
.1
6
±

.1
9

9
2
.3
8
±

.1
2

9
2
.5
8
±

.0
9

9
2
.5
4
±

.1
8

9
1
.8
5
±

.1
5

9
1
.7
1
±

.2
0

9
2
.1
2
±

.0
8

9
2
.0
5
±

.3
6

9
1
.9
8
±

.1
6

9
1
.4
7
±

.1
4

7
20

9
1
.7
0
±

.1
6

9
1
.9
4
±

.0
8

9
2
.0
2
±

.0
5

9
2
.3
7
±

.0
7

9
1
.8
0
±

.2
3

8
9
.8
4
±

.0
4

9
0
.7
8
±

.2
7

9
1
.3
0
±

.1
1

9
1
.9
2
±

.0
3

9
1
.0
8
±

.1
5

50
9
3
.3
0
±

.1
5

9
3
.0
0
±

.2
5

9
3
.3
1
±

.1
0

9
3
.4
2
±

.0
7

9
3
.3
3
±

.2
9

9
1
.5
1
±

.2
0

9
2
.2
1
±

.0
6

9
2
.6
8
±

.0
7

9
3
.0
1
±

.0
2

9
2
.3
1
±

.3
2

20
0

9
3
.6
7
±

.1
3

9
3
.5
9
±

.0
8

9
3
.6
8
±

.1
2

9
3
.8
1
±

.2
3

9
3
.8
3
±

.1
8

9
2
.4
8
±

.1
6

9
2
.8
9
±

.1
8

9
2
.9
8
±

.0
5

9
3
.3
8
±

.0
4

9
3
.1
6
±

.2
0

9
20

9
1
.9
2
±

.1
6

9
1
.7
4
±

.2
5

9
2
.0
7
±

.1
9

9
2
.2
1
±

.1
7

9
2
.3
7
±

.1
9

8
9
.4
5
±

.0
2

9
0
.4
1
±

.2
4

9
1
.2
5
±

.1
6

9
1
.8
5
±

.0
3

9
1
.3
5
±

.0
5

50
9
3
.2
5
±

.2
3

9
2
.9
2
±

.0
5

9
3
.2
2
±

.1
6

9
3
.3
7
±

.0
1

9
3
.4
5
±

.1
9

9
1
.1
3
±

.1
3

9
1
.9
3
±

.1
7

9
2
.5
2
±

.0
3

9
2
.8
5
±

.1
6

9
2
.4
5
±

.2
7

20
0

9
3
.7
4
±

.3
5

9
3
.6
0
±

.1
6

9
3
.6
8
±

.1
4

9
3
.8
3
±

.0
3

9
4
.1
2
±

.2
4

9
1
.9
6
±

.0
7

9
2
.6
7
±

.0
4

9
3
.0
8
±

.1
7

9
3
.3
8
±

.0
1

9
3
.5
6
±

.1
4

15
20

9
0
.6
5
±

.2
3

9
1
.0
0
±

.0
5

9
1
.9
1
±

.1
7

9
1
.7
0
±

.2
8

9
2
.2
9
±

.2
1

8
6
.6
4
±

.1
4

8
9
.0
9
±

.3
2

9
0
.7
0
±

.0
7

9
1
.3
2
±

.1
0

9
1
.5
3
±

.1
2

50
9
2
.7
6
±

.0
6

9
2
.5
4
±

.1
0

9
2
.9
9
±

.1
3

9
2
.9
5
±

.1
0

9
3
.4
2
±

.0
7

8
9
.2
0
±

.1
7

9
0
.6
5
±

.1
5

9
1
.7
2
±

.2
3

9
2
.3
5
±

.1
3

9
2
.7
3
±

.0
7

20
0

9
3
.5
5
±

.1
6

9
3
.2
2
±

.1
6

9
3
.5
7
±

.0
3

9
3
.5
9
±

.0
2

9
4
.1
3
±

.1
3

9
0
.2
0
±

.2
2

9
1
.8
3
±

.1
4

9
2
.7
9
±

.1
7

9
3
.0
1
±

.2
7

9
3
.4
7
±

.0
5

93

Table
B

.12:
C

IFA
R

-10
results

for
C

onvN
eX

t-atto
w

ith
patch

size
1.B

old
denotes

the
highestper

group,and
blue

bold
denotes

the
second

highest.

T
H

A
W

E
D

F
R

O
Z

E
N

Filt.
Size

#E
ps

U
niform

C
ov.transfer

C
ov.transfer
(
18

w
idth)

D
irecttransfer

O
urinit

U
niform

C
ov.transfer

C
ov.transfer
(
18

w
idth)

D
irecttransfer

O
urinit

7
20

8
1
.4
6
±

.5
1

8
5
.0
0
±

.2
1

8
4
.7
1
±

.2
5

8
6
.1
8
±

.5
9

8
6
.4
4
±

.7
8

8
0
.4
5
±

.8
8

8
3
.9
1
±

.1
3

8
4
.0
6
±

.1
9

8
6
.1
2
±

.5
7

8
4
.7
1
±

.0
8

50
8
7
.5
5
±

.4
6

8
8
.3
8
±

.1
0

8
7
.9
2
±

.2
7

8
9
.0
7
±

.7
5

9
0
.5
4
±

.1
6

8
5
.1
8
±

.3
9

8
7
.8
1
±

.1
0

8
6
.9
2
±

.3
7

8
9
.3
2
±

.2
1

9
0
.1
3
±

.1
4

200
9
0
.4
7
±

.6
8

9
0
.7
7
±

.4
6

9
0
.6
9
±

.1
1

9
1
.0
5
±

.4
0

9
2
.0
3
±

.3
5

8
7
.1
0
±

.0
8

8
9
.7
0
±

.2
1

8
9
.0
8
±

.2
4

9
0
.8
3
±

.2
1

9
2
.2
7
±

.2
2

Table
B

.13:
C

IFA
R

-10
results

for
C

onvN
eX

t-atto
w

ith
patch

size
2.B

old
denotes

the
highestper

group,and
blue

bold
denotes

the
second

highest.

T
H

A
W

E
D

F
R

O
Z

E
N

Filt.
Size

#E
ps

U
niform

C
ov.transfer

C
ov.transfer
(
18

w
idth)

D
irecttransfer

O
urinit

U
niform

C
ov.transfer

C
ov.transfer
(
18

w
idth)

D
irecttransfer

O
urinit

7
20

7
2
.9
6
±

.7
0

8
2
.3
6
±

.3
2

8
1
.2
9
±

.7
8

8
3
.4
2
±

.4
7

8
1
.1
3
±

.5
4

7
2
.1
8
±

.3
0

8
0
.8
2
±

.1
7

7
9
.0
3
±

.0
7

8
3
.6
1
±

.2
3

7
9
.3
6
±

.0
7

50
8
3
.7
1
±

.6
0

8
6
.2
1
±

.2
1

8
6
.3
2
±

.1
6

8
6
.2
8
±

.2
0

8
5
.9
7
±

.2
4

7
7
.9
2
±

.3
4

8
5
.1
6
±

.4
5

8
4
.8
3
±

.0
9

8
5
.9
3
±

.2
0

8
5
.4
5
±

.2
0

200
8
6
.2
8
±

.0
2

8
7
.4
0
±

.2
7

8
8
.1
4
±

.1
8

8
7
.0
2
±

.1
0

8
8
.2
0
±

.5
2

7
9
.8
2
±

.3
8

8
6
.2
5
±

.1
0

8
6
.6
0
±

.0
2

8
6
.5
9
±

.3
3

8
7
.6
9
±

.2
8

94

Bibliography

A. Ali, I. Zimerman, and L. Wolf. The hidden attention of mamba models. arXiv preprint
arXiv:2403.01590, 2024. 3.3.1

I. Amos, J. Berant, and A. Gupta. Never train from scratch: Fair comparison of long-sequence
models requires data-driven priors. arXiv preprint arXiv:2310.02980, 2023. 1.1, 3.3.5

S. Arora, S. Eyuboglu, M. Zhang, A. Timalsina, S. Alberti, D. Zinsley, J. Zou, A. Rudra, and
C. Ré. Simple linear attention language models balance the recall-throughput tradeoff. arXiv
preprint arXiv:2402.18668, 2024. 3.3, 3.3

S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation of generic convolutional and recurrent
networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018. 3.2.6

I. Bello. Lambdanetworks: Modeling long-range interactions without attention. arXiv preprint
arXiv:2102.08602, 2021. 2.1.3

I. Bello, B. Zoph, A. Vaswani, J. Shlens, and Q. V. Le. Attention augmented convolutional
networks. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 3286–3295, 2019. 2.1.3

R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein,
J. Bohg, A. Bosselut, E. Brunskill, et al. On the opportunities and risks of foundation models.
arXiv preprint arXiv:2108.07258, 2021. 1.1

Y.-H. Cao, H. Yu, and J. Wu. Training vision transformers with only 2040 images. arXiv preprint
arXiv:2201.10728, 2022. 3.2.1

G. Cazenavette, J. Julin, and S. Lucey. Rethinking the role of spatial mixing. 3.1.1, 3.1.3

S. Chen, E. Xie, C. Ge, D. Liang, and P. Luo. Cyclemlp: A mlp-like architecture for dense
prediction. arXiv preprint arXiv:2107.10224, 2021. 2.1.3

Y. Chen, J. Liu, X. Qi, X. Zhang, J. Sun, and J. Jia. Scaling up kernels in 3d cnns. arXiv preprint
arXiv:2206.10555, 2022. 3.1

J.-B. Cordonnier, A. Loukas, and M. Jaggi. On the relationship between self-attention and con-
volutional layers. arXiv preprint arXiv:1911.03584, 2019. 2.1.3, 3.2.1, 3.2.4

E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. Randaugment: Practical automated data augmen-
tation with a reduced search space. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition workshops, pages 702–703, 2020. 2.1.2, 3.1.1

Z. Dai, Z. Yang, Y. Yang, J. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-xl: Attentive
language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860, 2019. 3.2.6

95

Z. Dai, H. Liu, Q. V. Le, and M. Tan. Coatnet: Marrying convolution and attention for all data
sizes. Advances in Neural Information Processing Systems, 34:3965–3977, 2021. 2.1.3, 3.2.1

T. Dao and A. Gu. Transformers are ssms: Generalized models and efficient algorithms through
structured state space duality. arXiv preprint arXiv:2405.21060, 2024. 3.3, 3.3, 3.3.1, 3.3.1,
3.3.1, 3.3.6

S. d’Ascoli, H. Touvron, M. Leavitt, A. Morcos, G. Biroli, and L. Sagun. Convit: Improving
vision transformers with soft convolutional inductive biases. arXiv preprint arXiv:2103.10697,
2021. 2.1.3

X. Ding, X. Zhang, J. Han, and G. Ding. Scaling up your kernels to 31x31: Revisiting large
kernel design in cnns. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11963–11975, 2022. 3.1

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929, 2020. (document), 1.1, 2.1, 2.2,
3.2

S. d’Ascoli, H. Touvron, M. L. Leavitt, A. S. Morcos, G. Biroli, and L. Sagun. Convit: Improving
vision transformers with soft convolutional inductive biases. In International Conference on
Machine Learning, pages 2286–2296. PMLR, 2021. 3.2.1

S. Elfwing, E. Uchibe, and K. Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning. Neural networks, 107:3–11, 2018. 3.3.1

H. Gani, M. Naseer, and M. Yaqub. How to train vision transformer on small-scale datasets?
arXiv preprint arXiv:2210.07240, 2022. 3.2.1, 3.2.4

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural net-
works. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pages 249–256. JMLR Workshop and Conference Proceedings, 2010. 1.1, 3.1, 3.4

A. Gu and T. Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023. 3.3

A. Gu, T. Dao, S. Ermon, A. Rudra, and C. Ré. Hippo: Recurrent memory with optimal poly-
nomial projections. Advances in neural information processing systems, 33:1474–1487, 2020.
3.3

A. Gu, K. Goel, and C. Ré. Efficiently modeling long sequences with structured state spaces.
arXiv preprint arXiv:2111.00396, 2021. 3.3, 3.3.2

A. Gu, K. Goel, A. Gupta, and C. Ré. On the parameterization and initialization of diagonal state
space models. Advances in Neural Information Processing Systems, 35:35971–35983, 2022.
3.3

J. Guo, K. Han, H. Wu, C. Xu, Y. Tang, C. Xu, and Y. Wang. Cmt: Convolutional neural networks
meet vision transformers. arXiv preprint arXiv:2107.06263, 2021. 2.1.3

A. Gupta, A. Gu, and J. Berant. Diagonal state spaces are as effective as structured state spaces.
Advances in Neural Information Processing Systems, 35:22982–22994, 2022. 3.3

96

Q. Han, Z. Fan, Q. Dai, L. Sun, M.-M. Cheng, J. Liu, and J. Wang. On the connection between
local attention and dynamic depth-wise convolution. In International Conference on Learning
Representations, 2021. 3.1

A. Hassani, S. Walton, N. Shah, A. Abuduweili, J. Li, and H. Shi. Escaping the big data paradigm
with compact transformers. arXiv preprint arXiv:2104.05704, 2021. 3.2.1, 3.2.4

B. He and T. Hofmann. Simplifying transformer blocks. arXiv preprint arXiv:2311.01906, 2023.
3.1.4

B. He, J. Martens, G. Zhang, A. Botev, A. Brock, S. L. Smith, and Y. W. Teh. Deep transformers
without shortcuts: Modifying self-attention for faithful signal propagation. arXiv preprint
arXiv:2302.10322, 2023. 1.1, 3.2.1, 3.2.5

K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference
on computer vision, pages 1026–1034, 2015. 1.1, 1.1, 3.1, 3.1.1, 3.4

D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016. 2.1.2

Q. Hou, Z. Jiang, L. Yuan, M.-M. Cheng, S. Yan, and J. Feng. Vision permutator: A permutable
mlp-like architecture for visual recognition, 2021. 2.1.3

X. S. Huang, F. Perez, J. Ba, and M. Volkovs. Improving transformer optimization through better
initialization. In International Conference on Machine Learning, pages 4475–4483. PMLR,
2020. 3.2.1, 3.2.4

S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift, 2015. URL https://arxiv.org/abs/1502.03167. 1.1, 3.4

S. Jelassi, D. Brandfonbrener, S. M. Kakade, and E. Malach. Repeat after me: Transformers are
better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024. 1.1, 3.3,
3.3, 3.3.2, 3.3.3, 3.3.4, 3.3.4, 3.3.6

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2017. URL https:
//arxiv.org/abs/1412.6980. 1.1, 3.4

A. Kolesnikov, L. Beyer, X. Zhai, J. Puigcerver, J. Yung, S. Gelly, and N. Houlsby. Big transfer
(bit): General visual representation learning. In Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, pages 491–507.
Springer, 2020. 1.1, 3.4

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. Communications of the ACM, 60(6):84–90, 2017. 3.1, 3.4

D. Kunin, A. Raventós, C. Dominé, F. Chen, D. Klindt, A. Saxe, and S. Ganguli. Get rich quick:
exact solutions reveal how unbalanced initializations promote rapid feature learning. arXiv
preprint arXiv:2406.06158, 2024. 3.4

G. Leclerc, A. Ilyas, L. Engstrom, S. M. Park, H. Salman, and A. Madry. ffcv. https://
github.com/libffcv/ffcv/, 2022. commit f253865. 3.1.1

S. H. Lee, S. Lee, and B. C. Song. Vision transformer for small-size datasets. arXiv preprint

97

https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://github.com/libffcv/ffcv/
https://github.com/libffcv/ffcv/

arXiv:2112.13492, 2021. 3.2.1, 3.2.4

J. Lei Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. ArXiv e-prints, pages arXiv–1607,
2016. 3.4

H. Liu, Z. Dai, D. R. So, and Q. V. Le. Pay attention to mlps. arXiv preprint arXiv:2105.08050,
2021a. 2.1.3

S. Liu, T. Chen, X. Chen, X. Chen, Q. Xiao, B. Wu, M. Pechenizkiy, D. Mocanu, and Z. Wang.
More convnets in the 2020s: Scaling up kernels beyond 51x51 using sparsity. arXiv preprint
arXiv:2207.03620, 2022a. 3.1

Y. Liu, E. Sangineto, W. Bi, N. Sebe, B. Lepri, and M. Nadai. Efficient training of visual
transformers with small datasets. Advances in Neural Information Processing Systems, 34:
23818–23830, 2021b. 3.2.1, 3.2.4

Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer: Hierar-
chical vision transformer using shifted windows, 2021c. (document), 2.2

Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A convnet for the 2020s.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 11976–11986, 2022b. 3.1, 3.1.1, 3.4.1

I. Loshchilov and F. Hutter. Fixing weight decay regularization in adam. 2018. 2.1.2

J. Martens, A. Ballard, G. Desjardins, G. Swirszcz, V. Dalibard, J. Sohl-Dickstein, and S. S.
Schoenholz. Rapid training of deep neural networks without skip connections or normalization
layers using deep kernel shaping. arXiv preprint arXiv:2110.01765, 2021. 1.1, 3.1

L. Melas-Kyriazi. Do you even need attention? a stack of feed-forward layers does surprisingly
well on imagenet, 2021. 2.1.3

B. Neyshabur, H. Sedghi, and C. Zhang. What is being transferred in transfer learning? Advances
in neural information processing systems, 33:512–523, 2020. 1.1, 4.1

C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma, T. Henighan, B. Mann, A. Askell,
Y. Bai, A. Chen, T. Conerly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Hernandez, S. John-
ston, A. Jones, J. Kernion, L. Lovitt, K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan,
S. McCandlish, and C. Olah. In-context learning and induction heads. Transformer Cir-
cuits Thread, 2022. https://transformer-circuits.pub/2022/in-context-learning-and-induction-
heads/index.html. 3.3.1

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative
style, high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’ Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc., 2019. (document), A.1

M. Poli, A. W. Thomas, E. Nguyen, P. Ponnusamy, B. Deiseroth, K. Kersting, T. Suzuki, B. Hie,
S. Ermon, C. Ré, et al. Mechanistic design and scaling of hybrid architectures. arXiv preprint
arXiv:2403.17844, 2024. 3.3.6

M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio. Transfusion: Understanding transfer learning

98

for medical imaging. Advances in neural information processing systems, 32, 2019. 1.1

P. Ramachandran, N. Parmar, A. Vaswani, I. Bello, A. Levskaya, and J. Shlens. Stand-alone
self-attention in vision models. arXiv preprint arXiv:1906.05909, 2019. 2.1.3

D. W. Romero, R.-J. Bruintjes, J. M. Tomczak, E. J. Bekkers, M. Hoogendoorn, and J. C. van
Gemert. Flexconv: Continuous kernel convolutions with differentiable kernel sizes. arXiv
preprint arXiv:2110.08059, 2021. 3.1

M. Sandler, J. Baccash, A. Zhmoginov, and A. Howard. Non-discriminative data or weak model?
on the relative importance of data and model resolution. In Proceedings of the IEEE/CVF
International Conference on Computer Vision Workshops, pages 0–0, 2019. (document), 2.1.2,
2.1.3, 2.2, 2.1.6

A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of
learning in deep linear neural networks. arXiv preprint arXiv:1312.6120, 2013. 3.1

J. T. Smith, A. Warrington, and S. Linderman. Simplified state space layers for sequence mod-
eling. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=Ai8Hw3AXqks. 3.3

I. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner, J. Yung, D. Keysers,
J. Uszkoreit, M. Lucic, et al. Mlp-mixer: An all-mlp architecture for vision. arXiv preprint
arXiv:2105.01601, 2021. (document), 2.1, 2.1.1, 2.1.3, 2.2, 2.1.6

H. Touvron, P. Bojanowski, M. Caron, M. Cord, A. El-Nouby, E. Grave, A. Joulin, G. Synnaeve,
J. Verbeek, and H. Jégou. Resmlp: Feedforward networks for image classification with data-
efficient training. arXiv preprint arXiv:2105.03404, 2021a. (document), 2.1.3, 2.2, 2.1.4,
2.1.5, 2.1.6, 3.1.4

H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou. Training data-efficient
image transformers & distillation through attention. In International Conference on Machine
Learning, pages 10347–10357. PMLR, 2021b. (document), 2.1.2, 2.1.4, 2.2, 3.2.4, 3.4.2

H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou. Going deeper with image
transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 32–42, 2021c. 2.1.4, 3.2.1, 3.2.5

A. Trockman and J. Z. Kolter. Patches are all you need? arXiv preprint arXiv:2201.09792, 2022.
3.1, 3.1.1, 3.1.3, 3.2.4, 3.4.1

A. Trockman and J. Z. Kolter. Mimetic initialization of self-attention layers. In International
Conference on Machine Learning, pages 34456–34468. PMLR, 2023. 3.1.4, 3.3, 3.3.2, 3.4,
3.4, 3.4.1, 3.4.1, 3.4.2

A. Trockman, D. Willmott, and J. Z. Kolter. Understanding the covariance structure of convolu-
tional filters. arXiv preprint arXiv:2210.03651, 2022. 3.2.1, 3.3, 3.4, 3.4.1, 3.4.2, 3.4.2

A. Trockman, H. Harutyunyan, J. Z. Kolter, S. Kumar, and S. Bhojanapalli. Mimetic initialization
helps state space models learn to recall. arXiv preprint arXiv:2410.11135, 2024. 3.4

A. Vaswani. Attention is all you need. Advances in Neural Information Processing Systems,
2017. 2.1.3, 3.3

99

https://openreview.net/forum?id=Ai8Hw3AXqks

R. Waleffe, W. Byeon, D. Riach, B. Norick, V. Korthikanti, T. Dao, A. Gu, A. Hatamizadeh,
S. Singh, D. Narayanan, et al. An empirical study of mamba-based language models. arXiv
preprint arXiv:2406.07887, 2024. 3.3, 3.3.6

W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao. Pyramid vision
transformer: A versatile backbone for dense prediction without convolutions. arXiv preprint
arXiv:2102.12122, 2021. 2.1.3

Z. Wang, Y. Bai, Y. Zhou, and C. Xie. Can cnns be more robust than transformers? arXiv
preprint arXiv:2206.03452, 2022. 3.1

R. Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019. 2.1.2

R. Wightman, H. Touvron, and H. Jégou. Resnet strikes back: An improved training procedure
in timm, 2021. (document), 2.1.2, 2.1.4, 2.2, 2.1.7, 3.1.3, 3.2.4

H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang. Cvt: Introducing convo-
lutions to vision transformers. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 22–31, 2021. 3.2.1

L. Xiao, Y. Bahri, J. Sohl-Dickstein, S. Schoenholz, and J. Pennington. Dynamical isometry and
a mean field theory of cnns: How to train 10,000-layer vanilla convolutional neural networks.
In International Conference on Machine Learning, pages 5393–5402. PMLR, 2018. 1.1, 3.1

T. Xiao, M. Singh, E. Mintun, T. Darrell, P. Dollár, and R. Girshick. Early convolutions help
transformers see better. arXiv preprint arXiv:2106.14881, 2021. 2.1.3

F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. arXiv preprint
arXiv:1511.07122, 2015. 3.1.4

K. Yuan, S. Guo, Z. Liu, A. Zhou, F. Yu, and W. Wu. Incorporating convolution designs into
visual transformers. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 579–588, 2021a. 2.1.3, 3.2.1

L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z. Jiang, F. E. Tay, J. Feng, and S. Yan.
Tokens-to-token vit: Training vision transformers from scratch on imagenet. arXiv preprint
arXiv:2101.11986, 2021b. 2.1.3

S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo. Cutmix: Regularization strategy to train
strong classifiers with localizable features. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 6023–6032, 2019. 2.1.2

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. arXiv preprint arXiv:1710.09412, 2017. 2.1.2

M. Zhang, K. Bhatia, H. Kumbong, and C. Re. The hedgehog & the porcupine: Expressive
linear attentions with softmax mimicry. In The Twelfth International Conference on Learning
Representations. 3.3.3

Y. Zhang, A. Backurs, S. Bubeck, R. Eldan, S. Gunasekar, and T. Wagner. Unveiling transformers
with lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301, 2022. 1.1, 3.1, 3.2,
3.2.1, 3.4

100

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

J. Zhao, F. Schäfer, and A. Anandkumar. Zero initialization: Initializing residual networks with
only zeros and ones. arXiv preprint arXiv:2110.12661, 2021. 3.2.1, 3.2.4

J. Zheng, X. Li, and S. Lucey. Convolutional initialization for data-efficient vision transformers.
arXiv preprint arXiv:2401.12511, 2024. 3.4

Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang. Random erasing data augmentation. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 13001–13008,
2020. 2.1.2

101

	1 Initializing deep neural networks
	1.1 Introduction
	1.1.1 Thesis overview

	2 ConvMixer, the simple CNN
	2.1 Patches are all you need? [height=1.2em, trim=10 10 10 0,clip]shrug
	2.1.1 Introducing ConvMixer: a simple convolutional network
	2.1.2 ImageNet experiments on ConvMixer
	2.1.3 Visual recognition architecture background
	2.1.4 Comparison to related architectures
	2.1.5 Small-scale experiments on ConvMixer
	2.1.6 Inspecting the structure of ConvMixer's weights
	2.1.7 Summary of contributions

	3 Mimetic initialization
	3.1 Understanding the Covariance Structure of Convolutional Filters
	3.1.1 The empirical covariances of trained convolutional filters
	3.1.2 D.I.Y. Filter Covariances
	3.1.3 Initializing using our filter covariance structure
	3.1.4 An efficient convolutional filter dilation schedule
	3.1.5 Summary of contribution

	3.2 Mimetic Initialization of Self Attention Layers
	3.2.1 The difficulty of training Vision Transformers
	3.2.2 Query and key weights are correlated in pretrained models
	3.2.3 Mimetic init for self-attention layers
	3.2.4 Accelerating ViT training with mimetic init
	3.2.5 Why does this initialization work?
	3.2.6 Language modeling explorations
	3.2.7 Summary of contributions

	3.3 Mimetic Initialization for State Space Models
	3.3.1 State space model background
	3.3.2 Initializing state space layers to be more like attention
	3.3.3 State Space Models want to be Transformers: Mimetic Initialization lets them get closer
	3.3.4 Mimetic init experiments across architecture settings
	3.3.5 Investigation of pretrained SSMs
	3.3.6 Summary of contributions

	3.4 Mimetic initialization for MLPs
	3.4.1 Understanding the covariance structure of trained MLPs
	3.4.2 Experiments on channel plus spatial mixing mimetic init
	3.4.3 Further structures in the weight space covariance
	3.4.4 Summary of contributions

	4 Conclusion
	4.1 Future work

	A Implementations
	A.1 ConvMixer Implementation
	A.2 Implementation: Mimetic initialization for convolutional layers

	B Additional Experiments
	B.1 Covariance Structure: Hyperparameter Grid Searches & Experimental Setup
	B.1.1 CIFAR-10 Grid Searches
	B.1.2 ImageNet Grid Searches

	B.2 Shift Function Definition & Proof
	B.3 Additional ImageNet Experiments on Mimetic Initialization for Convolutional Layers
	B.4 Additional CIFAR-10 Tables for Mimetic Initialization for Convolutional Layers

