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Abstract

Resource Aware ML (RaML) is a tool that statically infers resource bounds for
OCaml programs. However, RaML cannot derive bounds for functions whose cost
depends on values that are not arguments. Partially-applied higher-order functions,
which are common in OCaml code, often cannot be analyzed for this reason. This
thesis introduces a closure conversion transformation that rewrites higher-order pro-
grams into ones analyzable by RaML. Unlike traditional closure conversion which
wraps functions with environments represented using existential types, this algo-
rithm uses sum types, which allows RaML to access internal types and infer bounds.
The transformation is well-typed and preserves semantics and cost, ensuring that
analysis of the transformed program remains sound with respect to the original code.
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Chapter 1

Introduction

This chapter provides an overview of why Resource Aware ML cannot analyze many higher-
order functions, and discusses multiple existing methods of translating higher-order programs
to remove this problem. It summarizes the translation developed in this thesis, and provides an
outline of what is covered in the remaining chapters.

1.1 Background

Resource Aware ML (RaML) is a tool that statically infers resource bounds for OCaml pro-
grams. For example, RaML could analyze the code in Listing 1 and derive the bound shown in
Figure 1.1. Note that Raml.tick n denotes using n units of a resource.

1 let rec append (l1, l2) =
2 match l1 with
3 | [] -> l2
4 | x::xs ->
5 Raml.tick 1.0;
6 x :: (append (xs, l2))

Listing 1: An append function

The current implementation of RaML cannot derive bounds when a function’s cost depends on
free variables. This issue commonly presents itself when RaML attempts to analyze partially-
applied higher-order functions (HOFs).
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Simplified bound:

1*M

where

M is the number of ::-nodes of the 1st component of the argument

Figure 1.1: RaML output for append function in Listing 1

For example, say append l1 l2 appends l1 to l2 with a cost proportional to the length of
l1 . Then the function f in the code below will not be analyzable by RaML as it’s cost depends

on the length of [1;2;3] , which is not one of its arguments.

1 let f = append [1;2;3]

As higher-order functions are commonly used in OCaml programs, this thesis presents a code
transformation which allows such programs to be analyzed by RaML.

1.2 Defunctionalization vs. Closure Conversion

Transforming higher-order programs has been studied in compiler design, as low-level compiler
target languages often do not support higher-order functions. There are two primary methods:
defunctionalization, and closure conversion.

Defunctionalization has been introduced by Reynolds [16] and later improved by Bell et al. to
preserve typability [5]. Defunctionalization almost entirely eliminates functions, replacing them
with data types and a single apply function. This approach is used in the MLton compiler for
SML [8]. However, defunctionalization is not feasible for us because it changes the structure
of the program so much that it would make it more difficult to analyze. RaML infers bounds
per function, and it would complicate the implementation to have functions translated into data
types.

The second option is closure conversion, which was applied to typed target languages by Mi-
namide et al. [14]. Closure conversion eliminates partial applications by translating them into
a pair of a code pointer and environment which maps variables to values. Free variables in the
function body are transformed into environment lookups.

Traditionally, closure conversion represents the environment using an existential type [14]. How-
ever, this hides the internal type from the rest of the program which would pose a problem for
RaML’s analysis. RaML infers resource bounds by constructing linear constraints on potential
assigned to base types. Without knowing the internal type, RaML would not be able to generate
these constraints.
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In this thesis, we present a modified closure conversion algorithm which uses sum types rather
than existential types to construct programs amenable to analysis with RaML. The downside is
that we have to do a global analysis before running closure conversion. However, the sum types
give RaML access to the type information necessary to infer resource bounds.

1.3 Translation Overview

The source and target languages are the same. The language is similar to PCF, except it has lists
rather than integers, and bounded recursion rather than a fixed point. These modifications were
chosen for similarity to OCaml code, as well as expressibility of common examples using HOFs.
The language is complex enough that the primary difficulties in proving soundness appear, but
without too many additional features that would lengthen the proofs.

The dynamic semantics are small-step cost semantics which is necessary for the soundness proof.
Importantly, the translation must not only preserve the functionality of programs, but also the
cost. This ensures that RaML’s analysis of the transformed programs will match the bounds on
the original program.

Ticks in the code denote resource use. The translation preserves cost by preserving the number of
ticks. Functions are translated into pairs where a new function is packaged with an environment
which has the global sum type derived from an initial global analysis. Applications unwrap this
pair and apply the new function to the argument and stored environment.

1.4 Outline

In this thesis, we define typed closure conversion with sum types, which is an effective tool for
anaalyzing HOFs in RaML. We prove soundness of the translation using a logical relation which
incorporates cost into the definition of equality so equal programs must evaluate to equal values
with the same cost.

The remainder of the document is organized as follows:

• Chapter 2 provides background information about RaML and motivation for why the trans-
formation is necessary. It shows a concrete example of a program that cannot currently be
analyzed in RaML and how it can be translated into an analyzable program.

• Chapter 3 defines the source and target language. It presents static semantics and cost
based dynamic semantics.

• Chapter 4 formalizes the translation. It describes how the global sum type for the environ-
ments is generated, then presents the translation of types, contexts, and expressions. It also
proves that translated programs are well-typed.

• Chapter 5 presents the soundness proof. First, the definition of divergence is formalized.

3



Then, a logical relation is presented which says that two programs are related evaluate to
equal values with the same cost. Finally, this logical relation is used to prove soundness of
the translation.

• Chapter 6 compares our approach to related work in both closure conversion and soundness
proof techniques.

• Chapter 7 summarizes the results and proposes future work.
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Chapter 2

Motivation

This chapter provides an example of a program not currently analyzable by RaML and a trans-
lated version that can be analyzed. While the translation is not identical in structure to the
formalization in Chapter 4, it is very close and provides intuition for our goal.

2.1 RaML

Automatic Amortized Resource Analysis (AARA) is a type-based technique to statically infer
resource bounds. Base types are annotated with potential functions which indicate how much of
a resource is available. Potential is used when a cost is incurred and gained when resources are
returned. The potential assigned to the types can be imagined as vectors representing the linear,
quadratic, cubic, etc. potential up to some maximum degree. In this way, AARA can represent
non-linear bounds using a linear number of constraints.

RaML is an implementation of the AARA type system for OCaml programs. RaML determines
potential annotations by solving a linear program (LP) on the set of constraints generated during
type inference. An LP solver aims to minimize the initial potential subject to these constraints.
Not all programs are analyzable, in which case, the LP will be infeasible. If the LP is feasible,
RaML returns the corresponding resource bounds.

RaML has multiple modes to track resource use. In this paper, we use ticks. The expression
Raml.tick n represents using n units of a resource, which therefore consumes n units of

potential.

2.1.1 Higher-Order Functions in RaML

Currently, RaML cannot effectively generate resource bounds for programs involving partially-
applied higher-order functions (HOFs). The reason for this is demonstrated by the implementa-
tion of the append function in Listing 2. In the sample code, we track the number of recursive
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calls made to the append function, so we call Raml.tick 1.0 immediately before the re-
cursive call.

The second function, useAppend , demonstrates how append can be partially-applied, and
the resulting function f can be used multiple times. Note that RaML does not limit the number
of times a function is called. This increases the ease of writing RaML code, but also limits what
can currently be analyzed.

1 let rec append l1 =
2 fun l2 -> (* need 1 potential per element in l1 *)
3 match l1 with
4 | [] -> l2
5 | x::xs ->
6 Raml.tick 1.0;
7 x :: (append xs l2)
8 ;;
9

10 let useAppend l =
11 let f = append l in
12 (f [1], f [2])
13 ;;

Listing 2: Non-analyzable append function in RaML

In the code in Listing 2, the list l1 passed into append must have one potential per element in
the list. That is, one linear potential. However, consider what happens when we partially apply
append on line 11. Since f can be called an arbitrary number of times, each of those calls

requires one potential per element of l . Now l needs potential dependent on the number of
times f is called. RaML cannot derive a bound in this case since it cannot know how many
times f will be called.

Due to this issue, RaML has a rule that the cost of a function needs to be expressible as a function
of the arguments. If this is not the case, the analysis fails. In the above case, the cost of f is
dependent not on its argument, but on the length of l , which violates this rule. In this case, an
error like the one in Figure 2.1 is raised.

A bound for useAppend could not be derived.

The linear program is infeasible.

Figure 2.1: Example RaML error for non-analyzable code
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2.1.2 Transformed HOFs in RaML

In Listing 3, we present an intuitive translation of the code in Listing 2 that can be analyzed by
RaML. This is not the exact translation we formalize later in this paper, but is helpful for gaining
intuition for how that translation works and why it is analyzable in RaML.

1 let rec append l1 =
2 (l1,
3 fun (l1, l2) ->
4 match l1 with
5 | [] -> l2
6 | x::xs ->
7 Raml.tick 1.0;
8 x :: (let xs, f = append xs in f (xs, l2))
9 )

10 ;;
11

12 let useAppend l =
13 let l1, f = append l in
14 (f (l1, [1]), f (l1, [2]))
15 ;;

Listing 3: Intuitively translated append function analyzable in RaML

Recall the issue with the original append code: when applied to to a single argument, the function
returned had a cost dependent on l1 , which was not one of its arguments. We solve this by
returning a pair rather than a function. This pair includes the list l1 so we have access to it
when analyzing the inner function. The new inner function takes a pair (l1, l2) rather than
just l2 so its cost now only depends on its arguments.

Whenever append is called, we replace it with a let expression. We call append with the
first argument, unwrapping the pair returned to get the first argument back, as well as the new
function that takes a pair rather than just the second argument. Then we call that new function
with the pair containing the first and second argument together. Intuitively, we pass around the
first argument so it’s always an argument of any function whose cost can depend on it.

Now RaML can analyze the code, even when function f is called multiple times in useAppend .
The output for the analysis of useAppend is shown in Figure 2.2. RaML correctly identifies
that useAppend costs twice the number of elements in the list l .

The approach shown above, while more readable in simple examples, cannot generalize to every
program. In the example, we only needed to package a single variable l1 with the function
during translating. However, the cost of the inner function could depend on multiple variables
that are not arguments. In this case, we need to create an environment containing all those
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Simplified bound:

2*M

where

M is the number of ::-nodes of the argument

Figure 2.2: RaML output for translated useAppend

variables to package with the function.

In the following sections, we introduce our closure conversion algorithm using sum types for the
environments. This will allow us to formalize a translation that can transform any code so that it
is semantically equivalent, but doesn’t fail for the above reason.

2.2 Closure Conversion

Closure conversion is a program transformation often used in compilers. Higher-order functions
are packaged into a pair containing an environment and the code, where the environment maps
free variables in the code to values. This is exactly what we wish to do to translate our programs
so they can be analyzed by RaML, as demonstrated in the previous section. Importantly, Mi-
namide et al. showed that closure conversion could be performed with a typed target language
[14]. We need our source language and target language to be typed since AARA relies on the
type system to generate resource bounds.

2.2.1 A Unified Environment Representation

When performing closure conversion, it is important that environments for two functions of the
same type also have the same type. To see why, consider the following code, where id is the
identity function and append is defined as in Listing 3.

1 let f = if ___ then id
2 else append l

If we used an intuitive environment representation such as the one in Listing 3, then the types of
id and append l would be:

id : unit * ((unit * list) -> list)

append : list * ((list * list) -> list)

8



As we saw previously, append l needs a list stored in the environment. However, id doesn’t
need anything in its environment, which therefore has type unit . This raises a problem: after
translation, f is not well-typed. Thus, we need a shared type that can be used to represent the
environments for both of these functions. More generally, any two functions with the same type
in the original code need to also have the same type (and thus the same environment type) in the
translated code.

Traditionally, closure conversion algorithms handle this by using existential types to represent
environments [14]. However, we do not want to use existential types because they hide the
internal type—we only know what we can use the type for, not what it actually is. However, we
need to know the structure of the values captured in the closure for analysis, as they may need to
carry potential. Thus, we need a more concrete representation than existential types can give.

2.3 Closure Conversion with Sum Types

Rather than using existential types, we will represent our environments using a sum type. Sum
types are used in the conversion performed by the MLton compiler [8]. They create a new sum
type for every distinct set of lambdas that could appear at some program point. However, we will
differ from this approach by creating a single sum type to represent all possible environments.
While the sum type itself may be more complicated, it is a more intuitive representation and
simplifies the translation of applications to use a single sum.

Each function in our translated code will have a corresponding case of the sum type whose type is
a product of all the free variables in scope when the function is defined. This solves the problem
with using existential types by giving RaML access to the actual values inside the environment
which allows it to determine resource bounds. The downside to this approach is that we have
to begin with a global analysis of the code. However, this is not unprecedented—the MLton
compiler for SML also does global analysis before their closure conversion pass [8].

As before, functions are translated into pairs of an environment and new function. This new func-
tion takes the environment and argument. The primary difference with the example in Listing 3 is
that we immediately match on the environment inside the function to extract the individual vari-
ables from within it. We know which case of the sum we should be in because we know which
function we are translating, and each function has a unique corresponding case of the sum. In all
other cases, we will raise an error: we should never reach this case.

The translation of the code from Listing 2 using sum types is shown in Listing 4. For readability,
we did not translate the top-level functions. These do not have any free variables in scope when
they are defined, so there is no need to wrap them with an environment as the environment would
be empty. While our formal translation does not differentiate top-level functions, this is a simple
optimization that would be implemented in practice. For readability, we also have a separate
apply function whereas the translation would inline this in practice.

9



1 type t = Env of int list
2

3 let rec append l1 =
4 (Env l1,
5 fun (env, l2) ->
6 match env with
7 | Env l1 ->
8 match l1 with
9 | [] -> l2

10 | x::xs ->
11 Raml.tick 1.0;
12 x :: (let env, f = append xs in f (env, l2))
13 | _ -> raise (Failure "Should never reach this case")
14 )
15 ;;
16

17 let apply (f, arg) =
18 let env, g = f in
19 g (env, arg)
20 ;;
21

22 let useAppend l =
23 let f = append l in
24 (apply (f, [1]), apply (f, [2]))
25 ;;

Listing 4: Translated append function analyzable in RaML
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Chapter 3

The Language: Bounded PCF

The source language is a variant of PCF that we call Bounded PCF . Rather than recursion using
a fixed point, we have bounded recursive functions. Bounding the recusion is helpful for the
soundness proof, and because of the compactness theorem, a recursive function with a large
enough bound is equivalent to the unbounded version. This is further explained in Section 5.3.

The language doesn’t include lambda functions since anything implemented with a lambda can
also be implemented using our recursive functions. We also use lists rather than integers. Many
of the examples of non-analyzable HOFs used lists, and these are just as expressive as natural
numbers.

We also include product and sum types, which are required in the target language. Products
are required since functions are translated into pairs. Sums are required since we use a sum
type to represent the environments. While we could omit these from the source language, they
are commonly used in simple examples, so we include them. This allows our source and target
languages to be the same, which also simplifies our proofs. This language is just complex enough
that all the main difficulties in the proofs become apparent, without adding too many extra cases.

3.1 Syntax

The full syntax for Bounded PCF is shown in Figure 3.1. We use labeled sums and products.
⟨ e1 , e2 ⟩ is shorthand for ⟨ ℓ ↪ e1 , r ↪ e2 ⟩, and τ1 ∗ τ2 is shorthand for ⟨ ℓ ∶ τ1 , r ∶ τ2 ⟩.

Ticks, written in code as Raml.tick n , are denoted by

tick(n)

Bounded recursive functions have the following syntax:

funm
{τ1, τ2}(f . x . e)

This represents a function with name f of type τ1 → τ2 that can make a maximum of m recursive
calls. Each recursive call decrements m, which is shown in the dynamic semantics in Figure 3.4.

11



Typ τ ∶∶= unit

τ list

⟨ ℓ ∶ τℓ ⟩ℓ∈L
τ → τ

[ ℓ ∶ τℓ ]ℓ∈L

Exp e ∶∶= x

( )

let x = e1 in e2
tick(n) (consume resources)
[ ]{τ} (list introduction)
e1 ∶∶ e2 (list introduction)
match e { [ ]{τ} ↪ e1 ; x ∶∶ xs↪ e2 } (list elimination)
⟨ ℓ↪ eℓ ⟩ℓ∈L (product introduction)
e.ℓ (product elimination)
funm

{τ1, τ2}(f . x . e) (bounded recursion introduction)
e1(e2) (bounded recursion elimination)
in[ℓ]{τ} (e) (sum introduction)
case e { ℓ(xℓ) ↪ eℓ }ℓ∈L (sum elimination)

Figure 3.1: Syntax for Bounded PCF

3.2 Static Semantics

The type rules for Bounded PCF use the standard typing judgement

Γ ⊢ e ∶ τ

which states that e has type τ under context Γ. Note that ticks have type unit:

Γ ⊢ tick(n) ∶ unit
S-TICK

Bounded recursive functions are typed as you would expect for general recursive functions:

Γ, x ∶ τ1, f ∶ τ1 → τ2 ⊢ e ∶ τ2

Γ ⊢ funm
{τ1, τ2}(f . x . e) ∶ τ1 → τ2

S-FUN

The full set of type rules are shown in Figure 3.2.

12



Γ, x ∶ τ ⊢ x ∶ τ
S-VAR

Γ ⊢ ( ) ∶ unit
S-UNIT

Γ ⊢ e1 ∶ τ1 Γ, x ∶ τ1 ⊢ e2 ∶ τ2

Γ ⊢ let x = e1 in e2 ∶ τ2
S-LET

Γ ⊢ tick(n) ∶ unit
S-TICK

Γ ⊢ [ ]{τ} ∶ τ list
S-NIL

Γ ⊢ e1 ∶ τ Γ ⊢ e2 ∶ τ list

Γ ⊢ e1 ∶∶ e2 ∶ τ list
S-CONS

Γ ⊢ e ∶ τ1 list Γ ⊢ e1 ∶ τ2 Γ, x ∶ τ1, xs ∶ τ1 list ⊢ e2 ∶ τ2

Γ ⊢match e { [ ]{τ1} ↪ e1 ; x ∶∶ xs↪ e2 } ∶ τ2
S-MATCH

Γ ⊢ eℓ ∶ τℓ ∀ℓ ∈ L

Γ ⊢ ⟨ ℓ↪ eℓ ⟩ℓ∈L ∶ ⟨ ℓ ∶ τℓ ⟩ℓ∈L
S-PROD

Γ ⊢ e ∶ ⟨ ℓ ∶ τℓ ⟩ℓ∈L
Γ ⊢ e.ℓ ∶ τℓ

S-PROJ

Γ, x ∶ τ1, f ∶ τ1 → τ2 ⊢ e ∶ τ2

Γ ⊢ funm
{τ1, τ2}(f . x . e) ∶ τ1 → τ2

S-FUN
Γ ⊢ e1 ∶ τ1 → τ2 Γ ⊢ e2 ∶ τ1

Γ ⊢ e1(e2) ∶ τ2
S-APP

Γ ⊢ e ∶ τℓ

Γ ⊢ in[ℓ]{[ ℓ ∶ τℓ ]ℓ∈L} (e) ∶ [ ℓ ∶ τℓ ]ℓ∈L
S-INJ

Γ ⊢ e ∶ [ ℓ ∶ τℓ ]ℓ∈L Γ, xℓ ∶ τℓ ⊢ eℓ ∶ τ ∀ℓ ∈ L

Γ ⊢ case e { ℓ(xℓ) ↪ eℓ }ℓ∈L ∶ τ
S-CASE

Figure 3.2: Static semantics for Bounded PCF

3.3 Dynamic Semantics

In this section we define the values and small-step semantics for Bounded PCF . While RaML
dynamics are traditionally written using big-step semantics, we need small-step for the soundness
proof presented in Section 5.2.

3.3.1 Values

The judgement
e val

states that e is a value in Bounded PCF . The values are shown in Figure 3.3. Note that lists,
products, and sums are only values if all the expressions contained in them are also values.
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( ) val
V-UNIT

[ ]{τ} val
V-NIL

v1 val v2 val

v1 ∶∶ v2 val
V-CONS

vℓ val ∀ℓ ∈ L

⟨ ℓ↪ vℓ ⟩ℓ∈L val
V-PROD

funm
{τ1, τ2}(f . x . e) val

V-FUN
v val

in[ℓ]{τ} (v) val
V-INJ

Figure 3.3: Values in Bounded PCF

3.3.2 Small-Step Cost Semantics

The dynamic semantics are defined using the judgement

ez→n e′

which states that e steps to e′ with cost n. The non-standard feature is that this tracks cost. We
use cost semantics because for our transformation to be sound, it not only must preserve the
semantics of the program, but also the cost. Transforming a function so that it outputs the same
value with a different cost would not be acceptable, as RaML’s analysis would be incorrect.

The only expression that incurs cost when it steps is the tick, which immediately steps to a unit
with the cost indicated:

tick(n) z→n ( )
D-TICK

Since we use the ticks mode in RaML, ticks are the only way to consume resources. Thus, cost
is preserved in all other rules, or 0 if the rule does not have a premise.

Note that we assume labeled products have an order. The dynamics evaluate the expressions
from left to right. This is denoted in the rule by numbering the labels from 1 to k.

ej val ∀j ∈ [1, i − 1] ei z→n e′i
⟨ ℓ1 ↪ e1, . . . , ℓi ↪ ei, . . . , ℓk ↪ ek ⟩ z→n ⟨ ℓ1 ↪ e1, . . . , ℓi ↪ e′i, . . . , ℓk ↪ ek ⟩

D-PROD

The other interesting rule is function application to a value:

m > 0

funm
{τ1, τ2}(f . x . e)(v) z→0 [v/x, fun

m−1
{τ1, τ2}(f . x . e)/f]e

D-APP3

m denotes how many recursive calls can be made to the function. We substitute the entire func-
tion in for f in the body as usual, but decrement m by 1 to indicate that one fewer recursive call
can now be made. Also, note that the premise requires m > 0. There are no rules for how to step
the application if m = 0. This represents non-termination, which is defined in Section 3.3.4.
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The other rules are standard with costs added. The full dynamic semantics are in Figure 3.4.

e1 z→n e′1
let x = e1 in e2 z→n let x = e′1 in e2

D-LET1
v val

let x = v in e2 z→0 [v/x]e2
D-LET2

tick(n) z→n ( )
D-TICK

e1 z→n e′1
e1 ∶∶ e2 z→n e′1 ∶∶ e2

D-CONS1
v1 val e2 z→n e′2
v1 ∶∶ e2 z→n v1 ∶∶ e

′
2

D-CONS2

ez→n e′

match e { [ ]{τ} ↪ e1 ; x ∶∶ xs↪ e2 } z→n match e′ { [ ]{τ} ↪ e1 ; x ∶∶ xs↪ e2 }
D-MATCH

match [ ]{τ} { [ ]{τ} ↪ e1 ; x ∶∶ xs↪ e2 } z→0 e1
D-MATCHNIL

v1 val v2 val

match v1 ∶∶ v2 { [ ]{τ} ↪ e1 ; x ∶∶ xs↪ e2 } z→0 [v1/x, v2/xs]e2
D-MATCHCONS

ej val ∀j ∈ [1, i − 1] ei z→n e′i
⟨ ℓ1 ↪ e1, . . . , ℓi ↪ ei, . . . , ℓk ↪ ek ⟩ z→n ⟨ ℓ1 ↪ e1, . . . , ℓi ↪ e′i, . . . , ℓk ↪ ek ⟩

D-PROD

ez→n e′

e.ℓz→n e′.ℓ
D-PROJ1

(⟨ ℓ↪ eℓ ⟩ℓ∈L).k z→0 ek
D-PROJ2

e1 z→n e′1
e1(e2) z→n e′1(e2)

D-APP1
v val e2 z→n e′2
v(e2) z→n v(e′2)

D-APP2

m > 0 v val

funm
{τ1, τ2}(f . x . e)(v) z→0 [v/x, fun

m−1
{τ1, τ2}(f . x . e)/f]e

D-APP3

ez→n e′

in[ℓ]{τ} (e) z→n in[ℓ]{τ} (e′)
D-INJ

ez→n e′

case e { ℓ(xℓ) ↪ eℓ }ℓ∈L z→n case e′ { ℓ(xℓ) ↪ eℓ }ℓ∈L
D-CASE1

v val

case (in[k]{τ} (v)) { ℓ(xℓ) ↪ eℓ }ℓ∈L z→0 [v/xk]ek
D-CASE2

Figure 3.4: Dynamic semantics for Bounded PCF
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3.3.3 Multi-Step Definition

The notation

ez→∗n e′

means that e multi-steps to e′, and is formally defined by:

ez→∗0 e

If ez→n1 e
′, and e′ z→∗n2

e′′, then ez→∗n1+n2
e′′

We will use this notation in the soundness proof in Section 5.2.

3.3.4 Divergence

Since we can have non-terminating programs, we must define what it means for a program to
diverge. The judgement

ez→∗∞ �

states that e does not terminate. Intuitively, this means the program can no longer step to anything
and also has not reached a value.

The only expression that immediately diverges is an application of fun0
{τ1, τ2}(f . x . e): the

function abstraction with 0 unrollings allowed. This is the only expression that cannot step to
anything based on the dynamics. Naturally, anything that steps to a diverging program also
diverges.

(fun0
{τ1, τ2}(f . x . e1))(e2) z→

∗
∞ �

DIV-FUN
ez→∗n e′ e′ z→∗∞ �

ez→∗∞ �
DIV-STEP

Figure 3.5: Divergence base case and step

We also need to capture that an expression with a diverging subexpression diverges. This is done
with the full set of divergence rules are shown in Figure 3.6.
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e1 z→
∗
∞ �

let x = e1 in e2 z→
∗
∞ �

DIV-LET

e1 z→
∗
∞ �

e1 ∶∶ e2 z→
∗
∞ �

DIV-CONS1
e2 z→

∗
∞ �

v1 ∶∶ e2 z→
∗
∞ �

DIV-CONS2

ez→∗∞ �

match e { [ ]{τ} ↪ e1 ; x ∶∶ xs↪ e2 } z→
∗
∞ �

DIV-MATCH

ek z→
∗
∞ � for any k ∈ L

⟨ ℓ↪ eℓ ⟩ℓ∈L z→∗∞ �
DIV-PROD

ez→∗∞ �

e.ℓz→∗∞ �
DIV-PROJ

e1 z→
∗
∞ �

e1(e2) z→
∗
∞ �

DIV-APP1
e2 z→

∗
∞ �

e1(e2) z→
∗
∞ �

DIV-APP2

ez→∗∞ �

in[ℓ]{τ} (e) z→∗∞ �
DIV-INJ

ez→∗∞ �

case e { ℓ(xℓ) ↪ eℓ }ℓ∈L z→∗∞ �
DIV-CASE

fun0
{τ1, τ2}(f . x . e) z→

∗
∞ �

DIV-FUN
ez→∗n e′ e′ z→∗∞ �

ez→∗∞ �
DIV-STEP

Figure 3.6: Divergence of programs

3.4 Type Soundness

Lemma 1 (Progress). If Γ ⊢ e ∶ τ then either e val, ez→n e′, or ez→∗∞ �.

This can be proven by induction on the type judgement. For each rule that is not a base case, we
case on the result given by the inductive hypothesis. As usual, we consider if the subexpressions
are values or step to another expression. Additionally, we consider the case where a subexpres-
sion diverges, in which case the entire expression will also diverge by the rules in Figure 3.6.
Thus, in each case, we can either claim the overall expression is a value, step it, or say that it
diverges.

Lemma 2 (Preservation). If Γ ⊢ e ∶ τ and ez→n e′ then Γ ⊢ e′ ∶ τ .

This can be proven by induction on the step judgement. For each rule that is not a base case,
the inductive hypothesis tells us that a subexpression steps to something of the same type. From
there, we can reconstruct the type of the overall stepped expression, which will be preserved.
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Chapter 4

The Translation

The translation is defined using the judgement:

Γ ⊢ e ∶ τ ¨ e′

which states that an expression e of type τ under context Γ translates to the expression e′.

In Section 4.3, we will show that this translation preserves types. That is, under the translated
context Γ′, the expression e′ has the translated type τ ′.

4.1 Global Sum Type

A sum type T is used to store function environments in the translated programs. To generate this
type, we begin by enumerating all functions in the program from 1 to n, where n is the number
of function definitions. Going forward, function names will be subscripted with their index for
clarity.

To determine the variables in scope for a particular function definition, we typecheck the pro-
gram. When the typechecker reaches a function abstraction, the variables in the context are
the variables in scope that must be stored in the environment. For function i, say Γ = { z1 ∶
σ1, . . . , zni

∶ σni
}. Then label i of the sum type T should map to a product type with an element

for each of these variables. Each variable should have its translated type (denoted σ′j), where the
translation of types follows the rules in Section 4.2.1. In this case:

⟨ j ∶ σ′j ⟩j∈[ni]

Note that order matters. If z1 is the first element in the context when we generate type T , it must
also be the first element when we create the function’s environment in the translation pass. For
this reason, we consider the contexts to be ordered, and always add new elements to the end of
the context.
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Putting this all together, we generate the type:

T = [ i ∶ ⟨ j ∶ σ′j ⟩j∈[ni] ]i∈[n]

We assume this type is global and always accessible during translation.

4.2 Translation Definition

This section defines how types, contexts, and expressions are translated. Note that we need to
consider both open and closed expressions when defining the translation.

4.2.1 Translation of Types

Using the definition of type T from Section 4.1, the translation of types is defined in Figure 4.1.
The interesting case is the function case. A function with type τ1 → τ2 is translated into a pair
of type T ∗ (T ∗ τ ′1 → τ ′2). This pair contains the environment and the new function. The new
function takes a pair containing the environment of type T , and an argument of the translated
argument type τ1. It returns a value of the translated return type τ2.

unit¨ unit
T-UNIT

τ ¨ τ ′

τ list¨ τ ′ list
T-LIST

τℓ ¨ τ ′ℓ ∀ℓ ∈ L

⟨ ℓ ∶ τℓ ⟩ℓ∈L ¨ ⟨ ℓ ∶ τ ′ℓ ⟩ℓ∈L
T-PROD

τ1 ¨ τ ′1 τ2 ¨ τ ′2
τ1 → τ2 ¨ T ∗ ((T ∗ τ ′1) → τ ′2)

T-FUN
τℓ ¨ τ ′ℓ ∀ℓ ∈ L

[ ℓ ∶ τℓ ]ℓ∈L ¨ [ ℓ ∶ τ ′ℓ ]ℓ∈L
T-SUM

Figure 4.1: Translation of types

4.2.2 Translation of Contexts

Contexts are translated pointwise:

Γ¨ Γ′ if and only if Γ′ = {x ∶ τ ′ ∣ x ∶ τ ∈ Γ ∧ τ ¨ τ ′}

4.2.3 Translation of Expressions

We begin with the translation of functions. As in Section 4.1, let

T = [ i ∶ ⟨ j ∶ σ′j ⟩j∈[ni] ]i∈[n]
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where n is the number of functions in the program, and ni is the number of local variables when
function i is defined. The full rule is shown in Figure 4.2.

Γ = { z1 ∶ σ1, . . . , zni
∶ σni

}

Γ, x ∶ τ1, fi ∶ τ1 → τ2 ⊢ e ∶ τ2 ¨ e′ f, y, y1, y2, z fresh

Γ ⊢ funm
{τ1, τ2}(fi . x . e) ∶ τ1 → τ2 ¨ ⟨ in[i]{T} (⟨ j ↪ zj ⟩j∈[ni]) ,

funm
{T ∗ τ ′1, τ

′
2}(f . y .

let fi = ⟨ in[i]{T} (⟨ j ↪ zj ⟩j∈[ni]) , f ⟩ in

let y1 = y.l in

let y2 = y.r in

case y1 {

∣ i(z) ↪

let z1 = z.1 in

. . .

let zni
= z.ni in [y2/x]e

′

∣ ↪ (fun0
{unit, τ ′2}(f . x . e))() }) ⟩

E-FUN

Figure 4.2: Translation of functions

A function translates to a pair that wraps the environment with a new function. The environment
has type T and consists of everything in the context at this point translated. By the construction
of the sum type T , we know that function fi corresponds to label i in the sum. Thus, with context
Γ = { z1 ∶ σ1, . . . , zni

∶ σni
}, the environment is:

in[i]{T} (⟨ j ↪ z′j ⟩j∈[ni])

where we assume Γ ⊢ zj ∶ z′j ¨ σj for all j ∈ [ni].

The new function takes both an environment and a translated argument as a pair. The second and
third lines of the function unwrap the pair into variables y1 for the environment and y2 for the
argument. Line one of the function sets fi to the pair containing the environment and the function
f . This ensures the translated program typechecks. f is a function with type T ∗ τ ′1 → τ ′2, but
recursive references to fi in the body e′ expect type T ∗ (T ∗ τ ′1 → τ ′2), which matches the
translation of the overall function.

Lines six through eight of the function extract the variables from the environment and perform
the necessary substitutions. We know y1 should have type T and be an injection with label i since
we are translating function i. If this is not the case, we error by evaluating to an immediately
diverging computation. In the label i case, given that the variables in the context were z1, . . . , zni

,
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we extract the values from the environment into these same variables in the same order. Thus, the
usages of these variables within e′ will use the correct values. Finally, we substitute the argument
variable y1 in for the original argument x in the translated body.

We now describe the translation of applications. Translated functions include their environment
and a new function that takes an environment and argument. Thus, we translate applications by
extracting the environment from the translated function, and passing this as well as the translated
argument into the new function. The rule is shown in Figure 4.3.

Γ ⊢ e1 ∶ τ1 → τ2 ¨ e′1 Γ ⊢ e2 ∶ τ1 ¨ e′2 x1, x2 fresh

Γ ⊢ e1(e2) ∶ τ2 ¨ let x1 = e
′
1.l in let x2 = e

′
1.r in x2(⟨x1 , e

′
2 ⟩)

E-APP

Figure 4.3: Translation of applications

The remaining expressions do not change structure upon translation. The full set of translation
rules is shown in figure Figure 4.4.

Γ ⊢ x ∶ τ ¨ x
E-VAR

Γ ⊢ ( ) ∶ unit¨ ()
E-UNIT

τ ¨ τ ′

Γ ⊢ [ ]{τ} ∶ τ list¨ [ ]{τ ′}
E-NIL

Γ ⊢ e1 ∶ τ ¨ e′1 Γ ⊢ e2 ∶ τ list¨ e′2
Γ ⊢ e1 ∶∶ e2 ∶ τ list¨ e′1 ∶∶ e

′
2

E-CONS

τ ¨ τ ′

Γ ⊢ e ∶ τ1 list¨ e′ Γ ⊢ e1 ∶ τ2 ¨ e′1 Γ, x ∶ τ1, xs ∶ τ1 list ⊢ e2 ∶ τ2 ¨ e′2
Γ ⊢match e { [ ]{τ1} ↪ e1 ; x ∶∶ xs↪ e2 } ∶ τ2 ¨match e′ { [ ]{τ ′1} ↪ e′1 ; x ∶∶ xs↪ e′2 }

E-MATCH

Γ ⊢ eℓ ∶ τℓ ¨ e′ℓ ∀ℓ ∈ L

Γ ⊢ ⟨ ℓ↪ eℓ ⟩ℓ∈L ∶ ⟨ ℓ ∶ τℓ ⟩ℓ∈L ¨ ⟨ ℓ↪ e′ℓ ⟩ℓ∈L
E-PROD

Γ ⊢ e ∶ ⟨ ℓ ∶ τℓ ⟩ℓ∈L ¨ e′

Γ ⊢ e.k ∶ τk ¨ e′.k
E-PROJ

Γ ⊢ e ∶ τk ¨ e′ τℓ ¨ τ ′ℓ ∀ℓ ∈ L

Γ ⊢ in[k]{[ ℓ ∶ τℓ ]ℓ∈L} (e) ∶ τk ¨ in[k]{[ ℓ ∶ τ ′ℓ ]ℓ∈L} (e
′
)

E-INJ

Γ ⊢ e ∶ [ ℓ ∶ τℓ ]ℓ∈L ¨ e′ Γ, xℓ ∶ τℓ ⊢ eℓ ∶ τ ¨ e′ℓ ∀i ∈ L

Γ ⊢ case e { ℓ(xℓ) ↪ eℓ }ℓ∈L ∶ τ ¨ case e′ { ℓ(xℓ) ↪ e′ℓ }ℓ∈L
E-CASE

Figure 4.4: Translation rules
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4.3 Transformed Program is Well-Typed

Theorem 1 . If Γ ⊢ e ∶ τ ¨ e′, then Γ′ ⊢ e′ ∶ τ ′, where Γ¨ Γ′ and τ ¨ τ ′.

Proof. We proceed by induction on the judgement Γ ⊢ e ∶ τ ¨ e′.

Case E-Fun: e = funm
{τ1, τ2}(fi . x . eb).

Name Expression

eenv in[i]{T} (⟨ j ↪ z′j ⟩j∈[ni])

f∗ funm
{T ∗ τ ′1, τ

′
2}(f . y . e1)

e1

let fi = ⟨ eenv , f ⟩ in
let y1 = y.l in
let y2 = y.r in e2

e2 case y1 { i(z) ↪ e3 ∣ ↪ (fun
0
{unit, τ ′2}(f . x . e))() }

e3 let z1 = z.1 in . . . let zn = z.ni in e4

e4 [y2/x]e′b

Table 4.1: Expression names for E-Fun case in Theorem 1.

By T-Fun, τ1 → τ2 ¨ T ∗ ((T ∗ τ ′1) → τ ′2). We know e′ = ⟨ eenv , f∗ ⟩, where eenv and f∗

are given in Table 4.1. We want to show that Γ′ ⊢ ⟨ eenv , f∗ ⟩ ∶ T ∗ ((T ∗ τ ′1) → τ ′2). By
S-Prod, this entails proving both of the following:

Γ ⊢ eenv ∶ T (4.1)

Γ ⊢ f∗ ∶ (T ∗ τ ′1) → τ ′2 (4.2)

We begin by showing 4.1. By construction of T in Section 4.1, we know that when we
reach the abstraction for function i, Γ = { z1 ∶ σ1, . . . , zni

∶ σni
}. By the inductive hypoth-

esis, Γ′ ⊢ z′j ∶ σ
′
j for all j ∈ [ni]. Thus, by S-Prod,

Γ ⊢ ⟨ j ↪ z′j ⟩j∈[ni] ∶ ⟨ j ∶ σ
′
j ⟩j∈[ni]

Then by S-Inj,
Γ ⊢ eenv ∶ T

Now we show 4.2. By S-Fun, we need to show:

Γ′, y ∶ (T ∗ τ ′1), f ∶ ((T ∗ τ
′
1) → τ ′2) ⊢ e1 ∶ τ

′
2
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By S-Let and S-Proj, we need to show:

Γ′, y ∶ (T ∗ τ ′1), f ∶ ((T ∗ τ
′
1) → τ ′2), fi ∶ T ∗ ((T ∗ τ

′
1) → τ ′2), y1 ∶ T, y2 ∶ τ

′
1 ⊢ e2 ∶ τ

′
2

Since y and f are fresh, we can remove them from the context since we know that they are
not used anywhere in e2. Thus, the above statement is equivalent to:

Γ′, fi ∶ T ∗ ((T ∗ τ ′1) → τ ′2), y1 ∶ T, y2 ∶ τ
′
1 ⊢ e2 ∶ τ

′
2

By S-App, we know that the catch-all case in e2 has type τ ′2. Thus, to show that e2 has type
τ ′2, we need to show:

Γ′, fi ∶ T ∗ ((T ∗ τ ′1) → τ ′2), y2 ∶ τ
′
1, z ∶ ⟨ j ∶ σ

′
j ⟩j∈[ni] ⊢ e3 ∶ τ

′
2

Note that again, we could remove y1 since it is fresh and does not appear in e3. By S-Let,
we want to show:

Γ′, fi ∶ T ∗ ((T ∗ τ ′1) → τ ′2), y2 ∶ τ
′
1, z1 ∶ σ

′
1, . . . , zni

∶ σ′ni
⊢ e4 ∶ τ

′
2

Since contexts are converted pointwise, we know that Γ′ = { z1 ∶ σ′1, . . . , zni
∶ σ′ni
}. Thus,

adding the substitutions z1 ∶ σ′1, . . . , zni
∶ σ′ni

is redundant, so we can remove them. Addi-
tionally, since y2 is substituted for x in e′b, we want to show:

Γ′, fi ∶ T ∗ ((T ∗ τ ′1) → τ ′2), x ∶ τ
′
1 ⊢ e

′
b ∶ τ

′
2

This is exactly what the inductive hypothesis states. Therefore, we have shown that

Γ ⊢ f∗ ∶ (T ∗ τ ′1) → τ ′2

Case
Γ ⊢ e1 ∶ τ1 → τ2 ¨ e′1 Γ ⊢ e2 ∶ τ1 ¨ e′2 x1, x2 fresh

Γ ⊢ e1(e2) ∶ τ2 ¨ let x1 = e
′
1.l in let x2 = e

′
1.r in x2(⟨x1 , e

′
2 ⟩)

E-APP

We want to show that Γ′ ⊢ let x1 = e′1.l in let x2 = e′1.r in x2(⟨x1 , e′2 ⟩) ∶ τ
′
2. By the

inductive hypothesis,
Γ′ ⊢ e′1 ∶ T ∗ ((T ∗ τ

′
1) → τ ′2)

Then by S-Let and S-Proj, we need to show:

Γ′, x1 ∶ T, x2 ∶ (T ∗ τ
′
1) → τ ′2 ⊢ x2(⟨x1 , e

′
2 ⟩) ∶ τ

′
2

By the inductive hypothesis, Γ′ ⊢ e′2 ∶ τ
′
1. Thus, by S-Prod,

Γ′, x1 ∶ T, x2 ∶ (T ∗ τ
′
1) → τ ′2 ⊢ ⟨x1 , e

′
2 ⟩ ∶ T ∗ τ

′
1

Then by S-App,

Γ′, x1 ∶ T, x2 ∶ (T ∗ τ
′
1) → τ ′2 ⊢ x2(⟨x1 , e

′
2 ⟩) ∶ τ

′
2
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Case Γ ⊢ x ∶ τ ¨ x
E-VAR

Since the context converts pointwise, we know

Γ′ ⊢ x ∶ τ ′

Case Γ ⊢ ( ) ∶ unit¨ ()
E-UNIT

By T-Unit, unit¨ unit, so we want to show that the translated expression has type unit.
By S-Unit,

Γ′ ⊢ ( ) ∶ unit

Case
τ ¨ τ ′

Γ ⊢ [ ]{τ} ∶ τ list¨ [ ]{τ ′}
E-NIL

By T-List, τ list ¨ τ ′ list, so we want to show that the translated expression has type
τ ′ list. By S-Nil,

Γ′ ⊢ [ ]{τ ′} ∶ τ ′ list

Case
Γ ⊢ e1 ∶ τ ¨ e′1 Γ ⊢ e2 ∶ τ list¨ e′2

Γ ⊢ e1 ∶∶ e2 ∶ τ list¨ e′1 ∶∶ e
′
2

E-CONS

By T-List, τ list ¨ τ ′ list, so we want to show that the translated expression has type
τ ′ list. By the inductive hypothesis, Γ′ ⊢ e′1 ∶ τ ′ and Γ′ ⊢ e′2 ∶ τ ′ list. Then by S-Cons,

Γ′ ⊢ e′1 ∶∶ e
′
2 ∶ τ

′ list

Case
τ ¨ τ ′ Γ ⊢ e ∶ τ1 list¨ e′ Γ ⊢ e1 ∶ τ2 ¨ e′1 Γ, x ∶ τ1, xs ∶ τ1 list ⊢ e2 ∶ τ2 ¨ e′2

Γ ⊢match e { [ ]{τ1} ↪ e1 ; x ∶∶ xs↪ e2 } ∶ τ2 ¨match e′ { [ ]{τ ′1} ↪ e′1 ; x ∶∶ xs↪ e′2 }
E-MATCH

By the inductive hypothesis, Γ′ ⊢ e′ ∶ τ ′1, Γ′ ⊢ e′1 ∶ τ
′
2, and Γ′, x ∶ τ ′1, xs ∶ τ

′
1 list ⊢ e′2 ∶ τ

′
2.

Then by S-Match,

Γ′ ⊢match e′ { [ ]{τ ′1} ↪ e′1 ; x ∶∶ xs↪ e′2 } ∶ τ
′
2

Case
Γ ⊢ eℓ ∶ τℓ ¨ e′ℓ ∀ℓ ∈ L

Γ ⊢ ⟨ ℓ↪ eℓ ⟩ℓ∈L ∶ ⟨ ℓ ∶ τℓ ⟩ℓ∈L ¨ ⟨ ℓ↪ e′ℓ ⟩ℓ∈L
E-PROD

By T-Prod, ⟨ ℓ ∶ τℓ ⟩ℓ∈L ¨ ⟨ ℓ ∶ τ ′ℓ ⟩ℓ∈L, so we want to show that the translated expression has
type ⟨ ℓ ∶ τ ′ℓ ⟩ℓ∈L. By the inductive hypothesis, Γ′ ⊢ e′ℓ ∶ τ

′
ℓ for all ℓ ∈ L. Then by S-Prod,

Γ′ ⊢ ⟨ ℓ↪ e′ℓ ⟩ℓ∈L ∶ ⟨ ℓ ∶ τ
′
ℓ ⟩ℓ∈L
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Case
Γ ⊢ e ∶ ⟨ ℓ ∶ τℓ ⟩ℓ∈L ¨ e′

Γ ⊢ e.k ∶ τk ¨ e′.k
E-PROJ

By the inductive hypothesis, Γ′ ⊢ e′ ∶ ⟨ ℓ ∶ τ ′ℓ ⟩ℓ∈L. Then by S-Proj,

Γ′ ⊢ e′.k ∶ τ ′k

Case
Γ ⊢ e ∶ τk ¨ e′ τℓ ¨ τ ′ℓ ∀ℓ ∈ L

Γ ⊢ in[k]{[ ℓ ∶ τℓ ]ℓ∈L} (e) ∶ τk ¨ in[k]{[ ℓ ∶ τ ′ℓ ]ℓ∈L} (e
′
)

E-INJ

By the inductive hypothesis, Γ′ ⊢ e′ ∶ τ ′k. Then by S-Inj,

Γ′ ⊢ in[k]{[ ℓ ∶ τ ′ℓ ]ℓ∈L} (e
′
) ∶ τ ′k

Case
Γ ⊢ e ∶ [ ℓ ∶ τℓ ]ℓ∈L ¨ e′ Γ, xℓ ∶ τℓ ⊢ eℓ ∶ τ ¨ e′ℓ ∀i ∈ L

Γ ⊢ case e { ℓ(xℓ) ↪ eℓ }ℓ∈L ∶ τ ¨ case e′ { ℓ(xℓ) ↪ e′ℓ }ℓ∈L
E-CASE

By the inductive hypothesis, Γ′ ⊢ e′ ∶ [ ℓ ∶ τ ′ℓ ]ℓ∈L and Γ′, xℓ ∶ τ ′ℓ ⊢ e
′
ℓ ∶ τ

′ for all ℓ ∈ L. Then
by S-Case,

Γ′ ⊢ case e′ { ℓ(xℓ) ↪ e′ℓ }ℓ∈L ∶ τ
′
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Chapter 5

Soundness

In this chapter, we show that our translation does not change the semantics of the program.
We define a logical relation to define equality of two programs. Then, we prove soundness by
showing that the original and translated programs are related.

5.1 Program Equality

To prove soundness, we need to formalize what it means for two programs to be equal. We do
this with a logical relation, and specify rules for equality of values, closed expressions, and open
expressions.

5.1.1 Equality of Values

Equality of values is defined in Figure 5.1. The interesting rule is for the function case. Intu-
itively, two functions should be equal if they evaluate to equivalent expressions when applied to
equivalent values. This idea is captured in the rule, but the translated function is applied to the
pair including both the environment and the value.

5.1.2 Equality of Closed Expressions

We define equality of closed expressions in Figure 5.2. Any two diverging programs are equiva-
lent. For terminating programs, they must evaluate to equivalent values with the same cost. This
is necessary to ensure the translation preserves cost. Note that since the transformation does not
add or remove any ticks, it should not affect the total cost. We prove this formally in Theorem 2.

Note that EQ-Step only states that two expressions e1 and e2 are equivalent if they step to equiv-
alent values. We show that e1 and e2 are also equivalent if they step to equivalent expressions.

27



( ) ≈ ( ) ∶ unit
EQ-UNIT

τ ¨ τ ′

[ ]{τ} ≈ [ ]{τ ′} ∶ τ list
EQ-NIL

v1 ≈ v
′
1 ∶ τ v2 ≈ v

′
2 ∶ τ list

v1 ∶∶ v2 ≈ v
′
1 ∶∶ v

′
2 ∶ τ list

EQ-CONS

vℓ ≈ v
′
ℓ ∶ τℓ ∀i ∈ [k]

⟨ ℓ↪ vℓ ⟩ℓ∈L ≈ ⟨ ℓ↪ vℓ ⟩ℓ∈L ∶ ⟨ ℓ ∶ τℓ ⟩ℓ∈L
EQ-PROD

f∗ = funm
{τ1, τ2}(f . x . e) f∗

′

= funm
{T ∗ τ ′1, τ

′
2}(f

′ . x . e′)
f∗(v) ≈ f∗

′

(⟨ eenv , v
′
⟩) ∶ τ2 ∀v ≈ v′ ∶ τ1

f∗ ≈ ⟨ eenv , f∗
′

⟩ ∶ τ1 → τ2
EQ-FUN

τ = [ ℓ ∶ τℓ ]ℓ∈L v ≈ v′ ∶ τℓ
in[ℓ]{τ} (v) ≈ in[ℓ]{τ} (v′) ∶ τ

EQ-INJ

Figure 5.1: Equality of values

τ ¨ τ ′ Γ ⊢ v1 ∶ τ Γ ⊢ v2 ∶ τ
′ e1 z→

∗
n v1 e2 z→

∗
n v2 v1 ≈ v2 ∶ τ

e1 ≈ e2 ∶ τ
EQ-STEP

e1 z→
∗
∞ � e2 z→

∗
∞ �

e1 ≈ e2 ∶ τ
EQ-DIVERGE

Figure 5.2: Equality of closed expressions

Lemma 3 (Head Expansion). Let e′1 ≈ e
′
2 ∶ τ . If e1 z→∗n e′1 and e2 z→∗n e′2, then e1 ≈ e2 ∶ τ .

Proof. Since e′1 ≈ e
′
2 ∶ τ , we know there are two cases:

Case Both e′1 and e′2 diverge.

Then by Div-Step, both e1 and e2 diverge. Thus, by EQ-Diverge, e1 ≈ e2 ∶ τ .

Case Both e′1 and e′2 terminate.

Then e′1 z→
∗
n′ v1 and e2 z→∗n′ v2 where v1 ≈ v2 ∶ τ . Thus,

e1 z→
∗
n+n′ v1
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e2 z→
∗
n+n′ v2

Therefore, by EQ-Step, e1 ≈ e2 ∶ τ .

5.1.3 Equality of Open Expressions

Equivalence of open expressions is defined in Figure 5.3 using closing substitutions. Equivalence
of closing substitutions γ and γ′ is defined as follows:

Γ ⊢ γ ≈ γ′ if and only if ∀x ∶ τ ∈ Γ, γ(x) ≈ γ′(x) ∶ τ

That is, both closing substitutions must have bindings of the correct type for each variable in Γ,
and the corresponding values must be equivalent.

Γ ⊢ γ ≈ γ′ γ(e) ≈ γ′(e′) ∶ τ

Γ ⊢ e ∼ e′ ∶ τ
EQ-EXP

Figure 5.3: Equality of open expressions

5.2 Soundness Proof

Theorem 2 . Let Γ ⊢ γ ≈ γ′. If Γ ⊢ e ∶ τ ¨ e′ then γ(e) ≈ γ′(e′) ∶ τ .

Proof. Let Γ ⊢ γ ≈ γ′. We proceed by induction over the translation judgement.

Case E-Fun: e = funm
{τ1, τ2}(fi . x . eb).

We know γ′(e′) = ⟨ eenv , f∗ ⟩, where eenv and f∗ are given in Table 5.1. We want to show
that γ(e) ≈ γ′(e′) ∶ τ1 → τ2.

From EQ-Fun, we need to show that for all v ≈ v′ ∶ τ1, Γ ⊢ γ (funm
{τ1, τ2}(fi . x . e)(v)) ≈

f∗(⟨ eenv , v′ ⟩) ∶ τ2. By Lemma 3, it is sufficient to show that both sides step to equivalent
expressions with the same cost. We will show this is true for all m and proceed by induction
on m.

When m = 0, both sides diverge, and by EQ-Diverge, γ ((fun0
{τ1, τ2}(fi . x . e)) (v)) ≈

(fun0
{T ∗ τ ′1, τ

′
2}(f . y . e1)) (⟨ eenv , v

′
⟩) ∶ τ2.
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Name Expression

eenv in[i]{T} (⟨ j ↪ γ′(zj) ⟩j∈[ni])

f∗ funm
{T ∗ τ ′1, τ

′
2}(f . y . e1)

e1 let fi = ⟨ eenv , f ⟩ in e2

e2 let y1 = y.l in e3

e3 let y2 = y.r in e4

e4 case y1 { i(z) ↪ e5 ∣ ↪ (fun
0
{unit, τ ′2}(f . x . e))() }

e5 let z1 = z.1 in . . . let zn = z.ni in e6

e6 [y2/x]γ′(e′b)

Table 5.1: Expression names for E-Fun case in Theorem 2.

Now we consider the case where m > 0. We step both applications as follows:

γ ((funm
{τ1, τ2}(fi . x . eb)) (v)) z→0 [v/x , funm−1

{τ1, τ2}(fi . x . e)/fi](γ(eb))

f∗(⟨ eenv , v′ ⟩) z→0 [⟨ eenv , v
′
⟩/y , funm−1

{T ∗ τ ′1, τ
′
2}(f . y . e1)/f]e1

z→0 [⟨ eenv , v
′
⟩/y , funm−1

{T ∗ τ ′1, τ
′
2}(f . y . e1)/f ,

⟨ eenv , fun
m−1
{T ∗ τ ′1, τ

′
2}(f . y . e1) ⟩/fi]e2

z→0 [⟨ eenv , v
′
⟩/y , funm−1

{T ∗ τ ′1, τ
′
2}(f . y . e1)/f ,

⟨ eenv , fun
m−1
{T ∗ τ ′1, τ

′
2}(f . y . e1) ⟩/fi , eenv/y1]e3

z→0 [⟨ eenv , v
′
⟩/y , funm−1

{T ∗ τ ′1, τ
′
2}(f . y . e1)/f ,

⟨ eenv , fun
m−1
{T ∗ τ ′1, τ

′
2}(f . y . e1) ⟩/fi , eenv/y1 ,

v′/y2]e4
z→0 [⟨ eenv , v

′
⟩/y , funm−1

{T ∗ τ ′1, τ
′
2}(f . y . e1)/f ,

⟨ eenv , fun
m−1
{T ∗ τ ′1, τ

′
2}(f . y . e1) ⟩/fi , eenv/y1 ,

v′/y2 , ⟨ j ↪ γ′(zj) ⟩j∈[ni]/z]e5
z→

∗
0 [⟨ eenv , v

′
⟩/y , funm−1

{T ∗ τ ′1, τ
′
2}(f . y . e1)/f ,

⟨ eenv , fun
m−1
{T ∗ τ ′1, τ

′
2}(f . y . e1) ⟩/fi , eenv/y1 ,

v′/y2 , ⟨ j ↪ γ′(zj) ⟩j∈[ni]/z ,
γ′(z1)/z1 , . . . , γ′(zni

)/zni
, y2/x](γ

′
(e′b))

Let δ′′ be the final substitution above. Define:

δ = γ ∪ [v/x , funm−1
{τ1, τ2}(fi . x . e)/fi]

δ′ = γ′ ∪ δ′′
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Since f, y, y1, and z are all fresh, they do not appear in Γ. Thus, removing them from δ′′

does not affect the equivalence of the substitutions under Γ, so we have

Γ, x ∶ τ1, fi ∶ τ1 → τ2 ⊢

δ′′ ≈ [v′/x , ⟨ eenv , fun
m−1
{T ∗ τ ′1, τ

′
2}(f . y . e1) ⟩/fi , γ

′
(z1)/z1 , . . . , γ

′
(zn)/zn]

Note that δ′ already includes the substitutions from γ′, so the substitutions γ′(z1)/z1 , . . . ,
γ′(zni

)/zni
are redundant. Thus,

Γ, x ∶ τ1, fi ∶ τ1 → τ2 ⊢ δ
′
≈ γ′ ∪ [v′/x , ⟨ eenv , fun

m−1
{T ∗ τ ′1, τ

′
2}(f . y . e1) ⟩/fi]

Since Γ ⊢ v ≈ v′ ∶ τ1 and Γ ⊢ γ ≈ γ′, we know:

Γ, x ∶ τ1 ⊢ γ ∪ [v/x] ≈ γ
′
∪ [v′/x]

By the inductive hypothesis for the inner induction,

funm−1
{τ1, τ2}(fi . x . e) ≈ ⟨ eenv , fun

m−1
{T ∗ τ ′1, τ

′
2}(f . y . e1) ⟩

Thus,

Γ, x ∶ τ1, fi ∶ τ1 → τ2 ⊢ γ ∪ [v/x, fun
m−1
{τ1, τ2}(fi . x . e)/fi]

≈ γ′ ∪ [v′/x, ⟨ eenv , fun
m−1
{T ∗ τ ′1, τ

′
2}(f . y . e1) ⟩/fi]

Therefore, Γ, x ∶ τ1, fi ∶ τ1 → τ2 ⊢ δ ≈ δ′. By the inductive hypothesis, Γ, x ∶ τ1 ⊢ δ(eb) ≈
δ′(e′b) ∶ τ2. Then by Lemma 3,

γ ((funm
{τ1, τ2}(fi . x . e)) (v)) ≈ (fun

m
{T ∗ τ ′1, τ

′
2}(f . y . e1)) (⟨ eenv , v

′
⟩) ∶ τ2

Case
Γ ⊢ e1 ∶ τ1 → τ2 ¨ e′1 Γ ⊢ e2 ∶ τ1 ¨ e′2 x1, x2 fresh

Γ ⊢ e1(e2) ∶ τ2 ¨ let x1 = e
′
1.l in let x2 = e

′
1.r in x2(⟨x1 , e

′
2 ⟩)

E-APP

By the inductive hypothesis, γ(e1) ≈ γ′(e′1) ∶ τ1 → τ2, so by the rules for equality of
closed expressions, there are two cases: either both sides diverge, or both terminate after
evaluating to values with equal cost.

Case Both γ(e1) and γ′(e′1) diverge.

By Div-App1, γ(e1(e2)) z→∗∞ �, and γ′(e′1(e
′
2)) z→

∗∞ �. Then by EQ-Diverge,

γ(e1(e2)) ≈ γ
′
(e′1(e

′
2)) ∶ τ1 → τ2

Case Both γ(e1) and γ′(e′1) terminate.
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Since both terminate, γ(e1) z→∗n1
v1 and γ(e′1) z→∗n1

v′1, where v1 ≈ v′1 ∶ τ1 → τ2.
By canonical forms, v1 = funm

{τ1, τ2}(f . x . e), and v′1 = ⟨ venv , f∗ ⟩, where f∗ =
funm

{T ∗ τ ′1, τ
′
2}(f

′ . x . e).

By the inductive hypothesis, Γ ⊢ γ(e2) ≈ γ′(e′2) ∶ τ1. By the rules for equality of
closed expressions, there are two cases: either both sides diverge, or both terminate
after evaluating to values with the same cost.

Case Both γ(e2) and γ′(e′2) diverge.

By Div-App2, γ(e1(e2)) z→∗∞ � and γ′(e′1(e
′
2)) z→

∗∞ �. Then by EQ-Diverge,

γ(e1(e2)) ≈ γ
′
(e′1(e

′
2)) ∶ τ1 → τ2

Case Both γ(e2) and γ′(e′2) terminate.

Since both terminate, γ(e2) z→∗n2
v2 and γ′(e′2) z→∗n2

v′2, where v2 ≈ v′2 ∶ τ1.
We want to show that γ(e1(e2)) ≈ γ(e′1(e

′
2)) ∶ τ2.

Recall that v′1 = ⟨ venv , f∗ ⟩. We step both sides as follows:

γ(e1(e2)) z→n1 γ(v1(e2))

z→n2 γ(v1(v2))

γ′(e′1(e
′
2)) z→n1 γ

′
(let x1 = v

′
1.l in let x2 = v

′
1.r in x2(⟨x1 , e

′
2 ⟩))

z→n2 γ
′
(let x1 = v

′
1.l in let x2 = v

′
1.r in x2(⟨x1 , v

′
2 ⟩))

z→0 γ′ (let x2 = e
′
1.r in x2(⟨ venv , e

′
2 ⟩))

z→0 γ′ (f∗(⟨ venv , e′2 ⟩))

Note that x1 and x2 are fresh, so they do not appear in e2 or e′2. Thus, after sub-
stituting, there is no need to continue writing the substitution in the expressions
above.

Since v1 ≈ ⟨ venv , f∗ ⟩ ∶ τ1 → τ2, by inversion on EQ-Fun,

γ(v1(v)) ≈ γ
′
(f∗(⟨ eenv , v′ ⟩)) ∶ τ1 → τ2 ∀v ≈ v′ ∶ τ1

Combining v2 ≈ v′2 with the above, we have:

γ(v1(v2)) ≈ γ
′
(f∗(⟨ eenv , v′2 ⟩)) ∶ τ1 → τ2

Therefore, by Lemma 3,

γ(e1(e2)) ≈ γ
′
(e′1(e

′
2)) ∶ τ1 → τ2

Case Γ ⊢ x ∶ τ ¨ x
E-VAR

Since Γ ⊢ γ ≈ γ′ and Γ ⊢ x ∶ τ , we know γ(x) ≈ γ′(x) ∶ τ .
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Case Γ ⊢ ( ) ∶ unit¨ ()
E-UNIT

By EQ-Unit, ( ) ≈ ( ) ∶ unit.

Case
τ ¨ τ ′

Γ ⊢ [ ]{τ} ∶ τ list¨ [ ]{τ ′}
E-NIL

By EQ-Nil, [ ]{τ} ≈ [ ]{τ} ∶ τ list.

Case
Γ ⊢ e1 ∶ τ ¨ e′1 Γ ⊢ e2 ∶ τ list¨ e′2

Γ ⊢ e1 ∶∶ e2 ∶ τ list¨ e′1 ∶∶ e
′
2

E-CONS

By the inductive hypothesis, γ(e1) ≈ γ′(e′1) ∶ τ and γ(e2) ≈ γ′(e′2) ∶ τ list. By the rules
for equality of closed expressions, there are two cases:

Case Both γ(e1) and γ′(e′1) diverge, and/or both γ(e2) and γ′(e′2) diverge.

By either Div-Cons1 or Div-Cons2, γ(e1 ∶∶ e2) z→∗∞ � and γ′(e′1 ∶∶ e
′
2) z→

∗∞ �. Then
by EQ-Diverge,

γ(e1 ∶∶ e2) ≈ γ
′
(e′1 ∶∶ e

′
2) ∶ τ list

Case γ(e1), γ′(e′1), γ(e2), and γ′(e′2) all terminate.

Since they all terminate, γ(e1) z→∗n1
v1, γ(e2) z→∗n2

v2, γ′(e′1) z→∗n1
v′1, and

γ′(e′2) z→∗n2
v′2, where v1 ≈ v′1 ∶ τ and v2 ≈ v′2 ∶ τ list.

By EQ-Cons, v1 ∶∶ v2 ≈ v′1 ∶∶ v
′
2 ∶ τ list. Therefore, by EQ-Step,

γ(e1 ∶∶ e2) ≈ γ
′
(e′1 ∶∶ e

′
2) ∶ τ list

Case
τ ¨ τ ′ Γ ⊢ e ∶ τ1 list¨ e′ Γ ⊢ e1 ∶ τ2 ¨ e′1 Γ, x ∶ τ1, xs ∶ τ1 list ⊢ e2 ∶ τ2 ¨ e′2

Γ ⊢match e { [ ]{τ1} ↪ e1 ; x ∶∶ xs↪ e2 } ∶ τ2 ¨match e′ { [ ]{τ ′1} ↪ e′1 ; x ∶∶ xs↪ e′2 }
E-MATCH

By the inductive hypothesis, γ(e) ≈ γ′(e′) ∶ τ1 list. By the rules for equality of closed
expressions, equality of lists, and canonical forms, there are three cases: either both sides
diverge, both terminate and step to the Nil case, or both terminate and step to the Cons
case.

Case Both γ(e) and γ′(e′) diverge.

By Div-Match,

γ(match e { [ ]{τ1} ↪ e1 ; x ∶∶ xs↪ e2 }) z→
∗
∞ �

γ′(match e′ { [ ]{τ ′1} ↪ e′1 ; x ∶∶ xs↪ e′2 }) z→
∗
∞ �
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Then by EQ-Diverge,

γ (match e { [ ]{τ1} ↪ e1 ; x ∶∶ xs↪ e2 })

≈ γ′ (match e′ { [ ]{τ ′1} ↪ e′1 ; x ∶∶ xs↪ e′2 }) ∶ τ2

Case Both γ(e) and γ′(e′) terminate and step to the Nil case.

Then γ(e) z→∗n [ ]{τ1} and γ(e′) z→∗n [ ]{τ ′1}. By D-MatchNil,

γ (match e { [ ]{τ1} ↪ e1 ; x ∶∶ xs↪ e2 }) z→
∗
n γ(e1)

γ′ (match e′ { [ ]{τ ′1} ↪ e′1 ; x ∶∶ xs↪ e′2 }) z→
∗
n γ′(e′1)

By the inductive hypothesis, γ(e1) ≈ γ(e′1) ∶ τ1 list. Therefore, by Lemma 3,

γ (match e { [ ]{τ1} ↪ e1 ; x ∶∶ xs↪ e2 })

≈ γ′ (match e′ { [ ]{τ ′1} ↪ e′1 ; x ∶∶ xs↪ e′2 }) ∶ τ2

Case γ(e) and γ′(e′) terminate and step to the Cons case.

Then γ(e) z→∗n v3 ∶∶ v4 and γ(e′) z→∗n v′3 ∶∶ v
′
4. By inversion on EQ-Cons, v3 ≈ v′3 ∶ τ1

and v4 ≈ v′4 ∶ τ1 list. By D-MatchCons,

γ (match e { [ ]{τ1} ↪ e1 ; x ∶∶ xs↪ e2 }) z→
∗
n [v3/x, v4/xs]γ(e2)

γ′ (match e′ { [ ]{τ ′1} ↪ e′1 ; x ∶∶ xs↪ e′2 }) z→
∗
n [v

′
3/x, v

′
4/xs]γ

′
(e′2)

Define
δ = γ ∪ [v3/x, v4/xs]

δ′ = γ′ ∪ [v′3/x, v
′
4/xs]

Note that Γ, x ∶ τ1, xs ∶ τ1 list ⊢ δ ≈ δ′ since Γ ⊢ γ ≈ γ′, v3 ≈ v′3 ∶ τ1, and v4 ≈ v′4 ∶
τ1 list. By the inductive hypothesis, δ(e2) ≈ δ′(e′2) ∶ τ2 list. Therefore, by Lemma 3,

γ (match e { [ ]{τ1} ↪ e1 ; x ∶∶ xs↪ e2 })

≈ γ′ (match e′ { [ ]{τ ′1} ↪ e′1 ; x ∶∶ xs↪ e′2 }) ∶ τ2

Case
Γ ⊢ eℓ ∶ τℓ ¨ e′ℓ ∀ℓ ∈ L

Γ ⊢ ⟨ ℓ↪ eℓ ⟩ℓ∈L ∶ ⟨ ℓ ∶ τℓ ⟩ℓ∈L ¨ ⟨ ℓ↪ e′ℓ ⟩ℓ∈L
E-PROD

Let τ = ⟨ ℓ ∶ τℓ ⟩ℓ∈k. By the inductive hypothesis, γ(eℓ) ≈ γ′(e′ℓ) ∶ τℓ for all ℓ ∈ L. By the
rules for equality of closed expressions, there are two cases:
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Case There exists k such that both γ(ek) and γ′(e′k) diverge.

By Div-Prod, γ(⟨ ℓ↪ eℓ ⟩ℓ∈L) z→∗∞ � and γ′(⟨ ℓ↪ e′ℓ ⟩ℓ∈L) z→
∗∞ �. Then by EQ-

Diverge,
γ(⟨ ℓ↪ eℓ ⟩ℓ∈L) ≈ γ′(⟨ ℓ↪ e′ℓ ⟩ℓ∈L) ∶ τ

Case For all ℓ ∈ L, both γ(eℓ) and γ′(e′ℓ) terminate.

Since both terminate, γ(eℓ) z→∗nℓ
vℓ and γ′(e′ℓ) z→

∗
nℓ

v′ℓ, where vℓ ≈ v′ℓ ∶ τℓ for all
ℓ ∈ L. By EQ-Prod, ⟨ ℓ↪ vℓ ⟩ℓ∈L ≈ ⟨ ℓ↪ v′ℓ ⟩ℓ∈L ∶ τ . Therefore, by EQ-Step,

γ(⟨ ℓ↪ eℓ ⟩ℓ∈L) ≈ γ′(⟨ ℓ↪ e′ℓ ⟩ℓ∈L) ∶ τ

Case
Γ ⊢ e ∶ ⟨ ℓ ∶ τℓ ⟩ℓ∈L ¨ e′

Γ ⊢ e.k ∶ τk ¨ e′.k
E-PROJ

Let τ = ⟨ ℓ ∶ τℓ ⟩ℓ∈L. By the inductive hypothesis, γ(e) ≈ γ′(e′) ∶ τ . By the rules for equality
of closed expressions, there are two cases: either both sides diverge, or both terminate after
evaluating to values.

Case Both γ(e) and γ′(e′) diverge.

By Div-Proj, γ(e.k) z→∗∞ � and γ′(e′.k) z→∗∞ �. Then by EQ-Diverge,

γ(e.k) ≈ γ′(e′.k) ∶ τk

Case Both γ(e) and γ′(e′) terminate.

Then γ(e) z→∗n v and γ′(e′) z→∗n v′, where v ≈ v′ ∶ τ . By canonical forms, v =
⟨ ℓ↪ vℓ ⟩ℓ∈L and v′ = ⟨ ℓ↪ v′ℓ ⟩ℓ∈L, where vℓ ≈ v′ℓ ∶ τℓ for all ℓ ∈ L.

By D-Proj, γ(v.k) z→0 vk and γ′(v′.k) z→0 v′k, where vk ≈ v′k ∶ τk. Thus, γ(e.k) z→∗n
vk and γ′(e′.k) z→∗n v′k, where vk ≈ v′k ∶ τk. By EQ-Step,

γ(e.k) ≈ γ′(e′.k) ∶ τk

Case
Γ ⊢ e ∶ τk ¨ e′ τℓ ¨ τ ′ℓ ∀ℓ ∈ L

Γ ⊢ in[k]{[ ℓ ∶ τℓ ]ℓ∈L} (e) ∶ τk ¨ in[k]{[ ℓ ∶ τ ′ℓ ]ℓ∈L} (e
′
)

E-INJ

Let τ = [ ℓ ∶ τℓ ]ℓ∈L and let τ ¨ τ ′. By the inductive hypothesis, γ(e) ≈ γ′(e′) ∶ τk. By the
rules for equality of closed expressions, there are two cases: either both sides diverge, or
both terminate after evaluating to values.

Case Both γ(e) and γ′(e′) diverge.

By Div-Inj, γ(in[k]{τ} (e)) z→∗∞ � and γ′(in[k]{τ} (e′)) z→∗∞ �. Then by EQ-
Diverge,

γ(in[k]{τ} (e)) ≈ γ′(in[k]{τ} (e′)) ∶ τ
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Case Both γ(e) and γ′(e′) terminate.

Then γ(e) z→∗n v and γ′(e′) z→∗n v′, where v ≈ v′ ∶ τk. By EQ-Inj, in[k]{τ} (v) ≈
in[k]{τ ′} (v′) ∶ τ . Therefore, by EQ-Step,

γ(in[k]{τ} (e)) ≈ γ′(in[k]{τ} (e′)) ∶ τ

Case
Γ ⊢ e ∶ [ ℓ ∶ τℓ ]ℓ∈L ¨ e′ Γ, xℓ ∶ τℓ ⊢ eℓ ∶ τ ¨ e′ℓ ∀i ∈ L

Γ ⊢ case e { ℓ(xℓ) ↪ eℓ }ℓ∈L ∶ τ ¨ case e′ { ℓ(xℓ) ↪ e′ℓ }ℓ∈L
E-CASE

Let τ = [ ℓ ∶ τℓ ]ℓ∈L and let Γ ⊢ τ ¨ τ ′. By the inductive hypothesis, γ(e) ≈ γ(e′) ∶ τ . By
the rules for equality of closed expressions, there are two cases: either both sides diverge,
or both terminate after evaluating to values.

Case Both γ(e) and γ′(e′) diverge.

By Div-Case,
γ(case e { ℓ(xℓ) ↪ eℓ }ℓ∈L) z→∗∞ �

γ′(case e′ { ℓ(xℓ) ↪ e′ℓ }ℓ∈L) z→
∗
∞ �

Then by EQ-Diverge,

γ (case e { ℓ(xℓ) ↪ eℓ }ℓ∈L) ≈ γ′ (case e′ { ℓ(xℓ) ↪ e′ℓ }ℓ∈L) ∶ τ

Case Both γ(e) and γ′(e′) terminate.

Then γ(e) z→∗n v and γ(e′) z→∗n v′, where v ≈ v′ ∶ τ . By canonical forms, v =
in[li]{τ} (v) and v′ = in[li]{τ} (v′).

By D-Case2,
γ (case v { ℓ(xℓ) ↪ eℓ }ℓ∈L) z→0 [v/xk]ek

γ′ (case v′ { ℓ(xℓ) ↪ e′ℓ }ℓ∈L) z→0 [v
′
/xk]e

′
k

Therefore,
γ (case e { ℓ(xℓ) ↪ eℓ }ℓ∈L) z→∗n [v/xk]ek

γ′ (case e′ { ℓ(xℓ) ↪ e′ℓ }ℓ∈L) z→
∗
n [v

′
/xk]e

′
k

Define
δ = γ ∪ [v/xk]

δ′ = γ′ ∪ [v′/xk]

Note that Γ, x ∶ τ ⊢ δ ≈ δ′ since Γ ⊢ γ ≈ γ′, and v ≈ v′ ∶ τ . By the inductive
hypothesis, δ(ek) ≈ δ(e′k) ∶ τ2. Therefore, by Lemma 3,

γ (case e { ℓ(xℓ) ↪ eℓ }ℓ∈L) ≈ γ′ (case e′ { ℓ(xℓ) ↪ e′ℓ }ℓ∈L) ∶ τ
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5.3 General Recursive Functions

Thus far, we have only considered bounded recursive functions, which denote the number of
recursive calls they are allowed to make. However, our results also extend to general recursive
functions by compactness.

Theorem 3 (Compactness). Only finitely many unwindings of a fixed point expression are
needed in a complete evaluation of a a well-typed, closed expression.

Compactness is a known result for PCF [11]. Although we are using a modified version of PCF,
the theorem still holds.

Intuitively, for any terminating program, there is some maximum number of recursive calls n that
any function makes. In this case, the code written with general recursive functions is equivalent
to bounded recursion with the maximum number of recursive calls set to n. We can formalize
this idea as follows.

5.3.1 Translating Unbounded to Bounded PCF

Let Unbounded PCF (UPCF) be identical to Bounded PCF (BPCF) except it has general recursive
functions rather than bounded recursion. Say we have an expression e in UPCF. We know by
compactness that we can translate e into an equivalent expression ē in BPCF by adding a large
enough m to each function. Then the reverse should also be true—if we remove these numbers,
we should get back an expression in UPCF. This is captured in Lemma 4.

Lemma 4 . Given e ∶ τ in BPCF such that e z→∗n v where v is not �, let e′ be the UPCF
expression derived from removing the function bounds. Then e′ z→n v.

Proof. ē′ cannot need more recursive calls to terminate than ē. If this was the case, then the
soundness proof in Section 5.2 would not hold because an initially terminating expression might
no longer terminate. Given this, removing the bounds should give a valid UPCF expression.

Let e be a UPCF expression and ē be an equivalent BPCF expression which we know can be
generated by compactness. Applying the translation defined in Chapter 4 to ē gives ē′, which we
know is equivalent to ē by the soundness proof. Thus, it is also equivalent to e. By Lemma 4,
removing the bounds on the functions gives an equivalent UPCF expression e′, which also must
be equivalent to e. Thus, our translation can be expanded using compactness and Lemma 4 to
also work for general recursive functions in UPCF.

37



38



Chapter 6

Related Work

Existing work that transforms higher-order into first order programs falls into two categories:
defunctionalization, and closure conversion. In this section, we survey relevant work in both of
these categories, highlighting how our work differs from or builds on previous approaches. We
also discuss alternate techniques for proving soundness using logical relations.

6.1 Defunctionalization

The original method of defunctionalization introduced by Reynolds essentially eliminates func-
tions, replacing them with data types and a single top-level apply function [16]. Defunctional-
ization is implemented in the MLton compiler for SML, which improves upon previous work
by using a flow analysis to determine sets of lambdas that can occur at the same program point.
This allows them to use multiple different sum types for the environments rather than one large
sum type, which also reduces the complexity of each corresponding apply function [8]. More
recent work has also developed specializing defunctionalization which allows a single HOF to
be transformed into multiple first-order functions, specialized for different call sites [7].

While these approaches are useful for compiling to low level languages, they fundamentally
change the structure of the code. This is not necessary for our purposes and would make analysis
using RaML more difficult. Thus, we do not opt for defunctionalization. However, similarly
to these approaches, we use sum types to represent our environments. Like Reynolds’s original
approach, we use a single sum type for all our environments.

6.2 Closure Conversion

Closure conversion can be implemented as a type-preserving translation, where functions are
transformed into pairs of a code pointer and environment [14]. Minamide et al. used a two phase
approach to conversion, first translating to an intermediate language with abstract closures, and
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then implementing closures using primitives in a second phase. Because we do not need our
transformation to be sound for multiple representations of closures, we have only one phase,
immediately representing closures using products and sums.

Traditional closure conversion algorithms use existential types for closure representation [2, 10,
14]. This supports separate compilation, but would not be feasible for our purposes because
RaML needs access to the types inside the closure to generate constraints on the potential. Since
data structures carry potential, without this knowledge, RaML would not be able to infer bounds.
This is why we use sum types, combining that idea from defunctionalization with closure con-
version.

6.3 Logical Relations

Similar to prior work, our soundness proof uses a logical relation to define program equality.
However, unlike most prior work, we do not use a step-indexed logical relation. Step-indexing
was introduced by Appel and McAllester. in [4]. Ahmed applied this to System F with mutable
referencesin [1], and recursive and existential types in [3]. Biorthogonal logical relations have
been used to prove program equality [13, 15] and step-indexing was applied in [6] to show
correctness of a simple compiler. Kripke logical relations also had step-indexing applied in
[9, 12]. Step indexed logical relations are indexed by the number of steps available for evaluation,
which is beneficial when analyzing recursive functions and types. However, we elected to use
bounded recursion and compactness instead, which we felt made the soundness proof simpler
while still allowing us to prove equivalence.
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Chapter 7

Conclusion

7.1 Summary

Currently, RaML fails to infer bounds for partially-applied higher-order functions whose cost
depends on free variables rather than explicit arguments. To resolve this, we presented a typed
closure conversion translation that packages a function with an environment. Unlike traditional
closure conversion algorithms, ours uses a sum type for the environment rather than an existential
type. This gives RaML access to the structure of the values in the environment so it can derive
resource bounds.

The translation is designed so the number of tick operations is unchanged, meaning cost is pre-
served. We proved:

• Type preservation: The translated program is well-typed.
• Soundness: The original and translated programs evaluate to extensionally equal results

with identical cost. We proved this using a logical relation that encodes resource use in the
equivalence relation.

Together, these results show that our translation safely widens RaML’s reach to a class of higher-
order OCaml programs that were previously not analyzable.

7.2 Future Work

Now that we have proven soundness of the transformation, the next step is to implement it in
RaML. Ideally, this will be implemented in the new version of RaML, RaML 2, which also
includes other improvements to the original implementation. Once implemented, tests should be
performed to identify the compile-time overhead.

Future improvements could also target preventing the global analysis required to generate the
sum type for environments. Also, since the sum type could become quite large, we could investi-
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gate leveraging flow-directed analyses to create local sum types, similar to the MLton compiler.
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