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اଫଐܳ݁ڍي رواه

TheMessenger of Allah صلى الله عليه وسلم said: ”Whoever travels a path in search of knowledge, Allah will make easy
for him a path to Paradise.”

Reported by �Al-Tirmidhi
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Abstract
Extending kernel functionality dynamically is essential for modern workloads in observability,
profiling, and security, and is becoming increasingly popular for implementing low-latency,
kernel-bypass logic in high-performant systems. However, existing mechanisms like kernel
modules or eBPF comewith steep learning curves, limited expressiveness, or tightly constrained
environments. WebAssembly (Wasm), with its strong isolation guarantees, portable seman-
tics, formally defined specification with machine-checked proofs, and low memory footprint,
presents a compelling alternative for safe, runtime-extensible logic inside the kernel.

This work explores Wasm as a foundation for safe and flexible kernel extensibility. We present
an early prototype that allows users to load and unload Wasm binaries into the kernel and
hook them into system calls for interception and instrumentation. This prototype serves as an
initial step toward rethinking kernel extensibility usingWasmas a secure and language-agnostic
execution layer, enabling safer and more accessible in-kernel customization.
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Chapter 1

Introduction

The Linux kernel is one of the most important and complex pieces of software in the world,
designed to be highly generic and adaptable. While this generality makes it suitable for a
wide range of use cases, it also presents a challenge for users who wish to modify or extend
kernel functionality. For instance, contributing a modification to a syscall or altering the kernel
scheduler often requires approval from the kernel community, and even after the code iswritten
and submitted, it can take years for the change to be incorporated into the mainline kernel due
to rigorous security and stability checks.

This tension between the need for customization and the rigidity of upstream contributions
has led to a growing interest in kernel extensibility—the ability to safely and dynamically
inject or modify logic within the kernel without needing to recompile or fork it. Kernel
extensibility offers a powerfulmechanism for tailoring operating system behavior to the specific
needs of userspace applications or system workloads. It enables developers, researchers, and
platform engineers to build tooling that operates within the kernel context, allowing for deeper
observability, tighter control, andmore efficient execution than is possible fromuserspace alone.

Such extensibility is increasingly important in today’s computing landscape. Modern work-
loads, especially in cloud computing, edge environments, and high-performance systems, often
require:

• Observability and profiling tools that can track system behavior with minimal overhead.

• Security mechanisms that perform in-kernel introspection, access control, or anomaly
detection.

• Protocol acceleration and kernel bypassing strategies that reduce latency by shortcutting
traditional OS paths.

• Custom scheduling, I/O, or syscall behavior that may be highly tailored to a specific
workload.

Traditionally, this extensibility has been achieved through mechanisms like Loadable Kernel
Modules (LKMs), which offer great flexibility but can be dangerous if improperlywritten. More
recently, eBPF (extended Berkeley Packet Filter) has emerged as a safer alternative, allowing
sandboxed programs to run within the kernel with strict verification and resource control [1].
However, eBPF has its own limitations: it uses a custom instruction set, has a steep learning
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curve, and remains tightly constrained in functionality and expressiveness due to the need for
safety and verifiability.

In this thesis, we investigate WebAssembly (Wasm) as a foundation for kernel extensibility;
and leverage its portable bytecode format with strong isolation guarantees, formal semantics,
and a growing ecosystem of compiler targets and tooling. We propose that Wasm can provide
a middle ground between the raw power of kernel modules and the safety of eBPF, enabling
secure, efficient, and language-agnostic kernel extensions. Our work explores this hypothesis
through the design and implementation of a prototype system that allows users to dynamically
load and hook Wasm binaries into Linux kernel syscalls for the purpose of interception and
instrumentation.

This thesis aims to demonstrate that Wasm is a viable and promising approach to safe kernel
extensibility, offering new capabilities for system customization while preserving the security
and stability guarantees required in production kernels.

1.1 Paper Outline
The remainder of this paper is organized as follows: Chapter 2 presents background on
WebAssembly (Wasm) and the context for our design; Chapter 3 surveys state-of-the-art
approaches and identifies their limitations; Chapter 4 details our solution architecture; Chap-
ter 5 describes the prototype evaluation methodology and findings; Chapter 6 outlines future
potential and extensions; and Chapter 7 concludes the paper.
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Chapter 2

Background

2.1 Safe Kernel Extensibility
Modern operating systems are expected to support a diverse set of workloads, devices, and
environments. Kernel extensibility: the ability to augment or modify kernel behavior without
modifying the kernel source code or recompiling the entire kernel. This capability is crucial
for enabling specialized behaviors in domains such as security, networking, tracing, and
virtualization.

2.1.1 Observability and Instrumentation

Observability refers to the ability to inspect the internal state and behavior of a system from
the outside. In modern systems, deep kernel introspection is essential for profiling, debugging,
performance tuning, and tracing. Extensible frameworks like eBPF have significantly expanded
what is possible in terms of dynamic instrumentation without rebooting or recompiling the
kernel [2]. However, they remain constrained by strict safety checks and limited language
support.

2.1.2 Security Enforcement

Security policies often require fine-grained enforcement logic [3], such as syscall filtering, access
control, and attack detection. Hardcoding these into the kernel is inflexible and often unscalable
across diverse deployments. Extensiblemechanisms allow tailored logic, sandboxed inspection,
and even anomaly detection hooks without touching the kernel core.

2.1.3 Networking and Protocol Offloading

Modern data centers demand high-performance packet processing pipelines, where millisec-
onds of latency can translate into significant cost. Kernel extensibility enables custom protocol
handling, traffic shaping, or flow control logic directly in kernelspace. Technologies like XDP
(eXpress Data Path) [4], [5] built on top of eBPF are popular for such use cases.
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2.1.4 Kernel Bypass and Low-latency Logic

One major trend in high-performance computing is kernel bypass — avoiding the kernel for
data-path operations to minimize latency and maximize throughput (e.g., DPDK, RDMA) [6]–
[8]. Yet, some logic still benefits from proximity to the kernel, like metadata tracking or policy
checks. Kernel extensibility provides a tradeoff: letting certain lightweight logic run “close to
the metal” without hardcoding it.

2.1.5 Research and Experimental Prototyping

Academic and industrial researchers often need to prototype new kernel algorithms — like
custom schedulers or memory policies — without waiting on upstream acceptance. Extensible
approaches reduce friction and lower the barrier to innovation. They also reduce risks, as
experiments can be sandboxed and safely unloaded.

2.2 WebAssembly: A Portable, Safe, and Efficient Runtime
WebAssembly (Wasm) [9] is a low-level virtual machine, renowned for its portability, security,
and efficiency. Initially designed as a portable low-level bytecode format for executing code
in web browsers, Wasm’s applicability has expanded significantly, extending into diverse and
performance-sensitive domains. Its rigorous formal specification [10] and robust type system,
validated throughmachine-checked proofs [11], provide a strong foundation for safe execution.
Coupled with a rapidly evolving ecosystem of high-performance runtimes [12] and increased
emphasis on verification [13], WebAssembly is quickly becoming the preferred technology for
secure, flexible, and high-performance applications, making it espicially promising for kernel-
level extensibility.

2.2.1 Extensibility

A fundamental advantage ofWasm is its language-agnostic architecture. Serving as a universal
compilation target, Wasm supports an extensive array of programming languages, including C,
Rust, Go, JavaScript, Ruby, Python, and many more. This broad support enables developers to
choose languages best suited to their specific use cases while leveragingWasm’s portability and
security features. For example, Rust, a language known for its memory safety, can be compiled
intoWasmmodules optimized for secure and efficient execution in sensitive environments, such
as kernel modules. This flexibility not only enriches the developer ecosystem but also simplifies
integration with existing systems.

2.2.2 Security

Security is a foundational aspect of WebAssembly. Wasm modules operate within sandboxed
environments, isolating their execution from direct interactions with host system memory.
This isolation inherently mitigates common low-level vulnerabilities such as buffer overflows
and unauthorized memory accesses, which are major concerns in kernel-level programming.
Additionally, WebAssembly’s dedication to formal verification and machine-checked proofs
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enforces strict safety standards prior to execution, significantly reducing potential vulnerabil-
ities. These robust security guarantees make Wasm particularly compelling for kernel-level
implementations, where safety and reliability are critical.

2.2.3 Performance

WebAssembly is typically JIT-compiled [14], enabling near-native execution speeds with mini-
mal overhead. Its compact binary format is designed for fast loading and efficient execution
across diverse platforms, making it a strong candidate for performance-critical workloads,
including kernel-level applications.

The Wasm specification continues to evolve, incorporating features like SIMD vectorization
[15], [16], extended memory addressing through memory64 [17], and more precise memory
control via multi-memory [18] and custom page sizes [19]. These continuous improvements
make Wasm increasingly capable of leveraging modern hardware, reinforcing its suitability
for high-performance, low-level environments such as kernel extensions, where responsiveness
and efficiency are essential.

2.2.4 Expanding Ecosystem

Just like performance the entire wasm ecosystem continues to rapidly grow, supported by
extensive community and industry involvement. This thriving ecosystem encompasses a broad
array of development tools, libraries, and runtime environments [12]. As it continues to evolve,
Wasm is becoming more versatile, enabling use cases across various domains. In the context
of kernel development, this growing ecosystem offers the potential for more advanced features
and improved integration with system components. For example, the ability to use record and
replay [20] could enable users to debug the Wasm code running within the kernel. This would
represent a significant improvement over the current challenges in debugging kernel modules,
where traditional debugging methods are often difficult and inefficient.
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Chapter 3

Related Work

3.1 Kernel Modules
The Linux kernel has historically provided Loadable Kernel Modules (LKMs) as a mechanism
to dynamically insert custom code into the kernel at runtime without requiring a kernel
recompilation or reboot [21]. This functionality has existed since the early 1990s, allowing
developers considerable flexibility in extending kernel functionality to support new hardware,
filesystem implementations, network protocols, and various other functionalities [22].

Kernel modules are commonly used in scenarios such as:

• Device drivers for supporting hardware not included in the mainline kernel.

• Filesystem implementations, enabling the kernel to interact with various storage solu-
tions.

• Security mechanisms, such as intrusion detection and access control frameworks.

• Networking modules, including custom protocol handling and traffic management.

A simple example excerpt demonstrating the typical structure of a kernel module is as follows:
1 #include <linux/module.h>
2 #include <linux/kernel.h>
3
4 static int __init hello_init(void) {
5 printk(KERN_INFO ”Hello, kernel module!\n”);
6 return 0;
7 }
8
9 static void __exit hello_exit(void) {

10 printk(KERN_INFO ”Goodbye, kernel module!\n”);
11 }
12
13 module_init(hello_init);
14 module_exit(hello_exit);
15
16 MODULE_LICENSE(”GPL”);
17 MODULE_AUTHOR(”Example Author”);
18 MODULE_DESCRIPTION(”A simple Linux kernel module example”);

Listing 3.1: Kernel Module Example
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This example illustrates the straightforward structure and lifecycle management of kernel
modules. Typically, the function registered with module_init is invoked by the kernel upon
insertion of the module, while the corresponding module_exit function is called upon its
removal. For an in-depth introduction and detailed guidance on developing Linux kernel
modules, readers may refer to The Linux Kernel Module Programming Guide [23].

3.2 Limitations of Kernel Modules
Although kernel modules offer extensive flexibility, enabling dynamic and powerful customiza-
tion, they present significant drawbacks and challenges:

3.2.1 Complexity

Kernel module programming is development in the kernel space that requires specialized
knowledge of kernel APIs, concurrency management, synchronization primitives, memory
management techniques, and kernel internal data structures. Furthermore, a solid understand-
ing of operating systems is essential. Errors in resource allocation or concurrency handling
(e.g., deadlocks or race conditions) are prevalent and notoriously difficult to detect due to the
absence of comprehensive debugging tools in kernel space [23].

3.2.2 Safety & Security

Kernel modules operate with full kernel privileges, having unrestricted access to kernel
internals. Consequently, a minor bug or vulnerability within a module can lead to critical
system failures such as kernel panics, data corruption, or severe security breaches. Because
modules execute directly in kernel mode, they bypass many safeguards provided to user-space
applications, making debugging challenging and potentially dangerous.

Given their unrestricted privileges, kernel modules require rigorous scrutiny before acceptance
into kernel repositories. Distributions and organizations often restrict or discourage module
loading due to security risks. Module authors must carefully establish and maintain trust, as
evenwell-intentioned but poorly implementedmodules pose substantial security threats. Meet-
ing this standard demands deep familiaritywith kernel internals, rigorous testing practices, and
formal code review—requirements that are unrealistic for the average developer who simply
wants to insert a small, task-specific extension into the kernel.

3.2.3 Limited Isolation

Unlike newer extensibilitymethods such as eBPF andWebAssembly, traditional kernelmodules
lack inherent isolation. They directly interact with kernel memory and resources, offering no
built-in containment. This absence of isolation greatly increases the risk of cascading failures,
security exploits, and unintended interactions between independently developed modules.
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3.3 Extended Berkeley Packet Filter (eBPF)
The Berkeley Packet Filter (BPF) was originally introduced in the early 1990s as a lightweight,
in-kernel virtual machine for efficient packet filtering [24]. The classic BPF design was very
minimal: it used a single accumulator and an index register to load packet data, perform
comparisons, and return a decision such as “accept” or “drop”. This simplicity enabled high-
performance filtering but restricted BPF’s applicability to networking tasks.

Extended BPF (eBPF) generalizes this model into a 64-bit, register-based virtual machine
capable of attaching to a wide range of kernel hooks beyond networking [25]. eBPF programs
are typically written in restricted C, compiled to bytecode, and loaded into the kernel via
the bpf() system call. Before execution, each program must pass a static verifier [26]–[28]
that ensures safety properties such as bounded loops, valid memory access, and guaranteed
termination. One of the main additions to eBPF was the Just-In-Time (JIT) compiler [29]–
[31], which significantly improved execution speed and allowed programs to run at near-native
performance.

To support more complex workloads, eBPF provides maps—persistent key–value data struc-
tures shared between kernel and user space—and a set of helper functions that offer controlled
access to kernel functionality. Over time, it has expanded to support diverse attach points,
ranging from kprobes (discussed in the next section) and tracepoints to sockets and cgroups,
enabling use cases in observability, profiling, networking, and security. These capabilities,
combinedwith strong safety guarantees, have established eBPF as awidely adoptedmechanism
for safe, dynamic kernel extensibility in production systems.

3.4 Limitations of eBPF
Despite strong safety guarantees and broad adoption, eBPF imposes several constraints that
limit its applicability in some contexts:

3.4.1 Programming Model and Verification

eBPF adopts a deliberately restricted programming model to enable static verification: pro-
grams are written in a constrained C dialect and compiled to a limited instruction set. Features
such as unbounded loops, recursion, anddynamic allocation are prohibited or tightly controlled
to guarantee memory safety and termination [25]. The in-kernel verifier enforces these prop-
erties via conservative static analysis; as a result, programs that are semantically safe may still
be rejected if their correctness cannot be proven within the verifier’s model, often necessitating
non-intuitive code restructurings or additional annotations [32], [33].

3.4.2 Kernel Interaction and Portability

eBPFprograms cannot call arbitrary kernel functions. All interaction occurs throughpredefined
helper functions and through persistent key–value data structures (maps). When required
functionality is not exposed via helpers, kernel changes are needed before new use cases are
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possible [25]. Although BTF improves type introspection and tooling, practical portability re-
mains sensitive to kernel version, configuration, andhelper availability across deployments [25].

3.4.3 Performance Considerations

While Just-In-Time compilation enables near-native execution for many workloads, certain
patterns—such as frequent map operations, heavy helper usage, or large data copies—can
introducemeasurable overhead. Recent compiler work targets these costs with code-generation
and code-size optimizations, but performance remains workload-dependent [34]
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Chapter 4

Solution Architecture

4.1 Goals and Assumptions
The primary goal of this work is to design and implement a proof-of-concept framework for
safe, language-agnostic kernel extensibility using WebAssembly as the execution environment.
The prototype aims to demonstrate that small, task-specific extensions can be dynamically
loaded, executed, and removed from the kernelwithout compromising stability, while retaining
sufficient performance for practical use. The focus is on feasibility and correctness rather than
exhaustive optimization.

The system is developed under the following assumptions:

• The kernel module and supporting user-space tooling are deployed on a
Linux PREEMPT_RT 6.6-rt.

• WebAssembly modules are assumed to be authored by trusted developers within the
deployment context; malicious inputs are out of scope for this prototype. Nevertheless,
the embedded Wasm runtime still enforces memory-safety and isolation (e.g., bounds-
checked linear memory and no direct access to kernel pointers).

• Extensions are short-running and side-effect-free beyond their intended functionality,
avoiding blocking operations or unbounded computation.

• The prototype relies on existing kernel instrumentation mechanisms (e.g., kprobes) and
does not require modifications to the core kernel.

• Success is defined by correct hook invocation, safe load/unload cycles, and bounded
execution without kernel faults.

4.2 Kernel Hooks and Wasm Integration

4.2.1 Kprobes

Kprobes are a Linux dynamic instrumentation feature, introduced in 2005 [35]–[37] and
commonly used from loadable kernel modules. They allow developers to hook into kernel
functions—including system-call entry points—without modifying kernel source or rebuilding
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the kernel, providing a practical way to observe or interpose on execution with minimal
intrusion. Later frameworks such as eBPF capitalized on the same idea by offering attachment
to similar hook points; our prototype follows this approach by placing lightweight hooks at
selected symbols to trigger custom logic.

Conceptually, a kprobe associates a handler with a specific instruction address, typically
identified by a symbol name. When execution reaches that address, the kprobe framework
temporarily traps control to a registered handler and then resumes the original flow. In
practice, a probe is described by a struct kprobe (e.g., fields .symbol_name or .addr, and
handler pointers .pre_handler / .post_handler) and installed with register_kprobe(), then
removed with unregister_kprobe(). A related mechanism, kretprobe, attaches at function
return. Because handlers may run in atomic context, they must not sleep and should keep
work minimal. A minimal usage pattern is shown in Listing 4.1, and the control flow—
breakpoint trap, pre-handler, single-step of the original instruction, post-handler, and resume—
is illustrated in Figure 4.1.

Minimal API example.
1 #include <linux/kprobes.h>
2
3 static int handler_pre(struct kprobe *p, struct pt_regs *regs)
4 {
5 /* Inspect arguments via regs; do minimal, non-sleeping work. */
6 return 0; /* Return 0 to continue normal processing. */
7 }
8
9 /* Note: post_handler signature includes flags. */

10 static void handler_post(struct kprobe *p, struct pt_regs *regs, unsigned long flags)
11 {
12 /* Optional: observe state after the probed instruction executed. */
13 }
14
15 static struct kprobe kp = {
16 .symbol_name = ”__x64_sys_mkdir”, /* Any resolvable kernel symbol. */
17 .pre_handler = handler_pre,
18 .post_handler = handler_post,
19 };
20
21 static int __init mod_init(void)
22 {
23 int ret = register_kprobe(&kp);
24 return ret;
25 }
26
27 static void __exit mod_exit(void)
28 {
29 unregister_kprobe(&kp);
30 }

Listing 4.1: Registering a basic kprobe with pre/post handlers
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Program text

insn
addr

Program text

breakpoint
register_kprobe()

pre_handler()

insn

post_handler()

Notes:
– kretprobe attaches at
function return.
– Handlers must not sleep.
– Work should be minimal.

Figure 4.1: Kprobe control flow at a probed kernel symbol (address).

4.2.2 Symbol Selection

Selecting appropriate probe points is central to correctness and stability. A Linux system call
typically enters through an architecture-specific wrapper before invoking a chain of internal
helpers for security checks, argument translation, and subsystem handoffs.

In this prototype, we deliberately target only the outermost syscall entry point. On x86_64, these
functions generally follow the naming convention:

__x86_sys_(sysname)

(e.g., __x86_sys_mkdir, __x86_sys_openat). Attaching at this boundary captures the raw
userspace arguments before any internal transformation, avoiding reconstruction later and
reducing sensitivity to changes in downstream helpers. These syscall entry points tend to
remain relatively stable across kernel versions compared to deeper internal helpers, making
them amore robust choice for long-termmaintenance. This approach yields semantically stable
hook points while keeping the instrumentation surface small and well-defined.

Current Prototype Behavior

In the current implementation, symbol resolution and suitability checks are not enforced by the
module. It is assumed that users supply a valid, probeable symbol name (e.g., a visible, non-
inlined function that is not on the kprobe blacklist). The activation path records the requested
symbol and installs the pre-handler accordingly. Hardening this step—e.g., rejecting blacklisted
or inlined targets, validating availability, and screening unsafe contexts—is left as future work.

4.2.3 Wasm Runtime Embedding

We embed the wasm3 [38] engine directly in the kernel module. For each WebAssembly (Wasm)
binary loaded, the module creates a dedicated environment and runtime instance, each with its
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own linear memory. This per-module instantiation isolates state across extensions and avoids
interference between concurrently loaded modules. During activation, the module loads the
Wasm bytecode, resolves the target function(s) once (e.g., via m3_FindFunction), and records
the resulting function handles in an internal registry alongside the selected probe/symbol. No
host functions (imports) are exposed to Wasm in this prototype; Wasm code only has access to
values passed as arguments.

Invocation path.

When a kprobe pre-handler fires, the handler performs a lookup in the registry to find the
bound Wasm function for the current symbol and, if active, invokes it through a thin adapter
(wasm_call). The adapter prepares the call arguments from struct pt_regs (e.g., syscall
arguments available at the probe point), places them into the instance’s linear memory or call
frame as required by the resolved function’s signature, and executes the Wasm function on the
corresponding runtime. Because function resolution is done at load time, the fast path avoids
repeated symbol or function lookups. Figure 4.2 demonstrates the invocation path when the
probe is active and found.

Program text

insn
addr

Patched site

new instruction

pre_handler()

lookup registry (symbol → Wasm func, active?)

Copy Arguments to Wasm Runtime

execute Wasm export

single-step original instruction

post_handler() (optional)

resume

Notes:
– Registry maps symbol to resolved Wasm function.
– Scalars by value; pointer args copied
into linear memory.

– Handlers avoid sleeping; fail-closed on error.

Figure 4.2: Wasm module invocation path

Safety and Error Handling

All execution occurs inside the wasm3 sandbox; the prototype does not export kernel pointers to
Wasm and does not provide host imports. If a call fails (e.g., trap, internal error), the handler
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follows a fail-closed policy: it logs the error and resumes normal kernel execution without
altering the control path. The pre-handler guards access to the probe registry with a short
critical section (e.g., spin_lock_irqsave) and releases the lock before returning. In the event
of unrecoverable conditions (e.g., allocation failure), the handler returns a negative error code
after unlocking, allowing the kernel to proceed while signaling the failure to the caller.

Limitations (current prototype)

Resource limits (e.g., instruction budgets, timeouts, per-instancememory caps) are not enforced
beyond wasm3’s intrinsic checks, and the host ABI is intentionally minimal (no imports).
Extending the embedding with bounded copies for complex arguments, explicit execution
limits, and a small set of audited host helpers is left to future work.

4.3 Wasm Module Structure
This section outlines the shape of a WebAssembly (Wasm) module used by the prototype.
Modules are compiled to Wasm (from C in our case) and expose a small, explicit interface: (i)
named exports corresponding to kprobe hooks (“pre”/“post” at the outermost syscall entry),
and (ii) a utility export report used to return a short, human-readable status string. No host
imports are required or exposed; all execution happens inside the embedded interpreter with
the module’s own linear memory.
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Minimal Wasm module.
1
2 __attribute__((used)) char buffer[256];
3 __attribute__((used)) char report_buffer[256];
4 __attribute__((used)) unsigned int buffer_size = sizeof(buffer);
5
6 static const char *g_pathname = 0;
7
8 __attribute__((export_name(”kprobe:__x86_sys_mkdir:pre”)))
9 void func1(const char *pathname, unsigned short mode) {

10 /* Opaque pointer value: stored for correlation, not dereferenced. */
11 g_pathname = pathname;
12 }
13
14 __attribute__((export_name(”kprobe:__x86_sys_mkdir:post”)))
15 void func2(const char *pathname, unsigned short mode) {
16 /* Symmetric post-hook (optional). */
17 g_pathname = pathname;
18 }
19
20 __attribute__((export_name(”report”)))
21 const char *report(void) {
22 /* Returns a pointer into this module’s linear memory. */
23 return ”the report string”;
24 }

Listing 4.2: wasm module format

4.3.1 Exports and Naming

The export naming scheme is inspired by DTrace-style probe identifiers. Each hook is exported
using the pattern

kprobe:hook:pre or kprobe:hook:post,

where hook denotes the outermost syscall name (i.e., the architecture-specific syscall entry
symbol). This convention lets the kernel module resolve the correct function once at load time
and bind it to the selected probe point. currently, the prototype only targets syscalls, so the
kprobe provider prefix is fixed; however, the scheme is intentionally extensible to additional
providers (e.g., tracepoints or fentry/fexit) in future work.

4.3.2 Data Objects

The static arrays (e.g., buffer, report_buffer) are not general-purpose data structures for the
module author; they serve as preallocated regions in the Wasm linear memory that the kernel
module uses to marshal arguments and collect results. Preallocation avoids dynamic allocation
on the probe fast path and ensures that copies into the module’s memory are bounded.
The symbol buffer_size advertises the maximum capacity available for inbound copies (e.g.,
pathnames).

4.3.3 Arguments

Scalar syscall arguments (e.g., flags, modes) are passed directly to the exported functions. For
pointer-typed arguments (e.g., strings such as pathnames), the kernel module does not pass
raw kernel or userspace pointers. Instead, on each hook it copies the pointed-to data into the
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module’s preallocated buffer (up to buffer_size, with NUL termination as appropriate) and
then passes a pointer (i.e., an offset within the module’s linear memory) to the Wasm function.
From the module’s perspective, this pointer is fully dereferenceable and can be treated as a
normal C pointer into its own memory. The copy direction is host→module (for arguments);
modifications performed by theWasm code do not propagate back to kernel memory unless an
explicit copy-back is implemented.

4.3.4 Call/Return Contract

At load time, the kernel module resolves the exported hook names and the report function
(one per Wasm module). On a kprobe fire, the corresponding pre/post (if exported) is invoked
with the syscall arguments—scalars passed by value, and pointer-typed arguments passed as
pointers to copies placed in the module’s linear memory. For report, the kernel calls report()
via the interpreter, obtains a pointer (offset) into the module’s linear memory, and copies a
bounded, NUL-terminated string back to userspace. In practice, modules write into report_-
buffer and return its address; the kernel side enforces a maximum length (e.g., via a known
buffer size and bounded strnlen) to ensure copies are clamped.

4.4 Architecture Overview
At a high level, the prototype comprises a userspace control tool, a kernel module that embeds a
wasm3 runtime, and kprobe-based hooks at selected syscall entry points. Wasmmodules expose
fixed, optional exports—kprobe:hook:pre, kprobe:hook:post (where hook is the outermost
syscall symbol, e.g., __x86_sys_openat), and report. The kernel module resolves whatever
of these exports are present at load time and stores the resulting function handles in a small
registry. The design separates a control path for lifecycle operations from a data path that executes
on hook invocations.

4.4.1 Control Path

Userspace issues ioctl commands on a character device to load, activate, deactivate, and
unload extensions. On load, the module copies the Wasm binary from userspace into kernel
memory, creates a per-module wasm3 environment/runtime with private linear memory,
resolves any available exports (kprobe:...:pre/:post, report), and records the bindings.
Activate/deactivate attach or detach the kprobe at the chosen outermost syscall symbol; unload
tears down the instance and frees state. The same interface provides a report operation (when the
report export exists): the module calls report(), copies the returned string from the instance’s
linear memory into a bounded kernel buffer, and returns it to userspace via copy_to_user. If
an export is not provided, the corresponding operation is simply unavailable while the others
continue to function.
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Figure 4.3: A depiction of how control reaches from the user to the kernel

4.4.2 Data Path

When a probed syscall entry is reached, the pre/post handler performs a lookup in the registry
and, if the corresponding export was resolved, invokes it. Scalars are passed by value. For
pointer-typed syscall arguments (e.g., pathnames), the handler first copies the pointed-to data
into a preallocated buffer in themodule’s linearmemory (up to a knownbound) and then passes
the address of that copy to theWasm function. No host imports are exposed; execution remains
within the interpreter, handlers avoid sleeping and heavy work, and errors (e.g., a trap) are
handled fail-closed: the kernel resumes the unmodified path after logging.

This arrangement keeps configuration and symbol resolution on the control path, leaves the
fast path minimal and predictable, and leverages a simple, optional export convention to bind
syscall hooks cleanly without modifying kernel sources or rebooting.
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Chapter 5

Prototype Evaluation and Validation

This chapter validates the prototype’s core claims:

(i) hooks at outermost syscall entry points fire reliably,

(ii) scalar and pointer arguments are marshalled correctly into Wasm linear memory, and

(iii) the control/data path separation preserves stability under typical use.

The emphasis is on functional correctness rather than exhaustive performance benchmarking.

5.1 Methodology and Environment
All experiments were run on a controlled Linux environment (matching the assumptions in
Chapter 4). Wasm modules were compiled from C to Wasm and loaded via the userspace
control tool; hooks were attached at the outermost syscall entries (e.g., __x86_sys_mkdir,
__x86_sys_openat, and the process-creation entry appropriate to the kernel). Results were
retrieved using the module’s report() export and were validated against ebpf ground-truths
run using bpftrace. Kernel logs (demsg) were monitored for errors.

5.2 Test Cases and Protocol

T1: Counter

Goal: verify that a hook is invoked correctly once the probe triggers.

Protocol: load the hook, spawn 𝑋 child processes (using fork), deactivate the hook, spawn
𝑌 additional children, reactivate the hook, and spawn 𝑍 more children. call report() and
compare to 𝑋 + 𝑍 and the bpftrace output.

This was also done to test activate/deactivate work correctly.

it is also important to note that this test setup was also run with mkdir and openat syscalls.

Success: reported count equals the number of successful children; clean deactivate/unload; no
kernel faults.
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T2: Mkdir Mode Capture

Goal: validate argument marshalling for a pointer (pathname) and a scalar (mode).

Protocol: invoke mkdir in the Wasm pre-hook, read the copied pathname from linear memory
and the scalar mode; summarize via report(), and compare themwith the eBPF ground-truths.

Success: paths are intact and NUL-terminated; reported string matches eBPF results; no out-
of-bound copies.

T3: Accept Under a Reverse Proxy (Cache On/Off)

Goal: demonstrate debugging utility: with the proxy cache warmed, accept should trigger
once for a request sequence; with cache disabled, it triggers per connection.

Protocol: enable cache, warm with 𝑀 requests, record accept count; disable cache, repeat;
compare.

Success: markedly lower accept count with cache enabled than disabled; hook stable across
both runs.

5.3 Discussion and Reliability Checks
In T1 and T2, counters and captured arguments matched ground truth, indicating that pre-
handlers fire once per syscall entry, scalar arguments are passed by value correctly, and
pointer-typed arguments are safely copied into the module’s linear memory with bounded
lengths. In T4, the accept counts reflected expected proxy behavior, illustrating the system’s
usefulness for diagnosing configuration assumptions. Throughout all tests, lifecycle operations
(load/activate/deactivate/unload) executed without kernel faults; handler errors (if any) were
logged and handled fail-closed.

5.4 Summary
The evaluation supports the prototype’s central claim: small, task-specific extensions can be
dynamically loaded, invoked at syscall entry, and removed while preserving kernel stability.
The observed behavior across the four scenarios demonstrates reliable hook firing, correct
argument marshalling, and robust lifecycle handling, providing a solid foundation for the
future extensions outlined in Chapter 6.

The full set of test scripts, Wasm probes, and equivalent eBPF probes used in this evaluation are
available in our public repository [39].
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Chapter 6

Future Potential

This prototype demonstrates the feasibility of safe, language-agnostic kernel extensibility with
WebAssembly. Looking ahead, its value grows with stronger tooling, faster runtimes, and
smoother integration paths.

6.1 Expanding Wasm Ecosystem
Embedding aWebAssembly runtime in the kernel opens the door to awide language ecosystem
(C/C++, Rust, Go, etc.) and mature tooling. In particular, record–reduce–replay for Wasm
can make kernel-resident extensions far easier to debug and validate: Wasm-R3 instruments
modules to record executions, aggressively reduces traces, and emits replayable benchmarks
that run on any engine without the original host environment [40]. Integrating such a workflow
would let developers capture real workloads in production, reproduce them offline, and
iteratively refine kernel hooks and Wasm logic with high fidelity. This complements the
prototype’s fail-closed design by adding a practical path to deterministic debugging and
regression testing.

6.2 Integrating With WHAMM
Beyond ad-hoc hooks, WHAMM proposes a DSL for programmable Wasm instrumentation
with declarative match rules, static/dynamic predication, and automatic state reporting, de-
livering monitors either by bytecode rewriting or by interfacing directly with the engine [41].
Because WHAMM produces instrumentation as Wasm, your kernel runtime could load these
monitors like any other module, reusing engine optimizations while keeping the ABI narrow.
This promises richer, policy-driven probes (e.g., conditional sampling, selective argument
capture) with compiler-assisted overhead reduction.

6.3 Adopting a JIT Runtime
Moving from wasm3 (interpreter) to Wasmtime would unlock JIT compilation via Cranelift
and a steady stream of backend optimizations (e.g., compile-time optimization modes, IR
improvements) while retaining strong sandboxing [42]. In principle, JITed hot paths should
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cut per-hook latency for compute-heavy modules and broaden the set of viable in-kernel
analyses. Engine-level features (e.g., better codegen on x86_64/aarch64, evolving IR support)
also position the system for longer-term maintainability and performance portability.

6.4 Compatibility Path: eBPF → Wasm
To lower adoption friction, a translation path from eBPF bytecode to Wasm would let existing
programs run under the proposed Wasm-in-kernel runtime with minimal rewrite. Early
ecosystem efforts already bridge these worlds: toolchains that package eBPF logic as Wasm
modules for cross-platform execution, and runtimes that execute eBPF compiled to Wasm [43],
[44]. Building a robust eBPF→Wasm compiler for your system would preserve familiar
semantics (maps, helpers via a thin compatibility layer), ease migration of legacy code, and
consolidate extensibility on a single, portable sandbox.
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Chapter 7

Conclusion

This work presented a proof-of-concept framework for safe, language-agnostic kernel extensi-
bility by embedding a WebAssembly runtime in a Linux kernel module and triggering Wasm
functions from kprobe hooks at outermost syscall entry points. The architecture cleanly sepa-
rates a control path (load/activate/deactivate/unload/report via a character device and ioctl)
from a data path (pre/post handlers that marshal syscall arguments into Wasm linear memory
and invoke resolved exports). The prototype keeps the fast pathminimal (no sleeping, bounded
copies, fail-closed on errors), avoids exposing kernel pointers to Wasm, and binds hooks using
a simple, optional export convention (kprobe:hook:pre/:post and report). Functional valida-
tion across four scenarios (fork counter, mkdir counter, mkdir mode capture, and accept under
proxy cache on/off) demonstrated that hooks fire reliably, scalars and strings are marshalled
correctly, and lifecycle operations execute without kernel faults.

A core contribution is showing that WebAssembly can serve as a practical, uniform sandbox
for in-kernel extensions while remaining developer-friendly. Embedding a WebAssembly
runtime in the kernel enables polyglot extensibility: developers can author extensions in any
language that compiles to Wasm (e.g., C/C++, Rust, Go, Python), reusing mature build and
testing ecosystems. This stands in contrast to traditional approaches—kernel modules and
eBPF—which are effectively limited to C (for eBPF, a restricted C dialect), narrowing both
the contributor base and available tooling [9], [22], [25]. Polyglot support not only improves
productivity; it also permits adopting language-level safety properties (e.g., Rust’s ownership
and borrowing) while preserving a consistent sandboxed execution boundary in the kernel.

The current prototype has clear limitations: there is no verifier beyond the interpreter’s intrinsic
checks; resource limits (instruction budgets/timeouts) are not yet enforced; the host ABI is
intentionally minimal (no imports); and we rely on an interpreter (wasm3) rather than a JIT.
These choices were deliberate to keep the design small and auditable but leave performance
and expressiveness on the table. The evaluation was likewise scoped to functional correctness,
not exhaustive benchmarking.

Looking forward, the path to a production-ready system is compelling. First, migrating to a
JIT-enabled engine such as Wasmtime would leverage ongoing compiler optimizations while
preserving sandboxing. Second, integrating record–reduce–replay for Wasm would add a
practical route to deterministic debugging and regression testing for kernel-resident extensions.
Third, compiler-driven instrumentation (e.g., WHAMM) could generate policy-rich monitors
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asWasmmodules without expanding the kernel ABI. Finally, an eBPF→Wasm translation path
would provide continuity for existing programs and ease adoption. Together, these directions
move the design from a feasibility prototype toward a robust platform for safe, maintainable,
and widely accessible kernel extensibility.
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