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Abstract
Recent advances in large language models (LLMs) have pushed GPU hard-

ware to its limits, requiring highly optimized kernels for compute- and bandwidth-
intensive operations such as matrix multiplication, attention, and inter-GPU com-
munication. However, achieving state-of-the-art efficiency often demands deep low-
level expertise, slowing development and limiting accessibility.

This thesis presents TIR+, a multi-level compiler framework that unifies high-
level productivity and low-level optimization within a single compilation and run-
time infrastructure. TIR+ spans from a Python-based tiling DSL, enabling rapid
kernel prototyping, to a hardware-centric intermediate representation (IR), offering
fine-grained control over memory, parallelism, and specialized instructions. Be-
tween these extremes, it provides optimized tensor libraries and reusable primitives.
Crucially, TIR+ is distributed-aware, supporting multi-GPU execution with built-
in communication management and compute–communication overlap. We demon-
strate the capability of TIR+ through key LLM kernels, such as GEMM, attention,
and fused compute–communication kernels. Among these cases, TIR+ matches the
state-of-the-art performance with significantly less development effort than hand-
tuned CUDA, demonstrating a unified and scalable path toward hardware-aware ker-
nel optimization for current and future AI workloads.
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Chapter 1

Introduction

Recent advances in large language models (LLMs) have raised unprecedented demands on GPU
computing. Training and inference now involve trillions of floating-point operations, massive
data movement through hierarchical memory systems, and execution across multiple accelera-
tors connected by high-speed interconnects. To meet these demands, developers must rely on
highly optimized kernels that saturate tensor cores, maximize memory bandwidth, and minimize
communication overhead. Yet achieving such performance often requires low-level expertise in
CUDA or PTX, careful orchestration of warps and memory layouts, and substantial manual tun-
ing. While this can yield kernels that approach peak hardware efficiency, the engineering cost is
immense, and every new model or hardware generation exacerbates the burden.

Meanwhile, high-level approaches have emerged to make kernel development more produc-
tive. These systems abstract away many hardware details and allow developers to express tiled
computation in a concise manner. However, they often limit the degree of control over schedul-
ing, which can hinder performance in complex or irregular workloads. The gap between produc-
tivity and performance is particularly evident in distributed execution, where overlapping inter-
GPU communication with computation is crucial for scaling efficiency but rarely integrated into
the kernel programming model itself. As LLMs continue to grow, the lack of a unified solution
that reconciles expressiveness and performance has become a fundamental limitation.

This thesis presents TIR+, a multi-level compiler framework designed to bridge this gap.
TIR+ combines a hardware-level intermediate representation (IR), which exposes fine-grained
control over memory, parallelism, and specialized instructions, with an operator library layer that
provides reusable primitives. These primitives can be explicitly scheduled by developers or left
partially specified for the compiler to infer, balancing control with convenience. A central design
principle is providing first-class distributed support: TIR+ integrates NVSHMEM primitives
directly into the IR, enabling fused kernels that pipeline communication with computation at tile
granularity.

The main contributions of this thesis are:

• A multi-level compiler stack that unifies high-level productivity with low-level control,
enabling developers to work at the most natural level of abstraction while retaining perfor-
mance portability.

• An operator library layer with reusable primitives, designed to support both fully speci-
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fied and partially specified schedules.
• A compositional IR design with explicit abstractions for execution scopes, tensor layouts,

and synchronization events, making complex scheduling analyzable and portable.
• First-class distributed support through NVSHMEM integration, allowing fused commu-

nication–computation kernels at tile granularity.
• An evaluation on key LLM kernels including GEMM, attention, normalization, and

fused communication+compute, which shows that TIR+ achieves state-of-the-art perfor-
mance with significantly less development effort compared to hand-tuned CUDA.

Together, these contributions establish TIR+ as a unified path toward effortless high-performance
kernel development for LLM workloads, offering both the accessibility of high-level abstractions
and the efficiency of low-level control.
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Chapter 2

Background

2.1 Challenges in High-Performance Kernel Development
Developing high-performance GPU kernels has long required substantial manual effort. At the
low level, CUDA and PTX expose full control over threads, memory hierarchy, and synchro-
nization strategies, but achieving peak efficiency demands deep hardware knowledge and careful
tuning. Developers must manage coalesced memory accesses, shared memory reuse, warp-level
coordination, and tensor-core instructions — details that are highly error-prone and architecture-
dependent. Hand-tuned kernels can reach near-peak performance, but the engineering cost is
high, and optimizations often need to be adapted in each new GPU generation.

In contrast, high-level DSLs such as Triton[10] reduce this burden by providing a productive
tile-based programming model in Python. Many low-level optimizations are handled automati-
cally, making it feasible to prototype custom kernels with far less effort. However, this abstrac-
tion comes with trade-offs: Triton hides certain scheduling decisions from the user, provides
limited control at warp or multi-SM scopes, and may fall short of expert-tuned performance in
complex or irregular workloads. This tension between productivity and performance remains
central to GPU kernel development.

2.2 Existing DSL Compiler and Template-based Solutions
To address the challenges of GPU kernel development, researchers have proposed a range of
compilers, DSLs, and libraries. Each strikes a different balance between abstraction and control,
exposing distinct trade-offs between usability and peak performance. Below, we review repre-
sentative solutions and highlight their design trade-offs, motivating the unified approach of this
thesis.

On the compiler side, Triton[10] introduces a Python-based DSL for tile-level programming.
It automates many block-local optimizations and enables concise kernels with performance close
to cuBLAS. However, it leaves block partitioning and cross-block coordination to the user, lim-
iting expressiveness beyond single-block optimization. TileLang[11] takes a similar approach
but separates algorithm description from scheduling more explicitly. Kernels are expressed as
tiled computations with scheduling directives as annotations. This improves clarity and intro-
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duces stronger support for pipelining and thread hierarchy, though its generality across irregular
or distributed workloads is still uncertain.

On the templates side, CUTLASS[9] provides C++ templates for hierarchical tiling and warp-
level primitives, primarily for GEMM and convolution. It achieves performance close to expert-
tuned code, but the effective use requires deep understanding of its abstractions. ThunderKittens[7]
is a C++ embedded DSL organized around GPU-oriented abstractions such as fixed-size tiles
and overlap patterns. This design maps efficiently to tensor cores and achieves strong results
on GEMM and attention. However, its reliance on fixed patterns limits flexibility, and tuning
remains necessary at the C++ level.

Taken together, existing systems span a spectrum: some emphasize productivity through
high-level abstractions, while others stress efficiency by exposing low-level building blocks.
Each approach delivers value in specific contexts, but none fully resolves the broader challenge
of reconciling ease of use with consistently high performance across diverse workloads. This
motivates the unified framework of TIR+, which integrates tile-level abstractions, library-like
components, and hardware-specific primitives within a single system.

2.3 Key LLM Workloads
Large Language Model (LLM) workloads bring together some of the most demanding kernel
challenges in modern AI, which has spurred intense interest in optimizing a variety of GPU
operations. They amplify these challenges by combining compute-intensive and memory-bound
operations with distributed execution.

In LLM training and inference settings, GEMM remains the core building block, dominat-
ing FLOPs in attention projections and feed-forward layers; it requires saturating tensor cores
for maximum throughput. Attention kernels add complexity by mixing matrix multiplications,
softmax, and cache-aware memory access, making them highly sensitive to bandwidth and la-
tency. Normalization layers such as RMSNorm are memory-bound yet ubiquitous, becoming
bottlenecks in both training and inference. Beyond single-device kernels, fused communication-
compute kernels (e.g., GEMM + reduce-scatter, all-gather + GEMM) are critical in distributed
training, where overlapping data movement with computation determines scaling efficiency.

These kernels, spanning GEMM, attention, normalization, and communication overlap, are
representative of the performance-critical operations in LLMs. They form the focus of our ex-
perimental evaluations in Section 6, allowing us to assess whether a unified compiler can deliver
competitive performance across diverse regimes.
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Chapter 3

System Architecture and Design

3.1 Overall Compiler Stack Architecture
The design of TIR+ is motivated by the dual challenges of expressiveness and performance in
modern machine learning workloads. Kernel developers are often forced to navigate a spectrum
of abstractions: on one end, low-level programming interfaces such as CUDA/PTX or hardware-
native ISAs provide maximal control at the cost of a high engineering burden; on the other end,
high-level tile-based DSLs such as Triton enable rapid development but frequently fall short in
extracting the full performance potential of the hardware. TIR+ aims to unify the existing frag-
mented landscape by offering a multi-layered compiler stack that exposes multiple programming
models within a single framework.

The compiler is built on top of TVM, leveraging its mature infrastructure for code generation
and optimization, while extending its design to address the aforementioned challenges we iden-
tified. Importantly, TIR+ supports both NVIDIA GPUs and AWS Trainium, demonstrating its
portability across heterogeneous accelerators. Our system design is guided by three principles:

• T0: Compiler optimizations that universally improve performance should be seamlessly
incorporated into the programming model.

• T1: The trade-off between performance and engineering effort is central to kernel develop-
ment, and the programming model must allow developers to make informed choices along
this spectrum.

• T2: Distributed execution is a first-class concern; kernels must be able to target multi-
device clusters, with explicit control over communication and computation.

To realize these principles, TIR+ introduces a spectrum of abstractions that can interoperate
and compose seamlessly. Higher-level layers compile down to lower-level layers, ensuring that
optimizations propagate through the stack. This multi-layered approach enables users to write
code at the granularity most suitable for their application, ranging from hardware-level intrin-
sics to high-level operator library, while relying on the compiler to bridge gaps with automatic
optimization. Concretely, the architecture of TIR+ is organized into the following major layers:

• Hardware Abstraction Layer (Section 3.2). This is the lowest layer that faithfully re-
flects the underlying hardware ISA (e.g., CUDA/PTX, NKI). It exposes native primitives,
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provides raw memory buffers in different address spaces, and serves as the foundation for
all higher abstractions.

• Operator Library Layer (Section 3.3). Built on top of the hardware abstraction, this
layer packages highly optimized routines (e.g., GEMM, copy, reductions) into reusable
components. By drawing inspiration from libraries such as CUTLASS, CuTe, and CUB, it
provides building blocks for efficient operator implementations.

Together, these layers form a continuum of programming models. A developer may write
kernels directly in CUDA for full control or employ library routines for reusable performance
primitives. Crucially, these models interoperate seamlessly: higher-level operator libraries can
be lowered to hardware abstractions. This hierarchical design provides both flexibility and per-
formance portability, enabling TIR+ to serve as a compiler for today’s GPUs and NPUs while
remaining adaptable to future hardware.

3.2 Hardware Abstraction Layer
The Hardware Abstraction Layer serves as the foundation of TIR+. Its primary goal is to estab-
lish the speed-of-light performance of kernels by exposing their full implementation details. At
this level, every aspect of execution is explicitly specified: data layout, tiling strategy, memory
movement, thread binding, and pipelining. By targeting hardware-native instructions (CUD-
A/PTX, NKI etc.), this layer ensures that the performance of each kernel is well-understood and
maximized. Because the higher layers ultimately lower into the hardware layer, guaranteeing the
state-of-the-art efficiency is essential.

When designing this layer, TIR+ draws on the recurring structures that appear in almost all
kernel libraries and compilers. By providing these shared components, the system sets a reusable
foundation upon which higher abstractions can be built. The following elements form the core
of this layer:

1. Primitive Expressions and Statements. Kernels at this level are represented in terms
of simple IR constructs—loops, conditionals, and arithmetic expressions. This form is
close to TVM’s TIR, enabling the reuse of its infrastructure. By grounding hardware-level
kernels in this canonical representation, TIR+ ensures that transformations, analysis, and
scheduling can be applied consistently before code generation.

2. Buffers. All higher-level tensors eventually map to buffers located in a particular mem-
ory space: global, shared, or register. Modern accelerators also expose structured on-chip
memories, such as NVIDIA’s Tensor Memory or Trainium’s SRAM. Modeling these ex-
plicitly allows the compiler to reason about their placement, movement, and reuse. The
buffer abstraction not only unifies these diverse storage spaces under a single representa-
tion, but also enables compiler-level memory planning, such as coordinating shared mem-
ory reuse across tiles on the same SM, which is a particularly important problem in megak-
ernels where multiple stages compete for limited on-chip resources.

3. Native Operations. At the lowest level, kernels are expressed in terms of hardware in-
structions. On NVIDIA GPUs, this includes examples such as mma.sync for tensor core
matrix multiply–accumulate and ldmatrix for warp-cooperative loads. These are exposed
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1 descA = T.local_cell("uint64")
2 descB = T.local_cell("uint64")
3

4 for ko in T.serial(PIPE_CYCLE):
5 for ks in T.unroll(PIPELINE_DEPTH):
6 stage = ko * PIPELINE_DEPTH + ks
7 for ki in T.unroll(BLK_K // MMA_K):
8 T.ptx.tcgen05.encode_matrix_descriptor(
9 T.address_of(descA),

10 A_smem.ptr_to([ks, warp_id, 0, ki * MMA_K]),
11 ldo=1,
12 sdo=8 * BLK_K * F16_BYTES // F128_BYTES,
13 swizzle=SWIZZLE
14 )
15 T.ptx.tcgen05.encode_matrix_descriptor(
16 T.address_of(descB),
17 B_smem.ptr_to([ks, 0, ki * MMA_K]),
18 ldo=1,
19 sdo=8 * BLK_K * F16_BYTES // F128_BYTES,
20 swizzle=SWIZZLE
21 )
22 if stage == 0 and ki == 0:
23 T.ptx.tcgen05.mma(
24 "float32", a_type, b_type,
25 warp_id * MMA_N, descA, descB,
26 descI, False, CTA_GROUP, False
27 )
28 else:
29 T.ptx.tcgen05.mma(
30 "float32", a_type, b_type,
31 warp_id * MMA_N, descA, descB,
32 descI, False, CTA_GROUP, True
33 )

Listing 1: Example of Hardware Layer

through PTX, a virtual instruction set that is later lowered to native machine code (SASS).
On AWS Trainium, the analogous interface is NKI (Neuron Kernel Interface). Abstract-
ing such native ops ensures that TIR+ remains capable of targeting the latest hardware
generations (such as sm 100a for Blackwell) while retaining portability.

4. Code Generation. The final step is to lower this IR to target-specific code. On NVIDIA
GPUs this means emitting PTX or CUDA C++; on Trainium, this means generating NKI-
compatible instructions. The codegen stage provides a bridge between abstract IR and exe-
cutable artifacts, guaranteeing that every low-level optimization (e.g., instruction schedul-
ing, unrolling, register allocation) is faithfully realized.

As shown in the example 1, the surrounding structure of the kernel is written using TIR’s
primitive constructs such as for loops with T.unroll, as well as basic arithmetic on loop in-
dices. Memory is represented via buffers, which includes operations like T.local cell("uint64"),
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which allocates a scalar register to hold a matrix descriptor, and instructions such as T.address of(...)
and buf.ptr to(...) which compute explicit addresses within a shared or local memory
tile. The native operations are embedded directly through short, descriptive instruction which re-
flects the underlying hardware instruction used. T.ptx.tcgen05.encode matrix descriptor
configures how a matrix tile is laid out in shared memory, while T.ptx.tcgen05.mma issues
a tensor core fused multiply-add instruction from the tcgen05 family of the Blackwell architec-
ture.

Ultimately, these constructs are lowered through code generation, translating the IR into
corresponding CUDA/PTX intrinsics (e.g., cuTensorMapEncodeTiled, tcgen05.mma).
This process ensures that the compiler’s representation of iteration, memory, and instructions is
faithfully realized on the hardware.

3.3 Operator Library Layer
A central challenge in GPU programming is determining how operations are mapped onto the
hardware’s execution hierarchy. The ThunderKittens framework [7] approaches this problem
using a template-based library that requires developers to specify scheduling decisions directly
in C++ templates. While this approach ensures scheduling predictability, it limits flexibility and
shifts a significant portion of the burden to the user. In contrast, TIR+ treats scheduling as a first-
class abstraction within the compiler. The goal is to capture scheduling information at varying
levels of completeness and let the compiler resolve the rest.

At a high level, our programming model supports fully, partially, and non-specified programs.
A fully-specified program specifies all key decisions upfront—such as tensor layout, memory
space, parallelization strategy, and pipeline overlapping. It relies on the user to provide every
decision with maximum efficiency in mind. Conversely, partially and non-specified programs
provide only incomplete information, leaving degrees of freedom for the compiler to optimize.
For instance, a kernel may specify that a matrix multiplication must be broken into tiles of size
128×128, but it defers the decision of how these tiles are distributed across warps or how shared
memory reuse is arranged. This design lets programmers express their intent while entrusting
the compiler to fill in the details, which is crucial for portability across different architectures.

To support this spectrum of capabilities, TIR+ introduces a small set of scheduling primitives.
These include abstractions for execution scopes (thread, warp, warpgroup, block), pipeline con-
structs for overlapping producers and consumers, and memory-planning constructs for scratch-
pad reuse. Crucially, these primitives are designed to be composable: they can be provided
explicitly by the user or inferred automatically by the compiler. This hybrid approach allows
us to unify the template-driven style of ThunderKittens with the automation expected from a
compiler’s Intermediate Representation (IR).

In combined, this layer provides a clear path toward portable, high-performance kernels that
can be expressed at the higher tile level and lowered seamlessly to the hardware level. More
examples will be discussed in Section 5.3.
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Chapter 4

Supported Infrastructure

4.1 TIR+ Intermediate Representation (IR) Structure

4.1.1 Programming Granularity and Execution Scope
A recurring challenge in GPU programming is that code must execute across a hierarchy of hard-
ware scopes—like threads, warps, cooperative thread arrays (CTAs). Existing frameworks often
expose only partial control over this hierarchy. For instance, Triton [10] adopts a kernel–CTA de-
composition, letting users express per-block parallelism but leaving warp-level structure implicit.
Similarly, Graphene [4] formalizes specification decomposition from kernel to CTA, warp, and
thread, but primarily as a scheduling abstraction rather than as a first-class IR construct. Mean-
while, libraries such as CUB [6] provide warp- and CTA-collective primitives, but these appear
as external function calls rather than being semantically integrated with the compiler’s represen-
tation of program structure.

TIR+ addresses this gap by bringing execution granularity as the first-class construct of the
IR. We observe two common patterns across existing compilers and DSLs. First, code blocks
run at a sub-scope of their parent, mirroring the hierarchical refinement of kernel → CTA →
warp → thread. Second, a code block is executed cooperatively by a group of threads within the
parent scope, akin to CUB’s warp- or CTA-wide collectives. TIR+ generalizes both patterns by
allowing any code block to be explicitly annotated with its execution scope, thereby making the
scope hierarchy explicit in the IR.

In implementation, the parent–child relation is represented as a tree-like structure. For exam-
ple, a kernel may spawn CTAs using T.cta id, each CTA may contain multiple warp groups
identified by T.warpgroup id, and each warp within a warp group can be further refined with
T.warp id() and so on. In addition to strict nesting, TIR+ allows sub-scopes to ‘leap’ and
bind directly to an ancestor (e.g., T.thread id(..., parent="cta")), allowing flexible
hierarchies. Within each scope, blocks of code can either decompose into finer scopes or invoke
collective operations at their current scope. The snippet below illustrates this design in TIR+:

In the example 2, the kernel launches eight CTAs; each CTA is subdivided into three warp
groups, and each warp group further contains four warps of 32 threads each. The program parti-
tions the global matrix A into eight tiles, with each CTA collectively loading one tile into shared
memory using all its threads. This representation makes the execution hierarchy explicit—kernel,
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1 with T.kernel():
2 bx, by = T.cta_id([2, 4], parent="kernel")
3 wg_id = T.warpgroup_id([3], parent="cta")
4 warp_id_in_wg = T.warp_id([4], parent="warpgroup")
5 lane_id = T.thread_id([32], parent="warp")
6 with T.cta():
7 acc = T.alloc_buffer(
8 [384,],
9 dtype="float16",

10 scope="shared.dyn",
11 )
12 with T.thread():
13 acc[wg_id * 128 + warp_id_in_wg * 32 + lane_id] =
14 A[bx, by, wg_id * 128 + warp_id_in_wg * 32 + lane_id]

Listing 2: Example of the Hierarchy of Execution Scopes

CTA, warp group, warp, and thread—while abstracting away low-level launch details. By em-
bedding scope declarations directly in the IR, TIR+ captures the parallel hierarchy in a structured
and uniform way.

The usefulness of this design lies in making the parallel hierarchy explicit and compositional.
Developers gain precise control over granularity, while the compiler benefits from a structured
representation that enables analysis, verification, and transformation. Because scopes are explicit
IR nodes rather than implicit scheduling conventions, compiler passes can reason about scope
boundaries when performing optimizations such as synchronization insertion, shared memory
planning, or scope-specific fusion. Moreover, the tree-structured parent–child hierarchy naturally
extends to future GPU architectures that introduce new intermediate scopes (e.g., thread block
clusters in Blackwell architectures) or distributed communication across devices. By making
execution granularity explicit, TIR+ unifies existing decomposition and collective patterns within
a single IR framework, bridging the gap between low-level CUDA programming and higher-level
kernel DSLs.

4.1.2 Tensor Layout

In TIR+, tensor layouts are represented as first-class objects that map logical tensor coordi-
nates onto memory and thread axes. This abstraction is critical for expressing how data is dis-
tributed across shared memory, registers, and cooperative thread groups, without directly expos-
ing hardware-specific indexing.

We introduce Axe, a unified layout system designed to capture both intra-kernel tiling and
inter-device sharding within a single algebraic framework. Drawing from GSPMD [12], Axe
generalizes common strategies: sharded (D), replicated (R), and a third owner-only (O) pattern,
where a partition is exclusively owned by one device or thread group. The O pattern arises
naturally in distributed training (e.g., after reducing along a device axis) and is equally relevant
within kernels, where certain partitions must remain private to a warp or warp group.

Axe also treats memory and thread hierarchies symmetrically: logical coordinates can map
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1 A_layout = T.ComposeLayout(
2 T.SwizzleLayout(3, 3, 3, swizzle_inner=True),
3 T.TileLayout(
4 shard=(
5 (PIPELINE_DEPTH, NUM_CONSUMER, BLK_M, BLK_K),
6 (NUM_CONSUMER * BLK_M * BLK_K, BLK_M * BLK_K, BLK_K, 1),
7 )
8 ),
9 )

10 B_layout = T.ComposeLayout(
11 T.SwizzleLayout(3, 3, 3, swizzle_inner=True),
12 T.TileLayout(
13 shard=(
14 (PIPELINE_DEPTH, BLK_N, BLK_K), (BLK_N * BLK_K, BLK_K, 1),
15 )
16 ),
17 )

Listing 3: Example of Composed Layout

to memory axes (global, shared, registers), thread axes (warp IDs, lane IDs), or hybrids of both.
Unlike CuTe and Triton, which model layouts as surjective maps from hardware resources to
tensor indices, Axe defines them as functions from logical coordinates to hardware axes. This
choice allows it to express exclusive ownership (O) patterns, where some logical partitions map
to no hardware resources, while still covering the standard replicated (R) and sharded (D) cases.

In practice, layouts are constructed from composable primitives such as swizzles and tiles.
In example 3, it shows the operand layouts in a GEMM kernel. Here, T.ComposeLayout
combines a swizzle with a multi-axis tiling strategy. By construction, the layout object encodes
how threads in a CTA collectively cover a tile of A or B, making these mappings explicit in the
IR.

Layouts also support hierarchical tiling across warps and threads. Example 4 demonstrates
how layouts are composed across multiple granularities: a warp-level layout (warp layout) is
combined with thread-level atomic tiles (atom) and then repeated and extended into accumulator
tiles (acc layout). The resulting buffer is allocated with a precise logical layout that dictates
both memory addressing and thread cooperation.

Embedding layouts into the IR (Intermediate Representation) is particularly valuable for
scheduling. At the operator library layer, scheduling decisions such as double-buffering, epi-
logue fusion, and collective reductions rely on layout information. The compiler can directly
query how data is partitioned across threads, whether memory accesses are coalesced, and how
tiles map to shared memory to make scheduling decisions. By providing layouts as algebraic IR
objects rather than as implicit indexing schemes, TIR+ makes these scheduling choices analyz-
able and composable, thereby ensuring both efficiency and portability.
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1 atom = T.TileLayout(shard=([1, 2], [2, 1]))
2 warp_layout = T.TileLayout(
3 shard=([8, 4], [(4, "laneid"), (1, "laneid")])
4 )
5 warp_atom = atom.tile(warp_layout, (8, 4), (1, 2))
6 tile = T.TileLayout(shard=([2, NUM_COL // 8], [1, 2]))
7 acc_layout = warp_atom.tile(tile, (2, NUM_COL // 8), (8, 8))
8

9 acc = T.alloc_buffer(
10 [2, NUM_COL // 4],
11 dtype=dtype,
12 scope="local",
13 logical_scope="thread",
14 layout=atom.tile(tile, (2, NUM_COL // 8), (1, 2)),
15 )

Listing 4: Example of Hierarchical Tiling Layout

4.1.3 Parser/Printer, FFI, Transformations

To support productive development on top of this Intermediate Representation (IR), our compiler
includes several infrastructure components that simplify the construction and transformation of
TIR+ programs. These components handle the translation from user code to IR, enable flex-
ible interactions between high-level Python and low-level C++ code, and provide utilities for
analyzing or modifying the IR through specialized passes.

A lightweight Python DSL and parser allow developers to express kernels in a high-level
syntax, which is automatically translated into IR nodes of TIR+. A corresponding IR printer
converts optimized programs back into a readable, Python-like form, making it easy to inspect
transformations.

Integration between Python and C++ is achieved through a packed-function FFI (Foreign
Function Interface). This interface allows Python code to construct IR nodes, invoke compiler
passes, and launch kernels, while C++ routines handle performance-critical logic. As a result,
developers can remain in Python for productivity without losing access to efficient low-level
implementations.

For analysis and optimization, TIR+ leverages the visitor/mutator framework from TIR. Vis-
itors systematically traverse the IR for checks or collecting statistics, while mutators implement
rewrites such as loop transformations or memory optimizations. The arithmetic analyzer sim-
plifies index expressions and proves bounds, ensuring that transformations produce efficient and
correct code.

Together, these components form the backbone of TIR+, providing a high-level frontend,
a robust bridge, and a transformation framework that supports both developer productivity and
advanced compiler optimizations.
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Table 4.1: Host and device-side NVSHMEM APIs integrated into TIR+.
Host APIs
nvshmemx cumodule init Register CUDA module for device-side NVSHMEM
nvshmemx barrier all on stream Stream-ordered barrier across PEs
nvshmem malloc Collective symmetric allocation
nvshmem ptr Translate symmetric object to a process-local pointer
Device APIs
nvshmem getmem nbi Nonblocking one-sided read
nvshmem putmem nbi Nonblocking one-sided write
nvshmem putmem signal nbi Ordered write followed by remote signal publish
nvshmem signal op Atomic update of a symmetric signal
nvshmem wait until Wait for condition on a symmetric variable
nvshmem fence Order prior NVSHMEM ops before subsequent ones
nvshmem quiet Wait for completion of outstanding NVSHMEM ops
nvshmem barrier all Device-side barrier across all PEs
nvshmem ptr Translate symmetric object to a device pointer

4.2 First Class Support for Distributed Execution

TIR+ brings first-class support for distributed execution. We integrate a distributed runtime, a set
of IR-level abstractions, and NVSHMEM backend to enable compute–communication overlap
at tile granularity.

We build on top of TVM’s Disco runtime to manage multi-worker execution and object place-
ment. Disco follows a controller–worker model and exposes three kinds of session backends to
form a cluster: a ThreadedSession runs an in-process thread pool; a ProcessSession launches
multiple worker processes on a single node (for multi-GPU servers); and a SocketSession con-
nects workers across multiple nodes over network sockets. Distributed references (DRef) name
per-worker objects uniformly (e.g., GPU NDArrays and compiled modules), and session meth-
ods provide coarse-grain collectives (broadcast, scatter, all-gather, all-reduce). In TIR+, the com-
piled artifacts (functions and buffers) are materialized as DRefs, and data motion across workers
is explicit in the generated host code.

TIR+ distributed execution is backended by NVSHMEM. The code generator and build sys-
tem emit necessary NVSHMEM link flags and runtime hooks, so that compiled TIR+ modules
are NVSHMEM-ready at load time. We add host- and device-side NVSHMEM support (see
Table 4.1) to enable GPU-initiated, one-sided communication and signaling within a kernel.

• Host side. We enable device-side NVSHMEM for a CUDA module at load time, allocate
symmetric memory and resolve local pointers on remote symmetric buffers, and insert
stream-ordered barriers at synchronization points during execution. These calls are issued
on the same CUDA streams as the scheduled kernels to preserve ordering with respect to
compute.

• Device side. TIR+ provides intrinsics that lower to NVSHMEM device operations for
nonblocking one-sided transfers (put/get), write-with-notify, lightweight signal/wait, and
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scoped ordering and completion. This enables a single kernel to pipeline communication
with computation.

This design treats distributed execution as a first-class abstraction: Disco provides process
and cluster management with DRefs; the IR captures necessary instructions; and NVSHMEM
supplies device-initiated transfers and signals. This results in the communication-heavy ker-
nels—distributed GEMMs and MoE layers in particular—compile into single, pipelined kernels
that fully utilize the interconnect, rather than sequences of compute and bulk collectives sepa-
rated by idle time.

For example, in GEMM + ReduceScatter, each device accumulates partial results for its out-
put shard. As soon as a subtile completes, the producer issues a nonblocking one-sided write into
the owner’s symmetric buffer and publishes a device-side signal; on the owner, a per-tile arrival
counter advances, and when arrivals reach the world size, the kernel performs the reduction and
epilogue in place. We implement this using a persistent kernel with a work queue: CTAs fetch
GEMM tiles and handle communication and signaling upon finish, and fetch epilogue reduction
tiles when they’re ready. This design sustains tile-granularity overlap, keeping the interconnect
busy while tensor cores execute and thereby reducing latency.
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Chapter 5

Operator Scheduler

5.1 Overview of Operator Scheduling and Lowering
Library-level operators are lowered in TIR+ through a schedule registry. Each operator (e.g.,
Tp.copy async, Tp.sum) is associated with one or more device-specific implementations
(e.g., CUDA TMA copies, warp-level reductions), registered under a specific target kind. During
lowering, the compiler consults this registry: if the operator’s call site matches the preconditions
of a registered implementation, the corresponding TIR schedule is substituted; otherwise, the call
is left intact to be handled by generic rules or later passes. This design cleanly separates operator
definition from its scheduling: the front-end code can freely use library operators without embed-
ding hardware-specific knowledge, while the lowering pass dispatches to tuned implementations
when applicable.

This registry-based adaptive dispatch also provides a natural way to accommodate varying
levels of specification in the programs. When details such as tensor layout, memory space, or
pipelines are fully determined, the dispatcher can directly substitute the most specialized imple-
mentation. When only partial information is given—for example, a tiling scheme without an
explicit parallelization strategy—the compiler can still resolve the operator by analyzing buffer
properties, event usage, and scope annotations, filling in missing details automatically. Even
when no scheduling information is provided beyond the operator call itself, generic implemen-
tations ensure correctness while leaving room for later optimizations. Section 5.3 presents case
studies that illustrate operator scheduling in practice.

5.2 Event Tensor Abstraction

5.2.1 Motivation

Modern GPU programming offers a wide range of synchronization primitives — from bar.
sync for warpgroup coordination, to mbarrier and tcgen05.wait for TMA and tensor-
core operations, and NVSHMEM signals for inter-GPU communication. While these mecha-
nisms are powerful, they expose highly specialized semantics tied to particular hardware pipelines
or memory scopes. This tight coupling makes it difficult to compose synchronization across dif-
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1 with T.cta():
2 event = Tp.alloc_semaphore_event_tensor(
3 EventImpl.kTMALoad,
4 state=[mbarrier, phase, tx_cnt],
5 )
6 event[0].init(1)
7

8 for stage in range(n):
9 Tp.copy_async(A_smem[*r_smem], A[*r_gmem(stage)], event[0])

10 event[0].commit()
11 event[0].wait()

Listing 5: Example of the Event Tensor Init/Commit/Wait APIs

ferent operators or reuse synchronization logic beyond the exact producer-consumer patterns
assumed by existing APIs.

For example, a typical copy pipeline encapsulates synchronization into a fixed producer-
consumer model with cyclic buffers. This design works well for staged pipelines such as global-
to-shared copies, but it becomes restrictive in several scenarios.

1. Beyond Cyclic Buffers. Many kernels require synchronization patterns that are not cyclic-
buffered pipelines. For instance, serializing two warpgroups such that one must load
data into registers before the other begins execution cannot be expressed without spe-
cific workarounds. The pipeline abstraction forces everything into the mold of a staged
buffer, even when the underlying hardware primitive (e.g., mbarrier) does not require
this structure.

2. Decoupling Synchronization with Operator Dispatch. In the current design, the syn-
chronization logic is tightly bound to specific operators like async copy schedules. This
prevents reuse in other contexts (e.g., GEMM tile scheduling or NVSHMEM transfers),
even though the hardware synchronization mechanism (mbarrier, bar.sync, etc.) is
conceptually orthogonal to the operator. Therefore, programmers cannot flexibly combine
different operator patterns while reusing the same synchronization mechanism.

3. Hardware fragmentation. Each backend synchronization method comes with distinct
semantics and usage rules (e.g., transaction counters for mbarrier, group counters for bulk
async, phase flips for tcgen05, semaphores for Trainium). Without a unifying abstraction,
programmers must reason about these details in every kernel.

What we would like instead is a unified abstraction for events, one that (1) captures the shared
notion of “the completion of an operator” independent of its implementation, and (2) decouples
synchronization from operator dispatch in the operator library layer. By lifting events into a
first-class tensor-like abstraction, Event Tensor, TIR+ provides a composable mechanism to bind
operators to events, signal completion (commit), and enforce ordering (wait). Each Event Tensor
can then be lowered to the appropriate backend primitive (mbarrier, bar.sync, NVSH-
MEM signal, or even software semaphore) depending on its usage context. There are two key
benefits of this design:

• G0: Expressiveness. Programmers can express both standard patterns (async pipelines,
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cyclic buffering) and irregular patterns (serializing warpgroups, inter-device signaling) us-
ing the same abstraction.

• G1: Composability. The synchronization logic is decoupled from the operators, enabling
flexible reuse across diverse kernels (copy, GEMM, communication) while still mapping
efficiently to hardware-specific primitives.

5.2.2 Implementation

An Event Tensor in TIR+ is defined as a tensor of event counters. Each element in an Event
Tensor corresponds to a specific tile’s synchronization event. Conceptually, an Event Tensor
element holds a wait count equal to the number of producer tasks that must complete before the
event is considered “fulfilled.” The TIR+ dialect provides intrinsic operations to manage these
events, typically expressed as init, commit, and wait actions on Event Tensors.

• event.init(). When an Event Tensor is created, each element’s counter is set to the
expected number of incoming signals. For example, declaring E = ETensor((n,),
wait count=4) creates a 1-D Event Tensor E of length n where each element expects 4
signals (i.e., there are 4 producer tasks per index). This wait count encodes the dependency
fan-in for each consumer task (in this case, perhaps a tile has 4 sub-tasks producing partial
results that must all complete before the consumer is released).

• event.commit(). A producer task “commits” to an Event Tensor by notifying its
completion and decrements the event’s counter. Multiple producers may commit to the
same Event Tensor element; once the counter reaches zero, the event is fully signaled. In
the operator library layer, these commits can be inserted automatically by the compiler. For
instance, if a device function is annotated to produce an event, the compiler will generate
a notify at the end of that task. Internally, the compiler lowers this to the appropriate
device-side notify calls.

• event.wait(). A consumer task issues a wait on an Event Tensor element before it
begins execution. Conceptually, this blocks until the event’s counter has reached zero,
meaning that all expected producers have committed. In the operator library layer, the
waits can be inserted at the start of the consumer task automatically by the compiler, and
be lowered to appropriate device-side intrinsics, such as a lightweight busy-wait loop on
the counter. Once the counter reaches zero, the event is fully signaled and the dependent
tasks may safely proceed.

Example 5 illustrates this workflow in an asynchronous TMA copy from global to shared set-
ting: an Event Tensor is allocated with type kTMALoad and initialized with a wait count. Each
asynchronous copy stage signals completion through commit(), and the corresponding con-
sumer waits via wait() before proceeding. More on asynchronous copy operator scheduling
will be discussed in Section 5.3.

In summary, the Event Tensor abstraction in TIR+ provides a simple yet powerful mecha-
nism for operator scheduling inside GPU kernels. It allows the compiler to express fine-grained
dependencies (even with dynamic shapes) in a natural tensor index manner, and to generate GPU
code that uses event counters to synchronize tasks efficiently. This leads to correct and highly
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parallel execution of fused operators: tasks start as soon as their inputs are ready, and multiple
stages of computation can overlap without sacrificing program correctness. By integrating event-
based synchronization at the IR level, the abstraction extends naturally to crucial use cases such
as persistent megakernels, which orchestrate complex computations across the entire GPU.

5.3 Operator Scheduling Examples
As shown in example 6 and 7, an operator call in TIR+ is automatically lowered into an intricate
mix of instructions, memory operations, and synchronization code that modern GPUs demand.

Scheduling and dispatching a library-level operator such as Tp.sum or Tp.copy async
involves first validating and then generating code. Validation ensures the operator is well-formed
for the target: checking legality of data movement (e.g., only global↔shared transfers), verifying
layouts are compatible with hardware features like TMA, and confirming that axes and swizzles
can be mapped consistently.

Once validated, the schedule generates the implementation by assigning execution scopes
across CTA, warp, or thread levels; if necessary, allocating shared memory and registers with lay-
outs that preserve coalescing, bank efficiency, and reuse; wiring synchronization through event
tensors that manage counters, barriers, or semaphores; and constructing producer–consumer
pipelines that enable overlap, such as double-buffered copy → transform → mma. Host-side
initialization code may also be emitted, for example encoding tensor maps before kernel launch.
Schedules further provide choices for cache hints, tiling strategies, and fallbacks (e.g., vectorized
cp.async) when constraints fail, ensuring robustness across targets.

In practice, a single high-level operator expands into a substantial amount of low-level device
and host code—barriers, descriptors, allocations, and synchronization—that would otherwise be
hand-written, making scheduling both a correctness mechanism and enhanced developer produc-
tivity.

18



1 def sum_before():
2 A_smem = T.alloc_shared((32, 32), "float16",

layout=T.TileLayout(shard=([32, 32], [(32, "m"), (1, "m")])))↪→

3 B_smem = T.alloc_shared((32,), "float16",
layout=T.TileLayout(shard=([32], [(1, "m")])))↪→

4 Tp.sum (B_smem[0:32], A_smem[0:32, 0:32], [-1], False)

5

6 def sum_after():
7 A_smem = T.alloc_shared((1024,), "float16")
8 B_smem = T.alloc_shared((32,), "float16")
9 for tid_x in T.thread_binding(32, thread="threadIdx.x"):

10 thread_data = T.allocate([1], "float16", "local")
11 for step in range(32):
12 if step + tid_x // 32 < 32:
13 thread_data_1 = T.Buffer((1,), "float16", data=thread_data,

scope="local")↪→

14 thread_data_1[0] = T.float16(0.0)
15 for t in range(1):
16 if t * 32 + tid_x % 32 < 32:
17 thread_data_1[0] = thread_data_1[0] + A_smem[step *

32 + tid_x]↪→

18 mask: T.uint32 = T.tvm_warp_activemask()
19 thread_data_1[0] = thread_data_1[0] +

T.tvm_warp_shuffle_xor(mask, thread_data_1[0], 1, 32,
32)

↪→

↪→

20 thread_data_1[0] = thread_data_1[0] +
T.tvm_warp_shuffle_xor(mask, thread_data_1[0], 2, 32,
32)

↪→

↪→

21 thread_data_1[0] = thread_data_1[0] +
T.tvm_warp_shuffle_xor(mask, thread_data_1[0], 4, 32,
32)

↪→

↪→

22 thread_data_1[0] = thread_data_1[0] +
T.tvm_warp_shuffle_xor(mask, thread_data_1[0], 8, 32,
32)

↪→

↪→

23 thread_data_1[0] = thread_data_1[0] +
T.tvm_warp_shuffle_xor(mask, thread_data_1[0], 16, 32,
32)

↪→

↪→

24 if tid_x % 32 == 0:
25 B_smem[step] = thread_data_1[0]
26 T.tvm_storage_sync("shared", T.bool(False), -1)

Listing 6: Example of Scheduling Reduction Operator
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1 def tma_load_before(ks):
2 mma2tma_bar.wait(ks, phase[0])

3 Tp.copy async (A_smem[ks, :, :], A[m_start: m_start + BLK_M, k_start:

k_start + BLK_K], evt=tma2trans_event[ks])↪→

4 Tp.copy async (B_smem[ks, :, :], B[n_start: n_start + BLK_N, k_start:

k_start + BLK_K], evt=tma2trans_event[ks])↪→

5 tma2trans_event[ks].commit()
6

7 def tma_load_after(ks):
8 T.ptx_mbarrier_try_wait(T.tvm_access_ptr(T.type_annotation("uint64"),

buf.data, 18 + ks, 6 - ks, 3), T.bitwise_xor(1, phase[0]))↪→

9 if T.ptx_elect_sync(T.int64(4294967295)):
10 with T.thread():
11 tx_cnt[0] = tx_cnt[0] + 16384
12 for lvs_0, lvs_1 in T.grid(1, 1):
13 T.ptx_cp_async_bulk_tensor_global_to_cluster(2,

T.tvm_access_ptr(T.type_annotation("float8_e4m3fn"),
buf.data, 1024 + T.shift_left(T.bitwise_xor(ks * 1024,
T.shift_right(T.bitwise_and(ks * 1024, 56), 3)), 4),
98304 - T.shift_left(T.bitwise_xor(ks * 1024,
T.shift_right(T.bitwise_and(ks * 1024, 56), 3)), 4), 3),
T.tvm_access_ptr(T.type_annotation("uint64"), buf.data,
6 + ks, 6 - ks, 3), A_tensormap_1, stage[0, 0] * 128 +
lvs_1 * 128, (tile_scheduler_m_idx[0, 0] * 2 +
clusterCtaIdx_x) * 128, 0, 1, "")

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

14 tx_cnt[0] = tx_cnt[0] + 14336
15 for lvs_0, lvs_1 in T.grid(1, 1):
16 T.ptx_cp_async_bulk_tensor_global_to_cluster(2,

T.tvm_access_ptr(T.type_annotation("float8_e4m3fn"),
buf.data, 99328 + T.shift_left(T.bitwise_xor(ks * 896,
T.shift_right(T.bitwise_and(ks * 896, 56), 3)), 4),
86016 - T.shift_left(T.bitwise_xor(ks * 896,
T.shift_right(T.bitwise_and(ks * 896, 56), 3)), 4), 3),
T.tvm_access_ptr(T.type_annotation("uint64"), buf.data,
6 + ks, 6 - ks, 3), B_tensormap_1, stage[0, 0] * 128 +
lvs_1 * 128, (tile_scheduler_n_idx[0, 0] * 2 +
clusterCtaIdx_x) * 112, 0, 1, "")

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

17 if T.ptx_elect_sync(T.int64(4294967295)):
18 with T.thread():
19 T.ptx_mbarrier_arrive_expect_tx(T.tvm_access_ptr(T.type_annotat ⌋

ion("uint64"), buf.data, 6 + ks, 6 - ks, 3), tx_cnt[0])↪→

20 tx_cnt[0] = 0

Listing 7: Example of Scheduling Asynchronous Copy Operator
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Chapter 6

Experimental Evaluation

6.1 Experimental Setup and Benchmark Methodology
All experiments are conducted on NVIDIA Blackwell B200 GPUs. We evaluate both single-
GPU and multi-GPU settings. For distributed experiments, we use all eight GPUs within a single
node, which are fully interconnected via NVLink.

At the current stage of development, TIR+ provides full support at the hardware abstraction
layer and partial support at the operator library layer. Our experiments use the available oper-
ators where applicable and rely primarily on the hardware layer, which is sufficient to evaluate
representative kernels from LLM workloads.

We evaluate kernels across a broad coverage of tensor shapes drawn directly from popular
LLM architectures. Specifically, we include shapes from LLaMA[3], Qwen[13], Gemma[8],
Mixtral[5], and GPT[2] models. These shapes reflect diverse scaling strategies in sequence
length, hidden dimension, and intermediate size, which in turn evaluates different aspects of
kernel performance such as memory bandwidth usage, tensor core utilization, and inter-GPU
communication. The exact tensor configurations used in each experiment are disclosed in the
corresponding subsections of Section 6.2.

For profiling and measurement on single-GPU kernels, we use the Proton profiler from
Triton[10]; on multi-GPU kernels, we rely on CUDA event timing for lightweight measurements
and NVIDIA Nsight Systems (nsys) for full end-to-end timelines. In addition, we have a built-in
fine-grained profiler in TIR+, which we use to analyze scheduling behavior in later sections.

6.2 Kernel Performance

6.2.1 Memory-Bound Kernels
Many kernels in LLM workloads, such as positional encodings (e.g., RoPE), normalization layers
(LayerNorm, RMSNorm), activations, and Softmax, are memory-bound. These kernels exhibit
low arithmetic intensity and are primarily limited by memory bandwidth. Here, we choose RM-
SNorm as a representative kernel. RMSNorm operates on input tensors of shape (num rows,
hidden size), where num rows = batch size × sequence length. For each row, it computes a nor-
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Figure 6.1: Speedup of TIR+ vs. FlashInfer on RMSNorm (Single B200 GPU)

malization factor via a reduction over the hidden dimension followed by element-wise scaling.
All experiments use float16 inputs and outputs.

We evaluate a spectrum of shapes that correspond to diverse LLM scenarios. The small-row
cases such as (1 × 4096) mimic latency-sensitive autoregressive decoding. The larger-row cases
such as (4096 × 4096) and (16384 × 4096) correspond to prefill or large-batch training work-
loads. This range captures both latency-critical and throughput-critical regimes. We compare the
performance of our TIR+ RMSNorm kernel against a highly optimized implementation from the
FlashInfer[14] library.

Figure 6.1 shows the performance comparison of RMSNorm kernel between TIR+ and Flash-
Infer across various tensor shapes on a single B200 GPU. The speedup is calculated as Flash-
Infer Latency / TIR+ Latency. Results indicate that TIR+ kernel has superior performance in
latency-bound scenarios such as autoregressive decoding, and can achieve up to 1.58× speedup.
In large-batch training and prefill situations, however, FlashInfer kernels have slightly superior
performance, likely due to heuristic optimizations such as multi-row per block scheduling.

6.2.2 GEMM Kernels
We evaluate two GEMM kernel variants in TIR+, distinguished by the number of warpgroups
dedicated to the consumer stage, which performs matrix multiplications on Tensor Cores using
mma instructions. The one-consumer-group version adopts a more balanced design: it assigns
comparable resources to data fetching via TMA and to computation, making it effective when
load and compute times are similar or when resources such as registers and shared memory are
constrained. In contrast, the two-consumer-group version prioritizes computation, dedicating
additional warp groups to the consumer stage to maximize Tensor Core throughput.

Both kernels are benchmarked against cuBLAS on a single NVIDIA B200 GPU across a
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Figure 6.2: Speedup of TIR+ vs. cuBLAS on GEMM (Single B200 GPU)

diverse set of matrix shapes derived from major LLM architectures, covering a wide range of M,
N, and K dimensions. Both input and output data use float16.

The results are summarized in Figure 6.2. The results demonstrate that kernels generated by
TIR+ are highly competitive with the industry-standard cuBLAS library. Across the majority of
tested shapes, TIR+ achieves over 98% of cuBLAS performance, and in several configurations,
it matches the baseline almost exactly.

The analysis reveals that the optimal scheduling strategy is highly dependent on the matrix di-
mensions. Notably, our one-consumer variant surpasses the performance of cuBLAS on specific
shapes with small K. For instance, on a matrix of shape M=8192, N=4096, K=1536, the one-
consumer kernel is 12.6% faster than cuBLAS, and on M=8192, N=5120, K=3200, it achieves a
3.4% speedup.

The results indicate that the one-consumer variant is well-suited for workloads with a small
K dimension and moderate M, N, where balanced data movement and compute reduce syn-
chronization overhead. The two-consumer variant, by contrast, excels in cases that are strongly
compute-bound, such as extremely large K, large N, or large balanced dimensions, where satu-
rating Tensor Cores becomes the dominant factor.

6.2.3 Attention Kernels

We evaluate the performance of our attention kernel on the BatchDecode operation, a critical
component in LLM inference that computes attention for a batch of new query tokens against
a cached history of keys and values. This operation often utilizes Grouped-Query Attention
(GQA)[1] to balance computational cost and model quality. We compare our TIR+ generated
kernel against a highly optimized implementation from FlashInfer[14], a state-of-the-art library
for LLM inference kernels. All experiments are conducted with float16 precision.
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Figure 6.3: Speedup of TIR+ vs. FlashInfer on BatchDecode (Single B200 GPU)

The results, summarized in Figure 6.3, show that TIR+ generates highly competitive kernels,
particularly in latency-sensitive scenarios. At small batch size and a moderate sequence length
of 512, TIR+ achieves a speedup of up to 1.12× over FlashInfer. However, for very long se-
quences (e.g., 4095 and 8191) and large batch sizes, FlashInfer’s autotuning strategy gives it a
performance advantage of approximately 18-23% faster than TIR+ kernels. This suggests that
FlashInfer’s implementation is better tuned for maximizing parallelism in throughput-oriented
workloads. More adaptive scheduling within TIR+ could further improve performance across
both latency and throughput-critical regimes, which is left for future work.

6.2.4 Communication-Computation Overlap Kernels

A key advantage of TIR+ is its first-class support for distributed execution, enabling the creation
of single, fused kernels that overlap communication and computation at a fine-grained level.
This approach is particularly effective for Tensor Parallelism in LLM workloads, where tensors
are often split across multiple GPUs. We evaluate two common distributed patterns: fused All-
Gather+GEMM and GEMM+ReduceScatter.

To achieve this fine-grained overlap, TIR+ implements these operations as a single, persistent
kernel that utilizes a dynamic scheduler. CTAs fetch tasks from a shared work queue, allowing for
flexible orchestration of compute and communication. For instance, in our GEMM+ReduceScatter
kernel, producer CTAs compute local GEMM tiles and issue non-blocking writes to the desti-
nation GPU. Concurrently, consumer CTAs on each GPU monitor arrival counters; a consumer
begins the reduction and epilogue for a specific output tile only after receiving the partial results
from all peer GPUs. This ensures that computation on one tile can proceed while communication
for other tiles is still in flight.

We compare against multiple open-source baselines: Async-TP in PyTorch for tensor-parallel
decomposition, Triton-Distributed [15] for overlap-aware scheduling, and cuBLAS+NCCL as
the baseline for non-overlapping execution. All evaluations are on 8×B200 GPUs.
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Figure 6.4: Speedup of TIR+ vs. Baselines on AllGather+GEMM (8×B200 GPUs)

Figure 6.5: Speedup of TIR+ vs. Baselines on GEMM+ReduceScatter (8×B200 GPUs)

As shown in Figure 6.4, this fine-grained overlap results in substantial performance gains
for AllGather+GEMM. The TIR+ kernel consistently outperforms the standard cuBLAS+NCCL
baseline, achieving a speedup ranging from 5% to 38%. The benefit of overlap is especially
pronounced in configurations with large N and K dimensions, such as the (M=8192, N=28672,
K=8192) shape, where TIR+ is 1.6× faster than the sequential baseline and 1.64× faster than
Triton Distributed. This demonstrates the efficiency of tile-based pipelining in hiding communi-
cation latency and maximizing hardware utilization.

The results of GEMM+ReduceScatter are presented in Figure 6.5. Across all tested model
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Figure 6.6: Timeline of Execution for Overlapped GEMM+ReduceScatter

configurations, the TIR+ kernel delivers a stable and significant speedup of 22-40% over the
cuBLAS+NCCL baseline. This consistent improvement is a direct result of our scheduling strat-
egy’s ability to eliminate hardware idle time and driving simultaneous utilization of both com-
munication bandwidth and Tensor Core computation.

The effectiveness of our fusion strategy is visually confirmed by the execution timeline in
Figure 6.6. The TIR+ kernel exhibits a continuous stream of operations. The timeline shows
GEMM compute tiles (gemm) tightly interleaved with communication and reduction primitives
(r, rs) at a granular level, with the dynamic scheduling overhead between a compute and com-
munication tile being a minimal 1-2 µs. This demonstrates true hardware-level overlap within a
single kernel, eliminating synchronization overhead and maximizing GPU utilization to reduce
end-to-end latency.

6.3 Discussion
The evaluation shows that TIR+ is both expressive and performant across diverse LLM work-
loads. Its abstractions, such as explicit scheduling, operator library, and first-class distributed
primitives, enable concise implementation of kernels ranging from memory-bound, to compute-
bound, and distributed fused kernels. The TIR+ kernels are typically around 100-300 lines of
code, compared to the thousands of CUDA code for an implementation with equivalent perfor-
mance. The ability to achieve high performance across these categories demonstrates that TIR+
effectively captures low-level hardware details while remaining flexible for optimization. Perfor-
mance results further validate this design: GEMM kernels are consistently on par with cuBLAS
and occasionally surpass it, RMSNorm matches or outperforms FlashInfer in memory-bound
settings, and distributed kernels deliver large speedups over existing baselines.

Meanwhile, the experiments highlight auto-scheduling as a critical direction for future work.
Optimal schedules often vary with tensor shapes and workload regimes, as seen in attention ker-
nels where FlashInfer remains more effective in certain throughput-oriented cases. Integrating
automated scheduling and tuning strategies into TIR+ would allow the compiler to adapt dy-
namically to different workload characteristics, ensuring that performance remains competitive
across the full spectrum of scenarios.
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Chapter 7

Future Directions

Looking ahead, TIR+ can be extended along several directions.
A first direction is to further improve kernel performance. While current implementations

are competitive, additional gains are possible through topology-aware and workload-adaptive
scheduling. Attention workloads in particular vary widely in shape and granularity, and autotun-
ing tailored for these cases could reliably close the gap between compiler schedules and expert
tuning.

Another direction is to raise the level of abstraction through a tile-based DSL. A Python
front end, similar in spirit to Triton or TileLang, would allow developers to express kernels
directly in terms of tiles. Such programs could then be lowered through the operator library into
efficient hardware-level code. This additional layer would improve productivity while retaining
performance portability.

Extending TIR+ with megakernel compilation is especially promising. Persistent kernels
that fuse computation and communication have demonstrated large latency reductions in recent
LLM systems. TIR+ could incorporate cross-operator fusion, intra-kernel scheduling, and event-
tensor–based overlap to support pipelines such as GEMM + reduce-scatter, attention + all-gather,
or entire decoder blocks within a single launch. This approach also extends naturally to irregular
workloads such as Mixture-of-Experts, sparse attention, and dynamic routing, where fine-grained
scheduling and communication–computation overlap are critical for scalability.

Finally, AI-assisted kernel generation represents a longer-term opportunity. Recent work
has shown that large language models can synthesize and refine GPU kernels when guided by
performance feedback. The layered design of TIR+ makes it attractive: models could propose
high-level operator compositions or tile specifications, which the compiler then lowers and op-
timizes, with feedback loops refining scheduling choices such as tile sizes or pipeline depths.
Such an integration could make high-performance kernel development increasingly automated
and accessible.
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Chapter 8

Conclusion

The thesis presents TIR+, a multi-level compiler that unifies productivity and performance for
GPU kernel development in large language model (LLM) workloads. By exposing fine-grained
hardware control alongside reusable operator libraries and distributed primitives, TIR+ makes it
possible to achieve state-of-the-art efficiency without the prohibitive engineering cost of hand-
tuned CUDA.

The impact of this design is twofold. Practically, TIR+ lowers the barrier for writing op-
timized kernels: developers can express complex normalization, GEMM, attention, and fused
communication–computation kernels in hundreds rather than thousands of lines, while still match-
ing or surpassing expert baselines. This enables faster iteration, quicker adaptation to new
hardware, and broader accessibility of high-performance kernel development. For systems re-
searchers, TIR+ demonstrates that compiler abstractions can directly capture modern GPU ex-
ecution patterns, including tile-level scheduling, tensor layouts, and inter-GPU communication,
offering a framework that is both analyzable and portable.

Empirical results validate this impact. TIR+ matches cuBLAS on GEMM, outperforms
FlashInfer in latency-sensitive RMSNorm, and delivers up to 40% speedups for fused distributed
kernels. At the same time, certain cases remain where expert-tuned implementations retain an
advantage, such as throughput-oriented attention. These gaps highlight opportunities for future
optimization, particularly through adaptive scheduling and automated tuning.

More broadly, the layered design of TIR+ opens new directions for kernel development. By
serving as a foundation for higher-level DSLs, megakernel fusion, or even AI-assisted schedul-
ing, TIR+ creates a pathway toward more automated and accessible performance engineering.
The broader significance is clear: by making high-performance kernels easier to build, TIR+ can
accelerate innovation in AI systems, reduce time-to-solution for new models, and democratize
access to efficient use of cutting-edge hardware.
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