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Abstract

As modern data-intensive workloads increasingly migrate to the public cloud,
managing the resulting costs has emerged as a pressing challenge despite the opera-
tional simplicity and elasticity that cloud environments offer. Although many efforts
in cost optimization have focused on computation, storage-related costs have re-
ceived comparatively less attention despite being a significant portion of total cloud
spending. In particular, two categories dominate storage-related costs in public
cloud: the cost of deploying and operating storage clusters in the cloud, and the
cost of accessing data across geographically distributed regions or clouds. These
challenges cannot be effectively addressed by existing optimization techniques de-
veloped for on-premise environments, since they often overlook the unique char-
acteristics of public clouds, including elastic resource provisioning, diverse cost-
performance trade-offs, and dynamic and unique access patterns found in cloud ob-
ject storage workloads.

This dissertation addresses these challenges by proposing a cost-efficient ap-
proach to designing storage and caching systems that are cloud-aware, elastic, and
adaptive to workload behavior. It introduces three systems that target key aspects
of cloud storage cost optimization. First, Mimir reduces the cost of the deployment
of storage clusters by automatically selecting cost-effective combinations of virtual
machines and block storage types, based on profiling workload characteristics and
benchmarking available resource options. Second, Macaron reduces cross-region
and cross-cloud data access costs by auto-configuring a cache with a tiered storage
architecture that leverages low-cost object storage and dynamically resizes the cache
based on workload changes. Third, Macaron+ builds on Macaron by introducing a
cost-aware prefetching technique that analyzes object-level access patterns to reduce
latency in workloads with high cold miss ratios, while preserving cost-efficiency.
Together, these systems demonstrate that by tailoring automated resource selection,
adaptive configuration, and predictive techniques to the characteristics of the public
cloud, it is possible to significantly reduce the cost of storing and accessing data.
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Chapter 1

Introduction

As enterprises increasingly migrate to public clouds for their data-intensive workloads [2, 13} 4],
cloud infrastructure has emerged as the dominant platform for modern computing. This transition
offers unprecedented elasticity, operational simplicity, and access to a vast ecosystem of managed
services. However, it also presents substantial cost challenges. Recent industry reports show that
optimizing cloud costs has remained one of the top organizational priorities for the past seven
years [2], and 69% of IT leaders report public cloud cost overruns that negatively impact other
budgets [S]. As illustrated in Figure [I.1| Gartner forecasts [6, [7, [8, 9, 10} [11} [12] indicate that
end-user spending on public cloud services has increased at an average annual rate of 23% from
2018 to 2024. Reducing this growing cost burden is becoming an increasingly critical concern
for cloud users.

While prior research [13, 14, [15) (16, [17] has extensively studied cost-optimized virtual ma-
chine selection for computational workloads in the public cloud, storage selection has received
comparatively less attention. However, recent industry findings underscore the growing impor-
tance of addressing cloud storage costs. More than two-thirds of organizations allocate more
than a quarter of their cloud budgets to storage services [18]], and 66% of them report exceeding
their cloud storage budgets [19].

Although organizations aim to reduce cloud storage costs, selecting cost-efficient storage
strategies remains challenging. This difficulty comes from the complex landscape of resource
options, each with varying pricing and performance characteristics. In addition, storage perfor-
mance often depends on workload access patterns, further complicating decision making. As
a result, organizations frequently adopt suboptimal deployment strategies, such as lift-and-shift
migrations from on-premises systems or the uniform selection of storage configurations across
all virtual machines. These strategies often rely on predefined “storage-optimized” instances
without tailoring the configurations to specific workload needs.

These challenges are further amplified in today’s cloud landscape, where applications are
increasingly geo-distributed across multiple regions or cloud providers. Accessing data across
these boundaries has become common, driven by needs such as fault tolerance, data locality, and
regulatory compliance. However, multi-region and multi-cloud deployments introduce signifi-
cant costs, particularly due to high data egress fees and variability in performance guarantees.
In practice, organizations replicate entire data lakes across regions or clouds to meet latency re-
quirements or access remote data directly for simplicity. Both approaches result in increased
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Figure 1.1: Annual end-user spending on public cloud services has grown by an average of 23%
per year from 2018 to 2024, according to Gartner reports. This consistent growth highlights that
controlling cloud expenses is already a major concern for users and is expected to become even
more critical in the coming years.

operational costs and degraded performance as a result of higher latencies.

Although many research has explored the design and optimization of storage systems in on-
premises and research datacenter settings, these techniques do not transfer directly to public
cloud environments. Cloud deployments are similarly difficult, but fundamentally different, be-
cause public cloud providers enforce strict service level agreements (SLAs) and pricing models
that limit traditional tuning and resource control. In this context, cost is not simply a function of
storage capacity or usage volume. Instead, it relies on configuration decisions that interact with
dynamic workload behavior and billing structures.

This dissertation addresses these emerging challenges by rethinking how to design and op-
erate storage systems in the public cloud. It focuses on improving cost-efficiency of storing and
accessing data in public clouds, by exploiting the diversity of cloud resources and incorporat-
ing runtime workload monitoring. The dissertation presents systems that automatically select
heterogeneous combinations of compute and storage types, adjust cache capacity dynamically
to reduce remote data access costs, and apply predictive techniques such as prefetching to re-
duce latency without incurring unnecessary data transfer expenses. Through these contributions,
the dissertation provides new insights into building cloud-native storage systems that balance
performance with cost-awareness.

1.1 Thesis statement
This dissertation focuses on reducing the following two major categories of storage-related costs

while maintaining the performance requirements: (1) storage cluster deployment costs, which in-
cludes the costs of provisioning virtual machines and storage volumes among storage types with

2



differing cost-performance trade-offs, and (2) cross-cloud/region data access costs, which arise
from accessing data across geographically distant regions or across different cloud providers,
and are often dominated by data egress charges and high-latency penalties.

To address these challenges, we identify three public cloud-aware design principles that guide
cost-efficient storage system design in public clouds:

* Exploiting resource diversity: Public clouds offer a wide variety of VM and storage
options with diverse cost-performance characteristics. Systems can achieve cost-efficiency
by automatically selecting and combining heterogeneous resources.

* Leveraging elasticity: Public clouds allow on-demand provisioning and releasing of re-
sources. Systems can benefit from dynamically adjusting system capacity based on current
resource availability and budget constraints.

* Exploiting workload-awareness: Cloud workloads often exhibit time-varying data access
patterns. Systems should incorporate runtime monitoring and adapt to changing workload
behavior to maintain efficiency.

Grounded in these principles, this dissertation presents our works that collectively demon-
strate and support the following thesis statement:

Thesis Statement: By leveraging the elasticity and diversity of public cloud storage re-
sources in combination with real-time workload monitoring, it is possible to reduce storage de-
ployment costs and cross-region/cloud data access costs.

We demonstrate this thesis through the design and evaluation of three systems, each address-
ing a key challenge in public cloud storage and caching, using automated heterogeneous resource
selection, adaptive caching, and cost-aware prefetching.

(i) Mimir: finding cost-efficient storage configurations in the public cloud (Chapter [2]])
Provisioning cost-efficient storage clusters in public clouds is challenging due to the wide
range of available block storage options (e.g., remote / local SSDs, HDDs) with varying
cost-performance trade-offs and performance SLAs. Organizations often resort to naive
shift and lift deployments that ignore this diversity, leading to inefficient spending. Mimir
is a system that automatically selects cost-efficient storage configurations by leveraging
both workload profiling and detailed resource benchmarking. Specifically, it configures
virtual storage clusters with a mix of storage types and provisioning parameters. Mimir
uses a two-stage pipeline: first, it profiles workloads to understand access behavior and
latency sensitivity; then, it benchmarks cloud storage types to estimate cost and perfor-
mance under those behaviors. By combining this information, Mimir optimizes cluster
configurations to meet performance goals while minimizing costs. Evaluation of Apache
BookKeeper storage systems shows that Mimir reduces storage deployment costs by up to
81% compared to state-of-the-art approaches.

(i) Reducing cross-cloud/region costs with the auto-configuring Macaron cache (Chap-
ter [3]]) Cross-cloud and cross-region workloads incur significant egress costs and access
latency, yet current solutions either replicate all data (expensive) or access it remotely
(slow). While cloud providers offer caching services, these require manual configuration



and often rely on expensive DRAM. This work introduces Macaron, an auto-configuring
cache system that minimizes cost for remote object storage access in geo-distributed work-
loads. Macaron is built around a key insight: cache size in the cloud is cost-constrained,
not hardware-limited. As such, Macaron dynamically adjusts both cache size and storage
tiering (DRAM vs. object storage) in response to access patterns. A lightweight minia-
ture simulation estimates cache miss rates and latency, enabling cost-performance tradeoff
decisions. Macaron addresses three core challenges derived from real-world traces from
IBM, Uber, and VMware: (1) bridging between full replication and naive remote access
with an auto-tuned cache; (2) supporting large cache sizes using cheap storage to offset
high egress cost; and (3) dynamically reconfiguring the cache to match evolving access
patterns. Compared to alternatives, Macaron achieves up to 81% cost reduction versus full
replication, 66% over provider caching services, and only 9% higher cost than oracular
caching (with perfect future knowledge).

(iii) Macaron+: Cost-aware cross-region cache prefetching (Chapter [d) Macaron+ extends

the Macaron caching system to improve latency in geo-distributed workloads by prefetch-
ing blocks based on access pattern similarity between objects. Existing prefetching tech-
niques are ineffective for cloud object storage, which lacks a global address space and
exhibits high cold miss ratios. To overcome this, Macaron+ leverages the insight that early
access patterns can predict future behavior, using a sparse random projection to embed
per-object access patterns and a lightweight MLP model to forecast future embeddings.
It then uses approximate nearest neighbor search to identify similar objects and selects
blocks to prefetch based on aggregate access frequencies. Evaluation on Uber’s Presto
cluster traces shows that Macaron+ reduces average latency by 28% while increasing cost
by 103% compared to Macaron, outperforming other existing online prefetchers. Ablation
studies show further improvements by constraining prefetching to well-observed objects or
those in similar directory paths. Compared to Macaron+ without prediction, Macaron+ of-
fers a more cost-efficient latency reduction and approaches the performance of an oracular
offline version with perfect knowledge.

1.2 Summary of contributions

The core contributions of this dissertation are as follows:

Mimir:

Show that finding cost-optimal virtual storage cluster configurations requires considering di-
verse storage volume types and configurations.

Describe the architecture and algorithms that allow Mimir to find cost-effective virtual storage
cluster configurations for a distributed storage backend.

Demonstrate that Mimir can effectively explore AWS’s diverse block storage offerings, reduc-
ing cost by up to 81% relative to state-of-the-art approaches.

Demonstrate that Mimir can be used as part of a dynamic reconfiguration system to reduce cost
by 74% for diurnal workloads.



Macaron:

Show that finding cost-optimal virtual storage cluster configurations requires considering di-
verse storage volume types and configurations.

Describe the architecture and algorithms that allow Mimir to find cost-effective virtual storage
cluster configurations for a distributed storage backend.

Demonstrate that Mimir can effectively explore AWS’s diverse block storage offerings, reduc-
ing cost by up to 81% relative to state-of-the-art approaches.

Demonstrate that Mimir can be used as part of a dynamic reconfiguration system to reduce cost
by 74% for diurnal workloads.

Macaron+:

Analyze real-world cloud storage workloads and derive key design rationales for prefetching
data blocks.

Propose a cost-efficient prefetching technique that leverages access pattern similarity between
objects to guide block prefetching.

Explore multiple variants of the Macaron+ prefetcher, characterizing the cost-latency trade-off
space.

Demonstrate that Macaron+ achieves 13—61% cost reduction for the same latency target com-
pared to existing approaches, and identify opportunities for further improvement.

1.3 Outline

This dissertation is organized as follows. Chapter 2] presents Mimir [20], a system for auto-
matically selecting cost-efficient storage configurations for cloud-based storage clusters by an-
alyzing workload characteristics and resource trade-offs. Chapter [3] introduces Macaron [21]],
an auto-configuring cache that reduces cross-region/cloud access costs by dynamically adapting
to workload behavior and cloud resource pricing. Chapter 4 extends this work with Macaron+,
a cost-aware prefetcher that leverages block-level access pattern similarity and runtime predic-
tion to proactively reduce access latency and egress costs. Finally, Chapter [5| concludes with a
summary of key findings and a discussion of future research directions.






Chapter 2

Mimir: Finding cost-efficient storage
configurations in the public cloud

Companies are increasingly moving data-heavy applications to the cloud, often replicating on-
premises implementations of integrated data processing and storage backend systems on cloud
instances. While researchers have introduced and studied effective approaches for auto-selecting
cost-optimized VM instances for computation work [[13} 14, 15, 16 [17]], less attention has been
paid to storage selection. For cold storage, there is usually a clear option (e.g., S3 in AWS or
Blob Storage in Azure). For performant storage needs, however, the set of block storage volume
types is increasingly diverse in storage characteristics, SLAs and cost structures. Selecting the
most cost-effective virtual storage cluster (VSC) configuration for a given data-heavy application
deployment is likely beyond all but the most expert user.

Commonly, storage backends (e.g., distributed file systems, key-value stores) are built for
use with block storage volumes providing traditional SSD or HDD interfaces. Selecting storage
hardware for on-premises deployments is challenging [22, 23| 24]], given the wealth of options.
The challenge in cloud deployments is similarly difficult, but differently so because of cloud SLA
and cost structures. Using AWS as a concrete example, there are three block storage volume
types: local-SSD associated with a compute instance, remote-SSD that can be attached to any
VM instance, and remote-HDD that can be attached to any compute instance. Making matters
worse, each type has multiple options with different costs and different SLA structures regarding
cost as a function of performance and capacity required. For example, options include charging
per-GB with a fixed budget of IOPS per-GB, providing a specific capacity and performance for a
given cost, or charging for a performance budget of MiB/s per-TB. Each customer is best served
by a different option, and the most cost-effective may be a mix of options.

Figure [2.T]illustrates the need to consider many volume types and configurations in selecting
a VSC configuration. For each of the three workloads on a distributed storage backend, it shows
the cost for the best VSC configuration choice under each of three constraints: considering only
local-SSD volume types, only remote storage (EBS) volume types, and arbitrary mixes of both
volume types. The most cost-effective configuration is used in each case. We note that: (1) the
best single-type choice differs across workloads, and (2) cost is sometimes minimized by mixing
volume types.

In this chapter, we present Mimir, a tool for finding a cost-effective set of instances, vol-
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characteristics are described in

ume types and volume configurations for a distributed storage backend used by a data-heavy
application workload. Given high-level workload specifications and performance requirements,
as might be produced by profiling an operational version of the system (whether on-premises
or using an over-provisioned manual configuration), Mimir considers potentially heterogeneous
VSC configurations as shown in Figure

Mimir casts VSC configuration selection as an optimization problem, like most prior tools for
automated resource selection. Central to how Mimir achieves its goals is predicting the resources
required for the given workload, including both the I/O throughput of the access pattern and the
compute and memory needs of the storage software. Using predicted resource requirements
and analytically-formulated price-performance cost models of public cloud resources, Mimir
determines cost-efficient VSC configurations using dynamic programming. This is in contrast to
predicting workload performance for a specific instance type like previous works [[17, 25, 26],
which allows Mimir to explore heterogeneous VSC configuration options, and find good VSC
configurations for workloads composed of multiple access patterns.

Mimir focuses on cost-efficient resource selection for given workload characteristics and
requirements, and shows that such resource selection must consider diverse volume types and
configurations to minimize costs. In some cases, the workload characteristics and requirements
can be determined just once for a stable workload or when provisioning for peak requirements.
In other cases, adjusting allocated resources dynamically to match observed variations in the
workload can bring further cost benefits. For such cases, Mimir can be used as the resource
selection component (replacing less-effective traditional selection components) in a system that
monitors the workload variations, intermittently invokes Mimir to suggest new VSC configura-
tions, and enacts configuration changes (and data movement) if the project savings exceeds the
cost of changing.

To evaluate Mimir, we used Apache BookKeeper as the distributed storage backend driven by
each of two key-value workloads based on discussions with engineers of a top customer relation-
ship management (CRM) service and six workloads based on key-value workloads described
by Meta [[L]. Our results show significant cost savings arising from Mimir’s approach and its
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Figure 2.2: Performance characteristics of public cloud storage volume types by (a) I/O unit size
and (b) workload read ratio. In (a), both volume types have throughput limits defined by AWS
(horizontal lines), and we used a read-only workload.

ability to consider diverse volume types. For example, compared to a state-of-the-art approach
considering only EBS volume type and configurations, Mimir reduces cost by up to 81%. More
generally, Mimir consistently and quickly finds cost-effective VSC configurations.

Contributions. We make four primary contributions: (1) We show that finding cost-optimal
VSC configurations requires considering diverse volume types and configurations. (2) We de-
scribe the architecture and algorithms that allow Mimir to find cost-effective VSC configura-
tions for a distributed storage backend. (3) We demonstrate that Mimir can effectively explore
AWS’s diverse block storage offerings, reducing cost by up to 81% relative to state-of-the-art
approaches. (4) We experimentally demonstrate that Mimir can be used as part of a dynamic
reconfiguration system to reduce cost by 74% for diurnal workloads.

2.1 Cloud storage configuration challenges

This section motivates the need for tools like Mimir that automate the configuration of vir-
tual storage clusters in public clouds. First, we examine the diversity in performance and cost
characteristics of different cloud storage volume types, which complicate manual configurations
(§2.1.1). Second, we examine how the characteristics of cloud storage volume types affect the
cost of deploying a scalable storage service in the public cloud (§2.1.2).

2.1.1 Public cloud storage characteristics

It is crucial to understand the characteristics of public cloud storage types in order to configure
storage systems atop virtual storage cluster in a cost-efficient manner. Mimir formulates the price
and performance cost model with the analyzed storage characteristics in this section.

One of the public cloud storage types we use to build volumes in this work is block storage,
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such as AWS Elastic Block Store [27], Azure Disk Storage [28]], and GCE Persistent Disk [29].
On AWS, there are five different block storage types: local NVMe SSD, remote SSD (gp2, iol),
and remote HDD (stl, scl). Local SSD is served as an SSD locally attached to some instance
types, such as i3, c5d, and m5d. It delivers high performance with low latency, but the attached
volume capacity is fixed, and it can be an expensive option for data that does not require high
throughput. Unlike local SSD, users can attach remote storage volumes (EBS) to the machines
they need. The performance of remote storage types is defined as SLAs by the public cloud
providers. Though AWS has recently introduced support for EBS Multi-Attach, allowing a single
iol volume to be attached to multiple instances, we assume that a single EBS volume can only
be attached to one instance since this service is currently available in a limited number of regions
and works only for i0ol volumes. For instance, AWS currently offers gp2 volumes at 3 IOPS per
GiB of provisioned capacity, while it provides 40 MiB/s per TiB of provisioned capacity for stl
volumes.

Figure [2.2]illustrates the characteristics of 1 TiB of gp2 volume and 1 TiB of stl volume, in
which the performance of each volume is 3000 IOPS and 40 MiB/s, respectively, and local SSD
attached at 13.xlarge. We generated the test workloads with the f£io benchmark [30] varying the
access pattern (random/sequential), read ratio, and I/O unit size. For Figure a), we used a
read-only workload to evaluate the performance characteristics.

Figure [2.2(a) shows how the performance characteristics according to the I/O unit size and
access pattern are different for each storage type. Because gp2 performance is defined in IOPS,
as the I/O unit size increases, the throughput of gp2 also increases up to 250 MiB/s, which is
the maximum single gp2 volume throughput limited by SLA. In the case of stl, performance is
defined in MiB/s, but shows lower throughput for the workloads with random access patterns and
I/0O units less than 1 MiB [31]. stl has a throughput limit at 40 MiB/s for 1 TiB stl volume, in
which the limit can be up to 500 MiB/s for the larger st1 volume. The performance of gp2 is the
same for both random and sequential data access patterns, while stl shows better performance
for sequential data access than random access.

Figure[2.2(b) shows how read ratio affects each volume type’s throughput differently. Through-
put of EBS volumes is not affected by the read ratio of the storage workload, as the read ratio is
not included in their performance SLAs. The local SSD, however, shows much higher through-
put than EBS, and the throughput is affected by the read ratio, while it is not affected by the I/O
unit size for requests larger than 32KB.

We have measured the local SSD performance of all the machines we used as candidates of
the cost-optimal VSC. The local SSD performance profiling is not a consuming process in terms
of time or cost because profiling needs only be performed once. There are other volume types
(101, scl) we also considered, but we omit them for brevity.

2.1.2 Apache BookKeeper use case

Next, we give a motivating example demonstrating the potential savings of careful machine con-
figuration for an application. Inspired by discussions with engineers from a large customer re-
lationship management (CRM) company shifting from on-premises to cloud, we look at Apache
BookKeeper. Apache BookKeeper [32] is a storage system designed for high scalability, fault-
tolerance, and low latency. It stores data as streams of log entries in sequences called ledgers,
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Figure 2.3: Reducing the cost per data size by exploiting heterogeneous machine allocation.
When a storage server uses only local SSD, CPU is underutilized. Attaching an EBS volume can
store 30% more data, paying only 12% additional cost.

and the ledgers become immutable once the ledger is closed. The primary data access pattern of
Apache BookKeeper’s storage server is sequential writes and random reads.

We can reduce cost by exploiting heterogeneous resource allocations. Figure [2.3] shows re-
source utilization of Apache BookKeeper’s storage server running on i3.2xlarge, with a 1.9 TiB
local SSD. The workload is write-only and requires 1.8 TiB of data capacity and 360 MiB/s of
write throughput at the beginning. After 40 seconds, we increase both requirements by 30%, so
the workload’s required throughput per TiB remains the same.

For the first 40 seconds, 67% of CPU is idle on average while the storage bandwidth of
the local SSD is fully utilized. After 40 seconds, the simplest way to satisfy both increased
requirements is to provision another i3.2xlarge which doubles the cost. As Figure [2.3] shows,
however, attaching a 600GiB EBS volume to the original instance instead of provisioning a new
instance allows us to store 30% more data while paying only 12% additional cost. It also reduces
the cost per data size by 15%, and this heterogeneous allocation allows the workload to utilize
15% more idle computing power.

Therefore, it is crucial to accurately predict how many resources (e.g., CPU, memory, storage
bandwidth, etc.) are required for the given workload characteristics to configure cost-efficient
heterogeneous virtual storage clusters (§2.3.3). Also, though we restrict to a single instance type
and one workload characteristic in this example, if we consider more instance types and work-
load characteristics, the gain from the heterogeneity compared to the homogeneous allocation

increases (§2.4.4).

2.2 Prior work

In this section, we discuss previous research on the automatic provisioning of public cloud re-
sources and predicting application performance on virtual machines in public clouds.
Configuring storage and VMs in public cloud. Many previous works [16, 33| 134, 35, 36]
aim to optimize virtual cluster configuration in public clouds for various workloads. Some stud-
ies [17, 125} 37] find near-optimal cloud storage and VM configuration for data analytics work-
loads, guaranteeing performance and minimizing cost. However, the workloads we target have
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different nature from the data analytics workloads, e.g., workloads are long-running rather than
transient and cannot classify data into input/output and intermediate data, which are common in
data analytics applications. Therefore, our research cannot be solved in the same way as pre-
vious studies. For example, in the case of data analytics workloads, to reduce the overall cost,
the trade-off between using expensive resources for a short duration or simply using cheaper
resources should be considered, but our problem does not have this nature.

OptimusCloud [26] jointly optimizes database and VM configurations to find cost-efficient

VSC configurations for distributed databases. We consider OptimusCloud as the state-of-the-art
to compare with Mimir, but OptimusCloud only considers the EBS volume type, which we show
could be a costly configuration compared to a VSC using both local SSD and EBS volume types
(§2.4.4).
Performance prediction on VMs. Numerous previous systems [38, 139, 40, 41, 142, 143,144} 45]]
studied the method of predicting workload performance on VMs. PARIS [46] uses hybrid of-
fline/online data collection and trains a random forest model to predict the workload performance
on VMs. Ernest [47] predicts the performance of large-scale data analytics workloads using sta-
tistical modeling. Auto-configuration systems [25, 26] also predict the workloads’ performance
on VMs using machine learning techniques, such as collaborative filtering and gradient boosting
tree.

In contrast, our approach predicts resources required for the given workload performance
instead of predicting workload performance on VMs. By predicting resource requirements and
knowing the performance SLAs given by the cloud providers, we mathematically formulate a
linear programming problem to find the cheapest VSC configuration that has the necessary re-
sources. Still, we can use similar data profiling techniques and prediction approaches that previ-
ous works proposed, such as gradient boosting tree.

2.3 Mimir design

Figure [2.4] shows the workflow of Mimir. First, Mimir takes as input information about multi-
ple workloads’ characteristics (§2.3.1)). Storage systems can store data for different workloads,
and each workload can have a different data access pattern, such as the data request rate, data
access locality, and read/write request ratio. Then, our Resource profiler profiles each work-
load and collects data on how many resources are required to run each workload cost-efficiently
on the machines in the cloud (§2.3.2). Using the collected data, the Resource predictor learns
how to convert each workload specification into the right size of the container to run (§2.3.3).
As demonstrated in §2.1.2] the heterogeneous single machine configuration is important for the
entire VSC’s cost-efficiency, and in Mimir, to leverage the heterogeneous single machine con-
figuration, we run multiple storage servers on a single machine by deploying each server in a
Docker container, which guarantees the isolation of allocated resources for each storage server.
Lastly, the VSC Cost optimizer uses the Resource predictor and the cost model of public cloud
resources to find the cost-efficient VSC configuration of the distributed storage system (§2.3.4).
We assume that the workload characteristics can be profiled (or are known) by Mimir users, and
Mimir uses the profiled information as input to its optimization process. One advantage of this
design is that any storage system capable of measuring the necessary resource utilization that
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Figure 2.4: Mimir’s workflow for optimizing the price of public cloud resources. Mimir profiles
the given workloads and learn how many resources (e.g., CPU, memory) are required. The VSC
Cost optimizer uses this trained module and cost model of public cloud resources to find the
cost-efficient VSC configuration.

Mimir uses for optimization can employ Mimir as a resource auto-selector. In our evaluation,
we evaluate Mimir only on Apache BookKeeper, but we left extending our evaluation to other
storage systems as a future work.

2.3.1 Input: profiled workload characteristics

Mimir takes workload specifications as input. Table [2.1) shows the five attributes we use to
describe workload characteristics in Mimir. They are divided into two categories: performance
requirements and data access patterns.

Data capacity and data request rate are the attributes of the performance requirements that
should be satisfied for the given workloads. Performance requirements are also used as profiling
knobs and are proportional to the size of workload fraction, i.e., a subset of data and data accesses
to the subset of data. For example, if a user defines a workload with 1 TiB of data capacity and
10K QPS (queries per second) of data request rate, we expect 3K QPS is required for the 300
GiB of the given workload’s data. This can be achieved by load balancing for a clustered storage
system, which has been extensively studied [48| 49, 50].

The attributes of the data access pattern describe the behavior of the workloads: tempo-
ral/spatial data access locality, read/write ratio, and distribution of object size stored in the stor-
age backend. Unlike performance requirements, Mimir expects the attributes to remain the same
for workload fractions and uses this assumption in Resource profiler to generate a set of work-
load fractions to profile. As future work, Mimir will monitor the actual characteristics of the
workload fraction on runtime and give feedback to these assumptions.

Several studies [26, 51] have supported the elastic rightsizing of cloud resources by predict-
ing workload characteristics or in a reactive manner. But elasticity is orthogonal to our work.
Instead, we focus on finding the potentially heterogeneous cost-efficient VSC configuration for
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The resource profiler profiles each workload with different memory sizes to collect different
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the mixture of static workloads with different characteristics. Still, we show the extensibility of
our tool for dynamic workloads in §2.4.6]

| Type | Attribute | Description | Units |
Performance data capacity total size of data stored in the storage | GB
requirement system

(Profiling knobs) | data request rate | rate of read and write requests arrive at | QPS
the storage system
data request size | mean or distribution of the requested | Byte

Data access

attern data size
P read/write ratio ratio of the read and write request rates
access locality pattern of data access locality

Table 2.1: The workload characteristic attributes. The performance requirement attributes are
the knobs used by Mimir in profiling to get multiple profile data points, while the data access
pattern attributes are not changed.

2.3.2 Resource profiler

Mimir’s goal is to allocate sufficient resources per storage server container (ContainerSpec) to
satisfy the provided workload performance requirements, while remaining frugal to reduce costs.
However, many factors make it challenging to compute the right size of ContainerSpec for the
arbitrary workload specification analytically. Read/write amplification inherent in the storage
servers depends on the implementation and data access pattern; memory size of the storage
servers and read/write ratio of workloads affect the necessary storage throughput and computing
power to meet the performance requirements. None of these factors can be precisely formulated
without the storage system experts and should be reformulated for every storage system to be
used. Instead of formulating the cost-efficient size of ContainerSpec, Mimir, therefore, profiles
and collects data using the Resource profiler and predicts the optimal size of containers using the
Resource predictor trained with the collected data.
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Algorithm 1 Profiling logic of the Resource profiler

1: W: Input workload characteristic

2: BM: Benchmark machine

3: procedure PROFILE(IV)

4: p < MEASUREMAXPERFORMANCE(W, BM)

5: S < WORKLOADFRACTIONSETTOPROFILE(W, p)

6: D {}

7: for wf in S do

8: u < MEASURERESOURCEUTILIZATION(wf, BM)
9: while = ISCONTAINERRIGHTSIZE(Wf, u) do

10: u <— UPDATECONTAINERSPEC(Wf, u)
11: end while

12: D[wf] < u

13: end for
14: return D

15: end procedure

Resource profiler overview. The Resource profiler runs a storage workload with the given
workload characteristics on a benchmark machine to collect the data of the cost-efficient size of
ContainerSpecs. When profiling, Mimir uses the performance requirement attributes as knobs
to get multiple data points. The attributes of ContainerSpec we use are: the number of CPUs,
memory size, storage bandwidth, storage capacity, and network bandwidth. To get enough pro-
filing data, we chose i13.4xlarge of AWS as the benchmark machine, which has the local SSD
with the highest single-storage performance (1900GB NVMe SSD), and sufficient memory and
computing resources to profile our evaluation workloads.

There are multiple suitable ContainerSpecs for a single workload specification. For example,
a read-intensive workload with a high degree of data access locality requires less storage vol-
ume performance and computing power with a larger memory size because of memory caching.
Figure shows how different the required resources are according to the memory size, even
for the same workload specification. Thus, the Resource profiler tests different memory sizes to
account for multiple ContainerSpecs during optimization.

Resource profiler logic. The Resource profiler first measures the maximum performance p
of the workload on the benchmark machine with the given data access pattern (Algorithm|I] Line
4). Then, it generates a set of N different workload fractions (i.e., workloads with 1/N % p, 2/N x
P, ..., N/N % p performance requirements and given data access pattern) to be profiled (Algo-
rithm (I} Line 5). We used N = 10 in our experiments. For each workload fraction, Resource
profiler finds the right container size (Algorithm |1} Line 7-13). It first measures the average re-
source utilization while running the workload fraction on the benchmark machine. However, the
container allocated with the average resource utilization may not meet the performance require-
ments, or it may have been allocated more resources than necessary. So, it iteratively updates the
candidate container size by measuring the storage server performance and resource utilization
in the container until it finds the cost-efficient container size. Detailed rules for this iterative
updates are described below.

15



Optimization Example: let's assume that W = 6 x W} for workload W and workload fraction unit Wy.

Step 1. OptCluster (OC): cost for the cost-optimal VSC configuration (recursion of DP problem)
Our goal: |0C(6 x W)

| oc(5 x Wy +|oc(Wy)]| |0C(4 x Wy) + 0C(2 x Wy)|  [0C(3 x Wy)+ OC(3 x Wy)| [0SM(6 x W)

v —
[0C(4 x W) + 0C(Wy)|  |0C(3 x Wy)+0C(2 x Wy)| [05M(5 x Wy)|  |osM(Wwy)|

Step 2. OptSingleMachine (OSM): cost for the cost-optimal single machine configuration (base case of DP problem)
OSM(5x Wﬂ—-@ Generate partitions—@ Predict ContainerSpec—'® MIPSolver —— @Select the cost-optimal solution

{5 x Wy} {CS(5 x Wy)} Config! : $15/hr OSM(5 x Wy)=9$11/hr
{4 x Wy, 1 x Wy} {CS(4 x Wy), CS(1 x Wy)} Config2 : $13/hr

{3 x Wy, 2 x Wi} {CS(8 x W), CS(2 x Wy)} Config3 : $11 /hr

Figure 2.6: Example of the VSC Cost optimizer’s optimization algorithm. It uses dynamic pro-
gramming to break the optimization problem into smaller problems (OPTCLUSTER), and mixed-
integer programming to solve the base cases (OPTSINGLEMACHINE).

Rules for updating ContainerSpec. If the current container size satisfies the workload re-
quirements and the average utilization values of some resources are less than the over-provisioning
threshold (we used 80%), it is considered those resources are allocated more than necessary. So
the profiler reduces their resource allocations. If it does not satisfy the workload requirements,
Mimir increases the allocation of the resources with the average utilization higher than the under-
provisioning threshold (we used 90%), judging them as bottleneck resources. We used docker
stats, iostat, and sysfs network interface statistics to measure CPU, storage/network bandwidth
utilizations.

The thresholds we use in this logic can control the cost-efficiency of the container sizes that
Mimir selects for the storage servers. For example, if we use a small over-provisioning threshold,
Mimir is likely to allocate more resources to the storage servers than they actually require, and
vice versa. If we use a smaller under-provisioning threshold, the storage server configuration is
more tolerant to a slight increase in workload performance requirements.

2.3.3 Resource predictor

Based on the data profiled by the Resource profiler, Mimir predicts the cost-efficient size of
containers for the given workload characteristic. Currently, Mimir provides an implementation
using interpolation, but other prediction models, such as a gradient boosting tree [52]], could be
used instead.

The Resource profiler profiled N different workload fractions, in which each requires the
performance of the i/N x p (where @ = 1--- N and p is the maximum performance on the
benchmark machine). Thus, the ContainerSpecs for the workload requiring performance less
than p can be computed using interpolation. As we noted, we use the large enough instance
types as a benchmark machine (i.e., the machine that can profile up to large p) in order to use the
interpolation for the workload fractions that require high performance.

The interpolation approach allows accurate prediction of the right size of the ContainerSpecs
as the Resource profiler profiles enough data. However, this approach requires a profiling step
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Algorithm 2 Optimization algorithm of VSC Cost optimizer

1: W: Profiled workload characteristics
2: procedure OPTCLUSTER(W)

3: S + WORKLOADFRACTIONPAIRS(IV)

4: Cc 4 00

5: for PairjWWy, W in S do

6: t <~ OPTCLUSTER(W7) + OPTCLUSTER(W5)
7. ¢ < min(t, c)

8: end for

9: return min(c, OPTSINGLEMACHINE(W}))

10: end procedure

11:

12: procedure OPTSINGLEMACHINE(F)

13: D + WORKLOADFRACTIONPARTITIONS(F')
14: Cc 4+ 00

15: for din D do

16: S <~ RESOURCEPREDICTOR(d)

17: ¢ + min(MIPSOLVER(S), ¢)

18: end for

19: return c

20: end procedure

when the new workload comes in, which requires additional profiling time and cost, although it
is cheaper than the cost savings by our tool as we evaluate in

2.3.4 VSC Cost optimizer

Mimir uses dynamic programming (DP) to minimize the cost of the virtual storage cluster while
satisfying the performance requirements. Figure shows an example of how we use recursion
in the DP problem (OPTCLUSTER) and solve the base cases (OPTSINGLEMACHINE) using a
mixed-integer programming. First, the OPTCLUSTER breaks the problem of finding the cost-
efficient VSC configuration that can run the entire workload into the smaller problems of finding
the ones that can run the workload fractions. In order to solve the base cases of the DP problem,
the OPTSINGLEMACHINE searches for the cost-efficient resource configuration of a single ma-
chine that can execute each workload fraction. Algorithm [2|is the pseudocode of the VSC Cost
Optimizer. We first explain it using a single workload W as input and then expand to using a
mixture of workloads as input (§2.3.5).

Recursion: OptCluster. Mimir first defines the workload fraction unit (W) of the given
workload W, the smallest unit of the workload data stored in the same storage volume. Multiple
workload fraction units can be stored in the same volume, but a single unit cannot be split. The
size of W provides the trade-off between the search space size and the optimality of the solution.
We empirically evaluated the trade-off and found that using the data size between 50-100 GiB
for W is generally good in our experiments, e.g., Mimir uses 100 GiB of data size and 1K QPS
as Wy for the workload requires 3 TiB of storage capacity and 30K QPS.

The VSC Cost optimizer uses DP because the optimization problem has optimal substructure
property and overlapping subproblems: if we found the cost-optimal VSC configuration, then any
subcluster of the VSC must have the cost-optimal VSC configuration for the workload fraction
running on that subcluster.

Based on this property, we can argue that the cost-optimal VSC configuration for I is the one
that is the cheapest combination of two clusters that one cluster is the cost-optimal for certain

17



amount of workload fraction and the other cluster is again the cost-optimal for the remaining
workload fraction (Algorithm [2] Line 5-9):

OPTCLUSTER(W) = OPTCLUSTER(N x W)

=1

— min ({OPTCLUSTER(z’ x W) + OPTCLUSTER((N — i) x W)}/
OPTSINGLEMACHINE(N X Wf)>

OPTCLUSTER function can be called recursively, until the input of OPTCLUSTER becomes
W, and Mimir uses memoization for the computational efficiency (Figure[2.6} Step 1). Note that
if the cost-optimal VSC configuration has a single machine, we should find the single machine
configuration (OPTSINGLEMACHINE), which is explained below.

Base case: OptSingleMachine. To compute the base cases of the dynamic programming
problem, OPTSINGLEMACHINE finds the cost-efficient configuration of a single machine for the
given workload fraction (k x Wy). (D) Within a single machine, there are PARTITION(k) different
ways of distributing the data in storage volumes, where PARTITION(n) equals the number of
possible partitions of n (Figure Step 2-1). For each partition, (2) Mimir generates a set of
ContainerSpecs by predicting them for each workload fraction in the partition using the Resource
predictor (Figure Step 2-2). As each set has the resource requirements of the workload
fractions, 3) Mimir uses mixed-integer programming (MIPSOLVER) to minimize the price of a
single machine under the resource and the performance requirement constraints (Figure[2.6] Step
2-3):

minimize Machine[Price] + ZStorage[i] [Price]

Machine,Storage

subject to » _ CS[CPU,Mem....] < Machine[CPU,Mem....]
CSs
ZCS[Storage BW] < Storage[i][BW]
CSeStorageli]

Lastly, @ OPTSINGLEMACHINE selects the partition with the smallest return value of MIPSOLVER
as the cost-efficient configuration of a single machine (Figure [2.6] Step 2-4).

2.3.5 VSC Cost optimizer: multiple workloads

When the input has more than one workload, running the optimization algorithm using all work-
loads as input at once can find more (or at least the same) cost-efficient results than using separate
virtual storage clusters together after finding the cost-efficient VSC configuration for each, be-
cause the search space of the former is the superset of one of the latter. For multiple workloads
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as input, Mimir can use the same optimization algorithm described in However, as the
number of workloads increases, the complexity of the search space becomes infeasible.

The time complexity (TC) of the recursive loop for the set of workloads {WW;}, where each
workload W; can be divided into IV; x W,, is proportional to the multiplication of NV;.

TC of the recursive loop o [ V;

The time complexity of finding the solution for the base cases is proportional to the mul-
tiplication of two values: the number of possible partitions of k, which is proportional to the
exponential function of the square root of £ [53], and the optimization time of the MIPSOLVER.

N

TC of solving base case o aV" X Tyurpsorver (2, 1)

Since the total time complexity is the product of these two TCs, it increases exponentially
with the number of workloads considered, in which it becomes impractical to use the optimizer
even when only three workloads are given as input to the optimizer. To make the time complexity
feasible, we use systematic sampling and pairwise workload optimization.

Systematic sampling: In OPTSINGLEMACHINE, instead of computing MIPSOLVER for all
the possible partitions, Mimir samples some of the partitions and find the minimum among them.
We used systematic sampling rather than random sampling because the order of the partitions we
generated has a property that the adjacent partitions tend to have similar configurations. So
selecting every nth partition allows the Mimir to explore various configurations.

Pairwise workload optimization: As the complexity of the search space increases exponen-
tially with the number of workloads, Mimir runs the optimization algorithm for up to two work-
loads at once for all pairwise workload combinations. For example, if there are six different
workloads as input, rather than giving six of them at once to the optimization function, run pair-
wise optimization (g) times and find the total cost-efficient VSC configuration using them.

Both approaches provide the trade-off between the optimization execution time and the so-
lution’s optimality. We could not directly evaluate the trade-off because the search space is
infeasible without these approaches. But, we show that Mimir can find cheaper VSC configu-
ration using these approaches when multiple workloads are considered as an optimization input
(§2.4.4). We also evaluate how fast our approach finds a cost-efficient VSC configuration com-
pared to the naive search algorithm (§2.4.7).

2.4 Evaluation

This section evaluates Mimir using a CRM-based benchmark and Meta’s RocksDB key-value
workloads [1]]. We first describe our experimental setup (§2.4.1)), evaluation benchmarks (§2.4.2)),
and baselines to which we compare Mimir (§2.4.3). We evaluate Mimir to answer the following
questions:

* Can Mimir find a cost-efficient VSC to satisfy the requirements of different workloads?

(§2.4.4)

* How effective are key Mimir aspects, including how closely it fits containers to workloads
and how important its data partitioning search is? (§2.4.5)

* Can Mimir be used as part of dynamic resizing? (§2.4.6))
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Req. Req Read Access
Benchmark | Workload Capacity | rate size. req. | ooy ty
(QPS) ratio
CRM-based | H (High-xput workload) | 3 TiB 9600 | 64KB | 1.0 Random
benchmark | L (Low-xput workload) | 3 TiB 2400 | 64KB | 1.0 access
A (Object in paper) 3TiB 40K 120B | 0.86
Meta B (Object 2ry in paper) | 200 GiB | 20K 3B 0.0 Same as
RocksDB C (Assoc in paper) 600 GiB | 80K 17B 0.81 described
benchmark | D (Assoc_2ry in paper) 400 GiB | 40K 5B 0.0 .
(MR) E (Assoc_count in paper) | 800 GiB | 100K | 20B | 0.29 | " PaPe
F (Non_SG in paper) 800GiB | 160K | 19B 0.14

Table 2.2: Benchmarks used to evaluate Mimir. CRM-based benchmark consists of a throughput-
intensive (CRM—H) and a capacity-intensive workload (CRM-1). Meta RocksDB benchmark con-
sists of 6 real-world workloads [1]].

* How significant are Mimir’s overheads? (§2.4.7)

2.4.1 Experimental setup

We evaluated Mimir in AWS EC2 US-East-1. We used 55 different instance types for the candi-
date instance types of a VSC configuration. The candidate instance types include all categories
of AWS instance types (except ones with GPUs): “general purpose” instances (m5, m5d) and
those “optimized” for compute (c4, c5, c5d), memory (15, r5d), and storage (i3). For the candi-
date storage types, we used local SSD (i.e., the SSD in 13, ¢5d, r5d) and EBS volume types (gp2,
iol, stl, scl). We ran our optimization algorithm on a Xeon E5-2670 2.60GHz CPU with 64
GiB DDR3 RAM, using Gurobi 9.0.1 [54]]. We used Apache BookKeeper 4.11.0 as the storage
backend where our key-value workloads were run.

2.4.2 Benchmarks

We evaluated Mimir using two benchmarks (Table on top of Apache BookKeeper: a CRM-
based benchmark and a set of workloads similar to the Meta RocksDB key-value workloads
described in the paper [1]].

Our CRM-based benchmark (CRM) is comprised of two workloads: high-throughput work-
load (CRM-H) and low-throughput workload (CRM-L). We synthetically generated the CRM-
based benchmark based on the discussion with engineers from one of the CRM companies. We
used 64 KB of entry size (i.e., data request size) and 2 MB of ledger size, which are the average
values the company uses in its BookKeeper storage cluster. Most of their workloads are read-
heavy, so the workloads we generated are read-only workloads that read data randomly. For the
performance requirements, CRM-H and CRM-L require 200 MiB/s and 50 MiB/s per TiB of data
capacity, respectively, and both have 3 TiB of data. We selected these performance requirements
to evaluate how well Mimir finds the cost-efficient VSC configuration for the workloads that
have different throughput requirements. The CRM-based benchmark also represents key-value
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workloads that have large value sizes which are common in real-world [55} 156} 57, 58]

Meta presented detailed characteristics of key-value workloads [1] in their storage cluster,
which uses RocksDB as their backend storage engine. Among the three production use cases
they described, we selected UDB to evaluate Mimir. Because UDB has six workloads that
have different characteristics to each other, we can evaluate Mimir for a complicated realistic
benchmark. To evaluate UDB-like workload on Apache BookKeeper, we implemented our own
benchmark (MR) on BookKeeper that has similar characteristics as Meta described. Our bench-
mark has the same data size distribution, data access locality and count distribution, and average
Put/Get request ratio. We used the same distributions presented by Meta, which are General
Pareto Distribution [59] for value size distribution and a power model for access count distribu-
tion. We implemented only Put and Get operations, as semantics of other RocksDB operations
deviate significantly from available operations in BookKeeper.

2.4.3 Resource selection baselines

We compare Mimir to three baselines. Whereas Mimir considers all instance and storage types
listed in when selecting VSC resources, each baseline considers only a subset, and the
comparisons show the significance of considering heterogeneous VSC configurations for cost-
efficiency.

i3.xlarge-only. The simplest way to configure a VSC on the public cloud is to select one
instance type and decide the number of instances to provision from measured storage server per-
formance on the selected instance type. However, since this approach has only a single dimension
(i.e., the number of machines) in the search space, it ignores too many potential solutions. In our
evaluation, we used 13 .x1large, because it is categorized as a storage-optimized instance and
provides high-performance local SSD.

Mimir-LocalOnly. Another way to configure the VSC is to use only instance types that have
local SSDs, including some compute or memory optimized instance types, such as m5d, c5d
and r5d. Local SSD provides high storage performance, but can be costly and may provision
more IOPS than necessary. We call this constraint Mimir-LocalOnly, because we apply all
the Mimir’s optimizations to finding the cost-efficient VSC configuration (including mixes of
instance types) but limit it to considering only local SSD volumes.

Mimir-EBSonly/OptimusCloud-like. Here, VSCs can only use EBS volumes. EBS vol-
umes can persist data independently from the instance status, and users can provision the volume
capacity as much as they need. However, if the workload requires high-performance, it can be
more expensive than local SSD. As we explained in Section [2.2] OptimusCloud [26] restricts the
volume type to EBS volumes because of their persistent nature, but our results show that this ap-
proach is often much more costly. Like Mimir—-LocalOnly, this baseline uses all of Mimir’s
optimizations while only considering EBS volumes. We use the terms Mimir-EBSonly and
OptimusCloud-1ike interchangeably.

2.44 Cost-efficiency analysis of Mimir

Observation 1: Mimir finds configurations that are 2-5.3 X more cost-efficient than the
OptimusCloud—-11ike approach, as different workloads benefit from different storage types.
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Figure 2.7: The cost-efficiency analysis of the optimization results of the two benchmarks, CRM
and MR. Mimir finds the most cost-efficient VSC configuration compared to the other baselines.

8 / + OptimusCloud-like
1 [ | .
= = || | i3.xlarge-only
"Eé 21 é 6 || EEE Mimir-LocalOnly
o) o ? B Mimir
o 241 7
21 ' B 7 7z
& &2 / | |
| v Wa - B W e k
CRM-H  CRM-L MR-A MR-B MR-C MR-D MR-E MR-F

Figure 2.8: The cost-efficiency analysis of the optimization results of the workloads of the two
benchmarks, CRM and MR. Throughput-intensive workloads (e.g., CRM-H, MR-A, C, E, F) prefer
local SSD as its storage type. In contrast, other workloads (e.g., CRM-L, MR-B, D) that do not
require high throughput prefer EBS volume to local SSD. An i3 instance type is a costly option
for some workloads (e.g., MR-B, D, E, F), even if it is categorized as storage optimized instance.

Figure[2.7]shows price comparison of the optimization results with Mimir and other baselines
for CRM and MR, in which each benchmark is a mix of two and six distinct workloads respec-
tively. Mimir finds cheaper VSC than the other baselines and it is up to 5.3 x cheaper than the
OptimusCloud-1ike. In both benchmarks, Mimir—-LocalOnly finds more cost-efficient
VSC configurations than Opt imusCloud-1ike. However, it does not mean that every work-
load data in the benchmarks is more cost-efficient to be stored in local SSD than EBS volume.

Figure [2.8] shows the storage preference of each workload of CRM and MR. First, CRM—H
is the workload that requires high-performance of the storage system. Thus, Mimir finds the
VSC configuration that only uses local SSD for the cost-efficient solution. On the other hand,
if only EBS volumes are used to store data that requires high storage performance, it should
provision much larger storage capacity than it needs to get enough volume IOPS. For example,
the cost-efficient VSC configuration of CRM-H searched by Mimir-EBSonly uses 15 TiB of
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Optimal Cost/Hour | W1 [ W2 [ Wi+ W, | Gain |
W1 =MR-A, W, =MR-D [| $1.86 | $0.46 [ $2.32 0%
Wi =MR-B, W, =MR-E [/ $0.33 | $1.8 [ $1.91 10.3%
W1 =MR-C, W, =MR-F [[ $2.25 | $2.09 | $4.21 3%

Table 2.3: Pairwise workload optimization of MR benchmark. Mimir finds 10.3% cheaper VSC
configuration when it optimizes for both workloads at once.

gp2 volumes to store only 3 TiB of data to get enough IOPS. It costs 2.5 x higher price compared
to the result of Mimir—-LocalOnly or Mimir with no resource constraint.

In contrast, CRM-L is the workload that does not require high-performance (i.e., capacity-
intensive workload). So local SSD is an expensive storage type to store data of CRM-L, as it
underutilizes storage bandwidth of local SSD. The throughput of gp2 (i.e., 3 IOPS per provi-
sioned GiB) is enough to support the workload. Figure [2.8[ shows that the cost-efficient VSC
configuration optimized by Mimir—-LocalOnly costs 1.7 x higher price than the one with
Mimir-EBSonly.

MR workloads with different characteristics also show different preferences on the volume
type. MR-A, C, E, F require 4.13 x, 8.3 x, 4.2 X, 3.6 x higher price with Mimir-EBSonly
than Mimir-LocalOnly, respectively, while MR-B, D require 1.1 x, 1.3 x higher price with
Mimir-LocalOnly. As Table@indicates, MR-B, D need lower data request rate and smaller
data request size than the other workloads, which makes both workloads well suited to EBS
volume type.

Observation 2: Considering diverse instance types and heterogeneous VSC configurations
is crucial for cost-efficiency.

Not only the volume type, but also the instance type is an important factor that affects the
price of the virtual storage cluster. For example, MR—F workload requires the second highest stor-
age system throughput per GiB of data among the workloads of MR, and Mimir-LocalOnly
finds more cost-efficient VSC configuration compared to the Mimir-EBSonly. However,
i3.xlarge, a storage-optimized instance type, is a costly option for the MR-F workload when
using the 13.xlarge-only configuration. Instead, Mimir and Mimir-LocalOnly find
the cost-efficient VSC configuration that uses c5d instance type, in which c¢5d is a compute-
optimized instance type that has a small capacity of SSD. This is because the storage server
for MR-F needs high computing power (i.e., CPU-intensive) as the workload requires high data
request rate. Similarly, MR-B, D, E prefer m5d or ¢5d to 1 3 instance type.

Observation 3: Considering two workloads together in the optimization algorithm can save
cost up to 10.3% compared to using two clusters optimized for each.

Lastly, we evaluate the pairwise workload optimization of the MR’s workloads. We ran the
VSC Cost optimizer for the (g) number of pairwise combinations of the MR’s workloads. Ta-
ble 2.3] shows the selected combinations of the workloads that minimize the total price of the
virtual storage cluster when the cluster should support all the workloads. (MR-B, MR-E) pair
yields the highest financial gains, 10.3% lower price, when Mimir considers them together to
optimize the VSC configuration. MR-B and MR-E are cost-efficient when data is stored in EBS
volume and local SSD, respectively. Thus, Mimir finds the VSC configuration that remote EBS
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volumes for MR-B are attached to the machines for MR-E that have local SSDs. In this way, the
cost of provisioning instances for MR—B could be saved. (MR-A, MR-D) pair also have the same
property (i.e., they prefer different volume types), but there is no financial gain as no computing
power left in the machines of MR—A to support additional workloads in the same machine. By the
pairwise workload optimization, Mimir could save total 4% additional cost compared to using
six individual VSCs optimized for each workload.

Despite the large search space for the resource heterogeneity and numerous factors to con-
sider (e.g., complex workload and storage characteristic, many price and performance SLAS),
Mimir could find the cost-efficient VSC configuration.

2.4.5 Deep dive into Mimir component effectiveness

In this section, we first evaluate two components of Mimir: Resource profiler and Resource
predictor. And then, we demonstrate how important finding good data partitioning is in finding
cost-efficient VSC configurations.

Observation 4: Mimir selects a cost-efficient container size to run the storage server for the
given workload characteristics. Workloads tested utilize at least 83% of allocated resources.

We evaluate how the ContainerSpec profiled by the Resource profiler fits for the given work-
load. Figure[2.9]shows the example of how the container with the size of profiled ContainerSpec
works for the workload fraction of MR—-A. Data access pattern of the workload fraction we tested
is the same as the one of the original workload, and the performance requirements in this exam-
ple are 6K QPS of data request rate and 450 GiB of data capacity. The ContainerSpec profiled
for this workload fraction is 4.1 vCPU and 166 MB/s read throughput of the storage volume.
To evaluate, we ran a docker container with the profiled amount of resources and measured the
CPU and storage throughput of the storage server running on the docker container. As Figure 2.9
shows, the storage server utilizes 85% of both allocated computing power and storage through-
put. We confirmed that the storage server running on the same container (i.e., container with 4.1
vCPU and 166 MB/s read throughput) satisfies the workload requirements, but the storage server
on the next smaller container (i.e., container with 3.7 vCPU and 150 MB/s read throughput) fol-
lowing our container size update algorithm (§2.3.2)) cannot meet the performance requirements.
We also checked that even a container lack of a single resource failed to satisfy the performance
requirements. We ran the same experiment on 300 ContainerSpecs we profiled and all the re-
sults showed the resource utilization higher than 83% of the resources allocated according to the
profiled ContainerSpecs.

Observation 5: Mimir can predict the cost-efficient container size using interpolation with
less than 13% error.

Next, we evaluate our Resource predictor using interpolation to see how accurately it predicts
the right size of ContainerSpec. As a dataset, we use the ContainerSpecs that are profiled by the
Resource profiler for the six workloads of MR.

As Mimir profiles multiple data points with different performance requirements for each
workload, we used the profiled data as a test dataset to evaluate. For instance, the maximum data
request rate we measured for the MR-A workload on i3.4x1large with memory-to-data ratio
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Figure 2.9: The resource utilization of MR-A’s workload fraction. The storage server utilizes
85% of the vCPU and storage read throughput (green line) of the allocated resources (red line).
If any resource allocation reduces to the next smaller ContainerSpec (blue line), the server cannot
satisfy the performance requirements.

Avg % error of the interpolation predictor
Workload CP%J | Read xput. | V&I/Drite xpuE | Net
MR-A 40% | 1.1% 7.4% 2.0%
MR-B 24% | 6.1% 8.4% 1.8%
MR-C 31% | 0.8% 4.8% 1.1%
MR-D 59% | 7.7% 1.4% 1.1%
MR-E 2.5% | 0.6% 2.7% 1.0%
MR-F 12.9% | 2.5% 4.5% 5.1%

Table 2.4: Percent error of the ContainerSpec prediction using interpolation. The interpolation
predicts the cost-efficient container size with small percent errors.

of 1:16 is 20K QPS. For the measured maximum data request rate and N = 10 (in §2.3.2) we
used, the Resource profiler profiled the right size of 10 different ContainerSpecs for the workload
Jractions of MR—A with the performance requirements of 2K QPS, 4K QPS, ..., 20K QPS. So we
evaluate how close the profiled ContainerSpec for 4K QPS to the interpolation result of two
ContainerSpecs for 2K QPS and 6K QPS. Table [2.4] shows at most 12.9% error for predicting
the cost-efficient container size of MR’s six workloads.

Observation 6: The cost-efficient VSC configuration varies greatly depending on how data
is distributed. Only 2.4% of data partitions Mimir explored could result in a VSC configuration
cheaper than 1.3 X of the minimum cost.

Exploring data partitioning options is an important aspect of Mimir’s success. Here data
partitioning means how we split the data to be stored in the storage cluster, in which each split is
stored in a single storage. For example, consider a workload W that defines its workload fraction
unit (Wy) as 1/4 of the original size. Then, there are five different partitions of ¥/, which are
{4WF}, {3WF, WF}, {ZWF, ZWF}, {2WF, WF, WF}, and {Wp, WF, WF, WF} Any data
partitioning can be used, but we show that only tiny percentage of the possible data partitions can
lead to cost-efficient VSC configuration. In this evaluation, we fixed the number of machines to
use and ran the optimization algorithm of Mimir for each data partition. So we could compare
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Figure 2.10: Violin plot of MR-F showing the distribution of the cost-efficient VSC configuration
price for all possible data partitions. A tiny portion of data partitions can find the near cost-
efficient VSC configuration.

the minimum price of VSC configuration of each data partition in that the algorithm finds the
cheapest VSC configuration of each data partition.

Figure [2.10]is a violin plot of MR-F showing the distribution of the cost-efficient VSC con-
figuration price for each data partition with a fixed number of machines. Mimir finds the most
cost-efficient VSC configuration with 6 nodes at the price of 2.09$/hr. For 6 nodes, out of 6043
possible data partitions, only two data partitions could be used for the VSC configuration cheaper
than 1.1 x of the minimum price, which is 2.3%/hr, i.e., if we distribute data using one of the re-
maining 6041 data partitions, we cannot find any VSC configuration that is cheaper than 1.1 x
of the minimum price. Even for 1.2 x and 1.3 x of the minimum price, only 24 and 144 data
partitions can be used for the VSC configuration cheaper than the respective prices. In other
words, only 2.4% of all possible data partitions can unearth the VSC configuration cheaper than
1.3 x of the minimum cost.

As we demonstrated, although there are many data partitions and only a few of them can
find near cost-efficient VSC configurations, Mimir successfully finds the most cost-efficient one
using its optimization algorithm.

2.4.6 Mimir in dynamic workloads

Observation 7: If Mimir is used by an auto-scaler at changepoints in a dynamic workload, it
can reduce daily VSC cost by 74% compared to the Opt imusCloud-11ike resource selection.

In this evaluation, we describe how Mimir can be used by an auto-scaling system for dynamic
workloads, showing that heterogeneity is still important to find cost-efficient VSC configurations.
We used the MR benchmark for the evaluation, but unlike our other experiments, each workload
has the diurnal pattern of data request rate described in the corresponding paper [1]. As described
earlier, Mimir is a resource selector, not an adaptive auto-scaler, so it would fit as a component
of an auto-scaling system that identifies changepoints and dynamically reconfigures as indicated
by the selector. Here, we simulate the change of VSC price computed by Mimir’s VSC cost
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Figure 2.11: Using Mimir for dynamic MR benchmark. With dynamic re-configuration, between
8-24hr each day, one can save 32% price compared to using static VSC configuration for the
peak performance requirements.

optimizer were used in such an auto-scaler.

The solid lines in Figure[2.11](a) illustrate each workload’s data request rate over time gener-
ated by the dynamic MR benchmark. MR-A, MR-C, MR-D, and MR~-F have strong diurnal patterns,
and MR-B and MR-E are static and bursty, respectively. The dashed lines in Figure [2.11(b) are
the predicted data request rates learned from the previous day’s historical data — the workload
behavior of day(i + 1) is predicted based on that of day(i) — using the SARIMAX [60] forecast-
ing model. We focus on evaluating the cost-efficiency of Mimir’s optimization results for the
predicted workload characteristics in dynamic workloads and showing that such optimization
must consider diverse storage types and configurations at any phase of dynamic workloads to
minimize costs. So evaluating the accuracy of the workload prediction model is out of the scope
of this study, and other prediction models [26, 61}, 162, |63]] can be used instead of SARIMAX.

Based on the predicted workload behavior, we can plan ahead for the dynamic change of the
VSC configuration. We spot 0 and 8 o’clock every day as the change points and used the maxi-
mum data request rates between 0-8 hr and 8-24 hr as the performance requirement constraints
for each period during the three days we predict the workload behavior.

Figure c¢) shows the change of VSC price if VSC configurations are adaptively recon-
figured using Mimir’s resource selections. Using Mimir as a resource auto-selector, the optimal
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Figure 2.12: Daily VSC prices for running clusters with static and dynamic configurations. Even
if the cost for changing VSC configuration is considered, Mimir is effective as a resource auto-
selector for dynamic VSC reconfiguration: Mimir can save 21% daily cost.

VSC price reduces by 32% during 8-24 hr compared to the one during 0-8 hr. One reason for
the cost reduction is that some workloads, such as MR—-C, that prefer local SSDs during 0-8 hr
do not require high throughput storage volumes during 8-24 hr and use EBS volumes instead,
which are cheaper storage volumes. Another reason is that the computing power required by
some workloads, such as MR-F, decreases during 8-24 hr, so fewer machines are used.

We evaluate the cost-benefit analysis by comparing the financial benefit gained by using a
cheaper configuration during 8-24 hr with the cost need to be paid for the extra resources during
the reconfiguration, i.e., both old and new storage clusters should be running while transferring
the data. Figure [2.12] shows the daily cost comparison between running a cluster with a static
configuration that satisfies peak performance requirements for a day and running a cluster that
changes its configuration at 0 and 8 o’clock. Using Mimir, the data transfer takes 48 and 38
minutes for the reconfiguration at 0 and 8 o’clock, respectively, which incurs $7.7 additional
costs for running the extra cluster while transferring data. Even considering such cost, there is
still a 16% gain for changing the VSC configuration based on the Mimir’s optimization results
compared to running a static cluster.

Mimir finds more cost-efficient VSC configurations than baselines, saving 8-74% of daily
VSC price compared to using the baselines to select auto-scaling system resources.

2.4.7 Profiling and optimization overheads

Observation 8: Total time and cost overheads incurred by Mimir for MR benchmark are 4.5
hours and $14.1, which are one-time costs for each optimization round, and time overhead can
be further shortened if necessary.

We measured how much time and cost overhead Mimir incurs for a single optimization round
of the MR benchmark. Profiling step of the Resource profiler and optimization step of the VSC
Cost optimizer mainly induce the overheads.

To profile the six workloads of the MR benchmark, for each workload, we used one i3.4xlarge
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instance for a storage server and two c5.2xlarge instances for a workload generator. Each work-
load took 2.8 hours on average, and it costs $14.1 by exploiting the low price of the spot in-
stances. Also, users can further reduce the total profiling time as much as they want for no extra
cost just by using more machines because Mimir can profile different workload fractions simul-
taneously as those profiling jobs are independent to each other, i.e., the profiling processes can
be parallelized.

To evaluate the time overhead of our optimization algorithm of the VSC Cost optimizer, we
used three local machines described in We ran (g) number of pairwise workload opti-
mizations and it took 1.7 hours in total to find a VSC configuration that costs $8.4/hr. To evaluate
how fast our algorithm can find the cost-efficient VSC configuration, we compared it with an al-
gorithm that does not use dynamic programming but use only a mixed-integer programming
solver, i.e., instead of breaking the optimization problem into smaller problems as we described
in §2.3.4] We used the same three machines and pairwise workload optimization in this case as
well. Without dynamic programming, it failed to find a feasible solution until 30 hours; after 30
hours, the cost-efficient VSC configuration it found costs $10.1/hr; even after 50 hours, the VSC
configuration it found costs $9.6/hr, which is still 14% more expensive than Mimir’s approach.

2.5 Summary

Mimir finds cost-efficient virtual storage cluster (VSC) configurations for distributed storage
backends. Given workload information and performance requirements, Mimir predicts resource
requirements and explores the complex, heterogeneous set of block storage offerings to identify
the lowest-cost VSC configuration that satisfies the customer’s need. Experiments show that no
single allocation type is best for all workloads and that a mix of allocation types is the best choice
for some workloads. Compared to a state-of-the-art approach, Mimir finds VSC configurations
that satisfy requirements at up to 81% lower cost for static workloads and 74% lower daily VSC
price for dynamic workloads.
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Chapter 3

Reducing cross-cloud/region costs with the
auto-configuring Macaron cache

Demand for multi-cloud is surging [64, |65, 66], driven by factors including: disparities among
cloud provider features [67, |68], the desire to avoid vendor lock-in [69, [70, [71], and evolving
organizational structures, such as consolidations [72]]. Similarly, multi-region solutions (within
a cloud provider) are becoming more popular due to data sovereignty requirements [73, 74} 73],
service latency reduction [/6, 77], and availability.

Despite many efforts to optimize resource use within a cloud or region [20, 25, 26, 37, [71,
78, [79, 180, 81]], achieving cost-efficiency across clouds and regions remains a prominent chal-
lenge [82, 183, 184, 185, [86]] hindering the adoption of multi-cloud/region strategies. Current cross-
cloud/region data access solutions often lead to substantial increases in overall costs. Organi-
zations typically resort to direct data access across clouds or regions [87, 88, 189], which results
in prohibitively high data egress cost for frequently accessed data and high data access latency.
While many organizations address the latency issue through data replication [90, 91, 192,93, 94],
the costs associated with maintaining replicas and synchronization data egress remain substan-
tial. Public cloud providers and third parties offer caching services that can be used to keep only
hot data locally [95, 196, 97, 98, 99, [100]], but those rely on manual configuration of the cache
size.

We analyzed object storage traces from Uber, VMware, and the IBM cloud [[101], and derived
three insights for cache design. First, we find that manual selection of cache capacity and storage
type can lead to cost-inefficient decisions, whereas strategies that support re-configuration of the
cache size and type can optimize cost and performance. Second, the high data egress costs of
workloads skewed toward lower accesses per object highlight the need for large cache capacities
that are feasible only when cheap cloud storage types are used. Third, diverse and dynamic
access patterns within and across traces make it essential to monitor workloads and automatically
reconfigure the cache when needed.

In response to these findings, we introduce Macaron, an auto-configuring cache system that
monitors the workload, dynamically adjusts cache capacity, and utilizes different cloud storage
types to minimize data access costs and latency from remote data lakes (Fig.[3.1a). A key insight
behind Macaron is that cache sizes in the cloud are constrained by cost rather than hardware
constraints, causing us to rethink cache design and eviction policy. Macaron analyzes the need
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Figure 3.1: Multi-cloud/region workloads are challenging to run cost-efficiently. Early industry
adopters rely on accessing all data remotely or replicating it locally, with some using an existing
in-memory caching cloud service (ECPC). Macaron significantly reduces costs compared to these
methods and achieves costs comparable to offline optimal (Oracular). The experiment details

are provided in §3.6.2]

to add new objects to the cache and adjust cache capacity accordingly, while exploiting cheap
storage types for caching, rather than solely relying on a cache replacement policy [102, [103,
104, 105} 106, 1107, 108, [109, 110, 111} [112] or efficient sharding of limited storage hardware
among applications [[113} 114,115,116, 117,118, 119,120, [121].

Macaron leverages two storage types for caching. Object storage capacity cost is consider-
ably lower than the egress cost incurred by cache misses, so Macaron uses it to minimize the
overall cost of accessing remote data. A distributed DRAM component is elastically adjusted to
ensure acceptable latency. The capacity of each tier is periodically adjusted based on data access
patterns, using a version of the miniature simulation technique [122]], modified to obtain byte
miss curves and average latency curves. We also explored a variant of Macaron that adopts a
cache policy using time-to-live (TTL) for eviction, adjusting TTL instead of capacity. Our re-
sults show that both achieve similar cost savings. A serverless implementation allows Macaron
to achieve performance suitable for online miniature simulation of very large caches.

Fig. shows that Macaron significantly improves upon the cost of existing approaches.
Each bar represents the total cost of running the 19 cloud-based object storage workloads ana-
lyzed in this project (see §3.2.2)) across clouds. Macaron achieves 73% cost reduction compared
to accessing all data remotely by avoiding egress costs, and a 81% cost reduction compared to
replicating all data locally by reducing both capacity and synchronization-driven egress costs.
Macaron also achieves 66% cost reduction compared to elastic cloud provider caching (ECPC)
services, which incur expensive DRAM storage costs even when tuned intelligently. An oracular
approach with perfect knowledge of future accesses only improves cost savings by an additional
9%, compared to Macaron, without latency reduction.

We have evaluated Macaron with traces from IBM, Uber, and VMware, and our results show
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’ Operation \ AWS \ Azure \ GCP ‘

Egress to Internet (per GB) 9¢ 8.7¢ 11¢
Egress btw. regions (per GB) | 2¢ 2¢ 2¢
Object storage (per GB-mo.) | 2.3¢ | 2.1¢ | 2.3¢
DRAM (per GB-mo.) 700-1200¢
Object GET (per 1k requests) | 0.04¢ | 0.05¢ | 0.04¢
Object PUT (per 1k requests) | 0.5¢ | 0.65¢ | 0.5¢

Table 3.1: Cloud storage pricinf three public cloud providers is similar, with egress cost
dwarfing other costs.

the importance of adapting the cache size and configuration to workload changes and that sub-
stantial cost savings can be achieved by combining object storage and an elastic DRAM cache
cluster.

Contributions. (1) We collected cloud storage workload traces from Uber and VMware,
and publicly released Uber trace [123]]. (2) We analyze real-world cloud storage workloads and
derive design objectives for effectively caching these workloads. (3) We describe the Macaron
cache that is adaptively auto-configured to minimize costs without compromising latency by
leveraging object storage as a cache storage type. (4) We experimentally demonstrate Macaron’s
ability to achieve 65% reduction on average in remote data access costs compared to existing
solutions. (5) Lastly, we release the Macaron prototype [[124] and simulator [[125] code.

3.1 Motivation and challenges

Cross-region data access within a cloud provider is gaining prevalence for several reasons. First,
computation and data could end up separated due to resource unavailability within a region [[126,
127], e.g., due to high demand for GPUs. Second, new services are usually not available in all
regions simultaneously, requiring applications to span regions in order to adopt new technolo-
gies [128, [129]]. Finally, data sharing via cross-region data access is essential for international
business teams [[130] and applications can be distributed across multiple regions to provide lower
latency to end-users [131].

Recent research [132,[133]] has shown that distributing a data pipeline across multiple clouds
saves costs due to price differences between providers, as demand for multi-cloud solutions is
rising. A recent survey [134] found that 55% of multi-cloud users already deploy a single work-
load across multiple clouds, which often requires cross-cloud data transfers. In conversations
with a major trading company we found that during workload bursts, they utilize multiple cloud
providers to ensure trading performance scales with demand even when resource availability be-
comes an issue for one cloud provider [[135]]. Other companies have to split data to abide by data
residency rules preventing data movement [136]].

While multi-region/cloud strategies have clear advantages, we identify two important chal-
lenges: high data egress cost, and increased data access latency.

'Prices from N. Virginia region, <10 TB egress to the Internet, inter-region transfers within N. America, and
<50 TB storage capacity.
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Trace Op. % Skew Total Data accessed Remarks
Put Get | (Zipf) | data size Put Get
IBM9 | N/A 100| 022 6 TB 0 34TB Short lifetime: ‘
last - first access < 10min
IBM 12 1 99| 097 5TB ATB 603 TB ngh‘d.ata access
repetitiveness
IBM 18 2 98| 0.64 ATB | 231GB 14 TB | ghrequestrae,
small object sizes
IBMS5 | 55 45| 042| 13TB| 12TB 10TB | >wonsdiumal
access pattern
IBMS3 | 40 60| 072| 64TB| 37TB o94TB | -OWcompulsory
miss ratio (=0.12)
IBM9 | 58 42| 020| 78TB| 46TB 36TB | 1&hcompulsory
miss ratio (=0.87)
Uber | N/A 100 | 0.52 | 324TB 0 o41Tp | dtabledata
access pattern
VMware | NJA 100 | 0.47 | 215GB 0 717p |Omalltotal datasize,
high request rate for testing

Table 3.2: We collected and analyzed new traces from Uber and VMware to understand how
to efficiently cache cloud storage workloads. The IBM traces represent diverse access patterns
among the busiest cloud object storage traces from IBM’s repository.

Challenge 1: Prohibitive data egress cost. While transferring data into public clouds is of-
ten free, moving data out incurs substantial charges based on the volume of data being transferred
(Table . For instance, one of the IBM traces we have analyzed accesses 694TB in a week,
resulting in cross-cloud data transfer costs of $64K/week or $3.3M/year. The same workload
would incur $14K/week or $0.73M/year if data was transferred across regions of the same cloud.

Despite being controlled by public cloud providers, data egress costs have remained stable
over time — GCP, AWS, and Azure have maintained their egress costs unchanged for the past
6 to 10 years. Moreover, egress costs have been consistently identified as a barrier to cross-
region/cloud adoption in many surveys [[134, [137]. Reducing the data egress cost is crucial for
embracing the multi-region/cloud era.

Challenge 2: High access latency. In latency-sensitive workloads, like real-time analytics
or streaming services, encountering consistently high latency is unacceptable [138} [139]]. Even
in less latency-sensitive workloads, high data access latency can increase costs by increasing
runtimes and causing workloads to use compute resources for longer periods [82].

Cross-region data access causes higher latency compared to single-region access. We mea-
sured object retrieval times at a public cloud and found that retrieving a 1KB object from local
object storage in one U.S. region showed significantly lower latency, taking 10s of milliseconds,
than fetching the same object from another U.S. region or Europe, which took 100s of mil-
liseconds. Real-world workloads we evaluated experienced 2 — 5x higher average latency with
cross-region data access. High data access latency to remote data should be mitigated for both
performance and cost.
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3.2 Macaron design drivers

In this section, we analyze existing approaches for cross-cloud/region data access, and real-world
cloud object storage workloads from three large companies. We derive three design objectives
that have inspired the design of Macaron.

3.2.1 Limitations of current approaches

The simplest approach to accessing data across clouds or regions is remote access, requiring no
additional synchronization efforts. However, in scenarios with repetitive data access patterns, as
observed in various storage workloads [, (112} (140, [141]], egress costs are repeatedly incurred
for the same objects, alongside latency issues.

One effective approach to reduce latency is to replicate all data and access them from local
object storage, which eliminates recurring data egress costs as well. However, it does not solve
the cost problem entirely, as the transfer cost to synchronize dark data [142} 1143, 144] (i.e., data
that is written once but never accessed) inflates the egress cost. Recent surveys [1435] 146, [147,
148]] have indicated that the percentage of dark data can range from 40% to as high as 95% across
different organizations. Even worse, maintaining a large capacity of replicated data lake is also
expensive.

We view the above two patterns as endpoints of a spectrum, with caching solutions providing
a middle ground. While using existing cloud caching services appears straightforward, no ser-
vice currently offers cost optimization solutions for addressing high egress costs associated with
remote data access. Users must manually configure cache settings, such as cache capacity and
storage type, a task that can be challenging even for experienced cache experts. Moreover, most
existing services prioritize using DRAM or block storage for caching, primarily focusing on
single-region data access performance, but our evaluation confirms that such approaches remain
costly due to expensive capacity expenses.

Design objective 1: We need caching strategies that bridge the gap between all-remote data
access and full data replication. These strategies should support auto-configuration of the cache
to optimize both cost and performance.

3.2.2 Cloud object storage workload characteristics

To better understand how cloud object storage workloads should be cached, we analyzed IBM
cloud object storage traces [101], along with traces we collected from Uber and VMware. These
traces are collected from systems operating within a single region. The Uber and VMware traces
represent workload accesses that are not expected to change substantially when moved to an
architecture that spans regions or clouds. Additionally, we evaluated diverse workload patterns
using IBM traces to broaden our evaluation, extrapolating these workloads to the cross-region
and cross-cloud scenarios described in

IBM traces. These are anonymized object access logs from IBM cloud’s object storage over
a 7-day period. We identified 15 traces [7| with the most traffic, together making up 95% of all

2IBM traces with IDs 4, 9, 11, 12, 18, 27, 34, 45, 55, 58, 66, 75, 80, 83, 96.
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data accessed across all 98 IBM traces. While we have studied all 15 traces, for brevity we
present detailed results for 6 traces that are representative of all unique workload characteristics
that appear in the trace collection (Table[3.2).

Uber trace. We collected object access logs generated from Uber’s Presto production deploy-
ment, primarily used for processing and analyzing large-scale real-time event data streams, and
querying data streamed through Apache Kafka to provide real-time data insights [[149]. Our logs
span three Presto engines and over 18 days. Over 70% of the accesses are generated by periodic
jobs.

VMware trace. We collected AWS S3 requests generated by AWS Athena queries from
VMware’s test infrastructure, spanning an 8-day period. These analytics queries, comprising a
mix of ad-hoc and scheduled jobs, analyze security data and resemble queries in the production
system but are smaller in scale as part of testing before deployment in production [[150]. This
workload exhibits a high data request rate despite its relatively small dataset size.

Our analysis of these workloads helped us derive two design objectives for caching cloud
object storage workloads.

Large objects and higher spread of accesses. Data accesses often follow the Zipf distribu-
tion [1} 141, 151} 1152, [153]], and we have confirmed that to be a good fit for our cloud object
storage traces as well. Zipf’s exponent « [[154] represents the skewness in data access frequency
per object. Higher o values indicate fewer objects receiving most accesses, so smaller cache
capacities suffice for these workloads.

We find that cloud object storage workloads generally have lower « than those of KV-store
or block I/0O traces. Over 78% of IBM workloads and both Uber and VMware workloads have
o < 0.6, while more than half of Twitter KV-store traces [141] have o > 1.1. Thus, while
previously studied workloads achieve acceptable cache miss ratios with small cache sizes relative
to the overall dataset, cloud object storage workloads need to cache a significant portion of data
to mitigate bytes missed, which directly affects egress costs.

Many objects in cloud object storage workloads are large. For example, the IBM traces’
median object is 10-100KB, while for Twitter it is 20-30B, orders of magnitude smaller. Given
that data access frequency being skewed towards few accesses per object, this suggests that
reducing egress costs through caching requires a large cache capacity.

Design objective 2: Cloud object storage workloads are skewed towards low accesses per
object, so to reduce high data egress cost we need large cache capacities, which are feasible by
leveraging cheap storage types.

Diverse and dynamic data access patterns. Cloud object storage serves as backend storage
for a variety of workloads including machine learning [[155,1156,157,[158]], ETL [[159,1160], SQL
queries [161},1162,1163], and file serving (164,165, |166], resulting in diverse data access patterns.
Understanding the unique characteristics of each trace in Table[3.2]is vital for establishing a cost-
efficient cache configuration. For instance, while IBM 96 is larger than IBM 83, the difference
in data access skewness necessitates larger cache capacities for IBM 83, which are cost-efficient
only using cheaper cloud storage. IBM 9, despite having low data access skewness, does not
benefit from large cache capacity due to its short-lived objects, necessitating a different approach
for cost-efficiency.
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Despite thorough observation and understanding of workload characteristics, a cost-efficient
cache configuration varies over time. For traces with more dynamicity, like IBM 80, dynamically
adjust cache size results in 85% cost reduction compared to a statically configured cache. But
even for traces with stable, periodic data access patterns, like Uber, a dynamically configured
cache can result in a 15% cost reduction.

Design objective 3: Cache re-configuration based on workload monitoring is necessary to
accommodate diverse and evolving data access patterns.

3.3 Macaron design

Macaron is an auto-configured cache system designed to minimize the cost of remotely accessing
data stored across clouds or regions, while ensuring acceptable latency. Macaron intelligently
configures the cache storage type and adaptively adjusts cache size by periodically analyzing
data access patterns. We elaborate on the key characteristics guiding Macaron’s design (§3.3.1)
addressing the design objectives from Section[3.2] then describe Macaron’s architecture (§3.3.2).

3.3.1 Macaron design characteristics

Adopting object storage for cache storage type. While object storage is typically used for data
lake storage [158}, 1167, 168]], Macaron uses it as a second-level cache storage type. Cloud-based
object storage workloads, as detailed in are often cache-unfriendly [[169,170,(171], neces-
sitating a large cache capacity to mitigate costly egress expenses. By leveraging the remarkably
low object storage capacity cost (300x cheaper than DRAM), Macaron can provision extensive
cache capacity cost-effectively, and still reduce overall costs through lower egress transfer costs.

With DRAM-based caches, however, neither opting for a large cache size nor settling for a
smaller one presents a satisfactory solution to minimize costs; the former incurs prohibitively
high capacity costs, while the latter results in a significant total miss penalty (i.e., egress costs).
Therefore, as a first-level cache, Macaron uses the smallest DRAM cache cluster size that meets
performance requirements.

While flash caching is often used as an inexpensive storage type [172, (173, [174], we leave
exploring other options for future work, as object storage remains significantly cheaper and its
inherent elasticity aligns better with adaptive cache reconfiguration. Otherwise, Macaron would
need to manage a virtual storage cluster for flash caching. By default, Macaron uses standard
object storage types like S3 Standard or Azure Blob Storage Hot Tier for caching, with support
for other types by adjusting the cost policy.

Adaptive cache reconfiguration. Macaron periodically analyzes data access patterns and ad-
justs capacity of each cache level, assuming patterns will repeat in the future, similar to prior
work [113} [175} [176]. Macaron determines a cost-efficient object storage cache capacity that
minimizes overall remote data access costs and a DRAM cluster size that meets acceptable aver-
age latency. Our evaluation confirms that frequent optimization (every 15 minutes) leads to more
cost-efficient solutions (§3.6.3)), enabled by cloud resource elasticity and Macaron’s rapid work-
load analysis. To achieve the latter, we extend miniature simulation techniques [122] and im-
plement them in serverless functions. Achieving highly accurate workload prediction [177,178]]
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Figure 3.2: Macaron Overview: an Object Storage Cache (OSC) manages data egress costs,
Cache nodes leverage DRAM to improve latency, and the Macaron controller is responsible for
cache auto-configuration.

falls beyond the scope of our work, yet our evaluation demonstrates Macaron’s robustness in
handling real-world workloads, even when unobserved workload patterns emerge (§3.6.2)).

3.3.2 Macaron architecture

Macaron consists of four components: a Macaron client, a cache engine, an object storage cache
manager, and the Macaron controller (Fig. [3.2)). Macaron uses two-level caching. As the first-
level cache, a cache engine and DRAM cache scale together across cache nodes that make up a
cache cluster. An object storage cache (OSC), the second-level cache of Macaron, is controlled
by the OSC manager. Macaron uses inclusive caching, where data in the cache cluster is also
stored in the OSC.

The Macaron client is the primary interface for applications, facilitating a connection to
Macaron and the transmission of data requests, such as put, get, and delete operations to a remote
data lake. It employs consistent hashing for message routing to the cache cluster that is auto-
scaled. The Macaron client maintains up-to-date cache cluster information by communicating
with the Macaron controller to determine which node to access.

Upon receiving requests from the Macaron client, the Cache Engine cluster interacts with
both cache layers and the remote data lake. Macaron uses a write-through and inclusive policy
by default, so the cache engines are responsible for cache promotion. When Macaron targets
solely minimizing the cost, the cache cluster is not deployed, and the cache engine is co-located
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Figure 3.3: End-to-end pipelining of cache capacity optimization and reconfiguration. Macaron
executes processes in parallel wherever feasible for fast reconfiguration.

in the same node as the Macaron client.

While the DRAM cache is self-managed, Macaron deploys an OSC manager to manage
metadata and cache eviction from the OSC. To reduce operational costs of OSC, Macaron uses
object packing that combines small objects into packing blocks when writing cache items into
the OSC. OSC manager’s metadata manager provides the mapping of cache objects to the cor-
responding packing block. Macaron lazily evicts cache items from the OSC using the Eviction
Manager. We use the LRU eviction policy for both the OSC and DRAM cache, but alternative
policies can be easily incorporated.

Finally, the Macaron controller is responsible for adaptive cache management. Its opti-
mizer determines the sizes of both the OSC and the cache cluster to minimize cost while striving
to enhance performance based on past data access patterns. Then it scales both cache layers ac-
cordingly. The Macaron controller gains insights into data access patterns through the Workload
Analyzer that periodically collects and analyzes data access logs.

Supported operations. The Put operation synchronously writes data to the packing block
being constructed, the DRAM cache (if present), and the remote data lake, before returning to
the client. The packing block is asynchronously flushed to the OSC in the background. This
ensures data durability for the remote data lake. The Get operation attempts to retrieve data from
the DRAM cache, the OSC, and the remote data lake in sequence, returning it immediately upon
success. The Delete operation removes data from Macaron’s DRAM cache, OSC, and the remote
data lake before returning.

3.3.3 Consistency model

Macaron is designed to guarantee the same consistency model as using the remote data lake
alone. To do so, Macaron assumes data is immutable, a paradigm prevalent in data lakes such
as Meta and Alibaba data warehouses [179, [180], AWS S3 lakeFS [[181]], and in cloud database
formats like Apache Parquet and Apache Iceberg. With its write-through policy, Macaron ensures
consistency equivalent to using the remote data lake alone. Applications requiring mutable data
must handle it, potentially by using TTL for each item or functions like S3 Object Lambda to
detect and invalidate stale data.
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Figure 3.4: Example curves (Trace 55) utilized to optimize OSC and the cache cluster capacities.

3.4 Cache auto-configuration pipeline

We introduce the workflow used by Macaron to adaptively optimize the capacity of each cache
level by analyzing data access patterns for both cost and performance.

Workflow. Macaron triggers the reconfiguration process at fixed intervals, set to 15 minutes
by default. When reconfiguration is triggered (Fig. [3.3): the Macaron controller first collects
data access logs from cache engines, then the Workload Analyzer (§3.4.2)) generates key metrics
on the recent data access pattern (e.g., miss ratio curve, byte miss curve), and the OSC manager
updates the LRU cache item list. Based on these metrics, the Macaron controller determines the
most cost-efficient capacity and reconfigures the OSC and cache cluster accordingly (§3.4.1).

3.4.1 Capacity optimizer

OSC capacity. Macaron determines the OSC capacity that minimizes the overall cost of access-
ing remote data across clouds or regions. The capacity optimizer generates an expected cost
curve based on past data access patterns, predicting the expected cost for different OSC capaci-
ties during the next time window and selects the size that minimizes the expected cost (Fig.[3.4a).
The expected cost for a cache capacity (C) is computed as:

TotalCost(C) = OSCCapacityCost(C + GarbageSize)

+ EgressCost(C) + OpCost(C)
EgressCost(C) = EgressPrice x ByteMissCurve(C')
OpCost(C) = PutPricex

(#Writes + #Reads X MissRatioCurve(C))

#Objects per Packing Block

In summary, the expected total cost consists of the object storage capacity cost, egress cost,
and operation cost of object storage. Capacity cost is based on OSC size and garbage size, a
side effect of object packing, tracked by the OSC manager, which monitors total data stored in
OSC and its determined capacity. Egress cost is proportional to the bytes missed from the OSC.
Operational costs for storing cache items to OSC are proportional to the number of Put opera-
tions and cache admissions, divided by the number of packed objects, since admitted objects are
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written to the OSC as a block. The costs unaffected by changing the OSC capacity are omitted
in this formula, including the VM cost for Macaron controller, data transfer costs incurred by
write operations (due to the write-through policy). As capacity increases, capacity cost increases
while operation cost and egress cost decrease, attributed to the reduction in miss ratio and byte
miss in OSC.

Cache cluster capacity. Macaron aims to configure the minimal cache cluster capacity
needed to achieve better average latency than the replication approach. Macaron utilizes the
average latency curve (Fig. [3.4b) to select the minimum cache cluster capacity that meets the
desired latency threshold. However, in traces with high cold miss ratios, achieving this objective
may not always be feasible. In such cases, the Macaron controller uses a maximum curvature
method [[182] to identify the knee-point. It connects the latency-cache size curve’s two endpoints
and locates the farthest point between the curve and this line, beyond which further expansion of
the cluster size yields no latency improvement.

TTL cache for OSC. Given that there is no capacity limit in object storage, implementing
a TTL cache on the object storage is another viable option. To assess whether Macaron’s tech-
niques can be applied to adaptive TTL-based object storage caching, we implemented Macaron-
TTL, a variant of Macaron that uses a TTL cache and automatically determines a TTL that mini-
mizes the total cost of accessing remote data. This variant employs the same Workload Analyzer
to generate necessary metrics for computing the expected cost for TTL instead of cache size,
considering a similar trade-offs: a TTL that is too short increases cache misses and egress costs,
while one that is too long raises storage expenses. Our evaluation, as shown in §3.6.8] confirms
that cost savings achieved by Macaron-TTL are nearly identical to those from optimizing OSC
capacity.

3.4.2 Workload analyzer

Macaron uses a short optimization window, set to 15 minutes, to leverage the cost benefits of
frequent reconfigurations, which requires fast yet accurate workload analysis. The Workload
Analyzer adopts and extends the miniature simulation technique [[122] to derive three key metrics
representing the recent access pattern: miss ratio curve (MRC), byte miss curve (BMC), and
average latency curve (ALC). Then, using accumulated metrics from historical access patterns,
Macaron generates aggregated metrics for capacity optimization. For Macaron-TTL, the same
curves are used but with TTL on the X-axis instead of cache size.

Miniature Simulation. Waldspurger et al. [122] introduced a technique for generating
MRCs that emulates caches of any specified size by proportionally scaling down the actual
cache size and using spatial sampling to sample data accesses. Among MRC generation stud-
ies [152, [183) 184, [185, 1186, [187], we chose this method for its efficiency in generating MRCs
online and its adaptability in computing additional metrics utilized by Macaron, such as missed
bytes or average latency.

We follow the original miniature simulation approach to obtain the MRC, and monitor cache
miss bytes from the mini-caches, dividing them by the sampling ratio to approximate miss bytes
of the original cache sizes, thereby generating the BMC. This process deviates only slightly
from a full simulation, with a mean absolute error of 0.0023 for the MRC and a mean average
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Figure 3.5: Macaron’s ALC achieves high accuracy by computing the latency at runtime and
incorporating proper request delaying, closely matching the exact average latency.

percentage error of 0.015 for the BMC, evaluating all 19 traces.

Symbiosis [113] uses miniature simulation to generate a MRC and produces an ALC based
on the MRC to auto-tune application and kernel cache sizes. It uses access latency measured
at the beginning and hit ratios measured at runtime of each cache layer to calculate average
latency. However, Macaron considers two more factors, workload change and false positive hits,
improving accuracy further.

First, Symbiosis assumes cache and disk latency do not change, but we observe that the
access latency distribution to object storage varies over time since it depends on the object size
distribution, which varies over time. Second, when uncached data are consecutively accessed
within a very short time (before a remote access completes), Macaron’s cache engine delays
subsequent accesses until the first request completes to reduce redundant egress costs, causing
them to experience remote access latency. However, in simulation, subsequent accesses after
the first one are classified as hits, underestimating latency by using the cache cluster latency and
generating an ALC with lower latency values.

To resolve these issues, Macaron directly computes average latency for each access during
miniature simulation and aggregates them afterward, and we added the request delay in the sim-
ulation used by Macaron. Moreover, we ran two-level mini-caches that depict the cache cluster
and OSC, using the same sampling and scaling logic. The cache cluster capacity serves as the
independent variable for ALC, while OSC’s cache capacity works as input to ALC optimization,
since it is decided by the Macaron controller.

Fig. illustrates the accuracy of Macaron factoring in workload changes compared to
Symbiosis that uses the unchanged measured latencies for 7 days. In this case, the workload
changes from accessing large objects to small objects, thus Symbiosis yields inaccurately higher
latency (black). Symbiosis behaves much better once we force it to recalibrate every 15 minutes,
but still worse than Macaron. Fig. demonstrates the effect of false positive hits, where
Symbiosis reports inaccurately lower average latency.

Metric Aggregation. After analyzing the local data access pattern, the Workload Analyzer
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stores the results for future reference. It aggregates those saved local metrics according to the
optimization goal.

To optimize costs, retaining historical data access patterns is crucial due to the high data
egress cost, which aligns with the cost incurred for storing the same object in object storage
over extended periods, specifically 116 days for cross-cloud and 26 days for cross-region ac-
cesses. Therefore, conservatively including old data access patterns is a key for cost-efficiency.
To achieve this goal and adapt to workload changes, we use an exponential decay mechanism by
multiplying metrics by a decay factor y¢/9Ps¢d-time which diminishes the influence of older met-
rics. This is simple yet yields effective results (§3.6.3). Additionally, we also multiply weights
proportional to the number of requests per reconfiguration window. This prevents metrics derived
from a small number of requests from misrepresenting the overall data access pattern.

To optimize performance, however, only the latest access pattern is important as Macaron
needs to quickly scale-in the cache cluster when the large cache cluster capacity is ineffective.
Thus, Macaron uses the latest ALC to configure the cache cluster capacity.

3.4.3 Policy during observation period

Macaron starts to trigger optimization after the cache is warmed up and stable data access pat-
terns are observed, using the first day as the observation period. During the observation period,
Macaron can either cache all accessed data or none at all. We find that storing all accessed data
led to a significant reduction in the cost of remote data access, averaging at 37% compared to
not storing any data. The main reason for this is twofold: (1) object storage cache is cheap, so
storing all data for 24 hours does not incur significant overhead, and (2) on the first day, if no
data is cached, the egress cost for repetitively accessed data is very high. Comparing to the use of
optimal cache capacity during the observation period did not yield significant cost savings either.

3.4.4 Offline optimal algorithm

To assess Macaron’s cost-efficiency, we compare it with the optimal solution, Oracular, which
has complete knowledge of trace requests. While the Belady algorithm [[188]] is known to be the
optimal eviction algorithm, OSC differs in two main ways: (1) its elastic nature, eliminating the
need for forced evictions, and (2) its focus on overall cost rather than just miss ratio. Given these
differences, Oracular determines for each cache item access whether the cost to store data
in the OSC until the next access is less than the data transfer cost. If higher, the item might be
evicted or not stored.

For our comparison, we assume zero operation cost for Oracular, suggesting optimal
packing and minimal operation costs. Also, we take the end of the trace length as the end of
the workload for Oracular, but real-world workloads continue beyond trace lengths. Hence,
Oracular stands as an idealized benchmark that Macaron aims to approach, even if it may not
be reachable.
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Figure 3.6: Overview of how OSC manager manages object packing, lazy eviction, and garbage
collection.

3.5 Implementation

We implemented the Macaron prototype in 8k LoC of C++, and we explain the important imple-
mentation details that influence performance and cost.

3.5.1 Object storage cache implementation

Object packing. Object storage write operations are 12.5-13 X more expensive than reads. How-
ever, Macaron has to perform frequent writes for cache admissions, driven by the low skewness
of object storage traces. Macaron mitigates this issue through object packing [80], bundling
small objects into larger blocks before writing them to object storage. Macaron’s Cache Engine
(Fig. (D-@) combines objects that need to be written in OSC into blocks, then full blocks
are written to OSC, and OSC manager metadata is updated to map blocks to objects. The Cache
Engine uses byte-range fetches to retrieve objects from blocks.

By default, Macaron sets a packing threshold of up to 40 objects and a block size of 16MB.
The workloads we studied break data in up to 4MB objects for caching, for which object packing
can achieve 4 x operation cost reduction, while smaller objects see reductions up to 40x. Larger
block sizes reduce request costs but increase memory consumption on the cache nodes, which
store data at block granularity.

Lazy eviction and garbage collection. Traditional caches evict items when reaching physical
capacity. Macaron exploits object storage elasticity, delaying evictions and batch processing
them to reduce operational costs. When eviction is triggered (Fig. ®-®), the OSC manager
leverages access logs to update its state of OSC objects to Evicted. Lazy evictions are followed
by garbage collection for blocks with over 50% Evicted or Deleted objects, where a block
is read and a new block is written out to OSC containing only active objects. Note that Macaron
does not traverse all blocks for garbage collection. Instead, when a Delete or Evict occurs, it
computes the percentage of valid items in each affected block. If the percentage falls below
a threshold, the block ID is added to the GCList for tracking. Only the blocks in this list are
targeted during garbage collection.
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Lazy evictions resolve performance issues related to updating cache replacement policy meta-
data [101} 189, [190]], by removing it from the critical path of requests.

3.5.2 Cache cluster implementation

DRAM cache priming. The speed at which Macaron can warm up new cache capacity following
an auto-scaling event is crucial for efficiently utilizing new cache nodes.

We observe that many object storage workloads, especially IBM traces, have lower object
request rates than the other key-value or block I/O workloads. For example, while average data
request rates of Twitter [141] and Enterprise VDI storage traces [[191] are 7k and 33k RPS, IBM
traces do not exceed 344 RPS. This disparity is likely due to the high latency and monetary costs
associated with retrieving data from cloud object storage, prompting users to maximize the use
of fetched data. Hence, new cache capacity will get populated slowly, reducing our ability to
mitigate latency spikes through existing methods like a Gradual algorithm [192].

To address this, Macaron incorporates cache priming for newly launched cache nodes. Dur-
ing this process, the OSC manager scans the LRU order of cache items and preloads data into
new cache nodes until they are full.

3.5.3 Macaron controller implementation

Miniature simulation. Using spatial sampling at a ratio of 5%, we ran at most 200 mini-caches
(ghost caches), with the largest covering the total data size of each workloacﬂ Macaron deploys
each mini-cache as a serverless function, running 200 simulations in parallel for rapid analysis
(§3.6.7). To avoid replaying all accumulated traces in each optimization, Macaron stores the
states of each mini-cache in Amazon EFS after simulation, loads the states back for subsequent
simulation, and updates them during simulation execution. Metrics like miss ratio, bytes missed,
and average latency, generated by each mini-cache during each optimization window, are also
stored in EFS for use by the Macaron controller’s capacity decision. As detailed in §3.4.2]
Macaron runs two types of miniature simulation: one to generate MRC and BMC in a single run,
and another to produce the ALC.

The pay-as-you-go pricing model offers cost and performance benefits for running minia-
ture simulations on serverless functions instead of the master node. With serverless functions,
costs are incurred only during active periods of execution. Serverless functions run 31 seconds
(average across traces) for each 15 minutes optimization window. This makes them more cost-
efficient than dedicated instances, due to the memory usage required by miniature simulation,
even with sampling. Also, running 200 simulations quickly within a short optimization window
requires high parallelism, and provisioning a large dedicated instance that is used only for short
intervals would incur higher costs. We evaluate the cost and performance overheads in

Scaling caches. To scale the OSC, the Macaron controller leverages the elasticity of object
storage by storing more cache items to the OSC or deleting objects as needed. For scaling the
cache cluster, the Macaron controller tracks the number of cache nodes, deploying new ones or

3We used uniform intervals between mini-cache sizes, with the smallest mini-cache size to cover at least 50GB
cache simulation.
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terminating existing ones when the cluster size changes. It then communicates with Macaron
clients to update their cache cluster information for consistent hashing-based message routing.
For improved load balancing, availability, and scalability, advanced shard managers like Google’s
Slicer [193] or Meta’s Shard Manager [194] could be employed.

3.6 Evaluation

We evaluate Macaron using real-world object storage workloads to assess the following aspects:
its cost-efficiency compared to existing approaches (§3.6.2)), its adaptability to workload changes
(§3.6.3)), cost-breakdown of Macaron’s optimization techniques (§3.6.4), its ability to utilize the
cache cluster cost-efficiently to achieve the desired performance (§3.6.5), its robustness under
varying cloud conditions through sensitivity analysis (§3.6.6), simulation accuracy and prototype
reconfiguration overhead (§3.6.7), and its TTL-based variant’s cost-efficiency (§3.6.8).

3.6.1 Experimental setup

Traces. We evaluate Macaron with 15 IBM traces, 3 Uber traces, and 1 VMware trace. For
brevity, we provide detailed analysis of results obtained from 6 IBM, 1 Uber, and 1 VMware
trace (Table [3.2)). We use the first day of each trace as the observation period, with optimizations
triggered every 15 minutes after the first day. Each evaluation reports the remote data access cost
and latency for the remaining days.

For the IBM traces, as in the original paper [[101], large objects are divided into 4MB blocks,
with each smaller object treated as a separate cache item. We use the same policy for the VMware
traces, while for Uber we use 1MB blocks, which is their default policy.

Configurations. Unless stated otherwise, experiments assume workloads running on a dif-
ferent cloud provider than the one hosting the remote data lake, with accesses incurring cross-
cloud egress charges. Workloads are located in the N. Virginia region, while the remote data
lake is in N. California, but we did perform a sensitivy analysis considering different configura-
tions (§3.6.6). We use AWS’s pricing model, but note that cloud providers have similar pricing
models.

Baselines and costs. We compare Macaron to three baselines mirroring approaches used
today (§3.2.1)): accessing all data from a Remote cloud, having all data Replicated locally,
and using existing in-memory caching solutions (ECPC) like AWS ElastiCache. Since ECPC
products rely on users to provide scaling policies, we use Macaron’s optimizer to efficiently
auto-scale the cache. Finally, we evaluate Macaron against the Oracular caching solution
(§3.4.4).

At a high-level, Remote incurs egress and operation costs for all data accesses, while
Replicatedis plagued by synchronization costs. Egress and capacity costs for Replicated
are computed based on the rate of increase in total data size, using a 90-day data retention period
and 70% dark data, but different portions of dark data are explored too (§3.6.6). We exclude
operation costs for Oracular’s object storage cache (§3.5). All others incur infrastructure
costs for OSC manager and/or Macaron controller, with Macaron and ECPC incurring additional
serverless function expenses.
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Macaron Simulator. Replaying all traces once in a real cloud would cost over $1.5 mil-
lion (Fig.[3.1b). Thus, we developed a simulator that allows us to assess Macaron across various
configurations and constraints. The simulator models key components, replicating their function-
alities (§3.3)) and interactions. The simulator manages message exchanges between components,
including data and control requests for reconfiguration and eviction, ensuring messages are gen-
erated in the same way as by our prototype implementation.

To simulate message latencies accurately, we measured data access latencies on AWS for
various object sizes accessed from a remote data lake, OSC, and the cache cluster, and fit a
Gamma distribution to the collected data.

3.6.2 Cost-efficiency Analysis

Observation 1: For individual traces, Macaron reduces cross-cloud data access costs by 65%
and 75% on average compared to Remote and Replicated, respectively.

Macaron aims to minimize costs when accessing cross-cloud/region data. We compare re-
mote data access costs of Macaron with those of our baselines. Fig[3.7) shows results for two
representative IBM traces for brevity, with a discussion of the overall results provided below.

Overall results. Across 19 traces, Macaron achieves a cost reduction of 2.4% to 99.3% (avg.
65%) compared to Remote, and 24.9% to 82.9% (avg. 75%) compared to Replicated in
cross-cloud scenarios (Fig[3.7b)). In cross-region scenarios, for the 16 traces that have lower
than 20% compulsory miss ratios, Macaron provides cost reductions of 28.2% to 98.5% (avg.
67.4%) and 18.1% to 91.1% (avg. 78.4%) compared to Remote and Replicated, respec-
tively (Fig[3.7a). In cross-region scenarios, for the IBM 27, 66, and 96 traces that have high
compulsory miss ratios (57%, 79%, 87%), Macaron incurs 24%, 5.8%, and 1.5% higher costs
compared to Remote, respectively, because the savings achieved are less than the cost of run-
ning a single VM to operate Macaron controller and OSC manager. Since cross-cloud egress
cost (9¢/GB) is higher than cross-region (2¢/GB), Macaron selects a larger cache capacity for
cross-cloud scenarios, allowing for further reduction of egress costs.

Comparison with ECPC. When caching in object storage, the Macaron optimizer exploits
its low capacity cost and mitigates egress costs by provisioning high capacities. When caching
in DRAM, however, cache capacity costs increase rapidly, leading to a much smaller capacity
point for cost optimization. ECPC, using DRAM, incurs higher capacity costs even with small
capacities, along with increased egress costs compared to Macaron. As a result, across 19 traces,
Macaron reduces overall costs by 3.5-89.1% (avg. 46%) compared to ECPC for cross-cloud data
accesses.

Remote vs. Replicated. Fig. shows that neither Remote nor Replicated con-
sistently outperforms the other. For cross-cloud scenarios, 6 traces are cheaper to manage with
Remote, the remaining 13 show cost savings with Replicated, and Macaron outperforms
both across all traces.

Comparison with Oracular. Oracular leverages future knowledge for optimal caching
decisions, while Macaron relies on past access patterns to predict the future. Still, this results
in Oracular accessing cross-cloud data at 0.4%-18.3% lower cost (avg. 6.8%) than Macaron
across all traces.
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Figure 3.7: Detailed analysis on four workloads representing diverse data access patterns.

In IBM 12, Oracular’s cost is 18% lower than that of Macaron due to misprediction of
workload behavior for cross-cloud scenario. For days 1-5, the workload consistently accesses
half of the previous day’s data, adding an equal amount of new data. On day 6, it accesses

data from day 2, causing unexpected cache evictions and remote re-fetching accesses, incurring
€gress costs.

Despite uncertain workload behaviors, Macaron remains more cost-efficient than the base-
lines. Monitoring longer-term data access patterns might reduce this uncertainty.

Observation 2: Macaron’s cost reduction stems from aggressively reducing data egress costs

by exploiting cheap storage to build large caches, while finding the cache size that minimizes
capacity costs.

We provide a detailed case study for each workload shown in Figure [3.7b] Additional case
studies are in Section[3.7.4l

The VMware workload involves running numerous tests periodically on the test dataset, lead-
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Figure 3.8: Testing Macaron’s adaptivity to a workload change (vertical red line), with and
without knowledge decaying.

ing to a high frequency of repetitive accesses. Thus, there is a 96% cost reduction compared to
Remote, and 25% reduction compared to Replicated.

The Uber workload has the largest data size among 19 traces, and Macaron achieves 81%
cost reduction compared to Replicated. Macaron finds a cache capacity of 180TB (56% of
total data) yields benefit by avoiding egress transfers.

The IBM 9 workload exhibits a periodic burst for 15 minutes every hour, during which new
data retrieval is followed by repeated access. The Workload Analyzer identifies this pattern,
provisioning only 1% of the total data size to cache all the data accessed during each burst. This
results in 79% cost reduction compared to Remote, managing repetitive accesses from OSC,
and 82% reduction compared to Replicated due to the small cache capacity used.

For the IBM 12 workload, Macaron achieves 98.9% reduction in data egress costs compared
to Remote, due to strong cache locality. Over 50% of objects are accessed more than 100 times,
making caching highly effective. Using Replicated is still expensive due to the 101 x higher
storage cost compared to caching only hot data identified by Macaron.

3.6.3 Impact of adaptivity mechanisms

Observation 3: Macaron’s adaptive reconfiguration reduces costs by 12% compared to static
configurations. When workloads change, Macaron decays its knowledge leading to an additional
5% cost reduction compared to no decaying.

Macaron optimizes configurations every 15 minutes to match the latest data access patterns.
Here, we quantify the benefits of this frequent reconfiguration, and Macaron’s mechanism for
decaying older learned access patterns.

Reconfiguration window. We evaluate the benefit of Macaron’s frequent reconfiguration, by
comparing it to a static configuration that is fixed to the optimal capacity obtained from the first
day of the trace. For cross-cloud scenarios, Macaron achieves cost reduction 0-85% (avg. 12%)
across 19 traces, while for cross-region, it is 0-78% (avg. 8%). When Macaron’s reconfiguration
window is reduced from 24 hours to 15 minutes, cost is reduced by 0-41% (avg. 4%) for cross-
cloud and 0-25% (avg. 3%) for cross-region scenarios.

Exponential decay. By default, Macaron uses a decay factor of 0.2 (i.e., 7'%¥ = (.2) to phase
out learned patterns. We assess Macaron’s cost-efficiency under varying decay factors — 1.0
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(NoDecay), 0.2 (Default), 0.1 (SmallDecay) — using 15 IBM traces. Specifically, we
evaluate its performance (1) within a single trace, and (2) when concatenating two different traces
to simulate abrupt changes in data access patterns often observed in real-world workloads [63,

195, 1196, [197].
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For a single trace, the IBM and VMware workloads span one week, and 18 days for Uber,
and exhibit fairly consistent data access patterns. This benefits knowledge accumulated over
time. Specifically, our traces show insignificant differences of +1% with and without knowledge
decaying.

To assess Macaron’s adaptivity during workload changes we created 30 new concatenated
workloads by combining the 6 selected IBM traces and assessed evaluated costs during the sec-
ond trace’s execution to see how Macaron adapts to changes in data access patterns. For 25
concatenated workloads, Default and SmallDecay reduce costs by 0-30% (avg. 5.2%) and
0-34% (avg.6.1%), respectively, compared to NoDecay, which continues to rely on past traces
and hampers quick adaptation. For example, combining IBM 55 and IBM 83 in Fig[3.8|results in
NoDecay facing high egress costs when executing IBM 83 after IBM 55 due to slow scaling out,
while changing the order leads to expensive capacity costs because of slow scaling in. However,
Default and SmallDecay can adapt rapidly to such changes.

We observed that for five concatenated workloads’] NoDecay incurred lower overall costs.
This was due to the fortuitous alignment of the workloads’ unpredictable access patterns with
NoDecay’s lack of adaptability, preventing it from slowly reducing capacity and retaining un-
necessary cache items.

3.6.4 Effects of Macaron optimizations

Macaron’s cost savings are primarily attributed to two key optimizations: (1) determining the
cost-efficient OSC size and (2) packing small objects when caching them in the OSC. Next, we
assess the effectiveness of these optimizations.

Observation 4: While the cost-efficient cache size varies significantly for each workload,
Macaron identifies efficient setups by analyzing each access pattern. Making a less optimal
choice can lead to increased costs.

OSC size optimization. Figure [3.9|depicts the OSC capacity changes over the last six days
(after observation period) across 15 IBM traces, with the total data size. The ratio of OSC
capacity to data size varies across workloads, ranging 1-98%, highlighting that there is no single
ratio ensuring a cost-efficient cache size, and the need for a tool like Macaron.

For IBM 18, Macaron aligns cache capacity with the total data size, suggesting a very
large cache can mitigate overall costs by minimizing data egress fees. Unlike conventional
caching studies, which favor compact, frequently-accessed data caches, the prohibitively ex-
pensive egress costs in cross-cloud, cross-region settings advocate for larger caches.

We found that all traces except one among the 19 evaluated workloads adjusted the cost-
efficient OSC capacity at least once, with a standard deviation in the changing OSC size to total
data size ratio ranging 0-0.28. The average standard deviation value is 0.1, suggesting that the
ratio changed 10% per day, emphasizing the importance of Macaron’s adaptivity. This capacity
ratio typically increases from day 1 to 7.

Fig. [3.10|demonstrates that erroneous OSC capacity allocations can notably affect cost. Us-
ing the same 14% cost-efficient capacity ratio from IBM 55 on IBM 83 causes a 1.5 uptick in

4These concatenated traces are 9—18, 18—12, 55—12, 55—18, and 96—12

51



expected cost relative to Macaron’s selection.

Observation 5: Object packing, especially for workloads with small objects and high request
rates, can yield significant savings, with up to a 36% cost reduction.

Object packing. In our evaluation, IBM 18 and IBM 45 realized cost reductions of 36% and
5%, respectively, due to object packing. Traces with smaller objects and higher request rates,
like these two, tend to benefit the most. Similar to Amdahl’s law, the higher the contribution of
operational costs to the total costs, the greater the potential savings, as object packing impacts
only operational costs. Though operational costs average 4% of total costs in cross-cloud scenar-
1i0s due to high egress expenses (resulting in 3% cost savings), factoring in cross-region egress
prices increases operational costs to 8% and savings to 7%.

3.6.5 Macaron with low latency

Observation 6: Macaron achieves 61% lower latency and 64% cost savings than Replicated
with its dynamic cache cluster.

We evaluate whether Macaron can combine performance and cost-efficiency, without com-
promising on performance. By dynamically adjusting its cache cluster, Macaron cuts remote
data access latency by 61% compared to Replicated, and still saves 64% costs across 10
traces that showed lower average latency than Replicated. This is achieved by serving hot
data from cache cluster and smartly scaling the cluster during inactive periods or when smaller
capacities suffice. Macaron without cache cluster exhibits, on average, 10% higher latency com-
pared to Replicated. This increase is because Macaron ’s latency is lower bounded by the latency
of object storage, which is the same as that experienced by Replicated. However, using
30% more costs for the cache cluster (still significantly cheaper than Replicated), Macaron
substantially improves latency.

For 6 remaining IBM traces and Uber traces with high compulsory miss ratios, only full
replication achieves low latency, albeit at the previously discussed high cost in Our rough
estimates indicate that if the compulsory miss ratio surpasses 10-20% (depending on workload
object size), achieving lower average latency than local object storage becomes challenging, even
with all other requests retrieve data from the cache cluster, which matches with our results.

Fig. shows the violin graphs that illustrate the latency distributions of four traces, all
showing similar characteristics. Interestingly, despite ECPC being DRAM-centric solution, it
often shows higher latency than Macaron with a cache cluster (Macaron+CC) or even without a
cache cluster (IBM 11 and 55 in Fig. [3.T1), as not enough DRAM cache server is allocated by
prioritizing cost-efficiency, thus resulting in high latency. Specifically, in Fig. Macaron+CC
demonstrates cost savings of 0.3%, 9%, 37%, and 16% for the VMware, IBM 9, 11, and 55 traces,
respectively, while also reducing latency by 3%, 1%, 76%, and 70% compared to ECPC.

The plot also shows Macaron’s tail latency without a cache cluster resembling Remote,
while its low latency mirrors Replicated. With a cache cluster, Macaron’s low latency distri-
bution matches cache cluster latency, substantially lowering average latency.

Our percentile latency analysis further validates these observations. For example, in IBM 9
with a 21% compulsory miss ratio, Macaron’s p90 and p99 latencies using DRAM cache are
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Figure 3.12: Analysis of the efficiency of Macaron under varying pricing models and with chang-
ing dark data portions.

from remote data accesses, but are 27% and 15% lower than Remote’s p90 and p99, indicating
the impact of serving many requests from OSC. In IBM 55, where the compulsory miss ratio
is below 0.1%, Macaron’s p90 and p99 latencies from OSC using DRAM cache are even 15%
and 6% lower than Replicated’s p90 and p99, showcasing the efficiency of serving from the
cache cluster.

3.6.6 Sensitivity analysis

We assess Macaron under varying experimental settings, specifically latency, egress cost, and
dark data portions.

Different egress costs. We tested Macaron with three alternative egress cost models to ensure
its effectiveness across different pricing: 22% (cross-region egress cost), 10% (0.9¢/GB), and
1% (0.09¢/GB) of the standard cross-cloud rate of 9¢/GB. Macaron consistently surpasses the
baselines across different pricing models, achieving substantial cost reductions as depicted in
Fig.[3.12a] even when egress costs are as low as 1% of the cross-cloud rate.

Different latency. We evaluate Macaron’s cost-efficiency with varying latency distributions
by switching the inter-region setting from US N. Virginia and US N. California to US N. Vir-
ginia and Europe Frankfurt. In this new scenario, higher inter-continent latency makes it harder
to achieve local object storage access latency with Macaron. Consequently, one less trace out-
performing Replicated for both cost and latency compared to the intra-continent scenario,
achieving a 71% lower average cost while paying 62% less.

Different dark data percentage. We evaluated Macaron’s efficiency against Replicated
across varying dark data portions, previously set at 70%. Fig. [3.12b|shows that with a 0% dark
data portion, which means the working set size of the trace is equal to the entire data size,
Macaron is 37.5% cheaper than Replicated. At 99% dark data, Replicated is 158.9x
costlier than Macaron.
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3.6.7 Simulation accuracy & Reconfiguration overhead

Observation 7: Simulator closely mimics Macaron with minimal gaps in cost and latency, up to
0.17% and 7.6%. Reconfiguration time comprises less than 9% of the total runtime, while the
cost overhead remains low at 0.6% of the total cost.

We evaluate Macaron simulator’s accuracy by comparing its cost and latency results with
those obtained from running our prototype implementation on AWS. Due to budget constraints,
we selected three IBM traces: IBM 9, 55, and 58, representing read-only, read/write mixed, and
read/write/delete mixed scenarios, respectively. Overall, the cost gap between the simulator and
prototype was minimal, ranging from 0.08% to 0.17%. Similarly, the average latency gap was
4-7.6%. Additionally, we validated the number of Get operations hit at each cache level match.

Next, we evaluate reconfiguration overhead. Across the three traces we evaluated, end-to-end
reconfiguration took 6 to 418 seconds (avg. 71sec). When there is no change in cache cluster
configuration, it takes only 7 seconds on average, but if there is a change, especially when scaling
out, it takes 274 seconds on average. Since reconfiguration occurs only when optimization results
in configuration changes, the total reconfiguration time across three traces amounts to 1.6 hours,
representing just 9% of the total runtime of 18 hours. During reconfiguration, requests continue
to be served without any downtime, and the cost of the resources required to carry it out are
factored into Macaron’s savings.

Further breakdown reveals that the largest portion of reconfiguration time is spent on minia-
ture simulation and cache cluster reconfiguration. Miniature simulation time is proportional to
the request count in the optimization window, taking 0.3—44 seconds (avg. 31sec across all op-
timization windows of 19 traces). Cache cluster reconfiguration, including VM initialization
and cache priming, took 132-387 seconds (avg. 256sec). Finally, the cost overhead of running
miniature simulation on AWS Lambda is negligible, accounting for only 0.003—4% (avg. 0.6%)
of the total cost of running each trace end-to-end across 19 traces.
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3.6.8 Size-based and TTL-based Macaron variants

Observation 8: Macaron and Macaron-TTL demonstrate similar cost-efficiency, successfully
identifying cost-efficient cache sizes and TTLs.

We evaluated the effects of optimizing TTL (Macaron-TTL) rather than cache size (Macaron)
in cross-cloud scenarios. Across 18 traces, Macaron-TTL’s cost ranges from -0.8% to 3.3%
compared to Macaron, indicating similar performance. In IBM 80, Macaron-TTL was 17%
more expensive due to its TTL=24hr selected based on the past data access pattern, which led to
all data being forcibly evicted during a two-day no-access period, whereas Macaron saves more
in egress costs by avoiding evictions.

We assessed Macaron-TTL ’s ability to identify the most cost-efficient TTL for each trace.
Through exhaustive search, we tested various static TTL caches throughout each tracesﬂ and
pinpointed those that minimized costs. In the IBM traces, we observed that the optimal TTLs
varied widely, ranging from 1 to 168 hours, with an average of 72 hours and a standard deviation
of 56 hours. Despite this variability, Macaron-TTL accurately identified the optimal TTLs for
16 traces. For IBM 34, 45, and 58, although Macaron-TTL selected TTLs of 144, 132, and 84
hours — differing from the optimal TTLs of 72, 108, and 24 hours — the cost gaps between the
static TTL policies using TTLs chosen by Macaron-TTL and the optimal TTLs were negligible,
all under 0.7%. This is because OSC capacity costs are significantly lower than egress costs, so
the additional capacity cost has minimal impact.

Fig. [3.13] illustrates a cost comparison between Macaron and Macaron-TTL against static
TTL policies. Across 19 evaluated traces, Macaron achieved average cost reductions of 22%,
13%, and 9%, with maximum reductions of up to 74%, 69%, and 63% compared to static TTL
policies set at 1, 12, and 24 hours, respectively. This highlights the importance of dynamic cache
adjustments for enhancing cost-efficiency.

3.7 Supplementary material

We provide detailed information on the trace collection process, the cloud resources used for
prototype evaluation, additional evaluation results validating the Macaron simulator, and the
details of the Macaron-TTL algorithm.

3.7.1 Trace collection details

Uber trace. We collected object access logs generated from Uber’s Presto workload in their
production system. To ensure no impact on production, we collected logs with a spatial sampling
with a sampling ratio at 1% from three Presto engines over 18 days. To confirm that 1% sampling
retains workload characteristics, we collected a two-hour trace without sampling and performed
the same sampling method, where we observed small differences of 7%, 2%, and 8% in request
count, accessed data size, and object size, respectively. Therefore, in our evaluation, we scaled
the sampled traces by 100x and presented detailed results of one of the three traces where we

SFor this exhaustive search, TTL intervals of 1 hour, 6 hours, and then every 12 hours up to the full trace length
were used (e.g., 1, 6, 12, 24, 36, 48, ...).
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confirmed that they share very similar data access characteristics. Due to the fact that over 70%
of the accesses are generated by periodic jobs, the workload exhibits a stable data access pattern
during the collection period.

VMware trace. VMware trace involves AWS S3 requests generated by AWS Athena queries
from VMware’s test infrastructure, spanning an 8-day period. We collected logs by enabling
Amazon S3 server access logging service to catch data access requests sent to S3 buckets.

3.7.2 Cloud resource types used for evaluation

For the cache cluster, we used Redis as a distributed in-memory cache solution as it is well-
supported, performant, and effectively handles large objects, unlike Memcached.

For both simulator and prototype evaluations, we used the same VM types for consistency.
We used an r5.xlarge instance for the master node on AWS, which we confirmed had
sufficient resources. Since the Macaron controller’s workload analysis, a computation-heavy
task, ran on AWS Lambda, the CPU power of the r5.x1arge instance was adequate. Cache
nodes also used the r5.xlarge type, which provides 32 GiB of memory. However, our
observations showed that the Redis server typically utilized around 26 GiB, aligning with the
cache.r5.xlarge specification of ElastiCache. As a result, we assumed 26 GiB of memory
for the cache nodes in the simulator as well. Additionally, we used AWS Lambda functions with
8 GiB of memory, which provided sufficient resources to run the miniature simulations quickly
and cost-effectively.

3.7.3 Cost-efficiency analysis across all traces

Fig.[3.14]and Fig. [3.15| present the cost comparison results of all the traces we evaluated and we
explain two more case studies.

In IBM 83 (similar to IBM 55), ranking second in total data size accessed among 15 IBM
traces, Macaron achieves 86% cost reduction compared to Replicated. Using an average
cache capacity of 52 TB (81% of the total data size) and given the low price of object storage,
Macaron prioritizes overall cost-efficiency over minimizing capacity costs and incurring higher
data egress expenses associated with Replicated.

Despite similar total data sizes for IBM 96 and 83, Macaron allocates only 7% of the total
data size as cache capacity for IBM 96 due to low data access skewness (Zipfian a=0.2) and a
high cold miss ratio. Larger caches don’t effectively reduce egress costs for such workloads, yet
Macaron remains 1.4% and 81.7% cheaper than baselines for IBM 96.

3.7.4 Details of simulator accuracy evaluation

We carefully designed experiments to validate whether the simulator and prototype yield con-
sistent results, both in terms of cost and performance, across different scenarios: one where
Macaron utilizes a cache cluster for performance, and another where it solely relies on OSC to
minimize costs. To reduce cost of running experiments without compromising the validity of
results, we implemented the following approach.
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Figure 3.14: Cross-region data access cost analysis for all 19 traces.
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Figure 3.15: Cross-cloud data access cost analysis for all 19 traces.
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Total Get hits at Avg. lat
Trace costs ($) each level (s)
Sim Pro Sim Pro Sim | Pro
IBM 9 5.86 | 5.87 | 45:35:20 | 46:34:20 | 0.24 | 0.26
IBM 55 | 11.83 | 11.82 | 50:5:45 | 47:9:44 | 0.30 | 0.28
IBM58 | 2.61 | 2.60 | 40:0:60 | 39:1:60 | 0.47 | 0.49

Table 3.3: Detailed results of the accuracy evaluation between the simulator and prototype, with
simulator results on the left and prototype results on the right. The comparison includes total
costs, the number of Get hits at each level (cache cluster:OSC:remote data lake), and the average

latency after running the trace.
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Figure 3.16: Comparison of latency distributions between cache engine and data sources gener-
ated by Macaron simulator’s latency generator and those observed in measurements.

For Macaron without cache cluster, we ensured both prototype and simulator execute the
same reconfiguration for each optimization window and validated the total costs are the same by
executing traces end-to-end. We sampled the requests with spatial sampling at 1% and accel-
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Figure 3.17: Comparison of end-to-end data access latency distributions generated by Macaron
simulator’s latency generator and those observed in real measurements.

erated execution by 10x to reduce costs and speed up experiments. Reconfiguration occurred
every 3 minutes after a 3-hour observation period to make both simulator and prototype to run
as many optimizations as possible and show the results are still matching each other. These
adjustments do not compromise the validity of cost comparisons.

For Macaron with cache cluster, we focused on comparing average latency results between
the prototype and simulator. In this experiment, rather than sampling the trace, we truncated
the trace to the first 6 hours and commenced optimization after 30 minutes, with 15-minute
optimization windows, maintaining the original request rate to compare latency correctly.

Table [3.3]shows the detailed data of the results we presented in

3.7.5 Latency generator evaluation

As outlined in §3.6.1) Macaron simulator’s latency generator fits a Gamma distribution to the
latency measurements taken from the cloud. This distribution is then used to simulate latencies
between each component in the system. Here, we verify the accuracy of the latency generator in
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reproducing a latency distribution similar to the real measurements.

Fig.[3.16]illustrates the cloud-measured latency distribution alongside the distribution gener-
ated by the simulator’s latency generator for each object size, between the cache engine and each
data source (cache cluster, OSC, and remote data lake). Across the average latencies for different
object sizes, the mean absolute percentage error was low at 2%.

Fig. depicts the end-to-end latency distribution for retrieving data from each source. We
further confirmed the simulator’s fidelity to the measured latency by showing a mean absolute
percentage error of 1.5% between the average latencies.

3.7.6 Detailed algorithm for Macaron-TTL

We extended Macaron ’s optimization technique to develop Macaron-TTL. While the core opti-
mization workflow of Macaron, described in §3.4] remains unchanged, the expected cost curve
explained in §3.4.1now uses TTL as its parameter instead of cache size:

TotalCost(TTL) = OSCCapacityCost(TT L, GarbageSize)
+ EgressCost(TTL) 4+ OpCost(TTL)
EgressCost(C) = EgressPrice x ByteMissCurve(TTL)

, #Writes + #Reads x MissRatioCurve(TTL)
t(C) = PutP
OpCost(C) e X < #Objects per Packing Block

To calculate this, we adapted the miniature simulation to use TTL as the X-axis for the miss
ratio curves and bytes miss curves. While OSC capacity was straightforward to calculate when
using capacity as the parameter, we now need to compute OSC capacity for each TTL during the
simulation, producing an OSC Capacity Curve.

For the miniature simulation, we continue using spatial sampling for data access requests.
However, we no longer reduce the cache size for simulating mini-caches since cache size does not
affect cache eviction under TTL cache. After the simulation, the measured miss ratios from each
mini-cache are used as is. Bytes missed are divided by the sampling ratio, similar to Macaron,
and OSC capacity is also divided by the sampling ratio to reconstruct the original workload’s
MRC, BMC, and OSC Capacity Curve before sampling.

3.8 Related work

Cache auto-configuration. Prior works have focused on enhancing performance by reallocat-
ing a fixed-capacity shared memory between application runtime needs and caching. Robin-
hood [198]] redistributes cache resources across backend services to reduce latency variability
and tail latency. LAMA [115] adjusts Memcached’s memory partitioning to improve miss ra-
tios and response times. Memshare [199]] reallocates memory among applications to maximize
hit rates using idle CPU and memory bandwidth. Sundarrajan et al. [200] enhance CDN cache
provisioning using footprint descriptors. D3N [201] adjusts cache sizes to improve big-data
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job performance and reduce network traffic. While they focus on dynamic reallocation of fixed
memory, Macaron assumes total cache capacity is elastic at a cost, and utilizes object storage
to reduce that cost. While some studies [121} 192} 202, [203]] explore dynamic cache provision-
ing, they mainly focus on using DRAM or Flash as cache storage medium, and do not account
for expensive data transfer costs as part of the miss penalty, which plays a significant role for
Macaron.

Optimizing cloud resource costs. With the growing trend of migrating workloads to pub-
lic clouds, prior work [20, 25, [26) 37] has explored methods for cost-efficiently provisioning
cloud storage for various applications. InfiniCache [78] has focuses on cost-effectively utilizing
serverless functions for caching data, and there are studies [[79, I80] optimizing the use of ob-
ject storage for file systems and backup solutions, and our packing strategy is based on them.
Others [71, 204] have leveraged spot instances | to reduce VM costs by utilizing the affordabil-
ity of ephemeral VMs, and some of their ideas could be applied to Macaron when dynamically
scaling DRAM cache servers. Skyplane [82] aims to optimize egress network resources in pub-
lic clouds. However, they primarily focus on methods for cost-efficient one-time transfers of
bulk data. Macaron’s emphasizes optimizing data access costs for long-running workloads with
repetitive data access patterns.

Multi-cloud data management. Previous works [83) [84, |85, 86, 205, 206, 207, 208]] ex-
plored optimizing data placement across clouds or regions for fault tolerance, latency, and cost-
efficiency, allowing free data migration or replication across regions. In contrast, Macaron ad-
dresses scenarios where data placement is already determined and data cannot be freely migrated
due to cost, proximity to users or sources of data generation. In such cases, we need to run
applications across regions or clouds as use cases described in In these contexts, an auto-
configuring caching solution is more suitable than data placement optimization. We believe both
approaches are orthogonal and complementary.

Cache replacement policy. Prior work [102} 103} 104, [105, (106} (107, 108, 1109, 110, 111}
112] focuses on cache replacement policies to enhance miss ratio or latency. However, in the
unique context of multi-cloud, multi-region environments, where high egress costs serve as a sig-
nificant miss penalty and cache capacity cost is very cheap and elastic, even if replacement policy
is not optimal, Macaron can extend cache capacity accordingly with minimal costs, making deter-
mining the cost-efficient cache capacity more crucial than refining cache replacement policies.
Our evaluation, comparing Macaron to Oracular, supports this notion. While Oracular
represents an optimal solution for both cache replacement and capacity determination, our re-
sults demonstrate that solely achieving the right cache capacity without exploring replacement
policies can yield results close to those of Oracular.

Existing approaches. Major cloud providers like AWS, Azure, and GCP already support
cross-region data replication [90, 91, 92]], and companies such as Snowflake [93]] and Juice-
data [94] have recently introduced cross-cloud data replication capabilities [209]. There are
existing caching services [93, 196,97 provided by cloud providers that are built on distributed in-
memory stores [210,211]]. The third-party services like Alluxio [98]], MinlO [99]], and Avere [100]
support cloud-native cache solutions using memory or flash devices. However, their primary goal
is achieving high performance for accessing local data and are not optimized for cross-cloud or
cross-region data access costs. Our ECPC baseline mimics these approaches but is enhanced by
intelligent auto-scaling, yet Macaron remains more cost-efficient.
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3.9 Summary

Macaron addresses the high costs of cross-region and cross-cloud data access by introducing
an auto-configuring cache that dynamically adjusts its size and storage tiering to minimize both
latency and dollar cost. Unlike traditional caches limited by hardware, Macaron treats cache ca-
pacity as a tunable cloud resource and leverages cheap object storage to scale effectively. Using a
lightweight miniature simulation, it continuously estimates the cost—latency trade-off of different
configurations and adapts to changing workload behavior. Across real-world traces from IBM,
Uber, and VMware, Macaron reduces access costs by up to 66% compared to cloud-managed
caches and achieves near-optimal performance without requiring future knowledge.
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Chapter 4

Macaron+: Cost-aware cross-region cache
prefetching

As explained in Macaron [21]], cross-region data access costs in public clouds can be reduced
by auto-configuring cache parameters and leveraging low-cost object storage as a caching layer.
While Macaron also reduces data access latency for repeated accesses, it remains ineffective
for first-time accesses, which are inherently uncacheable—particularly in workloads with high
cold miss ratios. For instance, as discussed in Section [3.6.3] 9 out of 19 traces failed to achieve
average data access latency lower than that of local object storage, even with the assistance of a
DRAM layer, due to their high compulsory miss ratios.

Some organizations reduce latency by replicating all data locally [90, 91, 92, 93, 94], but
this approach is 1.2x to 11x more expensive (average 4.6x) than Macaron, as shown in Sec-
tion[3.6.2] Cache prefetching offers another potential approach to reducing latency beyond what
Macaron achieves, but existing prefetching algorithms [212, 213, 214, 215 216} 217, 218, 219,
220 are incompatible with caches that support highly elastic capacity like Macaron, or they fail
to consider the unique characteristics of cloud object storage workloads (§4.3).

A key reason existing prefetching algorithms fail under Macaron’s highly elastic cache is that
they are designed to prefetch recently evicted blocks based on past accesses, whereas Macaron
requires prefetching blocks of objects that have not yet been accessed at all. Moreover, many
prior techniques rely on spatial locality in a global address space, learning correlations between
consecutively accessed block addresses to predict future accesses. However, cloud object storage
systems do not provide a global address space and applying such address-based methods is either
infeasible or yields poor results in practice.

To overcome these limitations, we propose Macaron+, a prefetching technique tailored to
cloud object storage and Macaron’s cache model. Macaron+ does not rely on global address
space or temporal ordering. Instead, it infers access pattern similarity across objects and uses that
similarity to predict which blocks of a newly accessed object should be prefetched, based on the
behavior of similar objects. Our key insight is to shift focus from temporal correlation to pattern-
based similarity across objects, enabling more effective prefetching for structured object formats
such as Parquet or ORC, where similar workloads often exhibit predictable access patterns.

We analyze data analytics SQL workloads from Uber’s Presto cluster and identify three key
insights regarding object-level access patterns. First, most objects in the trace have a subset
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of other objects that exhibit similar access patterns. Second, many objects display a degree of
consistency in the changes in the access pattern, which means that early access behavior can be
used to predict later access behavior. Third, we observed a correlation between object access
patterns and file path metadata, in which objects with similar path prefixes are more likely to
exhibit similar access patterns.

Our current study focuses on analytics workloads as a representative case, where large-scale
SQL queries access data stored in object storage backends. These workloads typically operate on
structured object formats such as Parquet or ORC, which exhibit consistent and traceable access
patterns that are well-suited for evaluating object-level prefetching strategies. Expanding Mac-
aron+ to support a wider range of workloads, including unstructured application logs, machine
learning pipelines, or media content delivery, remains a promising direction for future research.

Based on these findings, we designed a prefetch mechanism that, upon access to each ob-
ject, uses the object’s observed access pattern so far to predict its future access pattern via a
lightweight MLP model. Based on this prediction, we employ an approximate nearest neighbor
(ANN) search to identify other objects expected to have similar future access patterns. Finally,
we reference the block offsets previously accessed from these similar objects to prefetch the
corresponding blocks for the current object.

We evaluated Macaron+ using Uber’s object storage access traces and found that our access
pattern similarity-based prefetching can effectively trade off cost and latency, outperforming
existing prefetching approaches in terms of cost-efficiency. While our evaluation shows that a
simple sequential prefetching can offer comparable performance, our results highlight that there
remains a promising design space to improve the cost effectiveness of the prefetching strategy of
Macaron+.

Contributions. (1) We analyze a real-world cloud storage workload and derive key design
rationales for prefetching data blocks. (2) We propose a cost-efficient prefetching technique that
leverages access pattern similarity between objects to guide block prefetching. (3) We explore
multiple variants of the Macaron+ prefetcher, characterizing the cost-latency trade-off space.
(4) We demonstrate that Macaron+ achieves a 13—61% cost reduction for the same latency target
compared to existing approaches, and identify opportunities for further improvement.

4.1 Motivation and challenges

The demand for multi-region databases continues to grow, driven by globally distributed applica-
tions and the need for high availability and low-latency access across regions. In response, many
cloud-based database systems now support multi-region deployments [221} 222, 223, 224, 225,
226, 22']]]. In public cloud environments, there are two predominant approaches for accessing
database files stored in object storage across multiple regions.

The first approach, illustrated in Figure [4.Ta] replicates the storage layer across regions by
continuously synchronizing data from a primary region to secondary regions. This strategy,
employed by systems such as Amazon Aurora Global Database [221]], Azure Cosmos DB [224]],
and CockroachDB [225]], enables low-latency access in remote regions. However, it introduces
additional costs due to the need to replicate and persist data that may never be accessed, as well
as the overhead of maintaining synchronized storage across regions.
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The second approach, shown in Figure avoids full replication by relying on a centralized
metadata store (e.g., AWS Glue Data Catalog, Hive Metastore) to locate required data files, which
are then fetched remotely across regions. This model, adopted by services such as Amazon
Athena [222] and Google BigQuery external tables [227], reduces replication and storage costs.
However, it suffers from increased latency for remote data accesses and high inter-region egress
costs, particularly for hot objects that are accessed frequently.

To strike a balance between these two extremes, our prior work, Macaron cache, proposes a
hybrid design that caches hot data near compute regions and dynamically reconfigures the cache
based on workload characteristics (Figure 4.1c). While this approach can reduce remote access
costs, it is insufficient for workloads with high compulsory miss ratios. As shown in §3.6.5]
caching alone cannot adequately mitigate access latency in such cases, motivating the need for
complementary prefetching techniques.

While cache prefetching has the potential to reduce average data access latency, its effec-
tiveness is fundamentally limited by the lack of precise knowledge about future access patterns.
Inaccurate prefetching decisions can not only fail to improve performance but also incur addi-
tional costs, particularly in cross-region settings where remote data transfers are expensive.

Challenge 1: Cache pollution. Cache pollution arises when prefetched data displaces use-
ful data from the cache due to limited capacity. Techniques such as bounding the volume of
prefetched data [214} 228] or leveraging domain-specific heuristics [229, 230] can alleviate this
issue to some extent. However, they are insufficient in resolving the fundamental contention for
limited cache space, and often rely on static or manually tuned configurations that yield subop-
timal outcomes. In geo-distributed cloud environments, evicting and re-fetching the same data
repeatedly can significantly amplify remote access costs.

Challenge 2: Wasted prefetches. Prefetching mechanisms may speculate incorrectly, load-
ing data that is never subsequently accessed. In cross-region deployments, such mispredictions
translate into unnecessary inter-region data transfers, inflating costs without contributing to la-
tency reduction. As remote access charges in public clouds are tied to actual egress volume, even
a modest rate of misprediction can lead to disproportionately high expenses.

Takeaway: These challenges highlight the need for a cost-aware and selective prefetching
strategy that minimizes unnecessary data movement while maximizing prefetch coverage — the
fraction of cache misses successfully eliminated by prefetching.

4.2 Prior work

Prefetching is crucial to improve performance of caching, and numerous prior studies have pro-
posed diverse approaches. In this section, we examine these existing methods and explain why
they fail to address the unique requirements of multi-region object storage workloads in the pub-
lic cloud.

History-based prefetching. Several works, including C-Miner [212], Mithril [213], and
Tombolo [214], focus on analyzing past access patterns to identify block correlations. These
methods build graphs or utilize data mining techniques to determine related blocks and predict
future accesses based on historical behavior. However, they primarily exploit previously accessed
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Figure 4.1: Two existing approaches and our proposal for supporting cross-region database data
access. Our proposal reduces remote data access costs by caching hot data locally and enhances
performance through prefetching.

blocks, limiting their effectiveness in scenarios like ours, where cache size can elastically expand
(as in Macaron), making accurate prefetching of previously unseen blocks critical.

Sequential prefetching. Sequential-based prefetching, such as AMP [215], SARC [216],
and TaP [217], assume strictly sequential access patterns and prefetch consecutive blocks. Al-
though these approaches attempt to enhance naive prefetching by auto-configuring prefetch de-
gree, prefetch cache size, or timing of prefetch operations, they still exhibit poor accuracy for
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complex or non-sequential workloads. Consequently, they lead to unnecessary data transfers,
quickly degrading cost-efficiency relative to latency improvements.

ML-driven prefetching. Recent machine learning-driven prefetching techniques, including
SGDP [218]], SeLeP [219]], DeepPrefetcher [220]], and learning-based prefetching for SSDs [231],
predict future accesses based on learned patterns or logical block address (LBA) deltas. These
methods perform effectively in environments with unified address spaces, such as traditional
file systems, where it is straightforward to discover learnable patterns from single block address
space. However, in object storage workloads with isolated object address spaces, such as ours,
applying similar ML approaches proves ineffective due to the absence of a unified global address
space, as demonstrated in Section[4.5] Furthermore, most of the ML-driven techniques identify
relationships only among previously accessed blocks, thus failing to address the challenge of
prefetching previously unseen blocks.

Summary: Existing prefetching approaches rely on inter-block correlations among previ-
ously accessed blocks and assume a global address space, making them ineffective in our set-
ting, where prefetching must target unseen blocks and each object has its own isolated address
space. While sequential prefetching can handle unseen blocks, it cannot capture complex pat-
terns, highlighting the need for a new approach.

4.3 Block-level access patterns in cloud storage

Based on analysis of the block-level access pattern of the cloud object storage workload from
Uber’s Presto cluster, we identify three key characteristics that motivate Macaron+ design: (1)
many objects exhibit similar block-level access patterns (§4.3.1)), (2) early access patterns are
often predictive of future access behavior (§4.3.2)), and (3) file path prefixes correlate with access
patterns (§4.3.3).

Why does Macaron+ cache and prefetch at the block level? Access traces [123] from
Uber’s Presto cluster show that queries to Parquet files stored in object storage typically retrieve
only small portions of each file. This is achieved through S3 Get operations with byte-range
requests, which leverage Parquet’s predicate pushdown capabilities. As illustrated in Figure 4.2}
during an 18-day period, more than 80% of the files had less than 25% of their data accessed.
Under such skewed access patterns, fetching entire files leads to significant read amplification
and increased data transfer costs. To address this, Macaron+ caches data at the block level,
dividing objects into 1 MB blocks, as in the original Macaron design, rather than storing full
files. Its prefetching algorithm further reduces unnecessary I/0 by selectively prefetching blocks
that are most likely to be accessed in the near future.

4.3.1 Access pattern similarity between objects

We observed that, in our target workload, many objects have a set of other objects with highly
similar access patterns. To evaluate the significance of this observation, we performed the fol-
lowing analysis. For each object in the trace, we constructed a block-level access set containing
all blocks accessed at least once during the entire trace period. We then computed the pairwise
Jaccard similarity [232] between these sets, identified the top-N most similar objects for each
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Figure 4.2: Through the Parquet file’s predicate pushdown feature, most files accessed in Uber’s
Presto cluster workload involve only a small portion of their data, rendering file-level caching or
prefetching inefficient due to high read amplification.

object, and measured their similarity scores to quantify how closely related these objects are
in terms of access patterns. We excluded objects with only a single accessed block, as their
similarity comparisons are not meaningful.

Here, given two objects X and Y, the Jaccard similarity is defined as:

_ |Bx N By]

Jaccard(X, Y) = m
X Y

where Bx and By are the sets of blocks accessed in objects X and Y, respectively. A Jaccard
similarity of 1 indicates identical access patterns, while values closer to 0 indicate disjoint block
access.

Figure 4.3 shows the distribution of Jaccard similarity scores between each object and its
top-N most similar objects (N =1, 5, 10, 50), ranked in descending order of similarity. We find
that 87% of objects have at least one other object with an identical access pattern (i.e., Jaccard
similarity = 1.0). Moreover, 67%, 54%, and 14% of objects have such exact matches among their
top-5, top-10, and top-50 similar objects, respectively.

These results indicate that object access patterns are far from random and instead exhibit
strong structural similarity. By identifying objects with similar block-level access behavior, we
can use the access history of one object to predict the future access patterns of others in the same
similarity cluster. This observation forms the basis for our prefetching approach, which leverages
shared behavior across similar objects to improve accuracy and efficiency.

Opportunity 1: Over half of objects have at least 10 peers with identical block-level access
patterns. This observation suggests that objects can be grouped based on their access patterns,
and the access histories of objects within the same group can be used to prefetch blocks for one
another, enabling prefetching even for previously unseen blocks.
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Figure 4.3: Similarity score distribution for the top-N most similar objects (N = 1, 5, 10, 50)
shows that more than half of the objects have at least 10 other objects with a Jaccard similarity
of 1. This indicates that similar access patterns are common, and many objects share similar
block-level access set within the trace.

4.3.2 Future access pattern predictability

In an ideal oracle prefetcher that has knowledge of all future accesses, the prefetcher can prefetch
exactly the blocks that will be used in the near future. In reality, however, online prefetchers see
only the history up to the current time, and need to predict future blocks based on the current
access information.

To quantify how well early history predicts later behavior, we proceed as follows. Let B
and B! denote the sets of blocks accessed in an early stage and at the end of the trace for object
i, respectively. We consider two definitions of the early-accessed blocks set B
1. All blocks accessed up to and including the second distinct byte-range request.

2. All blocks accessed until the N'th distinct block request (with N = 5, 10).

For each early-access definition, we form clusters by grouping any two objects whose early-
access sets satisfy .J accard(Bf arly B;arly) > 0.9, i.e., each object in a cluster has at least one
peer sharing over 90% of its accessed blocks. Within each resulting cluster, we then compute the
average pairwise Jaccard similarity over the corresponding late-access sets B,

Figure [4.4] plots the distribution of intra-cluster late-access Jaccard similarity for various
definitions of B{™™. When Bf*" is defined as all blocks accessed up to the second distinct byte-
range request (Figure [.4a)), clusters formed with a 90% early-Jaccard threshold exhibit only
27% average overlap in their B sets. This poor predictability is due to the small size of B,
on average only 4 blocks, making early clustering unreliable. By imposing a minimum-size con-
straint and filtering out objects with B size smaller than 5 early blocks (Figure , the av-
erage intra-cluster late-access similarity rises to 47%, demonstrating that requiring a larger early
history substantially improves prediction accuracy. Further increasing the threshold to exclude
objects with fewer than 10 early blocks (Figure yields even higher late-access similarity,
indicating that richer early histories lead to more reliable clustering and better forecasts of future
block accesses.
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Figure 4.4: Comparison of intra-cluster late-access Jaccard similarity for four early-history clus-
tering criteria: (a) blocks up to the 2nd distinct byte-range request, (b) requiring > 5 early-
accessed blocks, (c) requiring > 10 early-accessed blocks, and (d) clustering only objects shar-
ing the same directory path, all using a 90% Jaccard similarity cutoff on B,

Opportunity 2: Partial early-access history (e.g., the first 5 or 10 blocks) can provide a
signal to predict later block accesses, enabling online clustering and prefetching without full
knowledge of future requests.

4.3.3 Correlation between file path and block-level access pattern

There have been many studies [233] 235]] exploring metadata-driven file classification and
system optimization. In cloud object storage, it is common practice to embed date or time in-
formation in object key prefixes (e.g., ‘/year=2025/month=07/day=21/... ‘) to manage incoming
data and support analytics [159] 237,1238]]. Such partitioning not only simplifies incremen-
tal data ingestion but also enables predicate pushdown on key names, significantly improving
object access efficiency for time-based queries.

In our analysis of Uber’s Presto workload on Parquet files, we observed that objects under
the same parent directory but with different embedded dates (e.g., /a/b/date=2025-07-21/file1 and
/a/b/date=2025-07-22/file2) are likely to have similar block-level access patterns. This suggests

72



that directory-path metadata, including time-partitioned prefixes, can effectively group objects
with analogous access behavior. To validate this, we repeated our clustering on B with an
additional constraint that only objects under the same parent directory (but different dates) to be
grouped (see Figure d.4d). Under this directory-path constraint, the average intra-cluster Jac-
card similarity of the corresponding B}*® sets increased by 9% compared to clustering without
the constraint. In our current implementation, we rely on previously identified patterns (e.g.,
/date=MM-DD-YYYY/ or /created_date MM _DD_YYYY/) to extract parent directory paths.
However, we believe this approach can be generalized by leveraging language models to au-
tomatically identify and interpret diverse date-related string formats in directory paths.

Opportunity 3: Directory-path metadata, such as time-partitioned key prefixes, can be used
as a hint for grouping objects with similar access behavior, enabling more accurate prefetching.

4.4 Design of Macaron+ prefetcher

Macaron+ extends the Macaron cache with a cost-efficient prefetcher that reduces data access
latency by proactively fetching previously unseen blocks. The prefetcher predicts which objects
are likely to exhibit similar block-level access patterns and leverages the access histories of these
peer objects to infer the blocks most likely to be needed next (Opportunity 1). We begin by
describing the overall workflow of the prefetcher (§4.4.1), then explain how and why access pat-
terns are represented as embedding vectors (§4.4.2)). We then detail our access pattern prediction
algorithm (§4.4.3} Opportunity 2), describe how similar objects are identified and how blocks
are selected for prefetching (§4.4.4; Opportunity 3), and finally explain how the prefetch degree
is dynamically adjusted on a per-object basis (§4.4.5).

4.4.1 Workflow

Figure [@.5]illustrates Macaron+’s prefetching workflow. When an object is accessed with a spec-
ified byte-range, the following steps are executed: (I) The prefetch process retrieves the object’s
access vector from the Access vector database, updates it by marking the newly accessed blocks,
and saves it back for subsequent accesses. The access vector is a binary vector with a predefined
maximum length, determined by the maximum supported file size and block size (we used 32
GB as a maximum file size with 1 MB block size results in a vector of length 32,000). Each
element is set to 1 if the corresponding block has been accessed, and 0 otherwise. (2) The up-
dated access vector is converted into an embedding vector by the Embedding vector predictor,
which captures the predicted future block-level access pattern. (3) Using the embedding vector,
an approximate nearest neighbor (ANN) search identifies objects whose predicted access pat-
terns (represented by their own embedding vectors) closely resemble the current object’s future
access pattern. (4 Once similar objects are identified, the prefetch process analyzes their his-
torical access patterns to determine which blocks are most frequently accessed. These blocks
are proactively fetched from the remote data lake and stored in the prefetch cache. Q) Upon
actual access, the prefetched blocks move from the prefetch cache to the demand cache, which
is managed by the original Macaron cache logic.
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Figure 4.5: Macaron+ overview: Upon receiving a Get request, Macaron+ updates the corre-
sponding access vector, predicts the future access pattern by generating an embedding vector,
identifies objects with similar predicted patterns, and prefetches blocks accessed by those similar
objects.

4.4.2 Embedding of access vector

To efficiently identify similar objects based on their access patterns in an online manner, Mac-
aron+ compresses the original high-dimensional access vector (of length 32,000 blocks) into a
reduced-dimensional embedding vector (of length 1,070). While directly using the full access
vector is feasible, it poses several practical limitations. High-dimensional vectors suffer from in-
creased susceptibility to noise and irrelevant bits, reduced robustness in similarity measurements
due to the curse of dimensionality [239], and significant computational and storage overhead,
especially for approximate nearest neighbor (ANN) search.

Prior studies [218, 220, 231]] have proposed embedding techniques to denoise access patterns,
improve generalization, and enable learning-based methods. However, most such techniques are
designed for address access sequences in systems with a global logical block address (LBA)
space, where temporal and spatial correlations can be exploited. In contrast, our setting involves
isolated, per-object access vectors, where block indices are local to each object. This makes
sequence-based or LBA-delta-based embeddings less effective. Instead, Macaron+ adopts a sim-
pler yet effective approach: embedding each object’s binary access vector, where each dimension
indicates whether the corresponding block was accessed.

Among dimensionality reduction methods, Principal Component Analysis (PCA) [240] is
commonly used. However, PCA is not effective for our online environment due to the compu-
tational cost of periodic recomputation as new data arrives. We instead adopt Sparse Random
Projection [241]], which is highly efficient for streaming data and preserves pairwise distances
with high probability.

Formally, given a binary access vector z € R¢ with d = 32,000, we compute the embedding
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Figure 4.6: Predicting similar access patterns: A pre-trained MLP model predicts an embedding
vector representing the future access pattern based on the current access pattern, enabling identi-
fication of objects with similar expected behavior.

y € R* with k& = 1,070 using a sparse random matrix R € R¥*4;
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This construction ensures that R is sparse, reducing both computation and memory usage.
According to the Johnson—Lindenstrauss lemma, this projection approximately preserves the
pairwise distances between two original vectors x; and x;:

(1= )l = 2l* < llys — ysll* < (1 + @)l — a5

with probability at least 1 — 9, provided:

4Ilnn
k2 a—=
-5

where n is the number of objects. We empirically set £ = 1,070, which allows up to 30%
distortion in pairwise distances, though the actual distortion is often significantly lower in prac-
tice.

4.4.3 Prediction of future block-level access pattern

Macaron+ identifies objects with similar access patterns. A naive approach is to use the embed-
ding vector computed from the current access vector and compare it against those of other objects
in the embedding pool. However, we observed that this approach often results in low prefetching
accuracy, especially when the target object has only been partially accessed and thus contains
only a small number of observed blocks. In such early stages, the access vector lacks sufficient
information, leading to unreliable similarity comparisons and incorrect prefetch decisions.

To address this, we leverage the insight that final access patterns exhibit a meaningful correla-
tion with earlier patterns (§4.3.2)). Based on this observation, Macaron+ trains a lightweight pre-
dictor that estimates an object’s future access pattern embedding from its current access vector.
This prediction improves the reliability of similarity comparisons and consequently the quality
of prefetch decisions.

As shown in Figure we use a simple multilayer perceptron (MLP) model to predict
future access embedding. The input is the current access embedding vector and the output is the
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Figure 4.7: Block selection strategy in Macaron+: After identifying objects with similar access
patterns, Macaron+ aggregates their access histories, ranks blocks by access frequency, and in-
crementally selects blocks to prefetch in descending order of popularity until the prefetch degree
is satisfied.

predicted final embedding vector. The training dataset consists of per-object embedding vectors
recorded during accesses: each training pair (x, y) consists of an intermediate embedding vector
x and the final embedding vector y (i.e., generated from the object’s last access). To avoid
overfitting, we use the data from the last day as validation data and terminate training when the
validation error plateaus.

The MLP model consists of three hidden layers with dimensions 2048, 1024, and 2048,
respectively. Each layer uses ReLLU activations, batch normalization, and dropout (rate = 0.3) to
avoid overfitting. The model is trained using a custom loss function that combines Mean Squared
Error (MSE) and cosine similarity loss:

L(z,y) =a -MSE(z,y) + (1 — «) - (1 — cos(x,y))

where cos(z, y) is the cosine similarity between the predicted and target vectors, and o € [0, 1]
balances the magnitude accuracy and the directional similarity. We set a = 0.5 to give equal
weight to both components.

4.4.4 Similarity search and block selection strategy

For each access to the object, the embedding vector predictor generates an embedding vector
representing the future access pattern predicted by the object. While similar objects could be
identified by computing pairwise distances against all previously accessed objects, this approach
is computationally expensive and impractical for online use. Instead, we employ Voyager [242]],
an efficient approximate nearest neighbor (ANN) search library developed by Spotify that im-
plements the HNSW algorithm [243], to retrieve a small set of similar objects. Our evaluation
shows that using approximate neighbors identified by Voyager yields cost-efficiency in latency
reduction nearly identical to that of an approach using exact nearest neighbors. As discussed
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in Section Macaron+ can optionally incorporate directory-path metadata, such as time-
partitioned key prefixes, as a hint to constrain similar object search, and we evaluate the effec-
tiveness of this hint-based approach in Section#.5.3]

Once similar objects are identified, Macaron+ must determine which blocks to prefetch based
on their access histories. We considered two strategies. The first approach incrementally selects
the most recently accessed blocks from the top-ranked similar objects, one by one, until the
desired prefetch degree is reached. The second approach, illustrated in Figure aggregates
the access vectors of the top-N most similar objects and selects blocks in descending order of
their aggregate access frequency. We empirically found that the latter method yields a higher
prefetch accuracy and thus we adopt it as the default strategy in Macaron+.

4.4.5 Dynamic prefetch degree

Several prior works on sequential prefetching [215] 216, 244, 245| 246] have proposed dynam-
ically adjusting the degree of prefetch based on whether the observed access pattern appears
sequential or random. Inspired by these techniques and because cloud object storage lacks a
global address space, Macaron+ dynamically adjusts the prefetch degree per object based on the
effectiveness of past prefetches. It tracks each object’s prefetch hit ratio, defined as the fraction
of prefetched blocks that were subsequently accessed, and adjusts the degree accordingly. If the
ratio is too low (below 20%), the degree is reduced to one-fourth. If the ratio is high (above 50%),
it is doubled to exploit predictable access patterns. This lightweight feedback-driven mechanism
allows Macaron+ to apply aggressive prefetching only when it is likely to be effective.

4.5 Evaluation

We evaluated Macaron+ to assess the following aspects: its ability to reduce latency cost-
effectively compared to baselines (§4.5.2)), comparisons with Macaron+ variants under different
constraints (§4.5.3)), effectiveness against an online approach without prediction (§4.5.4), and
sensitivity to various configuration parameters (§4.5.5)).

4.5.1 Experimental setup

Traces. We evaluate Macaron+ using a production trace from Uber’s Presto cluster, which cap-
tures object accesses generated by interactive and batch analytics queries on Parquet files. We
used the first 10 days of the trace as a warm-up and to train the prediction model used by Mac-
aron+ ’s prefetcher, and evaluated the rest of the 8 days of the trace, which in total 18 days of the
trace. All other experimental settings follow those described in Section [3.6.1]

Configurations. By default, we deploy the Macaron object storage cache (OSC) only, omit-
ting the DRAM cache layer to focus on evaluating the effectiveness of the prefetcher. However,
users seeking even lower latency can combine our prefetcher with Macaron’s DRAM cache layer,
which can be automatically configured. The workload is assumed to run on AWS N. Virginia
region, while the remote data lake is in N. California, incurring cross-region egress charges. We
adopt the AWS pricing model for all cost measurements.
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The prefetch degree, which is the number of 1 MB blocks fetched per prefetching action,
is evaluated with seven configurations: 2, 4, 8, 16, 32, 64, and 128. While the demand cache
capacity is automatically configured by Macaron, we fix the prefetch cache capacity at 2 TB. Our
sensitivity analysis confirmed that this size is sufficient for storing useful prefetched items and
that the associated capacity cost was negligible compared to the egress and operation costs. Au-
tomatically tuning the prefetch cache capacity is a promising direction for future work. Finally,
we select the top 5 similar objects for block selection, as described in Section4.4.4

Baselines and costs. We compare Macaron+ with existing prefetching techniques:

* LDC [247] (History-based prefetching): Implements the Local Delta Correlation (LDC)
prefetcher, which tracks the deltas (differences in block addresses) between consecutive
accesses within a stream. It predicts future accesses by matching recent delta sequences
with patterns stored in a correlation table.

* Sequential [216, 248| 249, 250] and Linux [244] (Sequential prefetching): Includes a
basic sequential prefetcher that fetches a fixed number of blocks (equal to the prefetch
degree) following the most recently accessed block within an object. Also includes the
Linux VES read-ahead strategy, which dynamically adjusts the prefetch degree based on
observed access contiguity.

* LSTM [231]] (ML-driven prefetching): Uses the same delta-based representation as the
Local Delta Correlation prefetcher but replaces the table lookup with an LSTM model
trained to predict the next delta. This allows learning more complex sequential patterns in
block accesses.

We additionally implemented and evaluated Mithril [213] and Tombolo [214], which use
graph- or table-based representations to infer relationships between previously accessed blocks
for prefetching. However, we exclude them from the evaluation results as they fail to prefetch
unseen blocks from the remote data lake, resulting in no latency reduction.

For comparison with broader configurations without prefetching, we include the following
baselines as defined in Section 3.6.1k

* Remote: All data accesses are served directly from the remote data lake, incurring full
egress costs and high data access latency.

* Replicated: All data is proactively replicated to the local region, avoiding egress charges
for data accesses, but incurring high synchronization and storage costs.

* Macaron: The original system with the object storage cache, without prefetching.

* Oracular: An offline prefetching policy that has access to the complete trace of future
accesses. When an object is first referenced during trace replay, the prefetcher immediately
issues prefetches for every block that will be accessed for that object later in the trace and
places those blocks into the prefetch cache. Because cloud object storage uses a per-object
address space and the prefetcher makes no cross-object inferences, prefetching is triggered
only on the first access to each object. Blocks accessed at that initial access are cold
misses, while subsequent accesses to the prefetched blocks are cache hits. Since every
block prefetched by this baseline is known a priori to be accessed, we treat this baseline as
a best-case upper bound and do not limit the prefetch cache capacity, avoiding evictions of
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Figure 4.8: Cost-latency trade-off of various prefetching approaches. Macaron+ achieves the
highest cost-efficiency among online prefetching approaches and demonstrates potential for fur-
ther improvement, approaching the performance of Macaron+ oracular. Sequential prefetching,
while simple and initially competitive, becomes increasingly cost-inefficient at higher prefetch
degrees due to naive unnecessary data transfers.

blocks that will be needed later.
Finally, we include two versions of Macaron+:

* Macaron+: Our proposed method. Trained on the first 10 days of access history, it uses an
MLP-based prediction model to estimate future access patterns and performs similarity-
based prefetching on the remaining 8 days.

* Macaron+ (oracular): Given the complete trace, we compute for every object the final set
of accessed block offsets, derive pairwise similarity scores between all object pairs from
those final offsets (i.e., using oracle knowledge), and use the resulting precomputed sim-
ilarities to drive Macaron+ ’s prefetcher. Although this policy is less performant than the
true Oracular baseline described above, it provides a near-optimal upper limit for Mac-
aron+ ’s similarity-based prefetching under the idealized assumption of perfect knowledge
about which objects will be truly similar over the trace.

The cost model used for each baseline follows the definitions in Section[3.6.1] with additional
components to account for prefetching: specifically, we include data egress costs incurred by
prefetched blocks and capacity costs associated with maintaining the prefetch cache.
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4.5.2 Trade-off between cost and latency reduction

Observation 1: Macaron+ reduces average data access latency by 28% at the cost of 103%
increase in total data access expenses, compared to the Macaron cache without prefetching.

Macaron+ aims to reduce average data access latency with minimal increases in remote data
access costs. To evaluate the cost-efficiency of prefetching, Figure 4.8 presents the latency-cost
trade-off across different prefetching strategies. The results show the average data access latency
and daily remote data access cost measured over the final 8 days of the Uber trace, following a
10-day observation period.

Overall results. Among the online prefetching approaches, Macaron+ achieves the highest
cost-efficiency, reducing the average latency of data access by 19-28% at a cost increase of
46-103% compared to Macaron cache without prefetching, depending on the prefetch degree.
For the same average latency, Macaron+ reduces the costs by 13—61% (avg. 41%) compared to
other baselines, and at the same cost, reduces latencies by 5-22% (average 12%). In particular,
compared to sequential prefetching, the most cost-efficient baseline, Macaron+ achieves the same
latency with 14% lower cost.

Comparison with Macaron+ (oracular). The key advantage of Macaron+ (oracular) is that
it can accurately identify objects with similar future access patterns by observing their complete
access histories over the trace. This enables Macaron+ (oracular) to infer the precomputed object
similarity during trace replay and to prefetch the precise blocks that similar objects will access,
resulting in near-optimal performance for similarity-based prefetching. In contrast, Macaron+ is
based on a trained MLP model to predict future access patterns using only partial access histories.
Due to this limitation, Macaron+ (oracular) achieves 8-21% lower latency than Macaron+ at the
same cost. However, this performance gap highlights the opportunity to improve Macaron+ by
enhancing its prediction accuracy.

Comparison with sequential prefetching. As shown in Figure 4.8] sequential prefetching
effectively reduces latency by aggressively fetching consecutive blocks, achieving the lowest av-
erage access latency - at the cost of significantly higher spending, even exceeding that of the
replicated approach. While its cost-efficiency degrades rapidly with larger prefetch degrees, it
performs better than other baselines at lower prefetch degrees and is even comparable to Mac-
aron+ in those regimes. The Linux prefetching is on the sequential prefetching curve, as it builds
on sequential prefetching with a dynamic adjustment of the prefetch degree based on detected
access sequentiality.

Block address delta based approaches. Both GHB and LSTM fail to reduce latency cost-
efficiently. These methods rely on block address delta sequences within a global block address
space, but cloud object storage assigns each object an independent address space, making inter-
object deltas undefined and delta patterns sparse. As a result, GHB lacks sufficient information to
trigger prefetching and LSTM struggles to learn effectively. We also tested assigning global off-
sets to simulate a unified space, but this further degraded performance as this artificial alignment
was semantically invalid.
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Figure 4.9: Impact of incrementally adding constraints on Macaron+’s prefetching performance.
(a) Limiting prefetching to objects with at least five accessed blocks and restricting similarity
search to the same directory improves prediction accuracy and cost-latency trade-off. (b) Prefetch
hit ratio increases from 16% to 24% over time by applying these constraints.

81



4.5.3 Ablation study and Macaron+ variants

Observation 2: Macaron+ improves prefetch accuracy from 16% to 24% by incorporating more
early access information and file path metadata, at the cost of reduced prefetch aggressiveness
and limited latency improvement.

As described in Section [4.3] objects with at least five accessed blocks tend to yield more
accurate predictions, as the richer early access information better reflects their eventual access
patterns. Moreover, restricting similarity search to objects sharing the same directory path is
expected to further improve prediction precision. We evaluate the impact of these two constraints
in this section.

Figure presents how the cost-latency trade-off of Macaron+ changes when each con-
straint is added incrementally. When limiting prefetching to objects with at least five accessed
blocks, the prediction becomes more accurate due to the increased input information, resulting in
a better cost-efficient trade-off. Interestingly, although fewer objects participate in prefetching,
those that have more accessed blocks, leading to a higher number of prefetched blocks for the
same prefetch degree. In contrast, when similarity is computed only among objects within the
same directory path, the number of candidate objects decreases significantly, reducing the num-
ber of blocks prefetched. However, the improved precision in identifying truly similar objects
leads to better cost—latency trade-off overall.

Figure shows the prefetch hit ratio over time as the trace is replayed, using a model
trained on the first 10 days of data. During this initial period, since the model is evaluated on
data it was trained on, prediction accuracy remains high, resulting in a high prefetch hit ratio.
As noted in Section #.4.3] the first 9 days are used for training and the 10th day for validation,
which explains the slight drop in hit ratio on day 10. After day 10, when the model is applied to
unseen data, we observe that introducing constraints progressively improves prediction quality,
increasing the average prefetch hit ratio from 16% to 24% over the remaining 8 days, a 50%
relative improvement.

4.5.4 Effectiveness of access pattern prediction

Observation 3: Without future access prediction, similarity-based prefetching is less cost-efficient
than sequential prefetching.

In this section, we evaluate why relying solely on an object’s current access pattern is insuffi-
cient for similarity-based prefetching, and we demonstrate the necessity of predicting future ac-
cess behavior. As described in Section 4.4.3] Macaron+ first predicts a future access embedding
for each object and then uses that embedding to identify similar objects. A simpler alternative is
to skip prediction and instead use an object’s current access pattern to find similar objects.

Figure [4.10] shows that this simpler strategy performs poorly: When Macaron+ uses only
current access patterns (no prediction), its cost-efficiency for latency reduction is worse than
that of the basic sequential prefetching strategy. The root cause is that, during the early stages
of object accesses, available block-level information is sparse and yields inaccurate similarity
estimates. Consequently, objects that are not truly similar in their eventual access behavior are
often misidentified as similar, producing ineffective prefetches and incurring unnecessary cost.
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Figure 4.10: Without predicting future access patterns, Macaron+ performs worse than simple
sequential prefetching due to inaccurate similarity estimation from limited early access data.

In contrast, Macaron+ (oracular) derives object similarities from the complete trace of access
events; these oracular similarities correctly identify objects that will exhibit similar access behav-
ior in the future, substantially improving both prefetching accuracy and overall cost-efficiency.

To quantify the prediction quality, Figure 4.11] plots the cosine similarity between the pre-
dicted final embedding of each object and its true final embedding. We use cosine similarity
because Macaron+’s similarity search (ANN) operates on embeddings using cosine similarity.
Our MLP-based access pattern predictor achieves high cosine similarity on training data: for ex-
ample, among the data used for training (i.e, the accesses from the first nine days used for training
the MLP model), about 80% of the predictions achieve cosine similarity above 0.8. However,
the distribution of cosine similarities on the evaluation data (i.e, accesses from the last eight
days used for evaluation) is worse, indicating that the predicted final embeddings generalize less
well to unseen data and that future embedding prediction is therefore less accurate; despite this,
Macaron+ with prediction still yields more cost-efficient prefetching than other baselines and
Macaron+ without prediction.

This gap in prediction accuracy explains why Macaron+ performs less well relative to Mac-
aron+ (oracular). Importantly, the results also point to a clear opportunity: improving the pre-
diction module, for example through more expressive models, larger training sets, or advanced
training procedures, could narrow the gap to the oracular upper bound. In other words, advances
in modeling and training have the potential to bring similarity-based prefetching much closer to
the cost-efficiency exhibited by Macaron+ (oracular). Section[5.2.3|discusses potential directions
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Figure 4.11: Cosine-similarity distributions (predicted vs. true final embeddings) for the train,
validation, and evaluation splits. Despite the lower prediction accuracy observed on the evalua-
tion split, which explains the cost-efficiency gap to Macaron+ (oracular), Macaron+ with predic-
tion remains more cost-efficient than other baselines.

for understanding and reducing the performance gap between Macaron+ and Macaron+ (orac-
ular), including investigating why prediction quality degrades on the evaluation data relative to
the validation data in Figure d.11]

4.5.5 Sensitivity analysis

Observation 4: Using too many similar objects degrades cost-efficiency due to reduced sim-
ilarity precision, while selecting too few limits latency reduction due to insufficient prefetch
candidates.

We analyze how the number of similar objects used for block selection affects Macaron+’s
prefetch accuracy and latency. As described in Section Macaron+ selects blocks from the
top-/N most similar objects per access. Figure shows the cost-latency trade-off when using
top 3, 5, and 10 similar objects.

Using more similar objects (e.g., top 10) increases the number of candidate blocks, enabling
lower latency (as low as 182 ms on average), but includes less similar objects, reducing prefetch
accuracy and cost-efficiency. Conversely, using fewer objects (e.g., top 3) improves similarity
precision and achieves 15%-38% (avg. 30%) higher cost-efficiency than top 10 at the same
latency. However, due to the limited block pool, it can only reduce latency to 200 ms at best,
which is 10% higher than with top 10.

This trade-off suggests that choosing the number of similar objects involves balancing prefetch
precision and aggressiveness, depending on system goals, and Macaron+ uses N = 5 as a default
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Figure 4.12: Cost-latency trade-off when using top 3, 5, or 10 similar objects. Fewer objects
improve cost-efficiency; more enable lower latency.

policy.

4.6 Summary

Macaron+ reduces latency in the access of cross-region data by prefetching blocks based on
future predicted access patterns and object-level similarity, rather than relying on the global ad-
dress space or eviction history. Designed to complement Macaron’s elastic caching, Macaron+
addresses workloads with high compulsory miss ratios by prefetching data before any access
occurs. It achieves a 13—61% cost reduction compared to other prefetching baselines for the
same latency target. However, when provided with complete knowledge of which objects will
be eventually similar at the end of the trace, a version of Macaron+ that uses this oracular in-
formation achieves better cost-efficiency. This gap highlights a promising direction for future
improvement, where more accurate access pattern prediction, such as leveraging advanced Al
models, could bring Macaron+ closer to the performance of the oracle case.
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Chapter 5

Conclusion and future directions

We conclude this dissertation by summarizing our research contributions that support the thesis
statement and by outlining potential future directions for further exploration in this area.

5.1 Conclusion

This dissertation explores how to reduce storage-related costs in public cloud environments while
maintaining the performance required by modern applications. Based on the thesis that leverag-
ing the elasticity and diversity of public cloud resources, combined with real-time workload
monitoring, can effectively reduce both storage deployment costs and cross-region/cloud
data access costs, this thesis presents three systems: Mimir, Macaron, and Macaron+ that em-
body key cloud-aware design principles.

First, Mimir demonstrates that provisioning cost-efficient virtual storage clusters requires
fine-grained awareness of workload characteristics and the heterogeneous performance-cost trade-
offs of cloud storage options. By profiling workloads and benchmarking storage types, Mimir
selects optimal storage configurations, reducing deployment costs by up to 81% compared to
prior techniques.

Second, Macaron introduces an auto-configuring cache that mitigates high egress costs and
latency in cross-region/cloud access scenarios. By dynamically adjusting cache capacity and
monitoring using miniature simulations, Macaron reduces access costs by up to 66% compared
to managed cloud caching services and approaches the performance of an ideal offline oracle
cache with only 9% higher cost.

Third, Macaron+ builds upon Macaron by tackling workloads with high compulsory miss
ratios that are inherently uncacheable at the first access. It introduces a cost-aware prefetch-
ing mechanism based on access pattern similarity and prediction, avoiding the limitations of
traditional address- or eviction-based prefetchers. Evaluations on real-world traces show that
Macaron+ can reduce latency by up to 61% lower cost than existing prefetching approaches for
the same latency target.

Together, these systems validate our thesis by showing that cost-efficiency in native cloud
storage systems can be significantly improved by exploiting heterogeneity, elasticity, and work-
load awareness.
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5.2 Future directions

We now discuss potential future directions that build on the systems and findings presented in
this dissertation.

5.2.1 Mimir

Incorporating data reliability and latency to SLOs. While Mimir currently focuses on iden-
tifying cost-optimized storage cluster configurations that meet user-defined throughput require-
ments, an important future direction is to extend its optimization model to incorporate additional
service level objectives (SLOs), such as data reliability, availability, and latency. For example, al-
though local SSDs offer a cost-effective way to achieve high throughput, they are ephemeral and
tied to the lifecycle of the hosting VM, making them less suitable for workloads requiring per-
sistent data. In contrast, network-attached volumes like AWS EBS are more durable since they
are decoupled from VM failures, but they typically require over-provisioning to meet the same
throughput targets, leading to higher costs. A promising direction is to quantify and incorporate
the reliability and availability trade-offs of different storage types, for example, modeling the
reliability of three-way replicated local SSDs to match that of a single EBS volume, and reflect
them in Mimir’s configuration search. Additionally, current formulations do not explicitly incor-
porate latency constraints. Extending Mimir to filter or penalize configurations that cannot meet
user-specified latency SLOs would enable broader applicability to latency-sensitive workloads
and promote more practical deployment decisions in real-world settings.

Throughput prediction without benchmarking. Mimir currently relies on empirical bench-
marking to estimate the achievable throughput of each virtual machine and storage combina-
tion for a given workload. While accurate, this process is both time and cost intensive, espe-
cially when evaluating a large number of configurations. In contrast, prior work [16} 25, 46|
in compute-focused VM selection has shown promise in predicting performance using system
specifications. A promising future direction is to extend Mimir with a performance prediction
model that takes VM and storage specifications along with workload characteristics as input
and outputs the expected throughput. We have explored early prototypes using gradient boost-
ing trees [52] for this purpose, but found that prediction errors on unseen configurations limited
practical adoption. Improving the accuracy and generalizability of such models remains an open
and compelling direction for future work.

5.2.2 Macaron

Expanding to multi-tier storage hierarchies. Macaron currently targets a two-tier cache model
comprising DRAM and general-purpose object storage such as AWS S3 Standard or Azure Hot
Blob. However, modern cloud providers offer a broader spectrum of storage options with vary-
ing cost-performance trade-offs, including high-performance tiers such as AWS S3 Express One
Zone and Azure Premium Block Blob, and low-cost infrequent access tiers like AWS S3 Infre-
quent Access and Azure Cool Blob. Incorporating these additional levels into Macaron’s cache
design can enable more flexible caching strategies that better align with workload latency and
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cost requirements. For example, performance-sensitive data could be placed in fast tiers to re-
duce latency, while rarely accessed blocks could be stored in cheaper archival tiers to reduce
cost. Designing cache tiering policies and reconfiguration mechanisms that make effective use
of these multi-tier storage hierarchies presents a promising future direction.

Extending to active-active consistency models. Macaron is currently designed for read-heavy
workloads, with the assumption that the remote data lake remains unchanged during cache us-
age. However, as demand increases for active-active architectures that allow updates and dele-
tions from multiple regions, extending Macaron to support such scenarios becomes an important
direction. One potential approach is to use services like AWS S3 Object Lambda, which can
invoke callback functions when remote objects are modified or deleted. This would allow the
cache to update or invalidate affected entries in response. However, invoking such functions
on every access can lead to increased costs proportional to access frequency, and the additional
management overhead may impact performance. Investigating these trade-offs and developing
cost-efficient and scalable update propagation mechanisms remains an open challenge for future
research.

5.2.3 Macaron+

Cross-object correlation beyond access patterns. Macaron+ currently identifies prefetch can-
didates based solely on intra-object access patterns, using block-level similarity to decide which
parts of the current object should be prefetched. However, as shown in Section 4.5.3] adding
constraints such as minimum early access set size or path similarity improves accuracy and cost-
efficiency but reduces the number of prefetched blocks, limiting the upper bound of latency
reduction. A promising future direction is to incorporate cross-object correlation, where the sys-
tem learns that certain objects are often accessed together in recurring query patterns or due to
semantic relationships such as shared table partitions. By prefetching relevant blocks not only
from the current object but also from other correlated objects, the system can improve both the
accuracy and coverage of prefetching. This approach has the potential to further reduce latency
without sacrificing cost-efficiency. Future work can explore how to identify and leverage these
relationships using features like co-access frequency, query lineage, or metadata hierarchy.

Dynamic prefetch cache size and prefetch degree. While Macaron dynamically reconfigures
its demand cache size based on workload characteristics and cost-efficiency goals, Macaron+
currently uses a fixed prefetch cache size and prefetch degree set by the user at deployment time.
However, our evaluation shows a clear trade-off between prefetch degree and cost-efficiency:
higher degrees reduce latency by prefetching more blocks, but often include less relevant data,
which increases cost. A promising future direction is to design a system that takes a user-
defined cost-latency balance as input and automatically determines appropriate values for both
the prefetch cache size and prefetch degree. We conducted preliminary experiments using the
miniature simulation approach, where a miniature cache is used to estimate performance in dif-
ferent configurations. This method showed high accuracy for simple prefetching strategies such
as sequential prefetching. Extending this idea to support more complex similarity-based al-
gorithms like Macaron+ and evaluating whether miniature simulations can still guide dynamic
tuning effectively is a compelling area for future exploration.
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Developing similarity-based prefetching. Unlike traditional time-series prefetchers, Macaron+
uses a similarity-based strategy that relies on object-level access patterns. As shown in Sec-
tion 4.5.2] when supplied with oracular knowledge of future accesses, the system can identify
truly similar objects and achieve substantially higher cost-efficiency. This suggests that improve-
ments in future access prediction will directly increase Macaron+’s ability to find appropriate
neighbors and thus improve the cost-effectiveness of similarity-based prefetching.

Two promising complementary directions follow. First, incorporate richer file-level signals
into similarity and prediction models. In addition to path information, which our evaluation
already shows to be a strong indicator, metadata such as creation time, file size, file format, and
ownership can provide informative priors about access behavior. Developing this idea requires
an initial observational step to identify which candidate features actually help distinguish similar
objects in practice, followed by a careful design phase to integrate the most useful features into
the similarity metric and prediction pipeline.

Second, explore more expressive model architectures and robust training methodologies to
predict future access embeddings. Whereas our current MLP provides a light-weight and fast so-
lution, attention-based architectures (e.g., Transformers) or sequence models may capture richer
temporal and contextual patterns, and thus yield more accurate embeddings. Because larger
models introduce runtime and deployment trade-offs for online inference, model compression
techniques, such as quantization, pruning, knowledge distillation, and 1-bit/low-precision ap-
proaches, are important complementary tools to retain inference efficiency while improving rep-
resentational power.

Together, richer feature sets and more powerful yet practically deployable models are likely
to raise prefetch hit ratios and coverage. Evaluating these directions while accounting for train-
ing/inference costs and online deployment constraints is a key next step toward closing the gap
with the oracular upper bound.

Exploring generality across workloads and file formats. Exploring the generality of Mac-
aron+ across workloads and file formats is an important open question. The Uber Presto trace
used in this study is a real production trace and is representative of many analytical workloads,
but its access characteristics are shaped by query engine optimizations and Parquet file structure.
In particular, production engines, including Uber’s, often apply aggressive predicate pushdown
and selective row-group reads, causing queries to touch only small, highly selective portions of
files. Under these conditions, simple sequential prefetchers may appear effective, as we have
shown in our evaluation, and similarity-based methods may show different relative benefits than
they would on workloads with different access patterns. Demonstrating broader generality, there-
fore, requires careful, controlled evaluation on workloads and query-engine configurations that
reflect production behavior.

Two complementary directions are especially important to investigate. First, additional dis-
tributed analytics traces should be evaluated to determine whether the access patterns we ob-
served in the Uber trace occur elsewhere. Doing so can confirm the data-access pattern obser-
vations from the Uber trace and help debug weaknesses in the access-pattern prediction module,
which in turn can guide improvements to prefetching. The primary challenge is obtaining repre-
sentative workloads: public benchmarks often do not reproduce production-level optimizations
(e.g., aggressive predicate pushdown) by default, so careful selection and configuration of traces
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and query engines are required to analyze and evaluate traces precisely.

Second, it is important to evaluate Macaron+ on a wider variety of workload classes be-
yond analytic queries, for example, data accesses from large-scale machine learning workloads
or collaboration scenarios in which teams access data remotely across regions. Two concrete
questions arise here: does similarity-based prefetching improve performance for workloads with
different access characteristics, and how well does the Macaron+ prediction model generalize
across workload types? One intriguing direction is to build a shared foundational model that can
provide good predictions across many workloads with light task-specific fine-tuning. Such an
approach could reduce the cost of per-workload training, although trade-offs between generality
and accuracy must be carefully evaluated.
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