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Abstract
Task decomposition in software engineering enables the division of complex engi-

neering tasks into manageable components, facilitating modularization and collabora-
tive development. However, supporting newcomer onboarding in open source projects
remains challenging, as complex issues often assume substantial domain knowledge
that prevents meaningful contributions. While maintainers understand the value of
providing entry-level tasks, manually creating approachable entry points competes
with other development demands. In this work, we investigate task decomposition
as a foundation for human-augmentation, creating and analyzing a dataset of decom-
position patterns across ten Apache projects that reveals how experienced developers
naturally break down complex tasks into 3 different patterns.

Building on these insights, we integrate a decomposition component into SWE-
agent to validate that structured task breakdown creates genuine problem-solving value.
Our system achieves a 24% performance improvement over the non-decomposed base-
line on SWE-Bench verified dataset. While evaluation focused on AI agents rather
than human contributors, this technical validation provides necessary evidence that
decomposition creates structural value. This research reframes newcomer onboard-
ing from “finding newcomer-oriented tasks” to “creating navigable pathways into
meaningful work”, establishing the foundation for validating decomposition benefits
through human studies with real newcomers in live open source projects.
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Chapter 1

Introduction

Open Source Software (OSS) projects form the backbone of modern software development, pow-
ering everything from web frameworks to operating systems. The collaborative nature of these
projects depends critically on maintaining a steady influx of contributors who can understand,
modify, and extend complex codebases [33]. However, the long-term success of OSS ecosystems
depends not only on attracting new contributors, but also on effectively helping them become active
and productive members. This process, known as onboarding, is a core challenge that influences
both the sustainability and innovation of a project [22].

The transition from newcomer to active contributor in OSS projects involves overcoming nu-
merous challenges. Among these challenges, the difficulty of finding suitable initial tasks rep-
resents a particularly critical bottleneck. Complex issues often assume domain knowledge and
familiarity with project architecture, creating a substantial cognitive load that prevents newcomers
from making meaningful contributions. Although maintainers understand the value of providing
beginner-friendly tasks, the time and effort needed to define and organize these opportunities often
compete with other development demands, limiting newcomers’ chances to get involved.

Current approaches to supporting newcomer onboarding focus primarily on issue classification[36].
These approaches attempt to identify existing issues that might be suitable for newcomers. How-
ever, classification-based approaches are fundamentally limited by their reliance on existing task
granularity. Accurate labeling does not make complex tasks easier for newcomers . They treat task
suitability as fixed. This overlooks the possibility that task suitability can be actively shaped to
better support human contributors.

The core challenge is not identifying suitable tasks, but transforming complex issues into struc-
tured, learnable pathways that support understanding and skill development. Task decomposition
addresses this by breaking down complex problems into hierarchies of manageable components.
This creates entry points aligned with varying skill levels while preserving connection to meaning-
ful project goals, enabling newcomers to contribute meaningfully as they build expertise.

This thesis addresses the newcomer onboarding challenge by developing a human-augmentation
framework centered on systematic task decomposition. The complete solution pathway involves
three steps: (1) understanding how experienced developers naturally decompose complex tasks,
(2) validating that automated decomposition can produce meaningful task breakdowns, and (3)
demonstrating that such decompositions effectively support human learning and contribution in
real-world settings.

We focus on the first two steps. Through an empirical analysis of decomposition practices
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across Apache projects, we uncover patterns that characterize how experienced developers struc-
ture complex tasks. These insights inform the design of LLM-based decomposition capabilities,
which we integrate into SWE-agent [40] — a state-of-the-art software engineering agent. The sys-
tem interprets natural language requirements, reasons about code structure, and transforms GitHub
issues into structured subtasks. Evaluated on the SWE-Bench Verified dataset, this approach yields
a 24% improvement over the baseline without decomposition.

While our ultimate goal is to support human contributors, evaluating decomposition through
automated agents serves as a necessary precursor — if structured decomposition fails to benefit
AI systems with vast computational resources, it is unlikely to aid human newcomers with more
limited capabilities. The demonstrated performance gains suggest that systematic task breakdown
creates meaningful structure for complex problem-solving, establishing a foundation for future
work that directly supports human contributors in navigating and contributing to large-scale soft-
ware projects.
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Chapter 2

Background and Related Work

2.1 A History of Task Decomposition in Software Practice

Task decomposition in software engineering has evolved from hierarchical methodologies to more
systematic and hybrid approaches across project planning, requirements engineering, and de-
velopment management. Foundational work such as The Mythical Man-Month [11] and Work
Breakdown Structures [1] established early principles for organizing and dividing software tasks.
The Structured Analysis and Design Technique (SADT) [16] introduced functional decomposition
through diagrammatic methods, while requirements engineering advanced decomposition through
hierarchical refinement of stakeholder needs into testable requirements [14].

Modern practices integrate these foundations with agile methods. User story decomposition —
via CRUD splitting, business rule extraction, or workflow-based methods — has become central
in agile development [25]. Empirical studies suggest Scrum with Kanban and XP support more
effective decomposition than Scrum alone [37]. Issue tracking systems reinforce this through Epic
→ Story → Task hierarchies, with collaborative decomposition seen as a problem-solving process
[8]. Requirements traceability remains key for connecting tasks to implementation and verification
[2].

Despite methodological advances, challenges remain in balancing granularity, managing de-
pendencies, and adapting decomposition techniques to evolving contexts. Literature consistently
highlights the importance of hierarchical structures, collaboration, and traceability in managing
complexity [31][35]. Current trends reflect a hybrid of traditional and agile methods. Future work
should empirically assess decomposition effectiveness, develop selection guidelines, and explore
integration with emerging tools [17].

2.2 Modern Approaches: LLM for Task Planning and Decom-
position

The emergence of large language models has enabled advances in task planning for software
agents, allowing them to generate execution strategies for complex programming tasks by se-
quencing subtasks and deciding when to invoke external tools [4]. These planning capabilities
differ fundamentally from the goal of this work: structural task decomposition, which focuses on
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breaking down a complex problem into logically coherent, self-contained subproblems that reflect
the underlying problem structure.

Unlike traditional approaches based on predefined workflows, LLM-based planning lever-
ages natural language understanding and code comprehension to generate context-aware execution
plans [42]. Current systems follow diverse architectural paradigms. Single-agent frameworks like
SWE-Agent manage internal state transitions while sequencing actions [40]. Multi-agent systems
such as MASAI employ hierarchical sub-agents to coordinate tool usage and decision-making,
achieving 28.33% resolution on SWE-bench [4]. Tool-augmented frameworks like CodeAgent
demonstrate significant efficiency gains by incorporating retrieval and navigation tools, improving
pass rates by 2.0–15.8 percentage points while reducing token usage (56.9K vs. 138.2K) [42].

These systems typically rely on planning-oriented reasoning strategies such as Chain-of-Thought
(CoT) reasoning, which improves performance in multi-step inference tasks by guiding execution
flow [39], and Modularization-of-Thought (MoT), which constructs hierarchical reasoning graphs
to inform planning decisions [28]. Adaptive frameworks like ADaPT dynamically adjust execution
plans based on intermediate tool outcomes [19].

Despite technical gains in planning and tool integration, current LLM-based systems focus
primarily on execution optimization rather than structural problem analysis—i.e., how to identify
and isolate the fundamental subproblems within a complex software engineering task. While plan-
ning methods achieve impressive automation results, they operate primarily at the procedural level,
lacking mechanisms for generating decompositions that reveal the conceptual architecture of the
original problem.

This gap becomes particularly relevant when considering interpretability and modularity in
AI-assisted development. Current approaches optimize for end-to-end task completion but provide
limited insight into why certain decompositions are chosen or how the subproblems relate to each
other structurally. Understanding these structural relationships could enable more effective human-
AI collaboration and provide a foundation for iterative problem-solving approaches that go beyond
sequential execution.

Furthermore, current limitations suggest the need for alternative approaches. State-of-the-art
models solve fewer than 40% of issues on SWE-Bench [21], and planning failures often cascade
without effective structural understanding of the problem space [19]. In multi-agent settings, poor
coordination leads to tool conflicts or incomplete coverage [23], and these challenges motivate
exploring decomposition methods that prioritize structural clarity alongside execution efficiency.
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Chapter 3

Analyzing Real-World Task Decomposition:
A Exploratory Dataset

3.1 Motivation and Dataset Selection Criteria

Current research in SE task decomposition lacks a comprehensive dataset that reflects real-world
practices. Existing task planning datasets, such as TaskBench [34] and AsyncHow [24], primarily
target general task automation or asynchronous planning in everyday scenarios. While TaskBench
focuses on API tool usage across synthetic domains, and AsyncHow emphasizes reasoning over
procedural dependencies in instructional tasks, neither captures the granularity, ambiguity, and
domain-specific context found in real-world software development. As a result, these benchmarks
fall short in modeling how developers decompose complex software issues into actionable subtasks
within platforms like GitHub, leaving a gap between academic research and practical applications
in software engineering.

To address the lack of structured datasets for software engineering task decomposition, we con-
ducted a review of over 30 popular open-source repositories on GitHub, including projects such
as PyTorch [38] and uv [5]. While many of these repositories employ issue checklists to track
development progress, we found that the majority of checklists are informal and consist of scat-
tered notes or reminders, lacking the systematic decomposition of complex tasks into well-defined
subtasks. GitHub’s recently introduced sub-issue feature, offers more structured task hierarchies
but remains in limited beta and has seen minimal adoption across large-scale projects.

Consequently, we selected Apache Software Foundation projects as our primary data source
due to their structural consistency, data quality, and domain diversity. Unlike the fragmented is-
sue tracking systems across GitHub repositories, Apache projects uniformly use JIRA [6], which
provides built-in support for hierarchical task relationships with clear parent-child linkages — an
essential feature absent in most GitHub issues.

Moreover, Apache projects are maintained by experienced contributors operating under well-
defined development practices. Each task is typically accompanied by corresponding commits
and code changes, offering concrete examples of how human practitioners decompose and execute
tasks in real-world software development contexts, providing training data for learning decompo-
sition patterns from established practices.

Spanning domains such as web servers, databases, and machine learning frameworks, the 10
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selected Apache projects1 ensure our dataset reflects a wide range of software engineering contexts
across both project types and historical periods from July 24, 2005, to November 12, 2024. This
combination of structural rigor, maturity, temporal coverage, and domain diversity provides a solid
foundation for studying real-world task decomposition in software engineering.

3.2 Data Collection and Preprocessing Pipeline
Our data collection methodology employed a systematic four-stage pipeline to extract and validate
task decomposition patterns from Apache Foundation projects.

Stage 1: Project Analysis and Selection We first analyzed all Apache Foundation projects
to identify those with significant task decomposition practices. Using Jira’s REST API, we ex-
tracted structured metadata from 364 Apache Foundation projects and stored in MongoDB. The
data schema can be refered to table 3.1. To ensure good quality and richness of task decompo-
sition types, we set a threshold of 150 parent tasks, resulting in the selection of only 10 projects
with sufficient hierarchical task structures for meaningful decomposition analysis. The remaining
projects have insufficient subtask utilization for meaningful decomposition analysis, leading us to
focus exclusively on these high-utilization projects.

Field Description
id Internal unique identifier for the parent issue
issue Title of the parent task
issue description Description of the parent task
key Jira issue key (e.g., HIVE-24369)
project Project name (e.g., HIVE)
subissues List of subtasks, each with fields: name, key, id, and

links (PRs)

Table 3.1: Schema Structure

Stage 2: Project Selection and Hierarchical Filtering From the selected 10 projects, we ex-
tracted all parent-child task relationships using JIRA’s native issue linkage system through the
REST v2 interface. To ensure useful decomposition patterns, we applied structural filtering crite-
ria: each parent issue required a minimum of two subtasks, and acyclicity constraints eliminated
circular dependencies within hierarchical structures. This initial extraction yielded 3,765 parent
tasks associated with 37,773 subtasks.

Stage 3: Evidence Validation To ensure that decompositions reflected actual engineering prac-
tices rather than theoretical planning, we implemented implementation evidence filtering as our
primary quality criterion. Each subtask was required to include associated commit messages or pull

1FLINK, SPARK, HBASE, BEAM, HIVE, YARN, HDFS, CB, OFBIZ, HADOOP, and IGNITE
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request references, demonstrating substantiated development work. This criterion excluded purely
theoretical or abandoned decompositions while retaining those with verified implementation evi-
dence. Note that parent issues were not subject to implementation requirements, as they primarily
serve organizational functions in coordinating subtask execution. This resulted in a dataset where
approximately 92% of subtasks are directly connected to code contributions. The filtering process
yielded 2,151 issue pairs. As shown in Figure 3.1, the distribution of subtask counts among these
issues is right-skewed, with the 85th percentile at 12 subtasks — indicating that most tasks are
decomposed into a relatively small number of subtasks.

Figure 3.1: Distribution of Number of Subtask

Stage 4: Quality Assurance and Enhancement To ensure data quality, we performed de-
duplication based on issue IDs to eliminate redundant entries, such as repeated maintenance tasks
appearing across multiple projects.

Many subtask descriptions contained abbreviations, pronouns, and context-dependent refer-
ences that impede comprehension and confuse language models [20]. We employed GPT-4.1 [26]
to enhance task descriptions while preserving semantic meaning. The enhancement process uti-
lized five input sources: parent task, subtasks, subtask descriptions, associated commit files, and
relevant discussion threads. This context aggregation approach enabled the model to expand ab-
breviations based on project context, resolve pronouns through discussion analysis, and transform
cryptic references into clear, actionable descriptions, forming the final dataset for subsequent anal-
ysis.

Table 3.2 presents some examples of this enhancement process. Notable cases include ”BB,”
which could ambiguously refer to BlackBerry, black box, build bot, or BitBucket depending on
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context, and ”WAL” (Write-Ahead Log), a specialized database term that may be unclear to devel-
opers unfamiliar with specific architectural patterns.

Table 3.2: Examples of Task Description Enhancement

Original Subtask Description Enhanced Subtask Description

BB - cordova-VERSION.js → cordova.js BB - Rename cordova-VERSION.js to cor-
dova.js in the Blackberry platform

Add a ./cordova/run project-level script to
WP7

Implement ./cordova/run for Windows
Phone 7

Fix NPE that is showing up since HBASE-
14274 went in

Fix NullPointerException in TestDistribut-
edLogSplitting

WAL split needs to be abstracted from ZK Abstract Write-Ahead Log (WAL) splitting
from ZooKeeper

3.3 Taxonomy of Task Decomposition Patterns Observed in Our
Dataset

To understand how software developers structure complex work, we created the dataset of 2,151
high-level tasks (parent issues) and their 16,068 corresponding subtasks. Based on a structural
and semantic analysis of these task decompositions. We first did literature review on popular task
decomposition strategies in SE domain. Here are the 7 common decomposition patterns.

• Data-driven Decomposition: The task is broken down based on the data structures and
data flows within the system. This approach organizes software components around the
natural flow and processing of information, ensuring that program structure corresponds to
the structure of the data it processes [18]. Subtasks under this pattern are structured around
data transformation requirements, where each component handles specific data processing
operations such as input validation, transformation, or storage.

• Functional Decomposition: The task is divided into a hierarchy of mathematical func-
tions or algorithmic procedures. This approach originated from structured programming
principles established by Dijkstra [15] and the modular design methodologies of Yourdon
and Constantine [41], emphasizing top-down decomposition of program logic. Subtasks
typically correspond to implementing specific algorithms, mathematical transformations, or
procedural workflows (e.g., parsing input, performing calculations, formatting output) that
can be independently developed and tested.

• Object-Oriented Decomposition: The task is divided based on real-world entities or con-
ceptual objects from the problem domain. Each class represents a distinct entity, encap-
sulating its data and behaviors. This approach follows object-oriented principles such as
encapsulation, inheritance, and polymorphism, emphasizing domain models over functional
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procedures [10]. Subtasks include identifying domain classes (e.g., User, Account, Trans-
action), defining their attributes and methods, and establishing relationships through inheri-
tance or composition.

• Feature-based Decomposition: The task is broken down according to user-visible func-
tionality. This strategy aligns with the principles of Feature-Oriented Software Development
(FOSD), which treats features as the primary dimension for structuring programs [3]. In
practice, this is often operationalized through user stories, which serve as concise descrip-
tions of a desired outcome for a specific user [13, 30]. Subtasks in this pattern correspond to
implementing or modifying these features.

• Component-based Decomposition: The task is partitioned based on the system’s architec-
tural components or modules that must be created or modified. This approach prioritizes the
logical structure of the system, aiming to improve comprehensibility and flexibility by en-
capsulating change within clear boundaries, a principle articulated by Parnas [29]. Subtasks
under this pattern typically involve work on distinct classes, services, or modules.

• Step-based Sequential Decomposition: The task is divided into a chronological sequence
of implementation steps. This represents a procedural breakdown of the work, where sub-
tasks are ordered to reflect dependencies in the development process (e.g., set up database
schema, followed by implementing data access layer). This linear approach can be a funda-
mental part of larger, iterative development frameworks, such as the Spiral Model [9], where
each iteration may contain sequentially ordered steps.

• Test-driven Decomposition: The task is structured around the creation and validation of
test cases. This strategy is the key of Test-Driven Development (TDD), where the devel-
opment process is guided by a tight loop of writing a failing test, writing the minimal code
to pass it, and then refactoring [7]. When this pattern is observed, subtasks are explicitly
defined for writing unit tests, integration tests, or fixing failing test cases, often preceding
the implementation of the feature itself.

Pattern Observation: Through systematic analysis of our dataset, we identified 3 out of 7 theo-
retical decomposition patterns after manually examining 15% of the collected data. The observed
patterns include feature-based decomposition, component-based decomposition, and step-based
decomposition. The remaining patterns, functional and object-oriented decomposition, exhibited
significantly smaller granularity than what our dataset encompasses, as our focus was primarily
on larger-scale decomposition strategies. Data-driven decomposition was also absent, which can
be attributed to the fact that most projects in our sample did not involve data processing pipeline
development. The majority of task decompositions involved either creating new features or refac-
toring existing code. Test-driven decomposition, while theoretically relevant, was not observed
in our dataset. Although we identified decomposition tasks focused on creating different types of
test cases, we were unable to confirm whether these test cases served as the primary initiative for
subsequent code development.

The following examples illustrate the three observed decomposition categories. Feature-based
decomposition breaks down functional feature tasks, such as implementing a search result view,
where each subtask contributes a distinct capability (filtering, pagination, search controls, etc.)
to the same UI component. Component-based decomposition involves identifying which system
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components require similar modifications, as demonstrated in our documentation editing example.
Step-based sequential decomposition represents tasks that must be completed in a predetermined
order to achieve the overall goal, where each step depends on the completion of previous steps and
cannot be parallelized.

Decomposition
Type

Parent Task Example Representative Subtasks

Feature-based Implement the search
results view

- Configure default filters to display
results for all platforms
- Display matching plugins in a
paginated table format
- Integrate a search control on the search
results page
- Implement filtering options for specific
platforms

Component-based Remove ios usage
descriptions from plugins
and document alternative

- Remove iOS usage descriptions from
camera plugin
- Remove iOS usage description from
media plugin
- Remove iOS usage descriptions from
media capture plugin
- Remove iOS usage descriptions from
geolocation plugin
- Remove iOS usage description from
cordova-plugin-contacts

Step-based
Sequential

Implement AWS
Snowball Support in
Hadoop

- Disable chunked encoding on the S3
client in Hadoop
- Test data transfer using fs -cp and
DistCp
- Document the support for AWS
Snowball including configuration steps

Table 3.3: Examples of Software Task Decomposition Types

Decomposition Type Classification Given the three observed patterns in our dataset, we used
GPT-4.1 to systematically classify decomposition types across all instances. To validate the accu-
racy of our classification approach, we conducted an inter-rater reliability (IRR) assessment using
100 randomly selected examples from the dataset. For each example, both the LLM and human
annotators were provided with the parent task title and description, associated subtasks, and a ref-
erence sheet defining the three decomposition types and highlighting key distinguishing features.

IRR Results The evaluation involved two human raters: an active open-source software engineer
and the primary researcher. The classification accuracy against the human majority consensus
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reached 79.21%, which demonstrates promising performance considering the stringent evaluation
criteria requiring unanimous agreement between both human raters and alignment with the LLM-
generated labels. The Cohen’s Kappa coefficients between the LLM and the human raters were as
follows:

• LLM vs Human 1: κ = 0.630

• LLM vs Human 2: κ = 0.578

Cohen’s Kappa is computed using the formula:

κ =
P0 − Pe

1− Pe

where P0 is the observed agreement proportion, and Pe is the expected agreement by chance. The
denominator (1−Pe) accounts for the maximum possible improvement beyond chance agreement.

The moderate Kappa values can be attributed to two primary factors. First, some decomposition
instances contained vague or insufficient descriptions, making it difficult to confidently distinguish
between feature-based and component-based categories. Second, the limited number of classifi-
cation categories increases the chance agreement Pe, which reduces the denominator (1 − Pe) in
the Kappa formula. This makes Cohen’s Kappa more sensitive to disagreements, and can result in
lower κ values even when observed agreement is relatively high.

Despite these limitations, the IRR results indicate substantial agreement and support the relia-
bility of our classification methodology.

Category distribution The category distribution (Figure 3.2) reflects the development prac-
tices commonly observed in Apache projects. Feature-based decomposition accounts for 1,088
instances (48.6%), representing the most prevalent pattern in our dataset. Component-based de-
composition comprises 952 instances (42.5%), while step-based sequential decomposition repre-
sents 111 instances (5.0%). This distribution shows the modular and feature-driven development
approaches characteristic of Apache projects, where developers typically organize work around
discrete functional capabilities rather than sequential procedural steps.

48.6

42.5

5.0

Feature-based
Component-based
Step-based Sequential

Figure 3.2: Distribution of Decomposition Patterns
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3.4 Dataset Scope and Limitation
This dataset fills a gap in software engineering research by providing labeled decomposition types
for real-world development tasks. It supports several research applications, including fine-tuning
large language models to learn task decomposition strategies. Each task includes detailed descrip-
tions, pull requests, discussion threads, and timestamps, ensuring full traceability and enabling
longitudinal analysis of development processes. The rich metadata also supports future research,
such as evaluating the effectiveness of decomposition by comparing completion times between
standard and decomposed task executions.

However, several limitations must be acknowledged. First, the dataset exhibits significant lan-
guage and technology stack bias. Apache Foundation projects are heavily backend-focused, re-
sulting in a dominance of Java, while underrepresenting mobile stacks (e.g., Swift, Kotlin) and
web front-end frameworks (e.g., React, Vue). This technological bias may limit generalizability
to projects with different user interface requirements and development paradigms. Second, the
exclusive focus on Apache Foundation projects may reduce applicability to organizations with dif-
ferent development cultures, project scales, or governance structures. The Foundation’s emphasis
on open-source collaboration and modular architecture may not reflect decomposition practices in
proprietary or smaller-scale projects.

Future work should expand the dataset to include a broader range of programming languages,
development contexts, and organizational settings to enhance the generalizability of insights into
task decomposition in software engineering.
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Chapter 4

A Framework for Automated Task
Decomposition

This chapter constructs an automated task decomposition framework using the exploratory dataset
from the previous chapter. The framework validates the effectiveness of hierarchical task break-
down in software engineering agents. We implement and evaluate a decomposition system that
enhances coding agents’ problem-solving capabilities. The dataset serves dual purposes: inform-
ing the decomposition component design and providing training data for fine-tuning a specialized
language model. We benchmark this fine-tuned model against established baselines including
GPT-4.1-mini to comprehensively evaluate decomposition-enhanced automation.

4.1 Hierarchical Task Management Framework

Figure 4.1: SWE-Agent Architecture [40]

This section presents the design and implementation of a hierarchical task decomposition
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framework for enhancing automated software engineering agents. The proposed system extends
the SWE-Agent [40] architecture by integrating a new task decomposition tool with persistent
memory management capabilities.

4.1.1 System Architecture and SWE-Agent Integration
The task decomposition system is implemented as an integrated component within the SWE-
Agent. To enable effective task management, a specialized tool was developed and integrated
into the agent’s toolkit, establishing persistent memory mechanisms for tracking decomposition
state across agent execution cycles.

The SWE-Agent framework (Figure 4.1) provides a modular architecture for autonomous soft-
ware engineering through coordinated interaction between the Agent component, execution envi-
ronment (SWEEnv), and model interface. Our task decomposition system extends this architecture
through two key contributions: (1) a decomposition tool integrated within the existing tools/ direc-
tory structure, and (2) a containerized side model that serves as a guardrail for task completeness
verification, integrated directly into the Agent’s forward() method with access to the current exe-
cution context.

The decomposition tool integrates at the agent level, enabling seamless invocation through the
standard command interface while accessing both the execution environment and history manage-
ment capabilities. The containerized side model operates as a verification guardrail within the
forward() execution cycle, leveraging the existing context access mechanisms to assess task com-
pletion status. This integration approach maintains full compatibility with existing SWE-Agent
workflows while extending the framework’s capabilities for hierarchical task management and au-
tomated progress validation.

4.1.2 Hierarchical Task Structures
The hierarchical task decomposition employs a tree-based data structure where each node repre-
sents either a primary software engineering issue or a derived subtask (Figure 4.2). The tree struc-
ture maintains parent-child relationships through unique task identifiers, enabling bidirectional
navigation and dependency tracking throughout the decomposition hierarchy.

Each task node contains essential metadata including task description, current status, task cre-
ation and update time. The root node corresponds to the original issue, while leaf nodes represent
atomic, directly executable subtasks. Intermediate nodes serve as logical groupings that decom-
pose complex requirements into manageable components.

The system implements a depth-limited hierarchy to prevent excessive decomposition, with
a maximum depth limit of 3 levels as illustrated in Figure 4.2. Task relationships are encoded
using a dictionary representation, facilitating efficient traversal and modification operations. The
hierarchical task structure is implemented as a class-based system, where every update triggers an
automatic JSON file update within the Docker environment for persistence and state management.

4.1.3 Task State Management
The system implements a persistent state file mechanism that maintains continuity across agent ex-
ecution cycles, enabling consistent tracking of task decomposition progress. The task state transi-
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Figure 4.2: Hierarchical Task Decomposition with 3-Level Depth Limit

tion graph is shown in Figure 4.3. Each task begins in the PENDING state and transitions through
a finite set of defined states: IN PROGRESS, COMPLETED, and FAILED. The state machine
governs valid transitions such as PENDING → IN PROGRESS, PENDING → COMPLETED,
or PENDING → FAILED. Once a task is marked IN PROGRESS, it can either complete suc-
cessfully (COMPLETED) or fail (FAILED). This structured state management allows the agent to
reason about task status, identify incomplete or failed subtasks, and resume progress accurately in
subsequent runs.

State Verification Prior to each action step within the SWE-Agent execution loop, the system
prompts the language model to assess the completion status of the current task using the prompt:
CHECK WHETHER THE CURRENT FOCUS TASK IS COMPLETED. IF COMPLETED, PLEASE CALL

MANAGE TASK STATE TOOL TO UPDATE THE STATUS OF THE TASK. This verification process
involves analyzing the execution trajectory and determining whether the active task objectives
have been satisfied. Upon verification of task completion, the system automatically invokes the
task state management tool to update the current task status and advance to the subsequent task in
the execution queue. When all decomposed tasks reach completion, the system generates the final
patch output and terminates the software engineering workflow.

4.2 Implementation of Decomposition Strategies

4.2.1 Strategy 1: Mandatory Single-level Planning

This approach enforces systematic task decomposition by requiring the agent to create a complete
plan before beginning any work. The strategy is implemented through explicit instructions in
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the system prompt. These instructions mandate that tasks must be broken down before execution
starts. Planning is constrained to a single hierarchical level. All subtasks are identified upfront
and executed sequentially according to the predetermined structure. This approach defines task
completeness through systematic enumeration of all necessary subtasks. The enumeration ensures
comprehensive coverage of the problem space before implementation begins.

4.2.2 Strategy 2: Dynamic Multi-level Planning

This strategy enables dynamic decomposition decisions during task execution. The agent can de-
termine whether decomposition is necessary based on the complexity it encounters. The approach
utilizes unit granularity assessment. In this assessment, the agent evaluates whether further de-
composition would provide meaningful benefit to task completion. Decomposition triggers are
activated when specific conditions are met. These triggers activate when the agent determines that
a task has not reached its fundamental unit level. They also activate when the agent determines
that subdivision would enhance execution effectiveness. The strategy supports recursive decompo-
sition with a maximum depth of three hierarchical levels. This enables multi-level task hierarchies
that evolve based on intermediate findings and trigger conditions.

Both strategies were evaluated on SWE-Bench Verified instances using issue resolve rate as
the primary metric. The comparative analysis focuses on the effectiveness of predetermined versus
adaptive decomposition approaches. This analysis examines how each approach handles diverse
software engineering challenges.

4.2.3 Tool Interface and Integration

The task decomposition tool is designed with a structured interface that operationalizes the empir-
ical insights derived from our dataset analysis. Based on our previous findings, the tool supports
both feature-based and component-based decomposition strategies, which emerged as the most
prevalent decomposition patterns in real-world software engineering practices.
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The decomposition process employs automated subtask enumeration. The language model an-
alyzes task descriptions and complexity to determine the optimal number of subtasks. The system
enforces a maximum limit of 12 subtasks per decomposition level to prevent over-fragmentation.
This threshold corresponds to the 85th percentile observed in our Apache dataset analysis, provid-
ing an empirically grounded constraint that would suit most real-world scenarios while maintaining
execution efficiency.

The tool interface follows a standardized command structure designed for seamless integration
with the SWE-Agent framework:
decompose_task <task_description> <num_subtasks>
<decomposition_type> [<parent_id>] [<state_file>]

The function parameters are detailed in Table 4.1, providing flexibility for both single-level and hi-
erarchical decomposition scenarios. The integration maintains persistent state management through
JSON serialization, ensuring task hierarchies and execution context are preserved across agent ex-
ecution cycles.

Parameter Type Required Description
task description string Yes Description of the complex task that

needs to be decomposed

num subtasks string Yes Number of subtasks to create (must be
less than 12)

decomposition type string Yes Type of decomposition (Feature-based,
Component-based)

parent id string No Parent task ID to decompose under an
existing task

state file string No Path to the state file location

Table 4.1: Parameters for decompose task Command

4.3 Experiment Evaluation Setup

4.3.1 Benchmark Selection

The experimental evaluation followed a two-phase design to ensure both rapid prototyping and
rigorous benchmarking of the proposed task decomposition framework. In Phase 1, we conducted
initial validation using the SWE-Bench Lite development dataset [21], which consists of 23 in-
stances. This subset was intentionally chosen for its manageable size, making it well-suited for
iterative debugging and refinement of the methodology. All instances in this set pertain to Python-
based open-source projects, covering a range of bug types with varying levels of complexity. Some
tasks involve straightforward fixes, while others require deeper reasoning or broader codebase un-
derstanding. This diversity allowed us to observe how the decomposition strategy performs under
different levels of task difficulty and ambiguity. Additionally, the lightweight nature of the dataset
enabled rapid evaluation without incurring substantial computational cost.
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Phase 2 employed the SWE-Bench Verified dataset for more rigorous assessment [12]. This
benchmark contains 500 human-verified instances with validated issue descriptions, solution patches,
and ground truth. Unlike other SWE-Bench variants that often contain ambiguous or unsolvable
problems, the Verified dataset removes infeasible cases to eliminate noise. This filtering ensures
that performance metrics reflect genuine problem-solving ability rather than dataset artifacts.

To contextualize our dataset choices, table 4.2 summarizes the characteristics of the major
SWE-Bench variants used in our evaluation, including instance counts, validation status, and typi-
cal use cases.

Dataset Variant Instances Validated Use Case
SWE-Bench Lite Dev 23 × Fast iteration, debugging, ab-

lation studies
SWE-Bench Lite Test 300 × Lightweight benchmarking
SWE-Bench Full Train 19,000 × Large-scale pretraining and

fine-tuning
SWE-Bench Full Dev 225 × Baseline model development
SWE-Bench Full Test 2,290 × Broad-scale evaluation with

noise
SWE-Bench Verified 500 ✓ Reliable benchmarking with

human validation

Table 4.2: Comparison of SWE-Bench Dataset Variants

4.3.2 Model Configuration and setups
Experimental Model Variants The evaluation employed three model configurations to system-
atically assess the impact of task decomposition on software engineering performance:

• Baseline Models: GPT-4.1 [26] and GPT-4.1-Mini [27] without decomposition.
• Enhanced Variants: GPT-4.1 and GPT-4.1-Mini with Strategy 1 (mandatory single-level

planning) or Strategy 2 (dynamic multi-level planning).
• Fine-tuned Model: Qwen3 1.7B [32] trained on our decomposition dataset using Strategy 1

with GPT-4.1-mini as agent model.

Fine-tuned Model Configuration The Qwen3 1.7B model was fine-tuned specifically for task
decomposition using the parameters detailed in Table 4.3.

Experiment Control All experiments followed standardized protocols to ensure reproducible
comparisons. Baseline agent executions used deterministic sampling (temperature = 0.0) to elim-
inate stochastic variation. Decomposition components operated with temperature = 0.7 to enable
diverse reasoning during task breakdown. A budget of $0.50 was allocated per problem instance,
with token limits adjusted accordingly based on model pricing. Each run executed in isolated
Docker environments using the standard SWE-Bench evaluation harness with automated scoring.
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Parameter Value
Base Model Qwen3 1.7B
Training Format Alpaca
Cutoff Length 2048 tokens
Learning Rate 0.0003
Training Epochs 3
LR Scheduler Cosine
Optimizer AdamW
LoRA Rank 8
LoRA Alpha 16

Table 4.3: Fine-tuning configuration parameters for Qwen3 1.7B model

4.4 Results and Performance Analysis

4.4.1 Initial Validation on SWE-Bench Lite
In our initial validation on the SWE-Bench Lite development split, we tested three model con-
figurations to establish baseline performance without task decomposition. The full-sized GPT-4.1
model resolved 7 out of 23 issues (30.4%), while the smaller GPT-4.1 Mini variant resolved 6 out
of 23 issues (26.1%). When we applied our first decomposition strategy (S1) to GPT-4.1 Mini, the
resolution count remained the same at 7 out of 23 (30.4%). Although the decomposition-enhanced
model resolved one additional issue compared to the non-decomposed GPT-4.1 Mini, the improve-
ment is negligible given the small sample size. These results suggest that decomposition does not
provide a measurable improvement on this subset (Table 4.4).

Manual inspection indicates that many Lite issues are either too vague or inherently difficult.
This leads to high variance in model performance and may obscure any potential gains from de-
composition. Therefore, we chose to conduct all further evaluations using the SWE-Bench Verified
dataset, which contains manually curated issues better suited for assessing decomposition effec-
tiveness.

Model Configuration Resolved / Total Success Rate
GPT-4.1 (no decomposition) 7 / 23 30.4%
GPT-4.1 Mini (no decomposition) 6 / 23 26.1%
GPT-4.1 Mini + decomposition S1 7 / 23 30.4%

Table 4.4: Performance on the SWE-Bench Lite

4.4.2 Full Evaluation on SWE-Bench Verified
The evaluation on the SWE-Bench Verified split shows that task decomposition improves the res-
olution capability of the compact GPT-4.1 Mini model. Without decomposition, GPT-4.1 Mini
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resolves 152 out of 500 issues (30.4%). Strategy 1 increases this to 189 (37.8%), a 24.3% relative
improvement. Strategy 2 leads to 178 resolutions (35.6%), a 17.1% gain.

Notably, Strategy 1 enables GPT-4.1 Mini to slightly outperform the full-sized GPT-4.1 model
without decomposition, which resolves 182 issues (36.4%). This suggests that decomposition can
partially compensate for reduced model capacity. Strategy 2 also narrows most of the performance
gap, although it does not surpass GPT-4.1.

Impact of Cost Limitations on Decomposition Performance However, our $0.50 budget con-
straint did affect the evaluation result, particularly for decomposition-enhanced models. As shown
in Table 4.5, models using decomposition strategies hit the budget limit much more frequently than
their non-decomposed counterparts. GPT-4.1 Mini with Strategy 1 reached the budget constraint
in 43 instances compared to only 8 instances for the baseline model. Similarly, Strategy 2 hit the
budget limit in 38 cases.

This pattern indicates that decomposition strategies require additional computational resources
to execute their structured approach effectively. The high number of budget-constrained instances
(38-46 for decomposition vs. 8-23 for baselines) suggests that our evaluation may have under-
estimated the true potential of decomposition approaches. Many instances that were marked as
”failed” may have been successfully resolved given sufficient computational budget to complete
the decomposition process.

The GPT-4.1 model shows a moderate number of budget hits (23 instances) despite not using
decomposition, which reflects its higher per-token cost compared to the Mini variant. This cost
differential explains why the full model hits budget constraints more frequently than the Mini
baseline despite similar token consumption patterns.

Model Architecture and Decomposition Effectiveness The results for Qwen3 models provide
additional insights into the effectiveness of task decomposition across different model architec-
tures. Both Qwen3 without finetuning (Qwen3-no-ft) and with finetuning (Qwen3-ft) plus Strat-
egy 1 achieve competitive performance (37.0% and 37.6% respectively), also demonstrating the
benefits of decomposition. Qwen3-ft with Strategy 1 slightly outperforms the full-sized GPT-4.1
baseline (37.6% vs 36.4%).

Interestingly, both Qwen3 variants also show high budget constraint rates (44-46 instances),
suggesting that the computational overhead of decomposition is consistent across different model
architectures. However, while Qwen3-ft shows improvement over the GPT-4.1 baseline, the gains
are relatively modest and do not substantially exceed the performance achieved by GPT-4.1 Mini
with decomposition.

Limitations of Transfer Learning Two main factors could limit the performance of Qwen3-
ft. First, there is granularity mismatch between the fine-tuning dataset and SWE-Bench. The
Apache project issues used for fine-tuning typically involve higher-level system decomposition
across different platforms and architectural components, whereas SWE-Bench issues are focused
on localized bug identification and resolution within specific codebases. This fundamental dif-
ference in problem scope means the decomposition patterns learned during fine-tuning may not
directly transfer to the more targeted debugging tasks in SWE-Bench.
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Second, there exists a domain shift between the training and evaluation data. The fine-tuning
dataset is heavily skewed toward Apache projects, which are primarily Java-based and emphasize
enterprise-scale software architecture, while all SWE-Bench projects are Python-based with differ-
ent coding patterns, library ecosystems, and debugging methodologies. This language and ecosys-
tem mismatch may limit the model’s ability to effectively apply learned decomposition strategies
to the Python-centric evaluation environment.

Result Summary As shown in Figure 4.4, both decomposition strategies raise the performance
of the compact model beyond its baseline. These results support the conclusion that task de-
composition improves real-world issue resolution, even for smaller models. However, the high
frequency of budget-constrained executions suggests that the observed improvements represent a
conservative estimate of decomposition effectiveness. Future evaluations should consider both
cost-constrained and unconstrained settings to fully characterize the performance potential of
decomposition-enhanced approaches.

Model Configuration Resolved / Total Exit cost Success Rate
GPT-4.1 (no decomposition) 182 / 500 23 36.4%
GPT-4.1 Mini (no decomposition) 152 / 500 8 30.4%
GPT-4.1 Mini + Strategy 1 189 / 500 43 37.8%
GPT-4.1 Mini + Strategy 2 178 / 500 38 35.6%
Qwen3-no-ft + Strategy 1 185 / 500 44 37.0%
Qwen3-ft + Strategy 1 188 / 500 46 37.6%

Table 4.5: Performance on SWE-Bench Verified
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4.4.3 Qualitative Analysis of Agent Behavior
To complement the quantitative results in Table 4.5 and Fig. 4.4, we manually analyzed repair
traces produced by three configurations: the no-decomposition baseline, Strategy 1 (static plan),
and Strategy 2 (dynamic plan). Strategy 1 successfully resolved 38 issues that the baseline failed
to address.

A common failure pattern involves bugs that span multiple control-flow stages, such as pars-
ing, validation, execution, and output. In these cases, missing logic in one phase can silently
propagate errors downstream. For example, in Django’s call command, mutually exclusive op-
tions passed as keyword arguments bypass argparse, causing the validation phase to be skipped
entirely. Without decomposition, the model often overlooks this gap. Strategy 1 addresses the
problem by explicitly breaking the task into distinct stages: input normalization, argument valida-
tion, command execution, and output verification. This structure helps the agent surface hidden
assumptions and insert missing checks at the correct point in the pipeline.

Another failure mode arises from tightly coupled or poorly abstracted modules. When system
responsibilities are not clearly separated, models tend to apply fixes in the wrong place. In Django’s
makemigrations, the planner calls allow migrate() on every model instead of scoping
the call to the target app. This causes failures in sharded databases where some shards do not
contain the full set of models. Without clear module boundaries, the model may attempt to fix
the router logic directly, leading to incorrect or brittle patches. Strategy 1 helps avoid this by
structuring the repair into steps that clarify component responsibilities. The model focuses the
change on the planner’s call site, leaving unrelated modules untouched.

Compared to Strategy 1, Strategy 2 performs less reliably on these patterns. Although it dy-
namically adjusts to new observations, it often struggles to identify the right granularity of decom-
position. In several cases, it attempted to reproduce, diagnose, patch, and test a bug in a single
step, resulting in superficial or irrelevant fixes, such as inserting a type cast unrelated to the root
cause. This highlights the value of explicit sub-task planning: Strategy 1 encourages the model
to isolate fault localization, hypothesis generation, and fix implementation, reducing the chance of
overgeneralized edits.

However, for the remaining unresolved issues in SWE-Bench, our analysis suggests that de-
composition limitations were rarely the primary bottleneck. While we lack systematic quantifica-
tion of these failure modes, our impression from examining unsuccessful repair attempts indicates
that most failures stem from fundamental limitations in the model’s ability to comprehend complex
problem contexts or execute the necessary reasoning steps, rather than inadequate task decomposi-
tion per se. This suggests that while improved decomposition strategies can meaningfully expand
the range of solvable problems, they cannot address the core challenges posed by the most difficult
issues in the benchmark.
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Chapter 5

Discussion

Our experiments demonstrate a 24% relative improvement in issue resolution on SWE-Bench
through structured task decomposition, even under computational constraints (GPT-4.1-mini, lim-
ited tokens). This finding confirms that decomposition enhances problem-solving structure and
establishes a foundation for building effective human-augmentation tools in software engineering.
The observed benefits are particularly significant given the limitations of the models involved,
suggesting that even greater value could be realized when such methods are applied to human
contributors.

While large language models benefit from structured task breakdown despite having access to
extensive compute and comprehensive code knowledge, human contributors — especially those
with limited expertise — stand to gain even more. Human cognition is constrained by working
memory and domain familiarity, and decomposition offers a systematic way to manage these limi-
tations. By dividing complex tasks into smaller, coherent subtasks, decomposition enables human
contributors to engage with software engineering problems in ways that align more closely with
their cognitive capabilities.

This is particularly beneficial for newcomers, who often struggle with the complexity of large-
scale systems. Unlike LLM that can process an entire codebase in a single pass, humans acquire
knowledge incrementally. Structured decomposition facilitates this process by creating a scaf-
folded learning path, allowing individuals to begin with simpler subtasks and gradually build the
knowledge and confidence required to tackle more complex components. This approach offers a
more principled alternative to ad hoc onboarding practices such as labeling certain issues as “good
first tasks,” which often fail to convey how subtasks fit into the larger system architecture.

Beyond individual learning, structured decomposition also enhances collaboration. By clearly
delineating subtask boundaries, it enables experienced maintainers to focus on high-level architec-
tural decisions while newcomers contribute to well-scoped units of work. This division of labor
allows for efficient utilization of expertise across a development team and fosters inclusive partic-
ipation by reducing the barrier to entry.

To better understand the limitations of our approach, we conducted a focused analysis of 40
randomly selected failure cases drawn from the 311 issues where GPT-4.1 Mini with Strategy 1
was unsuccessful. These failures were primarily attributable to the limitations of the underlying
language model rather than flaws in the decomposition strategy itself. In most cases, the model
struggled to reason about tasks involving high-complexity modules or specialized frameworks out-
side its training distribution. Moreover, decomposition was less effective when domain-specific
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knowledge was required to generate accurate subtasks. Nonetheless, even in these challenging
scenarios, decomposition still improved resolution rates compared to non-decomposed baselines,
reinforcing its general utility.

While these cases expose the boundaries of decomposition utility, they also highlight impor-
tant differences between decompositions optimized for AI agents and those that best support hu-
man contributors. AI models benefit from fine-grained decomposition tailored for execution effi-
ciency, whereas human contributors may prefer coarser-grained subtasks that preserve autonomy
and facilitate conceptual understanding. Additionally, human-centered decomposition must ac-
count for team dynamics, communication costs, and the evolving expertise of contributors. These
observations suggest that effective human-augmentation tools should support adaptive granularity,
allowing users to tune the level of detail to match their preferences and skill levels.

Several challenges must be addressed to translate these insights into practical systems. One
such challenge is the balance between static and dynamic decomposition. In our experiments,
static strategies outperformed dynamic ones, but this may not hold in human-centered settings
where contributors are continuously learning. Decomposition strategies that adapt to an individ-
ual’s growth trajectory,creating increased complexity as competence improves, could provide a
more effective learning experience.

Evaluating such systems also presents methodological difficulties. Task completion alone is an
inadequate measure of effectiveness when human learning is a core objective. Future work must
explore additional metrics such as contributor satisfaction, retention, and learning outcomes, likely
requiring longitudinal user studies. Moreover, any deployment of these systems must consider
real-world integration constraints. For decomposition tools to be adopted in practice, they must in-
tegrate seamlessly with existing development workflows, including project management platforms,
code review pipelines, and communication tools, without disrupting established team norms.

Another limitation stems from the generalizability of our findings. Our decomposition model
was trained on Java-based Apache projects, while evaluation was conducted on Python-based
SWE-Bench issues. This mismatch highlights the need to test decomposition strategies across
diverse programming languages and project types. It remains an open question whether patterns
observed in modular, backend-heavy systems such as Apache generalize to mobile, front-end, or
smaller-scale development contexts.

Despite these limitations, our results inspire a range of practical tool designs. Adaptive learning
environments could leverage automated decomposition to construct personalized learning trajec-
tories for newcomers, dynamically adjusting complexity based on contributor progress. Similarly,
collaborative interfaces could allow experienced developers to curate and revise decompositions
before distributing them to the wider team, supporting onboarding and reducing the burden on in-
dividual mentors. Integrating decomposition into development environments—coupled with nav-
igation tools, documentation, and version control—could offer context-aware support that helps
contributors situate their work within the broader codebase.

Our study contributes several foundational insights for the design of such tools. Empirical val-
idation shows that decomposition improves task performance, providing evidence for its practical
value. The identification of three decomposition patterns — feature-based, component-based, and
step-based — offers a taxonomy that can guide strategy selection based on task characteristics.
Our analysis of computational tradeoffs clarifies how to balance tool effectiveness with resource
constraints, while the failure case study helps delineate the current boundaries of decomposition
efficacy.
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In light of these findings, new research directions emerge. A key challenge is granularity cal-
ibration: determining the optimal decomposition detail for contributors with different experience
levels and goals. This requires metrics that go beyond efficiency to assess user engagement and
learning outcomes. Additionally, understanding how decomposition strategies transfer across do-
mains — especially between projects with different architectural styles, contributor bases, and
tooling ecosystems — is important for generalizability.

Finally, the social dynamics of tool adoption must not be overlooked. Automated decompo-
sition tools interact with mentorship structures, communication norms, and team collaboration
practices. Their long-term impact on project health, innovation, and contributor retention must be
assessed through longitudinal studies that track contributors over extended periods.

Addressing these challenges will require interdisciplinary collaboration across software engi-
neering, human-computer interaction, and learning sciences. Only by combining insights from
these domains can we design human-augmentation tools that not only improve task efficiency but
also foster learning, collaboration, and sustainable growth in open-source software ecosystems.
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Chapter 6

Conclusion

This thesis establishes task decomposition as a promising foundation for human-augmentation in
software engineering. The 24% improvement in AI agent performance provides strong evidence
that structured task breakdown creates genuine value, while our empirical analysis of real-world
decomposition patterns from Apache projects offers practical guidance for tool development.

Rather than simply matching newcomers with easy tasks, this work focuses on constructing
accessible routes that lead to significant and meaningful work. Rather than limiting newcomers to
peripheral contributions, decomposition enables transformation of complex issues into structured
learning experiences while maintaining connection to important project goals.

The path forward is clear: the technical foundation and empirical insights presented here en-
able the next critical step of validating decomposition effectiveness through human studies with
real newcomers in live open source projects. The tools, datasets, and analytical frameworks devel-
oped in this research provide the necessary basis for building and evaluating human-augmentation
systems that can meaningfully improve newcomer onboarding and long-term project sustainability.

The ultimate goal — AI systems that provide structured problem breakdowns enabling humans
to engage in implementation, learning, and creative reasoning — represents a productive division
of cognitive labor that leverages the complementary strengths of human and artificial intelligence.
This work marks a significant step toward that goal.
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