
Analyzing Novice Debugging Behavior Using
Programming Process Data

Archan Das

CMU-CS-25-124

August 2025

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Professor Mark Stehlik (Co-Advisor)
Professor David Kosbie (Co-Advisor)

Professor Roy Maxion (Subject Matter Expert)

Submitted in partial fulfillment of the requirements
for the degree of Master of Science of Computer Science.

Copyright © 2025 Archan Das

Keywords: CS Education, debugging, software engineering, process data

This thesis is dedicated to my family, who supported me all the way.

iv

Abstract
Background. Debugging is an important part of the software development work-

flow. In order to improve the techniques and instruction of debugging, we need to un-
derstand the cognitive process through which programmers debug. Previous research
has used a variety of methodologies for studying the debugging process, including
concurrent verbal protocols, quantitative analyses, and neural imaging. This research
has established the sequence of cognitive phases that programmers progress through
while debugging. One frontier in this research is the use of process data to study de-
bugging. This process data consists of logs collected from integrated development
environments (IDEs) that record the process by which programmers work on code.

Aim. We aim to: a) create a framework for analyzing process data captured
from an IDE, b) analyze process data collected from a population of introductory pro-
gramming students to observe patterns in student debugging behavior, and c) use the
collected data to identify efficient and inefficient habits exhibited by students while
debugging.

Data. We collected process data across three exercises from 315 students in an
introductory programming class. This data consists of an event log of every keystroke,
code execution, and submission attempt students made while working on their exer-
cises.

Methods. We extracted a timeline of cognitive phases from the process data for
each student and validated our model with a panel of experts. We tested the effect
of three behavioral features (use of print statements, time in locate-error phase, and
functional edits per cycle) against a novel measure of student efficiency in debugging
(count of run-program events), but found results to be inconclusive. We also observed
patterns across the subject population of our extracted cognitive phases.

Results. We found that the frequency of print statements had a positive correlation
with debugging struggle across all exercises. Increased time spent in locate-error phase
had a statistically significant impact on student debugging struggle in some exercises,
but not others. Subjects tended to perform faster and more focused repairs to their
code later in debugging episodes. Finally, debugging struggle had a weak negative
correlation with average exam scores in the course.

Conclusion. Results suggest that students should be encouraged to spend more
time reasoning about their code while debugging. Process data also shows promise as
a tool for evaluating and giving feedback on the student debugging process at scale. In
addition, our framework can be widely useful for experiments on student debugging
behavior, especially when large subject populations make alternative methods difficult.

vi

Acknowledgments
This research would not have been possible without a lot of very helpful people.

More thanks than I could possibly write goes out to my advisors, Professors Roy
Maxion and Mark Stehlik, for guiding me for the past year. It’s been a really positive
experience and both of you have taught me a lot about research and life.

I am deeply grateful for Professors David Kosbie and Mike Taylor, for supporting
my work from the 15-112 side of things. The fact that you were willing to dedicate
your time and attention to this project really means a lot.

I owe a debt of gratitude to the entire CMU CS Academy team for building a spec-
tacular platform that enabled this whole project. Austin Schick and Evan Mallory
deserve a medal for the great development work they did in support of this research.
You guys rock!

More thanks goes out to the panel of experts: Ethan Kwong, Audrey Hasson,
Elena Li, Felicia Zhang, and Professor Kelly Rivers.

And last but not least, a heartfelt thanks goes out to the students of 15-112.

viii

Contents

1 Introduction 1
1.1 Background and Related Work . 1

1.1.1 Theoretical Foundations of Debugging . 1
1.1.2 Empirical Investigations of Debugging 4
1.1.3 Research focused on novice debugging 4
1.1.4 Differences Between Experts and Novices 5

1.2 Cognitive model used in this research . 5
1.2.1 Cognitive phases of debugging . 6

1.3 Gap analysis . 7

2 Problem and approach 9

3 Methods 11
3.1 Apparatus and instrumentation . 11

3.1.1 Anonymization . 11
3.1.2 CMU CS Academy . 11
3.1.3 Process data . 12
3.1.4 Debugging exercises . 13

3.2 Subjects . 14
3.2.1 Instructions to subjects . 14

3.3 Data . 15
3.3.1 Intermediate code states . 15
3.3.2 Token-level changes . 15
3.3.3 Functional and print changes . 17
3.3.4 Functional and non-functional execution 17
3.3.5 Extracted event log . 18

4 Extracting Cognitive Phases from Process Data 21
4.1 Approach . 21
4.2 Panel of Experts . 22
4.3 Participants . 22
4.4 Materials . 23
4.5 Procedure . 23
4.6 Analysis . 23
4.7 Results . 24

ix

4.7.1 Agreement with Automated Labeling . 24
4.7.2 Inter-rater Agreement . 24
4.7.3 Qualitative Feedback . 24

4.8 Cognitive phase log . 24
4.9 Discussion . 25
4.10 Conclusion . 26

5 Analysis of Patterns in Process Data 27
5.1 Case studies . 27

5.1.1 Student 1 . 27
5.1.2 Student 2 . 28

5.2 Debugging cycles . 29
5.3 Count of debugging cycles across exercises . 30
5.4 Time evolution of debugging cycles . 31
5.5 Correlation with exam scores . 32
5.6 Completion grading . 33
5.7 The problem with time-elapsed . 34

5.7.1 Patterns in time-elapsed across phases . 35
5.7.2 The importance of locate-error phase . 37

6 Identifying efficient and inefficient behaviors 39
6.1 Behavioral features . 39

6.1.1 Debugging cycles . 39
6.1.2 Time spent in locate-error phase . 40
6.1.3 Print count . 40
6.1.4 Functional edits per repair-error phase . 40
6.1.5 Summary of Behavioral Features . 41

6.2 Method of Analysis . 41
6.2.1 Splitting Groups . 41
6.2.2 Statistical Testing . 41

6.3 Results . 41
6.4 Discussion . 42

7 Conclusion 43
7.1 Summary . 43
7.2 Future work - extensions . 43
7.3 Future work - applications . 44

7.3.1 Educational interventions . 44
7.3.2 Intelligent tutoring systems . 44
7.3.3 AI debuggers . 44

A Exercises 47
A.1 bowlingScore . 47

x

List of Figures

1.1 Debugging model . 2
1.2 Alternative debugging model . 3
1.3 Cognitive model of the debugging process . 6

3.1 Example view of a CMU CS Academy exercise. 12
3.2 Example keystroke data snippet logged by the learning platform. 13

4.1 Cognitive model of the debugging process . 21
4.2 Extracted cognitive phase timeline for a student submission to the bowlingScore

exercise. 25

5.1 Extracted event log for student 1. 28
5.2 Extracted event log for student 2. 28
5.3 Debugging loop. 29
5.4 Histogram of number of debugging cycles used by each student in bowlingScore

and integerLetterFrequencies exercises . 30
5.5 Scatter plot of debugging cycles used in bowlingScore and integerLetterFre-

quencies for students who did both . 31
5.6 Number of keystrokes and time elapsed in seconds for each repair-error phase,

for the integerLetterFrequencies exercise. 32
5.7 Correlation between debugging cycle count on integerLetterFrequencies and

average exam grades. 33
5.8 Left: histogram of grades received by students on the integerLetterFrequen-

cies debugging exercise. Right: histogram of debugging cycles used to solve
the exercise. 34

5.9 Total time elapsed and total time elapsed in locate-error phase (integerLetter-
Frequencies) . 35

5.10 Total time spent vs time spent in locate-error phase (integerLetterFrequencies) 36
5.11 Percentage of time-elapsed in each cognitive phase (integerLetterFrequencies) 36

6.1 The debugging loop. 40

A.1 Buggy starter code for bowlingScore exercise. 49

xi

xii

List of Tables

3.1 Summary of debugging exercises . 14

4.1 Agreement between expert and automated cognitive phase labeling. 24

6.1 Debugging behavior differences between low-struggle and high-struggle stu-
dents across two programming exercises. 42

xiii

xiv

Chapter 1

Introduction

Debugging is fundamental to software development and has been defined as the process of identi-
fying and correcting errors within a program [Myers, 1978]. Given that debugging may account for
up to 50% of software development time [Timmerman et al., 1993], understanding how program-
mers go about the task of debugging is important. These findings can help inform and improve
programming instruction, software engineering best practices, and automated debugging tools.

Over the years, researchers have sought to formalize the process of debugging. These formal
models can help programmers, educators, and developers of automated debugging tools. Some
researchers have proposed models based on qualitative data, such as verbal protocols, while others
have used quantitative data, such as from neural imaging and integrated development environment
(IDE) logs.

1.1 Background and Related Work

1.1.1 Theoretical Foundations of Debugging
Theoretical models of debugging describe the steps a programmer performs in order to find and fix
bugs. The models also characterize the tactics used by programmers to achieve these steps.

Early Models and Verbal Protocol Studies

Previous research focused on the cognitive processes underlying debugging has used verbal pro-
tocol studies (also called think-aloud studies). In these experiments, researchers ask subjects to
verbalize their thought process out loud, and analyze the transcripts of each subject’s verbalized
thoughts. Subjects may be prompted with questions from a researcher while debugging in order to
further explore their thought process.

[Katz and Anderson, 1987] conducted one of the earliest studies using verbal protocols to ana-
lyze debugging. Their experiments revealed that programmers tend to employ three general strate-
gies to locate bugs:

• Simple mapping from output
• Hand simulation
• Causal reasoning

1

Their findings suggested that students were more efficient at debugging their own code, com-
pared to fixing code originally written by someone else. The method used to locate the bug did
not necessarily affect the success rate of bug repair - once a bug was found in the code, it did not
matter how the student found it. Students who were able to find the bugs in their program were
usually able to fix them, suggesting that the main difficulty of debugging lies in locating the bug.
The basis of this work was the general cognitive model of debugging shown in Figure 1.1.

Figure 1.1: Debugging model
Each node is one step of the debugging process.

Other verbal protocol studies of the debugging process include [Vessey, 1984], [Vessey, 1985],
[Rasmussen and Jensen, 1974], [Whalley et al., 2023], and [Allwood and Björhag, 1990].

An important note to make on verbal protocol studies is that they analyze subjects’ thoughts,
not their actions. Researchers collect data on what subjects are thinking about while debugging,
but generally do not collect data on exactly what subjects are typing into their code editor after
doing so.

Verbal protocols have a disadvantage of being resource intensive - analyzing raw transcripts
of subjects’ thoughts takes a significant amount of time. [Hughes and Parkes, 2003] found that
most verbal protocol studies in software engineering involved fewer than 30 subjects. Conducting
a high-quality verbal protocol study over a subject population of hundreds is very difficult.

2

Subsequent Models

Other researchers extended or refined these early models. For example:
• [Vessey, 1985, Vessey, 1984, Vessey, 1986] used a five-phase model consisting of: (1) prob-

lem determination, (2) gaining familiarity with the program, (3) exploration of particular
aspects, (4) hypothesis formulation, and (5) error repair.

• [Kessler and Anderson, 1986] offered a similar four-phase model: (1) comprehension, (2)
detection, (3) localization, and (4) repair.

These cognitive models, while different in exact form, are all similar in how they split the
process of debugging. These cognitive models also establish comprehension of the program as a
cognitive phase that occurs before programmers attempt to locate errors.

[Kessler and Anderson, 1986] and [Katz and Anderson, 1987] noted that the comprehension
phase of debugging is particularly important when subjects are debugging code from a different
author. Subjects debugging another person’s code had to invest more effort into comprehending
that code than subjects who debugged their own code.

Alternative Perspectives

Some scholars have questioned the linearity of these cognitive models. For example, [Gilmore, 1991]
argued that the interplay between comprehension and debugging is cyclical rather than strictly se-
quential. Their model (see Figure 1.2) suggests that understanding the differences between the
buggy and the correct version of a program may require multiple iterative cycles.

Figure 1.2: Alternative debugging model

3

More recent research [Hu et al., 2024] has suggested that the older models reflect the cognition
of programmers while debugging with respect to neural imaging. Thus, we rely on the simpler but
seemingly robust models of debugging established by [Katz and Anderson, 1987], [Vessey, 1984],
and others as our foundational understanding of the debugging process.

1.1.2 Empirical Investigations of Debugging
Empirical research on debugging has used both qualitative and quantitative methods. Qualitative
methods, such as the previously discussed verbal protocol studies, collect data through qualitative
observations of behavior by researchers or subjects themselves. Quantitative methods, on the other
hand, attempt to collect quantitative data that reflects behavior without introducing potentially
subjective human judgment into the data collection process.

Quantitative Evidence

Larger-scale studies, for instance by [Alqadi and Maletic, 2017] and [Ahmadzadeh et al., 2005],
analyzed numerical features extracted from students’ code submissions. These studies revealed
several interesting findings:

• There is not always a strong correlation between general programming ability and debugging
skill.

• Some types of bugs are inherently more difficult to debug.
• More experienced programmers tend to be more efficient at debugging.
[Alqadi and Maletic, 2017] created two experiments with 142 subjects in total, but the only

data recorded from each subject was the amount of time it took them to debug each bug. Time-
elapsed, as a measure of debugging process, does not reflect most details of the debugging process
other than overall struggle.

[Ahmadzadeh et al., 2005] collected slightly more data, including information on every compi-
lation error faced by subjects working on debugging tasks, but the primary insight of the experiment
was the fact that strong programmers may be weak at debugging. This is a useful insight, but does
not reveal any specific details of the debugging process.

In [Alaboudi and Latoza, 2021], the authors leveraged process data in order to identify a be-
havioral pattern of editing and running code while programming and debugging. This process data
was not automatically collected, but instead labeled by humans who observed eleven programmers
live-streaming development activities.

The authors identified a cycle between editing code and running it, similar to the main debug-
ging loop of locate-error, repair-error, and run-program identified in previous theoretical models.
While some form of quantitative data was used in these experiments, limitations of the methodolo-
gies employed in all three experiments prevented analysis from revealing details about the debug-
ging process across a large population.

1.1.3 Research focused on novice debugging
Particular attention has been paid to the debugging processes of novice programmers. Novices are
typically worse at debugging than more experienced programmers [Gugerty and Olson, 1986]. As

4

debugging is an important skill for programmers to develop, understanding the differences between
how novices and experts debug is crucial for educators looking to improve the debugging abilities
of their students.

Because modern learning management systems produce a lot of data that can be analyzed to
understand debugging, there has been some research analyzing process data to better understand
debugging amongst novice programmers. This process data can take a variety of forms, but a
shared characteristic is that the data points are collected throughout the span of time that students
are working on a programming assignment. Process data also describes the process through which
a student progresses towards the final solution of their assignment.

[Becker, 2016] proposed a new metric, repeated error density (RED), for measuring student
struggles with debugging by looking at repeated compiler errors.

In [Liu and Paquette, 2024] and [Liu and Paquette, 2023] researchers exploited existing sub-
mission data to investigate debugging patterns of students. They found that certain features ex-
tractable from the submission log data correlates with strategies used by the students for debugging.
These strategies were correlated with the efficiency of the students’ debugging process. Students
were found to be using efficient debugging strategies more as they progressed later in the semester.

One of the largest existing datasets of process data comes from [Edwards et al., 2023]. While
not specifically focused on the task of debugging, quite a bit of research has used this data to
analyze how novice programmers in a college setting write code. To our best knowledge, none of
this work has been specifically focused on the process of debugging. The review article presented
by [Edwards et al., 2023] summarizes several threads of current research on the uses of process
data in programming education.

1.1.4 Differences Between Experts and Novices
Research has consistently shown that experts and novices differ in their approach to debugging:

• [Vessey, 1984] found that experts are better at chunking program information and tend to
follow a breadth-first search strategy.

• Novices, on the other hand, often exhibit more erratic behavior and less systematic code-
tracing.

Eye-tracking studies by [Lin et al., 2016] further highlight that high-performing debuggers trace
code in a top-down manner, whereas low-performing students struggle to perceive the overall
structure of the program.

1.2 Cognitive model used in this research
Based on the literature, we used the following cognitive model of debugging as a foundation for
our analysis:

5

Start

Comprehend
requirements

Comprehend
program Run-program Error?

Stop

Locate-error Repair-error

No

Yes

Figure 1.3: Cognitive model of the debugging process

This cognitive model closely adheres to the version used in [Kessler and Anderson, 1986],
[Vessey, 1984], [Katz and Anderson, 1987], and [Carver and Klahr, 1986].

1.2.1 Cognitive phases of debugging
In order to demonstrate the cognitive phases of debugging, imagine a student working on a debug-
ging exercise. The student is given a set of requirements for a program, as well as buggy code
with one or more errors that causes it to not fulfill the requirements. In that context, the cognitive
phases of debugging would look like this:

1. Comprehend problem: The student begins the debugging process by reading the prompt
for the problem. The prompt explains the desired behavior of the program.

2. Comprehend program: The student then reads the existing buggy code for the program.
The student may take note of control structures, variables, and the flow of execution. This
step may include code tracing.

3. Test program: The student runs the current version of the code to see if it successfully
passes the exercise.

4. Detect error: Code execution may reveal an error in the behavior of the program, manifest-
ing as either a runtime error or a failed test case.

5. Locate error: The student reads the evidence of the error and attempts to locate where the
faulty line of code is within the program.

6. Repair error: The student makes a change to the program in an attempt to fix the error they
found in the previous step.

6

1.3 Gap analysis
The literature reviewed in this thesis demonstrates that while early models provided a valuable
framework for understanding debugging, more details on the debugging process may be revealed
by closer analysis. While a wide variety of methodologies exist, from verbal protocols to large-
scale quantitative analyses, there are gaps in existing research. To our knowledge, no experiments
have been conducted at a large scale (> 200 subjects) with a specific focus on debugging.

Moreover, the differences observed between experts and novices suggest that effective debug-
ging might be more about strategic thinking and the ability to see the “big picture” than about
technical skill alone. Integrating these insights could lead to improved educational methods and
debugging tools.

Existing research that uses process data to analyze debugging tends to use coarse measurements
- data points are only recorded when students attempt to submit their assignments. Additionally,
we were not able to find high-quality process data measured from an isolated debugging exercise:
existing research analyzes debugging by slicing out debugging time from the entire timeline of a
student working on an assignment.

This poses a few problems - when students are debugging code that they just wrote, each one is
debugging different bugs in different code. Thus, it becomes difficult to ascertain what features of
the debugging process are caused by a student’s lack of debugging skill and what is caused by the
inherent difficulty of the bug. Additionally, [Katz and Anderson, 1987] found that programmers
debug their own code differently from how they debug another programmer’s code.

Thus, a robust analysis of the debugging process over a wide scale must leverage quantitative
data from subjects who are working on the same bugs. We believe that analyzing the debugging
process using process data is the best method to meet these constraints.

7

8

Chapter 2

Problem and approach

The goal of this research is to establish a foundation for using process data to analyze the behavior
of programmers while debugging. In our context, process data takes the form of an event log -
throughout the process of debugging a program, programmers perform several different types of
actions that are logged by our system.

Our core research questions are:

1. Can we determine which cognitive phases programmers spend time in using automated anal-
ysis of process data?
Answer: Yes

2. Does process data reflect debugging skill for students in an introductory CS course?
Answer: Yes

3. Can we use process data to better understand how programmers debug?
Answer: Yes

The first step of our approach was to collect a large amount of process data from programmers
in the process of debugging. We collected this data from introductory programming students who
worked on debugging exercises in Python.

In order to answer the first question, we created a rule-based method of assigning cognitive
phases to the timeline of a programmer’s debugging process. We also used a panel of experts to
validate our automated analysis.

For the second question, we identified a correlation between a measure of debugging struggle
and the scores received by students on programming exams.

For the third question, we identified a number of patterns in the process data which raise ques-
tions about the debugging process.

9

10

Chapter 3

Methods

3.1 Apparatus and instrumentation
The data for this research was collected from an introductory computer science course at Carnegie
Mellon University, called “15-112: Fundamentals of Programming and Computer Science”. The
students in the course are mostly undergraduates (a small minority are graduate students), and the
course is their first experience with programming at the college level. The course is taught in
Python.

Students in the course complete weekly homework assignments consisting of several Python
programming exercises. These homework exercises are conducted in an online, browser-based
learning platform that provides an IDE-like code editor for students to write and run their code
within the platform. At the time of data collection, students were expected to be familiar with
basic concepts in Python programming, including functions, variables, loops, 1-dimensional lists,
and strings.

The course included one short lecture on debugging in the first week. That lecture focused on
proper usage of print statements while debugging Python code.

3.1.1 Anonymization
All of the data collected for this research was anonymous - students were identified with a random
hash that cannot be tied back to their real identity. This research was determined to be exempt
from Institutional Review Board (IRB) approval by our IRB because no personally identifying
information was collected.

3.1.2 CMU CS Academy
15-112: Fundamentals of Programming and Computer Science (the course from which our data
was collected) uses a platform called CMU CS Academy for homework. Every week, students are
assigned several programming exercises. Normal programming exercises ask students to write a
program given a set of requirements. Students receive a blank function and a set of test cases to
start, and must write code such that the function passes the given test cases. An example view of
what a student might see on their screen while in CMU CS Academy can be seen in Figure 3.1.

11

Figure 3.1: Example view of a CMU CS Academy exercise.
Students see a code editor on the left, and program requirements on the right. Students are given
test cases on which their programs are graded, visible as the testIntegerLetterFrequencies function
in the code window.

3.1.3 Process data
CMU CS Academy collects process data from students working on their programming exercises.
The process data collected from the platform is output in three separate time series.

1. Keystroke events: Every editing event that the student makes in their code editor while they
work on their exercise. Editing events are either additions or deletions of code. This data
is tracked down to the granularity of keystrokes, so every time a student presses a button on
their keyboard to edit their code, it is logged as an event. For each keystroke, the location
of the edit, whether or not it was an addition or deletion, the characters added/deleted in the
edit, and a timestamp of when the edit occurred are logged. An example snippet of keystroke
data is shown in Figure 3.2. Note that events are logged down to the individual character, so
when the student types the token “digit,” it gets logged as five separate addition events.

2. Execution events: In the process of completing an exercise, students can execute their
code to see the output. Execution events are recorded when students execute their code -
these are shown in the data as run_code_exercise events. Events are also recorded
when the Python environment used to execute the code returns some output to the stu-
dent. This output can either be a runtime error, a failed test case, or a pass, which indi-
cates that the student has successfully passed all test cases. These events are logged as
runtime_error, sample_test_incorrect, and autograde_correct respec-
tively. Execution events are tagged with a timestamp similar to that of keystrokes.

3. Access events: Students were free to work on these exercises on their own time, because

12

they were assigned as homework. Students could thus open and close the browser window
on which they edited their code at any point in time in the week they were given to work
on the exercises. Students could also navigate away from the browser tab on which they
were editing code without closing their coding tab. These events are logged in our process
data - precise timestamps were recorded for every time a student opened up the exercise
(start_session), closed the exercise (end_session), moved their computer’s focus
away from the exercise’s browser tab (blur), and returned their computer’s focus to the
exercise’s browser tab (focus). This data allows us to determine exactly when students had
the exercise up on their screen, in focus.

Start End Action Characters added/deleted Timestamp
{’row’: 3, ’column’: 4} {’row’: 3, ’column’: 13} Remove [’return 42’] 1734416413175
{’row’: 3, ’column’: 4} {’row’: 3, ’column’: 5} Insert [’d’] 1734416413585
{’row’: 3, ’column’: 5} {’row’: 3, ’column’: 6} Insert [’i’] 1734416413661
{’row’: 3, ’column’: 6} {’row’: 3, ’column’: 7} Insert [’g’] 1734416413796
{’row’: 3, ’column’: 7} {’row’: 3, ’column’: 8} Insert [’i’] 1734416413864
{’row’: 3, ’column’: 8} {’row’: 3, ’column’: 9} Insert [’t’] 1734416413956

Figure 3.2: Example keystroke data snippet logged by the learning platform.
Note that this information is enough to reconstruct the intermediate state of the program during
editing after every keystroke. Start and End indicate the position of the cursor within the file
before and after the edit occurs. Action indicates whether the edit was an insertion or deletion.
Characters added/deleted indicates the characters added or deleted in the editing event.
Timestamp indicates the time measured in milliseconds since the Linux epoch (Jan 1, 1970).

3.1.4 Debugging exercises
A debugging exercise, in the context of this research, is a coding exercise where the student is
given a coding problem that is incorrectly solved because it fails to pass the requirements. The
defective code is generated by taking a correct solution to the exercise, and introducing bugs that
break the functionality of the correct solution.

These debugging exercises differ from regular programming exercises in that the student is not
asked to write an entire program from scratch. The “starter code” that students are given to start
the exercise only differs from a correct solution by a few tokens. A student could feasibly complete
the exercise by modifying a very small number (≈ 5) of tokens in the code.

Three debugging exercises were used for this experiment: bowlingScore, moveToBack, and
integerLetterFrequencies. bowlingScore and moveToBack were assigned to students in week 5 of
the semester, while integerLetterFrequencies was assigned in week 9.

To create the debugging exercises, we started with existing programming exercises. In previous
semesters, students have been asked to complete these exercises by writing a program from scratch.
We introduced two bugs into each program.

A summary of each exercise is shown in Table 3.1. The complete details of each exercise,
including requirements and code, can be found in the appendix.

13

Exercise Started Completed Unit Description Week
bowlingScore 212 153 1d Lists Sum bowling

scores
5

moveToBack 309 268 1d Lists 1d list manipula-
tion

5

integerLetterFrequencies 315 310 Dictionaries Count frequency
of letters in a
string

9

Table 3.1: Summary of debugging exercises

Choosing an exercise

For the week 5 exercises, bowlingScore and moveToBack, students were able to choose to com-
plete one exercise or the other. Completion of only one exercise was required to receive homework
credit. Because of this, not all students completed both of these exercises.

On the other hand, all students were required to complete integerLetterFrequencies to receive
homework credit, resulting in a higher completion rate.

3.2 Subjects
319 students attempted to solve at least one of the three debugging exercises used for this experi-
ment. 212 attempted to solve the bowlingScore exercise, 309 attempted to solve the moveToBack
exercise, and 315 attempted to solve the integerLetterFrequencies exercise.

3.2.1 Instructions to subjects
Students were told about the debugging exercises through the same channel through which they
receive their homework assignments every week. Students were given the following instructions
to complete the exercises for this experiment:

Instructions: Please try to fix these solutions on your own at first. If you use external
resources, please note this in a comment in the code. This code was not necessarily
written with 112 style in mind, and these two problems will not be graded on style. We
hope you will not spend more than 15 minutes total on this task. After this time, you
may stop if you wish, and you will still get the homework points if you haven’t fixed
the code. Note: This is an experiment to provide you with debugging practice, and to
provide the CS Academy team with valuable research data.

The above snippet is the first thing that students read on the assignment page. After that page
was shown, students navigated to the exercise page, which contained the prompt for the exercise
as well as the code editor.

The following instructions were given to subjects at the top of each exercise prompt:

The following exercise is a debugging exercise. You will be given starter code with a
buggy solution to the problem. Your task is to correct the bug(s) in the code such that

14

it passes the test cases. Please initially attempt this exercise without using external
resources such as ChatGPT or your peers. If you cannot complete the exercise after
working on your own for 15 minutes, you may use external resources to help you debug
as long as you leave a comment in your code detailing what resources you used.

After these descriptions of the debugging task, students were given the requirements for the
program as they were in the original (non-debugging) exercise.

3.3 Data
The data collected for this research comes from the learning platform on which students complete
their exercises. We collected process data, consisting of sequences of events observed through the
students’ browser window while they were working on the exercises.

3.3.1 Intermediate code states
An important property of our process data is that it reveals the exact contents of a subject’s code
editor at every point in time. Each event in the keystroke event log represents one change made to
the code in the code editor.

Considering the keystroke log snippet in Figure 3.2, if we know that the initial state (starter
code) of the snippet was

return 42
we know that after the first event (a deletion of the string “return 42” the code editor was empty.

Subsequently, after the next five events, we know that the code editor showed
digit

because of the addition events.

3.3.2 Token-level changes
The collected keystroke event log records changes at the character level. Thus, a student typing
the word “digit” shows up as five separate keystroke events. For ease of analysis, we would like
the addition of one token to correspond to one event. This has the advantage of allowing us to
categorize edits based on the token being edited.

The implementation of token-level edits is shown in Algorithm 1. The algorithm makes use
of the Python tokenizer, which can output a stream of tokens given text. Each character-level edit
event may add, delete, or change some number of tokens in the code. To get token-level edits, we
merge adjacent edits to the same token, until no two consecutive edits are on the same token.

15

Algorithm 1 Character-to-Token Edit Transformation

Require: Initial source code S0, character edits E = {e1, e2, . . . , en}
Ensure: Token-level edit sequence T

1: states← reconstruct code states from S0 and E
2: validStates← filter states for syntactically valid code
3: tokenStates← tokenize each state in validStates
4: currentTokens← tokenize(S0)
5: rawDiffs← []
6: for each nextTokens in tokenStates do
7: diff ← enhanced diff(currentTokens, nextTokens)
8: append (timestamp, diff) to rawDiffs
9: currentTokens← nextTokens

10: end for
11: T ← merge adjacent changes(rawDiffs)
12: return T

Merge Subroutine:
1: merged← [], current← null
2: for each diff in rawDiffs do
3: if diff has exactly one token change then
4: if current = null or current.index ̸= diff.index then
5: append current to merged (if not null)
6: current← diff
7: else
8: current.new token← diff.new token {extend change}
9: end if

10: else
11: append current to merged (if not null), current← null
12: append diff to merged
13: end if
14: end for
15: append current to merged (if not null)
16: return merged

Helper Functions:
• ReconstructCodeStates(S0, E): Applies character-level edits E to initial source S0

to reconstruct intermediate code states with timestamps
• ParseAST(code): Parses source code into Abstract Syntax Tree, returns null if syntax error
• TokenizeSource(code): Converts source code into sequence of tokens
• DiffTokens(tokens1, tokens2): Compares two token sequences and returns tuple of (added count,

deleted count, changed count)

16

3.3.3 Functional and print changes
A student starts a programming exercise with the starter code provided to them, and hopefully
finishes an exercise with a correct solution. In between these states, the student makes a number
of changes at different points in time in order to go from starter code to correct solution.

These changes can be represented as edits to the sequence of tokens of the program. We
classify changes to the code into two buckets: print changes and functional changes. Print changes
(in Python) are changes to the code that only change parts of the program in print statements. This
includes adding print statements, removing print statements, and modifying what is printed. For
example, a change from:

print(scores[i])

to:
print(scores[j])

is classified as a print change that changes one token (in this case changing the element of
scores that is printed).

Functional changes are all other changes. These are changes that, in theory, should modify the
behavior of the program. For example, the following change from:

def some_function(a):
return a + 1

to:
def some_function(a):

return a + 2

would be classified as a functional change. Note that functional changes may not actually affect
the input and output of a function - for example, the student may edit code that turns out to be dead.
Going from:

a = 1 / 0
return b

to:
a = 1 / 0
return b + 1

would still be classified as a functional change, even though it does not materially impact the
behavior of the program at execution: execution will never reach the return statement, as there is a
divide-by-zero error on the first line. However, we still see this change (and subsequent execution)
as an attempt by the student to test new functionality of the code, even if the change is ultimately
unsuccessful in repairing the error.

The two types of changes are differentiated by taking the code before and after the change, re-
moving all print statements from the both versions of the code, and determining if the two versions
are identical after removing all prints.

3.3.4 Functional and non-functional execution
Based on this notion of functional and print changes, we can categorize each execution of the code
by the student as either functional or non-functional. Functional executions occur when there has

17

been a functional change in between the state of the code at the previous execution (or in the case
of the first execution, the starter code) and the state at the current execution. A non-functional
execution occurs when the student runs their code with no functional changes since the last time
they ran their code.

For example, if a student ran the following code:
print(scores[i])
scores[i] = 5
return scores

and at the next execution, the state of the code was:
print(scores[i])
scores[i] = 6
return scores

We would categorize the second execution as functional. If the next (third) execution was run
with the following code

print(scores[j])
scores[i] = 6
return scores

We would classify the third execution as non-functional, as there are no functional changes
between the code at the second and third executions.

3.3.5 Extracted event log
In order to better analyze the process data, the following features were extracted from the collected
data.

1. Intermediate code states: When a student first opens up an exercise, the code in their editor
is the starter code. Every keystroke event changes the state of the code in their editor. The
intermediate state of the code in the student’s editor is extracted by continually applying
the effects of each keystroke event in sequence, starting with the starter code, in order to
reconstruct exactly what code the student had in their editor at every point in time.

2. Print changes and functional changes: Using the information in the intermediate code
states, each keystroke event was tagged as being either a print change or a functional change.

3. Functional and non-functional executions Using the intermediate code state at the time of
each code execution, each execution was tagged with whether or not it was a functional or
non-functional execution.

Thus, the ingested data was processed into a combined event log of 11 different kinds of events:

1. start_session

2. end_session

3. focus

4. blur

5. functional_change

6. print_change

18

7. functional_execution

8. nonfunctional_execution

9. runtime_error

10. sample_test_incorrect

11. autograde_correct

A visualization of these events for two exercise attempts can be seen in Figure 5.1 and Figure
5.2. We call this event log the extracted event log.

19

20

Chapter 4

Extracting Cognitive Phases from Process
Data

Cursory examination of our extracted event logs, such as the visualization in Figure 5.2, indicates
that details on the student’s process of debugging are indeed hidden in the process data. In order to
analyze this process at a higher level of abstraction than edits and executions, one of our goals was
to associate a student’s extracted event log with a sequence of cognitive phases. These cognitive
phases (as explained in Section 1.2.1) represent the distinct tasks programmers must complete in
the process of debugging.

4.1 Approach
More formally, our goal was to partition the time a student was working on a debugging exercise
into separate cognitive phases, based on the information in the extracted event log. This equates to
identifying transition points - points in time at which the student moved from one cognitive phase
to the next.

The cognitive model of debugging first shown in Figure 1.3 is reproduced below for conve-
nience.

Start

Comprehend
requirements

Comprehend
program Run-program Error?

Stop

Locate-error Repair-error

No

Yes

Figure 4.1: Cognitive model of the debugging process

21

Our goal was to associate each transition (represented as an arrow in Figure 4.1) with a marker
in the extracted event log. For our purposes, a marker is an event or series of events in the extracted
event log.

We excluded the ”Comprehend requirements” phase from our analysis, as it occurs before
process data is first recorded - students could read the requirements for a debugging exercise before
opening up the code editor. Additionally, run-program phase occurs relatively instantaneously, so
we did not need to identify a marker for exiting run-program phase: this happens automatically
once the program finishes execution shortly after it starts, so we assume locate-error phase begins
immediately.

This left us with three transitions for which we needed to identify markers:

1. Comprehend program→ run-program

2. Locate-error→ repair-error

3. Repair-error→ run-program

We noted that run-program phase and repair-error phase are concrete: they can be directly
observed in the extracted event log. Students running programs to test out new functionality cor-
responds exactly with our notion of functional executions, and students attempting to repair errors
must be making functional edits. Students running the program for the first time may be perform-
ing a non-functional execution by running the starter code unmodified.

Thus, we created the following set of markers:

1. Comprehend program→ run-program: functional execution or non-functional execution
2. Locate-error→ repair-error: functional edit
3. Repair-error→ run-program: functional execution

4.2 Panel of Experts
In order to validate our approach for identifying cognitive debugging phases from extracted event
logs, we conducted an panel-of-experts study. This section describes the methodology and results
of this evaluation.

4.3 Participants
We recruited five experts in computer science education to participate in our evaluation:

• Four experienced undergraduate teaching assistants from the introductory computer science
course that was the source of our data

• One professor who has taught 15-112 (the course used for this research) in the past, and cur-
rently teaches an introductory programming course aimed at students who are not majoring
in computer science.

All experts had extensive experience helping novice programmers debug code and were famil-
iar with the common patterns and challenges faced by introductory programming students. Each
expert had at least two semesters of experience working directly with students on debugging tasks.

22

4.4 Materials
Experts were provided with:

• Background information on the event log format and event types (as described in Sec-
tion 3.1.3)

• The cognitive debugging phase model (as described in Section 1.2)
• Two extracted event logs from actual student debugging sessions:

Event Log 1: A 1,533-second session with 39 events, representing a student who strug-
gled with multiple attempts before successfully fixing all bugs

Event Log 2: A 657-second session with 11 events, representing a student who effi-
ciently identified and fixed both bugs with minimal attempts

• A structured form for labeling cognitive phases between each event and rating their confi-
dence in these labels

4.5 Procedure
Experts were instructed to:

1. Review the background materials on debugging phases and event types

2. For each extracted event log, label the cognitive phase(s) they believed the student was en-
gaged in between consecutive events

3. Provide qualitative feedback on their labeling process and any patterns they observed, as
well as their confidence in their labels. To gauge their confidence, experts were asked the
following question: ”How confident are you that your labels correspond to the actual cogni-
tive phases of the student who did this debugging assignment, on a scale of one to five? One
is not confident at all, and five is very confident.”

Experts were explicitly instructed to consider the Test Program (TP) phase as a point event
coinciding with run events, while the other phases (Comprehend Program, Locate Error, and Repair
Error) should be labeled as intervals. They were asked to provide a complete labeling that covered
all time the student spent focused on the program.

4.6 Analysis
To quantify the agreement between our automated phase labeling and expert labeling, we computed
the Levenshtein distance (L.D.) between the sequence of phases. The L.D. measures the number of
events in total (across both event logs) for which the expert disagreed with the automated cognitive
phase labeling.

23

4.7 Results

4.7.1 Agreement with Automated Labeling
As shown in Table 4.1, the expert labels closely matched our automated labeling approach, with
an average Levenshtein distance of 3.0 (σ = 1.4).

Expert L.D. Confidence Score

Expert 1 (TA) 2 4
Expert 2 (TA) 2 4
Expert 3 (TA) 2 4
Expert 4 (TA) 0 4
Expert 5 (Professor) 5 3

Table 4.1: Agreement between expert and automated cognitive phase labeling.
L.D. (Levenshtein distance) measures the edit distance between the sequence of phases.
Confidence scores indicate experts’ self-rated confidence in their labels (1-5 scale).

4.7.2 Inter-rater Agreement
The average pairwise Levenshtein distance between expert labels was 1.4, indicating strong agree-
ment among experts about the cognitive phases students were engaged in during the debugging
process. Disagreements between the expert labelings and the automated labeling were limited to
differences in whether the locate-error phase started at the beginning or end of program execution:
an unimportant distinction for our purposes, as program execution generally lasted for a small
fraction of a second.

4.7.3 Qualitative Feedback
Experts consistently noted a relatively simple pattern in their labeling process:

• Students start in comprehension phase, then move to locate-error phase.
• The first functional change switches them to repair-error phase.
• The functional execution ends repair-error phase and constitutes a run-program phase.
• The student immediately goes back into locate-error after an error.
This labeling strategy corresponds closely with our own method of assigning cognitive markers

to event logs.

4.8 Cognitive phase log
Our automated labeling returns a list of intervals corresponding to cognitive phases of debugging.
This timeline shows when each cognitive phase begins and ends during the debugging episode. A

24

visualization of an example timeline can be seen in Figure 4.2.

Figure 4.2: Extracted cognitive phase timeline for a student submission to the bowlingScore
exercise.
Each colored box represents one cognitive phase, and the whole timeline represents one student’s
work on the bowlingScore exercise. Note that the length of cognitive phases varies significantly,
from a few seconds to several minutes.

4.9 Discussion
The high level of agreement between experts and our automated approach validates our method
for extracting cognitive phases from debugging event logs. High levels of confidence indicate that
these labels are likely to correspond to underlying cognitive phases to at least some degree.

The primary source of disagreement concerned transitions between locate-error and repair-
error phases, particularly when students made small edits in close succession. The lack of detailed
information as to edit contents provided to the panel led some of the panelists to believe that
locate-error and repair-error phases may in reality overlap, with the student performing both tasks
simultaneously.

These areas of disagreement align with the theoretical complexity of precisely delineating cog-
nitive phases - our cognitive model makes the simplifying assumption that the student is in exactly

25

one phase at every point in time.
Previous research has indicated that programmers tend to debug in distinct cognitive phases in

practice [Katz and Anderson, 1987]. The cognitive phases of debugging are also neurally distinct
as detected by fNIRS [Hu et al., 2024].

4.10 Conclusion
Our expert evaluation provides strong validation for our automated method of assigning cognitive
phases to programming process data. The high agreement between the experts and our automated
approach suggests that behavioral markers in event logs can effectively detect student cognitive
states during debugging activities.

26

Chapter 5

Analysis of Patterns in Process Data

Our process data was collected at a very large scale, with more subjects and more data collected
per subject than any previous debugging study we were able to find. One of our objectives with this
data was to explore patterns that appeared in the debugging process across our subject population,
through our process data. These patterns revealed new information about how novices approach
the task of debugging, and raised questions about the debugging process that could be addressed
by future work.

5.1 Case studies
In order to better understand the information available from the extracted event log from a debug-
ging episode, we examine two submissions in detail using the extracted event log.

5.1.1 Student 1
An example timeline of process data events for a student who successfully passed the bowlingScore
debugging exercise can be seen in Figure 5.1. This student identified and corrected both of the bugs
on line 6, ran their code, and saw the error caused by line 11. The student then wrote code to print
the total variable, as well as the fix to the bug on line 11, ran their code twice, and passed the
tests to complete the exercise.

The student found the bugs quickly and efficiently, only requiring one functional execution to
fix both bugs, achieving a correct submission at the end as evidenced by the autograde correct
event. The student clicked on and off the exercise webpage several times, as indicated by the blur
and focus events, and only started making changes to the code after about 9 minutes.

While the exact code being edited is not visible through the sequence of events in the timeline,
a play-by-play of a student’s debugging process can be inferred by the sequence of process data
events.

27

Figure 5.1: Extracted event log for student 1.
Each point represents a separate event in the extracted event log, with the event type on the y-axis
and the time of the event on the x-axis.

Figure 5.2: Extracted event log for student 2.

5.1.2 Student 2
An example extracted event log from a student who struggled a bit more with debugging bowl-
ingScore is shown in Figure 5.2. The student’s first changes to the code are print changes, indicat-
ing that they added print statements to the code. After a few minutes, the student started to make

28

functional changes. The error changed from a runtime error to a failed test case, indicating that
the student fixed one of the two bugs in the code. After about eight minutes, the student had a few
blur and focus events in quick succession - the student went back and forth between the exercise
tab in their browser and something else on their computer. Ten minutes after the start of the exer-
cise, the student made more functional and print changes in an attempt to repair the bug, but was
unsuccessful in this block of time.

Note the nonfunctional executions - the student ran the code several times with no changes to
the code’s logic, suggesting that the student was making use of the print statements to observe pro-
gram behavior. After taking a long break of about forty minutes where the student again switched
between the exercise tab and something else on their computer, the student was able to fix the re-
maining bug relatively quickly about an hour after they started the exercise. Successful completion
of the debugging exercise is indicated by the autograde_correct event.

The extracted event log shows any given student’s path through a debugging exercise with some
detail. While it does not show the actual code that students are editing, the events in the log mark
important actions taken by the student while debugging.

5.2 Debugging cycles
In order to analyze debugging behavior across the subject population, we formalized the concept
of a debugging cycle within the context of our process data.

We define a debugging cycle as a round trip around the loop within the cognitive model of
debugging, as seen in Figure 5.3.

We used the number of debugging cycles to debug a program as a measure of struggle for a
particular debugging episode. A student who needed many debugging cycles to correctly debug
a program used more attempts to repair the bug before getting it right. A student who debugged
more efficiently would repair the bugs in fewer attempts.

Run-program Error?

Locate-error Repair-error

Yes

Figure 5.3: Debugging loop.
This is a subset of the cognitive model of debugging, consisting of the locate-error,
repair-error, and run-program phases. A debugging cycle is one trip around this loop.

29

For more information on why we did not use time-elapsed as a metric of debugging efficiency,
refer to Section 5.7.

5.3 Count of debugging cycles across exercises
The number of debugging cycles used by all students in bowlingScore and integerLetterFrequen-
cies is shown in Figure 5.4.

Figure 5.4: Histogram of number of debugging cycles used by each student in bowlingScore
and integerLetterFrequencies exercises

An interesting detail to note is that the distribution of cycles used does not decrease on average
between bowlingScore and integerLetterFrequencies. This is somewhat surprising, as integerLet-
terFrequencies was given to students four weeks after bowlingScore. In that four weeks, students
received no explicit debugging instruction.

One possibility is that students did not significantly improve their debugging skills between the
two exercises. This would suggest that programming instruction and practice that is not focused
on debugging may not significantly improve debugging skills as an indirect effect.

Another possibility is that integerLetterFrequencies was more difficult for students to complete,
even with improved debugging skills. A more robust experiment needs to be conducted to verify
the effects of various teaching strategies on debugging skill.

The number of cycles used by students in any given debugging episode varied widely. Most
students tended to complete debugging within a few (< 7 cycles), but there was a long tail of
students who needed thirty or more cycles to complete debugging. We believe that students who
tested functional changes to their code significantly more than the rest of the population could be
considered flailing.

30

Figure 5.5: Scatter plot of debugging cycles used in bowlingScore and integerLetterFrequen-
cies for students who did both

There was no strong correlation between the number of debugging cycles used to complete
bowlingScore and integerLetterFrequencies. The population of students who completed both exer-
cises is a subset of the students in the course, since many students completed moveToBack instead
of bowlingScore, and about 30 students completed bowlingScore but dropped the course before
completing integerLetterFrequencies.

5.4 Time evolution of debugging cycles
Most students went through the repair error phase multiple times while debugging, as seen in Fig-
ure 5.4 - each debugging cycle includes one repair-error phase. We examined differences between
repair-error phases occurring earlier and later in a student’s debugging episode to study how a
student’s first debugging cycle differs from their fourth, or their tenth.

In general, students complete debugging cycles quicker and with less total repair keystrokes
over time. This pattern suggests that programmers gather information about the program in each
debugging cycle, which may increase their comprehension of the program. In later cycles, students
may have a better familiarity with the program and where to look for errors, which allows them to
make quicker and more focused edits.

In any case, this pattern suggests that a disproportionate amount of the time and effort employed
in repairing errors occurs early on in the debugging episode, when programmers have spent less
time working with the program. Students may not have fully comprehended the program even after
exiting the comprehend program phase, skipping to the main debugging cycle before a complete
understanding of the program’s structure and logic was achieved.

31

Figure 5.6: Number of keystrokes and time elapsed in seconds for each repair-error phase,
for the integerLetterFrequencies exercise.
Across student submissions, the first debugging cycle took 20 seconds on average, with around 19
keystrokes inputted on average by each student. Later on in debugging episodes, the amount of
time spent and keystrokes inputted in each repair-error phase decreased (on average). Only
students who went through four or more debugging cycles and eventually completed the exercise
are represented in this graph, for a total of 208 students.

5.5 Correlation with exam scores
Students in the course take exams throughout the semester (three in total). These exams are proc-
tored, and conducted with pen and paper. The exams are designed to test students’ knowledge of
general programming principles, as well as the Python language.

We found that there was a statistically significant correlation between a student’s performance
on the integerLetterFrequencies exercise (as measured by number of debugging cycles used) and
their average exam grade, as seen in Figure 5.7.

32

Figure 5.7: Correlation between debugging cycle count on integerLetterFrequencies and av-
erage exam grades.
Students who used more debugging cycles to debug integerLetterFrequencies tended to get
slightly worse grades on exams.

This correlation is weak, which intuitively makes sense - there are many factors that make
up a student’s understanding of code that are not debugging. [Fitzgerald et al., 2008] found that
novices who are good at programming in general may not necessarily be good at debugging. Still,
the statistical significance suggests that debugging efficiency has some effect on student exam
performance.

5.6 Completion grading
Programming assignments in the course are primarily graded for completion. Students write code
to solve the assigned problem, and are graded against test cases. Pass more test cases, and you get
more points. We can call this method of grading completion grading.

Completion grading can reduce the resolution of feedback provided to both students and in-
structors. Almost every student (310/315) received full marks on the integerLetterFrequencies
debugging exercise, as shown in Figure 5.8. This suggests almost no variation in student perfor-
mance.

However, a closer look at the graph on the right of Figure 5.8 reveals that the number of
debugging cycles used to complete the exercise varied widely. Two students got the same full
credit on the exercise: one used two cycles, and the other used thirty-eight.

33

Figure 5.8: Left: histogram of grades received by students on the integerLetterFrequencies
debugging exercise. Right: histogram of debugging cycles used to solve the exercise.
Almost every student (310/315) received full credit for the exercise based on completion grading,
but the number of cycles used to complete the exercise varied widely.

When standard completion grading fails to measure important details of performance, such as
in this case, process data provides a more complete picture of a student’s debugging performance
than simple completion grading. Focusing solely on the correctness of the results fails to shed
light on the process through which students achieved those results. Process data analysis of the
sort introduced in this work could provide useful feedback on debugging skill for instructors and
students alike.

5.7 The problem with time-elapsed
An obvious metric for student debugging effort is simply time-elapsed: measure how long it takes
students to complete a debugging exercise, and that should represent how much effort it took.
Unfortunately, this approach has some weaknesses.

Measuring the amount of time a student spends in any particular phase or even for the entire
exercise poses problems for statistical analysis. Students worked on these exercises in different
places - some may have worked in quiet libraries, while others could have worked in distracting
environments. Students worked on exercises at different times of day, as well. Some students
may have been looking at their phone while debugging. While these factors probably affect many
metrics, metrics involving a measurement of time are particularly susceptible to noise.

Figure 5.9 shows the distribution of total focus time spent in total and in locate-error phase for
the integerLetterFrequencies exercise. Two things become apparent:

1. Students at the maximum of the distributions recorded more than 8000 minutes (5.5 days)
on the exercise, clearly a measurement error. Many students seem to have left the exercise
on their screens for extremely long periods of time.

2. The distributions look very similar in the long tail - this suggests that measurement errors
are largely caused by time inaccurately ascribed to locate-error phase.

While the students who spent many hours or even days in locate-error phase present the most
extreme problem with time-elapsed measurements, the problem can occur at a smaller scale as

34

Figure 5.9: Total time elapsed and total time elapsed in locate-error phase (integerLetterFre-
quencies)
Note the long tail of students who ”spent” unrealistically long times in total and in locate-error
phase.

well. A student who looks at their phone for 30 seconds while they are supposedly in locate-error
phase would not necessarily present as anomalous in the process data, but the measurement is still
inaccurate.

This is the reason that our metric for student debugging efficiency was not tied to elapsed time,
and instead was based on the number of debugging cycles. A student who gets up from their
computer may exhibit a spurious increase in time elapsed, but no increase in debugging cycles.
This issue may be alleviated by conducting experiments under standardized laboratory conditions,
but it is unclear if elapsed time would still reflect debugging skill.

5.7.1 Patterns in time-elapsed across phases
That being said, we do not necessarily have to discard all of our data that measures time. One
countermeasure for the noise described in the previous section is to filter out cognitive phases that
last longer than five minutes, as these phases are likely to include periods of time where the student
is not truly focused on the exercise. Thus, for analyzing metrics related to time-elapsed, we simply
exclude all phases longer than five minutes.

Doing so allows us to analyze the amount of time students spend in each cognitive phase while
debugging. Figure 5.10 shows the correlation between the total amount of time students spent on
integerLetterFrequencies with the total amount of time students spent in locate-error phase. Most
of the variation in total time elapsed comes from variation in the time spent in locate-error phase
(r=0.845).

35

Figure 5.10: Total time spent vs time spent in locate-error phase (integerLetterFrequencies)

Figure 5.11 shows the percentage of total time-elapsed spent in each of three cognitive phases.
Around half of the time students spent debugging integerLetterFrequencies came from locate-error
phase. Repair-error phase and comprehend-program phase took up roughly equal proportions of
total time spent debugging.

Figure 5.11: Percentage of time-elapsed in each cognitive phase (integerLetterFrequencies)

36

5.7.2 The importance of locate-error phase
To recap:

• Variation in time spent debugging comes (mostly) from locate-error phase.
• Students spent more time in locate-error phase than the other cognitive phases.

The above patterns, shown in Figure 5.10 and Figure 5.11, suggest that locate-error phase may be
the most crucial phase of debugging with respect to skill. Students who debugged integerLetter-
Frequencies quicker were able to do so because they were able to locate the error in less time.

Attempts to improve the efficiency of debugging should focus on improving locate-error phase.
Previous research backs up this claim: [Vessey, 1984] found that locating errors was the most
difficult and time-consuming part of the debugging process through verbal protocol analysis.

37

38

Chapter 6

Identifying efficient and inefficient
behaviors

One of the goals of this research was to use process data to identify efficient and inefficient be-
haviors exhibited by programmers while debugging. Students who are more efficient at debugging
may go about the task of debugging differently from students who debug less efficiently. By iden-
tifying these efficient and inefficient behaviors, we may be able to inform debugging instruction.
Unfortunately, our efforts to use process data to identify the effect of efficient and inefficient de-
bugging behaviors were generally not successful, for multiple reasons.

In order to identify behaviors, we attempted to isolate metrics corresponding to a particular
behavior hypothesized to have an effect on debugging behavior. For example, one hypothesis was
that students who spend more time in locate-error phase relative to repair-error phase (i.e., students
who spend more time thinking about their code) would debug more efficiently than students who
spent a larger share of time actively writing code. We instrumented this behavior with the metric
“locate-error ratio” in 6.1.2, and measured the statistical relationship between “time spent in locate-
error phase” and the count of debugging cycles across all students for both bowlingScore and
integerLetterFrequencies.

6.1 Behavioral features

6.1.1 Debugging cycles
Feature 1: Debugging cycles, calculated as the number of times the student enters the run-program
phase.

The count of debugging cycles is intended as a measure of debugging effort, reflecting how
many times a student goes through the ”debugging loop,” as defined in Section 5.2.

39

Run-program Error?

Locate-error Repair-error

Yes

Figure 6.1: The debugging loop.

6.1.2 Time spent in locate-error phase
Feature 2: Locate-error ratio, calculated as the median ratio between the length of the locate-error
phase and the length of the repair-error phase across all cycles in a debugging episode.

The locate-error phase is a critical part of debugging. We measure the amount of time spent
in each locate-error phase relative to the time spent in the corresponding repair-error phase. This
feature measures the proportion of debugging time spent trying to locate the error versus editing
the code.

This feature is meant to measure how much attention students pay to the task of locating errors
versus repairing them. We hypothesized that students who spent comparatively longer locating
errors would be more likely to correctly fix the error, and would thus finish debugging in fewer
cycles.

6.1.3 Print count
Feature 3: Print count, calculated as the maximum number of print statements present in the code
across all executions.

Since students in this context did not have access to a formal debugger, print statements are a
primary tool for observing program state.

We hypothesized that students who used more print statements would be able to debug more ef-
ficiently, and would solve problems in fewer debugging cycles, due to collecting more information
from each execution of the program from the print statements’ output.

6.1.4 Functional edits per repair-error phase
Feature 4: Functional edits per repair-error phase, calculated as the total number of behavioral
edits made in repair-error phases divided by the number of repair-error phases.

During any given repair-error phase, the edits students make can vary from changing single to-
kens to rewriting large sections of code. We measure the average number of token-level functional
edits students make per repair-error phase.

40

This feature is meant to measure how focused edits to the code are during repair-error phase.
Both the bowlingScore and integerLetterFrequencies exercises could have been debugged by stu-
dents with only a few tokens changed. We hypothesized that students who changed more tokens
than necessary in repair-error phase would take more debugging cycles to finish the exercises.

6.1.5 Summary of Behavioral Features
1. Debugging cycles: Number of times the student went through the debugging feedback loop.

2. Locate-error ratio: Median ratio between the length of the locate-error phase and the length
of the repair-error phase across debugging cycles.

3. Print count: Maximum number of print statements in the code across all executions.

4. Functional edits per repair-error phase: The average number of edits made during each
repair-error phase.

6.2 Method of Analysis
To analyze the data, we first needed to define what constitutes a ”struggling” student versus one
who is not.

6.2.1 Splitting Groups
We split student debugging episodes into two groups: those with a high number of debugging
cycles and those with a low number. Our primary goal is to discover behavioral differences between
students who struggled and those who did not.

• High cycle count debugging episodes were in the top quartile for the number of debugging
cycles for that specific exercise.

• Low cycle count debugging episodes were in the bottom three quartiles.
• The threshold number of debugging cycles was 7 for integerLetterFrequencies, 8

for bowlingScore, and 9 for moveToBack.

6.2.2 Statistical Testing
For each of the behavioral features, we performed a Mann-Whitney U test to compare the high-
struggle and low-struggle groups. We chose this non-parametric test because our features are not
normally distributed within the student population.

6.3 Results
A summary of statistical results is in Table 6.1. Overall, the only effect that was consistently
statistically significant and meaningful across both exercises was that of print count. The other two
factors had significant effects in the bowlingScore exercise, but not in the integerLetterFrequencies
exercise. Because integerLetterFrequencies had a broader sample of the course population, due to

41

it being mandatory for all students in the course, we believe that locate-error ratio and functional
edits per cycle did not have a significant effect on the number of debugging cycles.

Students in the high struggle group actually used significantly more print statements than stu-
dents in the low struggle group, by a large and statistically significant margin.

Exercise Measure Low-Struggle High-Struggle p-value Effect
M (n) M (n)

bowlingScore
Locate-Error Ratio 6.28 (131) 6.67 (40) 0.006 HS > LS
Print Statements 0.46 (127) 1.50 (46) < 0.001 HS > LS
Edits per Cycle 7.38 (127) 5.80 (46) 0.011 LS > HS

intLetterFreqs
Locate-Error Ratio 4.40 (197) 3.52 (50) 0.265 n.s.
Print Statements 0.92 (184) 1.58 (67) 0.003 HS > LS
Edits per Cycle 13.46 (184) 10.47 (67) 0.299 n.s.

Table 6.1: Debugging behavior differences between low-struggle and high-struggle students
across two programming exercises.
Statistical significance assessed via Mann-Whitney U tests. Significant p-values (p < 0.05) are
shown in bold. HS = High-Struggle, LS = Low-Struggle, n.s. = not significant. intLetterFreqs
refers to the integerLetterFrequencies exercise.

6.4 Discussion
None of our hypothesized effects matched up with the results from the process data. The only
feature that had a statistically significant relationship with debugging cycles across both exercises
was print count, and the effect was actually in the reverse direction of our hypothesis - students
who used more print statements debugged less efficiently.

One likely explanation is that students tend to use print statements when they are already strug-
gling - students who are able to debug the problem efficiently did not always need print statements.

As for the other behavioral features (locate-error ratio and functional edits per repair-error
phase), there may simply be too much noise in our data. Students were free to complete these
debugging exercises anywhere and anytime they wanted to, as long as they completed them within
a week of assignment. Any number of environmental and cognitive factors could have affected the
amount of time each student spent in each phase. Thus, we hypothesize that collecting data under
standardized conditions may be more appropriate for an analysis meant to identify positive and
negative behaviors.

42

Chapter 7

Conclusion

7.1 Summary
• We have collected a large dataset of process data from undergraduate programmers complet-

ing debugging exercises. To our knowledge, our dataset is the largest dataset of programming
process data ever collected in an educational setting, consisting of more students across more
exercises than any other dataset.

• We developed a novel method of extracting information on the cognitive phases of debugging
from this process data.

• We observed patterns in the process data that reflect aspects of the behavior of programmers
while debugging. These patterns can inform decisions in programming instruction.

• We attempted to use process data to identify efficient and inefficient debugging behaviors,
but were unsuccessful. Future work using data collected under laboratory conditions may
prove helpful in this aim.

• We provide evidence that process data can be used to evaluate debugging skill.

7.2 Future work - extensions
Our work can be extended and improved in many ways. First, collecting process data from a more
advanced course could reveal many new patterns. A comparison of behavior between experts and
novices becomes possible when the subject population includes subjects of different skill levels.

There is also more process data that can be collected. One of the chief limitations of the process
data we collected is that it is impossible to ascertain what the subject is looking at when they are
not actively typing. Integrating some form of eye tracking into the data collection could prove
valuable. Alternatively, a modified code editor that only shows one line of code at a time (as used
in [Katz and Anderson, 1987]) could be used. This data could enhance our understanding of what
exactly students are looking at when in locate-error phase, although it would be more useful for
longer exercises than the ones used for this project.

Finally, there are inherent limitations to performing any experiment like this outside of labora-
tory conditions. Students in the class were free to work on these exercises at any time before the

43

deadline, and thus were working in a variety of different conditions. If the same experiment were
to be repeated under standardized laboratory conditions, we could see different patterns in the data.

7.3 Future work - applications
Process data could be useful for a variety of applications relating to debugging. Below, we have
described a few noteworthy possibilities.

7.3.1 Educational interventions
Programming instructors may wish to give their students explicit instructions on debugging. An
intervention can take the form of a lecture, a game, or a debugger tool. [Sun et al., 2024] an-
alyzed 18 articles on a variety of different educational interventions and found that many of
these interventions are effective in improving debugging skill. Previous research [Liu et al., 2017],
[Price et al., 2020] has used process-based evaluations of debugging efficiency as a measure of
success for debugging interventions. This research quantifies efficiency as the number of edits
or compilations used to fix code, similar to our metric of debugging cycles. Our framework for
analyzing process data could help instructors get more detailed feedback on the effect of their
interventions.

For example, an instructor could assign students two debugging exercises separated in time,
and add a lecture on debugging in between. Differences in debugging behavior between the two
exercises could tell the instructor whether students got more efficient due to the intervention. The
data could also highlight where those efficiency gains came from - for example, did students get
faster in locate-error phase or repair-error phase?

7.3.2 Intelligent tutoring systems
Intelligent tutoring systems (ITS) are “computer programs that are designed to incorporate tech-
niques from the AI community in order to provide tutors which know what they teach, who they
teach and how to teach it” [Nwana, 1990]. Several ITSs have been developed and deployed for
computer programming instruction [Crow et al., 2018], and [Carter and Blank, 2013] developed
an ITS designed to teach students the principles of debugging.

Process data could be useful for developing the next generation of ITSs for debugging and
programming in general. For example, designers of ITSs may wish to intervene when a student
seems to be struggling to debug a program. Evidence of struggle can be identified in process data,
such as a student going through many debugging cycles without making meaningful progress.
Process data can be used to create an automatic trigger for hints or other interventions by an ITS.

7.3.3 AI debuggers
A significant amount of research effort has gone into creating systems that can automatically debug
computer programs. This line of research goes back to [Katz and Manna, 1975], and continues
into the present day. Some recent research has been focused on the potential for large language
models (LLMs) to act as automatic debuggers. [Yuan et al., 2025] created an agentic framework

44

that allows LLMs to call debugger tools in pdb, the Python debugger. The authors noted that the
agents struggled to use debugging tools in a meaningful way, and performance lagged behind that
of human developers more significantly than in general programming tasks. The authors mentioned
that training LLMs on human debugging logs as an avenue for future improvement.

Process data of the sort collected in our research is a log of humans debugging. Analysis of
process data could yield valuable insight for the design of agentic systems for program debugging.
For example, the average length of time spent in each of the cognitive phases (say, locate-error ver-
sus repair-error) could inform decisions for computational budget dedicated to each of the subtasks
of debugging.

In addition, process data could prove useful for training the underlying LLMs that write and de-
bug code. This method of training LLMs on sequential decision making tasks is largely unexplored
as of today.

45

46

Appendix A

Exercises

A.1 bowlingScore
The bowlingScore problem statement asks students to write a program that computes the total score
of a bowler in a game given a list containing the number of pins knocked down in each throw.

The prompt is as follows:

Background: When you are bowling, you get 10 frames. In each frame you get 2
throws, where you try to knock down the 10 pins. Your score for that frame is the total
number of pins you knocked down in those 2 throws. So if you knock down 3 pins on
your first throw, and then 6 more on the second throw, your score in that frame is 3+6,
or 9. Your total score is the sum of your score in each frame.
There are some special cases to consider:
If you knock down less than 10 pins on your first throw, but then you knock down the
rest of the pins on your second throw, this is called a ”spare”. When you get a spare,
your score in that frame also includes your next throw (in the next frame). So if you
knock down 3 on your first throw, and 7 on your second throw, that is a spare. So you
score 10 plus your next throw. Say your next throw is a 5 (in the next frame). Then
your score for the spare is 15. Remember, this throw is counted twice, as it forms part
of the score for its frame and the previous frame (the one with the spare).
If you knock down all 10 pins on your first throw in a frame, that is called a ”strike”.
In that case, the frame ends. Also, the score for the strike includes the next 2 throws.
So if you get a strike, then in the next frame you get 3 on your first throw and 5 on
your second throw, then the score for the strike is 10+3+5, or 18. As another example,
if you get a strike, followed by another strike, followed by a 3, then the score for the
first strike is 10+10+3, or 23.
If you get a spare in the last frame (the 10th frame), you get one more throw, and your
score for that last spare includes that last throw. However, there is no 11th frame, even
though you got that last throw.
Similarly, if you get a strike in the last frame, you get two more throws, which count
towards the 10th frame. Again, though, there is no 11th frame, even though you got
both of those last throws.

47

So we see that the best possible score is if you get a strike in every frame, and then in
the last frame you get two extra throws and both of those are strikes, too. In that case,
your score is 30 in all 10 frames, so your total score is 300.
With this in mind, write the function bowlingScore(scores) which takes a list of the
scores on each throw, and returns the total score for that game.
Remember that when you score a 10, that frame only has 1 throw, except the last
frame, as described above.

48

1 def bowlingScore(scores):
2 total = 0
3 i = 0
4 for frame in range(10):
5 if scores[i] == 10:
6 total += 10 + scores[i+2] + scores[i+3]
7 i += 1
8 else:
9 frame_score = scores[i] + scores[i+1]

10 if frame_score == 10:
11 total += 10 + scores[i+1]
12 else:
13 total += frame_score
14 i += 2
15 return total
16
17
18 @testFunction
19 def testBowlingScore():
20 assert(bowlingScore([10]*12)==300)
21 assert(bowlingScore([7,2,8,2,10,7,1,8,2,7,3,10,10,5,4,8,2,7])==162)
22 assert(bowlingScore([2,6,2,6,9,1,10,10,10,5,1,4,5,9,0,8,1])==140)
23 assert(bowlingScore([6,4,2,7,8,1,2,4,6,3,10,6,2,1,9,6,4,10,10,10])==137)
24 assert(bowlingScore([8,1,5,3,4,3,0,8,9,0,8,1,3,6,1,8,5,4,7,1])==85)
25
26 # Finally, verify that the function is non-mutating
27 L = [7,2,8,2,10,7,1,8,2,7,3,10,10,5,4,8,2,7]
28 bowlingScore(L)
29 assert(L == [7,2,8,2,10,7,1,8,2,7,3,10,10,5,4,8,2,7])
30
31 def main():
32 testBowlingScore()
33
34 main()

Figure A.1: Buggy starter code for bowlingScore exercise.
The testBowlingScore function provides test cases for the students’ convenience - the final
evaluation of correctness uses these test cases as well as additional test cases to check the

program. The bugs are on lines 6 and 11.

49

The starter code for the exercise can be seen in Figure A.1. There are two separate bugs in the
code for bowlingScore. On line 6, the index values i+2 and i+3 should be changed to i+1 and
i+2, respectively, in order to properly score strikes. That is,

total += 10 + scores [i+2] + scores [i+3]

should become:

total += 10 + scores [i+1] + scores [i+2]

On line 11, the index value i+1 should be changed to i+2 to properly handle spares. The code
total += 10 + scores[i+1]

should become:

total += 10 + scores[i+2]

These are the only defects introduced to the original correct version of the code. Some students
found alternative paths to fixing the code that involved more changes.

Running the buggy code as given will throw an IndexError on the first test case, shown on
line 20. This is because the i+3 index is out of bounds when the value of i is 9.

Once the fixes on line 6 are applied, the bug on line 11 will cause the second test case on line
21 to fail with an AssertionError. The final total output by the bowlingScore function is
incorrect because spares are not accounted for properly.

After both bugs are fixed, the code will pass all test cases and the exercise is completed.
Multiple students seemed to have trouble dealing with the IndexError thrown when the

starter code was executed. Rather than correcting the index itself, students tried to case on whether
or not the incorrect index on line 6 would cause the error, and diverting to an edge case branch if it
would.

50

Bibliography

[Ahmadzadeh et al., 2005] Ahmadzadeh, M., Elliman, D., and Higgins, C. (2005). An analysis of
patterns of debugging among novice computer science students. pages 84–88.

[Alaboudi and Latoza, 2021] Alaboudi, A. and Latoza, T. (2021). Edit - Run Behavior in Pro-
gramming and Debugging. 2021 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC), pages 1–10.

[Allwood and Björhag, 1990] Allwood, C. and Björhag, C.-G. (1990). Novices’ debugging when
programming in Pascal. International Journal of Man-Machine Studies, 33(6):707–724.

[Alqadi and Maletic, 2017] Alqadi, B. and Maletic, J. (2017). An Empirical Study of Debugging
Patterns Among Novices Programmers. Proceedings of the 2017 ACM SIGCSE Technical Sym-
posium on Computer Science Education.

[Becker, 2016] Becker, B. (2016). A new metric to quantify repeated compiler errors for novice
programmers. volume 11-13-July-2016, pages 296–301.

[Carter and Blank, 2013] Carter, E. and Blank, G. D. (2013). An intelligent tutoring system to
teach debugging. In International Conference on Artificial Intelligence in Education, pages
872–875. Springer.

[Carver and Klahr, 1986] Carver, S. M. and Klahr, D. (1986). Assessing children’s logo debugging
skills with a formal model. Journal of Educational Computing Research, 2(4):487–525.

[Crow et al., 2018] Crow, T., Luxton-Reilly, A., and Wuensche, B. (2018). Intelligent tutoring sys-
tems for programming education: a systematic review. In Proceedings of the 20th Australasian
computing education conference, pages 53–62.

[Edwards et al., 2023] Edwards, J., Hart, K., and Shrestha, R. (2023). Review of CSEDM Data
and Introduction of Two Public CS1 Keystroke Datasets. Journal of Educational Data Mining,
15(1):1–31.

[Fitzgerald et al., 2008] Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B.,
Thomas, L., and Zander, C. (2008). Debugging: finding, fixing and flailing, a multi-institutional
study of novice debuggers. Computer Science Education, 18:116–193.

[Gilmore, 1991] Gilmore, D. (1991). Models of Debugging. page 8.

[Gugerty and Olson, 1986] Gugerty, L. and Olson, G. (1986). Debugging by skilled and novice
programmers. pages 171–174.

[Hu et al., 2024] Hu, D., Santiesteban, P., Endres, M., and Weimer, W. (2024). Towards a Cogni-
tive Model of Dynamic Debugging: Does Identifier Construction Matter? IEEE Transactions
on Software Engineering.

51

[Hughes and Parkes, 2003] Hughes, J. and Parkes, S. (2003). Trends in the use of verbal protocol
analysis in software engineering research. Behaviour & Information Technology, 22(2):127–
140.

[Katz and Anderson, 1987] Katz, I. and Anderson, J. (1987). Debugging: An Analysis of Bug-
Location Strategies. Hum. Comput. Interact., 3:351–399.

[Katz and Manna, 1975] Katz, S. and Manna, Z. (1975). Towards automatic debugging of pro-
grams. In Proceedings of the International Conference on Reliable Software, page 143–155,
New York, NY, USA. Association for Computing Machinery.

[Kessler and Anderson, 1986] Kessler, C. and Anderson, J. R. (1986). A Model of Novice De-
bugging in LISP. In Soloway, E. and Iyengar, S., editors, Empirical Studies in Programmers.
Ablex, Norwood, NJ.

[Lin et al., 2016] Lin, Y.-T., Wu, C.-C., Hou, T.-Y., Lin, Y.-C., Yang, F.-Y., and Chang, C.-H.
(2016). Tracking students’ cognitive processes during program debugging: An eye-movement
approach. IEEE Transactions on Education, 59:175–186.

[Liu and Paquette, 2023] Liu, Q. and Paquette, L. (2023). Using submission log data to inves-
tigate novice programmers’ employment of debugging strategies. LAK23: 13th International
Learning Analytics and Knowledge Conference.

[Liu and Paquette, 2024] Liu, Q. and Paquette, L. (2024). Applying Sequence Analysis to Under-
stand the Debugging Process of Novice Programmers. volume 3796.

[Liu et al., 2017] Liu, Z., Zhi, R., Hicks, A., and Barnes, T. (2017). Understanding problem solv-
ing behavior of 6–8 graders in a debugging game. Computer Science Education, 27(1):1–29.

[Myers, 1978] Myers, G. J. (1978). A controlled experiment in program testing and code walk-
throughs/inspections. Commun. ACM, 21(9):760–768. Place: New York, NY, USA Publisher:
Association for Computing Machinery.

[Nwana, 1990] Nwana, H. S. (1990). Intelligent tutoring systems: an overview. Artificial Intelli-
gence Review, 4(4):251–277.

[Price et al., 2020] Price, T. W., Marwan, S., Winters, M., and Williams, J. J. (2020). An evalu-
ation of data-driven programming hints in a classroom setting. In Bittencourt, I. I., Cukurova,
M., Muldner, K., Luckin, R., and Millán, E., editors, Artificial Intelligence in Education, pages
246–251, Cham. Springer International Publishing.

[Rasmussen and Jensen, 1974] Rasmussen, J. and Jensen, A. (1974). Mental procedures in real-
life tasks: A case study of electronic trouble shooting. Ergonomics, 17(3):293–307.

[Sun et al., 2024] Sun, C., Yang, S., and Becker, B. (2024). Debugging in Computational Think-
ing: A Meta-analysis on the Effects of Interventions on Debugging Skills. Journal of Educa-
tional Computing Research, 62:1087–1121.

[Timmerman et al., 1993] Timmerman, M., Gielen, F., and Lambrix, P. (1993). A knowledge-
based approach for the debugging of real-time multiprocessor systems. In [1993] Proceedings
of the IEEE Workshop on Real-Time Applications, pages 23–28.

[Vessey, 1984] Vessey, I. (1984). Expertise in Debugging Computer Programs: A Process Analy-
sis. Int. J. Man Mach. Stud., 23:459–494.

52

[Vessey, 1985] Vessey, I. (1985). Expertise in Debugging Computer Programs: Situation-Based
versus Model-Based Problem Solving. page 18.

[Vessey, 1986] Vessey, I. (1986). Expertise in Debugging Computer Programs: An Analysis of the
Content of Verbal Protocols. IEEE Transactions on Systems, Man, and Cybernetics, 16:621–
637.

[Whalley et al., 2023] Whalley, J., Settle, A., and Luxton-Reilly, A. (2023). A Think-Aloud Study
of Novice Debugging. ACM Transactions on Computing Education, 23:1–38.

[Yuan et al., 2025] Yuan, X., Moss, M. M., Feghali, C. E., Singh, C., Moldavskaya, D., MacPhee,
D., Caccia, L., Pereira, M., Kim, M., Sordoni, A., and Côté, M.-A. (2025). debug-gym: A
text-based environment for interactive debugging.

53

	1 Introduction
	1.1 Background and Related Work
	1.1.1 Theoretical Foundations of Debugging
	1.1.2 Empirical Investigations of Debugging
	1.1.3 Research focused on novice debugging
	1.1.4 Differences Between Experts and Novices

	1.2 Cognitive model used in this research
	1.2.1 Cognitive phases of debugging

	1.3 Gap analysis

	2 Problem and approach
	3 Methods
	3.1 Apparatus and instrumentation
	3.1.1 Anonymization
	3.1.2 CMU CS Academy
	3.1.3 Process data
	3.1.4 Debugging exercises

	3.2 Subjects
	3.2.1 Instructions to subjects

	3.3 Data
	3.3.1 Intermediate code states
	3.3.2 Token-level changes
	3.3.3 Functional and print changes
	3.3.4 Functional and non-functional execution
	3.3.5 Extracted event log

	4 Extracting Cognitive Phases from Process Data
	4.1 Approach
	4.2 Panel of Experts
	4.3 Participants
	4.4 Materials
	4.5 Procedure
	4.6 Analysis
	4.7 Results
	4.7.1 Agreement with Automated Labeling
	4.7.2 Inter-rater Agreement
	4.7.3 Qualitative Feedback

	4.8 Cognitive phase log
	4.9 Discussion
	4.10 Conclusion

	5 Analysis of Patterns in Process Data
	5.1 Case studies
	5.1.1 Student 1
	5.1.2 Student 2

	5.2 Debugging cycles
	5.3 Count of debugging cycles across exercises
	5.4 Time evolution of debugging cycles
	5.5 Correlation with exam scores
	5.6 Completion grading
	5.7 The problem with time-elapsed
	5.7.1 Patterns in time-elapsed across phases
	5.7.2 The importance of locate-error phase

	6 Identifying efficient and inefficient behaviors
	6.1 Behavioral features
	6.1.1 Debugging cycles
	6.1.2 Time spent in locate-error phase
	6.1.3 Print count
	6.1.4 Functional edits per repair-error phase
	6.1.5 Summary of Behavioral Features

	6.2 Method of Analysis
	6.2.1 Splitting Groups
	6.2.2 Statistical Testing

	6.3 Results
	6.4 Discussion

	7 Conclusion
	7.1 Summary
	7.2 Future work - extensions
	7.3 Future work - applications
	7.3.1 Educational interventions
	7.3.2 Intelligent tutoring systems
	7.3.3 AI debuggers

	A Exercises
	A.1 bowlingScore

