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Abstract
Much of the past work on voting systems focuses on ranked voting systems,

which have a number of limitations such as Arrow’s Theorem [1]. In this paper we
consider ranked voting systems as well as the less commonly used class of rated
voting systems. The systems differ in that ranked voting systems only allow the
voter to order the candidates, while in rated voting systems the voter can score each
candidate independently. In 2000, Warren Smith [4] evaluated ranked and rated vot-
ing systems under a Monte Carlo simulation model of voter utilities and behaviors.
We replicate Smith’s results with a wider selection of voting systems, voter util-
ity distributions, and polling models, and conclude different polling models lead to
significantly different evaluations of the voting systems.

This project’s source code is freely available online at https://github.c
om/RussellEmerine/voting_simulation.

https://github.com/RussellEmerine/voting_simulation
https://github.com/RussellEmerine/voting_simulation
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1 Introduction

Many various voting systems have been proposed, used, and analyzed. Past research often eval-
uates properties of the voting systems, such as unexpected election outcomes or strange strategic
voting behavior. Arrow’s theorem [1], one of the most well-known results in the field, reveals
a limitation that applies to all possible ranked voting systems, where votes can be expressed as
an ordering of the candidates. Arrow’s theorem does not apply to rated voting systems, where
voters independently assign each candidate a numerical score. However, both these classes of
voting systems have the limitation that they are susceptible to strategic voting.

Taking inspiration from Smith [4], we seek to evaluate voting systems under a statistical
Monte Carlo simulation model, allowing ranked and rated systems and accounting for strategic
voting. We define a utility model so that we may numerically evaluate the societal outcome of an
election result. We list several voting systems and specify how honest and strategic voters behave
for each. We describe the method used to generate utilities and polling data. We run Monte
Carlo simulations to repeatedly produce utilities, votes, an election result, and an evaluation of
that particular result. We consider those evaluations collectively in order to evaluate each voting
system. We take this method of evaluation to be a good indicator of the performance of a voting
system, and conclude with an analysis across voting systems and polling models.
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2 The Utility Model

We represent and evaluate voting systems under the utility model of internal voter preferences.
Each voter has a utility in [0, 1] for each candidate. When the candidate is elected, each voter
receives the corresponding utility. The performance of the whole system is then the sum of the
utilities (or equivalently the average utility across all voters).

Traditional analyses of ranked voting systems only allow each voter to have internal prefer-
ences in the form of an ordering of the candidates, on the grounds that voters cannot intrinsically
know how their utilities compare to other voters’ utilities. However, if we allow ourselves to
believe voters can produce a reasonable comparison of their own utilities to other voters’ utili-
ties, we can model situations that ranked voting systems cannot. There is no good way to create
utility preferences from on ranked preferences, while it is easy to create a ranked preferences
from utility preferences.

The following case illustrates the difference between the two Suppose 60% of voters prefer
candidate c1 over candidate c2 only slightly, and 40% of voters prefer c2 over c1 very strongly.
Under a ranked preference system, c1 is considered the better candidate. Under a utility prefer-
ence system, c2 is considered the better candidate.

Furthermore, evaluating a candidate against a model of ranked internal voter preferences
is as complex as (in fact, equivalent to) making a ranked voting system. The declaration of
which candidate best matches ranked internal voter preferences is not obvious, and may become
impossible, or at the very least interpretable under multiple standards, when Condorcet cycles are
present (see the “Condorcet Least Reversal” 4.3.11 and “Condorcet Ranked Pairs” 4.3.12 voting
systems). Meanwhile, evaluating the outcome using the utility model is straightforward.

Votes generally are intended to encode voter preferences in some reasonable way. This is
usually “obvious”; for instance, the vote in range voting is intended to directly represent the
utility, and the vote in ranked systems is intended to directly represent the ranking (which as
mentioned can be easily created from utilities). Voters that vote according to this intended en-
coding are honest. We will see that in some cases, voters will expect a better result if their votes
deviate from encoding their internal preferences in order to account for the expected behavior of
other voters. These voters are strategic. We will have varying proportions of strategic and honest
voters.

If voters cannot directly compare their utilities to other voters’ utilities (or are not confident in
the accuracy of their comparisons), we can account for that incongruity in the simulation if we so
choose. Before deciding on votes, we linearly scale each voter’s utilities so that the least favored
candidate has utility 0 and the most favored candidate has utility 1. We cast votes using these
scaled utilities. (The scaling process happens before votes are decided, so honest voters use their
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utilities from after scaling.) Then, we evaluate the elected candidate against the voters’ original
unscaled utilities. We run the simulation program with and without this rescaling operation.

The metric we analyze to evaluate voting systems is regret, which is the difference between
the total utility of the maximum-utility candidate and the total utility of the elected candidate.
This number is always positive, but its scale depends on the number of voters and the distributions
of their utilities. We take care to note these parameters when comparing regret values between
runs.
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3 Polling Models

Strategic voting requires some knowledge of the expected behavior of other voters. This is
presented in the form of a poll order produced from a poll.

A poll is some process in which data is collected from a sample of voters, and aggregated
into some output form that is freely available to all voters before the election. A poll order is an
ordering of the candidates provided as the output, that is intended to correspond roughly to an
ordering of the candidates by likelihood to win the election. Since all voting strategies considered
only need this ordering of candidates, our polls will output poll orders (rather than, say, just the
most popular candidate, or a global rating of the candidates).

The actual likelihoods are not easy to calculate from a sample of voters due to the complexity
of some voting systems, so we use some simplified models to create polling orders, described
below.

Considered across all simulation runs, each candidate is equally likely to win the election,
due to the symmetry in utility generation. One polling method is to directly apply this observa-
tion, which means the polling order can be arbitrarily chosen — in our simulations, chosen as a
random poll order. Smith uses this method exclusively (ordering candidates by their IDs rather
than randomly).

If the voters in the sample provide ratings in [0, 1] for each candidate, we can order candidates
based on their average ratings. We call this range poll order since the rating mechanic is the same
as in range voting.

If the voters in the sample provide their most favored candidate, we can order candidates
based on the number of voters that favor them. We call this plurality poll order since the single-
choice mechanic is the same as in plurality voting (though maybe “first-choice poll order” would
be a better name).

We assume that poll participants are honest, which is reasonable due to the nature of how
real polls are conducted. (Strategic poll behavior is theoretically possible, but quickly leads to
complications.)

In our simulations, “polls” use the whole population rather than a sample. This is to accu-
rately capture population statistics, since the total number of voters used is small enough that
sampling can easily lead to misleading deviations from the population statistics. Polls done on
a sample of a larger total number of voters are expected to be representative of the population
statistics. So long as the total number of voters in the simulation is large enough to accurately
represent the expected voting patterns that might occur with even more voters, this practical
decision makes our simulations no less accurate.
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4 Voting Systems

A voting system is a system where a (usually large) number of voters cast votes of some kind,
and the votes are aggregated in some process to select one of a (usually small, but greater than
one) number of candidates.

Some formulations allow the output to be a set of candidates or an ordering of candidates.
In this work, we will only consider systems that output a single winner. We will also focus on
cases with three or more candidates, as with two candidates, all reasonable voting systems fall
into either the ranked or rated behaviors as described in 2.

We first describe several types of voting systems, then list and describe the particular voting
systems we consider in our simulation.

4.1 Ranked and Rated Voting Systems

4.1.1 Ranked Voting Systems

In a ranked voting system, vote information can be encoded into an ordering of the candidates.
For instance, plurality voting uses the most favored candidate from each ordering, while Borda
voting uses the whole ordering. Ranked voting systems traditionally output an ordering of can-
didates (which in this section we refer to as the “outcome”); to choose our single winner we can
simply choose the most favored candidate in the outcome.

Arrow’s theorem states that, if there are at least three candidates, no ranked voting system
may satisfy all of the following properties [1]:

• Pareto efficiency: If every voter places ci before cj , then the outcome also places ci before
cj . (This can be weakened to non-imposition, i.e. that for any ci and cj , there is some cast
of votes such that the output places ci before cj [5].)

• Non-dictatorship: There is no voter whose ordering is always the same as the outcome.
• Independence of irrelevant alternatives: In two elections with the same number of voters

where each pair of corresponding voters has the same relative ordering of ci and cj , the
outcomes of both elections have the same relative ordering of ci and cj .

The fact that it is impossible to have all three of these very reasonable conditions is a limita-
tion of ranked voting systems.
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4.1.2 Rated Voting Systems
Votes need not be restricted to orderings of candidates. Rated voting systems allow a voter to
provide independent scores for each candidate, which can be more informative than an ordering
of the candidates. For instance, range voting allows a voter to give each candidate their own
score in the range [0, 1]. thereby allowing a voter to express how much they prefer their most
favored candidate over their second most favored candidate.

Since these are not ranked voting systems, Arrow’s theorem does not apply, and it is com-
pletely possible to have Pareto efficiency, non-dictatorship, and independence of irrelevant alter-
natives. However, they are still subject to some restrictions, notably Gibbard’s theorem, that no
deterministic process of collective decision may satisfy all of the following properties [2]:

• The process has more than two possible outcomes.
• There is no voter who singlehandedly determines the outcome.
• The game-theoretically optimal vote for a voter will not depend on the voter’s beliefs of

what other voters will vote.

When applied to voting systems, this implies that non-dictatorial voting systems with three
or more possible outcomes (ranked, rated, or otherwise) require some kind of strategic voting
that is not completely honest.

An aside about determinism:
Most voting systems do not have a good way of handling ties without using randomness

or allowing multiple winners. However, when the number of voters is reasonably large, the
chance of a tie is negligible. We will consider voting processes that are deterministic when
there are no ties “good enough.” In practice, when ties occur in the simulations, we break
them arbitrarily (e.g. by candidate ID).

4.1.3 Other Voting Systems
There are a few “obviously bad” voting systems that we consider, such as “random winner” and
“worst candidate”. These are only useful as a frame of reference, and are not expected to have
any of the properties discussed for ranked and rated systems.

4.2 COAF and Non-COAF Systems

4.2.1 COAF Systems
Smith’s specification of compact set based, one-vote, additive, fair voting systems describes
many common ranked and rated voting systems [4]. In a COAF system with C candidates
there is a compact set S ⊆ RC of allowed votes, where S is symmetric across permutations
of candidates (fair). Each voter chooses one vote in S to submit. Then, the votes are added,
and the candidate with the greatest sum (or equivalently, average, referred to as “score” for
the following proof) is selected as the winner. For instance, plurality voting is when S =
{(1, 0, 0, . . . ), (0, 1, 0, . . . ), (0, 0, 1, . . . ), . . . }, and range voting is when S = [0, 1]C .
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Smith provides a proof of the optimality of the “moving average” strategy. This strategy
generates the game theoretically optimal vote in any COAF system when given poll data in the
form of a predicted ordering of candidates by expected score. (This ordering is equivalent to
ordering the candidates by likelihood of winning. Such a poll can be produced by a random
sample of voters, see 3). Consider a COAF system with vote set S and without loss of generality
label the candidates as c1, c2, . . . cC in poll order. Let U1, U2, . . . UC be the utilities of the voter
for each candidate, under the utility model discussed in 2. The vote is generated as follows:

• Let the set X0 representing the set of potential votes start as X0 = S.
• If U1 > U2, let X1 be the subset of X0 that maximizes the 1st component. Otherwise, let
X1 be the subset of X0 that minimizes the 1st component.

• For each candidate ci in poll order starting from c2, if Ui > 1
i−1

∑i−1
j=1 Uj , let Xi be the

subset of Xi−1 that maximizes the ith component. Otherwise, let Xi be the subset of Xi−1

that minimizes the ith component.

The final set XC will consist of exactly one vector, which will be the vote.

Consider an example with plurality voting. If U1 > U2, then X1 is the singleton set with the
vote for c1, and X2 = X1 as X1 is already a singleton. If U1 < U2, then X1 is the set of votes
for any candidate other than c1, and X2 is the singleton set with the vote for c2 (comparing U2 >
1

2−1

∑2−1
j=1 Uj = U1). Sets X3, X4, . . . XC are all equal to X2 as X2 is a singleton. To summarize,

a strategic voter in plurality voting will vote for the more favored of the two frontrunners.

Consider another example with range voting. Set the c1’s score to 0 or 1 according to the
comparison of U1 to U2. Then, proceed in poll order and set each score to 0 or 1 according to
the comparison against the moving average as specified. The resulting vote has 0 or 1 at every
component.

We provide a more formal specification and proof of the restrictions for X1 and X2.

Let us say there are C candidates, V votes, and P pollees, where V and P are reasonably
large. Let us say that across all votes, the ith component of the vote vector lies in a distribution
with mean µi and variance σ2

i . µi is the actual score the candidate will receive. σ2
i has no direct

effect on the election result but is useful for strategic analysis.

In this strategy, the only information voters have on the candidates is the polling data and
their own personal associated utilities. To model this, we will assume a voter’s belief of the
distribution of a candidate ci’s score µi follows a normal distribution with the same variance as
would be expected from the sample distribution, which by the central limit theorem is σ2

i

P
. These

belief distributions have means we will call x1, x2, . . . xC — the numerical values of these are
not important, but they are known to be in the polling order, as shown in this plot of the believed
distributions of µ4, µ3, µ2, and µ1:
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x4 x3 x2 x1

score

Since the P is large, we can assume the variance σ2
i

P
is very small:

x4 x3 x2 x1

score

The voter’s vote can only change the outcome of the election if the values of the actual two
highest scores are an election-determining “near tie”, within 1

V
of each other. Otherwise, the vote

cannot change the outcome of the election — this case can be considered a fixed component of
the expected utility, and so can be ignored for reasoning about the optimal vote. The following
reasoning will assume there is some near tie.

Given that there is a near tie between c1 and c2, there is a high chance that the value of the
tie at µ1 ≈ µ2 is somewhere close to the range [x2, x1], and that every other µi is close to its
respective xi. Any near tie meeting these conditions is an election-determining near tie.

Meanwhile, given that there is a near tie between ci and cj where i < j and (i, j) ̸= (1, 2), it
is only an election-winning tie if all ck for k < i have µk < µi.

If i ̸= 1, this can only happen either in the case that the tie occurs outside of its likely range of
[xj, xi] or in the case that every µk is outside of its likely range near xk. It can be determined that
this probability makes the election-winning near tie unlikely compared to the near tie between c1
and c2, so long as the xi − xj is comparable to x1 − x2.

If i = 1, then the probability that c1 and cj tie is already significantly smaller than the
probability that c1 and c2 tie, as x1 and xj are farther apart.

This means that the case of an election-determining near tie between c1 and c2 dominates the
cases that the vote can affect. Optimizing for this case determines X1 and X2 as specified in the
moving average strategy.

After narrowing down the potential votes to X2 by considering when c1 is a member of the
near tie, there may still be many possible votes to make. It is already a very small chance for
the optimization to X2 to affect the outcome of the election, and it is even less likely for any
remaining optimization to do so — and so the restriction to X2 is already “good enough” for
most purposes (this will also be useful for non-COAF systems). For the sake of implementation,
we narrow down the possible votes from X2 to a single vote by continuing to apply the moving
average strategy as described.
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4.2.2 Non-COAF Systems

Ranked and rated systems can also be non-COAF. For instance, the “plurality with runoff”
system (see 4.3.7) re-scores two candidates based on the condition that they are the frontrunners
by plurality — this type of conditional cannot be modeled in an additive system.

The strategic voter behavior for non-COAF systems can be complex. For instance, strategic
voting in a three-candidate plurality with runoff system may require some voters with the same
preferences to vote in different ways, as a split voting bloc [3]. However, as discussed in the
previous section, it is very unlikely that any candidate other than the two poll frontrunners will
have a chance to affect the election. We simply ensure the strategic vote optimizes for near ties
between the two poll frontrunners and, under that restriction, use honest behavior for determining
a unique vote. For the various ranked non-COAF systems, this is done by placing the frontrunners
first and last, then keeping all other candidates in the same order.

4.3 A List of Voting Systems Considered

4.3.1 Random Winner

A candidate is chosen uniformly at random to be the winner. Useful as a frame of reference.

4.3.2 Random Dictator

A voter is chosen uniformly at random to be a dictator. The candidate that the dictator likes the
most is the winner. Useful as a frame of reference.

4.3.3 Worst Candidate

The candidate that gives the worst possible sum of utilities is the winner. Useful as a frame of
reference.

4.3.4 Range Voting

The most general COAF voting system, where S = [0, 1]C .
Honest voters simply submit their utilities (possibly scaled as discussed in 2).
We evaluate two strategic voting behaviors for range voting. One is the moving average

strategy. The other is an alternate strategy that sets a threshold at the average of the utilities of
the two frontrunners, and votes 0 for candidates below the threshold and 1 for candidates above
the threshold.

Note that strategic voters will always score candidates at 0 or 1, while honest voters might
use other values.
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4.3.5 Approval Voting

A COAF voting system where S = {0, 1}C .
Honest voters use the average utility between all candidates as a threshold, and submit 0 for

candidates below the threshold and 1 for candidates above the threshold.
Strategic voters in range voting always score candidates at 0 or 1, so their strategies work just

as well in approval voting. We evaluate the same two strategies for approval voting as we do for
range voting.

The only difference between approval voting and range voting is the behavior of honest vot-
ers, where range voting allows for describing one’s preferences in more detail.

4.3.6 Plurality Voting
A COAF voting system where S = {(1, 0, 0, . . . ), (0, 1, 0, . . . ), (0, 0, 1, . . . ), . . . }. In other
words, each voter votes for one candidate, and the candidate with the most votes wins. This
is perhaps the most commonly known voting system.

Honest voters submit their most favored candidate.
Strategic voters submit their most favored candidate among the two frontrunners from the

poll ordering.

4.3.7 Plurality with Runoff Voting
A non-COAF system where voters first make a plurality vote (the “first stage”), then decide
between the two frontrunners by a two-candidate ranked vote (the “second stage”).

For the first stage, honest voters sumbit their most favored candidate.
For the first stage, strategic voters submit their most favored candidate among the two fron-

trunners from the poll ordering.
For the second stage, honest and strategic voters submit their most favored candidate from

the two allowed candidates.
This often is presented as a two-stage election, but can also be done with one vote by allowing

C × 2(
C
2) possible votes, consisting of a single candidate for the plurality stage, then the most

favored candidate of each pair, to be used depending on the outcome of the plurality stage. (This
detail does not matter for analysis or our simulation but may be useful for other implementations
of simulations.)

4.3.8 Bullet Voting
(“Bullet voting” seems to be Smith’s terminology. We use it for consistency.)

A COAF system where S = {(0, 1, 1, . . . ), (1, 0, 1, . . . ), (1, 1, 0, . . . ), . . . } (or equivalently
{(−1, 0, 0, . . . ), (0,−1, 0, . . . ), (0, 0,−1, . . . ), . . . }). In other words, each voter votes against
one candidate, and the candidate with the fewest votes wins.

Honest voters vote against their least favored candidate.
Strategic voters vote against their least favored candidate out of the two frontrunners from

the poll ordering.
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4.3.9 Borda Voting

A COAF system where S is the permutations of (0, 1, 2, . . . , C − 1) (or equivalently ( 0
C−1

, 1
C−1

,
. . . , C−1

C−1
)). In other words, each voter ranks all candidates, each candidate receives a linearly

weighted score, and the candidate with the highest average score wins.
Honest voters rank the candidates honestly.
Strategic voters rank the candidates by the moving average strategy, in particular placing

the more favored of the two frontrunners first in the ranking and the less favored of the two
frontrunners last in the ranking.

4.3.10 Dabagh Voting
Also known as “Point-and-a-half” voting.

A COAF system where each vector in S has one candidate scored at 1, one candidate scored
at 0.5, and all other candidates scored at 0. In other words, each voter ranks all candidates, each
candidate receives a score of 1 for all voters putting them first and 0.5 for all voters putting them
second, and the candidate with the highest average score wins.

Honest voters rank the candidates honestly, thus giving the score of 1 to their most favored
candidate and the score of 0.5 to their second most favored candidate.

Strategic voters rank the candidates by the moving average strategy, in particular giving the
score of 1 to the more favored of the two frontrunners, giving a score of 0 to the less favored of
the two frontrunners, and giving the score of 0.5 to some other candidate.

4.3.11 Condorcet Least Reversal Voting
A non-COAF ranked system based on defeating Condorcet cycles. We consider the graph with
candidates as vertices and pairwise margins of defeat as edges. For example, if 200 voters place
c1 before c2 and 50 voters place c2 before c1, then there is an edge from c2 to c1 with a weight of
150. If there are any candidates with no outgoing edges (i.e. no pairwise defeats), this candidate
is the Condorcet winner, and wins the election. Otherwise there is a cycle in the graph called a
Condorcet cycle. Find the set of edges of least summed weight such that flipping them identifies
a Condorcet winner; that candidate wins the election.

(This specific formulation is generalizable to multiple winners or rank output. However, for
the single-winner case this is in practice a matter of finding the smallest sums of weights of each
vertex’s outgoing edges.)

Honest voters rank the candidates honestly.
Strategic voters rank the more favored of the two frontrunners first, the less favored of the

two frontrunners last, and the rest of the candidates honestly.

4.3.12 Condorcet Ranked Pairs Voting
A non-COAF ranked system based on defeating Condorcet cycles. As before, we consider the
graph with candidates as vertices and pairwise margins of defeat as edges. Consider each pair of
candidates in order of largest to smallest margin of victory. If the pair does not form a Condorcet
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cycle, then add an edge between the two candidates; otherwise ignore it. At the end there will be
a unique candidate that wins all pairwise comparisons under consideration.

Honest voters rank the candidates honestly.
Strategic voters rank the more favored of the two frontrunners first, the less favored of the

two frontrunners last, and the rest of the candidates honestly.

4.3.13 Ranked Choice Voting (Fewest First)
Also known as (a form of) single transferable vote, or (a form of) instant runoff voting.

A non-COAF ranked system where the candidate with the fewest first-place rankings is re-
peatedly removed until there is one candidate remaining.

Honest voters rank the candidates honestly.
Strategic voters rank the more favored of the two frontrunners first, the less favored of the

two frontrunners last, and the rest of the candidates honestly.

4.3.14 Ranked Choice Voting (Most Last)
Also known as (a form of) single transferable vote, or (a form of) instant runoff voting.

A non-COAF ranked system where the candidate with the most last-place rankings is repeat-
edly removed until there is one candidate remaining.

Honest voters rank the candidates honestly.
Strategic voters rank the more favored of the two frontrunners first, the less favored of the

two frontrunners last, and the rest of the candidates honestly.
This version in particular is rather susceptible to strategic voting, since the strategic voting

patterns described will often eliminate both frontrunners.

4.3.15 Copeland
A non-COAF ranked system based on defeating Condorcet cycles.

The candidate that wins against the greatest number of other individual candidates wins the
election. Since ties are common no matter the size of the voter count (e.g. if c1 and c2 both
win against 3 of their 4 opponents), some tiebreaker is necessary. Borda count is a common
tiebreaker, and is what we use.

Honest voters rank the candidates honestly.
Strategic voters rank the more favored of the two frontrunners first, the less favored of the

two frontrunners last, and the rest of the candidates honestly.

4.3.16 Bucklin
If there is a candidate ci with more than half of the voters placing ci in first, then ci wins. If
not, then if there is a candidate ci with more than half of the voters placing ci in first or second,
then ci wins. This repeats for ranks 1 through k for each k. If there are ties (i.e. if incrementing
k creates multiple potential winners at once), they are broken by the count of voters placing in
ranks 1 through k.
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Honest voters rank the candidates honestly.
Strategic voters rank the more favored of the two frontrunners first, the less favored of the

two frontrunners last, and the rest of the candidates honestly.

4.3.17 STAR
An acronym for “score then automatic runoff”.

A non-COAF rated system where each voter submits a rating 1 of all the candidates. Then,
the two candidates with the highest rating (call them c1 and c2) are put in a runoff. If more voters
score c1 higher than c2, then c1 wins; otherwise c2 wins.

Honest voters rate the candidates honestly.
Strategic voters rate the more favored of the two frontrunners at 1, the less favored of the two

frontrunners at 0, and the rest of the candidates honestly.

1Wikipedia specifies that the ratings are integers in {0, 1, 2, 3, 4, 5}, but I instead just use reals in [0, 1] as with
standard range voting.
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5 Utility Distributions

Smith’s original simulations use two methods to randomly generate utilities. The first is for each
voter to have a uniformly random utility in [0, 1] for each candidate. The second is an issue-based
method, where there are I issues, and each candidate and voter has a uniformly random stance
on each issue in [−1, 1] (so that a stance vector is in [−1, 1]I). The voter then has a utility for the
candidate equal to v⃗·⃗c+I

2I
, the dot product of the stance vectors normalized to [0, 1].

We expand upon this by allowing normal distributions, as well as bimodal distributions pro-
duced by mixing two normal distributions with different means. Either can be used to gener-
ate utilities directly or to generate stances. These distributions are truncated to the appropriate
bounds, i.e. [0, 1] for utilities and [−1, 1] for stances. The normal distributions have reasonably
small standard deviations so that truncation does not have a large effect on the distribution.

Note that this utility generation process is in fact symmetric across voters and candidates, as
assumed in the previous sections.
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6 Simulation

The process in the simulation for one set of parameters (i.e. voting system, voter count, candidate
count, ratio of honest/strategic voters, utility distribution generation method), is to repeatedly
execute the following sequence:

• Generate utility distributions by the chosen method.
• Create votes using the utilities according to the voting system and honest or strategic be-

havior.
• Determine the winner of the election by that set of votes in the given voting system.
• Calculate the regret of the winner against the highest-total-utility candidate.

We then plot the regrets so that they can be evaluated against each other.
The source code is freely available online at https://github.com/RussellEmerin

e/voting_simulation.
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7 Analysis

The following plots are box plots displaying the quartiles of the data gathered. This gives a
general idea of the distribution over all trials. We also record the average regret over all runs in a
text file, but do not display it on the plot.

Take as an example the following simulation parameters:

• 100 voters
• 5 candidates
• 10000 trials
• Uniformly random utility generation
• All honest voters
• Utility renormalization
• Random Poll Order

The plots include the “obviously bad” frame of reference voting systems,

the COAF systems,
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and the non-COAF systems.

One important feature to note is that in almost all voting systems, more than half of all
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elections elect the best candidate. Another is that, as expected, honest range voting almost always
elects the best candidate, since it directly represents utilities (and only fails when renormalization
changes the best average utility).

Observe the COAF systems with an increasing ratio of strategic voters.

75% honest voters:

50% honest voters:

25% honest voters:
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All strategic voters:

And all strategic voters for non-COAF systems, for comparison:
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In these graphs, all voting systems generally have more regret for larger proportions of strate-
gic voters. Range voting maintains its position as the voting system with the least regret. The
average regrets (not shown on the plots) have the same ratios between each other as in Smith’s
simulations, and the plots visually reflect the similarity as well. This therefore replicates Smith’s
initial results.

Smith does not consider STAR voting, since it was invented after the 2000 paper. This plot
shows that STAR voting is comparable to range voting for strategic voters (but the earlier plot
shows that it has greater regret for honest voters).

However, we see drastically different behavior for strategic voters in other poll orders. Con-
sider plurality poll order.

All strategic voters for COAF systems with plurality poll order:

25



All strategic voters for non-COAF systems with plurality poll order:

In the case of plurality poll order (looking at the means as well as the plots), range voting still
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does slightly better than all other voting systems. However, the regrets are generally all closer.

The least-regret system is range voting with the threshold strategy, followed by STAR voting,
followed by range voting with the moving average strategy. It is unclear if there is any particular
reason for the threshold strategy to have lower regret than the moving average strategy.

Consider range poll order.

All strategic voters for COAF systems with range poll order:

All strategic voters for non-COAF systems with range poll order:
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In the case of range poll order, range voting does worse than plurality voting. This is because
the poll frontrunners in the range poll order are in fact the overall best two candidates by utility,
and since every strategic voter in the plurality voting system votes for one of the two frontrunners,
it is guaranteed that one of the best two candidates is elected.

This effect applies more strongly as the proportion of strategic voters is set higher. Plurality
voting has more regret than range voting with 50% honest voters, but has less with 75% honest
voters. The same effect lowers the regret to a similar value to that of plurality voting for the
similar plurality with runoff, Dabagh, and fewest-first ranked choice voting systems.

The above analysis was all done with standard uniform utility generation and utility renor-
malization. Results with other methods of utility generation and without utility renormalization
are similar up to linear scaling. A cursory analysis of some of them is available at 9.
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8 Conclusions

We successfully replicate Smith’s results, but only with random poll order. We find that with
other poll order models, the performance of different voting systems changes significantly. Range
voting has low regret but is close to other voting systems when using plurality poll order. Plurality
voting has lower regret than range voting when using range poll order with a high proportion of
strategic voters (due to fairly straightforward properties of the polls and strategies).

The simulations used in this paper are, of course, highly simplified as compared to real-
life elections. Polling methods in particular face a number of practical considerations such as
response rates and sample selection. Further work may be done to make a closer examination of
the nature of simulated polls and elections and how they relate to real polls and elections.

Further work may also be done to explore more ways of simulating polling. We may also con-
sider other factors, such as voting with incomplete information about utilities, or more realistic
utility generation methods.
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9 Appendix A: Other Utility Generation
Methods

This section includes some plots that are qualitatively similar to those discussed in 7, and are
included to demonstrate that similarity. A complete collection of all the plots is available in the
Github repository.

The following plots, like the plots in 7, have

• 100 voters
• 5 candidates
• 10000 trials

The following are for standard uniform with plurality poll order, with renormalization. (These
are already in 7, but are included again for convenience of comparison.)

Frame of reference:

Honest COAF:
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Honest non-COAF:

Strategic COAF:
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Strategic non-COAF:

The following are the same plots, but without renormalization.
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Frame of reference:

Honest COAF:

Honest non-COAF:
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Strategic COAF:

Strategic non-COAF:
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The only major difference between these sets of plots is that honest range voting without
renormalization always has regret of exactly 0, since the range voting score is exactly the same
as the average utility of the candidate. Other than that, renormalization does not make any major
change on election results.

The following are the same plots for the normal distribution for utility generation (with renor-
malization again):

Frame of reference:

Honest COAF:
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Honest non-COAF:

Strategic COAF:
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Strategic non-COAF:

All of the regrets are smaller since the utilities are closer in value. However, the curvature
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of the normal distribution seems to not significantly affect the election results. Perhaps the only
interesting observation to make is that despite Borda using an innate linear scale to score can-
didates, it still performs similarly (relatively to other voting systems in the same context), even
when the utilities are generated with nonlinear values.

Similar statements can be made about the bimodal and issue-based utility generation meth-
ods.
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