
Fairness, Diversity, Explainability, and
Robustness for Algorithmic Decision-Making

Madhusudhan Reddy Pittu1

CMU-CS-25-135

August 2025

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
David Woodruff, Co-chair
Anupam Gupta, Co-chair

Prasad Tetali
Mohit Singh, Georgia Institute of Technology

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2025 Madhusudhan Reddy Pittu3

The work in this dissertation was supported in part by NSF awards CCF-1955785, CCF-2006953, and CCF-
2224718.

The views and conclusions contained in this document are those of the author and should not be interpreted as repre-
senting the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any
other entity.

Keywords: Algorithmic Decision-Making, Fairness, Diversity, Explainability, Robustness, De-
terminant Maximization, Nash Social Welfare, Permanents, Subspace Approximation, Explain-
able Clustering, Comparison Oracles, Combinatorial Optimization, Submodular functions.

To my family, and my younger self.

iv

Abstract
This thesis investigates foundational algorithmic challenges that arise when em-

bedding fairness, diversity, explainability, and robustness into computational decision-
making. As machine learning systems, resource allocation mechanisms, and data
analysis pipelines increasingly influence critical decisions, it is essential that these
systems uphold not only efficiency and accuracy but also ethical and structural guar-
antees. However, enforcing these principles introduces complex trade-offs and com-
putational difficulties.

We address five core problems that capture different facets of algorithmic decision-
making under structural and informational constraints: (1) determinant maximiza-
tion under matroid constraints, modeling the selection of diverse and representative
subsets; (2) approximation of the weighted Nash Social Welfare objective, a fairness-
centric formulation in indivisible resource allocation; (3) constrained subspace ap-
proximation, which enforces group-level representation in data summarization; (4)
explainable clustering, which trades off interpretability and clustering quality us-
ing decision trees with axis-aligned threshold cuts; and (5) combinatorial optimiza-
tion using comparison oracles, which enables robust decision-making in uncertain
or preference-driven environments.

Each of these problems introduces structural constraints that challenge conven-
tional algorithmic techniques. We develop new frameworks that combine combi-
natorial methods, convex and non-convex relaxations, convex geometry, and proba-
bilistic methods. The resulting algorithms offer improved approximation guarantees,
shed light on key trade-offs between fairness, interpretability, and performance, and
support the development of more equitable, interpretable, diverse, and reliable algo-
rithmic systems. These contributions have broad implications in machine learning,
economics, data summarization, and human-in-the-loop decision-making.

Acknowledgments

I have been extremely fortunate to receive mentorship from many generous people in theoretical
computer science (TCS).

First, I would like to thank my advisor, Anupam Gupta. He is an exemplar of clarity, composure,
knowledge, and elegance. Conversations with him invariably bring focus. From his advice,
I have learned invaluable skills: how to communicate efficiently—both with others and, most
importantly, with myself—which is to say, to think clearly—and to always try the most obvious
ideas first. He went out of his way on several occasions to find career opportunities for me and
remained patient and supportive through every challenge and setback. I am excited to continue
working with him for one more year at NYU. For all of this, I am deeply grateful.

Next, I would like to thank Mohit and Prasad, who took me on as an intern when I was a junior
in undergrad and still an amateur researcher. I have worked with Mohit for almost as long as
with Anupam; he has profoundly shaped my intuition, my taste in research, and the tools I use to
approach problems. Prasad is one of the kindest people I have ever met, a quality that is surely
one of the reasons he is so respected and admired in TCS and Mathematics—a treasure trove of
knowledge whose insights are consistently illuminating. His recommendation was pivotal in my
admission to CMU, and I am lucky to have been mentored by him.

I would also like to thank David Woodruff, who began co-advising me this past year. Working
with him is an education in intellectual velocity. He generates a diverse set of ideas to crack
a problem, and his problem-solving arsenal is enormous. Working with him is inspiring—and
keeping up with his ideas is a happy challenge.

Working with Ola Svensson has been delightful and full of laughter. He has a profound intuition
for probabilistic thinking, and witnessing him find the elegant path through a thicket of complex-
ity has been a constant source of inspiration. The project with Anupam and Ola was instrumental
in making probabilistic thinking one of my key tools.

But none of this would have been possible without returning to the very beginning of my journey.
I am indebted to Arindam Khan for introducing me to TCS and laying the foundation for my
career. He saw potential in me when I was an undergrad who had never read a paper. I will never
forget the summer internship with my co-interns Arnab Maiti and Amatya Sharma. Arindam
taught me the foundations of research and collaboration: how to read papers, write mathematics
in LaTeX, prepare academic presentations, and think through problems together during daily
brainstorming sessions. He catalyzed my career by recommending me to Mohit and Prasad. I
owe my research career to him.

I am also grateful for other formative mentorship opportunities. I thank Yury Makarychev and
Ali Vakilian for the internship at TTIC—I learned a great deal about various ways to round
semi-definite programming solutions from Yury, and Ali was a pleasure to work with. I thank
Sreenivas Gollapudi, Aaron Schild, Kostas Kollias, and Ali Kemal Sinop for the Student Re-
searcher opportunity at Google, where applying theoretical ideas to real-world problems was a
deeply inspiring experience.

vi

My research was a fundamentally collaborative endeavor, and I am indebted to my co-authors.
From each of you, I learned something distinct about the art of collaboration and discovery:
Aditya Bhaskara, Sepideh Mahabadi, Guru Guruganesh, Jon Schneider, Renato Paes Leme,
Debmalya Panigrahi, Vincent Cohen-Addad, Euiwoong Lee, Tommaso d’Orsi, Andreas Wiese,
Tobias Mömke, Mathieu Mari, and Waldo Gálvez.

I have been privileged to interact with and learn from many professors and legends in the field
who have influenced my thinking, including Jack Edmonds, Gerard Cornuéjols, Ravindran Kan-
nan, Chandra Chekuri, Jan Vondrák, Nikhil Bansal, R. Ravi, Santosh Vempala, Venkatesan Gu-
ruswami, Ryan O’Donnell, and Daniel Sleator. I am also grateful to Karthik Chandrasekharan,
Jugal Garg, Siddharth Barman, Pravesh Kothari, and Sahil Singla; talking to them has always
been a pleasure. Finally, sincere thanks to Mor Harchol-Balter and Fatma Kılınç-Karzan for
their guidance and help with my thesis requirements.

To my colleagues at CMU, thank you for the daily conversations about research and every-
thing else. It was always a pleasure talking with you: Bernardo Subercaseaux, Sherry Sarkar,
Daniel Hathcock, Tolson Bell, Olha Silina, Siyue Liu, Noah Singer, William He, Jeff Xu, Tim
Hsieh, Yash Savani, Victor Akinwande, and Keerthana Gurushankar. To my external colleagues,
thank you for the camaraderie at workshops and conferences: Omar Alrabiah, Janani Sundere-
san, Debajyoti Kar, Kishan Gowda, Pooja Kulkarni, Subhang Kulkarni, David Zheng, Prasanth
Amireddy, Ekalavya Sharma, Ishan Bansal, Rameesh Paul, Koustav Bhanja, Jatin Yadav, Har-
mender Gahlawat, Vaishali Surianarayanan, Neel Patel, and Anish Hebbar.

My journey was sustained by the encouragement of friends, both academic and personal. To my
academic friends—Aditi Laddha, Adam Brown, Mik Zlatin, Ioannis Anagnostides, Rhea Jain,
Arnab Maiti, Amatya Sharma, Aditya Anand, Chaitanya Nalam, Milind Prabhu, Gary Hoppen-
worth, Neel Karia, Tushant Mittal, and Shashank Srivastava—and my personal friends—Anup
Kumar, Parth Malpathak, Mohan Kumar Srirama, Varsha Reddy Redla, Shreya Terupally, AVS
Nikhil, Medha Kaushika, Ramya Narayanasamy, Jnana Sai, Jeevana Reddy, Sai Krishna Meka,
Nikhil Reddy Ramolla, Vignesh Veeramakali, Kaushik Arcot, and Saurav Musunuru—thank you
for your unwavering friendship. I am especially grateful to Mohan, Shreya, and Varsha for mak-
ing Pittsburgh feel like home. Special thanks also to my seniors and friends Sabir Shaik, Sai
Sandeep Reddy Pallerla, and Praneeth Kacham for their guidance and support at various steps
along this journey.

Finally, I thank my parents, Srinivasa Reddy and Siva Parvathi, whose boundless love and count-
less sacrifices created the foundation upon which this entire endeavor was built. I dedicate this
thesis to some of my heroes in TCS: Jack Edmonds, Alexander Schrijver, László Lovász, Avi
Wigderson, and Manuel Blum. I would like to think like them one day.

vii

viii

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Diversity: Determinant Maximization . 4
1.3 Fairness: Nash Social Welfare Maximization 5
1.4 Fairness: Constrained Subspace Approximation 7
1.5 Explainability: Explainable Clustering . 9
1.6 Robustness: Combinatorial Optimization using Comparison Oracles 12
1.7 Technical Unification . 14
1.8 Organization and Credits . 15

I Diversity 17

2 Determinant Maximization 19
2.1 Introduction . 19
2.2 The case that rank equals dimension . 27
2.3 Rank less than dimension . 36
2.4 Rank greater than dimension . 53
2.5 Permanental Inequalities . 65
2.6 Future Directions . 73
2.7 Appendix for Chapter 2 . 73

3 New Permanent Inequalities 83
3.1 Introduction . 83
3.2 Preliminaries . 84
3.3 Generalizing Determinantal Concepts for the Permanent 86
3.4 Future Directions . 96
3.5 Appendix for Chapter 3 . 97

II Fairness 99

4 Nash Social Welfare Maximization 101

ix

4.1 Introduction . 101
4.2 Relaxations for Weighted Nash Social Welfare 109
4.3 Approximation Algorithm . 113
4.4 Rounding via the Non-Convex Relaxation . 117
4.5 Conclusion and Future directions . 128
4.6 Appendix for Chapter 4 . 128

5 Fair Subspace Approximation 153
5.1 Introduction . 153
5.2 Preliminaries . 159
5.3 Framework for Constrained Subspace Approximation 160
5.4 Applications . 166
5.5 Hardness of Column Subset Selection with Partition Constraint 180
5.6 Future Directions . 182

III Explainability 183

6 Explainable Clustering 185
6.1 Introduction . 185
6.2 Explainable k-medians via Exponential Clocks 193
6.3 Lower Bounds on the Price of Explainability . 196
6.4 Explainable k-means clustering . 199
6.5 Tight Bounds for the Random Threshold Algorithm 206
6.6 Price of Explainability with General Threshold Cuts 216
6.7 Future Directions . 218
6.8 Appendix for Chapter 6 . 219

IV Robustness 227

7 Combinatorial Optimization using Comparison Oracles 229
7.1 Introduction . 229
7.2 Minimum Cut using Cut Comparisons . 235
7.3 Matroids, Matchings, and Paths . 240
7.4 Linear Optimization for General Set Systems 243
7.5 Future Directions . 247
7.6 Appendix to Chapter 7 . 248

Bibliography 263

x

List of Figures

1.1 Example from [62]. The optimal 5-means clustering (left) uses combinations of
both features. The explainable clustering (middle) uses axis-aligned rectangles
summarized by the threshold tree (right). 10

2.1 The exchange graph G(S). 28
2.2 The cycle C . 33
2.3 Structure when edge uj → vi (in blue) is added 34
2.4 Example . 81

4.1 (CVX-Weighted) . 106
4.2 (NCVX-Weighted) . 106

6.1 Example from [62]. The optimal 5-means clustering (left) uses combinations of
both features. The explainable clustering (middle) uses axis-aligned rectangles
summarized by the threshold tree (right). 186

6.2 Intervals defined by projections. 200
6.3 Case 1 . 214
6.4 Case 2 . 215
6.5 projection of points onto an axis . 222

xi

xii

List of Tables

5.1 Summary of the upper bound results we get using our framework. In the approx-
imation column, we use superscripts ∗,+, † to represent multiplicative, additive,
or multiplicative-additive approximation respectively. In the prior work column,
we use tilde (∼) to indicate no known theoretical guarantees (only heuristics),
and hyphen (−) to specify that the problem is new. 156

7.1 Two weight configurations for a 4-vertex graph that produce identical cut order-
ings but differ in which edge is heaviest incident to vertex a. 240

xiii

xiv

Chapter 1

Introduction

1.1 Introduction
As algorithmic decision-making becomes increasingly influential in machine learning, resource
allocation, and data analysis, it is essential to ensure that these methods promote fairness, di-
versity, explainability, and robustness while maintaining computational efficiency. Striking this
balance introduces significant challenges, as optimizing for one of these properties can often
come at the expense of another.

Fairness ensures that algorithmic outcomes do not disproportionately disadvantage individuals
or groups, with resource allocation being a prominent example. Diversity plays a key role in pro-
ducing representative and inclusive outcomes, especially in selection and summarization tasks.
Explainability is crucial for building interpretable models that allow stakeholders to understand
and trust algorithmic decisions, particularly in clustering. Robustness is critical in settings where
information is incomplete, uncertain, or noisy, such as preference elicitation or human-in-the-
loop decision-making.

Despite the growing importance of these principles, many traditional optimization techniques
focus primarily on efficiency and accuracy, often neglecting the structural and ethical consid-
erations required for equitable and interpretable decision-making. Addressing these concerns
requires developing algorithms that explicitly incorporate fairness constraints, promote diver-
sity, impose explainability, and ensure robustness to structural or informational uncertainty—all
without excessively compromising performance.

This thesis investigates five key problems that encapsulate these challenges:

1. Determinant maximization under matroid constraints [35, 36],

2. Approximating weighted Nash Social Welfare [34],

3. Price of explainability for clustering [92],

4. Low-rank approximation with fair representation [25],

1

5. Combinatorial optimization using comparison oracles.

Each of these problems highlights a different aspect of fairness, diversity, explainability, and
robustness:

1. Diversity: Determinant maximization aims to select a diverse and representative subset
from a larger collection of elements—for example, choosing k illustrative images from
search results. These elements may represent resources, features, or data points, modeled
as vectors in Rd. The diversity of a subset is measured by the volume of the parallelepiped
spanned by its corresponding vectors, ensuring a well-conditioned and diverse representa-
tion of the space. In many applications, the selected elements must also satisfy combina-
torial constraints, among which matroid constraints form a broad and well-studied class.
Determinant maximization under matroid constraints has numerous applications, in-
cluding statistics, resource allocation, network design, and convex geometry.

We present a combinatorial algorithm that provides improved approximation guarantees
for this problem. Leveraging matroid intersection, our approach overcomes the limitations
of convex relaxations and achieves the best-known approximation factors for the problem.
See §1.2 for a more elaborate introduction and theorem statements.

2. Fairness:

(a) The Nash Social Welfare (NSW) objective provides a balance between fairness and
efficiency in resource allocation. Given a set of indivisible goods to be allocated
among agents with individual valuations, NSW is defined as the geometric mean of
the agents’ utilities. It captures the trade-off between maximizing average utility and
ensuring a high minimum utility across agents. This measure is central to fair divi-
sion, as maximizing NSW guarantees both envy-freeness up to one good (EF1) and
Pareto efficiency (PO). However, computing an exact NSW-maximizing allocation
is NP-hard, motivating research into efficient approximation algorithms. Prior work
has explored connections to Fisher market equilibria, convex programming, and sta-
ble polynomials to approximate the optimal NSW within constant factors.

Extending this line of work, our contribution focuses on the more general weighted
Nash Social Welfare problem, where agents have different weights reflecting vary-
ing levels of priority or entitlement. We develop novel convex and non-convex relax-
ations and round them to approximate the optimal weighted NSW allocation, achiev-
ing improved approximation factors. See §1.3 for a more elaborate introduction and
theorem statements.

(b) High-dimensional datasets often have low intrinsic dimensionality, making subspace
approximation essential for data analysis. The Constrained Subspace Approximation
(CSA) problem extends traditional subspace approximation by enforcing constraints
on the projection matrix, capturing problems like partition-constrained low-rank ap-
proximation, k-means clustering, and projected non-negative matrix factorization
(PNMF), among others. A key motivation for CSA arises in fairness-sensitive ap-
plications, where partition constraints can enforce group-level representation—for

2

example, by requiring the subspace to be spanned by one representative from each
class—thus ensuring fair summaries that reflect the diverse subpopulations in the
dataset. However, due to its combinatorial and non-convex nature, CSA is computa-
tionally challenging, often requiring exponential time in the worst case. To address
this, we develop a coreset-guess-solve framework that provides efficient (1 + ε)-
multiplicative or ε-additive approximations across various CSA settings. This frame-
work establishes theoretical guarantees, making CSA more practical for large-scale
data analysis. See §1.4 for a more elaborate introduction and theorem statements.

3. Explainability: Clustering is a fundamental problem in optimization, machine learning,
and algorithm design, with k-medians and k-means as two of the most prominent meth-
ods. However, traditional clustering often lacks interpretability. Explainable clustering en-
hances transparency by structuring cluster assignments as decision trees with axis-aligned
threshold cuts, enabling intuitive explanations while introducing a trade-off—the “price
of explainability”—between interpretability and clustering quality.

Prior work developed greedy and randomized thresholding algorithms to make clusterings
explainable, improving approximation guarantees for k-medians and k-means. However,
fundamental gaps remained in understanding the limits of explainability and the optimality
of existing approaches. We provide a tight analysis of the Random Thresholds algorithm
for k-medians, proving its price of explainability is at most ln k(1 + o(1)) and establishing
a matching lower bound of ln k(1− o(1)) for any algorithm. For k-means, we improve the
upper bound from O(k ln k) to O(k ln ln k), significantly narrowing the gap with the Ω(k)
lower bound. Finally, we prove that the explainable k-medians problem cannot be approx-
imated better than O(ln k) unless P = NP, resolving key questions on its approximability.
See §1.5 for a more elaborate introduction and theorem statements.

4. Robustness: Algorithmic robustness is critical in scenarios where input data is noisy, in-
complete, or imprecisely specified. This challenge is particularly pronounced in real-world
applications such as preference aggregation, crowd-sourcing, and human-in-the-loop sys-
tems, where algorithms may not have access to exact numerical values but only to pair-
wise comparisons between alternatives. Motivated by this, we study combinatorial op-
timization under a comparison oracle model, where the goal is to find optimal or near-
optimal solutions using only comparison-based access to the objective function. While
this model significantly restricts the information available to the algorithm, we show that,
for several classic problems—such as minimum cut, spanning trees, matchings, and short-
est paths—comparison access suffices to recover optimal solutions efficiently. Our results
provide the first general framework for solving a broad class of combinatorial problems in
this robust comparison-based setting, closing the gap between comparison and value-based
optimization for these problems. See §1.6 for a more elaborate introduction and theorem
statements.

These five problems capture key aspects of fairness, diversity, explainability, and robustness in
algorithmic decision-making—ensuring diverse selection, fair allocation, fair representation, in-
terpretable clustering, and robust optimization under limited information. This work develops
improved approximation algorithms using tools from discrete and continuous optimization, con-

3

vex geometry, and probabilistic methods. The results have broad implications across machine
learning, economics, large-scale data analysis, and human-in-the-loop systems, reinforcing the
need for equitable, interpretable, and reliable algorithmic frameworks in modern computational
settings.

1.2 Diversity: Determinant Maximization
In an instance of a determinant maximization problem, we are given a collection of vectors
U = {v1, . . . , vn} ⊂ Rd, and the goal is to pick a subset S ⊆ U of the given vectors to maximize
the determinant of the matrix

∑
i∈S viv

>
i . Additionally, we may require that the set S of picked

vectors must satisfy some combinatorial constraints such as cardinality constraint (|S| ≤ k) or
matroid constraint (S is a basis of a matroid defined on the vectors).

Determinant maximization problem gives a general framework that models problems arising
in diverse fields such as statistics [155], convex geometry [116], fair allocations [6], combi-
natorics [8], spectral graph theory [149], network design and random processes [119]. Apart
from its modeling strength, from a technical perspective, determinant maximization has brought
interesting connections between areas such as combinatorial optimization, convex analysis, ge-
ometry of polynomials, graph sparsification and complexity of permanent and other counting
problems [3, 5, 6, 116].

What follows is a summary of our contributions. The results outlined below offer a high-level
overview of the algorithmic techniques and approximation guarantees we obtain. The full tech-
nical development, including formal statements and detailed proofs, is provided in Chapter 2.

1.2.1 Our Results and Contributions
In this work, we introduce new combinatorial methods for determinant maximization under a ma-
troid constraint and give a dO(d)-deterministic approximation algorithm. While previous works
have used a convex programming approach and the theory of stable polynomials, our approach
builds on the classical matroid intersection algorithm. Our first result focuses on the case when
the rank of the matroid is exactly d, i.e., the output solution will contain precisely d vectors.

Theorem 1.2.1 (Rank equals dimension). There is a polynomial-time algorithm which, given a
collection of vectors v1, . . . , vn ∈ Rd and a matroidM = ([n], I) of rank d, returns a set S ∈ I
such that

det

(∑
i∈S

viv
>
i

)
= Ω

(
1

dO(d)

)
max
S∗∈I

det

(∑
i∈S∗

viv
>
i

)
.

Our results improve the eO(d2)-approximation algorithm that relies on the eO(d)-estimation algo-
rithm [5, 8, 131]. Our algorithm builds on the matroid intersection algorithm and is an iterative
algorithm that starts at any feasible solution and improves the objective in each step. To main-
tain feasibility in the matroid constraint, each step of the algorithm is an exchange of multiple
elements as found by an alternating cycle of an appropriately defined exchange graph.

4

Result for r ≤ d. We also generalize the result when the rank r of the matroid is at most d.
Observe that the solution matrix

∑
i∈S viv

>
i is a d×d matrix of rank at most r and, therefore, the

appropriate objective to consider is the product of its largest r eigenvalues, or equivalently, the
elementary symmetric function of order r of its eigenvalues. Let symr(M) be the rth elementary
symmetric function of the eigenvalues of the d×d matrix M . Thus, our objective is to maximize
symr

(∑
i∈S viv

>
i

)
.

Theorem 1.2.2 (Rank less than dimension). There is a polynomial-time algorithm which, given
a collection of vectors v1, . . . , vn ∈ Rd and a matroidM = ([n], I) of rank r ≤ d, returns a set
S ∈ I such that

symr

(∑
i∈S

viv
>
i

)
= Ω

(
1

rO(r)

)
max
S∗∈I

symr

(∑
i∈S∗

viv
>
i

)
.

This again improves the best bound of eO(r2)-approximation algorithm based on eO(r)-approximate
estimation algorithms.

Result for r ≥ d Finally, we give an analogous result when the number r of vectors selected is
larger than d. Here we require some sparsity properties of the convex programming relaxation,
but the key algorithmic ideas are the same as the previous cases.

Theorem 1.2.3 (Rank more than dimension). There is a polynomial-time algorithm which, given
a collection of vectors v1, . . . , vn ∈ Rd and a matroidM = ([n], I) of rank r ≥ d, returns a set
S ∈ I such that

det

(∑
i∈S

viv
>
i

)
= Ω

(
1

dO(d)

)
max
S∗∈I

det

(∑
i∈S∗

viv
>
i

)
.

This matches the dO(d)-approximate estimation algorithm [131], which only gives an estimate of
the optimum value and results in dO(d2)-approximation algorithm.

1.3 Fairness: Nash Social Welfare Maximization
In an instance of the weighted Nash Social Welfare problem, we are given a set of m indivisible
items G, and a set of n agents, A. Every agent i ∈ A has a weight wi ≥ 0 and an additive
valuation function vi : 2G → R≥0. Let vij := vi({j}). The goal is to find an assignment of
items, σ : G → A so that the following welfare function is maximized:

∏
i∈A

 ∑
j∈σ−1(i)

vij

wi

.

For ease of notation, we will work with the log objective and denote

NSW(σ) =
∑
i∈A

wi log

 ∑
j∈σ−1(i)

vij

 (1.1)

5

and OPT = maxσ:G→ANSW(σ) denote the optimal log objective. The much studied case is the
symmetric Nash social welfare problem in which w = u, where ui = 1

n
for each i ∈ A and the

objective is the geometric mean of agents’ valuations.

Fair and efficient division of resources among agents is a fundamental problem arising in various
fields [19, 31, 32, 160, 161, 190]. While there are many social welfare functions which can be
used to evaluate the efficacy of an assignment of goods to the agents, the Nash Social Welfare
function is well-known to interpolate between fairness and overall utility. The unweighted Nash
Social Welfare function first appeared as the solution of an arbitration scheme proposed by Nash
for two-person bargaining games that was generalized to multiple players [115, 144]. Since then,
it has been widely used in numerous fields to model resource allocation problems. An attractive
feature of the objective is that it is invariant under scaling by any of the agent’s valuations and
therefore each of the agents can specify their utility in their own units (see [43] for a detailed
treatment). While the theory of Nash Social Welfare objective was initially developed for divis-
ible items, more recently it has been applied in the context of indivisible items. We refer the
reader to [42] for a comprehensive overview of the problem in the latter setting. Indeed, optimiz-
ing the Nash Social Welfare objective also implies notions of fairness such as envy free allocation
in an approximate sense [20, 42].

The Nash Social Welfare function with weights (also referred to as asymmetric or non-symmetric
Nash Social Welfare) was first studied in the seventies [100, 112] in the context of two person
bargaining games. For example, in the bargaining context, it allows different agents to have
different weights. This flexibility has made the problem arise in many different domains, in-
cluding bargaining theory [43, 123], water resource allocation [82, 106], and climate agreements
[191]. In the context of indivisible goods, the study of this problem has been much more re-
cent [85, 86, 87]. In this work, we aim to shed light on this problem, especially, with a focus on
mathematical programming relaxations for the problem.

What follows is a summary of our contributions. The results outlined below offer a high-level
overview of the algorithmic techniques and approximation guarantees we obtain. The full tech-
nical development, including formal statements and detailed proofs, is provided in Chapter 4.

1.3.1 Our Results and Contributions
We present a

exp

(
2 log 2 +

1

2e
+ KL(w ‖u)

)
≈ 4.81 · exp

(
log n−

n∑
i=1

wi log
1

wi

)

approximation algorithm for the weighted Nash Social Welfare problem with additive valuations,
which improves upon the previous approximation factor of O(n · wmax). When all the weights
are the same, this gives a constant factor approximation. Our algorithm builds on and extends a
convex programming relaxation for the symmetric variant of Nash Social Welfare presented in
[9, 60, 61]. In the theorem, we state the guarantee in log objective and therefore, the guarantee
becomes an additive one.

6

Theorem 1.3.1. Let (A,G,v,w) be an instance of the weighted Nash Social Welfare problem
with

∑
i∈Awi = 1 and |A| = n agents. There exists a polynomial time algorithm (Algorithm 5)

that, given (A,G,v,w), returns an assignment σ : G → A such that

NSW(σ) ≥ OPT− 2 log 2− 1

2e
− 2 ·DKL(w ‖u),

where OPT is the optimal log-objective for the instance andDKL(w‖u) = log n−
∑

i∈Awi log 1
wi

.

Observe that the KL-divergence term DKL(w ‖u) =
(

log n−
∑

i∈Awi log 1
wi

)
is always upper

bounded by nwmax which is exactly the guarantee of previous work [87]. In many settings,
the term DKL(w ‖u) can be significantly smaller than nwmax; for example, consider the setting
where w1 = 1

logn
and wi = 1

n−1
(1− 1

logn
) for i = 2, . . . , n, i.e., one agent has significantly higher

weight than the others. In this case, our results imply O(1)-approximation while previous results
imply O(n

logn
)-approximation.

Our algorithm relies on two mathematical programming relaxations (CVX-Weighted) and (NCVX-
Weighted) both of which generalize the convex relaxation for the unweighted version [7, 60, 61].
One of the relaxation is non-convex but retains a lot of structural insights obtained for the con-
vex relaxation in the unweighted version. We show that the same rounding algorithm as in
the unweighted version [60] gives a O(1)-approximation for the asymmetric version applied to
a fractional solution of the non-convex program. While the rounding algorithm is the same,
the analysis requires new ideas as many of the interpretations via market equilibrium in the un-
weighted case are no longer present in the weighted version. Unfortunately, due to its non-convex
nature, we cannot solve this relaxation to optimality even though it can be rounded efficiently.
This is where the second mathematical programming relaxation comes to the rescue. This relax-
ation is convex and thus can be solved efficiently. We solve the convex relaxation, use it as an
initial point to obtain a first order stationary solution to the non-convex relaxation that we round
to an integral solution. The approximation factor of DKL(w ‖u) arrives due to the difference in
objective values of these two programs.

1.4 Fairness: Constrained Subspace Approximation
In subspace approximation, given a set of n points {a1, . . . , an} ⊂ Rd and a rank parameter
k, the goal is to find a rank-k projection matrix P that minimizes the projection costs ‖ai −
P ai‖2, aggregated over all i ∈ [n]. The choice of aggregation function leads to different well-
studied formulations. In the `p-subspace approximation problem, the objective is to minimize
(
∑n

i=1 ‖ai − P ai‖
p
2). Formally, letting A be the d × n matrix with columns a1, . . . , an, the

`p-subspace approximation problem seeks a rank-k projection matrix P ∈ Rd×d that minimizes

‖A− PA‖p2,p :=
n∑
i=1

‖ai − P ai‖p2.

The `p-subspace approximation captures several classical problems for different values of p: the

7

median hyperplane problem (p = 1), principal component analysis (PCA) (p = 2), and the
center hyperplane problem (p =∞).

In the most general setting of the constrained `p-subspace approximation problem, we are addi-
tionally given a collection S of rank-k projection matrices (specified either explicitly or implic-
itly) and the goal is to find a projection matrix P ∈ S that minimizes the objective:

min
P∈S

: ‖A− PA‖p2,p. (CSA)

We next present an overview of the applications motivating CSA and our core algorithmic con-
tributions. The results summarized here provide a high-level perspective on the techniques and
guarantees we obtain. A full technical treatment—including precise definitions, algorithmic
frameworks, and detailed proofs—can be found in Chapter 5.

1.4.1 Applications and Our results
This section contains a small subset of the applications and results from [25].

Projective Non-negative Matrix Factorization and k-means clustering

In projective non-negative matrix factorization, the basis matrix U ∈ Rd×k is constrained to
have non-negative entries. More formally, the mathematical program formulation for Projective
Non-negative Matrix Factorization (NMF) is

min : ‖A−UU>A‖2
F (NMF)

U>U = Ik, U ∈ Rd×k
≥0 . (1.2)

Theorem 1.4.1 (Additive approximation for NMF). Given an instance A ∈ Rd×n of Non-
negative matrix factorization, there is an algorithm that computes a U ∈ Rd×k

≥0 , U
>U = Ik

such that
‖A−UU>A‖2

F ≤ (1 + ε) ·OPT +O(δ · ‖A‖2
F)

in time O(dk2/ε) · (1/δ)O(k2/ε). For any 0 < δ < 1.

Theorem 1.4.2 (Multiplicative approximation for NMF). Given an instance A ∈ Rd×n of Non-
negative matrix factorization with integer entries of absolute value at most γ in A, there is an
algorithm that computes a U ∈ Rd×k

≥0 , U
>U = Ik such that

‖A−UU>A‖2
F ≤ (1 + ε) ·OPT

in time (ndγ/ε)O(k3/ε).

In the k-means problem, we are given a collection of data points a1, . . . , an ∈ Rd. The objective
is to find k-centers c1, . . . , ck ∈ Rd and an assignment π : [n]→ [k] that minimizes:

n∑
i=1

‖ai − cπ(i)‖2
2. (k-means)

8

The original formulation can be re-cast as the following special case of NMF with additional
constraints in the following way :

min : ‖A−UU>A‖2
F (k-means-CSA)

Ui,j = 1/
√
‖U.,j‖0 ∀i ∈ [n], j ∈ [k].

Theorem 1.4.3. Given an instance A ∈ Rn×d of k-means, there is an algorithm that computes
a (1 + ε)-approximate solution to k-means in O(nnz(A) + 2Õ(k/ε) + no(1)) time.

Partition Constrained `p-Subspace Approximation

Given a set of subspaces S1, . . . , Sk ⊆ Rd, select a vector vi ∈ Si for i ∈ [k] in order to minimize∑
i∈[n] ‖ proj⊥span(v1,...,vk)(ai)‖

p
2, where p ≥ 1 is a given parameter. A more compact formulation

is:

min : ‖A− V C‖p2,p (PC-`p-SA-fac)

V = [v1, . . . , vk]

vi ∈ Si ∀i ∈ [k].

The PC-`p-SA-fac can be formulated equivalently as

min : ‖A−UU>A‖p2,p (PC-`p-SA)

U is an orthogonal basis for Span(v1, v2, . . . , vk)

vi ∈ Si ∀i ∈ [k].

Assume each input entry ofA has bit complexity at most H .

Theorem 1.4.4 (Additive approximation). There exists an algorithm for PC-`p-subspace ap-
proximation with runtime (κ/ε)O(kr) · poly(n, d, k/ε) · H which returns a solution with ad-
ditive error at most O(εp) · ‖A‖pp,2, where κ is the condition number of an optimal solution
V ∗ = [v∗1, v

∗
2, . . . , v

∗
k] for the PC-subspace approximation problem PC-`p-SA-fac.

For the special case of p = 2, it turns out that we can obtain a (1 + ε)-multiplicative approxima-
tion, using additional tools like polynomial system solvers.

Theorem 1.4.5 (Multiplicative approximation). Let (A,S) be an instance of PC-`2-subspace ap-
proximation. If there exists an (approximately) optimal solution with bit complexity poly(n,H),
there exists an algorithm that runs in time nO(k2/ε) · poly(H) and outputs a solution whose ob-
jective value is within a (1 + ε) factor of the optimum objective value. We denote s =

∑k
j=1 sj

and sj = dim(Sj); n for this result can be set to max(s, d, k/ε).

1.5 Explainability: Explainable Clustering
An explainable clustering is one where the clusters are defined by a decision tree with axis-
aligned threshold cuts (see, e.g., Figure 1.1). Each internal node in the tree splits the data along a

9

single feature using a threshold, and each leaf represents a distinct cluster. This structure ensures
that a point’s cluster assignment follows a sequence of simple, interpretable decisions. This
notion of explainability for clustering was introduced by Dasgupta et al. [62]

Clustering is a central topic in optimization, machine learning, and algorithm design, with k-
medians and k-means being two of the most prominent examples. In recent years, mainly mo-
tivated by the impressive but still mysterious advances in machine learning, there has been an
increased interest in the transparency and in the explainability of solutions.

To motivate the concept of explainability, consider the task of clustering n points in Rd into k
clusters. If we solve k-means, the clusters are in general given by a Voronoi diagram where each
cluster/cell is defined by the intersection of hyperplanes. Each cluster may be defined using up
to k − 1 hyperplanes, each one of them possibly depending on all d dimensions with arbitrary
coefficients. Since the dimensions typically correspond to features (e.g., “age”, “weight”, and
“height” are natural features in a dataset of people), arbitrary linear combinations of these fea-
tures may be difficult to interpret. To achieve more explainable solutions, we may need to restrict
our algorithms to find clusters with simpler descriptions.

(a) Optimal 5-means clusters (b) Tree based 5-means clusters

x ≤ 4.5

2y ≤ −4

y ≤ 4

14

x ≤ −3.5

03

(c) Threshold tree

Figure 1.1: Example from [62]. The optimal 5-means clustering (left) uses combinations of both features.
The explainable clustering (middle) uses axis-aligned rectangles summarized by the threshold tree (right).

Explainability is thus a very desirable and appealing property, but the best explainable clustering
may have cost much higher than the cost of the best unrestricted clusterings. This trade-off
is captured by the price of explainability: the loss in cost/quality if we restrict ourselves to
explainable clusterings.

What follows is a summary of our contributions to explainable clustering. The results outlined
below provide a high-level overview of our techniques and bounds. The full technical develop-
ment is provided in Chapter 6.

1.5.1 Our Results and Contributions
Our main results on the price of explainability are (a) to settle this conjecture in the affirmative
(i.e., to give a tight analysis of the Random Thresholds algorithm), and (b) to show that its price

10

of explainability of 1 + Hk−1 = (1 + o(1)) ln k is not only asymptotically correct, but also tight
up to lower order terms: we cannot do much better regardless of the algorithm.

Theorem 1.5.1 (Upper bound for k-medians). The price of explainability for k-medians is at
most 1 + Hk−1. Specifically, given any reference k-medians clustering, the Random Thresholds
algorithm outputs an explainable clustering with expected cost at most 1 + Hk−1 times the cost
of the reference clustering.

Theorem 1.5.2 (Lower Bound for k-medians). There exist instances of k-medians for which any
explainable clustering has cost at least (1 − o(1)) ln k times the cost of the optimal k-medians
clustering.

These results resolve the performance of the Random Thresholds algorithm and the price of
explainability for k-medians.

For k-means, we are unable to settle the price of explainability completely, but we make signif-
icant progress in closing the gap between known upper and lower bounds. Here, the best upper
bound before our work was O(k ln k) [73] (see also [45] for better guarantees when the input
is low-dimensional). Moreover, we know instances where any single threshold cut increases the
cost of the clustering by a factor Ω(k) (see, e.g., [83]), and hence the price of explainability of
k-means is at least Ω(k).

It is tempting to guess that the O(k ln k) guarantee in [73] is tight, for the following reason. The
first lower bound Ω(ln k) for k-means in [62] is obtained by arguing that (i) a single threshold cut
increases the cost by at least that of the reference clustering and (ii) a threshold tree has height
Ω(ln k), and so the total cost increases by a constant Ω(ln k) times. Since we have examples
where any single cut increases the cost by Ω(k), it is reasonable to hope for more complex
instances to combine the two sources of hardness, and lose a Ω(k) ·Ω(ln k) factor. However, we
prove that this is not the case and give an improved upper bound:

Theorem 1.5.3 (Upper bound for k-means). The price of explainability for k-means is at most
O(k ln ln k). Specifically, given any reference k-means clustering, there exists an algorithm that
outputs an explainable clustering with expected cost at mostO(k ln ln k) times the reference cost.

Hence the price of explainability for k-means lies between Ω(k) and O(k ln ln k). We leave the
tight answer as an intriguing open problem. In particular, we conjecture that the lower bound is
tight and that it is achieved by the k-means variant of the Random Thresholds algorithm.

Our final contribution is to study the approximability of explainable clustering. So far, the lit-
erature has mostly focused on settling the price of explainability [45, 62, 73, 83, 121, 133] and
its behavior in a bi-criteria setting [134] where the explainable clustering is allowed to form
more than k clusters. These algorithms give upper bounds on the approximability of explainable
clustering since they are all efficient, and the cost of an optimal unconstrained clustering is a
valid lower bound on the best explainable one. Recent work of [18, 120] asked the question:
how well can we approximate the best explainable clustering? They showed that the problem is
APX-hard, but left open the question of whether the problem can be approximated better. Re-
solving this natural question positively would have the advantage of finding good explainable
clusterings for those instances that do admit such clusterings, which is often the experience for

11

more practical instances. Our result shows a surprising hardness for the k-medians and k-means
problem.

Theorem 1.5.4 (Approximability). The explainable k-medians and k-means problems are hard
to approximate better than (1/2− o(1)) ln k, unless P = NP.

These results show that we cannot approximate k-medians much better than its price of explain-
ability (unless P = NP); the approximability for k-means remains tantalizingly open.

1.6 Robustness: Combinatorial Optimization using Compar-
ison Oracles

Consider the following general optimization problem: we are given a ground set U of n elements,
a family F ⊆ 2U of feasible subsets, and an unknown objective function f : 2U → R+. At each
step, we may query a comparison oracle which, given any two feasible sets S, T ∈ F , reveals
only the sign of f(S)−f(T). That is, the algorithm learns whether f(S) > f(T), f(S) < f(T),
or f(S) = f(T), but not the actual values. The goal is to identify an (approximately) optimal set
S∗ ∈ F using as few comparison queries as possible.

In the worst case, one could always find the optimum by performing |F| − 1 comparisons via
brute-force search. However, this is often computationally infeasible since F may be exponen-
tially large. This raises the central question of this chapter:

Can we find (approximately) optimal solutions using only a polynomial number of
comparison queries—especially for linear objective functions and combinatorially
structured families F?

To make this concrete, consider the classical minimum cut problem. We are given a simple
undirected graph G = (V,E,w) with nonnegative edge weights, but the algorithm has no access
to the edge set or weights. It only knows the vertex set V . At each step, it may submit two
non-trivial subsets A,B ⊂ V to a cut-comparison oracle, which reports whether the cut induced
by A is smaller, larger, or equal in weight to the one induced by B. That is, the oracle returns the
sign of f(A)− f(B), where f(S) =

∑
e∈∂S we and ∂S denotes the cut edges of S.

This setting is a natural instance of the general comparison model, with U = V , F being the set
of non-trivial cuts, and f being a modular function over the cut edges.

There are several compelling motivations for studying this model:

• Real-world uncertainty: In many real-world applications—such as recommendation sys-
tems, fair allocation, or crowdsourced decision-making—agents may not assign precise
numerical utilities to outcomes, but can often express reliable ordinal preferences between
alternatives. Comparison oracles capture this natural mode of feedback.

• Robustness: Since only the order of values matters, comparison-based algorithms are
invariant under monotone transformations of the objective function, making them robust
to scaling, normalization, or reparameterization of utilities.

12

• Minimal information: Comparison queries reveal strictly less information than value
queries. Studying what can still be computed efficiently under such constraints sheds light
on the query complexity of combinatorial optimization problems.

These considerations motivate a fundamental question: even when exact utilities are inaccessible,
can we still solve classical optimization problems efficiently using only pairwise comparisons?
As a case in point, consider the minimum cut problem. Prior work shows that it can be solved
using a linear number of value queries—each returning the cost of a cut. Since a comparison
query can be simulated using two value queries, this highlights the comparison model as a strictly
weaker alternative. Understanding its power and limitations—particularly for problems like min-
cut—offers insight into the minimal information needed for efficient optimization. What follows
is a summary of our contributions to combinatorial optimization using comparison oracles. The
results outlined below offer a high-level overview of the algorithmic techniques and bounds we
establish across several classical problems. A complete technical treatment can be found in
Chapter 7.

1.6.1 Our Results and Techniques

We study the comparison-based model for linear objectives of the form f(S) =
∑

e∈S we, where
the weights we are unknown. The feasible sets F ⊆ 2U are problem-specific, and the algorithm
may only compare f(S) and f(T) for any S, T ∈ F .

Graph Cuts. We first consider the classical minimum cut problem in unweighted undirected
graphs, where feasible solutions correspond to non-trivial vertex cuts.

Theorem 1.6.1 (Minimum cut). There is a randomized algorithm that computes the exact min-
imum cut of a simple graph G with high probability using Õ(n) cut comparison queries and
Õ(n2) time.

Theorem 1.6.2 (Graph recovery). A simple unweighted graph G /∈ {K2, K̄2, K3, K̄3} can be
recovered using O(min{(m+ n) log n, n2}) cut comparison queries and in Õ(n2) time.

Matroid Bases, Matroid Intersections, and Paths. We extend our techniques to other classical
structures: matroid bases, matroid intersections, and s-t paths.

Theorem 1.6.3 (Matroid Bases). There is an algorithm outputs the minimum-weight basis of a
matroid on n elements using O(n log n) comparison queries in Õ(n2) time.

Theorem 1.6.4 (Matroid Intersection). LetM1 = (U, I1) andM2 = (U, I2) be two matroids
defined on a ground set U containing n elements. Then, there is an algorithm that outputs the
minimum-weight set that is in both I1, I2 using O(n4) comparison queries in O(n4) time.

Theorem 1.6.5 (s-t walks). There is an algorithm that finds the minimum-length s-t path in a
graph G (or a negative cycle, if one exists) using O(n3) s-t walk comparisons and O(n3) time.

General Linear Optimization. We also give general results for arbitrary families F ⊆ 2U and
geometric optimization problems:

13

Theorem 1.6.6 (Boolean Linear Optimization). For any family F ⊆ 2U and unknown weight
function w : U → R, we can solve arg minS∈F

∑
e∈S we using O(n log n · log |F|) = Õ(n2)

comparison queries, where n = |U |.

Theorem 1.6.7 (General Linear Optimization). There is an algorithm that, for any point set
P ⊆ Rd with conic dimension k and unknown weights w ∈ Rd, returns the minimizer x∗ =
arg minx∈P〈w, x〉 using at most O(k log k log |P|) comparisons.

These results establish that a wide class of combinatorial and geometric optimization problems
admit efficient algorithms even in this restrictive comparison-based model. See Chapter 7 for
full proofs, technical insights, and limitations of this framework.

1.7 Technical Unification
The five problems investigated in this thesis, while spanning the distinct goals of promoting diver-
sity, fairness, explainability, and robustness, share a deep technical connection: they each require
optimizing a continuous objective function—such as volume, projection error, or welfare—under
constraints that are fundamentally discrete, combinatorial, or informational in nature. This in-
terplay between the continuous and the discrete is the central challenge that this work addresses.
The solutions presented, though seemingly distinct, can be understood as different facets of a sin-
gle algorithmic philosophy: leveraging the structure of one domain to overcome computational
barriers in the other. This philosophy manifests in two primary, complementary strategies, along
with a third meta-strategy for quantifying their interaction.

The first strategy is to use continuous relaxations to guide combinatorial search. In this approach,
a computationally hard, discrete problem is mapped into a more tractable continuous landscape.
This is the core of the work on fair allocation, where novel convex and non-convex programs are
designed to approximate the Nash Social Welfare objective. The resulting fractional solution,
which lies in a continuous space, is then carefully rounded back into a high-quality discrete
assignment of indivisible goods. Similarly, for constrained subspace approximation, a discrete
coreset is used to create a simplified continuous problem. Its complexity is then managed by
guessing a small number of key continuous coefficients, transforming an intractable non-convex
problem into a series of efficiently solvable convex ones.

The second, converse strategy is to use combinatorial structures to navigate a complex continu-
ous objective. Here, instead of relaxing the problem, a discrete scaffold is built to optimize the
continuous function directly, often when its global structure is inaccessible or non-convex. The
work on determinant maximization exemplifies this, where a combinatorial “exchange graph”
derived from matroid theory guides a local search algorithm toward a globally-near-optimal so-
lution for the continuous volume objective, all while staying within the discrete confines of a
matroid constraint. This strategy is taken to its extreme in the work on combinatorial optimiza-
tion with comparison oracles, where the continuous objective function is entirely hidden. It is
shown that discrete, ordinal queries (comparisons) are sufficient to reconstruct the essential com-
binatorial structure of the problem allowing for the discovery of an optimal solution without ever
learning its value.

14

Finally, this thesis also directly confronts the cost of this interplay by quantifying the fundamental
trade-off of imposing discrete structure onto a continuous problem. This is the focus of the work
on explainable clustering, which analyzes the "price of explainability". Here, one domain is not
used to solve the other; rather, a precise probabilistic analysis of a randomized combinatorial
algorithm is employed to understand the inherent cost of forcing a discrete, tree-based structure
onto a continuous geometric clustering problem, thereby making its solutions interpretable.

Together, these strategies form a powerful and unified approach for tackling modern algorithmic
challenges. They demonstrate a robust synthesis of continuous and discrete techniques, providing
a principled framework for algorithm design at the frontier where societal values like fairness and
explainability impose structures that defy classical optimization.

1.8 Organization and Credits
The remainder of this thesis is divided into four parts, each corresponding to one of the four facets
of my research: Diversity (Part I), Fairness (Part II), Explainability (Part III), and Robustness
(Part IV).

Part I focuses on diversity and contains two chapters. Chapter 2 on determinant maximization is
based on joint work with Adam Brown, Aditi Laddha, Mohit Singh, and Prasad Tetali, published
in [36] and [35].

Chapter 3 addresses the computationally challenging, #P-complete problem of computing the
permanent of a non-negative matrix. Due to the permanent’s computational complexity, a sig-
nificant research effort has been focused on finding efficient upper bounds. In this chapter, we
introduce a new pathway for establishing such bounds by systematically adapting powerful tools
from determinant theory. We present a novel permanental analogue of the Schur’s formula for
determinants, which is built upon a newly defined permanental inverse. Building on this, we
introduce the permanent process, an iterative, deterministic procedure analogous to Gaussian
elimination that yields constructive and algorithmically computable upper bounds on the perma-
nent. The inequalities we develop were derived by generalizing Lemma 2.5.1 that was used in
the analysis of Chapter 2. We chose not to detail this work in the main introduction to avoid dis-
rupting the narrative arc of diversity and determinant maximization. Beyond this application, our
developments are of independent interest and contribute to the large body of work on permanent
upper bounds. This chapter is based on recent unpublished work with Aditi Laddha.

Part II addresses fairness through two chapters. Chapter 4 on weighted Nash Social Welfare
maximization is based on a publication and a forthcoming journal article, which are joint work
with Adam Brown, Aditi Laddha, and Mohit Singh [34]. Chapter 5 on constrained subspace
approximation is based on joint work with Aditya Bhaskara, Sepideh Mahabadi, Ali Vakilian,
and David P. Woodruff, published in [25].

Part III contains one chapter on the price of explainability in clustering. Chapter 6 is based on
the publication [92], which is joint work with Anupam Gupta, Ola Svensson, and Rachel Yuan.

The final part, Part IV, presents one chapter on combinatorial optimization using comparison

15

oracles. Chapter 7 is based on recent work (currently under submission) with Vincent Cohen-
Addad, Tommaso d’Orsi, Anupam Gupta, Guru Guruganesh, Euiwoong Lee, Renato Paes Leme,
Debmalya Panigrahi, Jon Schneider, and David P. Woodruff.

All co-authors are listed in alphabetical order by last name.

16

Part I

Diversity

17

Chapter 2

Determinant Maximization

2.1 Introduction
The determinant maximization problem provides a powerful and general framework for mod-
eling a wide variety of problems across several fields, including statistics [155], convex geom-
etry [116], fair allocations [6], combinatorics [8], spectral graph theory [149], network design,
and random processes [119].

In a typical instance of determinant maximization, we are given a collection of vectors U =
{v1, . . . , vn} ⊂ Rd. The goal is to select a subset S ⊆ [n] that maximizes the determinant of the
matrix

∑
i∈S viv

>
i . The selection of S may also be subject to combinatorial constraints, such as a

cardinality constraint (|S| ≤ k), or more generally, a matroid constraint (e.g., S must be a basis
in a matroid over the vector indices.). Maximizing the determinant naturally promotes diversity:
the selected vectors tend to be well spread out and linearly independent, leading to informative
and representative summaries of the dataset.

Beyond its modeling flexibility, determinant maximization has revealed deep connections across
fields such as combinatorial optimization, convex analysis, the geometry of polynomials, graph
sparsification, and the complexity of the permanent and other counting problems [3, 5, 6, 116].

Applications
1. (Convex geometry) When exactly d vectors are selected, the objective becomes the square

of the volume of the parallelepiped spanned by the selected vectors. The problem of finding
the largest volume parallelepiped from a set of vectors has been studied extensively for over
three decades [116, 147, 181].

2. (Random processes) Another notable application is in determinantal point processes (DPPs)
[119]. In DPPs, a probability distribution is defined over subsets of vectors, where the
probability of a subset is proportional to the squared volume of the parallelepiped they
span. These distributions exhibit appealing properties, such as negative correlation, and

19

the task of finding the most probable subset is equivalent to solving a determinant maxi-
mization problem.

3. (Experimental design) A classical example arises in statistics through the experimental
design problem [155]. The objective is to estimate an unknown parameter vector θ? ∈ Rd

using linear observations of the form yi = v>i θ
? + ηi, where vi ∈ Rd and ηi is Gaussian

noise.

Given a candidate set of vectors {v1, . . . , vn}, we aim to choose a small subset S of size
r � n to maximize the accuracy of estimating θ?. Under Gaussian noise, the maximum
likelihood estimate is given by the ordinary least squares solution:

θ̂ = arg min
θ

∑
i∈S

|v>i θ − yi|2.

The estimation error θ̂− θ? follows a d-dimensional Gaussian distribution with covariance
matrix proportional to

(∑
i∈S viv

>
i

)−1. Minimizing the determinant of this covariance
matrix—equivalent to minimizing the volume of the confidence ellipsoid—leads directly
to a determinant maximization problem under a uniform matroid constraint of rank r.

4. (Nash Social Welfare) Given a collection of m indivisible items and n players, along with
a valuation function for each player that specifies how much the player values a particular
bundle of items, the goal is to find an allocation of the items to the players that maximizes
the geometric mean of the players’ valuations [60].

The geometric mean objective captures both fairness—ensuring that each player receives a
bundle of significant value—and efficiency—ensuring that items are allocated to those who
value them most. When the valuation functions of the players are additive over items, this
problem can be modeled as a special case of determinant maximization under a partition
matroid constraint [6].

Computational Aspects

The computational complexity of determinant maximization depends heavily on the structure of
the combinatorial constraint that defines the feasible subsets of vectors. The most extensively
studied case is when the constraint is simply cardinality-based—that is, when the number of
selected vectors is fixed. This setting has been well-explored using a range of algorithmic tech-
niques, including convex programming methods [3, 147, 174, 181], combinatorial methods such
as local search and greedy selection [116, 124, 130], and connections to graph sparsification [3].
These approaches have led to efficient approximation algorithms with strong performance guar-
antees, offering a solid understanding of the problem’s complexity in this regime.

The more general setting, where the feasible sets are defined by a matroid constraint, has received
increasing attention in recent years [5, 6, 8, 131, 148]. This is especially interesting, as several
applications are naturally modeled using matroid constraints — particularly partition matroids.

However, the matroid-constrained case presents a significant gap between what can be achieved
through estimation and what can be computed algorithmically. In particular, while it is possible

20

to approximately estimate the optimal determinant value with good guarantees, actually find-
ing a subset that achieves such value is much more challenging. This gap can be substantial:
for example, even in the case of partition matroids, there exists an ed-approximate estimation
algorithm, but the best known approximation algorithms achieve only an eO(d2) factor—an expo-
nential blow-up.1

This gap largely stems from the fact that current estimation methods rely on non-constructive
tools such as convex relaxations and the theory of stable polynomials and its generalization to
strongly log-concave polynomials. Unfortunately, these methods are inherently non-algorithmic
and do not give a simple way to obtain efficient algorithms with the same guarantees that match
the estimation bounds.

2.1.1 Preliminaries and Notation
Let U = {v1, . . . , vn} ⊆ Rd be a collection of vectors. For any subset of indices S ⊆ [n], we
define:

• VS := {vi : i ∈ S}— the set of vectors indexed by S. By slight abuse of notation, we also
use VS to denote the d× |S| matrix whose columns are these vectors, i.e., VS = [vi]i∈S .

• vol(S) — the volume of the parallelepiped spanned by the vectors in VS , defined as

vol(S) := | det(VS)|,

when |S| = d. This notion can be extended to |S| ≤ d as

vol(S) :=
√

det(V >S VS).

Although volume is not defined for |S| > d, the relevant algebraic surrogate we use is

vol(S) :=
√

det(VSV >S) =

√√√√det

(∑
i∈S

viv>i

)
.

We use M = ([n], I) to denote a matroid over the ground set [n] with independent sets I.
Whenever we refer to a set S ∈ I as a basis, we mean the index set, and use VS to refer to the
corresponding vectors or matrix.

We adopt the following index conventions throughout: the symbol j is used for vectors uj /∈ VS
(i.e., outside the current solution), and i for vectors vi ∈ VS (i.e., inside the solution). For a
matrix A ∈ RS×T , and subsets Y ⊆ S, X ⊆ T , we use AY,X to denote the submatrix of A
consisting of rows indexed by Y and columns indexed by X . We use both aij and avu to refer
to matrix entries, depending on whether we are indexing by position or by the corresponding
vectors.

1Since the determinant is taken over d× d matrices, approximation factors are often reported in terms of the dth

root of the determinant, making the exponential dependence on d appropriate.

21

For notational convenience, we may write expressions like S∆C, S∩C, or C\S even when C ⊆
U is a set of vectors, interpreting these as operations on the corresponding index sets. Similarly,
we may use notation such as vol(S+u−v), where S is an index set and u, v are vectors, with the
understanding that this refers to modifying the associated vector set. Let span(S) := span(VS).
Finally, we denote by symr(M) the rth elementary symmetric polynomial of the eigenvalues of
a d× d positive semidefinite matrix M .

2.1.2 Our Results and Contributions
In this work, we introduce new combinatorial techniques for determinant maximization under
matroid constraints. We give a deterministic approximation algorithm with approximation factor
O(dO(d)), improving significantly over the previously best-known bounds. Unlike earlier ap-
proaches that rely heavily on convex programming and the theory of stable polynomials, our
algorithm is purely combinatorial and builds on the classical matroid intersection algorithm.

Our main results handle three different regimes, depending on the relationship between the ma-
troid rank r and the dimension d.

Case 1 (r = d)

Our first result addresses the case where the rank of the matroid is exactly d, meaning the selected
set must contain exactly d vectors. In this setting, the determinant of the matrix

∑
i∈S viv

>
i

corresponds to the squared volume of the parallelepiped spanned by the selected vectors.

Theorem 1.2.1 (Rank equals dimension). There is a polynomial-time algorithm which, given a
collection of vectors v1, . . . , vn ∈ Rd and a matroidM = ([n], I) of rank d, returns a set S ∈ I
such that

det

(∑
i∈S

viv
>
i

)
= Ω

(
1

dO(d)

)
max
S∗∈I

det

(∑
i∈S∗

viv
>
i

)
.

Our results improve the eO(d2)-approximation algorithm which relies on the eO(d)-estimation al-
gorithm [5, 8, 131]. Our algorithm iteratively improves the objective while maintaining matroid
feasibility. This is achieved by performing exchanges guided by alternating cycles in a carefully
constructed exchange graph, building on ideas from the matroid intersection framework.

Case 2 (r < d)

We extend our techniques to the case where the matroid rank r is less than d. In this setting, the
solution matrix

∑
i∈S viv

>
i is a d × d positive semidefinite matrix of rank at most r. Since its

determinant is zero, a more meaningful objective is the product of its top r eigenvalues, which
corresponds to the rth elementary symmetric polynomial of its eigenvalues.

Let symr(M) denote the rth elementary symmetric function of the eigenvalues of a d× d matrix
M . Our objective, then, is to maximize symr

(∑
i∈S viv

>
i

)
. When |S| ≤ d, this is equivalent to

the squared volume vol(S)2 as defined in the Preliminaries § 2.1.1.

22

Theorem 1.2.2 (Rank less than dimension). There is a polynomial-time algorithm which, given
a collection of vectors v1, . . . , vn ∈ Rd and a matroidM = ([n], I) of rank r ≤ d, returns a set
S ∈ I such that

symr

(∑
i∈S

viv
>
i

)
= Ω

(
1

rO(r)

)
max
S∗∈I

symr

(∑
i∈S∗

viv
>
i

)
.

This result improves over the best known eO(r2)-approximation algorithms derived from eO(r)-
approximate estimation methods.

Case 3 (r > d)

Finally, we consider the case where the number of selected vectors exceeds the dimension d.
Our approach in this overdetermined setting uses sparsity properties of a convex programming
relaxation along with the algorithmic ideas developed for the earlier cases.

Theorem 1.2.3 (Rank more than dimension). There is a polynomial-time algorithm which, given
a collection of vectors v1, . . . , vn ∈ Rd and a matroidM = ([n], I) of rank r ≥ d, returns a set
S ∈ I such that

det

(∑
i∈S

viv
>
i

)
= Ω

(
1

dO(d)

)
max
S∗∈I

det

(∑
i∈S∗

viv
>
i

)
.

This matches the dO(d)-approximate estimation algorithm [131], which only gives an estimate of
the optimum value and results in dO(d2)-approximation algorithm.

Remark. Notice that the theorem statements for the r < d and r > d cases each subsume the
result for r = d. We present the r = d case separately for the sake of conceptual clarity, as it
serves as a natural starting point for understanding the algorithm and analysis.

2.1.3 Technical Overview
To build intuition, recall that when |S| = d, the squared volume of the parallelepiped spanned
by the vectors indexed by S is given by vol(S)2 = det(VSV

>
S). Therefore, maximizing volume

is equivalent to maximizing the determinant of the sum of outer products.

We begin by considering the feasibility problem: is there a set S ∈ I such that vol(S) > 0?
This reduces to matroid intersection. Specifically, this question is equivalent to asking whether
there exists a common basis between the given matroidM and the linear matroid defined by the
vectors {v1, . . . , vn} (i.e., the column independence structure).

Since our goal is to maximize vol(S) over all S ∈ I, a natural idea is to use the weighted
matroid intersection algorithm. However, the key challenge is that the volume objective is not
linear: we cannot write vol(S) as a sum

∑
i∈S wi or even as a product

∏
i∈S wi for some weights

w. Nevertheless, our algorithm takes inspiration from the matroid intersection framework.

23

Overview of Matroid Intersection

Let us briefly recall the classical matroid intersection algorithm. Given two matroids M1 =
(U, I1) and M2 = (U, I2) on the same ground set U = {1, . . . , n}, and a weight function
w : U → R, the goal is to find a common basis S maximizing w(S) :=

∑
i∈S wi, assuming one

exists.

The algorithm starts from a common basis S and either certifies optimality or finds a strictly
better common basis S ′. It constructs a directed bipartite exchange graph G(S) with bipartition
(U \ S, S). It adds:

– an arc from j ∈ U \ S to i ∈ S if replacing i with j in S yields a basis inM2;

– an arc from i ∈ S to j ∈ U \ S if the same operation yields a basis inM1.

Each j ∈ U \S gets a weight of−wj , and each i ∈ S gets weight wi. A foundational result from
matroid theory (Theorem 41.5 in [172]) shows that S is a maximum weight common basis if and
only if G(S) contains no negative weight cycle. Moreover, if C is a directed negative weight
cycle with minimum hops2, then S∆C is a common basis of the two matroids whose weight is
strictly larger than that of S.

Our Algorithm

Our algorithm adapts this framework to the determinant maximization setting. The two ma-
troids involved are the constraint matroid M and the linear matroid defined by the columns
{v1, . . . , vn}. A key difficulty is that the objective function det(VSV

>
S) = vol(S)2 is not linear,

so vertex weights cannot be used as in the classical case.

Instead, we work with the function log vol(S), which is known to be submodular. While we
do not directly use submodularity, we linearize log vol(S) locally and search for improvement
directions using an exchange graph. In the case that r ≤ d, we use the geometric relationship
between vol and det closely, while we take a more algebraic approach when r ≥ d.

The first new ingredient is the use of arc weights (rather than vertex weights) in the exchange
graph. For each forward arc (j, i), where j /∈ S and i ∈ S, corresponding to the linear ma-
troid, we assign a weight of − log

(
vol(S−i+j)

vol(S)

)
. Backward arcs (corresponding to the constraint

matroidM) are given zero weight.

A key observation is that this volume ratio has a geometric interpretation. Let uj be written in
the basis VS as uj =

∑
i∈S aijvi. Then:

vol(S − vi + uj)

vol(S)
= |aij|.

This relationship (formalized in Lemma 2.2.4) plays a central role in our analysis.

2Hops here refers to the number of arcs in the cycle.

24

From Determinant to Cycle

We show that if the current solution is far from optimal in terms of volume, then the exchange
graph must contain a cycle that violates an appropriate inequality:

Lemma 2.1.1 (Determinant to Cycle). Let S be a basis inM, and let OPT be an optimal basis
maximizing vol(OPT). If vol(OPT) ≥ e12d log d · vol(S), then there exists a directed cycle C of
2` hops in G(S) such that ∏

(j,i)∈C, j /∈S, i∈S

|aij| ≥ max{2, (`!)11} =: f(`).

Such a cycle is called an f -violating cycle. To detect it, we define new arc weights for forward
arcs as

w`(j, i) =
1

`
log f(`)− log |aij|,

and search for negative weight cycles of length 2`.

Let VS and VOPT be the matrices with columns indexed by S and OPT, respectively. Writing
each vector in OPT in the basis VS , we get VOPT = VSA for some matrix A. The condition of
the lemma implies that | det(A)| ≥ e12d log d. Furthermore, the arc weights from uj ∈ OPT to
vi ∈ S are − log |aij|, where aij is the corresponding entry in A. These facts together guarantee
the existence of an f -violating cycle.

From Cycle to Determinant

After finding an f -violating cycle C, the next step is to update the solution to T := S∆C. The
key is to relate the volume of the new solution vol(T) to the coefficients aij . While the |aij|
values along the cycle are large, the determinant det(VTV

>
T) depends on more than just those

values—it depends on all coefficients between vectors in C \ S and C ∩ S.

Let B be the matrix with rows indexed by C ∩ S and columns by C \ S, where Bij = aij is the
coefficient of vi in the expansion of uj with respect to the basis VS . Then:

vol(T) = | det(B)| · vol(S) (Lemma 2.2.11).

The diagonal entries of B correspond to the weights of the forward arcs on C, which are guar-
anteed to be large by Lemma 2.1.1. We show that if C is a minimum hop f -violating cycle, then
the off-diagonal entries of B (i.e., chords of C) are small enough to ensure a strong lower bound
on det(B).

Lemma 2.1.2 (Cycle to Determinant). If C is a minimum hop f -violating cycle in G(S), then
vol(S∆C) ≥ 2 · vol(S). Moreover, S∆C is also a basis ofM.

This lemma is crucial: minimality of C controls the size of off-diagonal entries in B, allowing
us to lower bound its determinant. A careful calculation then shows that each update at least
doubles the volume, ensuring fast convergence.

25

2.1.4 Related Work

Determinant Maximization under Cardinality Constraints. Determinant maximization prob-
lems under a cardinality constraint have been studied widely [3, 116, 130, 147, 174, 181].
Currently, the best approximation algorithm for the case r ≤ d is an er-approximation due
to Nikolov [147] and for r ≥ d, there is an ed-approximation [174]. It turns out that the
problem gets significantly easier when r >> d, and there is a (1 + ε)d-approximation when
r ≥ d + d

ε
[3, 124, 130]. These results use local search methods and are closely related to the

algorithm discussed in this chapter, as the cycle improving algorithm will always find a 2-cycle
when the matroid is defined by the cardinality constraint.

Determinant Maximization under Matroid Constraints. As mentioned earlier, determinant
maximization under a matroid constraint is considerably challenging and the bounds also de-
pend on the rank r of the constraint matroid. There are eO(r)-estimation algorithms when r ≤
d [5, 10, 148] and a min{eO(r), O

(
dO(d)

)
}-estimation algorithm when r ≥ d [131]. The output

of these algorithms is a random feasible set whose objective is at least min{eO(r), O
(
dO(d)

)
}

of the objective of a convex programming relaxation, in expectation. Since the approximation
guarantees are exponential, it can happen that the output set has objective zero almost always.
To convert them into deterministic algorithms (or randomized algorithms that work with high
probability), additional loss in approximation factor is incurred. These results imply an eO(d2)-
approximation algorithm when r ≤ d, and aO

(
dO(d3)

)
-approximation algorithm [131] for r ≥ d.

Approximation algorithms are also known where the approximation factor is exponential in the
size of the ground set for special classes of matroids [71].

Nash Social Welfare and its generalizations. A special case of the determinant maximization
problem is the Nash Social Welfare problem [41]. In the Nash Social Welfare problem, we are
given m items and d players and there is a valuation function vi : 2[m] → R+ for each player
i ∈ [d] that specifies value obtained by a player when given a bundle of items. The goal is to
find an assignment of items to players to maximize the geometric mean of the valuations of each
of the players. When the valuation functions are additive, the problem becomes a special case
of the determinant maximization and this connection can be utilized to give an e-approximation
algorithm [6]. Other methods including rounding algorithms [60, 61] as well as primal-dual
methods [20] have been utilized to obtain improved bounds. The problem has been studied when
the valuation function is more general [9, 21, 84, 86] and a constant-factor approximation is
known when the valuation function is submodular [127].

Other Spectral Objectives. While we focus on the determinant objective, the problem is also
interesting when considering other spectral objectives including minimizing the trace or the max-
imum eigenvalue of the

(∑
i∈S
(
viv
>
i

))−1. These problems have been studied for the cardinality
constraint [3, 149]. For the case of partition matroid, the problem of maximizing the minimum
eigenvalue is closely related to the Kadison-Singer problem [136].

26

2.1.5 Organization
In the next section we will provide a description of the algorithm in the special case when r = d,
and the constraint matroid is a partition matroid. This case already contains the key technical
ideas and will allow for a full description of the algorithm. The analysis is divided into two
lemmas: Lemma 2.1.1, which shows that if there is an optimality gap we can find a very negative
cycle, and Lemma 2.1.2 which shows that when we update along a minimal such very negative
cycle, it leads to an improvement in the objective value. At the end of that section we briefly
explain how the result extends to general matroid constraints.

In § 2.3 we address what modifications are needed when we are selecting fewer vectors than
the dimension. This requires new versions of the determinant-to-cycle and cycle-to-determinant
lemmas, and a slight modification to the algorithm.

In § 2.4 we complete the final case where we select more vectors than the dimension. In this case
we use additional sparsity properties of the convex programming relaxation, but the general plan
remains the same.

2.2 The case that rank equals dimension
In this section, we present the algorithm that proves the following theorem:

Theorem 1.2.1 (Rank equals dimension). There is a polynomial-time algorithm which, given a
collection of vectors v1, . . . , vn ∈ Rd and a matroidM = ([n], I) of rank d, returns a set S ∈ I
such that

det

(∑
i∈S

viv
>
i

)
= Ω

(
1

dO(d)

)
max
S∗∈I

det

(∑
i∈S∗

viv
>
i

)
.

We begin by analyzing the case of a partition matroid with rank d. This allows us to introduce
the main ideas without invoking the full generality of matroid theory. The extension to general
matroids is standard and is deferred to § 2.2.3.

LetM be a partition matroid with d parts, where each part Pi has capacity 1. Our goal is to find
an index set S that selects one vector from each part and maximizes the determinant objective:

max

{
det

(∑
i∈S

viv
>
i

)
: |S| = d, |S ∩ Pi| = 1 for all i ∈ [d]

}
.

Let OPT denote the optimal solution. The following theorem is a specialization of Theo-
rem 1.2.1 to the partition matroid setting.

Theorem 2.2.1. Given a partition matroidM with d parts, let OPT be the optimal solution to
the determinant maximization problem underM. Then, there is a polynomial-time deterministic
algorithm that returns a feasible set S ∈M such that

det

(∑
i∈S

viv
>
i

)
≥ e−24d log(d) · det

(∑
i∈OPT

viv
>
i

)
.

27

VS

U\VS

v1

vi

vd

U1\{v1}

Ui\{vi}

Ud\{vd}

Partition matroid M1

Linear matroid M2

Figure 2.1: The exchange graph G(S).

2.2.1 Algorithm
We now formally define the exchange graph, the relevant weight functions, and present the algo-
rithm used to prove Theorem 2.2.1.

Let Ui := {vj : j ∈ Pi} be the set of vectors in the i-th part of the partition matroid.

Definition 2.2.2 (Exchange Graph). Let S ⊆ [n] be an index set such that |S ∩ Pi| = 1 for all
i ∈ [d]. For each i, let si be the unique element in S ∩ Pi, and define (or re-index such that)
vi := vsi . The exchange graph G(S)(see Figure 2.1) is a bipartite directed graph with:

• Right side: the selected vectors R := VS ,

• Left side: the remaining vectors L :=
⋃d
i=1 (Ui \ {vi}).

The arcs are defined as follows:

• For each vi ∈ R, there is a backward arc to every u ∈ Ui \ {vi},

• For each u ∈ L, there is a forward arc to every vi ∈ VS such that VS − vi + u is linearly
independent.

More generally, the arcs from R to L correspond to swaps that preserve feasibility in the con-
straint matroidM, while arcs from L to R correspond to arcs that preserve linear independence.

We define a family of weight functions on the arcs of G(S). The base weight function is denoted
by w0, and for each 1 ≤ ` ≤ d, we define weight functions w`. We use the function f : [d]→ Z+

defined as f(1) = 2 and f(i) = (i!)11 for i ≥ 2.

Definition 2.2.3 (Weight Functions on the Exchange Graph). For uj ∈ L, let vi = VS[i] be the
representative from partition i. Suppose uj can be written in the basis VS as uj =

∑d
i=1 aijvi.

28

Then:

• The base weight function w0 assigns weight w0(uj, vi) = − log |aij| to each forward arc
(uj, vi), and weight 0 to each backward arc (vi, uj).

• The modified weight function w` for ` ∈ [d] assigns:

w`(uj, vi) :=
log(f(`))

`
+ w0(uj, vi),

and still gives weight 0 to all backward arcs.

The weight w0(uj, vi) reflects the relative change in volume when replacing vi with uj . The
following lemma, proved in the appendix, formalizes this:

Lemma 2.2.4. Let S ⊆ [n] with vol(S) > 0, and let uj /∈ S, vi ∈ S. Then

w0(uj, vi) = − log

(
vol(S − vi + uj)

vol(S)

)
.

From here on, when not specified, we assume the default weight function is w0.

Definition 2.2.5 (Cycle Weight). The weight of a cycle C in G(S) is defined as w0(C) =∑
e∈C w0(e). Note that the weight only depends on the forward arcs, as all backward arcs have

weight 0.

We now describe how to iteratively improve the current solution set S using updates guided by
cycles in the exchange graph G(S). However, not all cycles are useful for making progress. We
define a special class of cycles called f -violating cycles and Minimal f -violating cycles. The
algorithm always exchanges on a Minimal f -violating cycle.

Definition 2.2.6 (f -Violating Cycle). A cycle C in G(S) is called an f -violating cycle if

w0(C) < − log f(|C|/2),

where |C| denotes the number of arcs in the cycle.

The next observation relates the weight of a cycle to the product of coefficients appearing in the
vector representation and follows directly from the definition of arc weights.

Observation 2.2.7. If C is an f -violating cycle, then∏
(u,v)∈C:u∈L, v∈R

|avu| > f(|C|/2).

The algorithm will always update S using minimal f -violating cycles, defined below.

Definition 2.2.8 (Minimal f -Violating Cycle). A cycle C inG(S) is a minimal f -violating cycle
if:

• C is an f -violating cycle, and

29

• for every cycle C ′ such that V (C ′) ⊂ V (C), C ′ is not an f -violating cycle.

To find such a cycle, we iterate over increasing values of ` and look for a cycle with 2` arcs and
negative weight under w`:

Algorithm 1 Finding a minimal f -violating cycle
for ` = 1 to d do

if there is a negative-weight cycle C with exactly 2` arcs in G(S) under w` then
return C

end if
end for

The correctness of the procedure is immediate from the definitions.

Lemma 2.2.9. Algorithm 1 returns a minimal f -violating cycle in G(S), if one exists.

After finding a minimal f -violating cycle C, we update the current solution set via S ← S∆C,
and repeat. By construction, S∆C is a feasible set, as it continues to pick exactly one element
from each part.

The core idea is as follows: if the volume of the current solution is small relative to the opti-
mum—specifically, if vol(S) < vol(OPT)·e−Ω(d log d)—then the exchange graphG(S) must con-
tain an f -violating cycle (see Lemma 2.2.10). Moreover, exchanging along a minimal f -violating
cycle leads to a significant improvement: it at least doubles the volume, i.e., vol(S∆C) ≥
2 · vol(S) (see Lemma 2.2.12).

To initialize the process, we start with any feasible set S satisfying vol(S) > 0. Such a set
can be computed using the matroid intersection algorithm for the partition matroid and the linear
matroid induced by the vectors. Since the ratio vol(OPT)/ vol(S) is at most 24σ, where σ denotes
the encoding length of the input (Chapter 3, Theorem 3.2 [170]), only polynomially many such
exchanges are needed before reaching a solution that satisfies the bound in Theorem 2.2.1.

Algorithm 2 Exchange Algorithm for Partition Matroids

Initialize S such that |S| = d, |S ∩ Pi| = 1 for all i ∈ [d], and vol(S) > 0
while there exists an f -violating cycle in G(S) do

C ← minimal f -violating cycle in G(S)
S ← S∆C

end while
return S

Lemma 2.2.10. For any set S with |S| = d and vol(S) > 0, if vol(S) < e−12d log d · vol(OPT),
then G(S) contains an f -violating cycle.

Proof. Let OPT = {u1, u2, . . . , ud} and S = {v1, v2, . . . , vd}, where ui, vi ∈ Pi for all i ∈ [d].
Observe that (vi, ui) is a backward arc in G(S) for every i where ui 6= vi.

30

Let VT and VS be the matrices whose columns are the vectors in OPT and S, respectively. Let
A be the coefficient matrix such that VT = VSA. Then,

vol(OPT)2 = det(VTV
>
T) = det(VSAA

>V >S) = vol(S)2 · | det(A)|2.

DefineX = OPT\S and Y = S\OPT, and suppose |X| = |Y | = k. Without loss of generality,
write Y = {v1, . . . , vk} and X = {u1, . . . , uk}. Then A takes the block form:

A =

[
Ak 0
A′k Id−k

]
,

where Ak is a k × k matrix. Hence det(A) = det(Ak).

Using the hypothesis vol(S)2 < vol(OPT)2 · e−24d log d, we get

| det(Ak)| > e12d log d ≥ e12k log k.

By the Leibniz formula and bounding the number of permutations,

| det(Ak)| ≤
∑
σ∈Sk

k∏
i=1

|aiσ(i)| ≤ k! ·max
σ∈Sk

k∏
i=1

|aiσ(i)|.

Hence, for some σ ∈ Sk, we must have:

k∏
i=1

|aiσ(i)| ≥
| det(Ak)|

k!
> e11k log k.

Let σ = {C1, . . . , C`} be the decomposition of σ into disjoint cycles. Each Cj corresponds to
a cycle in G(S) with 2|Cj| arcs (alternating forward and backward). If all of these cycles were
non-violating, then

k∏
i=1

|aiσ(i)| =
∏̀
j=1

∏
i∈Cj

|aiσ(i)| ≤
∏̀
j=1

f(|Cj|) ≤ e11k log k,

contradicting the bound above. Therefore, at least one f -violating cycle exists.

Tightness of the bound The volume threshold in Lemma 2.2.10 is essentially tight. For ex-
ample, let S = {e1, . . . , ed} be the standard basis of Rd, and let OPT = {h1, . . . , hd} be the
columns of a d × d Hadamard matrix. Then vol(S) = 1 and vol(OPT) =

∏d
i=1 ‖hi‖ = dd/2 =

e
d
2

log d · vol(S). However, since every entry of the exchange matrix A = H is ±1, the product of
coefficients along any cycle has absolute value 1. Thus, no f -violating cycle exists, despite the
large gap in volume.

31

2.2.2 Cycle Exchange and Determinant
We now show that exchanging along a minimal f -violating cycle C increases the objective
value—specifically, the squared volume—by at least a factor of two. The proof relies on two
technical lemmas.

First, observe that the arc weights w0(j, i) quantify the change in the objective when we switch
from the current solution S to S + j − i. However, exchanging along a cycle involves replac-
ing multiple elements simultaneously. Since our function vol(·) (or more precisely, log vol(·))
is not additive, it is not immediately clear how the objective changes. The following lemma
characterizes the exact change when we replace a large subset.

Let S be the current solution. Let C be a minimal f -violating cycle, and define ` = |C|/2. Let
X = C\S and Y = C ∩S. Then the updated set is T = (S ∪X)\Y . We denote by VX , VY , and
VS the matrices whose columns correspond to the elements of X , Y , and S, respectively. Note
that VS is a d× d matrix, while both VX and VY are d× `. Observe:

vol(S)2 = det(VSV
>
S), vol(T)2 = det(VTV

>
T) = det(VSV

>
S + VXV

>
X − VY V >Y).

The matrix of coefficients aij , which defines the arc weights for j ∈ X and i ∈ Y in the exchange
graph, also governs this change in volume.

Lemma 2.2.11. Let S be a basis, and letX, Y be sets with |X| = |Y | = ` and Y ⊆ S,X ⊆ U\S.
Let A be the d× ` matrix such that VX = VSA, and let AC be the `× ` submatrix of A restricted
to the rows indexed by Y . Then, for T = (S ∪X) \ Y , we have:

vol(T)2 = vol(S)2 · det(ACA
>
C).

Without loss of generality, write the cycle as

C = (v0 → u1 → v1 → u2 → v2 → · · · → u` → v0),

with X = {u1, . . . , u`} and Y = {v1, . . . , v`−1, v0}. Order the rows of AC so that the last row
corresponds to v0. The diagonal entries aii ofAC represent the coefficients of vi when expressing
ui in the basis S. Since C is f -violating, we have:

∏̀
i=1

|aii| > f(`).

To show that vol(T) is large, it suffices to lower-bound | det(AC)|. Crucially, since C is a min-
imal f -violating cycle, any chord creates a strictly smaller cycle that must not be f -violating.
This allows us to upper-bound the off-diagonal entries aij .

Lemma 2.2.12. If C is a minimal f -violating cycle in G(S), then vol(S∆C) ≥ 2 · vol(S).

Proof. Let C = (v0 → u1 → v1 → · · · → u` → v0) where vi, ui+1 belong to the same part and
vi ∈ S (see Figure 2.2).

32

VS

v0

v1

v2

U\VS

u1

u2

u`

u`−1
v`−1

Figure 2.2: The cycle C

From Lemma 2.2.11, we know:

vol(S∆C) = | det(AC)| · vol(S).

Using notation from Lemma 2.2.11 with X = C\S and Y = C ∩ S. Index the entries of
AC using {vi}0≤i≤`−1 and {uj}1≤j≤`, with the last row corresponding to v0 (we use v` and v0

interchangeably). Since C has 2` edges, AC is an `× ` matrix.

We now upper-bound the off-diagonal entries of AC in terms of its diagonal entries. For i < j,
define the cycle:

Ci,j := (uj → vi → ui+1 → · · · → vj−1 → uj).

This cycle has 2(j − i) edges and is a proper subgraph of C. Since C is minimal, Ci,j is not
f -violating. Thus:

|ai,j| ·
j−1∏
s=i+1

|as,s| < f(j − i) ⇒ |ai,j| <
f(j − i)∏j−1
s=i+1 |as,s|

.

Note that i = 0 is part of the i < j case. For j < i < `, define:

C ′i,j := (v0 → u1 → · · · → uj → vi → · · · → u` → v0).

This cycle has 2(`− i+ j) edges and is not f -violating. Hence:

|ai,j| ·
j−1∏
s=1

|as,s| ·
∏̀
s=i+1

|as,s| < f(`− i+ j).

Since C is f -violating, we also have: ∏̀
s=1

|as,s| > f(`),

33

VS

v0

v1

U\VS

u1

u`

u`−1 v`−1

viui

vj−1uj−1
vjuj

vi+1ui+1

(a) Sub-cycle when i < j

VS

v0

v1

U\VS

u1

u`

u`−1 v`−1

vjuj

viui

(b) Sub-cycle when i > j

Figure 2.3: Structure when edge uj → vi (in blue) is added

which leads to:

|ai,j| <
f(`− i+ j)

f(`)
·

i∏
s=j

|as,s|.

Now define matrix B` by applying the following transformations to AC :

• Multiply the columns 1 < j ≤ ` with
∏j−1

s=1 as,s.

• Divide the rows 1 ≤ i ≤ `− 1 by
∏i

s=1 as,s.

• Divide last row by f(`).

Then | det(AC)| = f(`) · | det(B`)|, and B` satisfies:

• bi,i = 1 for all i < ` and b`,` ≥ 1,

• |bi,j| ≤ f(j − i) for i < j,

• |bi,j| ≤ f(`− i+ j)/f(`) for j < i.

By Corollary 2.5.4, we have:

det(B`) ≥ 1− 0.1

`
,

and therefore:

| det(AC)| ≥ f(`) ·
(

1− 0.1

`

)
≥ 2 for ` ≥ 2.

34

2.2.3 Update Step for General Matroids
Consider the case whereM = ([n], I) is a general matroid of rank d. When we exchange along
a cycle C and update S ← S∆C, the resulting set is guaranteed to remain independent in the
linear matroid, due to the determinant bound in Lemma 2.2.12. However, it is not immediately
clear that S∆C will remain independent in a general matroidM, especially whenM is not a
partition matroid.

In this section, we show that by exchanging along a minimal f -violating cycle, we can preserve
independence inM. Specifically, we prove the existence of an f -violating cycle whenever the
current basis S has volume significantly smaller than that of the optimal solution OPT. We also
show that exchanging along a minimal f -violating cycle preserves matroid independence.

Theorem 2.2.13. Let S be a basis with |S| = d and vol(S) > 0. If vol(S) < vol(OPT) ·
e−12d log(d), then there exists an f -violating cycle in G(S).

Proof. Since S and OPT are both independent sets of size d, there exists a perfect matching
between OPT \ S and S \ OPT using the backward arcs in G(S) (Chapter 39, Corollary
39.12a, [172]). Let X = OPT \ S and Y = S \ OPT, with |X| = |Y | = k. Without loss
of generality, let Y = {v1, . . . , vk} and X = {u1, . . . , uk} such that each (vi → ui) is an arc in
G(S) for i ∈ [k].

Let VT and VS be the matrices whose columns are the vectors in OPT and S, respectively. Define
A as the matrix of coefficients such that VT = VSA. Then A can be expressed in block form as

A =

[
Ak 0
A′ Id−k

]
,

where Ak is the submatrix corresponding to rows indexed by X and columns indexed by Y .

Applying the same argument as in Lemma 2.2.10, there exists a permutation σ ∈ Sk such that

k∏
i=1

|aiσ(i)| > | det(A)| · e−k log(k) ≥ e11k log(k). (2.1)

Let σ = {C1, . . . , C`} be the decomposition of σ into disjoint cycles. Each Cj corresponds to
a cycle in G(S) with 2|Cj| arcs (alternating forward and backward). If all of these cycles were
non-violating, then

k∏
i=1

|aiσ(i)| =
∏̀
j=1

∏
i∈Cj

|aiσ(i)| ≤
∏̀
j=1

f(|Cj|) ≤ e11k log k,

which contradicts (2.1). Thus, G(S) must contain an f -violating cycle.

Lemma 2.2.14. If C is a minimal f -violating cycle in G(S), then S∆C is independent inM.

35

Proof. Let V (C) denote the vertex set of the cycle C, and define T := S∆C. Suppose |C| =
2`. Consider the graph G(S) with arc weights w`, and define the total weight of a cycle D as
w`(D) :=

∑
e∈D w`(e). Since C is f -violating, we have

w`(C) = w0(C) + log(f(`)) < 0.

Let N1 be the set of backward arcs and N2 the set of forward arcs in C. Suppose, for contradic-
tion, that T /∈ I. Then, by Theorem 39.13 of [172], there exists a distinct matching N ′1 on V (C)
consisting solely of backward arcs, with N ′1 6= N1.

Construct a multiset A of arcs as follows: include each arc in N2 twice, and include all arcs in
N1∪N ′1, with arcs inN1∩N ′1 counted twice. LetD = (V (C), A) be the resulting directed multi-
graph. Each vertex in V (C) has in-degree and out-degree two, so D is Eulerian and decomposes
into directed circuits C1, . . . , Ck.

Since only arcs in N2 have nonzero weights, we have:

k∑
i=1

w`(Ci) = 2w`(C).

Now, either:

(i) there exists a Cj with V (Cj) = V (C), or

(ii) all Cj satisfy V (Cj) (V (C).

In case (i), w`(Cj) = w`(C), and so the remaining circuits must sum to w`(C) < 0, implying the
existence of some Ci (C with w`(Ci) < 0.

In case (ii),
∑

iw`(Ci) = 2w`(C) < 0, so again some Ci has w`(Ci) < 0 and V (Ci) (V (C).

Thus, in either case, we find a subcycle C ′ (C with w`(C ′) < 0. Let |C ′| = 2y. Then:

w`(C
′) =

y

`
log(f(`)) + w0(C ′) < 0.

Since y < ` and log(f(y))/y ≤ log(f(`))/`, we have:

w0(C ′) ≤ −y
`

log(f(`)) ≤ − log(f(y)).

Thus C ′ is an f -violating cycle with V (C ′) (V (C), contradicting the minimality of C.

2.3 Rank less than dimension
In this section, we extend Algorithm 2 to the setting where the number of vectors selected is less
than the dimension d. Specifically, we address the case when the matroid rank r ≤ d and prove
Theorem 1.2.2.

36

LetM = ([n], I) be a matroid of rank r ≤ d. Starting with a basis S with non-zero volume, we
apply a slight modification of Algorithm 2 to iteratively find a basis with strictly larger volume.
However, since S is not full-dimensional in Rd, the edge weight functions in our exchange graph
must be adapted accordingly.

Let S = {v1, v2, . . . , vr} be a basis of M such that vol(S) > 0. Any vector uj ∈ U can be
written as

uj =
r∑
i=1

aijvi + u⊥j ,

where u⊥j is the component of uj orthogonal to span(VS).

The change in volume incurred by replacing some vi ∈ S with uj /∈ S is given by

vol(S − vi + uj)

vol(S)
=

√
a2
ij +
‖u⊥j ‖2

‖v⊥i ‖2
, (2.2)

where v⊥i is the component of vi orthogonal to span(VS \ {vi}).

Each of the terms in (2.2) has a geometric interpretation. Let us decompose uj as uj = u
‖
j + u⊥j ,

where u‖j lies in span(S). Then:

• |aij| =
vol(S−vi+u

‖
j)

vol(S)
captures the change in volume if we replace vi with the component of

uj parallel to the span of S.

• ‖u
⊥
j ‖

‖v⊥i ‖
=

vol(S−vi+u⊥j)

vol(S)
captures the change in volume if we replace vi with the component of

uj perpendicular to the span of S.

This motivates an augmentation of the exchange graph to account for both components.

As in Lemma 2.2.10, we show that if symr(S) < symr(OPT) · r−Ω(r), then there exists an
f -violating cycle in the augmented exchange graph.

However, unlike Lemma 2.2.12, the change in the objective induced by a cycle C in the aug-
mented graph is not a simple function of the arc and chord weights in C. To overcome this, we
use geometric properties of the volume function—specifically, its subadditivity—to relate symr

to the total weight along arcs and chords in the cycle.

Finally, each vector vi ∈ S can be decomposed as

vi =
∑
i′ 6=i

αi′,ivi′ + v⊥i ,

where v⊥i is orthogonal to span(VS \ {vi}). We refer to v⊥i as the orthogonal component of vi
and use it to define edge weights in the augmented exchange graph denoted by G̃(S).

Before we present our algorithm and analyze it, we will define some useful terminology:

37

Definition 2.3.1 (Orthogonal Projection). Given a linearly independent set S ⊆ [n], define the
projection matrix onto span(VS) as

projS := VS(V >S VS)−1V >S ,

and the orthogonal projection matrix as proj⊥S := Id − projS .

We write proj⊥S (u) for the orthogonal projection of a vector u ∈ Rd onto the complement of
span(VS). When S is clear from context, we abbreviate this as u⊥.

Definition 2.3.2 (Coefficient Extraction). Given a linearly independent set S ⊆ [n], define the
function coefS : Rd×VS → R as follows. For uj ∈ Rd and vi ∈ VS , the value coefS(uj, vi) = ai,j
denotes the coefficient of vi in the decomposition of uj − u⊥j with respect to the basis VS , where
u⊥j = proj⊥S (uj). More concretely,

coefS(uj, vi) = e>i (V >S VS)−1V >S uj.

Definition 2.3.3 (Augmented Exchange Graph for r < d). Let VS = {v1, . . . , vr} be a set of
vectors such that S is independent in the matroidM and vol(S) > 0. The augmented exchange
graph, denoted G̃(S), is a bipartite graph with:

• Right side: the selected vectors VS ,

• Left side: The remaining vectors U\VS .

There is an arc from vi ∈ VS to uj /∈ VS if the set S − i + j is independent inM. Additionally,
if VS − vi + uj is linearly independent, then there are two types of arcs from uj to vi, labeled I
and II.

Definition 2.3.4 (Weight Functions on the Augmented Exchange Graph). Let VS = {v1, . . . , vr}
be a basis of matroidM with vol(S) > 0, and let U \ VS = {u1, . . . , un−r}. Suppose each uj
can be written as

uj =
r∑
i=1

ai,jvi + u⊥j ,

where u⊥j is orthogonal to all vectors in S. For each vi ∈ VS , let v⊥i denote the projection of vi
orthogonal to span(S \ {vi}).

The weights of the forward arcs in G̃(S) are defined as:

• For an arc of type I, uj
I−→ vi, the weight is

w(uj
I−→ vi) := − log (|ai,j|) .

• For an arc of type II, uj
II−→ vi, the weight is

w(uj
II−→ vi) := − log

(
‖u⊥j ‖
‖v⊥i ‖

)
.

38

2.3.1 Algorithm

As in previous sections, the first step is to argue that if the current solution has a much smaller
objective value compared to the optimum, then there exists a cycle in the exchange graph with
significantly negative weight.

Algorithm 3 Algorithm to approximate OPT for r < d

Require: Vectors U = {v1, . . . , vn} ⊆ Rd, matroidM = ([n], I) of rank r < d
S ← any basis ofM with vol2(S) = det(V >S VS) > 0

while there exists an f -violating cycle in G̃(S) do
C ← minimal f -violating cycle in G̃(S)
S ← S4C

end while
Ensure: S

We now state our main lemma showing the existence of such cycles.

Lemma 2.3.5 (Volume-to-Cycle). Let T, S be two bases ofM such that

vol2(T) ≥ vol2(S) · (2r)! · f(2r).

Then there exists an f -violating cycle C in G̃(S), i.e.,∑
e∈C

w(e) ≤ − log (f(|C|/2)) .

After identifying a minimal f -violating cycle C, we update S ← S4C. When the cycle consists
only of type I edges, the volume increase can be bounded similar to the full-rank case r = d.
However, for general r < d, we cannot assume that all cycles avoid type II edges.

Fortunately, we show (Lemma 2.3.11) that any minimal f -violating cycle contains at most one
type II edge. We then argue that exchanging on this single II edge affects the structure of the
remaining cycle only mildly. This lets us control the change in determinant by bounding the
error introduced through this update and leveraging the minimality of the cycle.

These bounds culminate in the following lemma:

Lemma 2.3.6. Let C be a minimal f -violating cycle in G̃(S) and let T = S4C. Then T ∈ I
and vol2(T) > 2 · vol2(S).

2.3.2 Useful properties of the volume function

We now describe geometric properties of the volume function that will be used in subsequent
lemmas.

39

Lemma 2.3.7 (Gram–Schmidt Volume Formula). For VS = {v1, . . . , vr}, we have:

vol(S) =
r−1∏
t=1

∥∥proj⊥St(vt+1)
∥∥ ,

where St := {v1, . . . , vt}.

Proof. Write vol(S) =
∏r−1

t=1 vol(St+1)/ vol(St). It suffices to show that

vol(St+1)

vol(St)
=
∥∥proj⊥St(vt+1)

∥∥ .
From the definition of vol(·) (see Section 2.1.1), we have:

vol2(St+1)

vol2(St)
=

det(V >St+1
VSt+1)

det(V >StVSt)
.

Using Schur’s determinant formula, this equals:

v>t+1vt+1 − v>t+1VSt(V
>
StVSt)

−1V >Stvt+1 =
∥∥proj⊥St(vt+1)

∥∥2
.

Corollary 2.3.8. For VS = {v1, . . . , vr}, the following hold:

1. Linear Independence: If vi = vi′ for some i 6= i′, then vol(S) = 0.

2. Triangle Inequality: If vi = αv
(0)
i + βv

(1)
i for some vi ∈ S, then

vol(S) ≤ |α| · vol(S + v
(0)
i − vi) + |β| · vol(S + v

(1)
i − vi).

3. Log-Submodularity: For any S ′ ⊆ S,∏
i∈S\S′

‖v⊥i ‖ ≤
vol(S)

vol(S ′)
≤
∏

i∈S\S′
‖vi‖,

where v⊥i := proj⊥S−i(vi).

Proof. 1. W.l.o.g., suppose i′ > i, and define St := {v1, . . . , vt}. Since vi = vi′ , we have
proj⊥Si′−1

(vi′) = 0. Using Lemma 2.3.7, we conclude vol(S) = 0.

2. Divide both sides by vol(S − i) and apply Lemma 2.3.7. The result follows from the
triangle inequality:

‖ proj⊥S−i(vi)‖ ≤ |α| · ‖ proj⊥S−i(v
(0)
i)‖+ |β| · ‖ proj⊥S−i(v

(1)
i)‖.

40

3. Let VS′ = {v1, . . . , vk}. Then by Lemma 2.3.7,

vol(S)

vol(S ′)
=

r−1∏
i=k

∥∥proj⊥Si(vi+1)
∥∥ .

Since projection norms decrease with larger subspaces (i.e., proj⊥T is monotonic in T), the
bounds follow.

Lemma 2.3.9. Let S be a basis with vol(S) > 0 and let uj /∈ S such that

uj =
∑
j∈S

aijvi + u⊥j .

Then for any vi ∈ S, we have:

vol2(S + uj)

vol2(S)
= ‖u⊥j ‖2,

vol2(S − vi)
vol2(S)

=
1

‖v⊥i ‖2
,

vol2(S + uj − vi)
vol2(S)

= a2
ij +
‖u⊥j ‖2

‖v⊥i ‖2
.

2.3.3 Volume to Cycle
Lemma 2.3.5 (Volume-to-Cycle). Let T, S be two bases ofM such that

vol2(T) ≥ vol2(S) · (2r)! · f(2r).

Then there exists an f -violating cycle C in G̃(S), i.e.,∑
e∈C

w(e) ≤ − log (f(|C|/2)) .

Proof. Using Lemma 2.3.10, we have

vol(T)

vol(S)
≤
∑
σ∈Sk

k∏
t=1

(
|at,σ(t)|+

‖u⊥t ‖
‖v⊥σ(t)‖

)
,

where ai,j = coefS(uj, vi).

By assumption, vol(T)/ vol(S) ≥
√

(2r)! · f(2r). This implies that there exists a permutation
σ ∈ Sk and a subset P ⊆ [k] such that∏

t∈P

‖u⊥t ‖
‖v⊥σ(t)‖

·
∏

t∈[k]\P

|at,σ(t)| ≥
2−r

r!
·
√

(2r)! · f(2r) ≥ f(r).

Now, consider edges in the exchange graph as follows:

41

1. For each t ∈ [k] \ P , include the type I arc ut
I−→ vσ(t);

2. For each t ∈ P , include the type II arc ut
II−→ vσ(t).

The total weight of these edges is at most − log f(r). Taking the union of these forward arcs
with the backward matching arcs from the constrained matroidM on T∆S, we obtain a cycle
decomposition.

Since log f(·) is superlinear, one of these cycles must have total weight at most − log f(|C|/2),
completing the proof.

We now prove the main technical lemma that was used to prove Lemma 2.3.5:

Lemma 2.3.10. Let T, S be two bases ofM with S\T = {v1, . . . , vk} and T \S = {u1, . . . , uk}.
Then:

vol(T)

vol(S)
≤
∑
σ∈Sk

k∏
t=1

(
|at,σ(t)|+

‖u⊥t ‖
‖v⊥σ(t)‖

)
,

where ai,j = coefS(uj, vi).

Proof. Let R = S ∩ T . We begin by writing:

vol(T) = vol(R ∪ {u1, . . . , uk}).

Decompose each uj as uj = u
(0)
j + u

(1)
j , where u(0)

j := proj⊥S (uj) and u(1)
j :=

∑
i∈S ai,jvi. Using

Part (2) of Corollary 2.3.8 (linearity of volume), we obtain:

vol(T) ≤
∑
P⊆[k]

vol
(
R ∪ {u(0)

j : j ∈ P} ∪ {u(1)
j : j ∈ [k] \ P}

)
.

Then, applying Part (3) of Corollary 2.3.8, we get:

vol(T) ≤
∑
P⊆[k]

∏
j∈P

‖u(0)
j ‖ · vol

(
R ∪ {u(1)

j : j ∈ [k] \ P}
)
.

Next, consider the term:

vol
(
R ∪ {u(1)

j }j∈[k]\P

)
= vol

R ∪{∑
i∈S

ai,jvi

}
j∈[k]\P

 .

Using Parts (1) and (2) of Corollary 2.3.8, we can upper-bound this as:

≤
∑

g:[k]\P→S

∏
j∈[k]\P

|ag(j),j| · vol(R ∪ {vg(j)}).

42

Now, only injective maps g that avoid overlap with R contribute nonzero volume. We conserva-
tively sum over all bijections σ ∈ Sk, mapping T \ S to S \ T . Then:

vol

(
R ∪

{
u

(1)
j

}
j∈[k]\P

)
≤
∑
σ∈Sk

∏
j∈[k]\P

|aσ(j),j| · vol
(
R ∪ {vσ(j)}j∈[k]\P

)
.

Again applying Part (3) of Corollary 2.3.8:

≤ vol(S) ·
∑
σ∈Sk

∏
j∈[k]\P

|aσ(j),j| ·
∏
j∈P

1

‖v⊥σ(j)‖
.

Putting everything together:

vol(T) ≤ vol(S) ·
∑
P⊆[k]

∏
j∈P

‖u⊥j ‖ ·

∑
σ∈Sk

∏
j∈[k]\P

|aσ(j),j| ·
∏
j∈P

1

‖v⊥σ(j)‖


= vol(S) ·

∑
σ∈Sk

∑
P⊆[k]

∏
j∈P

‖u⊥j ‖
‖v⊥σ(j)‖

·
∏

j∈[k]\P

|aσ(j),j|

= vol(S) ·
∑
σ∈Sk

k∏
j=1

(
|aσ(j),j|+

‖u⊥j ‖
‖v⊥σ(j)‖

)
.

2.3.4 Cycle to Volume
In this section, we prove Lemma 2.3.6, which states that exchanging along a minimal f -violating
cycle in G̃(S) yields a basis whose volume increases by a constant factor. Unlike the previous
section, where we relied on the geometric interpretation of the volume function vol(·), our anal-
ysis here is primarily algebraic.

We begin with the observation that any minimal f -violating cycle contains at most one edge of
type II (see Lemma 2.3.11). This allows us to break the analysis into two cases.

If the cycle C contains only type I edges, then the argument mirrors the r = d case. Let T =
S4C. By Corollary 2.7.3, we have

vol2(T) ≥ vol2(S) · det(A)2,

where VT = VSA + V ⊥T and V ⊥T V
>
S = 0. The nonzero entries of AS∩C,T∩C correspond to the

weight of type I edges within C. By the minimality of C, bounding det(A) reduces to analyzing
a numeric matrix whose entries depend only on the size of C and the function f . In particular,

| det(A)| � 1. (2.3)

43

Now suppose C contains exactly one type II edge e = (u
II−→ v). We first analyze the volume

change induced by exchanging v with u, i.e., vol2(S−v+u)/ vol2(S), and then the change from
swapping the remaining edges C \ {e}. The key step is showing that the second update behaves
approximately as it would under the original basis S:

vol2(S4C)

vol2(S)
=

vol2(S − v + u)

vol2(S)
· vol2(S4C)

vol2(S − v + u)

=
vol2(S − v + u)

vol2(S)
· vol2((S − v + u)4(C \ {e}))

vol2(S − v + u)

≈ vol2(S − v + u)

vol2(S)
· vol2(S4(C \ {e}))

vol2(S)
. (2.4)

This approximation follows from Lemma 2.3.12, which shows that the coefficient matrix after a
type II exchange remains close to the original, due to structural properties of minimal f -violating
cycles. Since the involved entries are controlled by edge weights, we maintain good bounds
throughout.

2.3.5 Type II Edges
We begin by showing that any minimal f -violating cycle can contain at most one type II edge.

Lemma 2.3.11. Let C be a minimal f -violating cycle in G̃(S). Then C contains at most one
edge of type II.

Proof. Since G̃(S) is bipartite, |C| is always even. The lemma is trivially true for the base
case when |C| = 2, as C contains only one forward arc. Assume |C| = 2`, and suppose, for
contradiction, that C contains two type II arcs at positions k apart:

C = (u1
II−→ v1 → u2

I−→ v2 → . . .→ uk
II−→ vk → . . .→ v` → u1),

where vi ∈ S and the set S − vi + ui mod `+1 is independent inM for all i ∈ [`].

Now consider the two cycles formed by switching the type II edges:

C1 = (u1
II−→ vk → uk+1

I−→ vk+2 → . . .→ v` → u1),

C2 = (uk
II−→ v1 → u2

I−→ v3 → . . .→ vk−1 → uk).

Rewriting the weights of arcs yields:

w(u1
II−→ v1) + w(uk

II−→ vk) = − log

(
‖u⊥1 ‖
‖v⊥1 ‖

· ‖u
⊥
k ‖

‖v⊥k ‖

)
= − log

(
‖u⊥1 ‖
‖v⊥k ‖

· ‖u
⊥
k ‖

‖v⊥1 ‖

)
= w(u1

II−→ vk) + w(uk
II−→ v1).

44

Since u1
II−→ v1 is a valid arc, it follows that u1 has a component orthogonal to all columns of VS ,

implying u1
II−→ vk is also a valid arc. Similarly, uk

II−→ v1 is a valid arc. Thus, G̃(S) contains the
cycles C1 and C2. Furthermore, since

w(u1
II−→ v1) + w(uk

II−→ vk) = w(u1
II−→ vk) + w(uk

II−→ v1),

we get w(C) = w(C1) + w(C2). But since the vertices of C1 and C2 are proper subsets of the
vertices of C, and C is a minimal f -violating cycle, it must be that C1 and C2 are not f -violating.
That is,

w(C1) ≥ − log(f(|C1|/2)) and w(C2) ≥ − log(f(|C2|/2)).

Thus,

w(C) = w(C1) + w(C2)

≥ − log(f(|C1|/2))− log(f(|C2|/2))

> − log(f(|C|/2)),

where the last inequality follows from the supermultiplicativity of f . This contradicts the as-
sumption that C is f -violating. Therefore, C contains at most one type II arc.

The following lemma shows that the coefficient function of the basis obtained by exchanging one
pair of vectors can be completely characterized in terms of coefficient and projection functions of
the current basis. This lemma plays a crucial role in bounding the determinant when the minimal
f -violating cycle contains a type II edge.

Lemma 2.3.12 (Coefficient change under one-step exchange). Let S ∈ I, and suppose v1 ∈ S
and u1 /∈ S such that vol(S − v1 + u1) > 0. Then for any vi ∈ S, i 6= 1 and uj /∈ S, we have

coefS−v1+u1(uj, vi) = coefS(uj, vi) + c1xjyi + c2xjzi + c3wjyi + c4wjzi,

where
xj := 〈u⊥j , u⊥1 〉, wj := coefS(uj, v1),

yi := coefS(u1, vi), zi :=
〈v⊥i , v⊥1 〉
‖v⊥i ‖2‖v⊥1 ‖2

.

. The constants c1, c2, c3, c4 depend only on u1 and v1, and are given by:

c1 =
−‖v⊥1 ‖−2

a2
1,1 + ‖u⊥1 ‖2/‖v⊥1 ‖2

, c2 =
a1,1

a2
1,1 + ‖u⊥1 ‖2/‖v⊥1 ‖2

,

c3 = −c2, c4 =
−‖u⊥1 ‖2

a2
1,1 + ‖u⊥1 ‖2/‖v⊥1 ‖2

.

(When exchanging uk, vk instead of u1, v1, replace the index 1 with k everywhere.)

Proof. Let Ŝ = S − v1 + u1. By definition, the coefficient is given by

coef Ŝ(uj, vi) = u>j VŜ(V >
Ŝ
VŜ)−1ei.

45

Let X := [v2 v3 · · · v`] be the matrix of remaining vectors in S, so that VŜ = [u1 X]. Then

V >
Ŝ
VŜ =

[
u>1 u1 u>1 X
X>u1 X>X

]
.

Applying the block inversion formula, we obtain:

VŜ(V >
Ŝ
VŜ)−1 =

[
proj⊥X(u1)

‖proj⊥X(u1)‖2 X(X>X)−1 − proj⊥X(u1)u>1 X(X>X)−1

‖proj⊥X(u1)‖2

]
.

For i 6= 1, let ai,j := coefS(uj, vi). Then

coef Ŝ(uj, vi) = u>j X(X>X)−1ei −
〈uj, proj⊥X(u1)〉 · 〈u1, X(X>X)−1ei〉

‖ proj⊥X(u1)‖2
. (2.5)

We use the identities:

proj⊥X(u1) = u⊥1 + a1,1v
⊥
1 , ‖ proj⊥X(u1)‖2 = ‖u⊥1 ‖2 + a2

1,1‖v⊥1 ‖2,

and

u>j X(X>X)−1ei = coefX(uj, vi) = ai,j − a1,j ·
〈v⊥i , v⊥1 〉
‖v⊥i ‖2

.

Plugging these into (2.5), we get:

coef Ŝ(uj, vi) = ai,j − a1,j ·
〈v⊥i , v⊥1 〉
‖v⊥i ‖2

−

(
〈uj, u1〉+ a1,1a1,j‖v⊥1 ‖2

)
·
(
ai,1 − a1,1 · 〈v

⊥
i ,v
⊥
1 〉

‖v⊥i ‖2

)
‖u⊥1 ‖2 + a2

1,1‖v⊥1 ‖2
.

Grouping terms in terms of inner products and coefficient expressions gives the desired form:

coef Ŝ(uj, vi) = coefS(uj, vi) + c1xjyi + c2xjzi + c3wjyi + c4wjzi.

The following observation gives useful upper bounds on the magnitudes of the terms xj , wj , yi,
zi, and the coefficients c1, c2, c3, c4 from Lemma 2.3.12, which we will use later.

Observation 2.3.13 (Error term magnitudes). We have:

|xj| ≤ ‖u⊥j ‖ · ‖u⊥1 ‖, |wj| = |a1,j|,

|yi| = |ai,1|, |zi| ≤
1

‖v⊥i ‖ · ‖v⊥1 ‖
.

For the coefficients:

|c1| ≤
1

‖u⊥1 ‖2
, |c2| ≤

‖v⊥1 ‖
2‖u⊥1 ‖

,

|c3| ≤
‖v⊥1 ‖
2‖u⊥1 ‖

, |c4| ≤ ‖v⊥1 ‖2.

46

Proof. The bounds for xj and zi follow from the Cauchy–Schwarz inequality. For c1 and c4,
we obtain upper bounds by setting a1,1 = 0 to minimize the denominator. For c2 and c3, we
treat a1,1 as a variable and maximize the expression over its possible values to upper bound the
coefficients.

Definition 2.3.14 (Weight Matrix). Given a cycle C = (u1 → v1 → · · · → u` → v` → u1) in
G̃(S), define the weight matrix BC ∈ R`×` such that :

BC
i,j :=


max{|ai,j|, ‖u⊥j ‖/‖v⊥i ‖} if i 6= j,

|ai,i| if ui → vi is type I,
‖u⊥i ‖/‖v⊥i ‖ if ui → vi is type II.

Lemma 2.3.15 (Weight matrix with minimal f -violation). Let

C = (u1
I−→ v1 → u2

I−→ v2 → · · · → u`
*−→ v` → u1)

be a minimal f -violating cycle in G̃(S), with |C| = 2`, and associated weight matrix B :=
BC ∈ R`×` as defined in Definition 2.3.14.

Assume that each ui
I−→ vi for i = 1, . . . , `− 1 is a type I arc, while the final arc u`

*−→ v` may be
of type I or type II.

Then:

(a)
∏̀
i=1

bi,i ≥ f(`),

(b) per(B) ≤
(

1 +
0.1

`

)∏̀
i=1

bi,i,

(c) per(B`−1,`−1) ≤ 1.05 ·
`−1∏
i=1

bi,i,

where bi,j := Bi,j and B`−1,`−1 := B[`−1],[`−1] is the principal (`− 1)× (`− 1) submatrix.

The proof mirrors that of Lemma 2.2.12, and is deferred to § 2.7.2.

We are finally ready to prove Lemma 2.3.5. We break the proof into two parts based on the
number of edges in the minimal f -violating cycle C: first if C only contains type I edges, then
the proof is similar to r = d case, see Lemma 2.3.16. If C contains a type II edge, then Lemma
2.3.17 shows that the determinant still doubles.

Proof of Lemma 2.3.5. By Lemma 2.3.11, any minimal f -violating cycle C contains at most one
type II edge.

• If C contains only type I edges, then Lemma 2.3.16 implies vol2(T) > 2 · vol2(S).

47

• If C contains exactly one type II edge, then Lemma 2.3.17 shows the same.

Independence of T follows structurally from Lemma 2.2.14, as in the r = d case.

Lemma 2.3.16. Let C be a minimal f -violating cycle in G̃(S) containing only type I edges, and
let T = S4C. Then:

vol2(T) > 2 · vol2(S).

Proof. Let X := T \ S = {u1, . . . , u`} and Y := S \ T = {v1, . . . , v`}, ordered according to
the cycle. Since C consists only of type I edges, every arc ui

I−→ vi contributes an entry ai,i in the
coefficient matrix A ∈ R`×`, where:

Ai,j := coefS(uj, vi).

By Corollary 2.7.3:
vol2(T) ≥ vol2(S) · det(A)2.

Now apply Lemma 2.3.15:

1.
∏`

i=1 |ai,i| ≥ f(`),

2. per(A) ≤
(
1 + 0.1

`

)
·
∏`

i=1 |ai,i|.

Hence,

| det(A)| ≥ 2
∏̀
i=1

|ai,i| − per(A) ≥ 0.95 ·
∏̀
i=1

|ai,i|,

and since f(`) > 2.1 for ` ≥ 2, we get:

det(A)2 > 4.2 ⇒ vol2(T) > 2 · vol2(S).

For ` = 1, this is immediate from |a1,1| ≥ f(1) = 2.

Lemma 2.3.17. Let C be a minimal f -violating cycle in G̃(S) containing exactly one type II
edge, and let T = S4C. Then vol2(T) > 2 · vol2(S).

Proof. Let C = (u1
I−→ v1 → · · · → u`

II−→ v` → u1), and define:

X := T \ S = {u1, . . . , u`}, Y := S \ T = {v1, . . . , v`}.

Let Ŝ := S − v` + u` denote the intermediate set after exchanging along the single type II
arc (u`

II−→ v`). Also let B := BC be the weight matrix defined in Definition 2.3.14 and
Lemma 2.3.15. By Lemma 2.3.9 we have:

vol(Ŝ) = vol(S)

(
a2
`,` +

∥∥u⊥` ∥∥2∥∥v⊥` ∥∥2

)
≥ vol(S) ·

∥∥u⊥` ∥∥2∥∥v⊥` ∥∥2 =: vol(S) · b2
`,`. (2.6)

48

If ` = 1, this immediately gives vol2(T) = vol2(Ŝ) > f(1)2 vol2(S) > 4 vol2(S). Hence assume
` ≥ 2 from here on.

We now consider the remaining updates from Ŝ to T , which correspond to swapping in u1, . . . , u`−1

for v1, . . . , v`−1. Define X̂ := X \ {u`} and Ŷ := Y \ {v`}.

By Corollary 2.7.3:
vol2(T)

vol2(Ŝ)
≥ det(AŜ)2,

where AŜ is the `− 1× `− 1 matrix with entries coef Ŝ(uj, vi) for uj ∈ X̂ and vi ∈ Ŷ . Let AS
be the `× ` matrix with entries coefS(uj, vi) for uj ∈ X and vi ∈ Y .

Let A be the submatrix of AS indexed by rows Ŷ and columns X̂ . By Lemma 2.3.12, we can
write:

AŜ = A+Q, (2.7)

where Q = c1yx
> + c2zx

> + c3yw
> + c4zw

> is a structured rank-2 update, and c1, . . . , c4 are
constants independent of uj and vi.

By Lemma 2.3.19, we have :

| det(AŜ)| ≥ 0.3 ·
`−1∏
i=1

bi,i.

Hence,
vol2(T)

vol2(Ŝ)
≥ 0.09 ·

`−1∏
i=1

b2
i,i. (square of above)

Combining this with (2.6), we conclude:

vol2(T)

vol2(S)
=

vol2(T)

vol2(Ŝ)
· vol2(Ŝ)

vol2(S)
≥ 0.09 ·

∏̀
i=1

b2
i,i.

Since C is f -violating, by Lemma 2.3.15 we have
∏`

i=1 bi,i ≥ f(`), and since ` ≥ 2, f(`) > 26.
Hence:

vol2(T) > 0.09 · f(`)2 · vol2(S) > 2 · vol2(S).

In order to complete the proof, it suffices to prove the lower bound on det(AŜ). In order to do
this, we need to first understand the structure of the matrices A and Q.

Lemma 2.3.18 (Properties of A and Q). Let A and Q be as defined in Equation (2.7). Then:

1. The entries of A satisfy |Ai,j| = | coefS(uj, vi)| ≤ bi,j for all i, j ∈ [` − 1], with equality
|Ai,i| = bi,i.

49

2. The determinant of A is lower bounded as

| det(A)| ≥ 0.95
`−1∏
i=1

bi,i.

3. The entries of Q satisfy

|c1yixj|, |c2zixj|, |c3yiwj|, |c4ziwj| ≤
bi,`b`,j
b`,`

.

In particular,

|Qi,j| ≤ 4 · bi,`b`,j
b`,`

.

4. For cross terms, we have

|c1c4yixjzi′wj′ | ≤
bi,`bi′,jb`,j′

b`,`
, |c2c3zixjyi′wj′ | ≤

bi,jbi′,`b`,j′

b`,`
.

Proof of Lemma 2.3.18. 1. This follows directly from the definitions of A and B.

2. We use the bound:

| det(A)| ≥ 2
`−1∏
s=1

as,s − per(A) ≥ 2
`−1∏
s=1

bs,s − per(B[`−1],[`−1]) ≥ 0.95
`−1∏
s=1

bs,s,

where the last inequality follows from part (c) of Lemma 2.3.15.

3. From Observation 2.3.13, we have

|c1yixj| ≤ |ai,`| ·
‖u⊥j ‖
‖u⊥` ‖

= |ai,`| ·
‖u⊥j ‖/‖v⊥` ‖
‖u⊥` ‖/‖v⊥` ‖

≤ bi,`b`,j
b`,`

.

The last step uses the definition of B. The same reasoning applies to the other terms.

4. Using similar bounds, we get

|c1c4yixjzi′wj′ | ≤ |ai,`| · |a`,j′ | ·
‖v⊥` ‖
‖u⊥` ‖

·
‖u⊥j ‖
‖v⊥i′ ‖

≤ bi,`bi′,jb`,j′

b`,`
,

and similarly for |c2c3zixjyi′wj′|.

Lemma 2.3.19 (Determinant lower bound for Â). We have

| det(Â)| ≥ 0.3
`−1∏
i=1

bi,i.

50

Proof. We apply Lemma 2.7.5 to expand det(Â) = det(A + Q) using multilinearity and the
triangle inequality:

| det(Â)| ≥ | det(A)|︸ ︷︷ ︸
T 1

−
`−1∑
j=1

∣∣det
(
A(1), . . . , Q(j), . . . , A(`−1)

)∣∣
︸ ︷︷ ︸

T 2

−
∑

j,j′∈[`−1]
j 6=j′

∣∣det
(
A(1), . . . , c1yxj, . . . , c4zwj′ , . . . , A

(`−1)
)∣∣

︸ ︷︷ ︸
T 3

−
∑

j,j′∈[`−1]
j 6=j′

∣∣det
(
A(1), . . . , c2zxj, . . . , c3ywj′ , . . . , A

(`−1)
)∣∣

︸ ︷︷ ︸
T 4

. (2.8)

By part (2) of Lemma 2.3.18, we have T 1 ≥ 0.95
∏`−1

i=1 bi,i.

We now show that:

T 2 ≤ 0.4
`−1∏
i=1

bi,i, T 3, T 4 ≤ 0.1
`−1∏
i=1

bi,i.

By expanding each determinant in T 2:

T 2 ≤
`−1∑
j=1

∑
σ∈S`−1

(∏
t6=j

|aσ(t),t|

)
· |Qσ(j),j| (2.9)

Using the definition of B and the bound on Qi,j in part (3) of Lemma 2.3.18,

≤
`−1∑
j=1

∑
σ∈S`−1

(∏
t6=j

bσ(t),t

)
·
(

4 ·
bσ(j),` · b`,j

b`,`

)
(2.10)

=
4

b`,`

`−1∑
j=1

∑
σ∈S`−1

bσ(j),`b`,j
∏
t6=j

bσ(t),t. (2.11)

We now re-index this sum by defining a permutation δ ∈ S` associated with each pair (σ, j): Set
δ(j) = `, δ(`) = σ(j), and δ(t) = σ(t) for all t ∈ [`− 1] \ {j}.

Then:

bσ(j),`b`,j
∏
t6=j

bσ(t),t =
∏̀
i=1

bδ(i),i,

and every such δ is distinct and satisfies δ(`) 6= `. Therefore,∑
j∈[`−1],σ∈S`−1

bσ(j),`b`,j
∏
t6=j

bσ(t),t ≤ perm(B)−
∏̀
i=1

bi,i.

51

So:

T 2 ≤ 4

b`,`

(
perm(B)−

∏̀
i=1

bi,i

)
≤ 0.4

`−1∏
i=1

bi,i, (2.12)

where the last step uses part (b) of Lemma 2.3.15.

In a similar style, consider the term T3:

T3 ≤
∑

j,j′∈[`−1]
j 6=j′

∑
σ∈S`−1

 ∏
t∈[`−1]\{j,j′}

|aσ(t),t|

 · |c1c4yσ(j)xjzσ(j′)wj′| (2.13)

≤
∑

j,j′∈[`−1]
j 6=j′

∑
σ∈S`−1

 ∏
t∈[`−1]\{j,j′}

bσ(t),t

 · bσ(j),`bσ(j′),jb`,j′

b`,`
, (2.14)

where the second inequality uses part (4) of Lemma 2.3.18.

As before, we associate each triple (σ, j, j′) with j 6= j′ to a permutation δ ∈ S` by setting:

δ(j′) = `, δ(j) = σ(j′), δ(`) = σ(j), δ(t) = σ(t) for t ∈ [`− 1] \ {j, j′}.

Then:
bσ(j),`bσ(j′),jb`,j′

∏
t∈[`−1]\{j,j′}

bσ(t),t =
∏
i∈[`]

bδ(i),i.

Each such δ satisfies δ(`) 6= `. Unlike the case for T2, this mapping is not injective. However, for
any fixed j and δ, the triple (σ, j, j′) can be uniquely recovered. Hence, each δ appears at most `
times, leading to the bound:

∑
j,j′∈[`−1]
j 6=j′

∑
σ∈S`−1

 ∏
t∈[`−1]\{j,j′}

bσ(t),t

 · bσ(j),`bσ(j′),jb`,j′ ≤ ` ·

perm(B)−
∏
i∈[`]

bi,i

 .

Using part (b) of Lemma 2.3.15, we conclude:

T3 ≤ 0.1
∏

i∈[`−1]

bi,i.

The bound for T4 follows by the same argument, completing the analysis. Thus,

| det(Â)| ≥ (0.95− 0.4− 0.1− 0.1)
∏

i∈[`−1]

bi,i ≥ 0.3
∏

i∈[`−1]

bi,i.

52

2.4 Rank greater than dimension
In the cases r = d and r < d (see § 2.2 and § 2.3), the edge weight in the exchange graph from a
vertex uj ∈ U \ VS to a vertex vi ∈ VS is given by − log vol(S−i+j)

vol(S)
. That is, the edge represents

the change in negative log-volume when replacing vi with uj in the current solution.

While the change in negative log-volume from a cycle exchange does not exactly match the
weight of the cycle, we previously showed (under mild conditions) that the change in log-volume
is inversely proportional to the weight of the cycle. Thus, a short cycle implies a significant
increase in volume.

Now consider the case r > d. We want the arc weight from uj to vi to reflect the change in
the objective function when vi is replaced by uj . Though the objective function differs from the
r < d case, the underlying ideas and analysis are similar.

For r > d, the change in the objective is:

w(uj → vi) = −1

2
log

det
(
VSV

>
S − viv>i + uju

>
j

)
det(VSV >S)

.

Using the matrix determinant lemma, we simplify the ratio:

det
(
VSV

>
S − viv>i + uju

>
j

)
det(VSV >S)

=
(
u>j (VSV

>
S)−1vi

)2︸ ︷︷ ︸
Term I

+
(
1 + u>j (VSV

>
S)−1uj

) (
1− v>i (VSV

>
S)−1vi

)︸ ︷︷ ︸
Term II

. (2.15)

Note:

det(VSV
>
S + uju

>
j)

det(VSV >S)
= 1 + u>j (VSV

>
S)−1uj,

det(VSV
>
S − viv>i)

det(VSV >S)
= 1− v>i (VSV

>
S)−1vi.

Thus, Term II is the product of the individual marginal changes, while Term I captures the inter-
action between adding uj and removing vi.

2.4.1 Extended Exchange Graph

To capture these two components separately, we define two forward arcs uj
I−→ vi and uj

II−→ vi
in the exchange graph G̃(S) for each uj /∈ VS , vi ∈ VS .

We assign:

53

• weight − log
(∣∣u>j (VSV

>
S)−1vi

∣∣) to arcs of type I,

• weight − log
√

(1 + u>j (VSV >S)−1uj)(1− v>i (VSV >S)−1vi) to arcs of type II.

Definition 2.4.1 (Augmented Exchange Graph for r > d). Let VS = {v1, . . . , vr} be a basis in
M with det(VSV

>
S) > 0. The exchange graph G̃(S) is a bipartite graph: the right part consists

of vectors in VS , and the left part consists of all other vectors. There is an arc from vi ∈ VS to
uj /∈ VS if S − i+ j is independent inM. If S − i+ j spans Rd, then two forward arcs (I−→ and

II−→) are added from uj to vi.

Definition 2.4.2 (Weight Functions). In G̃(S):

• Backward arcs vi → uj (i.e., vi ∈ VS , uj /∈ VS) have weight 0.

• Type I forward arcs have weight w(uj
I−→ vi) = − log

∣∣u>j (VSV
>
S)−1vi

∣∣.
• Type II forward arcs have weight

w(uj
II−→ vi) = − log

√(
1 + u>j (VSV >S)−1uj

) (
1− v>i (VSV >S)−1vi

)
.

Definition 2.4.3 (f -Violating Cycle). A cycle C in G̃(S) is called f -violating if:

w(C) < − log f(|C|/2).

2.4.2 Algorithm
As before, we argue that if the objective for the current solution S is small compared to the
optimum, then G̃(S) must contain an f -violating cycle.

Algorithm 4 Approximation Algorithm for r > d

Require: Vectors U = {v1, . . . , vn} ⊂ Rd, matroid M = ([n], I) with rank = r > d, and
optimal solution x̂ to (CP)
E ← supp(x̂)
ME ← (E, I|E|) . Matroid restricted to support
S ← a basis ofME with det(VSV

>
S) > 0

while an f -violating cycle exists in G̃(S) do
C ← minimal f -violating cycle
S ← S4C

end while
return S

A key technical result supporting the algorithm is the following lemma:

54

Lemma 2.4.4. Let T and S be bases ofM with |T \ S| = `, and assume

det(VTV
>
T) ≥ det(VSV

>
S) · (2`)! · f(2`).

Then, there exists an f -violating cycle C in G̃(S).

While Lemma 2.4.4 appears structurally similar to its counterparts for r ≤ d, its proof involves
significant technical challenges when r > d.

In the r ≤ d case, arc weights in G̃(S) correspond to entries of the transformation matrix ex-
pressing vectors in the optimal solution in terms of the current basis. The hypothesis in Lemma
corresponding to Lemma 2.4.4 for the r ≤ d cases then implies that this transformation has a
large determinant, from which the existence of an f -violating cycle follows.

However, for r > d, this approach fails because such a transformation matrix is no longer
uniquely defined: there are

(
r
d

)
ways to select a basis from a set of r vectors in Rd. Conse-

quently, the arc weights in G̃(S) do not directly correspond to any fixed transformation matrix.

To address this, we define a different matrix—derived using the matrix determinant lemma—whose
determinant is guaranteed to be large under the lemma’s hypothesis. Although the entries of this
matrix do not equal the arc weights, they are closely related. We then leverage structural prop-
erties of arc weights specific to the r > d case to upper bound this determinant in terms of the
cycle weight.

We begin by computing a sparse fractional solution x̂ to (CP), and restrict our matroid to its
support. The algorithm then proceeds in a manner analogous to the previous cases.

After identifying a minimal f -violating cycle C, we update the solution by exchanging along C:
i.e., we set S ← S4C.

We can show that if all edges in C are of type I, then the determinant increases proportionally to
the inverse-exponential of the cycle weight, as in the case r ≤ d.

One may ask whether we can safely ignore type II edges altogether and still guarantee the exis-
tence of such a cycle. Unfortunately, the answer is no. It is possible for the current solution S
to be much worse than the optimum, while every negative-weight cycle in G̃(S) includes at least
one type II edge. We provide such an example in § 2.7.3.

Despite this, we prove that any minimal f -violating cycle contains at most one type II edge (see
Lemma 2.3.11). This fact is crucial: it ensures that exchanging along a type II edge causes only
a localized change in the determinant and leaves the type I arc weights essentially unaffected
elsewhere in the cycle.

This allows us to control the perturbation introduced by the type II edge. By exploiting the
minimality of the cycle, we can carefully bound the additional error terms and relate the change
in determinant to the weights of the cycle.

This yields the following result:

55

Theorem 2.4.5. Let C be a minimal f -violating cycle in G̃(S), and let T = S4C. Then T ∈ I
and:

det(VTV
>
T) > 2 · det(VSV

>
S).

Applying Lemma 2.4.4 and Theorem 2.4.5 directly yields an approximation factor ofO(rr) when
r > d.

To improve this to O(d)O(d), we must ensure the existence of an f -violating cycle with only
O(d) edges. This is guaranteed if the ground set of M has size at most r + poly(d). While
this assumption may seem restrictive, we overcome it by employing a convex relaxation that
produces a sparse support set, allowing us to restrict attention to a small subset of the ground set.

We now describe this convex program.

2.4.3 Convex Program
LetM = ([n], I) be the constraint matroid, and denote by Is(M) := {S ∈ I : |S| = s} the
independent sets of size s. Let P(M) be the matroid base polytope (the convex hull of all bases
ofM).

Define:

Z =

{
z ∈ Rn : z(S) :=

∑
i∈S

zi ≥ 0 ∀S ∈ Id(M)

}
.

Following [131], consider the convex program:

sup
x∈P(M)

inf
z∈Z

g(x, z) := log det

∑
i∈[n]

xie
ziviv

>
i

 . (CP)

This convex program is a relaxation of the determinant maximization problem. Denote by
OPTCP the optimum of this relaxation, and by OPT the optimal value of the original (com-
binatorial) determinant maximization problem.

Theorem 2.4.6 ([131]). For r > d, there exists a polynomial-time algorithm that computes an
optimal solution x̂ to (CP) such that:

| supp(x̂)| ≤ r + 2

((
d+ 1

2

)
+ d

)
.

Moreover, there exists a basis T ⊆ supp(x̂) satisfying:

det

(∑
i∈T

viv
>
i

)
≥ (2e5d)−d ·OPT.

Although the existence of T is not explicitly shown in [131], their randomized rounding proce-
dure implies it in expectation (see their Theorem 2.3). For our algorithm, only the existential
guarantee is needed.

56

Lemma 2.4.7 (Existence of Short f -Violating Cycle). Assume rank(M) = r > d and that the
ground set ofM contains r+k elements. Let S be any basis with det(VSV

>
S) > 0. If there exists

a basis S1 such that:

det(VS1V
>
S1

) ≥ det(VSV
>
S) · d · d! · (4k)d · f(2d),

then there exists a basis T such that |T4S| ≤ 2d and:

det(VTV
>
T) ≥ (2d)! · f(2d) · det(VSV

>
S).

Implying the existence of an f -violating cycle using Lemma 2.4.4.

Thus, before applying Theorem 2.4.5, we compute a sparse support E using Theorem 2.4.6, and
define a restricted matroidME over E:

ME = (E, IE), where IE = {I ⊆ E | I ∈ I}.

2.4.4 Main Result
We now have the necessary components to prove our main result.

Proof of Theorem 1.2.3. Let X = supp(x̂) and T be the basis guaranteed by Theorem 2.4.6.
Consider any basis S ⊆ X . We aim to show that if:

det(VSV
>
S) ≤ d−c·d · det(VTV

>
T) = d−c

′·d ·OPT,

for some large enough constants c, c′ then the algorithm finds an f -violating cycle in G̃(S) and
makes progress.

Since |X| ≤ r + 2
((
d+1

2

)
+ d
)
≤ r + 3d2, if:

det(VTV
>
T) ≥ d · d! · f(2d) · (12d2)d · det(VSV

>
S),

then Lemma 2.4.7 implies the existence of an f -violating cycle C of length at most 2d.

Let C be such a minimal cycle and Ŝ = S4C. Then by Theorem 2.4.5:

det(VŜV
>
Ŝ

) ≥ 2 · det(VSV
>
S).

This ensures exponential progress in each iteration, leading to the desired approximation.

2.4.5 Existence of Short Cycle
Lemma 2.4.8. Let S ⊆ [n] such that det(VSV

>
S) > 0, and let Y ⊆ S, X ⊆ [n]\S with

|X| = |Y | = `. Let T = S − Y +X . Then

det(VTV
>
T)

det(VSV >S)
= det

[
I` + V >X (VSV

>
S)−1VX V >X (VSV

>
S)−1VY

−V >Y (VSV
>
S)−1VX I` − V >Y (VSV

>
S)−1VY

]
. (2.16)

57

Proof. Let M = VSV
>
S and we know T = S − Y +X with |X| = |Y | = `. Then:

VTV
>
T = M − VY V >Y + VXV

>
X .

Using the matrix determinant lemma for a symmetric low-rank update:

det(VTV
>
T)

det(M)
= det

(
I + ΣV >M−1V

)
,

where V = [VX VY] and Σ =

[
I` 0
0 −I`

]
.

This gives:

det

[
I` + V >XM

−1VX V >XM
−1VY

−V >Y M−1VX I` − V >Y M−1VY

]
,

as claimed.

Corollary 2.4.9. Let S ⊆ [n] such that det(VSV
>
S) > 0, and let Y ⊆ S, X ⊆ [n]\S with

|X| = |Y | = `. Let T = S − Y +X . Then

det(VTV
>
T) ≥ det(VSV

>
S) · det(V >X (VSV

>
S)−1VY)2. (2.17)

Proof. The proof is identical to that of Corollary 2.7.3.

Proof of Lemma 2.4.4. DefineZ = (VSV
>
S)−1. LetX := T\S and Y := S\T . Using Lemma 2.4.8,

we have

det(VTV
>
T)

det(VSV >S)
= det

([
I` + V >X ZVX V >X ZVY
−V >X ZVY I` − V >Y ZVY

])
:= det(A).

Expanding the determinant of A gives

| det(A)| = |
∑
σ∈S2`

2∏̀
i=1

ai,σ(i)| ≤
∑
σ∈S2`

2∏̀
i=1

|ai,σ(i)|.

Since |S2`| = (2`)!, there exists a permutation τ ∈ S2` such that

2∏̀
i=1

|ai,τ(i)| ≥
1

(2`)!
| det(A)| = 1

(2`)!
· det(VTV

>
T)

det(VSV >S)
≥ f(2`) (2.18)

where the last inequality follows from the assumption of the Lemma.

We now relate |ai,τ(i)| to the weight of an arc in G̃(S) for every i and then use those arcs to
construct a set of cycles, one of which will give an f -violating cycle.

To bound |ai,τ(i)|, consider the partition of the set of indices, [2`], into four sets according to τ as
follows. Let I1 = {i ∈ [`] : τ(i) ≤ `}, I2 = {i ∈ [`] : τ(i) > `}, I3 = {i ∈ [`+1, 2`] : τ(i) ≤ `},

58

and I4 = {i ∈ [` + 1, 2`] : τ(i) > `}. Note that |I1| = |I4| and |I2| = |I3|; specifically, the
number of permutation entries in the top left block is equal to the number of permutation entries
in the bottom right block. Let X = {u1, u2, . . . , u`} and Y = {v`+1, v`+2, . . . , v2`} so that
S − v`+i + ui ∈ I for all i ∈ [`].

For any i ∈ I1, ai,τ(i) = 1 + u>i Zuτ(i). As I` + V >X ZVX � 0, we have

|ai,τ(i)| = |1 + u>i Zuτ(i)| ≤
√(

1 + u>i Zui
)
·
(

1 + u>τ(i)Zuτ(i)

)
.

Similarly, for any i ∈ I4 with i 6= τ(i), we have

|ai,τ(i)| = |v>i Zvτ(i)|

Since I − V >Y ZVY � 0, we have

|v>i Zvτ(i)| ≤
√

(1− v>i Zvi) · (1− v>τ(i)Zvτ(i)).

This inequality is trivially true when τ(i) = i for all i ∈ I4.

For i ∈ I2, |ai,τ(i)| = |u>i Zvτ(i)|. Similarly, for i ∈ I3, |ai,τ(i)| = |u>τ(i)Zvi|.

Putting it all together,

2∏̀
i=1

|ai,τ(i)| =

(∏
i∈I1

|ai,τ(i)|

)
·

(∏
i∈I2

|ai,τ(i)|

)
·

(∏
i∈I3

|ai,τ(i)|

)
·

(∏
i∈I4

|ai,τ(i)|

)

≤

(∏
i∈I1

√
(1 + u>i Zui)(1 + u>τ(i)Zuτ(i))

)
·

(∏
i∈I4

√
(1− v>i Zvi)(1− v>τ(i)Zvτ(i))

)

·

(∏
i∈I2

|u>i Zvτ(i)|

)
·

(∏
i∈I3

|u>τ(i)Zvi|

)
.

We will now relate the R.H.S. of the inequality to the weights of cycles in G̃(S). For this purpose,
we define a new permutation δ as follows. Since |I1| = |I4|, first define a bijection h : I1 → I4.
Then the permutation δ is given by δ(i) = τ(h(i)) for every i ∈ I1, δ(i) = τ(h−1(i)) for every
i ∈ I4, and δ(i) = τ(i) for any i ∈ I2 ∪ I3. Then the inequality becomes

2∏̀
i=1

|ai,τ(i)| ≤
∏
i∈I1

√
(1 + u>i Zui) · (1− v>δ(i)Zvδ(i))· (2.19)

·
∏
i∈I4

√
(1 + u>δ(i)Zuδ(i)) · (1− v>i Zvi)·

·
∏
i∈I2

|u>i Zvδ(i)| ·
∏
i∈I3

|u>δ(i)Zvi| , (2.20)

59

where we have swapped some terms using the new permutation to ensure that each square root
has one addition and one subtraction term. We claim that S+ui−vδ(i) is a linear spanning subset
of Rd for any i ∈ I1 ∪ I2. To observe this, note that

det(S + ui − vδ(i))
det(S)

= (u>i Zvδ(i))
2 + (1 + u>i Zui) · (1− v>δ(i)Zvδ(i))

from the definition of the weights. Since
∏2`

i=1 |ai,τ(i)| > 0, inequality (2.20) implies, either
|u>i Zvδ(i)| > 0 or (1 + u>i Zui) · (1− v>δ(i)Zvδ(i)) > 0 for every i ∈ I1 ∪ I2. Therefore det(S +

ui − vδ(i)) > 0 and S + ui − vδ(i) is a linearly spanning set of cardinality r. So, G̃(S) contains
forward arcs ui

I−→ vδ(i) and ui
II−→ vδ(i) for all i ∈ I1∪I2. Similarly, G̃(S) contains arcs uδ(i)

I−→ vi
and uδ(i)

II−→ vi for every i ∈ I3 ∪ I4. So, we can rewrite Equation (2.20) in terms of arc weights
from G̃(S).

2∏̀
i=1

|ai,τ(i)| ≤ exp

(
−
∑
i∈I1

w(ui
II−→ vδ(i))−

∑
i∈I4

w(uδ(i)
II−→ vi)

−
∑
i∈I2

w(ui
I−→ vδ(i))−

∏
i∈I3

w(uδ(i)
I−→ vi)

)
.

From (2.18), we have
∏2`

i=1 |ai,τ(i)| ≥ f(2`) and therefore

f(2`) ≤ exp

(
−
∑
i∈I1

w(ui
II−→ vδ(i))−

∑
i∈I4

w(uδ(i)
II−→ vi)

−
∑
i∈I2

w(ui
I−→ vδ(i))−

∏
i∈I3

w(uδ(i)
I−→ vi)

)
. (2.21)

Consider a weighted bipartite graphH(S) with bipartitionsX and Y , and forward arcs ui
II−→ vδ(i)

for all i ∈ I1, ui
I−→ vδ(i) for all i ∈ I2, uδ(i)

I−→ vi for all i ∈ I3, uδ(i)
II−→ vi for all i ∈ I4.

Additionally, for each i ∈ [`], we add two backward arcs from v`+i → ui with weight 0 to H(S).
Since S − v`+i + ui ∈ I, v`+i → ui is also an arc in G̃(S). So the arcs in H(S) are a multiset of
arcs in G̃(S).

H(S) contains 4` arcs with every vertex incident to exactly two incoming arcs and two outgoing
arcs. Therefore H(S) is an Eulerian graph, and we can decompose it into arc disjoint cycles
C1, . . . , Ck. So, summing over the weights of arcs in H(S) gives

k∑
i=1

w(Ci) =
∑
i∈I1

w(ui
II−→ vδ(i)) +

∑
i∈I4

w(uδ(i)
II−→ vi)

+
∑
i∈I2

w(ui
I−→ vδ(i)) +

∑
i∈I3

w(uδ(i)
I−→ vi).

60

Taking exponential and using (2.21), we get
∏k

i=1 exp(−w(Ci)) ≥ f(2`). Since C1, . . ., Ck are
arc disjoint and H(S) contains 4` arcs,

∑k
i=1 |Ci| = 4`. Now using the fact that f(a) · f(b) ≤

f(a+ b), we get

k∏
i=1

exp(−w(Ci)) ≥ f(2`) ≥
k∏
i=1

f(|Ci|/2).

So there exists a cycle C in C1, . . . , Ck such that exp(−w(C)) > f(|C|/2). Since every arc in
H(S) is also an arc in G̃(S), the cycle C is present in G̃(S) too. Therefore C is an f -violating
cycle in G̃(S).

2.4.6 Sparsity and Existence of a Short Cycle
In this section, we prove if the size of the ground set of M is r + k, and S is a basis with
suboptimality ratio d4d · kd · f(2d), then G̃(S) contains an f -violating cycle. Combining this
with the sparsity guarantee of Theorem 2.4.6 ensures that an optimality gap of dcd (for some
constant c) suffices for the existence of an f -violating cycle.

We start by proving there exists a basis T such that the symmetric difference between T and S is `
and the ratio of the determinants of T and S is at least (2`!)12, then G̃(S) contains an f -violating
cycle (see Lemma 2.4.4). A crucial ingredient of this proof is to relate the inner product space
induced by (VSV

>
S)−1 to arc weights in G̃(S). With this fact in hand, we use the augmentation

property of matroids to construct a basis that differs from S in only 2d elements to complete the
proof of Lemma 2.4.7.

We restate Lemma 2.4.7 for the reader’s convenience.

Lemma 2.4.7 (Existence of Short f -Violating Cycle). Assume rank(M) = r > d and that the
ground set ofM contains r+k elements. Let S be any basis with det(VSV

>
S) > 0. If there exists

a basis S1 such that:

det(VS1V
>
S1

) ≥ det(VSV
>
S) · d · d! · (4k)d · f(2d),

then there exists a basis T such that |T4S| ≤ 2d and:

det(VTV
>
T) ≥ (2d)! · f(2d) · det(VSV

>
S).

Implying the existence of an f -violating cycle using Lemma 2.4.4.

Proof. Let T = {u1, u2, . . . , ur} and S = {v1, v2, . . . , vr} such that S − vi + ui ∈ I for all
i ∈ [r]. By strong basis exchange, such an ordering always exists. Using the Cauchy-Binet
formula,

det(VTV
>
T)

det(VSV >S)
=

∑
X⊂T,|X|=d det(VXV

>
X)

det(VSV >S)
=

∑
X⊂T,|X|=d

det(V >X (VSV
>
S)−1VX) . (2.22)

61

Define R := T\S. Since the ground set contains r+k elements, |R| ≤ k. We partition the set of
all d-subsets of T by their intersection with R. For a set W ⊆ R, let SW = {X : X ⊂ T, |X| =
d,X ∩R = W}. Then

det(VTV
>
T)

det(VSV >S)
=

∑
X⊂T,|X|=d

det(V >X (VSV
>
S)−1VX)

=
∑

W⊆R,|W |≤d

∑
X∈SW

det(V >X (VSV
>
S)−1VX) .

The number of subsets of R of size at most d is
∑d

i=0

(
k
i

)
≤ d ·

(
k
d

)
≤ dkd/d!. Therefore, there

exists a W ⊆ R with |W | ≤ d such that

∑
X∈SW

det(V >X (VSV
>
S)−1Vx) ≥

d!

dkd
· det(VTV

>
T)

det(VSV >S)
≥ (2d)! · f(2d) ,

where the last inequality follows from the hypothesis of the lemma.

Since {S ∩ T} ∪ W ⊂ T , by the downward closure property of matroids, {S ∩ T} ∪ W is
independent inM. So we can extend {S ∩ T} ∪W to a basis, T1, ofM in S ∪W such that
{S ∩ T} ∪W ⊆ T1. Again, using the Cauchy-Binet formula on T1T

>
1 gives

det(VT1V
>
T1

)

det(VSV >S)
=

∑
X⊂T1,|X|=d

det(V >X (VSV
>
S)−1VX)

≥
∑

X⊂{S∩T}∪W,|X|=d

det(V >X (VSV
>
S)−1VX)

≥
∑

X∈SW ,|X|=d

det(V >X (VSV
>
S)−1VX) ≥ (2d)! · f(2d).

Since |T1\S| ≤ d, using Lemma 2.4.4, there exists an f -violating cycle in G̃(S).

2.4.7 Cycle to Determinant
In this Section, we give an outline of the proof of Theorem 2.4.5. The proof is identical to the
proof of 2.3.5, as the weight functions satisfy the same properties when r < d and r > d. For
the sake of completeness, we state the essential lemmas for this case, but forgo the proofs when
the proofs repeat from the r < d case.

Since type II are multiplicative in vertices in this case as well, any type minimal f -violating cycle
can contain at most one type II edge.

Lemma 2.4.10. Let C be a minimal f -violating cycle in G̃(S). Then C contains at most one
edge of type II.

The proof is identical to that of Lemma 2.3.11.

62

The following lemma shows that the coefficient function of the basis obtained by exchanging one
pair of vectors can be completely characterized in terms of coefficient and projection functions of
the current basis. This lemma plays a crucial role in bounding the determinant when the minimal
f -violating cycle contains a type II edge.

Lemma 2.4.11. Let S ∈ I and v1 ∈ S and u1 /∈ S such that det(VS−v1+u1V
>
S−v1+u1

) > 0. Let
S1 := S − v1 + u1. Then for any vi ∈ S and uj /∈ S,

u>j (VS1V
>
S1

)−1vi = u>j (VSV
>
S)−1vi + c1xjyi + c2xjzi + c3wjyi + c4wjzi,

with xj := u>j Xu1, wj := u>j Xv1, yi = u>1 Xvi, and zi := v>i Xv1, where X = (VSV
>
S)−1.

In addition, let δ = (u>1 Xv1)2 + (1 + u>1 Xu1) · (1 − v>1 Xv1). Then c1 = −(1 − v>1 Xv1)/δ,
c2 = −c3 = −u>1 Xv1/δ, and c4 = −(1 + u>1 Xu1)/δ are constants independent of uj and vi.

Analogous to the r < d case, we define a matrix B ∈ R`×` such that the (i, j)-th entry of B
corresponds to the arc with the lower weight, i.e.,

• bi,j = max{|u>j Xvi|,
√

(1 + u>j Xuj) · (1− v>i Xvi)} for all i 6= j with X = (VSV
>
S)−1,

and

• bi,i =

{
|u>i Xvi| if ui → vi is type I√

(1 + u>i Xui) · (1− v>i Xvi) if ui → vi is type II
.

Then Lemma 2.3.15 still holds for the minimal f -violating cycle in G̃(S).

Proof of Lemma 2.4.5. The proof that T is independent is again identical to Lemma 2.2.14 from
the case that r = d. For bounding det(VTV

>
T), again consider two cases based on the number of

type II edges in C: Lemma 2.4.10 establishes that C can contain at most one edge of type II.

Define X := (VSV
>
S)−1. When C contains no type II edges, by Corollary 2.4.9, det(VTV

>
T) ≥

det(VSV
>
S) ·det(AS)2, where the (i, j)-th entry ofAS is u>j Xvi. Identical to the proof of Lemma

2.3.16, we have bi,i = u>i (VSV
>
S)−1vi for all i ∈ [`] and |u>j (VSV

>
S)vi| ≤ wi,j . As a result,

| det(AS)| ≥ 2 ·
∏̀
s=1

|as,s| − per(|AS|) ≥ 2 ·
∏̀
s=1

bs,s − per(B)

≥ 0.95
∏̀
s=1

bi,i > 0.95f(`) > 2.

When C contains exactly one edge of type II, the proof follows exactly as that of Lemma 2.3.17.
Consider an intermediate set Ŝ = S − v` + u`. Then

det(VŜV
>
Ŝ

) ≥ det(VSV
>
S) · (1 + u>` Xu`)(1− v>` Xv`) = det(VSV

>
S) · w2

`,` > 0

where w`,` = exp(−w(u`
II−→ v`)) > 0 as u`

II−→ v` appears in an f -violating cycle. So,

det(VTV
>
T)

det(VSV >S)
=

det(VTV
>
T)

det(VŜV
>
Ŝ

)
·

det(VŜV
>
Ŝ

)

det(VSV >S)
=

det(VTV
>
T)

det(VŜV
>
Ŝ

)
· w2

`,`.

63

Again, the main idea is to show that det(VTV
>
T) ≥ 0.09

∏`−1
i=1 b

2
i,i · det(VŜV

>
Ŝ

) and plugging it
into the above equation completes the proof.

Let AŜ be the (` − 1) × (` − 1) matrix with i, j-th entry |u>j (VS1V
>
S1

)−1vi|. Then by Corollary
2.4.9, det(VTV

>
T) ≥ det(VS1V

>
S1

) · det(AŜ)2.

[AŜ]i,j = u>j (VŜV
>
Ŝ

)−1vi = u>j Xvi + c1xjyi + c2xjzi + c3wjyi + c4wjzi,

with xj := u>j Xu`, wj := u>j Xv`, yi = u>` Xvi, and zi := v>i Xv`. In addition, let δ =
(u>` Xv`)

2 + (1 +u>` Xu`) · (1− v>` Xv`). Then c1 = −(1− v>` Xv`)/δ, c2 = −c3 = −u>` Xv`/δ,
and c4 = −(1 + u>` Xu`)/δ are constants independent of ui and vj .

We will proceed identically as the proof of Lemma 2.3.17. We only need to establish the follow-
ing inequalities and then the structure of the proof is identical as that of Lemma 2.3.17.

• |Qi,j| ≤ 4b`,jbi,`/b`,` for all i, j ∈ [`− 1]

• |c2c3zixjyi′wj′| ≤
bi,jbi′,`b`,j′

b`,`
for i 6= i′ and j 6= i′

• |c1c4yixjzi′wj′ | ≤
bi,`bi′,jb`,j′

b`,`
for i 6= i′ and j 6= j′

For the first inequality

|c1xjyi| =
(1− v>` Xv`) · |u>j Xu`| · |u>` Xvi|

(u>` Xv`)
2 + (1− v>` Xv`)(1 + u>` Xu`)

≤
(1− v>` Xv`)

√
u>j Xuj

√
u>` Xu` · bi,`

(u>` Xv`)
2 + (1− v>` Xv`)(1 + u>` Xu`)

≤

√
(1− v>` Xv`)(1 + u>j Xuj)√
(1− v>` Xv`)(1 + u>` Xu`)

· bi,` =
bi,`b`,j
b`,`

.

Similarly, |c2xjzi|, |c3wjyi|, |c4wjzi| ≤ bi,`b`,j/b`,`. For the second inequality,

|c2c3xjziwj′yi′ | =
(u>` Xv`)

2 · |u>j Xu`| · |v>i Xv`| · |u>j′Xv`| · |u>` Xvi′|
((u>` Xv`)

2 + (1− v>` Xv`)(1 + u>` Xu`))
2

≤
(|u>j Xu`| · |v>i Xv`| · |u>j′Xv`| · |u>` Xvi′|

(1− v>` Xv`)(1 + u>` Xu`)

=
|u>j Xu`| · |v>i Xv`| · b`,j′ · bi′,`

b2
`,`

Note that

|u>j Xu`| · |v>i Xv`| ≤
√

(1 + u>j Xuj) ·
√

(1 + u>` Xu`) · |v
>
i Xv`|

≤
√

(1 + u>j Xuj) ·
√

(1 + u>` Xu`) ·
√

(1− v>i Xvi) ·
√

(1− v>` Xv`)

=
√

(1 + u>j Xuj)(1− v>i Xvi) ·
√

(1 + u>` Xu`)(1− v>` Xv`) ≤ bi,jb`,`.

Therefore, |c2c3zixjyi′wj′| ≤
bi,jbi′,`b`,j′

b`,`
. The proof of the third inequality follows identically.

64

2.5 Permanental Inequalities
Lemma 2.5.1 (Permanent uncrossing). LetB ∈ Rn×n

≥0 and x1, x2, y1, y2 ∈ Rn
≥0 andw11, w12, w21, w22 ∈

R≥0. Then the following inequality holds:

per

B y1 y2

xT1 w11 w12

xT2 w21 w22

 · per(B) ≤ per

[
B y1

xT1 w11

]
· per

[
B y2

xT2 w22

]
(2.23)

+ per

[
B y2

xT1 w12

]
· per

[
B y1

xT2 w21

]
. (2.24)

Proof. We proceed by induction on n.

For the base case n = 0, both sides equal w11w22 + w12w21.

The case n = 1 can be verified directly.

Now assume the lemma holds for (n− 1)× (n− 1) matrices. We first prove the result when all
wij = 0.

Expanding the permanent on the left-hand side:

per

B y1 y2

xT1 0 0
xT2 0 0

 =
∑

i1 6=i2, j1 6=j2
x1,j1x2,j2y1,i1y2,i2 · per

(
B(−{i1, i2},−{j1, j2})

)
.

(2.25)

Dropping the distinctness constraints increases the sum:

≤
∑

i1,i2,j1,j2
x1,j1x2,j2y1,i1y2,i2 · per

(
B(−{i1, i2},−{j1, j2})

)
.

(2.26)

Multiplying both sides by per(B):

per

B y1 y2

xT1 0 0
xT2 0 0

 · per(B) ≤
∑

i1,i2,j1,j2
x1,j1x2,j2y1,i1y2,i2 · per

(
B(−{i1, i2},−{j1, j2})

)
· per(B).

(2.27)

By the inductive hypothesis, for each term:

per
(
B(−{i1, i2},−{j1, j2})

)
· per(B) ≤ per

(
B(−{i1},−{j1})

)
· per

(
B(−{i2},−{j2})

)
(2.28)

+ per
(
B(−{i1},−{j2})

)
· per

(
B(−{i2},−{j1})

)
.

(2.29)

65

Substituting this bound:

per

B y1 y2

xT1 0 0
xT2 0 0

 · per(B) ≤
∑

i1,i2,j1,j2

x1,j1x2,j2y1,i1y2,i2

[
per(B(−{i1},−{j1})) · per(B(−{i2},−{j2}))

(2.30)

+ per(B(−{i1},−{j2})) · per(B(−{i2},−{j1}))
]
.

(2.31)

Now we compute the right-hand side terms:

per

[
B y1

xT1 0

]
=
∑

i1,j1
x1,j1y1,i1 · per(B(−{i1},−{j1})), (2.32)

per

[
B y2

xT2 0

]
=
∑

i2,j2
x2,j2y2,i2 · per(B(−{i2},−{j2})). (2.33)

Thus, the product of these two terms equals the first sum in the RHS expansion above. Similarly,
the cross terms:

per

[
B y2

xT1 0

]
=
∑

i2,j1
x1,j1y2,i2 · per(B(−{i2},−{j1})), (2.34)

per

[
B y1

xT2 0

]
=
∑

i1,j2
x2,j2y1,i1 · per(B(−{i1},−{j2})). (2.35)

Multiplying and adding these reproduces the second sum in the expansion of the upper bound.
Therefore,

per

B y1 y2

xT1 0 0
xT2 0 0

 · per(B) ≤ per

[
B y1

xT1 0

]
· per

[
B y2

xT2 0

]
+ per

[
B y2

xT1 0

]
· per

[
B y1

xT2 0

]
.

(2.36)

Now consider the general case with arbitrary wij ≥ 0. Define:

f(w) := per

[
B y1

xT1 w11

]
· per

[
B y2

xT2 w22

]
+ per

[
B y2

xT1 w12

]
· per

[
B y1

xT2 w21

]
(2.37)

− per

B y1 y2

xT1 w11 w12

xT2 w21 w22

 · per(B). (2.38)

By multilinearity of the permanent in each row and column, we observe that ∇wf = 0. That is,
each derivative ∂f

∂wij
is zero because the positive and negative contributions cancel exactly. For

example, consider the partial derivative ∂f
∂w1,1

. The positive contribution comes from the term

per

[
B y1

xT1 w1,1

]
· per

[
B y2

xT2 w2,2

]
66

in the RHS, which contributes

per(B) · per

[
B y2

xT2 w2,2

]
by linearity in w1,1. An equal and opposite term appears on the LHS from the expansion of

per

B y1 y2

xT1 w1,1 w1,2

xT2 w2,1 w2,2

 · per(B),

which contributes

− per(B) · per

[
B y2

xT2 w2,2

]
.

These two terms cancel exactly, confirming that ∂f
∂w1,1

= 0. Thus, f is constant with respect to w.

In particular, f(w) = f(0), and we already showed f(0) ≥ 0.

Hence, f(w) ≥ 0 for all w ≥ 0, completing the proof.

Theorem 2.5.2. Let A be an `× ` matrix with non-negative entries satisfying

• ai,j ≤ f(j − i) for i < j

• ai,j ≤ f(`−i+j)
f(`)

for j < i

• ai,i ≥ 1.

Then per(A) ≤
(
1 + 0.1

`

)∏`
s=1 as,s.

Proof. If ` = 2, we have

per(A) ≤ a1,1a2,2 +
f(1)f(1)

f(2)
< 1.05 · a1,1a2,2.

Here we used a1,1a2,2 ≥ 1.

So assume ` ≥ 3. Since each entry of A is non-negative, per(A) is a non-decreasing function in
every entry of A. So we can assume that ai,j = f(j − i) for i < j and ai,j = f(`− i + j)/f(`)
for j < i as this only increases the permanent.

We will inductively show that for any s ∈ [`],

per(Ai,i) ≤
(

1 +
1.25

`4

)i−1 i∏
s=1

as,s. (2.39)

Where Ai,i is the submatrix of A that contains the first i rows and columns from A. Then for all
s = `, we have

per(A) ≤
(

1 +
1.25

`4

)`−1 ∏̀
i=1

ai,i ≤
∏̀
i=1

ai,i ·
(

1 +
0.1

`

)
.

67

Here, the last inequality follows from x
x+1
≤ log(1 + x) ≤ x for x > 0.

Let Bi,j denote the submatrix of A with row set {1, . . . ,min{i, j} − 1} ∪ {i} and column set
{1, . . . ,min{i, j}− 1}∪{j}. To establish inequality (2.39), we will use Lemma 2.5.3 and prove
that for any i 6= j,

per(Bi,j)

per(Amin{i,j}−1,min{i,j}−1)
≤

{(
j
i

)
f(j − i) if i < j

1.25f(`−i+j)
f(`)

if j < i.
(2.40)

We will prove this Equation by induction on min{i, j}. For the base case, Bi,1 = ai,1 for any
i ∈ [`] and B1,j = a1,j for all j ∈ [`], so the inequality follows by our assumption on ai,j .

For i ≤ j, by Lemma 2.5.3,

per(Bi,j)

per(Ai−1,i−1)
≤ ai,j +

i−1∑
s=1

per(Bi,s) per(Bs,j)

per(As−1,s−1) per(As,s)

= ai,j +
i−1∑
s=1

per(Bi,s)

per(As−1,s−1)

per(Bs,j)

per(As−1,s−1)

per(As,s)

per(As−1,s−1)

≤ ai,j +
i−1∑
s=1

per(Bi,s)

per(As−1,s−1)

per(Bs,j)

per(As−1,s−1)
.

Here we used per(As,s) ≥ as,s per(As−1,s−1) ≥ per(As−1,s−1) as as,s ≥ 1 and A is a non-
negative matrix.

Using the inductive hypothesis, we have

ai,j +
i−1∑
s=1

per(Bi,s)

per(As−1,s−1)

per(Bs,j)

per(As−1,s−1)

≤ f(j − i) + 1.25
i−1∑
s=1

(
j

s

)
f(j − s) · f(`− i+ s)

f(`)
.

= f(j − i) + 1.25 · f(j − i)
i−1∑
s=1

(
j

s

)
f(j − s) · f(`− i+ s)

f(j − i) · f(`)
.

For i ≤ j, define γ(i, j) :=
∑i−1

s=1

(
j
s

)f(j−s)·f(`−i+s)
f(j−i) . Then it suffices to show that for i ≤ j,

1 + 1.25γ(i, j) ≤ bi,j =

(
j

i

)
. (2.41)

Note that

f(j − s) · f(`− i+ s)

f(j − i) · f(`)
=

(
(j − s)! · (`− i+ s)!

(j − i)! · `!

)6

=

((
`−i+j
`

)(
`−i+j
j−s

))6

.

68

For any 1 ≤ s ≤ i− 1, (`−i+j`)
(`−i+jj−s)

≤ (j−i+1)
`

. Therefore,

f(j − s) · f(`− i+ s)

f(j − i) · f(`)
≤
(
`−i+j
`

)(
`−i+j
j−s

) · (j − i+ 1)5

`5
.

Summing over all s ∈ [i− 1] gives

γ(i, j) =
i−1∑
s=1

(
j

s

)
f(j − s) · f(`− i+ s)

f(j − i)
≤ (j − i+ 1)5

`5
·
i−1∑
s=1

(
j

s

)
·
(
`−i+j
`

)(
`−i+j
j−s

) (2.42)

For any s ∈ [i− 1],(
j

s

)
·
(
`−i+j
`

)(
`−i+j
j−s

) =
j!
(
`−i+j
`

)
(`− i)!

(`− i+ j)!
·
(
`− i+ s

`− i

)
=
j!(`− i)!
`!(j − i)!

(
`− i+ s

`− i

)
.

Substituting this in Equation (2.42) gives

γ(i, j) ≤ (j − i+ 1)5

`5
· j!(`− i)!
`!(j − i)!

·
i−1∑
s=1

(
`− i+ s

`− i

)
. (2.43)

For any positive integers a, b, x with x ≤ a ≤ b,(
a

x

)
+

(
a+ 1

x

)
+

(
a+ 2

x

)
+ . . .+

(
b

x

)
=

(
b+ 1

x+ 1

)
−
(

a

x+ 1

)
. (2.44)

Using (2.44) with a = ` − i + 1, b = ` − 1, and x = ` − i gives
∑i−1

s=1

(
`−i+s
`−i

)
≤
(

`
`−i+1

)
and

substituting this in Equation (2.42),

γ(i, j) ≤ (j − i+ 1)5

`5
· j!(`− i)!

(j − i)!`!
·
(

`

`− i+ 1

)
=

(
j

i

)
· (j − i+ 1)5 · i
`5(`− i+ 1)

. (2.45)

For i = j, we have γ(i, i) ≤ i
`5(`−i+1)

≤ 1
`4

, and therefore,

per(Ai,i)

per(Ai−1,i−1)
≤ ai,i + 1.25γ(i, i) ≤ ai,i

(
1 +

1.25

`4

)
.

Now we will restrict ourselves to the case when i < j.

γ(i, j) ≤
(
j

i

)
· (j − i+ 1)5i

`5(`− i+ 1)
≤
(
j

i

)
· (`− i+ 1)4i

`5
≤
(
j

i

)
· (`− i+ 1)i

`2
. (2.46)

where the last inequality follows from `− i+ 1 ≤ `.

Since (`− i+ 1)i is maximized at i = (`+ 1)/2, we have (`−i+1)i
`2

≤ (`+1)2

4`2
≤ 0.45 for any ` ≥ 3.

69

Plugging this in (2.46) gives

1 + 1.25 · γ(i, j) ≤ 1 + 1.25 · 0.45 ·
(
j

i

)
≤ 1 + 0.6 ·

(
j

i

)
.

For j = 2, i can only be 1 and this corresponds to an entry in the first column for which the
bounds are trivially true. So, we only need to consider j ≥ 3. Since 1 ≤ i < j, we have

(
j
i

)
≥ j.

Furthermore, since ` ≥ 4 and j ≥ 3, we have 1 ≤ 0.4 · j < 0.4
(
j
i

)
. This gives

1 + 0.6 ·
(
j

i

)
≤
(
j

i

)
.

Proving the sufficient condition in Equation2.41 concluding the proof of Equation (2.40) when
i ≤ j.

For i > j, we again have

per(Bi,j)

per(Aj−1,j−1)
≤ ai,j +

j−1∑
s=1

per(Bi,s) per(Bs,j)

per(As−1,s−1) per(As,s)

≤ ai,j +

j−1∑
s=1

per(Bi,s)

per(As−1,s−1)

per(Bs,j)

per(As−1,s−1)
.

Using the inductive hypothesis gives

j−1∑
s=1

per(Bi,s)

per(As−1,s−1)

per(Bs,j)

per(As−1,s−1)

≤ 1.25

j−1∑
s=1

f(`− i+ s)

f(`)
·
(
j

s

)
· f(j − s)

=
1.25f(`− i+ j)

f(`)
·
j−1∑
s=1

f(`− i+ s)

f(`− i+ j)
·
(
j

s

)
· f(j − s).

Define γ(i, j) :=
∑j−1

s=1
f(`−i+s)
f(`−i+j) ·

(
j
s

)
· f(j − s). So, for all j < i, to prove Equation (2.40), it

suffices to show that 1 + 1.25γ(i, j) ≤ 1.25.

Note that for any 1 ≤ s ≤ j − 1,

f(`− i+ s) · f(j − s)
f(`− i+ j)

= 2

(
(`− i+ s)! · (j − s)!

(`− i+ j)!

)6

= 2 ·

(
1(

`−i+j
j−s

))6

.

and as a result 1

(`−i+jj−s)
≤ 1

`−i+j . Therefore,

f(`− i+ s) · f(j − s)
f(`− i+ j)

≤ 1(
`−i+j
j−s

) · 2

(`− i+ j)5
.

70

Substituting this bound in γ(i, j) gives

γ(i, j) ≤ 2

(`− i+ j)5
·
j−1∑
s=1

(
j

s

)
· 1(

`−i+j
j−s

)
=

2 · j!(`− i)!
(`− i+ j)5 · (`− i+ j)!

·
j−1∑
s=1

(
`− i+ s

`− i

)
.

Using (2.44) again, we get
∑j−1

s=1

(
`−i+s
`−i

)
≤
(
`−i+j
`−i+1

)
and this gives

γ(i, j) ≤ 2 · j!(`− i)!
(`− i+ j)5 · (`− i+ j)!

·
(
`− i+ j

`− i+ 1

)
=

2 · j
(`− i+ j)5 · (`− i+ 1)

≤ 2j

j5
=

2

j4
≤ 0.125. (2.47)

where the last inequality follows from j ≥ 2. Therefore, 1 + 1.25γ(i, j) ≤ 1.25 for i > j.

Lemma 2.5.3. Let A be an ` × ` non-negative matrix with non-zero diagonal entries. Let
As,s denote the principal submatrix of A formed by the first s rows and columns with A0,0

being the empty matrix with permanent 1. Let Bi,j denote the submatrix of A with row set
{1, . . . ,min{i, j} − 1} ∪ {i} and column set {1, . . . ,min{i, j} − 1} ∪ {j}. Then

per(A)

per(A`−1,`−1)
≤ a`,` +

`−1∑
s=1

per(B`,s) · per(Bs,`)

per(As,s) · per(As−1,s−1)
.

Proof. We will prove this by induction on `. For ` = 2,

per(A)

per(A1,1)
=
a1,1a2,2 + a1,2a2,1

a1,1

= a1,1 +
per(B1,2) per(B2,1)

per(A1,1)
.

Now assume the lemma holds for all j < ` for some ` ≥ 3. Then by Lemma 2.5.1,

per(A) per(A`−2,`−2) ≤ per(A`−1,`−1) · per(B`,`) + per(B`,`−1) per(B`−1,`).

Diving the inequality by per(A`−1,`−1) per(A`−2,`−2) gives

per(A)

per(A`−1,`−1)
≤ per(B`,`)

per(A`−2,`−2)
+

per(B`,`−1) per(B`−1,`)

per(A`−1,`−1) · per(A`−2,`−2)
. (2.48)

Using the inductive hypothesis on B`,`, we get

per(B`,`)

per(A`−2,`−2)
≤ a`,` +

`−2∑
s=1

per(B`,s) per(Bs,`)

per(As,s) per(As−1,s−1)

71

Here we used the fact that the submatrix of B`,` with row set {1, . . . , j−1}∪{`} and column set
{1, . . . , j} is B`,j and the submatrix of B`,` with row set {1, . . . , i} and column set {1, . . . , i −
1} ∪ {`} is Bi,`. Substituting this in Equation (2.48) gives

per(A)

per(A`−1,`−1)
≤ a`,` +

`−1∑
s=1

per(B`,s) per(Bs,`)

per(As,s) per(As−1,s−1)
.

Corollary 2.5.4. Let A be an `× ` matrix with entries satisfying

• ai,j ≤ f(j − i) for i < j

• ai,j ≤ f(`−i+j)
f(`)

for j < i

• ai,i = 1.

Then | det(A)| ≥ 1− 0.1
`

.

Proof. Expanding the determinant of A gives

det(A) =
∑
σ∈S`

sign(σ)
∏̀
i=1

ai,σ(i) = 1 +
∑

σ∈S`\ id`

sign(σ)
∏̀
i=1

ai,σ(i).

Where id` is the identity permutation. Using triangle inequality,

| det(A)| ≥ 1−
∑

σ∈S`\ id`

∏̀
i=1

|ai,σ(i)|. (2.49)

Let |A| denote the matrix whose entries are equal to the absolute values of A. Then by Theorem
2.5.2, we have per(|A|) ≤ 1 + 0.1

`
.

Expanding the permanent of |A| gives

per(|A|) =
∑
σ∈S`

∏̀
i=1

|ai,σ(i)| = 1 +
∑

σ∈S`\id`

∏̀
i=1

|ai,σ(i)|.

Therefore, we have ∑
σ∈S`\id`

∏̀
i=1

|ai,σ(i)| ≤
0.1

`
. (2.50)

Plugging the bounds from Equation (2.50) into (2.49) completes the proof.

72

2.6 Future Directions
A central open question is whether an approximation algorithm with a guarantee of O(1)d can
be designed, which would match the best-known hardness bounds. While our results achieve
a dO(d)-approximation, we have shown that this is, in fact, a tight bound for our matroid inter-
section–based approach. This suggests that fundamentally new algorithmic ideas are needed to
make further progress.

2.7 Appendix for Chapter 2

2.7.1 Omitted proofs from Section 2.2
Proof of Lemma 2.2.4. Recall the statement: Let S be a set with vol(S) > 0 and let uj /∈ S.
Then for any vi ∈ S, we have

w0(uj, vi) = − log
vol(S + uj − vi)

vol(S)
.

Assume without loss of generality that vi = v1 and S = {v1, . . . , vd}. Let uj =
∑d

i=1 ai,jvi.
Also, write

v1 = v⊥1 +
d∑
i=2

bivi,

where v⊥1 is orthogonal to the span of S \ {v1}. Then we can express uj as

uj = a1,jv
⊥
1 +

d∑
i=2

(a1,jbi + ai,j)vi.

Let vol(X) denote the k-dimensional volume of the parallelepiped spanned by a set X ⊆ Rd

with |X| = k. Then,
vol(S) = vol(S \ {v1}) · ‖v⊥1 ‖,

and
vol(S + uj − v1) = vol(S \ {v1}) · |a1,j| · ‖v⊥1 ‖,

since adding uj in place of v1 contributes a component orthogonal to S \ {v1} of magnitude
|a1,j| · ‖v⊥1 ‖.

Thus,

− log
vol(S + uj − v1)

vol(S)
= − log

vol(S \ {v1}) · |a1,j| · ‖v⊥1 ‖
vol(S \ {v1}) · ‖v⊥1 ‖

= − log |a1,j|,

which completes the proof.

73

Proof of Observation 2.2.7. Recall the statement: If C is an f -violating cycle, then∏
(u,v)∈C:u∈L, v∈R

|avu| > f(|C|/2).

Since C is f -violating, the total weight under the w0 function satisfies

`(C) :=
∑

(u,v)∈C

w0(u, v) < − log f(|C|/2).

Note that w0(u, v) is nonzero only for forward arcs (u ∈ L, v ∈ R). Therefore,

`(C) =
∑

(u,v)∈C:u∈L,v∈R

w0(u, v) = − log

 ∏
(u,v)∈C:u∈L,v∈R

|avu|

 .

Combining both expressions for `(C), we get:

− log

 ∏
(u,v)∈C:u∈L,v∈R

|avu|

 < − log f(|C|/2).

Exponentiating both sides yields the desired inequality:∏
(u,v)∈C:u∈L,v∈R

|avu| > f(|C|/2).

Proof of Lemma 2.2.9. Algorithm 1 searches for an f -violating cycle inG(S) of minimum length.
In the i-th iteration, it checks for a negative-weight cycle of exactly 2i edges using the weight
function wi. This is done by running Bellman-Ford (see Chapter 8, Section 8.3 of [172]) from
each vertex for 2i steps, and checking whether any vertex has a negative-distance path to itself.

A negative cycle under wi with at most 2i edges corresponds to an f -violating cycle. Since
earlier iterations ruled out such cycles with fewer than 2i edges, any cycle found in iteration i
must use exactly 2i edges. Moreover, since wi is an increasing function of i, any shorter cycle
C ′ with 2i′ < 2i that was not f -violating under wi′ cannot become negative under wi.

Now, suppose there exists an f -violating cycle C with |C| = 2`. Under weights w`, we have:

w`(C) =
∑

(u,v)∈C

(
log f(`)

`
+ w0(u, v)

)
= log f(`) + w0(C) < 0,

since w0(C) < − log f(`). Thus, C is a negative-weight cycle under w`, and the algorithm will
detect it.

Finally, let C be the cycle returned by the algorithm. If a shorter f -violating cycle C ′ existed,
it would have been detected in an earlier iteration, contradicting the choice of C. Hence, C is
minimal.

74

Proof of Lemma 2.2.11. Recall the statement of the Lemma 2.2.11: Let S be a basis, let X and
Y be sets with |X| = |Y | = ` and Y ⊆ S. Let A be the d × ` matrix of coefficients so that
VX = VSA, and let AC be the `× ` submatrix of only the coefficients corresponding to columns
in Y . If T = (S ∪X)\Y then vol(T)2 = vol(S)2 · det(ACA

>
C).

Order the columns of VS so that Y makes up the first ` columns of VS . Let A′ be the (d− `)× `
submatrix of A consisting of the remaining columns not already in AC . Then

VT = VS

[
AC 0
A′ Id−`

]
,

which implies that
det(T) = det(S) · det(AC).

2.7.2 Ommited Lemmas and Proofs from Section 2.3
Linear Algebraic Lemmas, r < d

Lemma 2.7.1. Let S, T ⊆ [n] such that det(V >S VS) > 0, det(V >T VT) > 0 and |S| = |T |. Then
the ratio of their squared volumes can be expressed as

vol2(T)

vol2(S)
= det

[
B>B −A>
A (V >S VS)−1

]
. (2.51)

Where B := proj⊥S ·VT and A := (V >S VS)−1V >S VT .

Proof. The matrix in RHS of Equation (2.51) can be expanded as[
B>B −A>
A (V >S VS)−1

]
=

[
V >T
(
I − VS(V >S VS)−1V >S

)
VT −V >T VS(V >S VS)−1

(V >S VS)−1V >S VT (V >S VS)−1

]
Using Schur’s determinant formula,

det

[
B>B −A>
A (V >S VS)−1

]
= det(V >S VS)−1 det

(
B>B + A>V >S VSA

)
=

det
(
B>B + A>V >S VSA

)
det
(
V >S VS

) .

It suffices to show that

det(V >T VT) = det
(
B>B + A>V >S VSA

)
. (2.52)

On the other hand, VT = VSA+B by definition of A and B. Furthermore,

V >S B = V >S
(
I − VS(V >S VS)−1V >S

)
VT = 0.

As a result, V >T VT = B>B + A>V >S VSA and Equation (2.52) follows.

75

The following corollary shows that the ratio of volumes only depends on the symmetric differ-
ence of the two sets.

Corollary 2.7.2. Let S ⊆ [n] with vol(S) > 0 and let Y ⊆ S, X ⊆ [n]\S with |X| = |Y | such
that vol(S−Y +X) > 0. Let VX = VSA+B where Ai,j = coefS(Xj, Si) and B>VS = 0. Then

vol2(S − Y +X)

vol2(S)
= det

[
B>B −A>Y,X
AY,X (V >S VS)−1

Y,Y

]
. (2.53)

.

Proof. Let T = S − Y +X and R = S ∩ T . Reorder elements of S and T . Then

VT = VS

[
AY,X 0
AR,X I|R|

]
+
[
B 0

]
.

By Lemma 2.7.1,

vol2(S − Y +X)

vol2(S)
= det


B>B 0 −A>Y,X −A>R,X

0 0 0 I|R|
AY,X 0 (V >S VS)−1

Y,Y (V >S VS)−1
Y,R

AY,X I|R| (V >S VS)−1
R,Y (V >S VS)−1

R,R


= det

[
B>B −A>Y,X
AY,X (V >S VS)−1

Y,Y

]
.

Finally, the ratio of volumes is lower bounded by the determinant matrix of the coefficient func-
tion.

Corollary 2.7.3. Let S ⊆ [n] with vol(S) > 0, and let Y ⊆ S, X ⊆ [n] \ S with |X| = |Y | such
that vol(S − Y +X) > 0. Then

vol2(S − Y +X)

vol2(S)
≥ det(AY,X)2, (2.54)

where VX = VSA+B with B>VS = 0.

Proof. Using Corollary 2.7.2, we have

vol2(S − Y +X)

vol2(S)
= det

[
B>B −A>Y,X
AY,X (V >S VS)−1

Y,Y

]
.

Using Lemma 2.7.4 completes the proof.

Lemma 2.7.4. Let M be a square block matrix defined as M =

(
A B
−BT C

)
, where A,B, and

C are `× ` matrices. If A and C are positive semidefinite (PSD), then det(M) ≥ det(B)2.

76

Proof. First, assume A is positive definite (PD), which implies it is invertible. The determinant
of the block matrix M can be expressed using the Schur’s formula:

det(M) = det(A) det(C +BTA−1B)

Since A is PD, its inverse A−1 is also PD. The matrix BTA−1B is a congruence of a PD matrix,
making it PSD. Given that C is also PSD, and the sum of two PSD matrices is PSD, we can use
the property that for any two ` × ` PSD matrices X and Y , det(X + Y) ≥ det(Y). Applying
this with X = C and Y = BTA−1B, we get:

det(C +BTA−1B) ≥ det(BTA−1B)

Substituting this inequality back into the expression for det(M):

det(M) ≥ det(A) det(BTA−1B) = det(A) det(BT) det(A−1) det(B)

Since det(BT) = det(B) and det(A−1) = 1/ det(A), this simplifies to:

det(M) ≥ det(B)2

This result extends from the PD case to the general PSD case for A by a continuity argument,
since any PSD matrix can be viewed as the limit of a sequence of PD matrices (e.g., Aε = A+εI
as ε→ 0+).

Lemma 2.7.5 (Determinant rank-2 update). Let P ∈ R`×` and x, y, z, w ∈ R`. Define

Q := c1yx
> + c2zx

> + c3yw
> + c4zw

>

for scalars c1, c2, c3, c4 ∈ R, and let B := P +Q. Then:

| det(B)| ≥ | det(P)| −
∑̀
j=1

∣∣det
(
P (1), . . . , Q(j), . . . , P (`)

)∣∣
−
∑
j 6=k

∣∣det
(
P (1), . . . , c1yxj, . . . , c4zwk, . . . , P

(`)
)∣∣

−
∑
j 6=k

∣∣det
(
P (1), . . . , c2zxj, . . . , c3ywk, . . . , P

(`)
)∣∣ .

Proof. Define rank-1 matrices Q1 := c1yx
>, Q2 := c2zx

>, Q3 := c3yw
>, Q4 := c4zw

>, and let
Q0 := P . By multilinearity:

det(P +Q) = det(Q0 +Q1 +Q2 +Q3 +Q4) =
∑
h∈H

det(Q[h]),

whereH := {h : [`]→ {0, 1, 2, 3, 4}} and Q[h] denotes the matrix with column j from Qh(j).

Since each Qi is rank-1, det(Q[h]) = 0 whenever two columns come from the same Qi with
i > 0. Moreover, since the column span of Q1, Q3 and Q2, Q4 are equal, det(Q[h]) = 0 when
two columns have a non-zero index with the same parity. Thus, we restrict to:

77

1. Ha: only one column from Qa, rest from Q0,

2. Ha,b: two distinct columns from Qa and Qb, rest from Q0.

Then:

det(P +Q) = det(P) +
4∑

a=1

∑
h∈Ha

det(Q[h]) +
∑
a<b

∑
h∈Ha,b

det(Q[h]).

Observe:

1. H1,3 and H2,4 yield zero contributions since their columns are linearly dependent (all co-
linear with x or w),

2. Pairs (1, 2) and (3, 4) cancel: for h ∈ H1,2 with h(j1) = 1, h(j2) = 2,

det(Q[h]) = − det(Q[ĥ]),

where ĥ flips indices. So,
∑

h∈H1,2
det(Q[h]) = 0, and likewise for (3, 4).

OnlyHa (single-column replacements) andH1,4,H2,3 remain.

Finally, use multilinearity to write:

4∑
a=1

∑
h∈Ha

det(Q[h]) =
∑̀
j=1

det
(
P (1), . . . , Q(j), . . . , P (`)

)
,

and expand the remainingH1,4 andH2,3 terms explicitly to get the full bound.

This completes the proof.

Proof of Lemma 2.3.15. For part (a), the product of the diagonal entries of B is exactly

∏̀
i=1

bi,i = exp(−w(C)) ≥ f(`) ,

where the last inequality follows from the fact that C is an f -violating cycle.

For part (b), we first bound every off-diagonal entry of matrix B as a function of its diagonal
entries and then apply Lemma 2.5.2.

We will show thatB satisfies bi,j ≤ f(j−i)/
∏j−1

s=i+1ws,s when i < j andwi,j ≤ f(`−i+j)
f(`)

∏i
s=j bs,s

when j < i < ` and b`,j ≤ f(j)/
∏j−1

s=1 bs,s when j ≤ `. In this case, apply the following opera-
tions to B to get B̂:

• Multiply the columns 1 < j ≤ ` with
∏j−1

s=1 bs,s.

• Divide the rows 1 ≤ i ≤ `− 1 by
∏i

s=1 bs,s.

• Divide last row by f(`).

78

Then per(B) = per(B̂) · f(`) and the entries of B̂ satisfy

• b̂i,i = 1 for i ∈ [`− 1] and b`,` =
∏`

s=1 bs,s/f(`) ≥ 1

• b̂i,j ≤ f(i− j) for i < j and

• b̂i,j ≤ f(`− i+ j)/f(`) for j < i

By Theorem 2.5.2, per(B̂) ≤ (1 + 0.1/`)
∏`

t=1 b̂t,t = (1 + 0.1/`)
∏`

t=1 bt,t/f(`). As a result,

per(B) = f(`) · per(B̂) ≤ (1 + 0.1/`)
∏̀
t=1

bt,t ≤ 1.05
∏̀
t=1

bt,t.

For i, j ∈ [`] with i < j, define the cycles C I
i,j := (uj

I−→ vi → ui+1
I−→ vi+1 . . . vj−1 → uj)

and C II
i,j := (uj

II−→ vi → ui+1
I−→ vi+1 . . . vj−1 → uj). Both C I

i,j and C II
i,j contain 2(j − i) arcs

and vertex sets ver(C I
i,j) = ver(C II

i,j) are a proper subset of ver(C). So, by minimality of C, we
know that C I

i,j and C II
i,j are not f -violating cycles.

Therefore, exp(−w(C I
i,j)) = | coefS(uj, vi)| ·

∏j−1
s=i+1 exp(−w(us

I−→ vs)) < f(j − i), and

| coefS(uj, vi)| <
f(j − i)∏j−1

s=i+1 exp(−w(us
I−→ vs))

. (2.55)

Using a similar argument for C II
i,j gives∥∥u⊥j ∥∥ /∥∥v⊥i ∥∥ < f(j − i)∏j−1

s=i+1 exp(−w(us
I−→ vs))

. (2.56)

Combining (2.55) and (2.56), we get

wi,j = max{ | coefS(uj, vi)|,
∥∥u⊥j ∥∥ / ∥∥v⊥i ∥∥ }

≤ f(j − i)∏j−1
s=i+1 exp(−w(us

I−→ vs))
=

f(j − i)∏j−1
s=i+1 |bs,s|

.

For i, j ∈ [`− 1] with j < i, define C I
i,j := (v` → u1

I−→ v1 . . . uj
I−→ vi → ui+1 . . . u`

II−→ v`) and
C II
i,j := (v` → u1

I−→ v1 . . . uj
II−→ vi → ui+1 . . . u`

II−→ v`). Both C I
i,j and C II

i,j contain 2(`− i+ j)
arcs and ver(C I

i,j) = ver(C II
i,j) is a proper subset of ver(C). So, they are not f -violating cycles.

Therefore,

exp(−w(C I
i,j)) = | coefS(uj, vi)| ·

j−1∏
s=1

exp(−w(us
I−→ vs))

·
`−1∏
k=i+1

exp(−w(us
I−→ vs)) · exp(−w(u`

II−→ v`))

< f(`− j + i). (2.57)

79

Since C is an f -violating cycle, we also have

`−1∏
s=1

exp(−w(us
I−→ vs)) · exp(−w(u`

II−→ v`)) > f(`). (2.58)

Dividing (2.57) by (2.58) gives

| coefS(uj, vi)| <
f(`− i+ j)

f(`)
·

i∏
s=j

exp(−w(us
I−→ vs)) . (2.59)

Similarly,

∥∥u⊥j ∥∥ / ∥∥v⊥i ∥∥ < f(`− i+ j)

f(`)
·

i∏
s=j

exp(−w(us
I−→ vs)) . (2.60)

Summing (2.59) and (2.60) gives

bi,j = max{| coefS(uj, vi)|,
∥∥u⊥j ∥∥ / ∥∥v⊥i ∥∥ } ≤ f(`− i+ j)

f(`)
·

i∏
s=j

exp(−w(us
I−→ vs))

≤ f(`− i+ j)

f(`)
·

i∏
s=j

|bs,s| .

To bound w`,j for j ≤ `, consider cycles C I
`,j := (v` → u1

I−→ v1 . . . uj
I−→ v`) and C II

`,j :=

(v` → u1
I−→ v1 . . . uj

II−→ v`). Both C I
`,j and C II

`,j contain 2i arcs and ver(C I
i,`) = ver(C II

i,`) is a
proper subset of ver(C). So, they are not f -violating cycles. Following a similar argument to the
i < j < ` case and comparing w(C I

`,j), w(C I
`,j) with w(C) gives

b`,j ≤
f(j)

f(`)
·
`−1∏
s=j

|bs,s| · exp(−w(u`
II−→ v`)) <

f(j)

f(`)
·
`−1∏
k=i

|wk,k| · w`,` .

For part (c), the principal submatrix W`−1,`−1 satisfies first two prerequisites of Theorem 2.5.2.
Observe that f(y − x)/f(y) is a non-increasing function of y for any fixed x ∈ [`]. Therefore,
for any j < i,

bi,j ≤
f(`− i+ j)

f(`)
·

i∏
s=j

bs,s ≤
f(`− 1− i+ j)

f(`− 1)
·

i∏
s=j

bs,s .

So W`−1,`−1 also satisfies the final prerequisite of 2.5.2.

2.7.3 Examples
Example with all negative cycles containing a type II edge.

80

Example 2.7.6. LetM be a partition matroid on [n] with partition [n] = {1, 2}∪ {3}∪ {4, 5}∪
{6}∪ · · ·∪{n} where the rank of each partition is 1. So the rank of the matroid is n−2. We will
consider vectors in R3. Let the vectors associated with the matroid be v1 = e1, v2 = Le2, v3 =
e2, v4 = εe1 and e5 = . . . = en = εe3, where ε = 1/(n− 2) and Lε2 � 1.

The optimal solution of the determinant maximization problem onM is T = {Le2, e2, εe1, εe3, . . . , εe3}
with det(TT>) = (L2 + 1) · ε2 · (1 − ε2). Let the current solution S be {e1, e2, εe3, . . . , εe3}.
Then SS> = I , det(SS>) = 1.

The cycles in G(S) along with their weights are

• C1 = (v4
I−→ v5) with w(C1) =∞

• C2 = (v4
II−→ v5) with w(C2) = − log(1 + ε2)(1− ε2) > 0

• C3 = (v1 → v2
I−→ v5 → v4

I−→ v1) with w(C3) =∞

• C4 = (v1 → v2
I−→ v5 → v4

II−→ v1) with w(C4) =∞

• C5 = (v1 → v2
II−→ v5 → v4

I−→ v1) with w(C5) = − log((1 + L2) · (1− ε2))− log(ε2)

• C6 = (v1 → v2
II−→ v5 → v4

II−→ v1) with w(C6) =∞

The only cycle with negative weight is C5 and it contains a type II edge.

M

10
0

0
L
0

 01
0

 ε0
0

 00
ε


00
ε

 00
ε


1, 2 3 4, 5 6 n

v1 v2 v3 v4 v5 v6 vn

ε = 1
n−2

L� (n− 2)2

(a) Matroid

v1

v3

v5

v6

vn

v2

v4

I

II
I

II

S[n]\S

I
II

(b) Graph

Figure 2.4: Example

81

82

Chapter 3

New Permanent Inequalities

3.1 Introduction

The permanent of a matrix, despite its deceptively simple definition, is notoriously difficult to
compute. It is well-known that the exact computation of the permanent is #P-complete [184],
situating it at the forefront of complexity theory and establishing its computational intractability
for all but trivially sized matrices. Despite this difficulty, permanents play a critical role across
diverse areas such as combinatorics, graph theory (particularly in counting perfect matchings
in bipartite graphs [140]), quantum computing (specifically within boson sampling experiments
aimed at demonstrating quantum advantage [1]), and statistical physics (e.g., in dimer covering
models [108]).

Due to the permanent’s computational complexity, significant effort has been directed towards
deriving efficient upper bounds and approximation algorithms. Classical results, such as the
Bregman-Minc inequality and its numerous refinements, form a rich and diverse body of work
(e.g., [33, 96, 109, 128, 137, 139, 140, 165, 167, 169, 176, 178]). However, existing bounds have
largely emerged from combinatorial, scaling, or probabilistic frameworks. This work charts
a different course by developing a deterministic, iterative procedure rooted in linear algebraic
principles. This creates a new algorithmic pathway that is not only theoretically sound but also
directly computable.

This chapter introduces a new pathway for establishing upper bounds on the permanent of non-
negative matrices. Our approach systematically adapts powerful and intuitive tools from deter-
minant theory. Our main contributions are:

• A Permanental Inverse: We define a novel analogue of the matrix inverse, constructed
from permanents of submatrices. While it lacks multiplicative inverse properties, this per-
manental inverse satisfies key structural inequalities that enable further analysis.

Definition 3.1.1 (Permanental Inverse). The permanental inverse of a non-negative matrix

83

B ∈ Rd×d
≥0 with per(B) 6= 0 is the matrix C with entries

ci,j =
per(Bj,i)

per(B)
,

where Bj,i is the matrix obtained by removing the j th row and ith column of B. Use B∗ to
denote the permanental inverse ofB. See §3.3.1 for more details regarding the permanental
inverse.

• Schur’s Formula for Permanents: Leveraging the permanental inverse, we establish an
analogue of the Schur’s formula for determinants to permanents. This result provides the
core theoretical engine for our framework.

Theorem 3.1.2 (Permanental Schur’s Formula). Let A ∈ Rn×n
≥0 be a block matrix of the

form

A =

[
B Y
X> W

]
, (3.1)

where B ∈ Rd×d has non-zero permanent. Then the permanent of A satisfies

per(A) ≤ per(B) · per
(
W +X>B∗Y

)
. (3.2)

See §3.3.3 for a proof of Theorem 3.1.2.

• A Constructive Algorithmic Bound: We design an iterative procedure, the Permanent
Process, inspired by Gaussian elimination. This algorithm yields a provable upper bound
on the permanent, offering a transparent and constructive alternative to more abstract com-
binatorial bounds. See §3.3.4 for more details regarding the permanent process and its
properties.

• Provable Guarantees for Structured Matrices: We show that for matrices exhibiting
approximate diagonal dominance—a structure common in numerical linear algebra and
network models—our bound yields strong theoretical guarantees. See §3.3.6 for more
details.

Taken together, these results offer a fresh algorithmic perspective on permanents and expand the
analytical toolbox for bounding them, with potential applications in combinatorics, statistical
physics, and quantum computation.

3.2 Preliminaries

3.2.1 Notation
To discuss matrices, we will use the following standard notation. Let A be an n× n matrix with
real-valued entries, denoted A ∈ Rn×n.

84

• Matrix Entries: (A)i,j or ai,j (the corresponding lowercase letter) refers to the entry in
the ith row and jth column of A.

• Submatrices by Selection: For index sets S, T ⊆ {1, . . . , n}, we denote by A(S, T) the
submatrix formed by taking the rows indexed by S and columns indexed by T .

• Submatrices by Deletion: We use several notations for submatrices formed by deleting
rows or columns.

The matrixA−i,. denotes the matrix obtained by deleting the ith row andA.,−j denotes
the matrix obtained by deleting the jth column.

Ai,j denotes the matrix obtained by deleting both the ith row and the jth column.

For deleting multiple rows and columns, the notation A(−S,−T) is shorthand for
the submatrix formed by deleting the rows in set S and columns in set T .

• Determinants and Permanents:

detA(S, T) := det(A(S, T)). For brevity, we often write |A| for det(A).

perA(S, T) := per(A(S, T)).

By convention, detA(∅, ∅) = perA(∅, ∅) = 1.

• Entrywise Inequality: The expression A ≥ B means that every entry in A is greater than
or equal to the corresponding entry in B (i.e., ai,j ≥ bi,j for all i, j).

• Functions: For any function f : [k] → [d], let imgf,S := {f(j) : j ∈ S} be the image of
S according to f ; we simply write imgf when S = [k].

3.2.2 Gaussian Elimination

Remark 3.2.1 (A Note on Convention). The method described here is a specific variant of Gaus-
sian elimination designed to produce a lower triangular matrix. This is a non-standard conven-
tion, as the standard algorithm is typically defined to produce an upper triangular matrix.

Let A(t) denote the state of the matrix at the beginning of step t, with the initial matrix being
A(1) = A. The goal is to iteratively transform A into a lower triangular matrix. The state of the
matrix entries after the end of step t for some 1 ≤ t ≤ n− 1 is given by

a
(t+1)
i,j =

a
(t)
i,j −

a
(t)
i,ta

(t)
t,j

a
(t)
t,t

, for j ≥ t+ 1

a
(t)
i,j , Otherwise.

(3.3)

In simpler terms, at each step t, this process uses the pivot element at,t to create zeros in all
entries to its right, within the same row t.

85

Theorem 3.2.2 (Gaussian Elimination Invariant). The entries of the matrix A(t) are ratios of
determinants of certain sub-matrices of A:

a
(t)
i,j =

detA ([r − 1] + {i}, [r − 1] + {j})
detA([r − 1], [r − 1])

, r = min(j, t). (3.4)

Corollary 3.2.3 (Determinant Property). . If A(n) is the final lower triangular matrix obtained
after running the full elimination process on A, the product of its diagonal entries equals the
determinant of A.

det(A) =
n∏
i=1

a
(n)
i,i (3.5)

3.2.3 Schur’s Formula
The Schur complement is a fundamental tool for working with block matrices.

Theorem 3.2.4 (Schur’s Determinant Formula). Let A ∈ Rn×n be a block matrix of the form

A =

[
B Y
X> W

]
,

where B ∈ Rd×d is an invertible matrix. Then the determinant of A is given by

det(A) = det(B) · det(W −X>B−1Y). (3.6)

The matrix S = W −X>B−1Y is called the Schur complement of B in A.

3.3 Generalizing Determinantal Concepts for the Permanent
This section extends familiar concepts like the matrix inverse and Schur’s formula—which are
fundamental for determinants—to the context of the matrix permanent.

3.3.1 The Permanental Inverse
Motivation from the Determinant

To start, recall that one way to define the inverse of an invertible matrix B is using Cramer’s rule,
where each entry of the inverse C = B−1 is given by:

ci,j =
det(Bj,i)

det(B)

Here, Bj,i is the submatrix of B formed by removing row j and column i. This definition natu-
rally gives us B−1B = BB−1 = I . This provides a direct template for defining a similar concept
for the permanent.

86

Definition 3.3.1 (Permanental Inverse). For a non-negative matrix B ∈ Rd×d
≥0 with per(B) > 0,

the permanental inverse, denoted B∗, is the matrix with entries:

(B∗)i,j =
per(Bj,i)

per(B)

Crucial Differences and Properties

Unlike the determinantal inverse, B∗ does not typically recover the identity matrix. Instead, it
satisfies a matrix inequality.

Claim 3.3.2. For a non-negative matrix B, we have B∗B ≥ I and BB∗ ≥ I . In general,
B∗B 6= BB∗.

Proof. Evaluate the diagonal entries of B∗B as

(B∗B)ii =
1

per(B)

d∑
j=1

bji · per(Bj,i)

The sum
∑d

j=1 bji · per(Bj,i) is the Laplace expansion of the permanent of B along column i,
which equals per(B). Thus, the diagonal entries are (B∗B)ii = per(B)

per(B)
= 1.

For the off-diagonal entries (where k 6= i), since B is a non-negative matrix, all its permanents
and entries are non-negative. Thus, every term in the sum for (B∗B)ik is non-negative, meaning
(B∗B)ik ≥ 0.

Combining these two points, the diagonal entries of B∗B are 1 and the off-diagonal entries are
non-negative. By definition, this means B∗B ≥ I . The proof for BB∗ ≥ I follows a similar
argument.

Example. Let B =

(
1 2
3 4

)
. The permanent is per(B) = 1 · 4 + 2 · 3 = 10. The permanental

inverse B∗ is:

B∗ =
1

10

(
per(B1,1) per(B2,1)
per(B1,2) per(B2,2)

)
=

1

10

(
4 2
3 1

)
Now, let’s compute the products:

B∗B =
1

10

(
4 2
3 1

)(
1 2
3 4

)
=

1

10

(
10 16
6 10

)
=

(
1 1.6

0.6 1

)
BB∗ =

1

10

(
1 2
3 4

)(
4 2
3 1

)
=

1

10

(
10 4
24 10

)
=

(
1 0.4

2.4 1

)
As demonstrated, both productsB∗B andBB∗ satisfy an entrywise inequality with respect to the
identity matrix I , but they are not necessarily equal: B∗B 6= BB∗ in general. A straightforward
consequence of Claim 3.3.2 is that

per(B∗B) ≥ 1 and per(BB∗) ≥ 1,

87

since both B∗B and BB∗ dominate I entrywise. However, a sharper inequality is established in
Theorem 3.3.3 (see next section), which implies that

per(B∗) · per(B) ≥ 1. (3.7)

This is strictly stronger than the two previous inequalities, because

per(B∗B), per(BB∗) ≥ per(B∗) · per(B).

The final inequality follows from the fact that the permanent is super-multiplicative on non-
negative square matrices; that is, for any such matrices C,D, we have per(CD) ≥ per(C) ·
per(D).

3.3.2 An Inequality for the Permanental Inverse
The following inequality describes a relation between the minors of a non-negative matrix and
its permanental inverse:

Theorem 3.3.3. If B∗ is the permanental inverse of a non-negative matrix B, then for any index
sets S and T , the following inequality holds:

per(B(−S,−T))

per(B)
≤ per(B∗(T, S)) (3.8)

For context, the equivalent identity for determinants is an equality:

det(B(−S,−T))

det(B)
= det(B−1(T, S))

We now examine some illustrative special cases of this inequality:

• Case 1: S = T = [n]. Then B(−S,−T) is empty and B∗(T, S) = B∗, and the inequality
reads:

1

per(B)
≤ per(B∗) =⇒ per(B∗) · per(B) ≥ 1 .

This is the inequality from Equation3.7 before.

• Case 2: S = {i}, T = {j}. Then B(−S,−T) = Bi,j is the (n − 1) × (n − 1) matrix
obtained by deleting row i and column j, and the inequality becomes:

per(Bi,j)

per(B)
≤ per((B∗)j,i) = (B∗)j,i ,

which holds with equality by definition of the permanental inverse.

These special cases highlight the role of the permanental inverse as a natural upper bound on
normalized minors of B. While the determinantal analogue yields exact identities due to multi-
plicativity, the permanent lacks such algebraic structure.

88

3.3.3 Schur’s Formula for Permanents
In contrast to Schur’s determinant formula (which yields an exact equality), the analogous rela-
tionship for matrix permanents turns out to be an inequality. We formalize this below.

Theorem 3.1.2 (Permanental Schur’s Formula). Let A ∈ Rn×n
≥0 be a block matrix of the form

A =

[
B Y
X> W

]
, (3.1)

where B ∈ Rd×d has non-zero permanent. Then the permanent of A satisfies

per(A) ≤ per(B) · per
(
W +X>B∗Y

)
. (3.2)

Proof strategy. The proof of Theorem 3.1.2 will use induction on k (the number of columns in
Y). We first establish two auxiliary results: a formula for the permanent of a rank-1 block update
(Observation 3.3.4) and a technical inequality (Lemma 3.3.5) referred to as the row-uncrossing
lemma. After proving these, we proceed to the inductive step for the general case.

Observation 3.3.4 (Rank-1 Update Formula). For any block matrix of the form

(
B y

x> w

)
,

where B is a d × d matrix, x and y are column vectors of length d, and w is a scalar, the
permanent can be expanded as

per

(
B y

x> w

)
= per(B) ·

(
w + x>B∗ y

)
.

Proof. We let B(i←y) denote the d× d matrix obtained from B by replacing its i-th column with
the vector y. Expanding the permanent of the block matrix along its last row gives:

per

(
B y
x> w

)
= w · per(B) +

d∑
i=1

xi · per
(
B(i←y)

)
.

Here the first term w · per(B) corresponds to choosing the entry w in the last row, while each
summand xi ·per(B(i←y)) corresponds to choosing the entry xi from the last row and then taking
all permutations in the remainder of the matrix that involve one element from the inserted column
y. In particular, if yj (the j-th entry of y) is used from that inserted column, it contributes a factor
xiyj and leaves a (d − 1) × (d − 1) submatrix Bj,i (obtained by removing the j-th row and i-th
column from B) for the rest of the permutation. Summing over all choices of j for each i, we
can rewrite the above as

per

(
B y
x> w

)
= w · per(B) +

d∑
i=1

d∑
j=1

xi yj per(Bj,i) .

89

Now, factor per(B) out of the summation. By the definition of B∗, we have per(Bj,i)

per(B)
= (B∗)i,j .

Thus,

per

(
B y
x> w

)
= per(B)

(
w +

d∑
i,j=1

xiyj
per(Bj,i)

per(B)

)
= per(B)

(
w + x>B∗ y

)
,

which confirms the formula.

Lemma 3.3.5 (Row-Uncrossing Inequality). Let

M =

[
B Y
X> W

]
,

where B ∈ Rd×d
≥0 , X, Y ∈ Rd×k

≥0 , W ∈ Rk×k
≥0 with d ≥ 0 and k ≥ 1. Then, for any fixed i∗ ∈ [k],

the following inequality holds:

per(M) · per(B) ≤
k∑
j=1

per

[
B Y.,−j

X>−i∗,. Wi∗,j

]
· per

[
B yj
x>i∗ wi∗,j

]
. (3.9)

Here, Y.,−j denotes the matrix Y with its j-th column removed, and X>−i∗,. denotes X> with its
i∗-th row removed (equivalently, removing the i∗-th column of X before transposing). Likewise,
Wi∗, j is the submatrix of W obtained by deleting the i∗-th row and j-th column.

Proof. The proof proceeds in two main stages:

1. We first establish the inequality in the special case whereW = 0. This is done by explicitly
expanding the permanents and applying an inductive argument on the dimension d.

2. We then extend the result to arbitrary non-negative matrices W . To do this, we define a
function representing the difference between the two sides of the inequality. From the first
step, we know that this function is non-negative whenW = 0. We observe that the function
is multilinear in the entries of W , and that all its partial derivatives are non-negative. Each
partial derivative corresponds to an instance of the same inequality, but for a smaller value
of k, allowing us to invoke the inductive hypothesis. These observations imply that the
difference function remains non-negative for all non-negative W , thereby completing the
proof.

The base cases d = 0 or k = 1: For the base case when d = 0, the inequality in (3.9) is

per(W) ≤
∑

1≤j≤k

per(Wi∗,j) · wi∗,j, (3.10)

which holds with equality as this is precisely the Laplace expansion of perm(W) at row i∗. For
the base case when k = 1, the inequality in (3.9) is

per

[
B y
x> w

]
· per(B) ≤ per(B) · per

[
B y
x> w

]
(3.11)

90

which is trivially true with equality. So assume that d ≥ 1 and k ≥ 2 in any case from here on.

The Special Case W = 0: We use induction on d. For d ≥ 1, observe that when d < k, the
LHS term is equal to zero when W = 0. Because a term in the permanent of M (with W = 0) is
non-zero only if it selects d−k elements from B and k elements from each of X and Y . Assume
that d ≥ k and let F be the set of one-one functions mapping from [k] to [d]. Expanding the LHS
of (3.9) gives

per

[
B Y
X> 0

]
· per(B) = per(B) ·

∑
f,g∈F

∏
i∈[k]

xf(i),i ·
∏
j∈[k]

yg(j),j · perB(−imgg,−imgf).

(3.12)

In order to similarly expand the RHS, define Ft for t ∈ [k] as the set of functions mapping [k] to
[d] such that f ∈ Ft is one-one when restricted to [k]\{t}. Expanding the RHS of (3.9) gives∑

1≤t≤k

per

[
B Y.,−t

X>−i∗,. 0

]
· per

[
B yt
x>i∗ 0

]
= (3.13)∑

1≤t≤k

∑
f ′∈Fi∗ ,g′∈Ft

∏
i∈[k]

xf ′(i),i ·
∏
j∈[k]

yg′(j),j per[B(−imgg′,[k]−t,−imgf ′,[k]−i∗)] · per(Bg′(t),f ′(i∗)).

(3.14)

Since F ⊆ Ft for any t, we can obtain a lower bound by only summing over f ′, g′ ∈ F . By
exchanging the summations after this step gives

≥
∑

f ′,g′∈F

∏
i∈[k]

xf ′(i),i ·
∏
j∈[k]

yg′(j),j
∑

1≤t≤k

per[B(−imgg′,[k]−t,−imgf ′,[k]−i∗)] · per(Bg′(t),f ′(i∗)).

(3.15)

It is sufficient to show that

per(B) · perB(−imgg,−imgf) ≤
∑

1≤t≤k

per[B(−imgg,[k]−t,−imgf,[k]−i∗)] · per(Bg(t),f(i∗))

(3.16)

for any f, g ∈ F , i∗ ∈ [k]. Equation (3.16) is in the form of (3.9) with the substitution

B,X, Y, i∗, d, k ← B(−imgg,−imgf)
>, B(−imgg, imgf), B(imgg,−imgf)

>, f(i∗), d− k, k.
(3.17)

We can conclude this case using inductive hypothesis.

Extension to W ≥ 0: It remains to prove (3.9) for general W given that we have a proof for the
case when W = 0. The first step is to observe that both the LHS and RHS of (3.9) are multi-
linear functions with respect to the wi,j variables. For fixed B,X, Y, i∗, consider the function

h(W) :=
∑

1≤j≤k
per

[
B Y.,−j

X>−i∗,. Wi∗,j

]
·per

[
B yj
x>i∗ wi∗,j

]
−per

[
B Y
X> W

]
·per(B). Since we know

91

that h(0) ≥ 0, it suffices to show that ∂h(W)
∂wα,β

≥ 0 for every α, β ∈ [k]. Then that would imply
h(W) ≥ h(0) ≥ 0.

We proceed by induction on k. For α, β ∈ [k], α 6= i∗, the derivative ∂h(W)
∂wα,β

is equal to∑
j∈[k]\{β}

per

[
B Y ([d],−{j, β})

X([d],−{i∗, α})> W (−{i∗, α},−{j, β})

]
· per

[
B yj
x>i∗ wi∗,j

]
− per

[
B Y.,−β

X>−α,. Wα,β

]
· per(B)

(3.18)

which is non-negative using inductive hypothesis. The substitution being

B,X, Y, i∗, d, k ← B,X.,−α, Y.,−β, i
∗, d, k − 1. (3.19)

For α = i∗, β ∈ [k], the derivative ∂h(W)
∂wi∗,β

is equal to

per

[
B Y.,−β

X>−i∗,. Wi∗,β

]
· per(B)− per

[
B Y.,−β

X>−i∗,. Wi∗,β

]
· per(B) = 0. (3.20)

This finishes the proof of the lemma.

Proof of Theorem 3.1.2. We prove by induction on k. Equation (3.2) holds with equality for
k = 1 using Observation 3.3.4. For k ≥ 2,

using Lemma 3.3.5, we have

per

[
B Y
X> W

]
· per(B) ≤

∑
1≤j≤k

per

[
B Y.,−j

X>−1,. W1,j

]
· per

[
B yj
x>1 w1,j

]
. (3.21)

Using inductive hypothesis, we have

per

[
B Y.,−j

X>−1,. W1,j

]
≤ per(B) · per(W1,j +X>−1,.B

∗Y.,−j). (3.22)

substituting this gives

per

[
B Y
X> W

]
· per(B) ≤ per(B)

∑
1≤j≤k

per(W1,j +X>−1,.B
∗Y.,−j) · per

[
B yj
x>1 w1,j.

]
(3.23)

Using Observation 3.3.4 gives

≤ per(B)2
∑

1≤j≤k

per(W1,j +X>−1,.B
∗Y.,j) · (w1,j + x>1 B

∗yj) (3.24)

= per(B)2 · per(W +X>B∗Y). (3.25)

concluding the proof that

per

[
B Y
X> W

]
≤ per(B) · per(W +X>B∗Y). (3.26)

92

Two permanent inequalities

The permanent version of Lemma 3.5.1 comes with an inequality.

Lemma 3.3.6. The following inequality holds true:

per

B y1 y2

x>1 w1,1 w1,2

x>2 w2,1 w2,2

 · per(B) ≤ per

[
B y1

x>1 w1,1

]
· per

[
B y2

x>2 w2,2

]
+ per

[
B y2

x>1 w1,2

]
· per

[
B y1

x>2 w2,1

]
.

(3.27)

For any matrix B ∈ Rd×d
≥0 , vectors xi, yi ∈ Rd×1

≥0 , and scalars wi,j ≥ 0 with i, j ∈ {1, 2}.

Lemma 3.3.7. For a matrix W ∈ Rk×k
≥0 , vectors x, y ∈ Rk

≥0, and scalar b 6= 0, let C ∈ Rk×k
≥0 be

the matrix defined by ci,j := per

[
b yj
xi wi,j

]
· b−1 = wi,j +xiyj/b. The following inequality holds

true:

per

[
b y>

x W

]
· b−1 ≤ per(C) (3.28)

Both the above lemmas are special cases of Theorem 3.1.2.

3.3.4 The Permanent Process
Consider a process that is a modified version of the Gaussian elimination process. The state of
the matrix entries after the end of step t for some 1 ≤ t ≤ n− 1 is given by

a
(t+1)
i,j =

a
(t)
i,j +

a
(t)
i,ta

(t)
t,j

a
(t)
t,t

, for j ≥ t+ 1

a
(t)
i,j , Otherwise.

(3.29)

It is not easy to find a clean closed form solution for the entries of A(t) with respect to the entries
of A during the permanent process like we had for the Gaussian process in Theorem 3.2.2.
However, something weaker can be proven that is strong enough to extend Corollary 3.2.3.

Theorem 3.3.8. The diagonal entries of the matrix A(n) can be lower bounded by

a
(n)
t,t = a

(t)
t,t ≥

per(A(t)(−[t− 1],−[t− 1]))

per(A(t+1)(−[t],−[t]))
. (3.30)

for 1 ≤ t ≤ n.

Proof. Observe that it is sufficient to prove just the case for t = 1 because, the second step of the
permanent process essentially applies the first step of the permanent process on the sub-matrix
A(2)(−{1},−{1}). What we want to show is that

per(A(2)(−{1},−{1})) ≥ per(A)

a1,1

. (3.31)

This follows directly from Lemma 3.3.7.

93

Corollary 3.3.9. The permanent of A is upper bounded by the product of the diagonal entries of
A(n).

per(A) ≤
∏

1≤i≤n

a
(i)
i,i =

∏
1≤i≤n

a
(n)
i,i . (3.32)

Proof. Multiplying the lower bounds for a(n)
i,i from Theorem 3.3.8 gives the required lower

bound.

Corollary 3.3.9 provides an algorithmic upper bound for the permanent of any non-negative
matrix. In fact, any theoretical upper bound to the product of the diagonal entries of A after n
steps of the permanent process to A can be used as an upper bound for per(A).

3.3.5 Recursive Upper Bounds
Expanding the recursive definition of the permanent process from (3.29), we obtain:

a
(t)
i,j = a

(1)
i,j +

∑
1≤s<min(t,j)

a
(s)
i,s a

(s)
s,j

a
(s)
s,s

, ∀t. (3.33)

This recurrence suggests focusing on entries of the form a
(min(i,j))
i,j , since they can be expressed

in terms of similar entries with smaller indices. Substituting t = min(i, j) in (3.33) yields:

a
(min(i,j))
i,j = a

(1)
i,j +

∑
1≤s<min(i,j)

a
(s)
i,s a

(s)
s,j

a
(s)
s,s

. (3.34)

Observe that in each term a
(s)
i,s and a(s)

s,j , the index s satisfies s = min(i, s) = min(s, j) since
s < min(i, j).

Define the shorthand:
ui,j := a

(min(i,j))
i,j .

Substituting this into (3.34) gives the recurrence:

ui,j = ai,j +
∑

1≤s<min(i,j)

ui,sus,j
us,s

. (3.35)

Theorem 3.3.10. Let A ∈ Rn×n
≥0 be a non-negative matrix. If a matrix B ∈ Rn×n

≥0 satisfies:

ai,j +
∑

1≤s<min(i,j)

bi,sbs,j
as,s

≤ bi,j, (3.36)

then ui,j ≤ bi,j for all i, j ∈ [n]. Moreover, this conclusion remains valid even if the inequality
in (3.36) holds with equality.

94

Proof. We prove the claim by induction on t = min(i, j).

Base case: If t = 1, then ui,j = ai,j ≤ bi,j directly from the assumption.

Inductive step: Suppose the claim holds for all pairs (i, j) with min(i, j) < t. Consider
min(i, j) = t ≥ 2. Using the recurrence in (3.35), we have:

ui,j = ai,j +
∑

1≤s<t

ui,sus,j
us,s

(3.37)

≤ ai,j +
∑

1≤s<t

ui,sus,j
as,s

(3.38)

≤ ai,j +
∑

1≤s<t

bi,sbs,j
as,s

≤ bi,j, (3.39)

where the second inequality uses the inductive hypothesis ui,s, us,j ≤ bi,s, bs,j , and the last step
uses the assumption in (3.36).

The same argument applies if the inequality in (3.36) holds with equality. Thus, the result holds
in both the inequality and equality cases.

Corollary 3.3.11. Let A ∈ Rn×n
≥0 , and let B ∈ Rn×n

≥0 satisfy (3.36). Then:

per(A) ≤
n∏
i=1

bi,i.

Proof. From Theorem 3.3.10, we have ui,i ≤ bi,i for all i. By Theorem 3.3.8, we know that
per(A) ≤

∏n
i=1 ui,i. Combining both inequalities yields the desired bound.

3.3.6 Theoretical Upper Bounds for Structured Matrices
We now illustrate how the recursive upper bound framework can be used to derive explicit upper
bounds for permanents of structured matrices.

Recall from Theorem 3.3.10 that if two non-negative matrices A,B ∈ Rn×n
≥0 satisfy:

ai,j +
∑

1≤s<min(i,j)

bi,sbs,j
as,s

= bi,j for all i, j ∈ [n], (3.40)

then:

per(A) ≤
n∏
i=1

bi,i.

This identity suggests a simple approach: to upper bound per(A), we can construct a matrix B
satisfying (3.40) and then bound the entries of B in terms of those of A.

95

Lemma 3.3.12. Let A ∈ Rn×n
≥0 be a non-negative matrix satisfying:

(1 + ε)2

ε

min(i,j)∑
s=1

ai,sas,j
as,s

≤ ai,j (3.41)

for some ε > 0. Then:

per(A) ≤ (1 + ε)n ·
n∏
i=1

ai,i.

Proof. We aim to show that the matrix B defined via (3.40) satisfies bi,j ≤ (1+ε)ai,j . The result
will then follow from Corollary 3.3.11.

We proceed by induction on min(i, j). The base case min(i, j) = 1 is immediate since bi,j = ai,j
in this case.

For i, j ≥ 2, using the definition (3.40) and the inductive hypothesis, we have:

bi,j = ai,j +
∑

1≤s<min(i,j)

bi,sbs,j
as,s

(3.42)

≤ ai,j + (1 + ε)2
∑

1≤s<min(i,j)

ai,sas,j
as,s

(3.43)

≤ ai,j + εai,j = (1 + ε)ai,j, (3.44)

where the second step uses the inductive assumption bi,s, bs,j ≤ (1 + ε)ai,s, as,j , and the third
uses the assumption in the lemma.

This completes the inductive step and hence the proof.

3.4 Future Directions
In this work, we have extended classical determinantal concepts—such as the matrix inverse, the
Schur’s formula (which underlies or generalizes many determinantal identities), and the Gaussian
elimination process—to the setting of permanents of non-negative matrices. These analogues
form a new and mathematically intriguing framework for reasoning about permanents, rooted in
structured, algebraic identities rather than combinatorial or probabilistic heuristics.

Beyond their intrinsic interest, we use these tools to derive a deterministically computable upper
bound on the permanent. While this bound can be loose on certain matrix families, we show
that it performs well when the matrix satisfies a form of diagonal dominance. This opens several
promising directions for future research:

• Characterizing Favorable Matrix Classes: Studying the behavior of the Permanent Pro-
cess on specific, structured matrix families—such as stochastic, Toeplitz, or adjacency
matrices of certain graph classes—to identify where the bound is tightest.

96

• Hybrid Approaches: Combining the deterministic, algebraic framework presented here
with established probabilistic or combinatorial techniques to create new, more powerful
hybrid approximation algorithms.

• Improved Upper Bounds: There may be potential to sharpen or specialize the upper
bounds derived here for certain matrix types, especially by refining the permanental Schur’s
formula machinery.

• Empirical Validation: Implementing and benchmarking the permanent process across
diverse matrix types could offer insight into its practical viability and guide further theo-
retical improvements.

3.5 Appendix for Chapter 3
Proof of Theorem 3.2.2. We prove using induction on t. The base case t = 1 is trivial. For t > 1,
it is sufficient to prove the theorem for j ≥ t because for smaller j, the entry is determined at a
smaller time step. The inductive step is to show that

detA([t− 1] + {i}, [t− 1] + {j})
detA([t− 1], [t− 1])

=
detA([t− 2] + {i}, [t− 2] + {j})

detA([t− 2], [t− 2])
(3.45)

−
detA([t−2]+{i},[t−1])

detA([t−2],[t−2])
· detA([t−1],[t−2]+{j})

detA([t−2],[t−2])

detA([t−1],[t−1])
detA([t−2],[t−2])

. (3.46)

Simplifying gives

detA([t−1]+{i}, [t−1]+{j}) · detA([t−2], [t−2]) = detA([t−2]+{i}, [t−2]+{j}) · detA([t−1], [t−1])
(3.47)

− detA([t−2]+{i}, [t−1]) · detA([t−1], [t−2]+{j}).
(3.48)

This is exactly the identity in Lemma 3.5.1 with

B = A([t− 2], [t− 2]); y1 = A([t− 2], {t− 1}), y2 = A([t− 2], {j});
x>1 = A({t− 1}, [t− 2]), x>2 = A({i}, [t− 2]); w = A({t− 1, i}, {t− 1, j}).

Proof of Corollary 3.2.3. Using Theorem 3.2.2, we have a(n)
i,i = detA([i], [i])/ detA([i− 1], [i−

1]). Substituting this gives
∏

1≤i≤n a
(n)
i,i = detA([n], [n]) = det(A).

Lemma 3.5.1. The following equality holds true:∣∣∣∣∣∣
B y1 y2

x>1 w1,1 w1,2

x>2 w2,1 w2,2

∣∣∣∣∣∣ · |B| =
∣∣∣∣B y1

x>1 w1,1

∣∣∣∣ · ∣∣∣∣B y2

x>2 w2,2

∣∣∣∣− ∣∣∣∣B y2

x>1 w1,2

∣∣∣∣ · ∣∣∣∣B y1

x>2 w2,1

∣∣∣∣ (3.49)

For any matrix B ∈ Rd×d, vectors xi, yi ∈ Rd×1, and scalars wi,j with i, j ∈ {1, 2}.

97

Proof. Assume that |B| 6= 0. Using Schur’s formula (see Theorem 3.2.4), we have∣∣∣∣∣∣
B y1 y2

x>1 w1,1 w1,2

x>2 w2,1 w2,2

∣∣∣∣∣∣ = |B| · det

w1,1 − x>1 B−1y1 w1,2 − x>1 B−1y2

w2,1 − x>2 B−1y1 w2,2 − x>2 B−1y2

 (3.50)

and
∣∣∣∣B yj
x>i wi,j

∣∣∣∣ = |B| · (wi,j − x>i B−1yj) for i, j ∈ {1, 2}. Substituting these and factoring out

|B|2 from both LHS and RHS of Equation (3.49), gives

det

w1,1 − x>1 B−1y1 w1,2 − x>1 B−1y2

w2,1 − x>2 B−1y1 w2,2 − x>2 B−1y2

 = (w1,1 − x>1 B−1y1)(w2,2 − x>2 B−1y2) (3.51)

− (w1,2 − x>1 B−1y2)(w2,1 − x>2 B−1y1) (3.52)

which is true. The identity in Equation (3.49) should hold true even when |B| = 0 using conti-
nuity of the determinants with respect to the entries of the matrix.

98

Part II

Fairness

99

Chapter 4

Nash Social Welfare Maximization

4.1 Introduction
Fair and efficient division of resources among agents is a fundamental problem arising in various
fields [19, 31, 32, 160, 161, 190]. In the most general setup, we are given a set of m indivisible
items G, and a set of n agents, A. Each agent has a valuation function vi : 2G → R≥0 on subsets
of the items, so that if agent i ∈ A were assigned all the items in S ⊆ G, the value they receive
would be vi(S). The goal is to find an assignment of items to players, σ : G → A, to maximize
some function of the agents’ valuations.

While there are many social welfare functions which can be used to evaluate the efficacy of an
assignment of goods to the agents, the Nash Social Welfare function is well-known to interpolate
between fairness and overall utility. It asks that we maximize the geometric mean of the agents’
valuations: ∏

i∈A

vi(σ
−1(i)),

where σ−1(i) = {j ∈ G : σ(j) = i} is the set of items assigned to agent i. The unweighted
Nash Social Welfare function first appeared as the solution to an arbitration scheme proposed by
Nash for two-person bargaining games and was later generalized to multiple players [115, 144].
Since then, it has been widely used in numerous fields to model resource allocation problems.
An attractive feature of the objective is that it is invariant under scaling by any of the agent’s
valuations, and therefore, each agent can specify its valuation in its own units (see [43] for a
detailed treatment). While the theory of Nash Social Welfare objective was initially developed
for divisible items, more recently, it has been applied in the context of indivisible items. We
refer the reader to [42] for a comprehensive overview of the problem in the latter setting. Indeed,
optimizing the Nash Social Welfare objective also implies notions of fairness, such as envy-free
allocation in an approximate sense [20, 42].

In an instance of the weighted Nash Social Welfare problem, every agent i ∈ A has a weight
wi ≥ 0 such that

∑
i∈Awi = 1. The goal is to find an assignment of items, σ : G → A, to

101

maximize the following welfare function:∏
i∈A

(
vi(σ

−1(i)
)wi . (4.1)

In this work, we will consider the case of additive valuations, for which there are numbers vij ≥ 0
for each i ∈ A and j ∈ G such that vi(S) =

∑
j∈S vij . For ease of notation, we will work with

the log objective and denote

NSW(σ) =
∑
i∈A

wi log

 ∑
j∈σ−1(i)

vij

 . (4.2)

Let OPT = maxσ:G→ANSW(σ) denote the optimal log objective. The case where wi = 1
n

for
each i ∈ A is the much-studied “symmetric” or unweighted Nash Social Welfare problem.

The Nash Social Welfare function with weights (also referred to as asymmetric or non-symmetric
Nash Social Welfare) was first studied in the seventies [100, 112] in the context of two-person
bargaining games. For example, in the bargaining context, it allows different agents to have
different weights. Due to this flexibility, problems in many diverse domains can be modeled
using the weighted objective, including bargaining theory [43, 123], water resource allocation
[82, 106], and climate agreements [191]. In the context of indivisible goods, the study of this
problem has been much more recent [85, 86, 87]. There have also been attempts to extend the
ideas of envy-freeness to the weighted setting [44, 180], where the situation is more complicated
than in the unweighted setting. There are multiple possible generalizations, and maximizing the
weighted Nash Social Welfare does not always guarantee the same envy-freeness conditions. In
this work, we aim to shed light on the weighted Nash Social Welfare problem, mainly focusing
on mathematical programming relaxations for the problem.

4.1.1 Preliminaries and Notation
In order to state the key results of this work, we need the following preliminaries and related
notation.

KL-Divergence. For two probability distributions p,q over the same discrete domain X , the
KL-divergence between p and q is defined as

DKL(p ‖q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
.

It is well-known, via Gibbs’s inequality, that the KL-divergence between two distributions is
non-negative and is zero if and only if p and q are identical.

Moreover, if u is the uniform distribution on X and p is an arbitrary distribution on the same
domain, then

DKL(p ‖u) = log |X | −
∑
x∈X

p(x) log
1

p(x)
.

102

Feasibility Polytope. Consider a complete bipartite graph G = (G ∪ A, E) where E contains
an edge (i, j) for each i ∈ A and j ∈ G. LetM(A) denote the set of all matchings in G of size
|A|, i.e., matchings which have an edge incident to every vertex inA. The convex hull ofM(A),
denoted by P(A,G), is defined by the following polytope.

Definition 4.1.1 (Feasibility Polytope). For a set of m indivisible items, G, and a set of n agents,
A, the feasibility polytope, denoted by P(A,G), is defined as

P(A,G) :=

{
b ∈ R|A|×|G|≥0 :

∑
j∈G

bij = 1 ∀i ∈ A ,
∑
i∈A

bij ≤ 1 ∀j ∈ G

}
.

The constraint
∑

j∈G bij = 1 is called the Agent constraint for agent i, and the constraint∑
i∈A bij ≤ 1 is referred to as the Item constraint for item j.

4.1.2 Our Results and Contributions
Our main contributions are (1) to show equivalence between different mathematical relaxations
for the Nash Social Welfare problem (see Appendix 4.6.2), (2) generalize these formulations to
give new mathematical formulations for the weighted NSW and finally (3) use the equivalence
and generalize the algorithms for symmetric case to obtain improved approximation algorithms
for weighted NSW.

Equivalence of Convex Programs

Our first result relates two previous convex programming relaxations for the unweighted Nash
Social Welfare problem presented in [61] and [7].

Building on the algorithm of [60], [61] introduced the following relaxation for the unweighted
Nash Social Welfare problem.

max
b

1

n

∑
i∈A

∑
j∈G

bij log (vij)−
1

n

∑
j∈G

(∑
i∈A

bij

)
log

(∑
i∈A

bij

)
(CVX-Unweighted)

s.t.
∑
j

bij = 1 ∀i ∈ A∑
i

bij ≤ 1 ∀j ∈ G

bij ≥ 0 ∀(i, j) ∈ A× G.

They showed that (CVX-Unweighted) is a convex relaxation of the Nash Social Welfare objec-
tive, and the prices used by the algorithm presented in [60] can be obtained as dual variables
of (CVX-Unweighted). Interestingly, the convex relaxation is not in terms of the assignment
variables. Indeed, given an optimal assignment σ : G → A, the corresponding solution to

103

(CVX-Unweighted) will set the variables bij as follows:

bij =

{
vij∑

k∈σ−1(i) vik
if σ(j) = i

0 otherwise.
(4.3)

One can verify that b satisfies all the constraints in (CVX-Unweighted), and its objective value
is equal to the logarithm of the geometric mean of the valuations.

A different convex programming relaxation, (LogConcave-Unweighted), for unweighted NSW
was presented by Anari et al. [7]. They showed that the objective of (LogConcave-Unweighted)
is a log-concave function in x and convex in log y and used inequalities about stable polynomials
to give an e-approximation for unweighted NSW.

max
x≥0

inf
y>0

1

n

∑
i∈A

log

(∑
j∈G

xij vij yj

)
(LogConcave-Unweighted)

s.t.
∑
i∈A

xij = 1 ∀j ∈ G

∏
j∈S

yj ≥ 1 ∀S ∈
(
G
n

)
.

Here,
(G
n

)
denotes the collection of subsets of G of size n, where n = |A|.

On the surface, (LogConcave-Unweighted) and (CVX-Unweighted), and their corresponding
rounding algorithms are quite different: [61] uses intuition from economics and market equilib-
rium to both arrive at (CVX-Unweighted) and also to round it, while [7] uses the properties of
log-concave polynomials to round (LogConcave-Unweighted). However, our next result shows
that these two convex programs indeed optimize the same objective.

Theorem 4.1.2. For any instance (A,G,v) of unweighted Nash Social Welfare, the optimal
values of (LogConcave-Unweighted) and (CVX-Unweighted) are the same.

It is easy to transfer an optimal solution of one program to a solution to the other by setting

bij =
xijvij∑
j′ xij′vij′

or xij =
bij∑
i′ bij

,

but verifying that the objective value remains the same uses the optimality conditions. These
transformations do not necessarily preserve objective value for non-optimal fractional solutions.
In Appendix 4.6.2, we more systematically show how one program could be derived from the
other, by using a sequence of variable changes and convex duality to show that the programs are
equivalent.

New Relaxations in the Weighted Case

Besides providing a novel connection between two very different approaches to the unweighted
problem, Theorem 4.1.2 is also vital to derive our main algorithm for weighted Nash Social Wel-
fare. Independently generalizing either of these approaches to the weighted case is challenging:

104

[60, 61] use intuition from economics to arrive at (CVX-Unweighted), and these concepts do not
generalize to the weighted case. On the other hand, there is a natural convex generalization of
(LogConcave-Unweighted) for the weighted case which is still log-concave, but the objective is
no longer stable, and therefore the machinery introduced in [7] cannot be used to analyze it.

Our second contribution is to propose new relaxations for the weighted version of the Nash Social
Welfare problem. By replacing the uniform weights in (CVX-Unweighted) with the weights wi
we get the first generalization.

max
b

∑
i∈A

∑
j∈G

wi bij log vij −
∑
j∈G

∑
i∈A

wi bij log

(∑
i′∈A

bi′j

)
(NCVX-Weighted)

s.t.
∑
j∈G

bij = 1 ∀i ∈ A∑
i∈A

bij ≤ 1 ∀j ∈ G

bij ≥ 0 ∀(i, j) ∈ A× G

Unfortunately, the objective function to this program is not convex when the weights are not
uniform. As an alternative, we can also generalize (LogConcave-Unweighted) as follows

max
x≥0

min
y>0

∑
i∈A

wi log

(∑
j∈G

xij vij y
1/wi
j

)
(LogConcave-Weighted)

s.t.
∑
i∈A

xij = 1 ∀j ∈ G

∏
j∈S

yj ≥ 1 ∀S ∈
(
G
n

)
.

This program is still convex in the weighted case and by repeating the same transformations used
to prove Theorem 4.1.2 we can start from (LogConcave-Weighted) and get an equivalent convex
program using the b variables.

max
b

∑
i∈A

∑
j∈G

wi bij log vij −
∑
j∈G

∑
i∈A

wi bij log

(∑
i′∈A

wi bi′j

)
+
∑
i∈A

wi logwi

(CVX-Weighted)

s.t.
∑
j∈G

bij = 1 ∀i ∈ A∑
i∈A

bij ≤ 1 ∀j ∈ G

bij ≥ 0 ∀(i, j) ∈ A× G

By setting b to be the same value as (4.3), it is natural to see that both programs are indeed
relaxations.

105

Theorem 4.1.3. (NCVX-Weighted), (LogConcave-Weighted), and (CVX-Weighted) are relax-
ations of the weighted Nash Social Welfare problem.

Moreover, when the weights are symmetric, i.e.,wi = 1/n for all i ∈ A, the programs (CVX-Weighted)
and (NCVX-Weighted) are equivalent to the convex program (CVX-Unweighted).

We formally prove Theorem 4.1.3 in Section 4.2, and we show that (CVX-Weighted) is equiva-
lent to (LogConcave-Weighted) in Appendix 4.6.2. Both (NCVX-Weighted) and (CVX-Weighted)
will both be useful in constructing our approximation algorithm.

Note that (NCVX-Weighted) and (CVX-Weighted) have the same constraints and feasible region,
P(A,G), and the only difference is in the objective functions. We define

fncvx(b) :=
∑
i∈A

∑
j∈G

wi bij log vij −
∑
j∈G

∑
i∈A

wi bij log

(∑
i′∈A

bi′j

)
, and

fcvx(b) :=
∑
i∈A

∑
j∈G

wi bij log vij −
∑
j∈G

∑
i∈A

wi bij log

(∑
i′∈A

wi′ bi′j

)
+
∑
i∈A

wi logwi.

With these definitions we can compactly write the two different formulations

max
b

fcvx(b)

s.t. b ∈ P(A,G)

(CVX-Weighted)

max
b

fncvx(b)

s.t. b ∈ P(A,G)

(NCVX-Weighted)

We can also relate the objective value of the three programs.

Lemma 4.1.4. The two programs (CVX-Weighted) and (LogConcave-Weighted) have the same
objective value.

Moreover, for any any feasible b ∈ P(A,G) and weights w1, . . . , wn > 0 with
∑

i∈Awi = 1,

0 ≤ fcvx(b)− fncvx(b) ≤ DKL(w ‖u) = log n−
∑
i∈A

wi log
1

wi
,

where u denotes the uniform distribution, and w is the vector of weights.

Rounding Algorithm.

Since (CVX-Weighted) is structurally similar to (CVX-Unweighted) we may hope to apply the
rounding algorithm from [61], but unfortunately (CVX-Weighted) lacks a crucial property: op-
timal solutions of (CVX-Weighted) need not be acyclic. Furthermore, the integrality gap of

106

(CVX-Weighted) is non-trivial even in the case when there are exactly n items; if there are ex-
actly n items and all valuations are 1, then setting bij = 1

n
for all i, j gives an objective value

of DKL(w ‖u), while the integral optimal value is zero. To circumvent these issues, we use
(NCVX-Weighted) as an intermediate step in our rounding algorithm. This non-convex program
has the desired property: given a feasible point b, one can efficiently find another point b̃ without
decreasing the objective fncvx such that the graph formed by support of b̃ is a forest, as stated in
the following lemma. We formally define the support graphs in Definition 4.3.1.

Lemma 4.1.5. Let b be any feasible point in P(A,G). Then there exists an acyclic solution,
bforest, in the support of b such that

fncvx(bforest) ≥ fncvx(b).

Moreover, such a solution can be found in time polynomial in |A| and |G|.

Next, we establish that one can efficiently round any feasible point whose support graph is a
forest to an integral assignment.

Theorem 4.1.6. For a Nash Social Welfare instance (A,G,v,w), given a vector b ∈ P(A,G)
such that the support of b is a forest, there exists a deterministic polynomial time algorithm
(Algorithm 6) which returns an assignment σ : G → A such that

NSW(σ) ≥ fcvx(b)−DKL(w ‖u)− 2 log 2− 1

2e
.

By combining Lemma 4.1.5, Theorem 4.1.6, and Lemma 4.1.4, we obtain an approximation
algorithm with approximation ratio

exp

(
2 log 2 +

1

2e
+ 2DKL(w ‖u)

)
≈ 4.81 · exp

(
2 log n− 2

n∑
i=1

wi log
1

wi

)
for the weighted Nash Social Welfare problem with additive valuations. When all the weights
are the same, this gives a constant factor approximation.

Theorem 1.3.1. Let (A,G,v,w) be an instance of the weighted Nash Social Welfare problem
with

∑
i∈Awi = 1 and |A| = n agents. There exists a polynomial time algorithm (Algorithm 5)

that, given (A,G,v,w), returns an assignment σ : G → A such that

NSW(σ) ≥ OPT− 2 log 2− 1

2e
− 2 ·DKL(w ‖u),

where OPT is the optimal log-objective for the instance andDKL(w‖u) = log n−
∑

i∈Awi log 1
wi

.

Algorithm 5 requires solving the convex program CVX-Weighted and for this reason is not a
strongly polynomial-time algorithm. This is in contrast to the techniques used in the unweighted
case, where it is possible to calculate dual variables in strongly polynomial time [150].

We remark that our algorithm for rounding (NCVX-Weighted) (Algorithm 6) is the same as
that in [60]. However, our analysis is quite different. Rather than using ideas from market

107

interpretations of the problem, we utilize properties of (CVX-Weighted) and (NCVX-Weighted),
which generalize to both the unweighted and the weighted versions of the problem.

We call P(A,G) the feasibility polytope of (A,G) and will refer to points in P(A,G) as either
feasible points or solutions.

4.1.3 Related Work

The problem of finding the allocation that maximizes the Nash Social Welfare objective is an
NP-hard problem, as was proven by [146]. Additionally, [125] showed that finding such an allo-
cation is also APX-hard. From an algorithmic perspective, the first constant factor approximation
for the unweighted version was provided in [60] using analogies from market equilibrium. [61]
provided an improved analysis of the algorithm from [60] and introduced a convex programming
relaxation. Using an entirely different approach, [7] also provided a constant factor approx-
imation for the unweighted variant, where their analysis employed the theory of log-concave
polynomials. The best-known approximation factor with linear valuations of 1.45 is due to [20],
where they provide a pseudo-polynomial-time algorithm that finds an allocation that is envy-free
up to one good and also Pareto efficient. Their algorithm is entirely combinatorial and runs in
polynomial time when the valuations are bounded.

Another setting of interest is when the valuation of each agent is submodular instead of additive.
For instance, [86] gave a constant factor approximation algorithm for maximizing the unweighted
Nash Social Welfare function when the agents’ valuations are Rado, a special subclass of sub-
modular functions. In the weighted case, the approximation factor of this algorithm depends
on the ratio of the maximum weight to the minimum weight. A constant-factor approximation
algorithm for the unweighted case with submodular valuations was provided in prior work [127].
More recently, [87] gave a local search-based algorithm to obtain an O(nwmax)-approximation
for the weighted case and a 4-approximation for the unweighted case with submodular valua-
tions. Note that this O(nwmax)-approximation factor was also the previously best-known ap-
proximation for the weighted case, even when considering additive valuations.

Observe that the KL-divergence termDKL(w ‖u) =
(

log n−
∑

i∈Awi log 1
wi

)
in Theorem 1.3.1

is always upper bounded by log(nwmax), which is exactly the guarantee of previous work [87].
In many settings, the term 2 ·DKL(w ‖u) can be significantly smaller than nwmax. For example,
consider the setting where w1 = 1

logn
and wi = 1

n−1
(1 − 1

logn
) for i = 2, . . . , n, i.e., one agent

has a significantly higher weight than the others. Then

DKL(w ‖u) =
1

log n
log

(
n

log n

)
+

(
1− 1

log n

)
log

(
n

n− 1

(
1− 1

log n

))
≤ 1 + log

(
n

n− 1

)
≤ 2.

In this case, our results imply an O(1)-approximation, while previous results imply an O(n
logn

)-
approximation.

108

Following the initial release of this work there has been substantial progress on approximation
algorithms for the weighted Nash Social Welfare for the case of additive [77] and more general
submodular valuations [78]. In both cases they obtained a constant factor approximation algo-
rithm. Their approach is based on rounding a fractional solution to the configuration formulation
of the problem.

4.1.4 Structure
The proof of Theorem 4.1.2 follows straightforwardly from applying convex duality and making
a couple changes of variables. We defer the proof to Appendix 4.6.2 for those who are interested
in the details. In Section 4.2 we show that the generalized mathematical programs are relaxations
for the weighted Nash Social Welfare problem. A summary of the approximation algorithm and
its analysis is given in Section 4.3. This should make it clear why we have arrived at the given
approximation factor. Most of the technical work is contained in Section 4.4, in which we analyse
the rounding algorithm on tree solutions. We end with conclusions and a few open problems in
Section 4.5.

4.2 Relaxations for Weighted Nash Social Welfare
In this section we verify that the programs for weighted Nash Social Welfare which we gave in
the introduction are indeed relaxations.

Lemma 4.2.1. The two programs (NCVX-Weighted) and (CVX-Weighted) are relaxations of
the weighted Nash Social Welfare problem.

Moreover, when the weights are symmetric, i.e.,wi = 1/n for all i ∈ A, the programs (CVX-Weighted)
and (NCVX-Weighted) are equivalent to the convex program (CVX-Unweighted).

Proof. Let σ : G → A be the optimal assignment for the instance, (A,G,v,w). For each agent
i ∈ A, define Vi =

∑
j∈σ−1(i) vij . Using σ, we define a vector b ∈ P(A,G) as

bij :=

{
vij
Vi

if σ(j) = i

0 otherwise.

It is easy to verify that
∑

i∈A bij ≤ 1 for each j ∈ G and
∑

i∈G bij = 1 for each i ∈ A. We will
now show that fcvx(b) and fncvx(b) are both equal to NSW(σ).

fcvx(b) =
∑
j∈G

wσ(j)vσ(j)j

Vσ(j)

log

(
Vσ(j)

wσ(j)

)
+
∑
i∈A

wi logwi

=
∑
i∈A

wi
∑

j∈σ−1(i)

vij
Vi

log

(
Vi
wi

)
+
∑
i∈A

wi logwi

(i)
=
∑
i∈A

wi log

(
Vi
wi

)
+
∑
i∈A

wi logwi =
∑
i∈A

wi log Vi = NSW(σ) ,

109

where (i) follows from definition of Vi.

Similarly, we have

fncvx(b) =
∑
j∈G

wσ(j)vσ(j)j

Vσ(j)

log vσ(j)j −
∑
j∈G

wσ(j)vσ(j)j

Vσ(j)

log

(
vσ(j)j

Vσ(j)

)
=
∑
j∈G

wσ(j)vσ(j)j

Vσ(j)

log Vσ(j) =
∑
i∈A

wi
∑

j∈σ−1(i)

vij
Vi

log Vi

=
∑
i∈A

wi log Vi = NSW(σ).

For the second claim in the lemma, when wi = 1/n for each i, for any b ∈ P(A,G), we have

fcvx(b) =
1

n

∑
i∈A

∑
j∈G

bij log vij −
1

n

∑
i∈A

∑
j∈G

bij log

(∑
i′∈A bi′j

n

)
− log n

=
1

n

∑
i∈A

∑
j∈G

bij log vij −
1

n

∑
i∈A

∑
j∈G

bij log

(∑
i′∈A

bi′j

)

+
1

n

∑
i∈A

∑
j∈G

bij log n− log n

=
1

n

∑
i∈A

∑
j∈G

bij log vij −
1

n

∑
i∈A

∑
j∈G

bij log

(∑
i′∈A

bi′j

)
,

where we used
∑

j∈G bij = 1 for every i in the last inequality. Similarly, substituting wi = 1/n
for each i in fncvx completes the proof.

For the sake of completeness we will now verify that (LogConcave-Weighted) is also a relax-
ation. This program is not used in our algorithm, but in Appendix 4.6.2 we use it to derive
(CVX-Weighted). Our proof relies on the same key inequality used in [7], which we repeat here
for completeness.

Lemma 4.2.2. Let σ : G → A be an assignment, and y ∈ RG a non-negative vector such that∏
j∈S yj ≥ 1 for all S ∈

(G
n

)
. If Si := {j ∈ G : σ(j) = 1} then

∑
i∈A

log

(∑
j∈Si

vijyj

)
≥
∑
i∈A

log

(∑
j∈Si

vij

)

Proof. We will expand the left-hand sum inside the logarithm. Let

S =

{
S ∈

(
G
n

)
: |S ∩ Si| = 1∀i ∈ A

}
110

denote the collection of transversals across the agents’ assignments. Then

∑
i∈A

log

(∑
j∈Si

vij yj

)
= log

(∑
S∈S

(∏
j∈S

yj

)∏
j∈S

vσ(j)j

)

≥ log

(∑
S∈S

∏
j∈S

vσ(j)j

)
=
∑
i∈A

log

(∑
j∈Si

vij

)
.

The only inequality uses the fact that
∏

j∈S yj ≥ 1 term-by-term in the sum.

Lemma 4.2.3. The program (LogConcave-Weighted) is a relaxation for the weighted Nash So-
cial Welfare problem.

Proof. Let σ : G → A be the optimal assignment for the instance, (A,G,v,w). For each agent
i ∈ A, define Vi =

∑
j∈σ−1(i) vij . Define a vector x as follows

xij =

{
1 if σ(j) = i
0 otherwise .

It is easy to see that
∑

i∈A xij = 1 for all j ∈ G. If we set yj = 1 for all j ∈ G, then

∑
i∈A

wi log

(∑
j∈G

xij vij y
1/wi
j

)
=
∑
i∈A

wi log Vi = NSW(σ).

Now we will show that the infimum is no smaller.

For each i, let Si = {j ∈ G : xij = 1} be the allocation corresponding to x. Then

∑
i∈A

wi log

(∑
j∈G

xij vij y
1/wi
j

)
−
∑
i∈A

wi log

(∑
j∈G

xij vij

)

=
∑
i∈A

wi log

∑j∈Si vij y
1/wi
j∑

j∈Si
vij

 . (4.4)

We will show that the right-hand side is non-negative.

Now for positive reals c1, . . . , cm with
m∑
j=1

cj = 1, and 0 ≤ p ≤ q, the weighted power mean

inequality states that for any z ∈ Rm
≥0,(

m∑
j=1

cjz
p
j

)1/p

≤

(
m∑
j=1

cjz
q
j

)1/q

. (4.5)

This inequality follows from Jensen’s inequality.

111

For each i ∈ A, define qi = 1
wi

and c(i)
j =

vij∑
j∈Si

vij
for every j ∈ Si. Since qi = 1

wi
≥ 1, using

Equation 4.5, we get

wi log

∑j∈Si vij y
1/wi
j∑

j∈Si
vij

 ≥ log

∑j∈Si vij yj∑
j∈Si

vij


for each agent i. Summing this inequality over all agents and applying Lemma 4.2.2 gives

∑
i∈A

wi log

∑j∈Si vij y
1/wi
j∑

j∈Si
vij

 ≥∑
i∈A

log

∑j∈Si vij yj∑
j∈Si

vij

 ≥ 0.

Finally, substituting this in (4.4) gives∑
i∈A

wi log

(∑
j∈G

xij vij y
1/wi
j

)
≥
∑
i∈A

wi log

(∑
j∈G

xijvij

)
.

The proof that (CVX-Weighted) and (LogConcave-Weighted) are equivalent is deferred to Ap-
pendix 4.6.2, and follows from a sequence of convex duals and changes of variables. The re-
lationship between the objectives of (CVX-Weighted) and (NCVX-Weighted) is summarized in
the following lemma.

Lemma 4.2.4. For any any feasible b and weights w1, . . . , wn > 0 with
∑

i∈Awi = 1,

0 ≤ fcvx(b)− fncvx(b) ≤ DKL(w ‖u) = log n−
∑
i∈A

wi log
1

wi
.

Proof. We will show that

fcvx(b)− fncvx(b) = DKL(w ‖u)−DKL(µ ‖ θ) ,

where µ, θ are two probability distributions on G given by

µ(j) =
∑
i∈A

wi bij and θ(j) =

∑
i∈A bij

n
.

Using
∑

i∈Awi = 1 and
∑

j∈G bij = 1 for each i ∈ A, one can verify that
∑

j∈G µ(j) = 1 =∑
j∈G θ(j).

Expanding the difference between the functions gives

fcvx(b)− fncvx(b) =
∑
i∈A

wi logwi −
∑
j∈G

∑
i∈A

wi bij log

(∑
i′∈A

wi′ bi′j

)

112

+
∑
i,j

wi bij log

(∑
i′∈A

bi′j

)

=
∑
i∈A

wi logwi −
∑
j∈G

∑
i∈A

wi bij log

(∑
i′∈Awi′ bi′j∑
i′∈A bi′j

)
=
∑
i∈A

wi logwi +
∑
j∈G

∑
i∈A

wi bij log n−
∑
j∈G

µ(j) log

(
µ(j)

θ(j)

)
=
∑
i∈A

wi log(nwi)−
∑
j∈G

µ(j) log

(
µ(j)

θ(j)

)
(using

∑
j bij = 1)

= DKL(w ‖u)−DKL(µ ‖ θ).

As DKL(µ, θ) ≥ 0, the above equation implies

fcvx(b)− fncvx(b) ≤ DKL(w ‖u).

For the lower bound, it suffices to show that DKL(µ ‖ θ) ≤ DKL(w ‖u). To see this, we expand
the definition:

DKL(µ ‖ θ) =
∑
j∈G

(∑
i∈A

wibij

)
log

(
n
∑

i∈Awibij∑
i∈A bij

)

= log(n) +
∑
j∈G

(∑
i∈A

wibij

)
log

(∑
i∈Awibij∑
i∈A bij

)

= log(n) +
∑
j∈G

(∑
i∈A

bij

)(∑
i∈A

bij∑
i∈A bij

wi

)
log

(∑
i∈A

bij∑
i∈A bij

wi

)

≤ log(n) +
∑
j∈G

(∑
i∈A

bij

)(∑
i∈A

bij∑
i∈A bij

)
wi log(wi)

= log(n) +
∑
j∈A

wi log(wi)
∑
j∈G

bij

= log(n) +
∑
i∈A

wi log(wi) = DKL(w ‖u).

Here, the only inequality uses the convexity of x log(x), and the last equality follows from the
feasibility of b.

4.3 Approximation Algorithm
Before describing our algorithm, we need the following definitions.

113

Definition 4.3.1 (Support Graph). For a vector b ∈ P(A,G), the support graph of b, denoted
by Gsupp(b), is a bipartite graph with vertex set A ∪ G. For any i ∈ A and j ∈ G, the edge (i, j)
belongs to the edge set of G if and only if bij > 0.

Definition 4.3.2 (Acyclic Solution). A vector b ∈ P(A,G) is called an acyclic solution if the
support graph of b, Gsupp(b), does not contain any cycles.

For ease of notation, given any feasible point b ∈ P(A,G), we use vector q ∈ R|G| to denote the
projection of b to G, i.e.,

qj :=
∑
i∈A

bij

for each j ∈ G. Since q is completely defined by b, with abuse of notation, we will interchange-
ably useP(A,G) to denote feasible vectors b as well as (b,q). Similarly, we will use fncvx(b,q)
and fcvx(b,q) to also denote the objective fncvx(b) and fcvx(b), respectively. With a slight abuse
of notation, we define

fncvx(b,q) :=
∑
i∈A

∑
j∈G

wi bij log vij −
∑
i∈A

∑
j∈G

wi bij log qj.

for any b ∈ P(A,G) and its projection q ∈ R|G|.

Our main algorithm, Algorithm 5, begins by finding the optimal solution b to the convex pro-
gram (CVX-Weighted). It then constructs another feasible point, bforest, in support of b such that
the support graph of bforest is a forest and fncvx at bforest is at least fncvx at b. In the final step,
the algorithm rounds bforest to an integral solution using Algorithm 6. Theorem 4.1.6 establishes
a bound on the rounding error incurred during Algorithm 6.

Algorithm 5 Approximation Algorithm for Weighted Nash Social Welfare

Require: NSW instance (A,G,v,w)
1: b← optimal solution of (CVX-Weighted)
2: q← vector in R|G| with qj =

∑
i∈A bij

3: (bforest,qforest)← acyclic solution in support of b such that fncvx(bforest) ≥ fncvx(b)
4: σ ← output of Algorithm 6 with input (A,G,v,w,bforest,qforest)

Ensure: σ

Lemma 4.1.5, which we re-state below for the reader’s convenience, guarantees the existence
of bforest, ensuring that the algorithm is well-defined. It is worth mentioning that for the un-
weighted case, the existence of an acyclic optimum was utilized by [60, 61] for the convex
program (CVX-Unweighted). In the weighted setting, this structural property is not inherited by
the convex program (CVX-Weighted) but by the non-convex program (NCVX-Weighted).

Lemma 4.1.5. Let b be any feasible point in P(A,G). Then there exists an acyclic solution,
bforest, in the support of b such that

fncvx(bforest) ≥ fncvx(b).

Moreover, such a solution can be found in time polynomial in |A| and |G|.

114

Proof. Let Gsupp(b̄) contain a cycle (i0, j0, i1, . . . , j`−1, i`) with i0 = i`, where ix ∈ A and
jy ∈ G. The main idea is to modify the variables b̄ on this cycle while ensuring the value of
q̄ does not change. If q̄ is fixed, then fncvx(·, q̄) is linear in the input, and as a result, we can
cancel the cycle by considering the following vector. Define δ ∈ R|A|×|G| with δixjx := 1 and
δix+1jx := −1 for x ∈ {0, . . . , `− 1}, and δij := 0 otherwise.

Note that
∑

i∈A δij = 0 for any item j. As a result, for each j ∈ G,∑
i∈A

(
b̄ij + εδij

)
=
∑
i∈A

b̄ij = q̄j.

Therefore, the change in fncvx is given by

fncvx(b̄ + εδ, q̄)− fncvx(b̄, q̄) =
∑
i∈A

∑
j∈G

εwi δij log vij −
∑
i∈A

∑
j∈G

εwi δij log q̄j

:= ε h(δ, q̄).

Note that h(δ, q̄) is a linear function in δ. So, if h(δ, q̄) > 0, then setting ε = maxx bix+1jx

ensures that fncvx(b̄ + εδ, q̄) ≥ fncvx(b̄, q̄), and b̄ + εδ ∈ P(A,G). In addition, the number of
cycles in Gsupp(b̄ + εδ) is strictly less than the number of cycles in Gsupp(b̄).

Similarly, if h(δ, q̄) ≤ 0, setting ε = −maxx b̄ixjx gives the same guarantees. Iterating this cycle
canceling process until the support contains no cycles leads to the required solution.

Finally, we can use Lemma 4.2.4 to bound the difference between fcvx and fncvx.

By combining Lemma 4.1.5 with Lemma 4.2.4, we obtain the following corollary.

Corollary 4.3.3. Let b be any feasible point in P(A,G). Then, there exists an acyclic solution,
bforest, in the support of b such that

fcvx(bforest) ≥ fcvx(b)−DKL(w ‖u).

Moreover, such a bforest can be found in time polynomial in |A| and |G|.

Proof. Given a feasible point b̄ ∈ P(A,G), Lemma 4.2.4 implies that

fcvx(b̄)−DKL(w ‖u) ≤ fncvx(b̄).

Now, we apply Lemma 4.1.5 to get an acyclic solution bforest, in the support of b such that

fncvx(b̄) ≤ fncvx(bforest).

Finally, using the other side of Lemma 4.2.4, we see that

fncvx(bforest) ≤ fcvx(bforest).

Combining these inequalities gives the desired conclusion.

115

Before presenting Algorithm 6, we give the proof of Theorem 1.3.1, which now follows directly
from Theorem 4.1.6 and Corollary 4.3.3, as outlined below.

Proof of Theorem 1.3.1. Let (b,q) and (bforest,qforest) denote the feasible points defined in Step
1 and Step 3 of Algorithm 5, respectively. Let σ? be the assignment returned by Algorithm 6 on
input (bforest,qforest). By Theorem 4.1.6, we have

NSW(σ?) ≥ fcvx(bforest,qforest)−DKL(w ‖u)− 2 log 2− 1

2e
(i)

≥ fcvx(b,q)− 2 ·DKL(w ‖u)− 2 log 2− 1

2e
(ii)

≥ OPT− 2 ·DKL(w ‖u)− 2 log 2− 1

2e
.

Here, (i) follows from Corollary 4.3.3 and (ii) follows from Lemma 4.2.1.

4.3.1 Rounding an Acyclic Solution
Given an acyclic solution b, Algorithm 6 returns an assignment, σ?, such that NSW(σ?) is
comparable to fcvx(b), as stated in Theorem 4.1.6.

Algorithm 6 Algorithm for Rounding an Acyclic Solution

Require: NSW instance (A,G,v,w), acyclic solution (b,q) ∈ P(A,G)
1: (b?,q?)← optimal solution of (CVX-Weighted) restricted to the support of (b,q)
2: F ? ← Gsupp(b?) with every tree rooted at an agent node
3: F̃ ← forest obtained by removing edges between item j and its children in F ? whenever
q?j <

1
2

. pruning step
4: L?i ← set of leaf children of agent i in F̃ ; L? ←

⋃
i L

?
i

5: M? ← matching between A → G \ L? in F̃ maximizing:

wF̃ (M) :=
∑
i∈A

wi log

viM(i) +
∑
j∈L?i

vij


6: σ? ← assignment of G to A with σ?(j) = i if j ∈ L?i ∪M?(i) . matching step

Ensure: σ?

In the first step, Algorithm 6 finds an optimal solution, denoted by b?, to the convex pro-
gram (CVX-Weighted) restricted to the support of b, i.e., b? is the optimal solution to (CVX-Weighted)
on input (A,G, ṽ,w), where ṽij = 0 if bij = 0, and ṽij = vij otherwise. This step is crucial as it
allows us to utilize the stability properties of stationary points of (CVX-Weighted).

0If agent i in unmatched in M , we let viM(i) = 0

116

Next, the algorithm implements a “pruning” step to sparsify b?: it removes edges between any
item with q?j < 1/2 and its children in F ?. Here, F ? is the support graph of b? with every
tree rooted at agent nodes. This step is equivalent to assigning each item j with q?j < 1/2 to
its parent agent in F ?. As a result, any item with q?j < 1/2 is a leaf in the pruned forest, F̃ .
Since removing edges will exclude certain items from being assigned to some agents, pruning
can lead to a sub-optimal solution. We bound this loss in objective by showing the existence of a
fractional solution (bpruned,qpruned) whose support graph is a subset of the pruned forest, F̃ , and
fcvx(bpruned) is comparable to fcvx(b?). For concrete details, see Section 4.4.

It is important to emphasize that the algorithm does not need to find the solution (bpruned,qpruned).
The mere existence of (bpruned,qpruned) is enough to guarantee that the assignment returned by
the algorithm will be good, as explained below.

After the pruning step, the algorithm assigns every leaf item in the pruned forest to its parent.
We use L?i to denote the set of leaf items whose parent is agent i and L? = ∪i∈AL?i to denote the
set of all leaf items in the pruned forest. So, each agent i receives all the items in the bundle L?i .
In the matching step, the algorithm assigns at most one additional item to each agent by finding
a maximum weight matching between agents A and items G\L? (the set of non-leaf items in
the pruned forest). This matching is determined using an augmented weight function, denoted
by wF̃ . The weight of a matching M between A and G \ L? in the pruned forest is defined as
follows:

wF̃ (M) :=
∑
i∈A

wi log

viM(i) +
∑
j∈L?i

vij

 ,

where viM(i) = 0 if i is not matched in M . Observe that this weight function exactly captures the
weighted Nash Social Welfare objective when agent i is assigned the item set Si := M(i)∪L?i for
each i ∈ A. Moreover, finding the optimal matching M can be easily formulated as a maximum
weight matching problem in a bipartite graph.

Since the standard linear programming relaxation for the bipartite matching problem is integral,
it is enough to demonstrate the existence of a fractional matching with a large weight wF̃ in the
pruned forest. In Section 4.4.2, we show how to construct a fractional matching corresponding to
bpruned, such that the weight of this matching is comparable to the objective fncvx(bpruned). We
emphasize that this matching corresponding to bpruned is only required for the sake of analysis:
to lower bound the performance of the matching returned by the algorithm. We do not need to
know bpruned for the execution of the algorithm.

4.4 Rounding via the Non-Convex Relaxation
In this section, we prove Theorem 4.1.6 by establishing properties of support-restricted optimal
solutions of (CVX-Weighted). First, in Lemma 4.4.1, we show that any optimum whose support
is restricted to a forest can be “pruned” to a feasible solution while only losing a constant factor
in the objective. Specifically, we show that given a support restricted optimum (b?,q?), we can
construct a feasible solution (bpruned,qpruned) such that any item with qpruned

j < 1/2 is a leaf in

117

support graph of bpruned, and fcvx(bpruned,qpruned) ≥ fcvx(b?,q?)− log 2.

Second, in Lemma 4.4.2, we demonstrate the existence of a matching in the support graph of
bpruned such that the augmented weight function of this matching differs from fncvx(bpruned) by
a constant factor. After presenting these two lemmas, we provide the proof of Theorem 4.1.6.

Lemma 4.4.1. Let (b?,q?) be the optimal solution of (CVX-Weighted) in the support of some
acyclic feasible point bforest. Let F be a directed forest formed by Gsupp(b?) when every tree is
rooted at an agent node. Then, there exists an acyclic feasible point (bpruned,qpruned) in P(A,G)
such that Gsupp(bpruned) is a subgraph of Gsupp(b?) and

• qpruned
j ≥ q?j for any item j with q?j ≥ 1/2,

• each item with q?j < 1/2 is a leaf in Gsupp(bpruned) connected to its parent in F , and

• fcvx(bpruned,qpruned) ≥ fcvx(b?,q?)− log 2.

The proof of Lemma 4.4.1 relies on the stability properties of optimal solutions of (CVX-Weighted),
as outlined in Section 4.4.1.

Lemma 4.4.2. Let (b,q) be an acyclic solution in P(A,G) such that every item with qj < 1/2
is a leaf in Gsupp(b). Let S : A → 2G be a function such that for each agent i, S(i) is a
subset of the leaf items connected to agent i in Gsupp(b), and S(i) contains all children of agent
i with qj < 1/2. Then, there exists a matching M in Gsupp(b) between the vertices in A and
{G\ ∪i {S(i)}} such that

∑
i∈A

wi log

viM(i) +
∑
j∈S(i)

vij

 ≥ fncvx(b,q)− log 2− 1

2e
,

where viM(i) = 0 if agent i is not matched in M .

We prove this lemma in Section 4.4.2.

Proof of Theorem 4.1.6. Given (b,q) such that Gsupp(b) is a forest, let (b?,q?) be the optimal
solution of (CVX-Weighted) restricted to support of b, let F̃ denote the forest obtained after
pruning Gsupp(b?). Let L?i denote the set of leaf children of agent i in F̃ .

Let (bpruned,qpruned) be a feasible solution guaranteed by Lemma 4.4.1 on input (b?,q?). Since
Lemma 4.4.1 guarantees that Gsupp(bpruned) is a subset of Gsupp(b?), and every item with q?j <
1/2 is a leaf in Gsupp(bpruned), we conclude that Gsupp(bpruned) is a subgraph of F̃ .

In addition, L?i is a subset of the leaf children of i in Gsupp(bpruned) as Gsupp(bpruned) is a sub-
graph of F̃ . Furthermore, if qpruned

j < 1/2, then we claim that j is a leaf in Gsupp(bpruned) with
parent i such that j ∈ L?i in F̃ . Since qpruned

j < 1/2, by the first point of Lemma 4.4.1, we have
q?j < 1/2. As a result, item j is a leaf in Gsupp(bpruned) connected to its parent in F̃ . So, item j

would be pruned in F̃ , and therefore, by definition, j ∈ L?i .

118

Therefore, for each agent i, the set L?i is a subset of the set of leaves of agent i in Gsupp(bpruned),
and L?i contains all the items with qpruned

j < 1/2 in Gsupp(bpruned). So, the function S(i) = L?i
satisfies the constraints of Lemma 4.4.2 with input (bpruned,qpruned).

Using Lemma 4.4.2 on (bpruned,qpruned) with function S(i) = L?i , we conclude that there exists
a matching, M , in Gsupp(bpruned) such that

∑
i∈A

wi log

viM(i) +
∑
j∈L?i

vij

 =
∑
i∈A

wi log

viM(i) +
∑
j∈S(i)

vij


≥ fncvx(bpruned,qpruned)− log 2− 1

2e
.

Since Gsupp(bpruned) is a subgraph of F̃ , the matching M is also present in F̃ . Therefore, the
matching M? (and corresponding assignment σ?) returned by Algorithm 6 satisfies

NSW(σ?) =
∑
i∈A

wi log

viM?(i) +
∑
j∈L?i

vij

 (i)

≥
∑
i∈A

wi log

viM(i) +
∑
j∈L?i

vij


(ii)

≥ fncvx(bpruned,qpruned)− log 2− 1

2e
(iii)

≥ fcvx(bpruned,qpruned)−DKL(w ‖u)− log 2− 1

2e
(iv)

≥ fcvx(b?,q?)−DKL(w ‖u)− 2 log 2− 1

2e
(v)

≥ fcvx(b,q)−DKL(w ‖u)− 2 log 2− 1

2e
.

Here, (i) follows from the optimality of M?, (ii) follows from Lemma 4.4.2, (iii) follows from
Lemma 4.2.4, (iv) follows from Lemma 4.4.1, and (v) follows from the optimality of b?.

4.4.1 Pruning Small Items
In this section, we prove Lemma 4.4.1 by establishing some properties of the set of (support
restricted) optimal solutions of (CVX-Weighted) in Lemma 4.4.3 and Lemma 4.4.4.

First, we show that any optimal solution of (CVX-Weighted) is relatively stable, i.e., the change
in function value when moving away from the optimal solution can be quantified in terms of how
much we deviate from that solution. We formalize the stability property as follows.

Lemma 4.4.3. Let (b?,q?) be the optimal solution of (CVX-Weighted) in the support of some
acyclic feasible point bforest. Let (b,q) be a feasible point in P(A,G) such that the support of b
is a subset of the support of b?, and for any j ∈ G, if q?j = 1, then qj = 1. Then

fcvx(b?,q?)− fcvx(b,q) =
∑
j∈G

∑
i∈A

wi bij log

(∑
i′∈Awi′ bi′j∑
i∈Awi′ b

?
i′j

)
.

119

Second, in Lemma 4.4.4, we show that any acyclic optimal solution of (CVX-Weighted) can
be pruned to a feasible solution, denoted by bpruned, which is amenable to rounding. Specif-
ically, we show that given a first-order stationary point (b?,q?), we can construct a feasible
solution (bpruned,qpruned) such that any item with qpruned

j < 1/2 is a leaf in support of bpruned

and bpruned
ij ≤ min{1, 2b?ij} for any agent i and item j.

Lemma 4.4.4. Let (b?,q?) be an acyclic feasible point in P(A,G). Let F be a directed forest
formed by Gsupp(b?) when every tree is rooted at an arbitrary agent node. Then, there exists a
feasible solution (bpruned,qpruned) such that Gsupp(bpruned) is a subgraph of Gsupp(b∗),

• q?j ≤ qpruned
j for each item j with q?j ≥ 1/2,

• each item with q?j < 1/2 is a leaf in Gsupp(bpruned) connected to its parent in F , and

• for any (i, j) ∈ A× G, bpruned
ij ≤ min{1, 2 · b?ij}.

Before proving Lemma 4.4.3 and Lemma 4.4.4, we use them to prove Lemma 4.4.1.

Proof of Lemma 4.4.1. By Lemma 4.4.4, there exists a feasible solution (bpruned,qpruned) such
that the support graph, Gsupp(bpruned), is a subgraph of Gsupp(b) and (bpruned,qpruned) satisfies
the first two items claimed in the lemma. Furthermore, for any (i, j) ∈ A × G, bpruned

ij ≤
min{1, 2 · b?ij}.

Using Lemma 4.4.3, the difference in objective from (b?,q?) to (bpruned,qpruned) is bounded as
follows

fcvx(b?,q?)−fcvx(bpruned,qpruned)

=
∑
j∈G

∑
i∈A

wi b
pruned
ij log

(∑
i′∈Awi′ b

pruned
i′j∑

i′∈Awi′ b
?
i′j

)
.

Since bpruned
ij ≤ min{1, 2 b?ij}, we have

∑
iwi b

pruned
ij ≤ 2

∑
iwi b

?
ij for each (i, j).

fcvx(b?,q?)− fcvx(bpruned,qpruned) ≤
∑
j∈G

∑
i∈A

wi b
pruned
ij log 2. (4.6)

The feasibility of bpruned implies∑
j∈G

∑
i∈A

wi b
pruned
ij =

∑
i∈A

wi
∑
j∈G

bpruned
ij =

∑
i∈A

wi = 1.

Plugging this bound in Equation (4.6) completes the proof.

In the rest of this section, we will provide proofs of the two component lemmas. The proof
of Lemma 4.4.3 consists of considering the Lagrangian relaxation to investigate the optimality
conditions.

120

Proof of Lemma 4.4.3. We can define the Lagrangian relaxation of CVX-Weighted with addi-
tional real variables λi for each i ∈ A, ηj ≥ 0 for each j ∈ G, and αij ≥ 0 for every
(i, j) ∈ A× G.

L(b, q;λ, η) = fncvx(b, q) +
∑
i∈A

(
1−

∑
j∈G

bij

)
+
∑
j∈G

ηj

(
1−

∑
i∈A

bij

)
+ αijbij.

Recall that

fncvx(b, q) =
∑

i∈A,j∈G

wibij log vij −
∑

i∈A,j∈G

wibij log

(∑
i′∈A

wi′bi′j

)
+
∑
i∈A

wi logwi.

If b? is an optimal solution of (CVX-Weighted), then using the KKT conditions, there exist real
numbers λi for each i ∈ A, ηj ≥ 0 for each j ∈ G, and αij ≥ 0 for every (k, l) ∈ A × G such
that

∂L

∂bkl

∣∣∣∣∣
b?

= wk log vkl − wk − wk log

(∑
i′∈A

wi′b
?
i′l

)
− λk − ηl + αkl = 0.

In addition, by complementary slackness, we have ηj(1 −
∑

i∈A b
?
ij) = 0 for each item j and

αijb
?
ij = 0 for each (i, j) ∈ A× G. Using these complementary slackness conditions, if b?ij > 0,

then

wi log vij = wi + wi log

(∑
i′∈A

wi′b
?
i′j

)
+ λi + ηj. (4.7)

Now, expanding the difference between the two function values, we get

fcvx(b?,q?)− fcvx(b,q) =
∑
i∈A

∑
j∈G

(
b?ij − bij

)
· wi log vij

−
∑
j∈G

∑
i∈A

wi b
?
ij log

(∑
i′∈A

wi′ b
?
i′j

)

+
∑
j∈G

∑
i∈A

wi bij log

(∑
i′∈A

wi′ bi′j

)
. (4.8)

Substituting the value of vij from Equation (4.7) in equation (4.8) gives

fcvx(b?,q?)−fcvx(b,q)

=
∑
i∈A

∑
j∈G

(b?ij − bij)

(
wi log

(∑
i′∈A

wi′ b
?
i′j

)
+ λi + wi + ηj

)

−
∑
j∈G

∑
i∈A

wi b
?
ij log

(∑
i′∈A

wi′ b
?
i′j

)

121

+
∑
j∈G

∑
i∈A

wi bij log

(∑
i′∈A

wi′ bi′j

)

=
∑
j∈G

∑
i∈A

wi bij log

(∑
i′∈Awi′ bi′j∑
i′∈Awi′ b

?
i′j

)

+
∑
i∈A

(λi + wi)

(∑
j∈G

b?ij −
∑
j∈G

bij

)

+
∑
j∈G

ηj

(∑
i∈A

b?ij −
∑
i∈A

bij

)
.

Using
∑

j∈G bij =
∑

j∈G b
?
ij = 1 for every i ∈ A, we get

fcvx(b?,q?)−fcvx(b,q)

=
∑
j∈G

∑
i∈A

wi bij log

(∑
i′∈Awi′ bi′j∑
i′∈Awi′ b

?
i′j

)
+
∑
j∈G

ηj
(
q?j − qj

)
,

where the last equation follows from the definitions of qj and q?j .

Note that by complementary slackness, ηj(1− q?j) = 0 for any j ∈ G. So if q?j < 1, then ηj = 0
and therefore ηj(q?j − qj) = 0. If q?j = 1, then by the hypothesis of the Lemma, qj = 1, and again
we obtain that ηj(q?j − qj) = 0. Using this bound in the above equation gives

fcvx(b?,q?)− fcvx(b,q) =
∑
j∈G

∑
i∈A

wi bij log

(∑
i′∈Awi′ bi′j∑
i′∈Awi′ b

?
i′j

)
.

Before proving Lemma 4.4.4, we need the following lemma about the feasibility of a solution
when we decrease the bij for some edge (j, i) in the support forest of b.

Lemma 4.4.5. Let (b,q) be an acyclic feasible point in P(A,G), and let F be a directed forest
formed by Gsupp(b) when every tree is rooted at an arbitrary agent node. For a non-root agent
i in F , let item j be its parent. Then, for any 0 ≤ δ ≤ min{bij, 1 − bij}, there exists a feasible
solution, (bδ,qδ) such that bδij = bij − δ, qδj = qj − δ, qδj′ ≥ qj′ for all j′ ∈ G\{j}, and

bδi′j′

{
≤ min{1, 2bi′j′} if i′, j′ ∈ T (i)

= bi′j′ otherwise ,

where T (x) denotes the sub-tree rooted at x in F .

The proof of this lemma will be deferred to Appendix 4.6.1. For now, we use it to complete the
proof of Lemma 4.4.4.

122

Proof of Lemma 4.4.4. We will iteratively build (bpruned,qpruned) so that it satisfies these prop-
erties while ensuring it remains feasible. For a vertex x ∈ A ∪ G, let par(x) denote its parent in
Gsupp(b?), let C(x) denote the set of its children in Gsupp(b?), and let T (x) denote the sub-tree
rooted at vertex x in Gsupp(b?).

Consider an item j with q?j < 1/2. To make the vertex corresponding to j a leaf, the algorithm
removes all the edges between item j and its children C(j). To reflect this change, we will
update the solution (b?,q?) to an intermediate solution (b̃, q̃) such that the support of b̃ does not
contain any edges between item j and its children. To maintain feasibility, we require:

q̃j = b̃par(j)j = b?par(j)j

b̃ij = 0 for all i ∈ C(j) (4.9)

Note that q?j < 1/2 implies b?ij < 1/2 for each i ∈ C(j). As a result, the decrease in bij satisfies

b?ij − b̃ij ≤ min{b?ij, 1− b?ij}

for each i ∈ C(j). So, we update (b̃, q̃) by iteratively applying Lemma 4.4.5 to edge (j → i)

with δ = bij for each i ∈ C(j). The updated solution satisfies b̃ij = 0 for each i ∈ C(j) and
q̃j = qj−

∑
i∈C(j) bij = bpar(j)j < 1/2. Note that T (j) is the disjoint union of the sub-trees rooted

at nodes in C(j). So for distinct i1, i2 ∈ C(j), updating the edge (j → i1) (and the sub-tree for
i1) does not affect the b values for any edge in T (i2) and vice versa. Therefore, by Lemma 4.4.5,
we have q?j′ ≤ q̃j′ for any item j′ ∈ T (j) and b̃i′j′ ≤ min{1, 2b?i′j′} for any i′, j′ ∈ T (j).

Since every item with q?j < 1/2 must become a leaf, we repeat the above process for any such
item. The following fact is crucial to bound the values after multiple pruning processes: Pruning
item j only changes b values for edges in T (j), and item j becomes a leaf after that. So, if we
prune ancestors of j after pruning j, the b values of edges in T (j) do not change further.

Let (bpruned,qpruned) be the solution obtained by pruning the set of items J = {j ∈ G : q?j <
1/2} in decreasing order of their height1. Pruning item j does not decrease the q value of any
item other than j. Therefore, if qpruned

j < 1/2, then q?j < 1/2, so item j has been pruned and is a
leaf. For any item j with q?j ≥ 1/2, its q value only increases when its nearest ancestor is pruned,
and this is the only time its q-value changes. So we conclude that qpruned

j ≥ q?j for each j ∈ G.

To establish the third claim of the lemma, observe that the b-value of any edge in Gsupp(b?)
changes at most twice during the pruning process: If q?j ≥ 1/2, then item j itself is not pruned,
and the b values of edges incident to j may change only when the nearest ancestor of j is pruned.
By Lemma 4.4.5, bpruned

ij ≤ min{1, 2b?ij} for each i ∈ A. If q?j < 1/2, the b value of any edge
from j to its children becomes zero when j is pruned, satisfying the claim. The b value of the
edge (par(j) → j) does not change when we prune j, and it may increase when the nearest
ancestor of j in J is pruned. If so, we have bpruned

par(j)j ≤ min{1, 2b?par(j)j}.

1Note that pruning items in decreasing order of their height is only an artifact of the analysis. The algorithm
can prune items with q?j < 1/2 in any order.

123

4.4.2 Fractional Matching and Analysis
In this section, we prove Lemma 4.4.2, which completes the proof of Theorem 4.1.6.

We establish Lemma 4.4.2 by proving two inequalities (in Lemmas 4.4.6 and 4.4.7) about the
properties of fncvx at any feasible point whose support is a forest. Lemma 4.4.6 shows that fncvx

can be upper bounded by a linear function in b while only losing a constant factor.

Lemma 4.4.6. Let (b,q) be an acyclic solution in P(A,G) such that every item with qj < 1/2
is a leaf in Gsupport(b). Let S : A → 2G be a function such that for each agent i, S(i) is a
subset of leaf items connected to agent i in Gsupp(b), and S(i) contains all children of agent i
with qj < 1/2. Then

∑
i∈A

wi

(∑
j /∈S(i)

bij log vij +
∑
j∈S(i)

bij log

(∑
j∈S(i)

vij

))

≥ fncvx(b,q)− log 2− 1

2e
.

Lemma 4.4.7 demonstrates how the linear function obtained in Lemma 4.4.6 can be used as a
lower bound for the maximum weight matching with the augmented weight function. A crucial
component of the proof of this lemma is the fact that any feasible b in P(A,G) corresponds to a
point in the matching polytope where all agents are matched.

Lemma 4.4.7. Let (b,q) be an acyclic solution in P(A,G) such that every item with qj < 1/2
is a leaf in Gsupport(b). Let S : A → 2G be a function such that for each agent i, S(i) is a
subset of leaf items connected to agent i in Gsupp(b), and S(i) contains all children of agent
i with qj < 1/2. Then, there exists a matching M in Gsupp(b) between vertices in A and
{G\ ∪i {S(i)}} such that

∑
i∈A

wi log

(
viM(i) +

∑
j∈S(i)

vij

)

≥
∑
i∈A

wi

∑
j /∈S(i)

bij log vij +
∑
j∈S(i)

bij log

∑
j∈S(i)

vij

 , (4.10)

where viM(i) = 0 if agent i is not matched in M .

Lemma 4.4.6 and Lemma 4.4.7 together establish Lemma 4.4.2. In the rest of this section, we
provide the proofs of Lemma 4.4.6 and Lemma 4.4.7.

The following lemma is an application of Gibbs’s inequality and is used in the proof of Lemma 4.4.6.

Lemma 4.4.8. Given positive reals z1, . . . , zd, for any y1, y2, . . . , yd ≥ 0,

d∑
j=1

yj log

(
d∑
j=1

zj

)
−

d∑
j=1

yj log

(
d∑
j=1

yj

)
≥

d∑
j=1

yj log zj −
d∑
j=1

yj log yj.

124

Proof. Define vectors y = (y1, . . . , yd) and z = (z1, . . . , zd). Then ỹ = y
‖y‖1 and z̃ = z

‖z‖1 define
two probability distributions on [d]. The inequality is equivalent to DKL(ỹ ‖ z̃) ≥ 0.

Proof of Lemma 4.4.6. Let S := ∪i{S(i)}. Recall that

fncvx(b,q) =
∑
i∈A

wi
∑
j∈G

bij log vij −
∑
i∈A

wi
∑
j∈G

bij log qj

=
∑
i∈A

wi
∑
j /∈S(i)

bij log vij −
∑
i∈A

wi
∑
j /∈S(i)

bij log qj

+
∑
i∈A

wi
∑
j∈S(i)

(bij log vij − bij log bij) , (4.11)

where the last equation follows from the fact that every item in S(i) is a leaf, i.e., if j ∈ S(i),
then bi′j = 0 for every i′ 6= i.

For an item j /∈ S, we have qj ≥ 1/2. As a result,

−
∑
i∈A

wi bij log qj ≤ log 2
∑
i∈A

wi bij. (4.12)

Plugging this bound into Equation (4.11) gives

fncvx(b,q) ≤
∑
i∈A

wi
∑
j /∈S(i)

bij log vij + log 2
∑
i∈A

wi
∑
j /∈S(i)

bij

+
∑
i∈A

wi

∑
j∈S(i)

bij log vij − bij log bij

 . (4.13)

As b ∈ P(A,G), we have
∑

j /∈S(i) bij = 1 −
∑

j∈S(i) bij for every agent i. Substituting this in
Equation (4.13) yields

fncvx(b,q) ≤
∑
i∈A

wi
∑
j /∈S(i)

bij log vij + log 2
∑
i∈A

wi

+
∑
i∈A

wi

∑
j∈S(i)

bij log vij − bij log bij − bij log 2


=
∑
i∈A

wi
∑
j /∈S(i)

(bij log vij) + log 2

+
∑
i∈A

wi

∑
j∈S(i)

bij log vij − bij log bij − bij log 2

 , (4.14)

where the last equation follows from
∑

iwi = 1.

125

For each agent i ∈ A, Corollary 4.4.8 implies that∑
j∈S(i)

bij log vij − bij log bij

≤
∑
j∈S(i)

bij log

∑
j∈S(i)

vij

− ∑
j∈S(i)

bij log

∑
j∈S(i)

bij

 .

So, for any agent i,∑
j∈S(i)

bij log vij − bij log bij − bij log 2

≤
∑
j∈S(i)

bij log

∑
j∈S(i)

vij

− ∑
j∈S(i)

bij log

∑
j∈S(i)

bij

− ∑
j∈S(i)

bij log 2

≤
∑
j∈S(i)

bij log

∑
j∈S(i)

vij

+
1

2e
, (4.15)

where the last inequality follows from −x log(x) − x log 2 ≤ 1/(2e) for all x ≥ 0 applied to
x =

∑
j∈S(i) bij .

Substituting Equation (4.15) in equation (4.14), we get

fncvx(b,q) ≤
∑
i∈A

wi
∑
j /∈S(i)

bij log vij + log 2

+
∑
i∈A

wi

∑
j∈S(i)

bij log

∑
j∈S(i)

vij

+
1

2e


=
∑
i∈A

wi

∑
j /∈S(i)

bij log vij +
∑
j∈S(i)

bij log

∑
j∈S(i)

vij


+ log 2 +

1

2e
,

where the last inequality again follows from
∑

i∈Awi = 1.

Proof of Lemma 4.4.7. In this proof, we will analyze a matching that either assigns the bundle
S(i) to an agent or a single item j /∈ ∪i{S(i)}. Observe that the algorithm clearly finds an
assignment with a larger objective as

log

viM(i) +
∑
j∈S(i)

vij

 ≥ max

log viM(i), log

∑
j∈S(i)

vij

 .

126

So, for each agent i ∈ A, we create a new leaf item `i with vi`i =
∑

j∈S(i) vij corresponding

to the set of items in S(i). Define S := ∪i{S(i)} and G̃ := {G\S} ∪ {`i}i∈A. We show that
the maximum weight matching in the bipartite graph (A, G̃) suffices to prove the lemma. As the
matching polytope is integral, it is enough to demonstrate the existence of a fractional matching
of a large value.

Using b, we define fractional assignment variables x as follows:

xij := bij ∀i ∈ A, j ∈ {G\L}

xi`i :=
∑
j∈S(i)

bij ∀i ∈ A.

The L.H.S. of Equation (4.10) can be stated in terms of x as

∑
i∈A

wi

∑
j /∈S(i)

bij log vij +
∑
j∈S(i)

bij log

∑
j∈S(i)

vij

 =
∑
i∈A

∑
j∈G̃

xij wi log vij. (4.16)

Observe that x lies in the convex hull of matchings between agentsA and items G̃ in which every
agent is matched as x satisfies the following properties:∑

j∈G̃

xij =
∑
j /∈S(i)

bij +
∑
j∈S(i)

bij = 1 ∀i ∈ A

∑
i∈A

xij ≤ 1 ∀j ∈ G̃.

Here, for item j /∈ S, the second inequality is inherited from the feasibility of b. The constraint
for `i′ for some i′ ∈ A is implied by the constraint

∑
i∈A xij = xi′j =

∑
j∈S(i) bij ≤

∑
j∈G bij ≤

1, where the last constraint again follows from the feasibility of b.

Using the integrality of the matching polytope, there exists a matching M̃ : A → G̃ such that∑
i∈A

∑
j∈G̃

xij wi log vij ≤
∑
i∈A

wi log viM̃(i). (4.17)

Now consider a matching M : A → G with M(i) = ∅ if M̃(i) = `i, and M(i) = M̃(i)
otherwise. Then

∑
i∈A

wi log viM̃(i) ≤
∑
i∈A

wi log

viM(i) +
∑
j∈S(i)

vij

 . (4.18)

Then Equations (4.16), (4.17), and (4.18) together imply

∑
i∈A

wi log

(
viM(i) +

∑
j∈S(i)

vij

)

127

≥
∑
i∈A

wi

∑
j /∈S(i)

bij log vij +
∑
j∈S(i)

bij log

∑
j∈S(i)

vij

 .

4.5 Conclusion and Future directions
This chapter shows the equivalence of two previously introduced convex relaxations for the un-
weighted Nash Social Welfare problem. We then introduce a convex and a non-convex relaxation
for the weighted (asymmetric) Nash Social Welfare problem to give an O(exp (2DKL(w ‖u)))-
approximation in polynomial time, and aO(exp (DKL(w ‖u)))-approximation in pseudo-polynomial
time. Both of these relaxations play a crucial role in obtaining the approximation algorithm for
the problem.

After the initial release of this work there has been substantial progress improving the approxi-
mation factor. For the case of additive [77] and even the more general submodular valuations [78]
there are now constant factor approximation algorithms. Their approach is based on rounding a
fractional solution to the configuration formulation of the problem. This formulation is distinct
from those discussed in this work, but it can be shown that it is no weaker than LogConcave-
Weighted. It would be interesting to from a complete study of the relationship between this new
formulation and the other relaxations discussed in this work. It is important to emphasize that
we lose the exp (DKL(w ‖u)) when relating the objectives of the two relaxations; we only lose
a constant factor when rounding the non-convex relaxation. A direct approach may exist to solve
the non-convex formulation that gives an improved approximation guarantee.

Another question is whether the techniques introduced in this work can be expanded to more
general valuation functions, particularly submodular valuations for the weighted Nash Social
Welfare problem.

4.6 Appendix for Chapter 4

4.6.1 The proof of Lemma 4.4.5
The following is an application of Farkas’ Lemma, which will be used in the proof of Lemma
4.4.5.

Lemma 4.6.1. Let α > 0 and β1, . . . , βk > 0 with α +
∑k

j=1 βi = 1. For any 0 < δ ≤
min{α, 1− α}, there exist real numbers δ1, . . . , δk such that

α− δ +
∑
j∈[k]

βj(1 + δj) = 1 (4.19)

βj(1 + δj) ≤ 1 ∀j ∈ [k]

0 ≤ δj ≤ 1 ∀j ∈ [k].

128

Proof. As the above system contains only linear constraints in δ, we use Farkas’ Lemma to show
the existence of {δj}kj=1. Re-arranging the constraints gives∑

j∈[k]

βjδj = δ (4.20)

βjδj ≤ 1− βj ∀j ∈ [k]

0 ≤ δj ≤ 1 ∀j ∈ [k]

If there do not exist real numbers {δj}kj=1 satisfying (4.20), then by Farkas’ Lemma, there exist
real numbers η, {γj}kj=1, {λj}kj=1 such that

βjη + βjγj + λj ≥ 0 ∀j ∈ [k] (4.21)
γj, λj ≥ 0

δη +
∑
j∈[k]

(1− βj)γj +
∑
j∈[k]

λj < 0 (4.22)

Adding equation (4.21) for all j ∈ [k], we get

η
∑
j∈[k]

βj +
∑
j∈[k]

βjγj +
∑
j∈[k]

λj ≥ 0.

Since α+
∑

j∈[k] βj = 1, this implies η(1−α) +
∑

j∈[k] βjγj +
∑

j∈[k] λj ≥ 0. In addition, since
βi > 0, we also have α < 1. Therefore, dividing by 1− α and re-arranging gives∑

j∈[k]

βjγj
1− α

+
∑
j∈[k]

λj
1− α

≥ −η. (4.23)

On the other hand, Equation (4.22) implies

− η >
∑
j∈[k]

(1− βj)γj
δ

+
∑
j∈[k]

λj
δ
. (4.24)

On comparing Equations (4.23) and (4.24), we obtain∑
j∈[k]

βjγj
1− α

+
∑
j∈[k]

λj
1− α

>
∑
j∈[k]

(1− βj)γj
δ

+
∑
j∈[k]

λj
δ
. (4.25)

We will now derive a contradiction to (4.25).

As δ ≤ 1− α , we have 1/(1− α) ≤ 1/δ, and therefore,∑
j∈[k]

λj
1− α

≤
∑
j∈[k]

λj
δ
, (4.26)

129

where we use the fact that λj > 0 for all j ∈ [k].

In addition, for any j ∈ [k]

βj
1− α

− (1− βj)
δ

≤ βj
1− α

− (1− βj)
α

=
α + βj − 1

α(1− α)
≤ 0. (4.27)

Here, the first inequality follows from δ ≤ α, and the last inequality follows from the facts that
α +

∑
j∈[k] βj = 1 and α, βj > 0.

On adding Equation (4.26) and equation (4.27) for all j ∈ [k], we obtain∑
j∈[k]

βjγj
1− α

+
∑
j∈[k]

λj
1− α

≤
∑
j∈[k]

(1− βj)γj
δ

+
∑
j∈[k]

λj
δ
,

which contradicts Equation (4.25). Therefore, there exist real numbers {δj}kj=1 satisfying (4.19).

With this result, we are ready to finally complete the proof of Lemma 4.4.5.

Proof of Lemma 4.4.5. For x ∈ A∪ G, let C(x) denote the children of node x in F and let T (x)
denote the sub-tree rooted at node x. We will prove this lemma by induction on the height of
agent i, building (bδ,qδ) ∈ P(A,G) in the process.

For the base case, assume agent i has height 1, i.e., T (i) consists of only leaf item nodes that are
the children of node i. We define a new vector bδ with bδi′j′ = bi′j′ for any i′ 6= i and j′ ∈ G.
Note that setting bδij = bij − δ and qδj = qj − δ only violates the Agent constraint for agent i. So
we will update the values of b in T (i) to make the solution feasible.

By the feasibility of b, bij +
∑

k∈C(i) bik = 1, and for every item node k ∈ C(i), qk = bik < 1.
Using Lemma 4.6.1 with α = bij and βk = bik, there exist δk for each k ∈ C(i) such that

bij − δ +
∑
k∈C(i)

bik(1 + δk) = 1

bik(1 + δk) ≤ 1 ∀k ∈ C(i)

0 ≤ δk ≤ 1 ∀k ∈ C(i).

So, for each k ∈ C(i), we set bδik = bik(1 + δk). Note that bδik ≤ 1, and as δk ≤ 1, we have

bδik = bik(1 + δk) ≤ 2bik.

As every item in C(i) is a leaf, we also have

qk ≤ qδk = bδik = bik(1 + δk) ≤ 1

for each item k ∈ C(i). The Agent constraint for agent i satisfies∑
k∈C(i)

bδik = bij − δ +
∑
k∈C(i)

bik(1 + δk) = 1.

130

Therefore, bδ ∈ P(A,G) and bδi′j′ ≤ min{1, 2bij′} for each j′ ∈ T (i).

For the induction hypothesis, assume that the lemma is true whenever the height of agent i is at
most ` − 1 for some integer ` > 1. We now show that the statement also holds when the height
of agent i is `.

Again, setting bδij = bij − δ and qδj = qj − δ violates the Agent constraint for agent i. Similar to
the base case, we can find δk ∈ (0, 1) for each k ∈ C(i) such that bik(1 + δk) ≤ 1 and

bij − δ +
∑
k∈C(i)

bik(1 + δk) = 1.

Setting bδik = bik(1 + δk) for each k ∈ C(i) will ensure that bδ satisfies the Agent constraint for
agent i. However, this can violate the Item constraint for some item k ∈ C(i), as qδk = qk + δkbik.
So, we inductively update the values of bδ and qδ for the sub-tree rooted at item k for which
such a violation occurs.

Consider an item k ∈ C(i) such that qδk = qk + δkbik > 1. So we decrease bi′k for each i′ ∈ C(k)
to ensure that qδk is at most 1 as follows. Define γ := qk + δkbik − 1. Using the fact that
qk =

∑
i′∈C(k) bi′k + bik, we bound γ as follows.

γ = qk + δkbik − 1 =
∑

i′∈C(k)

bi′k + bik + δkbik − 1

≤
∑

i′∈C(k)

bi′k,

using bik(1 + δk) ≤ 1 Therefore, there exist numbers γi′ ≥ 0 for each i′ ∈ C(k) such that
γi′ ≤ bi′k and

∑
i′∈C(k) γi′ = γ.

We would like to update bδi′k = bi′k−γi′ for each i′ ∈ C(k), but this violates the Agent constraint
for agent i′ when γi′ > 0. We inductively update the solution for subtree T (i′) as follows.

First, note that qδk = 1 ≥ qk after this update, as shown below.

qδk = bδik +
∑

i′∈C(k)

bδi′k = bik(1 + δk) +
∑

i′∈C(k)

(bi′k − γi′) = qk + δibik −
∑

i′∈C(k)

γi′

= 1− γ +
∑

i′∈C(k)

γi′

= 1,

as
∑

i′∈C(k) γi′ = γ So now, (bδ,qδ) only violates Agent constraints for agents in C(k).

We claim that for each agent i′ ∈ C(k)

γi′ ≤ min{bi′k, 1− bi′k}. (4.28)

Before proving this inequality, we use it to complete the proof.

131

Using the induction hypothesis, for each i′ ∈ C(k), there exists feasible (bγi′ ,qγi′) which differs
from (bδ,qδ) only in the sub-tree rooted at i′ such that for any ĵ ∈ T (i′),

q
γi′

ĵ
≥ qδ

ĵ
= qĵ.

and for any î, ĵ ∈ T (i′),

b
γi′

îĵ
≤ min{1, 2 · bδ

î,ĵ
} = min{1, 2 · bî,ĵ}.

So for each i′ ∈ C(k) with γi′ > 0, we set bδ
îĵ

= b
γi′

îĵ
for every î, ĵ ∈ T (i′) to get the required

solution.

We now only need to establish Equation (4.28). By definition, γi′ ≤ bi′k for each i′ ∈ C(k).
Additionally, γi′ ≤ γ, so it suffices to show that γ ≤ 1− bi′k for every i′ ∈ C(k). Recall that

γ = qk + δkbik − 1

(i)

≤ δkbik
(ii)

≤ bik
(iii)

≤ qk − bi′k
(iv)

≤ bi′k.

Here, (i) and (iv) follow from qk ≤ 1, (ii) follows from δk ≤ 1, and (iii) holds as bik +∑
i′∈C(k) bi′k = qk. This completes the proof of (4.28).

4.6.2 Relationships Between the Mathematical Programs
This section provides the proof of Theorem 4.1.2 by establishing a relationship between two
natural convex programming relaxations for the unweighted Nash Social Welfare problem. We
then build upon this relationship to derive (CVX-Weighted) for the weighted Nash Social Welfare
problem.

To ensure that the optimum values of all the convex programs mentioned below are bounded, we
assume that the instance of Nash Social Welfare (A,G,v,w) satisfies the following assumption.

Assumption Let G[G,A,v] denote the support graph of the valuation function. The support
graph is the bipartite graph between agents and items with an edge between agent i and item j
iff vij > 0. We assume that there exists a matching of size |A| in G[G,A,v]. In other words, the
objective of the Nash Social Welfare problem is not zero for (A,G,v,w). It is straightforward
to verify this assumption given an instance of Nash Social Welfare.

The proof of Theorem 4.1.2 uses the following two results. The first result is the classical Sion’s
Minimax Theorem, which can be found as Corollary 3.3 from [175].

Theorem 4.6.2 (Sion’s Minimax Theorem). Let M and N be convex spaces, one of which is
compact, and f(x, y) a function on M × N that is quasi-concave-convex and (upper semicon-
tinuous) - (lower semicontinuous). Then

sup
x∈M

inf
y∈N

f(x, y) = inf
y∈N

sup
x∈M

f(x, y).

132

The second result was proved in [7].

Lemma 4.6.3 (Lemma 4.3 in [7]). Let p : Rm
≥0 → R≥0 be a positive function satisfying the

following properties:

• p(t · y) = tn · p(y) for all y ≥ 0 and t ∈ R,

• log p(y) is convex in log y.

Then the following inequality holds

inf
y>0:yS≥1,∀S∈([m]

n)
log p(y) = sup

α∈[0,1]m,
∑
j αj=n

inf
y>0

log p(y)−
m∑
j=1

αj log(yj).

While the original result in [7] assumed p to be a homogeneous polynomial with positive coeffi-
cients, their proof only relies on the two properties presented in Lemma 4.6.3.

Proof of Theorem 4.1.2

To prove Theorem 4.1.2, we start with the (LogConcave-Unweighted) and derive the convex
program (CVX-Unweighted) via a sequence of duals presented in Lemmas 4.6.5, 4.6.6, and
4.6.7.

Let P andQ denote the feasible regions for x and y in (LogConcave-Unweighted), respectively.

P :=

{
x ∈ RA×G≥0 :

∑
i∈A

xij = 1 ∀j ∈ G

}

Q :=

{
y ∈ RG>0 :

∏
j∈S

yj ≥ 1 ∀S ∈
(
G
n

)}
.

Note that the inner function in the objective

f(x) = inf
y∈Q

∑
i∈A

log

(∑
j∈G

xij vij yj

)
,

is bounded above (y = 1 belongs toQ), and the domain of x, P , is compact (bounded and closed
sets in Euclidean space are compact using Heine-Borel Theorem).

Lemma 4.6.4 shows that the inner infimum of (LogConcave-Unweighted) is > −∞ for any
integral allocation x that assigns at least one item to each agent in the support of v. We know
such an allocation exists by Assumption 4.6.2.

Lemma 4.6.4. For any integral allocation x ∈ P ∩ {0, 1}|A|×|G|,

inf
y∈Q

∑
i∈A

log

(∑
j∈G

xij vij yj

)
=
∑
i∈A

log

(∑
j∈G

xij vij

)
.

133

Proof. Let σ : G → A be the allocation corresponding to x, i.e., σ(j) = i iff xij = 1. Then this
is a restatement of Lemma 4.2.2.

Lemma 4.6.5. The optimal value of (LogConcave-Unweighted) is the same as

inf
δ

max
x∈P

∑
i∈A

log

(∑
j∈G

xij vij e
−δj

)
+
∑
j∈G

max(0, δj). (Unweighted-Primal)

Proof. For a fixed x ∈ P , using Lemma 4.6.3 with px(y) =
∏

i∈A

(∑
j∈G

xij vij yj

)
, we get

inf
y>0:yS≥0,∀S∈(Gn)

log px(y)

= inf
y>0:yS≥1,∀S∈(Gn)

∑
i∈A

log

(∑
j∈G

xij vij yj

)

= sup
α∈[0,1]|G|,

∑
j αj=n

inf
y>0

∑
i∈A

log

(∑
j∈G

xij vij yj

)
−
∑
j∈G

αj log(yj).

Substituting δj = − log(yj) and taking a maximum over x, we get

max
x∈P

inf
y>0:yS≥0,∀S∈(Gn)

log px(y)

= sup
x∈P,α∈[0,1]|G|,

∑
j αj=n

inf
δ

∑
i∈A

log

(∑
j∈G

xij vij e
−δj

)
+
∑
j∈G

αjδj.

As the domains of both x and α are compact, and we have only added a linear function of α and
γ to our original convex function, we can apply Theorem 4.6.2 to conclude that

max
x∈P

inf
y>0:yS≥0,∀S∈(Gn)

log px(y)

= inf
δ

max
x∈P

max
α∈[0,1]|G|,

∑
j αj=n

∑
i∈A

log

(∑
j∈G

xij vij e
−δj

)
+
∑
j∈G

αjδj.

Finally, the following claim completes the proof.

inf
δ

max
x∈P

max
α∈[0,1]|G|,

∑
j αj=n

∑
i∈A

log

(∑
j∈G

xij vij e
−δj

)
+
∑
j∈G

αjδj

= inf
δ

max
x∈P

∑
i∈A

log

(∑
j∈G

xijvije
−δj

)
+
∑
j∈G

max(0, δj). (4.29)

134

For proving the claim, we define functions

f1(δ,x,α) =
∑
i∈A

log

(∑
j∈G

xij vij e
−δj

)
+
∑
j∈G

αjδj, and

f2(δ,x) =
∑
i∈A

log

(∑
j∈G

xijvije
−δj

)
+
∑
j∈G

max(0, δj).

Observe that for any δ and α ∈ [0, 1]|G|, αjδj ≤ max(0, δj). Therefore, for any δ,x and
α ∈ [0, 1]|G|, we have f1(δ,x,α) ≤ f2(δ,x). As a result,

inf
δ

max
x∈P

max
α∈[0,1]|G|,

∑
j αj=n

f1(δ,x,α) ≤ inf
δ

max
x∈P

f2(δ,x). (4.30)

To establish an inequality in the other direction, first note that f1(δ,x,α) = f1(δ+t ·1,x,α) for
any t ∈ R. So, for a fixed δ, let tδ denote a value of t for which the n largest values of δ + tδ · 1
are non-negative and the m− n smallest values of δ are non-positive. Then

max
α∈[0,1]|G|,

∑
j αj=n

f1(δ,x,α) = max
α∈[0,1]|G|,

∑
j αj=n

f1(δ + tδ · 1,x,α)

=
∑
i∈A

log

(∑
j∈G

xijvije
−δj−tδ

)
+ max
α∈[0,1]|G|,

∑
j αj=n

∑
j∈G

αj(δj + tδ). (4.31)

The term
∑

j∈G αj(δj + tδ) is maximized when αj = 1 for the largest n coordinates of δ + t · 1.
As a result, we get

∑
i∈A

log

(∑
j∈G

xijvije
−δj−tδ

)
+
∑
j∈G

max(0, δj + tδ) = f2(δ + tδ · 1,x). (4.32)

Combining Equations (4.31) and (4.32), and taking max over x, we have

max
x∈P

max
α∈[0,1]|G|,

∑
j αj=n

f1(δ,x,α) = max
x∈P

f2(δ + tδ · 1,x) ≥ inf
γ

max
x∈P

f2(γ,x).

Taking an infimum over δ, we obtain

inf
δ

max
x∈P

max
α∈[0,1]|G|,

∑
j αj=n

f1(δ,x,α) ≥ inf
δ

inf
γ

max
x∈P

f2(γ,x)

= inf
γ

max
x∈P

f2(γ,x). (4.33)

Here, the last equality follows as the function being optimized does not depend on δ.

Combining Equations (4.30) and (4.33) completes the proof of equation (4.29).

135

Lemma 4.6.6. The optimal values of (Unweighted-Primal) is the same as that of the following
program.

inf
δ,r,γ

∑
j∈G

erj +
∑
i∈A

γi +
∑
j∈G

δj − n (Unweighted-Dual)

rj + γi + δj ≥ log vij ∀(i, j) ∈ A× G
δ ≥ 0.

Proof. For a fixed δ, let us first re-write the internal maximum of (Unweighted-Primal) as

max
x,u

∑
i∈A

log ui + f(δ) (4.34)

ui ≤
∑
j∈G

xij vij e
−δj ∀i ∈ A∑

i∈A

xij ≤ 1 ∀j ∈ G

x ≥ 0 ,

where f(δ) =
∑

j∈G max(0, δj).

Let βi, pj , and θij be the Lagrange dual variables associated with the constraints corresponding
to agent i, item j, and agent-item pair(i, j), respectively. The Lagrangian of the above convex
program is defined as follows

L(x,u,β,θ,p)

= f(δ) +

[∑
i∈A

log ui +
∑
i∈A

βi

(∑
j∈G

xij vij e
−δj − ui

)
+
∑
j∈G

pj(1−
∑
i∈A

xij) +
∑
i,j

θijxij

]

= f(δ) +

[∑
i∈A

(log ui − βiui) +
∑
i∈A

∑
j∈G

xij
(
βi vij e

−δj + θij − pj
)

+
∑
j∈G

pj

]
.

The Lagrange dual of (4.34) is given by

g(β,θ,p) = max
x∈P,u≥0

L(x,u,β,θ,p). (4.35)

Observe that solution xij = 1/n for each (i, j) ∈ A × G lies in the relative interior of P . Since
all the constraints are affine, Slater’s condition is satisfied for (Unweighted-Primal). Thus, the
optimal value of the infimum of Lagrange dual over β,θ,p ≥ 0 is exactly equal to the optimum
of (4.34).

The KKT conditions imply that the optimal solutions must satisfy

1

ui
− βi = 0 ∀i ∈ A

βi vij e
−δj − pj + θij = 0 ∀(i, j) ∈ A× G.

136

The KKT conditions imply that ui = 1/βi for each i ∈ A maximizes the Lagrangian. For the
supremum over x,u in (4.35) to stay finite, the second KKT condition is necessary and sufficient.
Substituting these conditions in the Langrangian gives the following convex program.

inf
p,β,θ

f(δ) +
∑
j∈G

pj −
∑
i∈A

log βi − n

pj = βi vij e
−δj + θij ∀(i, j) ∈ A× G

p,β,θ ≥ 0.

Observe that we can remove θ from the above program while making the first constraint an
inequality. By substituting rj = log pj, γi = − log βi, the above program is equivalent to

inf
r,γ

f(δ) +
∑
j∈G

erj +
∑
i∈A

γi +
∑
j∈G

−n

rj + γi + δj ≥ log vij ∀(i, j) ∈ A× G.

As (Unweighted-Primal) involves an infimum over δ, whenever δj < 0, we can increase it to
δj = 0 without increasing the value of f(δ) and maintaining feasibility. Using this observation
and taking an infimum over δ, the above program gives (Unweighted-Dual).

Lemma 4.6.7. The optimal values of (Unweighted-Dual) and (CVX-Unweighted) are the same.

Proof. Let bij be the Lagrange dual variable associated with constraint rj + γi + δj ≥ log vij of
(Unweighted-Dual) and let τij be the Lagrange dual variable associated with constraint δij ≥ 0.
The Lagrangian of (Unweighted-Dual) is defined as follows

L(r,γ, δ,b, τ) =
∑
j∈G

erj +
∑
i∈A

γi +
∑
j∈G

δj − n+
∑
i,j

bij(log vij − rj − γi − δj)−
∑
j∈G

δjτj

=
∑
j∈G

(erj − (
∑
i∈A

bij)rj) +
∑
i∈A

γi(1−
∑
j∈G

bij)
∑
j∈G

δj(1− τj −
∑
i∈A

bij)

+
∑
i,j

bij log vij − n.

The Lagrange dual of (Unweighted-Dual) is given by

g(b, τ) = inf
δ≥0,r,γ

L(r,γ, δ,b, τ). (4.36)

One can verify that Slater’s condition is satisfied by (Unweighted-Dual). So, the supremum of
(4.36) with b, τ ≥ 0 is equal to the optimum of (Unweighted-Dual).

The KKT conditions for the Langrangian give

erj −
∑
i∈A

bij = 0 1−
∑
j∈G

bij = 0 1− τj −
∑
j∈A

bij = 0.

137

The KKT conditions imply rj = log

(∑
i∈A

bij

)
for each j ∈ G minimizes the Lagrangian. For

the infimum over γ, δ in (4.36) to stay finite, the conditions 1 =
∑
j∈G

bij and 1 − τj =
∑
i∈A

bij are

necessary and sufficient. Substituting these conditions in the Lagrangian, we get

sup
b,τ

∑
i,j

bij log vij −
∑
j∈G

∑
i∈A

bij log

(∑
i′∈A

bi′j

)
+
∑
j∈G

∑
i∈A

bij − n∑
j∈G

bij = 1∑
i∈A

bij = 1− τj

b, τ ≥ 0.

Observe that the supremum in the above program can be switched to maximum as the feasible
region is compact and the objective is bounded. Also note that

∑
i,j bij = n for any b in the

feasible region. As a result, the last two terms in the objective cancel each other. Finally, on
substituting qj =

∑
i∈A bij in the above program, we obtain (CVX-Unweighted).

Generalization to Weighted Nash Social Welfare

Given an instance of weighted Nash Social Welfare (A,G,v,w) where
∑
i∈A

wi = 1 and w ≥ 0,

we introduce the following program as a generalization of (LogConcave-Unweighted) program.

max
x≥0

min
y>0

∑
i∈A

wi log

(∑
j∈G

xij vij y
1/wi
j

)
(LogConcave-Weighted)

s.t.
∑
i∈A

xij = 1 ∀j ∈ G

∏
j∈S

yj ≥ 1 ∀S ∈
(
G
n

)
.

Observe that the feasible region of (LogConcave-Weighted) is given by x ∈ P and y ∈ Q, which
is identical to that of (LogConcave-Unweighted).

The main result of this section is the following.

Theorem 4.6.8. The optimal values of (LogConcave-Weighted) and (CVX-Weighted) are the
same.

We prove Theorem 4.6.8 analogously to Theorem 4.1.2, starting with (LogConcave-Weighted)
and deriving (CVX-Weighted) via a sequence of duals presented in Lemmas 4.6.9, 4.6.11, and
4.6.12.

138

Lemma 4.6.9. The optimal value of (LogConcave-Weighted) is the same as

inf
δ

max
x∈P

∑
i∈A

wi log

(∑
j∈G

xijvije
−δj/wi

)
+
∑
j∈G

max(0, δj). (Weighted-Primal)

The following fact is crucial to the proof of this lemma.

Claim 4.6.10. Let p(y) = w log
(∑m

j=1 cj y
1/w
j

)
with w > 0 and cj ≥ 0 for each j. Then

log p(y) is a convex function in log(y).

Proof. For a fixed x ∈ P , the function

px(y) =
∏
i∈A

(∑
j∈G

xij vij y
1/wi
j

)wi

satisfies all the prerequisites of Lemma 4.6.3. The first property is easy to verify and the second
property follows from Fact 4.6.10. Therefore, by Lemma 4.6.3, we get

inf
y>0:yS≥0,∀S∈(Gn)

log px(y) = inf
y>0:yS≥0,∀S∈(Gn)

∑
i∈A

wi log

(∑
j∈G

xij vij y
1/wi
j

)

= sup
α∈[0,1]|G|,

∑
j αj=n

inf
y>0

∑
i∈A

wi log

(∑
j∈G

xij vij y
1/wi
j

)
−
∑
j∈G

αj log(yj).

Substituting δj = − log(yj), and taking the supremum over x, we get

max
x∈P

inf
y>0:yS≥0,∀S∈(Gn)

log px(y)

= sup
x∈P,α∈[0,1]|G|,

∑
j αj=n

inf
δ

∑
i∈A

wi log

(∑
j∈G

xij vij e
−δj/wi

)
+
∑
j∈G

αjδj.

As the domains of both x and α are compact, using Theorem 4.6.2, we get

max
x∈P

inf
y>0:yS≥0,∀S∈(Gn)

∑
i∈A

wi log

(∑
j∈G

xij vij y
1/wi
j

)

= inf
δ

max
x∈P

max
α∈[0,1]|G|,

∑
j αj=n

∑
i∈A

wi log

(∑
j∈G

xij vij e
−δj/wi

)
+
∑
j∈G

αjδj.

Finally, we claim that

inf
δ

max
x∈P

max
α∈[0,1]|G|,

∑
j αj=n

∑
i∈A

wi log

(∑
j∈G

xij vij e
−δj/wi

)
+
∑
j∈G

αjδj

139

= inf
δ

max
x∈P

∑
i∈A

wi log

(∑
j∈G

xij vij e
−δj/wi

)
+
∑
j∈G

max(0, δj).

The proof of this claim is identical to the proof of the unweighted case in Equation (4.29).

Lemma 4.6.11. The optimal value of (Weighted-Primal) is the same as that of the following
program.

inf
δ,r,γ

∑
j∈G

erj +
∑
i∈A

wiγi +
∑
j∈G

δj +
∑
i∈A

(wi logwi − wi) (Weighted-Dual)

rj + γi +
δj
wi
≥ log vij ∀(i, j) ∈ A× G.

Proof. For a fixed δ, let us first re-write the internal maximum of (Weighted-Primal) as

max
x,u

∑
i∈A

wi log ui + f(δ) (4.37)

ui ≤
∑
j∈G

xij vij e
−δj/wi ∀i ∈ A∑

i∈A

xij ≤ 1 ∀j ∈ G

x ≥ 0 ,

where f(δ) =
∑

j∈G max(0, δj).

Let βi, pj , and θij be the Lagrange dual variables associated with the constraints corresponding
to agent i, item j, and agent-item pair(i, j), respectively. The Lagrangian of the above convex
program is defined as follows

L(x,u,β,θ,p) = f(δ)+
∑
i∈A

wi log ui +
∑
i∈A

βi

(∑
j∈G

xij vij e
−δj/wi − ui

)

+
∑
j∈G

pj

(
1−

∑
i∈A

xij

)
+
∑
i,j

θijxij

= f(δ)+

[∑
i∈A

(wi log ui − βiui)

+
∑
i,j

xij
(
βi vij e

−δj/wi + θij − pj
)

+
∑
j∈G

pj

]
.

The Lagrange dual of (4.37) is given by

g(β,θ,p) = max
x∈P,u≥0

L(x,u,β,θ,p).

140

Observe that solution xij = 1/n is in the relative interior of P . Since all the constraints are
affine, Slater’s condition is satisfied. Thus the optimum value of the infimum of Lagrange dual
over β,θ,p ≥ 0 is exactly equal to the optimum of (4.37).

The KKT conditions for the Lagrangian imply

wi
ui
− βi = 0 ∀i ∈ A

βi vij e
−δj/wi −

∑
j∈G

pj + θij = 0 ∀(i, j) ∈ A× G.

The KKT conditions imply that ui = wi/βi for each i ∈ A maximizes the Lagrangian. For the
supremum over x,u in (4.36) to stay finite, the second KKT condition is necessary and sufficient.
Substituting these conditions in the Langrangian gives the following convex program.

inf
p,β,θ

f(δ) +
∑
j∈G

pj +
∑
i∈A

(wi logwi − wi)−
∑
i∈A

wi log βi

pj = βi vij e
−δj/wi + θij ∀(i, j) ∈ A× G

p,β,θ ≥ 0

Observe that we can remove θ from the above program while making the first constraint an
inequality. By substituting rj = log pj, γi = − log βi, the above program is equivalently to

inf
r,γ

f(δ) +
∑
j∈G

erj +
∑
i∈A

wi γi +
∑
i∈A

(wi logwi − wi)

rj + γi +
δj
wi
≥ log vij ∀(i, j) ∈ A× G.

As (Weighted-Primal) involves an infimum over δ, whenever δj < 0, we can increase it to δj = 0
without increasing the value of f(δ) and maintaining feasibility in the above program. Using
this observation and taking an infimum over δ gives (Weighted-Dual).

Lemma 4.6.12. The optimal value of (Weighted-Dual) is the same as that of (CVX-Weighted).

Proof. Let b̂ij be the Lagrange dual variable associated with constraint rj + γi + δj ≥ log vij of
(Unweighted-Dual) and let yij be the Lagrange dual variable associated with constraint δij ≥ 0.
The Lagrangian of (Weighted-Dual) is defined as follows

L(r,γ, δ, b̂, τ) =
∑
j∈G

erj +
∑
i∈A

wi γi +
∑
j∈G

δj +
∑
i,j

b̂ij(log vij − rj − γi −
δj
wi

)

−
∑
j∈G

δjτj +
∑
i∈A

(wi logwi − wi)

=
∑
j∈G

(erj − (
∑
i∈A

b̂ij)rj) +
∑
i∈A

γi(wi −
∑
j∈G

b̂ij) +
∑
j∈G

δj(1− τj −
∑
i∈A

b̂ij
wi

)

141

+
∑
i,j

b̂ij log vij +
∑
i∈A

(wi logwi − wi).

The Lagrange dual of (Weighted-Dual) is given by

g(b̂, τ) = inf
δ≥0,r,γ

L(r,γ, δ, b̂, τ). (4.38)

One can verify that Slater’s condition is satisfied by (Weighted-Dual). So, the supremum of
(4.38) with b, τ ≥ 0 is equal to the optimum of (Weighted-Dual).

The KKT conditions for the Langrangian imply

erj −
∑
i∈A

b̂ij = 0

wi −
∑
j∈G

b̂ij = 0

1− τj −
∑
j∈A

b̂ij
wi

= 0.

The KKT conditions imply that the minimizer for rj is given by rj = log

(∑
i∈A

b̂ij

)
. For the

infimum over γ, δ to stay finite, the conditions wi =
∑
j∈G

b̂ij for each i ∈ A and 1 − τj =
∑
i∈A

b̂ij

for each j ∈ G are necessary and sufficient. Substituting these conditions in the Lagrange dual,
we get

sup
b̂,τ

∑
i,j

b̂ij log vij −
∑
j∈G

∑
i∈A

b̂ij log

(∑
i∈A

b̂ij

)
+
∑
j∈G

∑
i∈A

b̂ij +
∑
i∈A

(wi logwi − wi)∑
j∈G

b̂ij = wi

∑
i∈A

b̂ij
wi

= 1− τj

b̂, τ ≥ 0.

Observe that the supremum in the above program can be switched to maximum because the
feasible region is compact and the objective is bounded. Also,

∑
i,j b̂ij =

∑
i∈Awi for any

feasible b̂. Finally, substituting bij =
b̂ij
wi

and qj =
∑

i∈A bij , we obtain (CVX-Weighted).

4.6.3 Improving the Approximation in Pseudo-polynomial Time.
It is possible to save the factor of DKL(w ‖u) which is lost in Algorithm 6 if, instead of using
an optimal solution to the support-restricted convex program, we use a locally-optimal solution
to the non-convex program. The downside is that we are unable to find such a locally-optimal

142

solution in polynomial time in the inputs. Instead, we give a pseudo-polynomial time algorithm,
where the running-time depends on the unary representation of the weights wi and the valuations
vij , which does give a polynomial-time algorithm in the case that the valuations are bounded.

Algorithm 7 Alternative Algorithm for Rounding an Acyclic Solution

Require: NSW instance (A,G,v,w), solution (b,q) ∈ P(A,G)
1: (b?,q?)← locally optimal acyclic solution of (NCVX-Weighted) starting from (b,q)
2: F ? ← Gsupp(b?) with every tree rooted at an agent node
3: Remove edges between item j and its children in F ? whenever q?j <

1
2

to get forest F̃ .
Pruning

4: L?i ← set of leaf children of agent i in F̃ ; L? ←
⋃
i L

?
i

5: M? ← matching between A → G \ L? in F̃ maximizing:

wF̃ (M) :=
∑
i∈A

wi log

viM(i) +
∑
j∈L?i

vij


6: σ? ← assignment with σ?(j) = i if j ∈ L?i ∪M?(i) . Matching

Ensure: σ?

The only difference with the previous algorithm is that the input solution need not be acyclic,
and in step 2 we find a locally-optimal solution of the non-convex program. We will also need
an alternative result to replace Theorem 4.1.6 in the analysis.

Theorem 4.6.13. For a Nash Social Welfare instance (A,G,v,w), given a vector b ∈ P(A,G)
such that the support of b is a forest, there exists a deterministic pseudo-polynomial time algo-
rithm (Algorithm 6) which returns an assignment σ : G → A such that

NSW(σ) ≥ fncvx(b)− 2 log 2− 1

2e
.

Note that, other than the running time, this result would imply Theorem 4.1.6 as well since
Lemma 4.2.4 states that fncvx(b) ≥ fcvx(b)−DKL(w ‖u).

Looking into the proof of Theorem 4.1.6, the only thing which we need to change is to provide an
alternative to Lemma 4.4.3 in terms of the non-convex objective. Lemma 4.4.3 gave us a way to
bound the change in objective between an acyclic locally-optimal solution and another solutions
with the same support. The proof used the optimality conditions for (CVX-Weighted), so we
will use the local-optimality conditions for (NCVX-Weighted) and prove the following lemma.

Lemma 4.6.14. Let (b?,q?) be an acyclic locally-optimal solution to (NCVX-Weighted). Let
(b,q) be a feasible point in P(A,G) such that the support of b is a subset of the support of b?,
and for any j ∈ G, if q?j = 1, then qj = 1. Then

fncvx(b?,q?)− fncvx(b,q) ≤
∑
j∈G

∑
i∈A

wi bij log

(∑
i∈Awi bij∑
i∈Awi b

?
ij

)
.

143

Before providing a proof of this lemma, we will use it to prove Theorem 4.6.13. The proof is
essentially identical to the proof of Theorem 4.1.6

Proof of Theorem 4.6.13. Let (b?,q?) be a locally-optimal acyclic solution of (NCVX-Weighted),
let F̃ denote the forest obtained after pruning Gsupp(b?). Let L?i denote the set of leaf children
of agent i in F̃ .

Let (bpruned,qpruned) be a feasible solution guaranteed by Lemma 4.4.4 on input (b?,q?). We
are guaranteed that q?j ≤ qpruned

j for each item j with q?j ≥ 1/2, each item with q?j is a leaf in
the support of the pruned solution connected to its parent in F , and for any (i, j) ∈ A × G,
bpruned
ij ≤ min{1, 2 · b?ij}. Using Lemma 4.6.14 the difference in objective is bounded

fncvx(b?,q?)− fncvx(bpruned,qpruned) ≤
∑
j∈G

∑
i∈A

wi b
pruned
ij log

(∑
i∈Awi b

pruned
ij∑

i∈Awi b
?
ij

)
≤
∑
j∈G

∑
i∈A

wi b
pruned
ij log 2 = log 2

Using Lemma 4.4.2 on (bpruned,qpruned) with function S(i) = L?i , we conclude that there exists
a matching, M , in Gsupp(bpruned) such that

∑
i∈A

wi log

viM(i) +
∑
j∈L?i

vij

 =
∑
i∈A

wi log

viM(i) +
∑
j∈S(i)

vij


≥ fncvx(bpruned,qpruned)− log 2− 1

2e
.

Since Gsupp(bpruned) is a subgraph of F̃ , the matching M is also present in F̃ . Therefore, the
matching M? (and corresponding assignment σ?) returned by Algorithm 7 satisfies

NSW(σ?) =
∑
i∈A

wi log

viM?(i) +
∑
j∈L?i

vij

≥∑
i∈A

wi log

viM(i) +
∑
j∈L?i

vij


≥fncvx(bpruned,qpruned)− log 2− 1

2e

≥fncvx(b?,q?)− 2 log 2− 1

2e
,

where the second inequality follows from Lemma 4.4.2, and the last inequality follows from our
earlier bound on the difference in objective between the two solutions.

Technical Lemmas

In this section we provide a proof of Lemma 4.6.14. We will break the proof into a couple
intermediate steps to highlight how we are using the local optimality conditions, and the rela-
tionship between the natural conclusions for the convex and non-convex objectives. The first
lemma summarizes the first-order optimality conditions.

144

Lemma 4.6.15. If (b?,q?) is a first-order stationary solution of NCVX-Weighted then there exists
real numbers {λi}i∈A and {ηj}j∈G ≥ 0 such that ηj(1− q?j) = 0 for all j ∈ G and if b?ij > 0 then

log vij = log q?j +
λi
wi

+

∑
i∈Awibij

wiq?j
+
ηj
wi
.

Proof. If (b?,q?) is a first-order stationary solution of (NCVX-Weighted), then using the KKT
conditions, there exist λi, γj ∈ R and αij, ηj ≥ 0 such that

∂L

∂b?ij
= wi log vij − wi log q?j − λ+ γ + αij = 0

∂L

∂q?j
= −

∑
i∈Awib

?
ij

q?j
+ γj − ηj = 0,

and which satisfy the complementary slackness conditions:

ηj(1− q?j) = 0

αijb
?
ij = 0.

Substituting the value of γ from the second Equation into the first and using the complementary
slackness condition, if bij > 0 we see

log vij = log q?j +
λi
wi

+

∑
i∈Awibij

wiq?j
+
ηj
wi
.

The next lemma uses the first-order optimality conditions to derive a bound on the change in
objective for certain types of solutions.

Lemma 4.6.16. Let (b?,q?) be any acyclic first order stationary point of NCVX-Weighted. Let
(b,q) be a feasible point in P(A,G) such that the support of b is a subset of the support of b?,
and for any j ∈ G, if q?j = 1, then qj = 1. Then

fncvx(b?,q?)− fncvx(b,q) = 1 +
∑
i∈A

∑
j∈G

wibij log

(
qj
q?j

)
−
∑
i∈A

∑
j∈G

wib
?
ij

(
qj
q?j

)
.

Proof. Expanding the difference between the two objective values, we get

fncvx(b?,q?)− fncvx(b,q) =
∑
i∈A

∑
j∈G

wi(b
?
ij − bij) log vij − wib?ij log q?j + wibij log qj.

Since (b?,q?) is locally optimal, Lemma 4.6.15 implies that there exist real numbers {λi}i∈A
and {ηj}j∈G ≥ 0 such that ηj(1− q?j) = 0 for all j ∈ G and if b?ij > 0 then

log vij = log q?j +
λi
wi

+

∑
i∈Awibij

wiq?j
+
ηj
wi
.

145

Substituting this into our expression for the change in objective gives

fncvx(b?,q?)− fncvx(b,q) =
∑
i∈A

∑
j∈G

wi(b
?
ij − bij)

(
log q?j +

λi
wi

+

∑
i∈Awibij

wiq?j
+
ηj
wi

)
+
∑
i∈A

∑
j∈G

wibij log qj − wib?ij log q?j

=
∑
i∈A

∑
j∈G

wibij
(
log qj − log q?j

)
+
∑
i∈A

λi

(∑
j∈G

b?ij −
∑
j∈G

bij

)

+
∑
j∈G

(
ηj +

∑
i∈Awib

?
ij

q?j

)(∑
i∈A

b?ij −
∑
i∈A

bij

)
.

Using the fact that
∑

j∈G b
?
ij =

∑
j∈G bij = 1 we can eliminate a term, and use

∑
i∈A b

?
ij = q?j

and
∑

i∈A bij = qj to simplify and see that

fncvx(b?,q?)− fncvx(b,q) =
∑
i∈A

∑
j∈G

wibij
(
log qj − log q?j

)
+
∑
j∈G

(
ηj +

∑
i∈Awib

?
ij

q?j

)(
q?j − qj

)
.

Now, using the complementary slackness conditions, we know that if q?j < 1 then ηj = 0
and therefore ηj(q?j − qj) = 0. Alternatively, if q?j = 1, then by assumption qj = 1 and still
ηj(q

?
j − qj) = 0. Substituting this in the above

fncvx(b?,q?)− fncvx(b,q) =
∑
i∈A

∑
j∈G

wibij
(
log qj − log q?j

)
+
∑
j∈G

∑
i∈Awib

?
ij

q?j

(
q?j − qj

)
= 1 +

∑
i∈A

∑
j∈G

wibij log

(
qj
q?j

)
−
∑
i∈A

∑
j∈G

wib
?
ij

(
qj
q?j

)
.

Now we are finally ready to prove the main lemma.

Proof of Lemma 4.6.14. Using Lemma 4.6.16 we know that

fncvx(b?,q?)− fncvx(b,q) = 1 +
∑
j∈G

log

(
qj
q?j

)∑
i∈A

wibij −
∑
j∈G

(
qj
q?j

)∑
i∈A

wib
?
ij.

Note that for any item j

log

(
qj
q?j

)∑
i∈A

wibij −
(
qj
q?j

)∑
i∈A

wib
?
ij ≤

(∑
i∈A

wibij

)
log

(∑
i∈Awibij∑
i∈Awib

?
ij

)
−

(∑
i∈A

wibij

)
.

146

This inequality follows from the fact that for any α, β ≥ 0

max
x≥0

α log(x)− βx = α log

(
α

β

)
− α.

Since
∑

j∈G
∑

i∈Awibij = 1 we conclude that

fncvx(b?,q?)− fncvx(b,q) ≤
∑
j∈G

∑
i∈A

wi bij log

(∑
i∈Awi bij∑
i∈Awi b

?
ij

)
.

Finding a locally-optimal solution

Our specific goal is to find a locally optimal solution to the problem maxb∈P(A,G) fncvx(b). Our
objective is not concave, but recall that

fcvx(b)− fncvx(b) = DKL(w ‖u)−DKL(µ ‖ θ) .

where

µj(b) :=
∑
i∈A

wibij and θj(b) :=

∑
i∈A bij

n
.

The function fcvx is concave, and the first term in the gap is a constant. Therefore, we can define

g(b) := DKL(µ(b) ‖ θ(b)) ,

so that −fncvx(b) + g(b) is convex.

With this setup we can fit our problem into a more general framework. Suppose we want to find
a locally optimal solution to the problem minx∈K f(x), where f(x) is not necessarily convex, but
we do have the additional assumption that there is a convex function g(x) such that f(x) + g(x)
is convex. The following approach is a simplified version of standard techniques from first-order
methods [122], and is also similar to the approach used for weakly convex functions [64]. To get
an approximate locally optimal solution we use gradient descent with the Bregman divergence
of g:

Dg(x, y) := g(x)− g(y)− 〈∇g(y), x− y〉.

Algorithm 8 Gradient Descent with Bregman Divergence
Require: Functions f , g such that g and f + g are convex; δ > 0; initial x0 ∈ K

1: k ← 0
2: while ‖∇f(xk)‖ > δ do
3: xk+1 ← arg minx∈K f(x) +Dg(x, xk)
4: k ← k + 1
5: end while

Ensure: xk

We can solve the internal minimization problem, since the objective is convex.

147

Lemma 4.6.17. If f and g are functions such that g and f + g are convex, then for any fixed
choice of y ∈ Rn, the function f(x) +Dg(x, y) is convex.

Proof. By the definition of Bregman divergence f(x) + Dg(x, y) is equal to f(x) + g(x) with
some additional linear term that does not affect convextity.

After sufficiently many iteration, we are guaranteed to find a point x where ∇f(x) is close to
zero.

Lemma 4.6.18. Let f be a function such that there exists a convex g such that f + g is convex
and where Dg(x, x

′) < ε implies ‖∇g(x) − ∇g(x′)‖ < δ, and let K be a convex set. Then for
N ≥ f(x0)−maxx∗∈K f(x∗)

ε
there is i ≤ N such that the distance between ∇f(xi) and the normal

cone of K is at most δ.

Proof. We will first show that there is i ≤ N such that

Dg(xi+1, xi) ≤ ε

as follows. By the optimality of xk+1 we know that

f(xk+1) +Dg(xk+1, xk) ≤ f(xk) +Dg(xk, xk) = f(xk).

Summing, we get

f(xN) +
N−1∑
i=1

Dg(xi+1, xi) ≤ f(x0).

Now we pickN =
f(x0)−maxx∗∈K f(x∗)

ε
, so that by averaging, there is i ≤ N such thatDg(xi+1, xi) ≤

ε. By the assumption on the function g we know that ‖∇g(xi+1) − ∇g(xi)‖ < δ,. By the opti-
mality of xi+1 we know that the gradient of f(x) + Dg(x, xi) is inside the normal cone of K at
xi+1. Thus we see that

∇f(xi+1) +∇g(xi+1)−∇g(xi) = ∇xf(xi+1) +∇xDg(xi+1, xi),

is inside the normal cone of K at xi+1. Thus the distance from ∇f(xi+1) to the normal cone of
K at xi+1 is at most ‖∇g(xi)−∇g(xi+1)‖, which we know is small by our choice of i.

The rest of this section is devoted to showing that Dg(b, b
′) < ε implies ‖∇g(b) −∇g(b′)‖ < δ

for our particular choice of g, and where δ depends polynomially on n, the weights wi and the
valuations vij .

To ensure the gradient descent algorithm runs in pseudo-polynomial time, we need lower bounds
on µ and θ which will be used later to upper bound the eigenvalues of the hessian of g∗. To
do this, we give a slightly stronger relaxation. For each i ∈ A let ρi =

minj:vij>0 vij

maxj:vij>0 vij
and let

ρ∗ = mini ρi.

148

max
b

fncvx(b) :=
∑
i∈A

∑
j∈G

wi bij log vij −
∑
j∈G

∑
i∈A

wi bij log

(∑
i∈A

bij

)

s.t.
∑
j∈G

bij = 1 ∀i ∈ A∑
i∈A

bij ≤ 1 ∀j ∈ G

bij ≥ 0 ∀(i, j) ∈ A× G
1

n

∑
i∈A

bij ≥
1

n2
ρ∗ ∀(i, j) ∈ A× G

∑
i∈A

wibij ≥
miniwi
n

ρ∗ ∀(i, j) ∈ A× G.

This is still a relaxation for the weighted Nash Social Welfare problem, because for any assign-
ment σ : G → A we can again set

bij =

{ vij
Vi

i = σ(j)

0 otherwise

and we see that
1

n

∑
i∈A

bij =
1

n

vσ(j)j

Vσ(j)

≥ 1

n2
ρ∗, and

∑
i∈A

wibij = wi
vσ(j)j

Vσ(j)

≥ miniwi
n

ρ∗.

Let P(A,G; ρ∗) denote the feasible region. Note that the lower bounds in the relaxation are not
polynomial in the input size for the valuations vij , but depend on the unary representation of the
valuations. This will still give a polynomial time algorithm when the valuations are bounded.

Recall that
Dg(b, b

′) = g(b)− g(b′)− 〈∇g(b′), b− b′〉.
and that the Fenchel conjugate of g is defined as

g∗(x) = sup
y
{〈y, x〉 − g(y)},

and that it is always convex.

We will use the following two well-known facts about Bregman divergence and Fenchel conju-
gates. It allows us to relate a small Bregman divergence to a small Bregman divergence for the
Fenchel conjugate between the swapped gradients.

149

Fact 4.6.19.
Dg(b, b

′) = Dg∗(∇g(b′),∇g(b)).

We want to show that if Dg(b, b
′) < ε then ‖∇g(b) − ∇g(b′)‖ < δ, where ε and δ are only

polynomially small in terms of the input. Using the above lemma, this becomes equivalent to
showing a quadratic lower bound (with polynomial-sized coefficient) on Dg∗ . To get there, we
will also need the following fact about Fenchel conjugate.

Fact 4.6.20.
∇g∗(x) = (∇g)−1(x).

We will use this fact as follows: the optimal choice of y is ∇g−1(x) = ∇g∗(x), so if we can
calculate the Jacobian of y, this will also be the Hessian of g∗ at x. Note that since g∗ is always
convex, we know that the Hessian of g∗ will be positive semidefinite.

Lemma 4.6.21. If b ∈ P(A,G; ρ∗) then Dg(b, b
′) < ε implies ‖∇g(b) − ∇g(b′)‖ < δ, where ε

depends linearly on δ and polynomially on n, the weights wi and the valuations vij .

Proof. In what follows, we will keep everything in terms of θj and µj as much as possible for
the sake of clarity. Just note that µj(b) and θj(b) depend only on {bij}i∈A, and that for all i ∈ A

∂

∂bij
µj(b) = wi and

∂

∂bij
θj(b) =

1

n
.

Thus,

∂

∂bij
DKL(µ ‖ θ) = wi log µj(b) + wi − wi log θj(b)−

1

n

µj(b)

θj(b)

= wi log
µj(b)

θj(b)
+ wi −

1

n

µj(b)

θj(b)
.

This gives us the negative gradient of g. Since the sum on the KL-divergence is separable over j,
we will suppress the j index from now on for simplicity. The Hessian of g will be block diagonal
with a block for each j, so it suffices to prove a lower bound on the eigenvalues of each block.
For fixed x, we know that the optimal choice of y in the definition of g∗(x) will satisfy

xi = wi log
µ(y)

θ(y)
+ wi −

1

n

µ(y)

θ(y)
.

Differentiating this with respect to xi and xk for k 6= i we get the following system of equations:

1 =
∑
i′∈A

∂yi′

∂xi
· ∂

∂yi′

(
wi log

µ(y)

θ(y)
+ wi −

1

n

µ(y)

θ(y)

)
=
∑
i′∈A

∂yi′

∂xi
·
(
wiwi′

µ(y)
− wi
nθ(y)

−
wi′θ(y)− 1

n
µ(y)

nθ(y)2

)

150

=
∑
i′∈A

∂yi′

∂xi
·
(
wiwi′

µ(y)
− wi + wi′

nθ(y)
+

µ(y)

n2θ(y)2

)
,

and, using similar simplifications,

0 =
∑
i′∈A

∂yi′

∂xk
·
(
wiwi′

µ(y)
− wi + wi′

nθ(y)
+

µ(y)

n2θ(y)2

)
.

Note that the terms
wiwi′

µj(y)
− wi + wi′

nθ(y)
+

µ(y)

n2θ(y)2
,

depend only on i and i′, and they are symmetric so we can put them into a matrix

A = [aii′] =

[
wiwi′

µ(y)
− wi + wi′

nθ(y)
+

µ(y)

n2θ(y)2

]
.

Rewriting our system of equations, and noting that Dxy = ∇2g∗, we get the matrix equation

A · ∇2g∗ = I,

which implies that∇2g∗ = A−1. From here, it suffices to prove a polynomial-sized upper bound
on the eigenvalues of A, from which we can conclude a lower bound on the eigenvalues of∇2g∗.
Since we only care about a upper bound that is polynomial in n, it suffices to consider the trace of
A. This will always give an upper bound on the maximum eigenvalue, and dividing the trace by
n gives a lower bound on the maximum eigenvalue, so this is the correct term up to polynomial
factors. The diagonal entries of A are

aii =
w2
i

µ(y)
− 2wi
nθ(y)

+
µ(y)

n2θ(y)2
,

so the trace is ∑
i

aii =

∑
iw

2
i

µ(y)
− 2

nθ(y)
+

µ(y)

nθ(y)2
.

Note also, that when wi = 1
n

, the matrix A has all entries equal to zero. This is consistent, since
the function g is constant in this case, and so g∗ will be +∞ everywhere. Because we have
enforced lower bounds on θ(y) and µ(y) this gives an upper bound on the eigenvalues of ∇2g∗

which is polynomial in n, the weights wi and the valuations vij .

This is enough to prove the following theorem, which allows us to find locally optimal solutions
to the non-convex program, and explains the loss in runtime.

Theorem 4.6.22. Algorithm 8 finds an approximately locally-optimal solution maximizing fncvx

over the restricted feasible region P(A,G; ρ∗) in time polynomial in n, 1/ε, the weights wi, and
the valuations vij . In particular, when the valuations vij and the weights wi are polynomially
bounded by in terms of n it is polynomial time.

151

152

Chapter 5

Fair Subspace Approximation

5.1 Introduction
Large data sets, often represented as collections of high-dimensional points, naturally arise in
fields such as machine learning, data mining, and computational geometry. Despite their high-
dimensional nature, these points typically exhibit low intrinsic dimensionality. Identifying (or
summarizing) this underlying low-dimensional structure is a fundamental algorithmic question
with numerous applications to data analysis. We study a general formulation, that we call the
subspace approximation problem.

In subspace approximation, given a set of n points {a1, . . . , an} ∈ Rd and a rank parameter k,
we consider the problem of “best approximating” the input points with a k-dimensional sub-
space in a high-dimensional space. Here the goal is to find a rank k projection P that minimizes
the projection costs ‖ai − P ai‖, aggregated over i ∈ [n]. The choice of aggregation leads to
different well-studied formulations. In the `p subspace approximation problem, the objective
is (
∑

i ‖ai − P ai‖
p
2). Formally, denoting by A the d × n matrix whose ith column is ai, the

`p-subspace approximation problem asks to find a rank k projection matrix P ∈ Rd×d that mini-
mizes ‖A−PA‖p2,p :=

∑n
i=1 ‖ai−P ai‖

p
2. For different choices of p, `p-subspace approximation

captures some well-studied problems, notably the median hyperplane problem (when p = 1), the
principal component analysis (PCA) problem (when p = 2), and the center hyperplane problem
(when p =∞).

Subspace approximation for general p turns out to be NP-hard for all p 6= 2. For p > 2,
semidefinite programming helps achieve a constant factor approximation (for fixed p) for the
problem [67]. Matching hardness results were also shown for the case p > 2, first assuming
the Unique Games Conjecture [67], and then based only on P 6= NP [95]. For p < 2, hardness
results were first shown in the work of [51].

Due to the ubiquitous applications of subspace approximation in various domains, several “con-
strained” versions of the problem have been extensively studied as well [13, 29, 53, 70, 152, 192].
In the most general setting of the constrained `p-subspace approximation problem, we are addi-

153

tionally given a collection S of rank-k projection matrices (specified either explicitly or implic-
itly) and the goal is to find a projection matrix P ∈ S minimizing the objective. I.e.,

min
P∈S
‖A− PA‖p2,p. (5.1)

Some examples of problems in constrained subspace approximation include the well-studied
column subset selection [4, 26, 28, 49, 66, 94, 183] where the projection matrices are constrained
to project onto the span of k of the original vectors, (k, z)-means clustering in which the set of
projection matrices can be specified by the partitioning of the points into k clusters (see [53] for
a reference), and many more which we will describe in this chapter.

5.1.1 Our Contributions and Applications
In this chapter, we provide a general algorithmic framework for constrained `p-subspace ap-
proximation that yields either (1 + ε)-multiplicative or ε-additive error approximations to the
objective (depending on the setting), with running time exponential in k. We apply the frame-
work to several classes of constrained subspace approximation, leading to new results or results
matching the state-of-the-art for these problems. Note that since the problems we consider are
typically APX-hard (including k-means, and even the unconstrained version of `p-subspace ap-
proximation for p > 2), a running time exponential in k is necessary for our results, assuming
the Exponential Time Hypothesis; a discussion in Section 5.2. Before presenting our results, we
start with an informal description of the framework.

Overview of Approach. Our approach is based on coresets [76] (also [55, 59, 107] and refer-
ences therein), but turns out to be different from the standard approach in a subtle yet important
way. Recall that a (strong) coreset for an optimization problem O on set of points A is a subset
B such that for any solution forO, the cost onB is approximately the same as the cost onA, up
to an appropriate scaling. In the formulation of `p-subspace approximation above, a coreset for
a dataset A is a subset B of its columns with k′ � n columns, such that for all k-dimensional
subspaces, each defined by some P , ‖B − PB‖p2,p ≈ ‖A − PA‖

p
2,p, up to scaling. Thus the

goal becomes to minimize the former quantity.

In the standard coreset approach, first a coreset is obtained, and then a problem-specific enumera-
tion procedure is used to find a near optimal solution P . For example, for the k-means clustering
objective, one can consider all the k-partitions of the points in the coresetB; each partition leads
to a set of candidate centers, and the best of these candidate solutions will be an approximate
solution to the full instance. Similarly for (unconstrained) `p-subspace approximation, one ob-
serves that for an optimal solution, the columns of P must lie in the span of the vectors of B,
and thus one can enumerate over the combinations of the vectors of B. Each combination gives
a candidate P , and the best of these candidate solutions is an approximate solution to the full
instance.

However, this approach does not work in general for constrained subspace approximation. To see
this, consider the very simple constraint of having the columns of P coming from some given
subspace S. Here, the coreset for `p-subspace approximation on A will be some set B that is

154

“oblivious” of the subspace S. Thus, enumerating over combinations of B may not yield any
vectors in S!

Our main idea is to avoid enumeration over candidate solutions, but instead, we view the solution
(the matrix P ∈ Rd×k) as simply a set of variables. We then note that since the goal is to use P
to approximate B, there must be some combination of the vectors of P (equivalently, a set of k
coefficients) that approximates each vector ai in B. If the coreset size is k′, there are only k · k′
coefficients in total, and we can thus hope to enumerate these coefficients in time exp(k ·k′). For
every given choice of coefficients, we can then solve an optimization problem to find the optimal
P . For the constraints we consider (including the simple example above), this problem turns out
to be convex, and can thus be solved efficiently!

This simple idea yields ε-additive approximation guarantees for a range of problems. We then
observe that in specific settings of interest, we can obtain (1 + ε)-multiplicative approxima-
tions by avoiding guessing of the coefficients. In these settings, once the coefficients have been
guessed, there is a closed form for the optimal basis vectors, in the form of low degree polynomi-
als of the coefficients. We can then use the literature on solving polynomial systems of equations
(viewing the coefficients as variables) to obtain algorithms that are more efficient than guessing.
The framework is described more formally in Section 5.3.

We believe our general technique of using coresets to reduce the number of coefficients needed
in order to turn a constrained non-convex optimization problem into a convex one, may be of
broader applicability. We note it is fundamentally different than the “guess a sketch” technique
for variable reduction in [16, 17, 132, 157] and the techniques for reducing variables in non-
negative matrix factorization [141]. To support this statement, the guess a sketch technique
requires the existence of a small sketch, and consequently has only been applied to approximation
with entrywise p-norms for p ≤ 2 and weighted variants [16, 132, 157], whereas our technique
applies to a much wider family of norms.

Relation to Prior Work. We briefly discuss the connection to prior work on binary matrix
factorization using coresets. The work of [185] addresses binary matrix factorization by con-
structing a strong coreset that reduces the number of distinct rows via importance sampling,
leveraging the discrete structure of binary inputs. Our framework generalizes these ideas to con-
tinuous settings: we use strong coresets not merely to reduce distinct rows, but to reduce the
number of variables in a polynomial system for solving continuous constrained optimization
problems. This enables us to extend the approach to real-valued matrices and to more general
loss functions. Overall, our framework can be seen as a generalization and unification of prior
coreset-based “guessing” strategies, adapting them to significantly broader settings.

Applications. We apply our framework to the following applications. Each of these settings
can be viewed as subspace approximation with a constraint on the subspace (i.e., on the projec-
tion matrix), or on properties of the associated basis vectors. Below we describe these applica-
tions, mention how they can be formulated as Constrained Subspace Approximation, and state
our results for them. See Table 5.1 for a summary.

155

Table 5.1: Summary of the upper bound results we get using our framework. In the approximation column,
we use superscripts ∗,+, † to represent multiplicative, additive, or multiplicative-additive approximation
respectively. In the prior work column, we use tilde (∼) to indicate no known theoretical guarantees (only
heuristics), and hyphen (−) to specify that the problem is new.

Problem Running Time Approx. Prior Work

PC-`p-Subspace Approx.
(κ
ε
)poly(k

ε
) · poly(n) (5.4.6)

(
O(εp) · ‖A‖pp,2

)+ -

nO(k
2

ε
) · poly(H) (5.4.7) (1 + ε)∗ -

Constrained Subspace Est.
poly(n) · (1

δ
)O(k

2

ε
) (5.4.3) (1 + ε,O(δ · ‖A‖2

F))† ∼
O(ndγ

ε
)O(k

3

ε
) (5.4.4) (1 + ε)∗ ∼

PNMF
O(dk

2

ε
) · (1

δ
)O(k

2

ε
) (1.4.1) (1 + ε,O(δ · ‖A‖2

F))† ∼
(ndγ
ε

)O(k
3

ε
) (1.4.2) (1 + ε)∗ ∼

k-Means Clustering O(nnz(A) + 2Õ(k
ε

) + no(1)) (5.4.17) (1 + ε)∗ [76]

Sparse PCA dO(k
3

ε2
) · k3

ε
(5.4.19) (ε‖A−Ak‖2

F)+ [65]

Subspace Approximation with Partition Constraints

First, we study a generalization of `p-subspace approximation, where we have partition con-
straints on the subspace. More specifically, we consider PC-`p-subspace approximation, where
besides the point set {a1, · · · , an} ∈ Rd, we are given ` subspaces S1, · · · , S` along with capac-
ities k1, · · · , k` such that

∑`
i=1 ki = k. Now the set of valid projections S is implicitly defined

to be the set of projections onto the subspaces that are obtained by selecting ki vectors from Si
for each i ∈ [`], taking their span.

PC-`p-subspace approximation can be viewed as a variant of data summarization with “fair rep-
resentation”. Specifically, when Si is the span of the vectors (or points) in group i, then by setting
ki values properly (depending on the application or the choice of policy makers), PC-`-subspace
approximation captures the problem of finding a summary of the input data in which groups are
fairly represented. This corresponds to the equitable representation criterion, a popular notion
studied extensively in the fairness of algorithms, e.g., clustering [47, 105, 111, 117].1 We show
the following results for PC-subspace approximation:

• First, in Theorem 5.4.6, we show for any p ≥ 1, an algorithm for PC-`p-subspace approxi-
mation with runtime (κ

ε
)poly(k/ε) ·poly(n) that returns a solution with additive error at most

O(εp) · ‖A‖pp,2, where κ is the condition number of the optimal choice of vectors from the
given subspaces.

• For p = 2, which is one of the most common loss functions for PC-`p-subspace approxi-
mation, we also present a multiplicative approximation guarantee. There exists a (1 + ε)-
approximation algorithm running in time sO(k2/ε) · poly(H) where H is the bit complexity

1We note that the fair representation definitions differ from those in the line of work on fair PCA and column
subset selection [138, 164, 177, 182], where the objective contributions (i.e., projection costs) of different groups
must either be equal (if possible) or ensure that the maximum incurred cost is minimized. We focus on the question
of groups having equal, or appropriately bounded, representation among the chosen low-dimensional subspace (i.e.,
directions). This distinction is also found in algorithmic fairness studies of other problems, such as clustering.

156

of each element in the input and s is the sum of the dimensions of the input subspaces
S1, · · · , S`, i.e., s =

∑`
j=1 dim(Sj). The formal statement is in Theorem 5.4.7.

Constrained Subspace Estimation

The Constrained Subspace Estimation problem originates from the signal processing commu-
nity [166], and aims to find a subspace V of dimension k, that best approximates a collection
of experimentally measured subspaces T1, · · · , Tm, with the constraint that it intersects a model-
based subspace W in at least a predetermined number of dimensions `, i.e., dim(V ∩W) ≥ `.
This problem arises in applications such as beamforming, where the model-based subspace is
used to encode the available prior information about the problem. The paper of [166] formulates
and motivates that problem, and further present an algorithm based on a semidefinite relaxation
of this non-convex problem, where its performance is only demonstrated via numerical simula-
tion.

We show in Section 5.4.1, that this problem can be reduced to at most k instances of PC-`2-
subspace approximation, in which the number of parts is 2. This will give us the following result
for the constrained subspace estimation problem.

• In Corollary 5.4.3, we show a (1 + ε, δ‖A‖2
F)-multiplicative-additive approximation in

time poly(n) · (1/δ)O(k2/ε).

• In Theorem 5.4.4, we show a (1+ε) multiplicative approximation in timeO(ndγ/ε)O(k3/ε)

where we assume A has integer entries of absolute value at most γ. We assume that
γ = poly(n).

Projective Non-Negative Matrix Factorization

Projective Non-Negative Matrix Factorization (PNMF) [193] (see also [189, 194]) is a variant of
Non-Negative Matrix Factorization (NMF), used for dimensionality reduction and data analysis,
particularly for datasets with non-negative values such as images and texts. In NMF, a non-
negative matrix X is factorized into the product of two non-negative matrices W and H such
that X ≈WH where W contains basis vectors, and H represents coefficients. In PNMF, the
aim is to approximate the data matrix by projecting it onto a subspace spanned by non-negative
vectors, similar to NMF. However, in PNMF, the factorization is constrained to be projective.

Formally, PNMF can be formulated as a constrained `2-subspace approximation as follows: the
set of feasible projection matrices S, consists of all matrices that can be written as P = UU>,
where U is a d× k orthonormal matrix with all non-negative entries.

We show the following results:

• In Theorem 1.4.1, we show a (1+ε, δ‖A‖2
F)-multiplicative-additive approximation in time

O(dk2/ε) · (1/δ)O(k2/ε).

• In Theorem 1.4.2, we show a (1 + ε) multiplicative approximation in time (ndγ)O(k3/ε),
where we assume A has integer entries of absolute value at most γ.

157

k-Means Clustering

k-means is a popular clustering algorithm widely used in data analysis and machine learning.
Given a set of n vectors a1, · · · , an and a parameter k, the goal of k-means clustering is to par-
tition these vectors into k clusters {C1, · · · , Ck} such that the sum of the squared distances of
all points to their corresponding cluster center

∑n
i=1 ‖ai − µC(ai)‖2

2 is minimized, where C(ai)
denotes the cluster that ai belongs to and µC(ai) denotes its center. It is an easy observation that
once the clustering is determined, the cluster centers need to be the centroid of the points in each
cluster. It is shown in [53] that this problem is an instance of constrained subspace approxi-
mation. More precisely, the set of valid projection matrices are all those that can be written as
P = XCX

>
C , where XC is a n× k matrix where XC(i, j) is 1/

√
|Cj| if C(ai) = j and 0 other-

wise. Note that this is an orthonormal matrix and thusXCX
>
C is an orthogonal projection matrix.

Further, note that using our language we need to apply the constrained subspace approximation
on the matrix A>, i.e., minP∈S ‖A> − PA>‖2

F .

In Theorem 5.4.17, we show a (1+ε) approximation algorithm for k-means that runs inO(nnz(A)+

2Õ(k/ε) + no(1)) time, whose dependency on k and ε matches that of [76].

Sparse PCA

The goal of Principal Component Analysis (PCA) is to find k linear combinations of the d fea-
tures (dimensions), which are called principal components, that captures most of the mass of the
data. As mentioned earlier, PCA is the subspace approximation problem with p = 2. However,
typically the obtained principal components are linear combinations of all vectors which makes
interpretability of the components more difficult. As such, Sparse PCA which is the optimization
problem obtained from PCA by adding a sparsity constraint on the principal components have
been defined which provides higher data interpretability [27, 40, 65, 102, 195].

Sparse PCA can be formulated as a constrained subspace approximation problem in which the
set of projection matrices are constrained to those that can be written as P = UU> where U is a
d× k orthonormal matrix such that the total number of non-zero entries in the U is at most s, for
a given parameter s.

We give an algorithm that runs in time dO(k3/ε2) (dk3/ε+ d log d) that computes a ε‖A−Ak‖2
F

additive approximate solution, which translates to a (1 + ε)-multiplicative approximate solution
to one formulation the problem (see Theorem 5.4.19 for the exact statement).

Column Subset Selection with Partition Constraint

Column subset selection (CSS) is a popular data summarization technique [4, 29, 53], where
given a matrix A, the goal is to find k columns in A that best approximates all columns of A.
Since in CSS, a subset of columns in the matrix are picked as the summary of the matrix A,
enforcing partition constraints naturally captures the problem of column subset selection with
fair representation. More formally, in column subset selection with partition constraints (PC-
column subset selection), given a partitioning of the columns ofA into ` groups,A(1), · · · ,A(`),

158

along with capacities k1, · · · , k`, where
∑

i ki = k, the set of valid subspaces are obtained by
picking ki vectors fromA(i), and projecting onto the span of these k columns ofA.

In Section 5.5, we show that PC-column subset selection is hard to approximate to any factor
f in polynomial time, even if there are only two groups, or even when we allow for violating
the capacity constraint by a factor of O(log n) (see Theorem 5.5.4 for the formal statement).
This is in sharp contrast with the standard column subset selection problem for which efficient
algorithms with tight guarantees are known.

5.2 Preliminaries

We will heavily use standard notations for vector and matrix quantities. For a matrix M , we
denote byM.,i the ith column ofM and byMi,. the ith row. We denote by ‖M‖F the Frobenius

norm, which is simply
√∑

i,jm
2
ij , where mij is the entry in the ith row and jth column of M .

We also use mixed norms, where ‖M‖2,p =
(∑

i ‖M.,i‖p2
)1/p. I.e., it is the `p norm of the vector

whose entries are the `2 norm of the columns ofM .

We also use σmin(M) to denote the least singular value of a matrix, and σmax(M) to denote the
largest singular value. The value κ(M) is used to denote the condition number, which is the
ratio of the largest to the smallest singular value.

In analyzing the running times of our algorithms, we will use the following basic primitives,
the running times of which we denote as T0 and T1 respectively. These are standard results
from numerical linear algebra; while there are several improvements using randomization, these
bounds will not be the dominant ones in our running time, so we do not optimize them.

Lemma 5.2.1 (SVD Computation; see [89]). Given A ∈ Rd×n, computing the reduced matrix
B as in Lemma 5.3.5 takes time T0 := H ·min{O(nd2), O(nd · k

ε
)}, where H is the maximum

bit complexity of any element ofA.

Lemma 5.2.2 (Least Squares Regression; see [89]). Given A ∈ Rd×n and given a target matrix
B with r columns, the optimization problem minC ‖B −AC‖2

F can be solved in time T1 :=
O(nrd2·H), where H is the maximum bit length of any entry in A,B.

Remark on the Exponential in k Running Times. In all of our results, it is natural to ask
if the exponential dependence on k is necessary. We note that many of the problems we study
are APX hard, and thus obtaining multiplicative (1 + ε) factors will necessarily require expo-
nential time in the worst case. For problems that generalize `p-subspace approximation (e.g.,
the PC-`p-subspace approximation problem, Section 5.4.2), the works of [95] and [51] showed
APX hardness. In these reductions, we in fact have the stronger property that the YES and NO
instances differ in objective value by 1

poly(k)
· ‖A‖p2,p, whereA is the matrix used in the reduction.

Thus, assuming the Exponential Time Hypothesis, even the additive error guarantee in general
requires an exponential dependence on either k or 1/ε.

159

5.3 Framework for Constrained Subspace Approximation
Given a d×nmatrixA and a special collection S of rank k projection matrices, we are interested
in selecting the projection matrix P ∈ S that minimizes the sum of projection costs (raised to
the pth power) of the columns ofA onto P . More compactly, the optimization problem is

min
P∈S

: ‖A− PA‖p2,p. (CSA)

A more geometric and equivalent interpretation is that we have a collection of n data-points
{a1, a2, . . . , an} ⊆ Rd and we would like to approximate these data points by a subspace while
satisfying certain constraints on the subspace:

min :
n∑
i=1

‖ai − âi‖p2 (CSA-geo)

âi ∈ ColumnSpan(P)

P ∈ S.

See Lemma 5.3.2 for a proof of the equivalence. We provide a unified framework to obtain
approximately optimal solutions for various special collections of S. In our framework, there are
three steps to obtaining an approximate solution to any instance of CSA.

1. Build a coreset: Reduce the size of the problem by replacing A with a different matrix
B ∈ Rd×r with fewer number of columns typically poly(k, 1/ε). The property we need to
guarantee is that the projection cost is approximately preserved possibly with an additive
error c ≥ 0 independent of P :

‖B − PB‖p2,p ∈ (1, 1 + ε) · ‖A− PA‖p2,p − c ∀P with rank at most k. (5.2)

Such a P (for p = 2) has been referred to as a Projection-Cost-Preserving Sketch with one
sided error in [53] . See Definition 5.3.3, Theorem 5.3.4, and Lemma 5.3.5 for results ob-
taining such a B for various 1 ≤ p < ∞. Lemma 5.3.7 shows that approximate solutions
to reduced instances (B,S) satisfying Equation (5.2) are also approximate solutions to the
original instance (A,S).

2. Guess Coefficients: Since the projection matrix P is of rank k, it can be represented as
UU> such that U>U = Ik. Using this, observe that the residual matrix

B − PB = B −U(U>B)

can be represented as B − UC where C = U>B is a Rk×r matrix. The norm of the
ith column of C can be bounded by ‖bi‖2 the norm of the ith column of B. This allows
us to guess every column of C inside a k dimensional ball of radius at most the norm of
the corresponding column in B. Using a net with appropriate granularity, we guess the
optimal C up to an additive error.

160

3. Solve: For every fixed C in the search space above, we solve the constrained regression
problem

min
U∈Rd×k:UU>∈S

‖B −UC‖p2,p

exactly. If Ĉ is the C matrix that induces the minimum cost, and Û is the minimizer to
the constrained regression problem, we return the projection matrix ÛÛ>.

The following lemma formalizes the framework above and can be used as a black box application
for several specific instances of CSA.

Lemma 5.3.1. Given an instance (A,S) of CSA, for 1 ≤ p <∞,

1. Let Ts be the time taken to obtain a smaller instance (B,S) such that the approximate cost
property in Equation (5.2) is satisfied and the number of columns inB is r.

2. Let Tr be the time taken to solve the constrained regression problem for any fixedB ∈ Rd×r

and C ∈ Rk×r

min
U∈Rd×k:UU>∈S

‖UC −B‖p2,p. (5.3)

Then for any granularity parameter 0 < δ < 1, we obtain a solution P ∈ S such that

‖A− PA‖p2,p ≤ (1 + ε)OPT + ∆ (5.4)

in time Ts + Tr ·O((1/δ)kr).

Here, ∆ = (1 + ε)‖A‖p2,p · ((1 + δ)p − 1) and OPT = min
P ′∈S

‖A− P ′A‖p2,p.

Proof. Let the optimal solution to the instance (A,S) be P ∗ = U ∗U ∗> and let C∗ = U ∗>B.
Since the columns of U ∗ are unit vectors, the norm of the ith column of C∗ is at most ‖bi‖2

the norm of the ith column of B. We will try to approximately guess the columns of C∗ using
epsilon nets. For each i, we search for the ith column of C using a (‖bi‖2 · δ)-net inside a k
dimensional ball of radius ‖bi‖2 centered at origin. The size of the net for each column of C is
O((1/δ)k) and hence the total search space over matrices C has O((1/δ)kr) possibilities.

For each C, we solve the constrained regression problem in Equation (5.3). Let Ĉ be the ma-
trix for which the cost is minimized and Û be the corresponding minimizer to the constrained
regression problem respectively. Consider the solution P̂ = ÛÛ>. The cost of this solution on
reduced instance (B,S) is

‖B − ÛÛ>B‖p2,p ≤ ‖B − ÛĈ‖
p
2,p. (5.5)

Let C be the matrix in the search space such that ‖C .,i − C∗.,i‖2 ≤ ‖bi‖2 · δ for every i ∈ [r].
Using the cost minimality of Ĉ, we can imply that the above cost is

≤ min
U∈Rd×k:UU>∈S

‖B −UC‖p2,p (5.6)

161

≤ ‖B −U ∗C‖p2,p. (5.7)

It remains to upper bound the difference ∆ = ‖B − U ∗C‖p2,p − ‖B − U ∗C∗‖
p
2,p. If we let

b∗i := (U ∗C∗).,i and bi := (U ∗C).,i for i ∈ [r], then

∆ =
r∑
i=1

(
‖bi − bi‖p2 − ‖bi − b∗i ‖

p
2

)
. (5.8)

Using the fact that ‖C .,i −C∗.,i‖2 ≤ ‖bi‖2 · δ, we know that

‖bi − b∗i ‖2 = ‖U ∗(C .,i −C∗.,i)‖2 ≤ ‖C .,i −C∗.,i‖2 ≤ ‖bi‖2 · δ. (5.9)

This implies that each error term

∆i := ‖bi − bi‖p2 − ‖bi − b∗i ‖
p
2 (5.10)

≤ (‖bi − b∗i ‖2 + ‖b∗i − bi‖2)p − ‖bi − b∗i ‖
p
2 (Triangle inequality)

≤ (‖bi − b∗i ‖2 + ‖bi‖ · δ)p − ‖bi − b∗i ‖
p
2 (‖bi − b∗i ‖2 ≤ ‖bi‖2 · δ)

≤ ‖bi‖p2 · ((1 + δ)p − 1) . ((x+ δ)p − xp is increasing in [0, 1], ‖bi − b∗i ‖2 ≤ ‖bi‖2)

Summing up, the total error ∆ is at most ‖B‖p2,p · ((1 + δ)p − 1) = O(δp) · ‖B‖p2,p for δ ≤ 1/p.
This implies that

‖B − P̂B‖p2,p ≤ ‖B − P ∗B‖
p
2,p + ‖B‖p2,p · ((1 + δ)p − 1) (5.11)

Using the property ofB from Equation (5.2), we can imply that

‖A− P̂A‖p2,p ≤ (1 + ε)‖A− P ∗A‖+ ‖B‖p2,p · ((1 + δ)p − 1) . (5.12)

setting P = 0 in Equation (5.2) and using the fact that c ≥ 0 gives ‖B‖p2,p ≤ (1 + ε)‖A‖p2,p.
Plugging this in the equation above gives

‖A− P̂A‖p2,p ≤ (1 + ε)‖A− P ∗A‖+ (1 + ε)‖A‖p2,p · ((1 + δ)p − 1) (5.13)

The total time taken by the algorithm is Ts + Tr ·O((1/δ)kr).

Lemma 5.3.2. The mathematical programs CSA and CSA-geo equivalent to the following “con-
strained factorization” problem:

min
UU>∈S,H∈Rd×n

‖A−UH‖p2,p. (CSA-fac)

Proof. First, we will prove the equivalence between CSA and CSA-fac.

1. The easier direction to see is minUU>∈S,H∈Rd×n ‖A − UH‖p2,p ≤ minUU>∈S ‖A −
UU>A‖p2,p because settingH = U>A in CSA-fac gives CSA.

162

2. For the other direction, it suffices to show that for any fixed choice ofU such thatUU> ∈
S, an optimal choice ofH is U>A. In order to see this, observe that the problem

min
H
‖A−UH‖p2,p = min

H

n∑
i=1

‖ai −Uhi‖p2 (5.14)

where ai and hi are the ith columns of A and H respectively. Since the cost function
decomposes into separate problems for each column, we can push the minimization inside.

=
n∑
i=1

(
min
hi
‖ai −Uhi‖2

)p
. (5.15)

Using normal equation, the optimal choice for hi satisfies U>Uhi = U>ai. Since the
columns of U are orthonormal, this implies that hi = U>ai for each i ∈ [n] and hence
H = U>A.

Now we show the equivalence between CSA-fac and CSA-geo. Observe that CSA-geo can be
re-written as

min
n∑
i=1

‖ai − âi‖p2

âi ∈ ColumnSpan(U)

UU> ∈ S.

Because the column span of P = UU> is identical to the column span of U . Replacing âi ∈
ColumnSpan(U) by âi = Uhi gives CSA-fac.

Definition 5.3.3 (Strong coresets; as defined in [186]). Let 1 ≤ p < ∞ and 0 < ε < 1. Let
A ∈ Rd×n. Then, a diagonal matrix S ∈ Rn×n is a (1 ± ε) strong coreset for `p subspace
approximation if for all rank k projection matrices PF , we have

‖(I − PF)AS‖p2,p ∈ (1± ε)‖(I − PF)A‖p2,p. (5.16)

The number of non-zero entries nnz(S) of S will be referred to as the size of the coreset.

Theorem 5.3.4 (Theorems 1.3 and 1.4 of [187]). Let p ∈ [1, 2)∪ (2,∞) and ε > 0 be given, and
letA ∈ Rd×n. There is an algorithm running in Õ(nnz(A) + dω) time which, with probability at
least 1− δ, constructs a strong coreset S that satisfies Definition 5.3.3 and has size:

nnz(S) =

{
k

ε4/p
(log(k/εδ))O(1) if p ∈ [1, 2),

kp/2

εp
(log(k/εδ))O(p2) if p ∈ (2,∞).

(5.17)

Remark. Note that for anyS that satisfies the property in Definition 5.3.3, we can scale it up to
satisfy ‖(I −PF)AS‖pp,2 ∈ (1, 1 + ε)‖(I −PF)A‖pp,2 matching the condition in Equation (5.2).

163

For many of the applications, we have p = 2. For this case, the choice of the reduced matrix B
that replacesA is simply the matrix of scaled left singular vectors ofA. More formally,

Lemma 5.3.5. When p = 2, ifA =
n∑
i=1

σipiq
>
i be the singular value decomposition ofA (where

σi is the ith largest singular value and pi ∈ Rd, qi ∈ Rn are the left singular vector and right

singular vector corresponding to σi), then B =
r∑
i=1

σipiq
>
i satisfies Equation (5.2) for r =

k + k/ε.

Proof. For any two arbitrary projection matrices P and P ′ of rank ≤ k, consider the difference(
‖A− PA‖2

F − ‖B − PB‖2
F

)
−
(
‖A− P ′A‖2

F − ‖B − P ′B‖2
F

)
(5.18)

= 〈AA>, I − P 〉 − 〈BB>, I − P 〉 − 〈AA>, I − P ′〉+ 〈BB>, I − P ′〉 (5.19)

= 〈AA> −BB>,P ′〉 − 〈AA> −BB>,P 〉 (5.20)

≤ 〈AA> −BB>,P ′〉 (AA> −BB> � 0, P � 0)

≤
r+k∑
i=r+1

σi (rank of P ′ ≤ k)

≤ k · σr (σr ≥ σr′ , r
′ ≥ r)

≤ k

r − k
·

(
r∑

i=k+1

σi

)
(σr ≤ σr′ , r

′ ≤ r)

≤ k

r − k
‖A−Ak‖2

F = ε‖A−Ak‖2
F . (‖A−Ak‖2

F =
d∑

i=k+1

σi)

If we let c := maxrank(P)≤k (‖A− PA‖2
F − ‖B − PB‖2

F), then we have

c− ε‖A−Ak‖2
F ≤ ‖A− PA‖2

F − ‖B − PB‖2
F ≤ c

for any projection matrix P of rank at most k. This can we re written as

‖B − PB‖2
F ∈ (0, ε) · ‖A−Ak‖2

F + ‖A− PA‖2
F − c. (5.21)

Using the fact that ‖A−Ak‖2
F ≤ ‖A− PA‖2

F , we get

‖B − PB‖2
F ∈ (1, 1 + ε) · ‖A− PA‖2

F − c.

The fact that c ≥ 0 follows from the fact that

‖A− PA‖2
F − ‖B − PB‖2

F = 〈AA> −BB>, I − P 〉 (5.22)
≥ 0. (AA> −BB> � 0, I − P � 0)

164

Remark 5.3.6. Notice that when p = 2, Lemma 5.3.5 proves the condition in Equation (5.21):

‖B − PB‖2
F ∈ (0, ε) · ‖A−Ak‖2

F + ‖A− PA‖2
F − c

which is stronger than the condition in Equation (5.2).

Lemma 5.3.7. If (A,S) is an instance of CSA and B ∈ Rd×r is a matrix that satisfies Equa-
tion (5.2), and

P̂ := arg min
P∈S

‖B − PB‖p2,p, P ∗ := arg min
P∈S

‖A− PA‖p2,p, (5.23)

then P̂ is an (1 + ε)-approximate solution to the instance (A,S) i.e.,

‖A− P̂A‖p2,p ≤ (1 + ε)‖A− P ∗A‖p2,p. (5.24)

1. More generally, if P̂ is an approximate solution to (B,S) such that

‖B − P̂B‖p2,p ≤ α‖B − PB‖p2,p + β ∀P ∈ S,

for some α ≥ 1, β ≥ 0, then we have

‖A− P̂A‖p2,p ≤ α(1 + ε)‖A− P ∗A‖p2,p + β.

2. For the specific case when p = 2, if P̂ is an exact solution to (B,S), then we have

‖A− P̂A‖2
F ≤ ‖A− P ∗A‖2

F + ε‖A−Ak‖2
F .

Proof. 1. Using the approximate optimality of P̂ for the instance (B,S), we have

‖B − P̂B‖p2,p ≤ α‖B − P ∗B‖p2,p + β. (5.25)

Using the lower-bound and upper-bound from Equation (5.2) for the LHS and RHS, we
get

‖A− P̂A‖p2,p − c ≤ α(1 + ε)‖A− P ∗A‖p2,p − αc+ β. (5.26)

Since α ≥ 1 and c ≥ 0, we get

‖A− P̂A‖p2,p ≤ α(1 + ε)‖A− P ∗A‖p2,p + β. (5.27)

2. Using the optimality of P̂ for the instance (B,S) for with p = 2, we have

‖B − P̂B‖2
F ≤ ‖B − P ∗B‖2

F . (5.28)

Using Remark 5.3.6, we know that ‖B−PB‖2
F ∈ (0, ε) · ‖A−Ak‖2

F +‖A−PA‖2
F − c

for any rank k projection matrixP for some c ≥ 0 independent ofP (see Equation (5.21)).
Using this, we get

‖A− P̂A‖2
F − c ≤ ‖B − P̂B‖2

F ≤ ‖B − P ∗B‖2
F ≤ ‖A− P ∗A‖2

F + ε‖A−Ak‖2
F − c.

Canceling out the −c gives the inequality we claimed.

165

Lemma 5.3.8 (Lemma 4.1 in [50]). If n× d matrixA has integer entries bounded in magnitude
by γ, and has rank ρ ≥ k, then the kth singular value σk of A has | log σk| = O(log(ndγ)) as
nd→∞. This implies that ‖A‖F/∆k ≤ (ndγ)O(k/(ρ−k)) as nd→∞. Here ∆k := ‖A−Ak‖F

5.4 Applications
In this section, we present several applications to illustrate our framework.

5.4.1 Constrained Subspace Estimation [166]
In constrained subspace estimation, we are given a collection of target subspaces T1, T2, . . . , Tm
and a model subspace W . The goal is to find a subspace V of dimension k such that dim(V ∩
W) ≥ ` that maximizes the average overlap between the subspace V and T1, . . . , Tm. More
formally, the problem can be formulated as mathematical program:

max : 〈P T ,PV 〉 (CSE-max)
dim(V) = k, dim(V ∩W) ≥ `, (5.29)

P T =
1

m

m∑
i=1

PTi , (5.30)

PTi and PV are the projection matrices onto the subspaces Ti and V respectively. (5.31)

Let us assume that the constraint dim(V ∩W) ≥ ` is actually an exact constraint dim(V ∩W) = `
because we can solve for k − ` + 1 different cases dim(V ∩W) = i for each ` ≤ i ≤ k. Since
P T is a PSD matrix, let it be AA> for some A ∈ Rd×d. Changing the optimization problem
from a maximization problem to a minimization problem, we get

min : 〈AA>, I − PV 〉 = ‖A− PVA‖2
F (CSE-min)

PV is the projection matrix onto V (5.32)
dim(V) = k, dim(V ∩W) = `. (5.33)

Lemma 5.4.1. The CSE-min problem is a special case of CSA.

Proof. Setting p = 2 and S as the set of k dimensional projection matrices PV such that dim(V ∩
W) = ` in CSA gives CSE-min.

Let B ∈ Rd×r, r = k + k/ε be the reduced matrix obtained as in Lemma 5.3.5. Using
Lemma 5.3.7, it is sufficient to focus on the reduced instance withA replaced instead ofB.

Any subspace V such that dim(V) = k, dim(V ∩W) = ` can be represented equivalently as

V = Span(u1, u2, . . . , u`, v1, v2, . . . , vk−`)

ui ∈ W, vj ∈ W⊥ ∀i ∈ [`], j ∈ [k − `].

166

Using these observations and Lemma 5.3.2, we can focus on the following subspace estimation
program

min : ‖B −UC‖2
F (5.34)

U is a orthogonal basis for Span(u1, . . . , u`, v1, . . . , vk−`) (5.35)

ui ∈ W, vj ∈ W⊥ ∀i ∈ [`], j ∈ [k − `]. (5.36)

SinceC is unconstrained, we can replace the condition in Equation (5.35) with the much simpler
condition U = [u1, . . . , u`, v1, . . . , v`]. This gives

min : ‖B −UC‖2
F (CSE-min-reduced)

U = [u1, . . . , u`, v1, . . . , v`] (5.37)

ui ∈ W, vj ∈ W⊥ ∀i ∈ [`], j ∈ [k − `]. (5.38)

Lemma 5.4.2. For any fixedB ∈ Rd×r andC ∈ Rk×r, the Equation (CSE-min-reduced) can be
solved exactly in poly(n) time.

Proof. For fixed B and C, the objective is convex quadratic in U and the constraints are linear
on U . Linear constrained convex quadratic program can be efficiently solved.

Corollary 5.4.3 (Additive approximation for CSE). Using Lemma 5.3.1, we can get a subspace
V such that dim(V) = k, dim(V ∩W) = ` and

‖A− PVA‖2
F ≤ (1 + ε)OPT +O(δ‖A‖2

F)

for any choice of 0 < δ < 1 in time poly(n) · (1/δ)O(k2/ε).

Lemma 5.3.8 gives a lower bound for OPT when the entries of the input matrix A are integers
bounded in magnitude by γ.

Theorem 5.4.4 (Multiplicative approximation for CSE). Given an instance (A ∈ Rd×n, k,W)
of constrained subspace estimation with integer entries of absolute value at most γ in A, there
is an algorithm that obtains a subspace V such that dim(V) = k, dim(V ∩W) = ` and

‖A− PVA‖2
F ≤ (1 + ε)OPT

in O(ndγ/ε)O(k3/ε) time.

Proof. Using Lemma 5.3.8, we know that ‖A‖2
F/‖A−Ak‖2

F ≤ (ndγ)O(k). Setting δ = ε‖A−
Ak‖2

F/‖A‖2
F ≥ ε(ndγ)−O(k) in Corollary 5.4.3 gives the desired time complexity.

167

5.4.2 Partition Constrained `p-Subspace Approximation
We now consider the PC-`p-subspace approximation problem, which generalizes the subspace
approximation and subspace estimation problems.

Definition 5.4.5 (Partition Constrained `p-Subspace Approximation). In the PC-`p-subspace ap-
proximation problem, we are given a set of target vectors {a1, a2, . . . , an} ⊆ Rd as columns of
a matrix A ∈ Rd×n, a set of ` subspaces S1, . . . , S` ⊆ Rd, and a sequence of capacity con-
straints k1, · · · , k` where k1 + · · · + k` = k. The goal is to select k vectors in total, ki from
subspace Si, such that their span captures as much of A as possible. Formally, the goal is to
select vectors {vi,ti}i≤`,ti≤ki , such that for every i ≤ `, vi,1, . . . , vi,ki ∈ Si, so as to minimize∑

i∈[n] ‖ proj⊥span({vi,ti}i≤`,ti≤ki)
(ai)‖p2.

Our results will give algorithms with running times exponential in poly(k) for PC-`-subspace
approximation. Given this goal, we can focus on the setting where ki = 1, since we can replace
each Si in the original formulation with ki copies of Si, with a budget of 1 for each copy.

PC-`-subspace approximation with Unit Capacity. Given a set of vectors {a1, a2, . . . , an} ⊆
Rd as columns of a matrixA ∈ Rd×n and subspaces S1, . . . , Sk ⊆ Rd, select a vector vi ∈ Si for
i ∈ [k] in order to minimize

∑
i∈[n] ‖ proj⊥span(v1,...,vk)(ai)‖

p
2, where p ≥ 1 is a given parameter. A

more compact formulation is

min :
n∑
i=1

‖ai − âi‖p2 (PC-`p-SA-geo)

âi ∈ Span(v1, . . . , vk) ∀i ∈ [n] (5.39)
vj ∈ Sj ∀j ∈ [k]. (5.40)

Using Lemma 5.3.2, the two other equivalent formulations are

min : ‖A−UU>A‖p2,p (PC-`p-SA)

U is an orthogonal basis for Span(v1, v2, . . . , vk) (5.41)
vi ∈ Si ∀i ∈ [k]. (5.42)

min : ‖A− V C‖p2,p (PC-`p-SA-fac)

V = [v1, . . . , vk] (5.43)
vi ∈ Si ∀i ∈ [k]. (5.44)

In what follows, we thus focus on the unit capacity version. We can use our general framework
to derive an additive error approximation, for any p.

Additive Error Approximation

Theorem 5.4.6. There exists an algorithm for PC-`p-subspace approximation with runtime (κ/ε)poly(k/ε)·
poly(n) which returns a solution with additive error at most O(εp) · ‖A‖pp,2, where κ is the con-
dition number of an optimal solution V ∗ = [v∗1, v

∗
2, . . . , v

∗
k] for the PC-subspace approximation

problem PC-`p-SA-fac.

168

The algorithm we present below assumes a given bound on κ, the condition number. In practice,
we can search for it via doubling and stop when a sufficiently small approximation error is
reached or a certain time complexity is reached. We also note that it may happen that the optimal
solution uses a large κ, but there is an approximately optimal solution with small κ. In this case,
our result can be applied with the smaller κ, and it gives a guarantee relative to the latter solution.

Proof. As a first step, we will find an additive approximation to the smaller instance obtained
by replacing the A matrix with the smaller B matrix as in Lemma 5.3.5. Our proof mimics the
argument from Lemma 5.3.1, but we need a slight change in the analysis because {vj} are not
orthogonal. Note that we can assume without loss of generality that the columns of V ∗ are unit
vectors, σmax(V ∗) ≥ 1 and σmin(V ∗) ≤ 1, and thus κ ≥ 1. Given a bound on κ, the algorithm
is simply the following: we first create a δ-net for the Ball of radius κ in Rk, with δ = ε/κ,
and for each i, we form a guess for the coefficient vector C.,i as ‖bi‖2 · u, where u is a vector
from the net and bi is the ith column of B. For each guess Ĉ, we solve for V that minimizes∥∥∥B − V Ĉ∥∥∥

2,p
subject to vj ∈ Sj . Note that we can drop the unit vector constraints at this point;

this makes the above optimization problem convex (specifically, it is the well-studied problem of
`p regression [2]), which can be solved in polynomial time.

To bound the error, we first note that the optimum coefficients C∗ satisfy the condition that for
each i, ∥∥C∗.,i∥∥ ≤ ‖bi‖2

σmin(V ∗)
≤ ‖bi‖2 · κ.

Now suppose we focus on one target vector bi. By choice, in one of our guessed solutions, say
C, we will have

∥∥C .,i −C∗.,i
∥∥ ≤ ‖bi‖2 · δ. Thus, we have∥∥bi − b∗i∥∥2

≤
∥∥V ∗(C .,i −C∗.,i)

∥∥
2
≤ σmax(V ∗)

∥∥C .,i −C∗.,i
∥∥

2
≤ κ · ‖bi‖2 · δ.

Thus, analyzing the error ∆i as in the proof of Lemma 5.3.1, we obtain

∆i ≤ ‖bi‖p2 · ((1 + ε/p)p − 1) .

This yields the desired additive guarantee to the reduced instance. Using the coreset property
from Equation (5.2), we know that the cost of the solution we find is at most (1 + ε)OPT +
O(εp) · ‖A‖p2,p. Using the fact that OPT ≤ ‖A‖p2,p completes the proof.

Multiplicative Approximation Using Polynomial System Solving

For the special case of p = 2, it turns out that we can obtain a (1 + ε)-multiplicative approxima-
tion, using a novel idea.

As described in our framework, we start by constructing the reduced instance B,S, where B =
{b1, b2, . . . , br} ⊂ Rd is a set of target vectors and S = {S1, S2, . . . , Sk} is the given collection
of subspaces of Rd. We define Pj to be some fixed orthonormal basis for the space Sj . Recall
that any solution to PC-`2-subspace approximation is defined by (a) the vector xj that expresses
the chosen vj as vj = Pjxj (we have one xj for each j ∈ [k]), and (b) a set of combination

169

coefficients cij used to represent the vectors bi using the vectors {vj}kj=1. We collect the vectors
xj into one long vector x and the coefficients cij into a matrix C.

Theorem 5.4.7. LetB,S be an instance of PC-`2-subspace approximation, whereB = {b1, b2, . . . br},
and suppose that the bit complexity of each element in the input is bounded by H . Suppose there
exists an (approximately) optimal solution is defined by the pair (x∗,C∗) with bit complexity
poly(n,H). There exists an algorithm that runs in time nO(k2/ε) · poly(H) and outputs a solu-
tion whose objective value is within a (1 + ε) factor of the optimum objective value. We denote
s =

∑k
j=1 sj and sj = dim(Sj); n for this result can be set to max(s, d, k/ε).

Algorithm Overview. Recall that Pj specifies an orthonormal basis for Sj . Let Pij := cijPj ,
where cij are variables. Define P to be the Rrd×s matrix consisting of r × k blocks; the (i, j)th

block isPij and we letx, b be the vectors representing all the xj, bi stacked vertically respectively
as shown below:

P =


P1,1 P1,2 · · · P1,k

P2,1 P2,2 · · · P2,k

...
...

Pr,1 Pr,2 · · · Pr,k

 , x =


x1

x2

...
xk

 , b =


b1

b2

...
br

 .
The problem PC-`2-subspace approximation can now be expressed as the regression problem:

min
C,x

: ‖Px− b‖2
2. (5.45)

Written this way, it is clear that for any C, the optimization problem with respect to x is simply
a regression problem. For the sake of exposition, suppose that for the optimal solution (C∗,x∗),
the matrix P turns out to have a full column rank (i.e., P>P is invertible). In this case, the we
can write down the normal equation P>Px = P>b and solve it using Cramer’s rule! More
specifically, let D = P>P and D(i)

j be the matrix obtained by replacing the ith column in the
j th column block of D with the column P>b for j ∈ [k], i ∈ [sj]. Using Cramer’s rule, we have
x

(i)
j = det(D

(i)
j)/ det(D).

The key observation now is that substituting this back into the objective yields an optimization
problem over (the variables) C. First, observe that using the normal equation, the objective can
be simplified as

‖Px− b‖2
2 = x>P>Px− x>P>b− b>Px+ ‖b‖2 = ‖b‖2 − b>Px.

Suppose t is a real valued parameter that is a guess for the objective value. We then consider the
following feasibility problem:

‖Px− b‖2
2 = ‖b‖2

2 − b>Px ≤ t (5.46)

⇐⇒ ‖b‖2
2 − t ≤

∑
j∈[k],i∈[sj]

(b>P)
(i)
j det(D

(i)
j), det(D) = 1. (5.47)

170

The idea is to solve this feasibility problem using the literature on solving polynomial systems.
This leaves two main gaps: guessing t, and handling the case of P not having a full column
rank in the optimal solution. We handle the former issue using known quantitative bounds on
the solution value to polynomial systems, and the latter using a pre-multiplication with random
matrices of different sizes.

Core Solver. We begin by describing the details of solving (5.47), assuming a feasible guess
for t, and assuming that P has full column rank. Note that this is an optimization problem in the
variables cij , and so the number of variables is rk = O(k2/ε). Furthermore, the degree of the
polynomials is O(s), and the bit sizes of all the coefficients is poly(n,H).

We can thus use a well-known result on solving polynomial systems over the reals:

Theorem 5.4.8 ([23, 158, 159]). Given a real polynomial system P (x1, . . . , xv) having v vari-
ables and m polynomial constraints fi(x1, . . . , xv)∆i0, where ∆i ∈ {≥,=,≤}, where d is the
maximum degree of all polynomials, and H is the maximum bit-size of the coefficients of the
polynomials, one can find a solution to P (or declare infeasibility) in time (md)O(v)poly(H).

Applying this Theorem to our setting, we obtain a running time of sO(rk) · poly(H) = nO(k2/ε) ·
poly(H), whereH is the maximum bit-size of the entries in the matricesPj and the target vectors
b.

Guessing t. The solver step assumes that we are able to guess a feasible value of t. In order to
perform a binary search, we need some guarantees on the range of the objective value. First, we
note that the value of the objective is in the range [0, ‖b‖2

2], so we have an obvious upper bound.
We can also test if the problem is feasible for t = 0. If t = 0 is infeasible, we need a non-trivial
lower bound on t. Fortunately, this problem has been well-studied in the literature on polynomial
systems. We will use the following Theorem:

Theorem 5.4.9 ([110]). Let T = {x ∈ Rv|f1(x) ≥ 0, . . . , f`(x) ≥ 0, f`+1(x) = 0, . . . , fm(x) =
0} be the feasibility set for a polynomial system, where f1, . . . , fm ∈ Z[x1, . . . , xv] are polyno-
mials with degrees bounded by an even integer d and coefficients of absolute value at most G,
and let C be a compact connected component of T . Let g ∈ Z[x1, . . . , xv] be a polynomial of
degree at most d and coefficients of absolute value bounded by H . Then the minimum value that
g takes over C if not zero, has absolute value at least

(24−v/2G̃dv)−v2vdv ,

where G̃ = max{G, 2v + 2m}.

We can use Theorem 5.4.9 to obtain a lower bound on the minimum non-zero value attainable
for the polynomial

min
C

: ‖b‖2
2 −

∑
j∈[k],i∈[sj]

(b>P)
(i)
j det(D

(i)
j), over the set defined by det(D) = 1. (5.48)

171

Using our assumption that the bit complexity of the (near-) optimal solutionC∗ is ∆ = poly(n,H),
we can add box constraints for each of the variables, making the feasible set compact. Thus, we
have polynomials of degree O(s) defining the constraints and the objective, and the number of
variables is rk = O(k2/ε). Using Theorem 5.4.9, we have that if the minimum value is non-zero,
it must be at least (

2poly(n,H)sv
)−v2vsv

, where v =
k2

ε
.

This implies that a binary search takes time O
(

(2s)k
2/εpoly(n,H)k

4

ε2
log s

)
. Note that this time

roughly matches the complexity of the core Solver procedure.

Column Rank of P . The algorithm above requires the matrix D = P>P to have full rank,
for a (near) optimum C∗. If this does not hold, the idea will be to search over all the possible
values of the rank. One natural idea is to solve the problem for all subsets of the columns [s], but
note that this takes time exp(s), which is much larger than our target running time exp(poly(k)).
We thus perform a randomized procedure: for every guess j for the column rank of P , we take
a random matrix R ∈ Rs×j , and consider the regression problem

min
C,x
‖(PR)x− b‖2 ≤ t. (5.49)

Let M be the P matrix corresponding to an optimal solution C∗, and suppose j is its rank. In
Lemma 5.4.10, we show that if the entries ofR are drawn IID fromN (0, 1), then with probability
at least 3/4, the matrixMR has full column rank. Thus, if we were to solve (5.49) with the opti-
mal value of t as our guess using the Solver discussed above, we would obtain an approximately
optimal solution.

This leads to the following overall algorithm:

• For j = 1, 2, . . . , s:

Sample a random matrix R ∈ Rs×j with entries drawn i.i.d. from N (0, 1).

Guess value of t for the formulation (5.49) as discussed above.

If the determinant is not identically zero, call the core Solve subroutine and check
obtained solution for feasibility.

• Return the solution found as above with the least t.

Note that we can boost the success probability by sampling multiple R for each guess of j. This
completes the proof of our result, Theorem 5.4.7, modulo Lemma 5.4.10 which we prove below.

Lemma 5.4.10. Let M ∈ Rd′×s be a matrix of rank j, and R ∈ Rs×j be a random matrix with
entries drawn i.i.d. from N (0, 1). Then the rank of MR is equal to j with probability ≥ 3/4.

Note that since the ranks are equal, the column spans of M and MR must be the same.

Proof. We will prove a quantitative version of the statement. Suppose we denote the jth largest
singular value of M as τ = σj(M). We will show that σj(MR) ≥ σj

4j3/2
with probability ≥ 3/4.

172

Let S be the span of the columns of M . For a random x whose entries are drawn from N (0, 1),
note that the distribution of Mx is a (non-spherical) Gaussian on S. Moreover the covariance
matrix has all eigenvalues ≥ τ 2. Let us now consider the matrix MR. We use a leave-one-out
argument to show linear independence of its columns. I.e., we claim that every column of MR
has a projection of length at least τ

4j
orthogonal to the span of the other columns, with probability

at least 3/4. This implies (e.g., see [163]) that σj(MR) ≥ σj
4j3/2

with probability at least 3/4.

To see the claim, suppose we condition on all but the ith column of the matrix R, for some
1 ≤ i ≤ j. Then by the earlier observation, the ith column of MR (denoted by Vi) is distributed
as a non-spherical Gaussian on S whose covariance matrix has all eigenvalues ≥ τ 2. Thus its
projection to the space orthogonal to the span of the remaining columns of MR (which are
all fixed after conditioning) behaves as a Gaussian with at least one dimension and standard
deviation ≥ τ . Thus by using the anti-concentration bound for a Gaussian (which states that the
probability mass in any δτ sized interval is ≤ δ), Vi’s projection orthogonal to the span of the
other columns is at least 1

4j
· τ , with probability 1− 1

4j
. We can now take a union bound over all

1 ≤ i ≤ j to obtain a success probability of 3/4. This completes the proof.

Remark about precision. The result above assumes that we use infinite precision for R. We
now show how to avoid this assumption, with a slight loss in the parameters. Note that the
key step in the above argument is showing that conditioned on the randomness in all but the
ith column of R, the vector Vi =

∑s
l=1RilMl has a sufficiently large norm in the direction

orthogonal to the span of the other columns in MR (that are fixed due to the conditioning). For
convenience, let Π be the projector orthogonal to the span of the other columns, and denote
vl = ΠMl, and Xl := Ril. By the assumption on the least singular value, for any Π, we have that∑

l ‖vl‖
2 ≥ τ 2. This implies that there exists a coordinate t ∈ [d′] such that

∑
l v

2
lt ≥ τ2

d′
. Just

focusing on this coordinate, we could note that
∑

l vltXl is distributed as a Gaussian and thus
conclude that the probability of the coordinate being < τ

4j
√
d′

is < 1/4j. This leads to a slightly

weaker (by a
√
d′ factor) bound on the least singular value, with the same success probability.

However, this argument is more flexible, it lets us use “discretized” Gaussians.

Lemma 5.4.11. For any δ, η ∈ (0, 1/2), there exists a centered distribution Y with the following
properties:

1. The support of Y and the probability masses at each point in the support are all rational
numbers of bit length b = O(log s

δη
).

2. For all {ai}si=1 with
∑

i a
2
i = 1, if Y1, Y2, . . . , Ys are independent random variables drawn

from Y ,

Pr[|
∑
i

aiYi| < δ] ≤ 2δ + η.

Proof. The proof goes by a discretization of the Gaussian distribution and a sequence of reduc-
tions. First, let Xi be independent random variables distributed as N (0, 1). Let X ′i be indepen-
dent random variables distributed as a truncated normal, the distribution obtained from N (0, 1)

173

by removing the mass at points >
√

log(s/η) and rescaling. We begin by noting that

Pr[|
∑
i

aiX
′
i| < δ] ≤ (1 + η) Pr[|

∑
i

aiXi| < δ]. (5.50)

To see this, let us write X to be the vector (X1, X2, . . . , Xs). If f(X) and f ′(X) denote the
probability density functions of the multi-dimensional normal and the truncation version respec-
tively, by the choice of the truncation, we have, for allX ,

f ′(X) ≤
(

1 +
η

s

)s
f(X) ≤ (1 + η)f(X).

Furthermore, if any of the coordinates of X is >
√

log(s/η), we have f ′(X) = 0. Next,
note that the LHS of (5.50) can be written out as an integral, and every term also appears on
the probability on the right, albeit with the measure f ′ replaced with f . Thus, using the bound
above, (5.50) follows.

Next, we discretize the interval [−d
√

log(s/η)e, d
√

log(s/η)e] into integral multiples of 1/M ,
where M is a parameter we will choose later. To the point i/M , we assign the mass that the
truncated Gaussian assigns to the interval [i− 1

2M
, i + 1

2M
]. We call this discrete distribution D.

Let Y1, Y2, . . . , Ys be IID samples from D. We can write Yi = X ′i + Zi, where X ′i is drawn from
the truncated Gaussian, and |Zi| ≤ 1

2M
. Thus, for M > s

δ
, we claim that

Pr[|
∑
i

aiYi| < δ] ≤ Pr[|
∑
i

aiX
′
i| < 2δ].

This follows because |
∑

i∈[s] aiZi| ≤
s

2M
< δ. Using the earlier bounds, this implies that

Pr[|
∑
i

aiYi| < δ] ≤ (1 + η) · 2δ.

This almost completes the proof, because we have obtained a discrete distribution with the de-
sired anti-concentration bound. But as such, note that the probability values can require very
high precision. This turns out to be easy to correct: we can take Y to be any distribution on the
same support as D with dTV (Y ,D) < ε, and we can conclude (using a coupling argument and a
union bound), that if W1,W2, . . . ,Ws are drawn IID from Y ,

Pr[|
∑
i

aiWi| < δ] ≤ Pr[|
∑
i

aiYi| < δ] + εs.

To complete the argument, we need to ensure that ε < η
s
; this can be achieved using probability

values with bit complexity only O(log(s/η)), thus completing the proof.

5.4.3 Projective Non-negative Matrix Factorization
In projective non-negative matrix factorization, the basis matrix U ∈ Rd×k is constrained to
have non-negative entries. More formally, the mathematical program formulation for Projective
Non-negative Matrix Factorization (NMF) is

min : ‖A−UU>A‖2
F (NMF)

174

U>U = Ik, U ∈ Rd×k
≥0 . (5.51)

There is a alternate formulation of NMF that better aligns with the name of the problem and is
well suited to apply our framework:

min : ‖A−WH‖2
F (NMF-alternate)

W ∈ Rd×k
≥0 has orthogonal columns . (5.52)

Lemma 5.4.12. The programs NMF and NMF-alternate are equivalent.

Proof. Using Lemma 5.3.2, we know that NMF is equivalent to

min : ‖A−UH‖2
F

U>U = Ik, U ∈ Rd×k
≥0 .

SinceH is unconstrained, it can absorb the normalization of the columns of U . This gives

min : ‖A−WH‖2
F

W ∈ Rd×k
≥0 has orthogonal columns

which is exactly Equation (NMF-alternate).

Lemma 5.4.13. The set of matrices

W := {W ∈ Rd×k
≥0 : W has orthogonal columns } (5.53)

is equal to the set

W := {W ∈ Rd×k
≥0 : ‖Wi,.‖0 ≤ 1 ∀i ∈ [d]}. (5.54)

Proof. For any W ∈ W , if there exists a row i ∈ [d] and two distinct indices j, j′ ∈ [k] such
that Wi,j,Wi,j′ 6= 0, then by the non-negativity constraint, these non zero values are in fact
strictly positive. The dot product of the columns W.,j and W.,j′ is at least Wi,j ·Wi,j′ > 0
which contradicts the orthogonality of the columns of W . This implies that there is at most one
non-zero entry in every row ofW which further implies thatW ∈ W .

For any W ∈ W , the orthogonality of the columns is straight forward because for any two
distinct indices j, j′ ∈ [k], the dot product of the columns W.,j and W.,j′ is zero because either
ofWi,j,Wi,j′ is equal to zero for every i ∈ [d].

Lemma 5.4.14. For any givenB ∈ Rd×r andH ∈ Rk×r, we can solve the program

min : ‖B −WH‖2
F

W ∈ Rd×k
≥0 has orthogonal columns

exactly in time O(dkr).

175

Proof. Using Lemma 5.4.13, we can re-write the optimization problem as

min : ‖B −WH‖2
F

‖W ‖0 ≤ 1 ∀i ∈ [d], W ∈ Rd×k
≥0 .

Since the rows ofW are independent variables, we can decompose the problem into
d∑
i=1

min
wi∈Rk≥0, ‖wi‖0≤1

: ‖bi −H>wi‖2
2

where bi, wi are the ith columns ofB> andW> respectively. Each problem minwi∈Rk≥0, ‖wi‖0≤1 :

‖bi −H>wi‖2
2 can be solved by looking at the k cases for the non-zero entry if wi. For every

choice of non-zero entry, say j ∈ [k], the resulting minimization problem isminλ≥0 : ‖bi−λhj‖2
2

where hj is the jth column of H>. The optimal choice of λ is max(0, 〈bi, hj〉/‖hj‖2
2). The only

computation we had to do is to evaluate the dot products between bi, hj for i ∈ [d], j ∈ [k] which
takes O(dkr) time.

Theorem 1.4.1 (Additive approximation for NMF). Given an instance A ∈ Rd×n of Non-
negative matrix factorization, there is an algorithm that computes a U ∈ Rd×k

≥0 , U
>U = Ik

such that
‖A−UU>A‖2

F ≤ (1 + ε) ·OPT +O(δ · ‖A‖2
F)

in time O(dk2/ε) · (1/δ)O(k2/ε). For any 0 < δ < 1.

Proof. Let U ∗ be the optimal solution to NMF. This implies that H = U>
∗
A is an optimal

solution to NMF-alternate. We first replace the instance with a smaller instance B. Then we
search for every row of H exactly as in the proof of Lemma 5.3.1 to obtain a solution U ∈
Rd×k
≥0 , U

>U = Ik such that

‖A−UU>A‖2
F ≤ (1 + ε) ·OPT +O(δ · ‖A‖2

F)

in time T0 +T1 ·(1/δ)O(rk). Where T0 is the time required to obtainB and T1 is the time required
to solve for the optimalW in the program

min : ‖B −WH‖2
F

W ∈ Rd×k
≥0 has orthogonal columns

We know that T1 = O(dkr) using Lemma 5.4.14 and T0 = O(nrd2 ·H) from Lemma 5.2.1. We
hide T0 as it is negligible.

Theorem 1.4.2 (Multiplicative approximation for NMF). Given an instance A ∈ Rd×n of Non-
negative matrix factorization with integer entries of absolute value at most γ in A, there is an
algorithm that computes a U ∈ Rd×k

≥0 , U
>U = Ik such that

‖A−UU>A‖2
F ≤ (1 + ε) ·OPT

in time (ndγ/ε)O(k3/ε).

Proof. Using Lemma 5.3.8, we know that ‖A‖2
F/‖A−Ak‖2

F ≤ (ndγ)O(k). Setting δ = ε‖A−
Ak‖2

F/‖A‖2
F ≥ ε(ndγ)−O(k) in Corollary 5.4.3 gives the desired time complexity.

176

5.4.4 k-means clustering [53]
In the k-means problem, we are given a collection of data points a1, . . . , an ∈ Rd. The objective
is to find k-centers c1, . . . , ck ∈ Rd and an assignment π : [n]→ [k] that minimizes:

n∑
i=1

‖ai − cπ(i)‖2
2. (k-means)

LetA ∈ Rn×d andC ∈ Rk×d matrices with ai and ci as their ith rows respectively (note that this
differs from the notation we used for previous applications). Let Π ∈ Rn×k be the matrix such
that Πi,j = 1[π(i) = j]. Using this notation, the k-means problem can be written as

min : ‖A−ΠC‖2
F (k-means-matrix)

Each row of Π is a standard basis vector.

Observe that k-means-matrix is a special case of NMF-alternate where W is additionally con-
strained to have all non-zero entries to be equal to 1. Also, the k-means and k-means-matrix
correspond to the CSA-geo and CSA-fac formulations of the same problem. The corresponding
CSA version is

min : ‖A−UU>A‖2
F (k-means-CSA)

Ui,j = 1/
√
‖U.,j‖0 ∀i ∈ [n], j ∈ [k].

The three main steps in our algorithm are:

1. Reduction: The first step is to reduce the number of rows and columns of the target matrix
A.

(a) Columns: Replace the matrixA with the matrixB as in Lemma 5.3.5. This reduces
the number of columns (dimension of the data-points) to r = k + k/ε.

(b) Rows: For any fixed set of centers (selected from the rows of) C, the cost induced
by the centers is defined as

Cost(A,C) :=
n∑
i=1

dist(ai,C)2.

Where dist(a,C) := minc∈C ‖a− c‖2. A strong coreset for the k-means instance A
is a subset S ⊆ [n] of indices and weights wi corresponding to each index i ∈ S such
that for any set of centers C, we have

Costw,S(A,C) :=
∑
i∈S

widist(ai,C) ∈ (1± ε) · Cost(A,C).

Coresets for k-means of optimal size Õ(kε−2 min{
√
k, ε−2}) are known (See [59] for

upper-bound and [107] for matching lower-bound). Any algorithm that efficiently

177

computes a coreset of size q = poly(k/ε) can be used as a black box for our purposes.
After using such a coreset, the new formulation is

min : ‖B −ΠC‖2
F (k-means-reduced)

Each row of Π has exactly one non-zero entry equal to wi. (5.55)

where B ∈ Rq×r, Π ∈ Rq×k with their rows indexed by the set S defined by the
coreset and the rows of B are the scaled rows of A according to the weight defined
by the coreset for that row.

2. Enumeration: A naive approach is to simply enumerate all the kq possible Π matrices by
choosing the position of the non-zero element in each row. Simply put, we go through all
possible k-clusterings of the coreset elements. Optimal choice of centers can be computed
as the weighted mean of the coreset elements in each cluster. This allows us to identify the
optimal Π.

Let Π∗ be the optimal choice of Π in the k-means-reduced program. Using Lemma 5.4.15
and Lemma 5.4.16, we enumerate over the O(log n · k · poly(k/ε))O(k log k+k/ε) = O(k/ε ·
log n)Õ(k/ε) number of possible pairs of matrices SB and SΠ. For each such pair, we find
the C that minimizes ‖SB − SΠC‖2

F . For every such C, evaluate the cost induced by
these centers with the coreset (w, S). Let C be the set of centers that has the lowest cost
with respect to the coreset from the enumeration described before. The cost induced by
this set of centers is

min
Π
‖B −ΠC‖2

F ≤ min
Π
‖B −ΠĈ‖2

F (5.56)

≤ ‖B −Π∗Ĉ‖2
F (5.57)

≤ (1 + ε)‖B −Π∗C∗‖2
F (5.58)

≤ (1 + ε)2 ·OPT. (5.59)

Using the coreset property, we imply that the cost of the centers C on the original instance
A is at most (1 + ε)3 ·OPT.

(5.60)

We start with the following known result (see Theorem 38 of [52]).

Lemma 5.4.15. Given matrices B ∈ Rq×r and Π∗ ∈ Rq×k, there exists a matrix S ∈ Rt×q and
such that

1. Each row of S contains exactly one positive non-zero element from the set W = {2i : 0 ≤
i ≤ N}.

2. If C∗ = arg minC∈Rk×r ‖B −Π∗C‖2
F and Ĉ = arg minC∈Rk×r ‖SB − SΠ∗C‖2

F , then

‖B −Π∗Ĉ‖2
F ≤ (1 + ε) · ‖B −Π∗C∗‖2

F . (5.61)

178

3. t = O(k log k + k/ε).

Note that [52] do not require the non-zero element of S to come from W . Indeed, it will be
proportional to the leverage score. However, note that we can “discretize” the leverage scores
(while keeping a factor two approximation to each one), and still obtain all the guarantees that
we require. Finally, since the leverage scores add up to the matrix dimension, we have the bound
N = O(log n).

Lemma 5.4.16. Given a matrixB ∈ Rq×r, the number of possible matrices

1. of the form SB is at most O(Nq)>.

2. of the form SΠ where Π satisfies Equation (5.55) is at most O(Nkq)>.

where S satisfies property 1 in Lemma 5.4.15.

Proof. Each row of SB is simply a row of B that is scaled by 2i for some 0 ≤ i ≤ N . This
leaves Nq choices for each of the t rows of SB which is ((N + 1)q)> possibilities. Each row
of SΠ is a row of Π scaled by 2i for some 0 ≤ i ≤ N . The choices to make for each row of
SΠ is a row of Π (which includes choices for non-zero element and weight wj for j ∈ [q]) and
a scaling factor from S. This leaves (N + 1)kq choices for each of the t rows of SΠ.

Theorem 5.4.17. Given an instanceA ∈ Rn×d of k-means, there is an algorithm that computes
a (1 + ε)-approximate solution to k-means in O(nnz(A) + 2Õ(k/ε) + no(1)) time.

Proof. The time complexity of the three step procedure is dominated by the enumeration step
which takes timeO(log n·k/ε)Õ(k/ε) time. If log n ≤ (k/ε)2, then this running time isO(k/ε)Õ(k/ε) =

2Õ(k/ε). Otherwise, if log n ≥ (k/ε)2, then the running time is (log n)Õ(
√

logn) = no(1).

5.4.5 Sparse-PCA [65]
The sparse PCA problem is a well-studied variant of PCA in which the components found are
required to be sparse. In other words, the basis matrix U ∈ Rd×k is constrained to have sparsity
requirements. There are two natural ways to formalize this question: the first is by requiring U
to have at most s non-zero entries in total. Another is to require the number of non-zero rows
of U to be bounded by a parameter s. In the popular case of d = 1, both of these definitions
coincide. Let us focus on the first variant for now.2 More formally, the mathematical program
formulation we consider is

max : 〈AA>,UU>〉 (sparse-PCA-max)

U>U = Ik,
∑
j∈[k]

‖U.,j‖0 ≤ s. (5.62)

2Our result follows via a black-box application of algorithms from [65]; since their algorithms work for both
variants, so do our results.

179

Program sparse-PCA-max can also be formulated as a minimization version

min : ‖A−UU>A‖2
F (sparse-PCA-min)

U>U = Ik,
∑
j∈[k]

‖U.,j‖0 ≤ s. (5.63)

The following theorem from [65] shows how to find an optimal solution to sparse-PCA-max (and
hence also to sparse-PCA-min) when rank(AA>) = rank(A) = t.

Theorem 5.4.18 (Theorem 1 in [65]). There is an algorithm that finds an optimal solution to
sparse-PCA-max in

O
(
dmin{k,t}(t2+t)

(
min{k, t}dt2 + d log d

))
, (5.64)

where t denotes the rank of the matrixA.

Theorem 5.4.19. Given an instance (A ∈ Rd×n, k, s) of sparse-PCA, there is an algorithm that
runs in time

O
(
dkr

2+kr
(
dkr2 + d log d

))
(5.65)

with r = k + k/ε that computes a ε‖A −Ak‖2
F additive approximate solution to both sparse-

PCA-max and sparse-PCA-min. This is guaranteed as a (1 + ε)-approximate solution to sparse-
PCA-min because ‖A−Ak‖2

F is a lower bound to sparse-PCA-min.

Proof. First step is to replace A with the matrix B as in Lemma 5.3.5. This step takes time T0.
Solve for Equation (sparse-PCA-max) exactly using Theorem 5.4.18, with t = k + k/ε. This
step takes time O

(
dkr

2+kr (dkr2 + d log d)
)

. Using Lemma 5.3.7, the solution obtained is a
(1 + ε)-approximate solution to sparse-PCA-min. In fact, for p = 2, we know that the error is at
most ε‖A−Ak‖2

F which implies that this also gives an additive approximation of ε‖A−Ak‖2
F

to both the minimization and maximization versions. Because the objective for the maximization
is the negative of the minimization objective added with ‖A‖2

F .

5.5 Hardness of Column Subset Selection with Partition Con-
straint

In this section, we show that PC-CSS is at least as hard as the well-studied sparse regression
problem [79, 93, 99, 145]. In particular, our hardness implies that PC-column subset selection
remains hard even if the number of groups is only two, or if we allow violating the given partition
capacity constraints by a logarithmic factor. First, we define the PC-column subset selection
problem and the sparse regression problem formally.

180

Definition 5.5.1 (Column Subset Selection with a Partition Constraint). In an instance of the
PC-column subset selection (PC-CSS) problem, we are given a matrixA ∈ Rm×n and a partition
matroid P = ([n] = P1] · · ·] P`, I), I = {S ⊆ [n] : |S ∩ Pt| ≤ kt, ∀t ∈ [`]} defined on the
set of column indices [n].

The objective is to select a (index) subset S ∈ I of columns ofA in order to minimize the squared
projection cost of all the column vectors of A onto the span of the column space induced by the
subset of columns corresponding to S

costS(A) :=
∑
i∈[n]

‖projspan⊥(S)(ai)‖2
2 = ‖A−ASA

+
SA‖

2
F , (5.66)

where ai is the column vector corresponding to column index i in A and AS is the matrix with
columns fromA corresponding to S.

Definition 5.5.2 ((g, h)-Sparse Regression). Given a matrixB ∈ Rm×n and a positive integer s,
for which there exists an unknown vector x∗ ∈ Rn such that ‖x∗‖0 ≤ s and Bx∗ = 1, the goal
is to output an x ∈ Rn with ‖x‖0 ≤ s · g(n) such that ‖Bx− 1‖2

2 ≤ h(m,n).

The sparse regression problem is known to be computationally hard. In particular,

Theorem 5.5.3 ([79]). Let 0 < δ < 1. If there is a deterministic polynomial time algorithm A
for (g, h)-sparse regression, for which g(n) = (1 − δ) lnn and h(m,n) = m1−δ, then SAT ∈
DTIME(nO(log logn)).

Next, we prove our main hardness of approximation result for PC-column subset selection.

Theorem 5.5.4. Assuming SAT /∈ DTIME(nO(log logn)), the PC-column subset selection prob-
lem is hard to approximate to any multiplicative factor f , even in the following special cases:

(i) The case of ` = 2 groups, where the capacities on all the groups are the same parameter s.

(ii) The case where the capacities on all the groups are the same parameter s, and we allow
a solution to violate the capacity by a factor g(n) = o(log n), where n is the total number of
columns in the instance.

Proof. The proof is via a reduction from sparse regression. First, we show a hardness for two
groups (part (a) of the Theorem). Consider an instance of sparse regression, given by an m × n
matrix B and parameter s. Now consider a matrix A whose columns are A1 ∪ A2, defined as
follows. A1 is an (m + s) × n matrix whose ith column is the ith column of B appended with
s zeros. A2 is an (m + s) × (s + 1) matrix whose columns we denote by u1, u2, . . . , us+1. We
set ui = C · em+i for 1 ≤ i ≤ s, and us+1 = D · (1 ⊕ 0s), for appropriately chosen parameters
C > D.3

Consider any solution that chooses exactly s columns from A1 and A2. In the YES case of
sparse regression, where there exists an s-sparse x∗ with Bx∗ = 1, by choosing the columns
corresponding to the support of x∗ from A1 along with the columns u1, . . . , us from A2, we

3As is standard, 1⊕ 0s is simply the all ones vector (here in m dimensions) with s zeros appended.

181

obtain an approximation error at most ‖A1‖2
F . Consider the NO case of sparse regression. We

will choose C large enough, so that even if one of the ui for i ≤ s is not chosen, the error is≥ C.
Next, suppose all the {ui}i∈[s] are chosen. For any choice of s columns from A1, the error on the
column us+1 is at least D · h(m,n), by assumption. Thus in either case, the approximation error
is ≥ min (C,D · h(m,n)). We can now choose C,D large enough (e.g., > f · n‖A1‖2

F), and
obtain the desired hardness of approximation.

Next, suppose we are allowed to choose αs columns from each group, for some slack parameter
α (assumed to be an integer ≥ 1 and < g(n), where the latter function comes from the hardness
for sparse regression). Now let T be a parameter we will choose later (integer≥ 1), and consider
an instance of PC-column subset selection where we have (T + 1) groups of vectors (matrices),
A1, A2, . . . , AT+1, and the vectors (columns) have dimension Tm. We view each column vector
as consisting of T blocks of sizem. For 1 ≤ j ≤ T , the columns ofAj are identical to those ofB
in the jth block, and zero everywhere else. The matrixAT+1 has T columns, denoted u1, . . . , uT ,
where uj is the vector that has 1 in the jth block and zero everywhere else, scaled by parameter
D.

As before, in the YES case of sparse regression, the approximation error is ≤ T‖A1‖2
F . In the

NO case, consider any solution that chooses at most αs vectors from each Aj . By assumption,
the error in the jth block (of uj) is at least h(m,n), for any vector uj that is not picked from
AT+1. If we set T > 2αs, then at least (T/2) of the vectors uj cannot be picked, and so the total
error is at least D · (T/2)h(m,n). Again, we can choose D large enough to obtain the desired
hardness.

This strong hardness of approximation further motivates the study of a relaxed variant, in which
the set of vectors in the small-size summary S, rather than being a subset of A(1), · · · ,A(`), are
instead required to belong to the subspaces spanned by the columns in each groupA(1), · · · ,A(`).
This is precisely our PC-subspace approximation problem.

5.6 Future Directions
The unconstrained `2-subspace approximation problem is efficiently solvable and serves as the
foundation for many practical applications. This tractability is a notable exception, as the corre-
sponding `p-subspace problem is computationally hard for any p 6= 2.

However, the complexity of the constrained `2-subspace approximation problems analyzed in
this work is not yet understood. A crucial open question is whether these constrained variants
retain the algorithmic efficiency of the unconstrained `2 setting or if they inherit the hardness
characteristic of the general `p problems. Resolving this is essential, as it may reveal that these
problems can be solved far more efficiently than is currently known.

Therefore, a primary direction for future research is to determine the precise complexity of con-
strained `2-subspace approximation. This requires either designing provably faster algorithms or
establishing matching hardness results to close this fundamental gap.

182

Part III

Explainability

183

Chapter 6

Explainable Clustering

6.1 Introduction
Clustering is a central topic in optimization, machine learning, and algorithm design, with k-
medians and k-means being two of the most prominent examples. In recent years, mainly mo-
tivated by the impressive but still mysterious advances in machine learning, there has been an
increased interest in the transparency and in the explainability of solutions. In the context of
clustering, this was formalized in a highly influential paper by Dasgupta et al. [62].

To motivate the concept of explainability, consider the task of clustering n points in Rd into k
clusters. If we solve k-means, the clusters are in general given by a Voronoi diagram where each
cluster/cell is defined by the intersection of hyperplanes. Each cluster may be defined using up
to k − 1 hyperplanes, each one of them possibly depending on all d dimensions with arbitrary
coefficients. Since the dimensions typically correspond to features (e.g., “age”, “weight”, and
“height” are natural features in a dataset of people), arbitrary linear combinations of these fea-
tures may be difficult to interpret. To achieve more explainable solutions, we may need to restrict
our algorithms to find clusters with simpler descriptions.

The model in [62] achieves explainability in an elegant way resembling the classical notion of
decision trees in theoretical computer science. Specifically, a clustering is called explainable if
it is given by a decision tree, where each internal node splits data points with a threshold cut in a
single dimension (feature), and each of the k leaves corresponds to a unique cluster. This leads
to more explainable solutions already in two dimensions (see, e.g., Figure 6.1); the benefit is
even more clear in higher dimensions. Indeed, the binary tree structure gives an easy sequential
procedure for classifying points, and since each threshold cut is axis-aligned, there is no linear
combinations of features. Moreover, the total number of dimensions/features used to describe
the clustering is at most k − 1, independent of d, which is attractive for high-dimensional data1.

1We remark that dimensionality reduction for k-median and k-means shows that one can reduce the dimension
of the data points to O(log(k)/ε2) [24, 135]. However, those techniques take arbitrary linear combinations of the
original dimensions and therefore destroy explainability.

185

(a) Optimal 5-means clusters (b) Tree based 5-means clusters

x ≤ 4.5

2y ≤ −4

y ≤ 4

14

x ≤ −3.5

03

(c) Threshold tree

Figure 6.1: Example from [62]. The optimal 5-means clustering (left) uses combinations of both features.
The explainable clustering (middle) uses axis-aligned rectangles summarized by the threshold tree (right).

Explainability is thus a very desirable and appealing property, but the best explainable clustering
may have cost much higher than the cost of the best unrestricted clusterings. This trade-off
is captured by the price of explainability: the loss in cost/quality if we restrict ourselves to
explainable clusterings.

In their original paper, Dasgupta et al. [62] gave a greedy algorithm which takes an arbitrary “ref-
erence” clustering and produces an explainable clustering from it. It repeatedly adds threshold
cuts which separate the centers of the reference clustering until the threshold tree has one leaf
for each center of the reference clustering. Since only the points separated in the threshold tree
from their closest reference center suffer an increase in cost, their algorithm repeatedly selects
a threshold cut that separates the fewest points from their closest reference center. They proved
that it outputs an explainable clustering with cost O(k) times higher for the case of k-medians,
and O(k2) times higher for the case of k-means. They also show a lower bound of Ω(ln k) for
both of these problems.

Since the greedy algorithm’s analysis is tight, an alternative strategy was independently proposed
by [73, 83, 133]: take random cuts instead! The strategy is especially elegant in the case of k-
medians (the distribution of cuts is more complex than uniform in the case of k-means):

Repeatedly select threshold cuts uniformly at random among those that separate cen-
ters of the reference clustering.

We refer to this as the Random Thresholds algorithm (see §6.2.1 for a formal description). While
the algorithm is easy to describe, its performance guarantee has remained an intriguing question.
There are simple instances in which it increases the cost by a factor of 1 +Hk−1, where Hk−1 =
1/1+ 1/2+ 1/3+ . . .+ 1/(k−1) is the (k−1)th harmonic number (see §6.5), and this was conjectured
to be the worst case for the Random Thresholds algorithm [83].

On a high level, a difficulty in analyzing the Random Thresholds algorithm is that it may take
prohibitively expensive cuts with a small probability. To avoid this and other difficulties, the
results in [73, 83, 133] considered more complex variants that intuitively forbid such expen-

186

sive cuts. Specifically, [83] gave a variant that outputs a threshold tree whose expected cost
increases by at most a O(ln2 k) factor, and both [73, 133] obtain a better performance guarantee
of O(ln k ln ln k) for their variants of the Random Thresholds algorithm. These results give an
exponential improvement over that in [63] but fail to settle the price of explainability, and they
leave open the conjectured performance of the natural Random Thresholds algorithm.

Our main results on the price of explainability are (a) to settle this conjecture in the affirmative
(i.e., to give a tight analysis of the Random Thresholds algorithm), and (b) to show that its price
of explainability of 1 + Hk−1 = (1 + o(1)) ln k is not only asymptotically correct, but also tight
up to lower order terms: we cannot do much better regardless of the algorithm. Furthermore,
we generalize these ideas to show that the same price of explainability holds for k-medians
clustering with `2 norm, provided that explanations can be constructed using general hyperplane
cuts instead of only axis-aligned ones. This result is established through two approaches: a
direct analysis of a "random hyperplanes" algorithm and an alternative method using metric
embeddings (See §6.6 for details).

Theorem 1.5.1 (Upper bound for k-medians). The price of explainability for k-medians is at
most 1 + Hk−1. Specifically, given any reference k-medians clustering, the Random Thresholds
algorithm outputs an explainable clustering with expected cost at most 1 + Hk−1 times the cost
of the reference clustering.

Theorem 1.5.2 (Lower Bound for k-medians). There exist instances of k-medians for which any
explainable clustering has cost at least (1 − o(1)) ln k times the cost of the optimal k-medians
clustering.

These results resolve the performance of the Random Thresholds algorithm and the price of
explainability for k-medians.

For k-means, we are unable to settle the price of explainability completely, but we make signif-
icant progress in closing the gap between known upper and lower bounds. Here, the best upper
bound before our work was O(k ln k) [73] (see also [45] for better guarantees when the input
is low-dimensional). Moreover, we know instances where any single threshold cut increases the
cost of the clustering by a factor Ω(k) (see, e.g., [83]), and hence the price of explainability of
k-means is at least Ω(k).

It is tempting to guess that the O(k ln k) guarantee in [73] is tight, for the following reason. The
first lower bound Ω(ln k) for k-means in [62] is obtained by arguing that (i) a single threshold cut
increases the cost by at least that of the reference clustering and (ii) a threshold tree has height
Ω(ln k), and so the total cost increases by a constant Ω(ln k) times. Since we have examples
where any single cut increases the cost by Ω(k), it is reasonable to hope for more complex
instances to combine the two sources of hardness, and lose a Ω(k) ·Ω(ln k) factor. However, we
prove that this is not the case and give an improved upper bound:

Theorem 1.5.3 (Upper bound for k-means). The price of explainability for k-means is at most
O(k ln ln k). Specifically, given any reference k-means clustering, there exists an algorithm that
outputs an explainable clustering with expected cost at mostO(k ln ln k) times the reference cost.

Hence the price of explainability for k-means lies between Ω(k) and O(k ln ln k). We leave the

187

tight answer as an intriguing open problem. In particular, we conjecture that the lower bound is
tight and that it is achieved by the k-means variant of the Random Thresholds algorithm.

Our final contribution is to study the approximability of explainable clustering. So far, the liter-
ature has mostly focused on settling the price of explainability [45, 62, 73, 83, 121, 133] and its
behavior in a bi-criteria setting [134] where the explainable clustering is allowed to form more
than k clusters. These algorithms give upper bounds on the approximability of explainable clus-
tering since they are all efficient, and the cost of an optimal unconstrained clustering is a valid
lower bound on the best explainable one. Recent work of [18, 120] asked the question: how well
can we approximate the best explainable clustering? They showed that the problem is APX-
hard, but left open the question of whether the problem can be approximated better. Resolving
this natural question positively would have the advantage of finding good explainable clusterings
for those instances that do admit such clusterings, which is often the experience for more prac-
tical instances. Our result shows a surprising hardness for the k-medians and k-means problem.

Theorem 1.5.4 (Approximability). The explainable k-medians and k-means problems are hard
to approximate better than (1/2− o(1)) ln k, unless P = NP.

These results show that we cannot approximate k-medians much better than its price of explain-
ability (unless P = NP); the approximability for k-means remains tantalizingly open.

6.1.1 Outline and Technical Overview
Upper bounding the performance of the Random Thresholds algorithm. Our main result
is the tight analysis (up to lower order terms) of the price of explainability for k-medians. The
upper bound of 1 + Hk−1 = (1 + o(1)) ln k is given by a tight analysis of the natural Random
Thresholds algorithm. We now sketch the main ingredients of this analysis. We start with two
easy but useful observations: (i) by linearity of expectations, it is sufficient to bound the expected
cost of a single point, and (ii) by translation, this point can be assumed to be the origin. We thus
reduce the problem to that of analyzing the expected distance from the origin to the last remaining
center (i.e., the center in the same leaf of the threshold tree as the origin). We call this process
the Closest Point Process and define it formally in §6.2.

Algorithm has no better guarantee than 1 +Hk−1. For this discussion, let us make a simpli-
fying assumption that is not without loss of generality: the k centers are located on separate axes,
so that center i is at ei · di, with d1 ≤ d2 ≤ . . . ≤ dk, hence the closest center is at a distance
d1. As cuts are selected uniformly at random, the first cut removes some center i1 with probabil-
ity di1/

∑
j dj. Conditioned on that, the second cut removes center i2 with probability di2/

∑
j 6=i1

dj,
and so on. In other words, at each step, a center i is separated from the origin with probability
proportional to its distance di. For the further special case when d2 = d3 = . . . = dk = D, the
expected distance to the last remaining center is:

Pr[1 is last center] · d1 + (1− Pr[1 is last center])D ≤ d1 + (1− Pr[1 is last center]) ·D

= d1 +
(
1−

(
1− d1

(k−1)D+1

)(
1− d1

(k−2)D+1

)
· · ·
(
1− d1

D+1

))
·D .

188

This is an increasing function of D and tends to (1 +Hk−1) · d1 when D/d1 →∞, which shows
that the Random Thresholds algorithm cannot be better than the conjectured factor of 1 + Hk−1

(see also §6.5.1 for a formal description).

Inductive argument and reduction to worst-case instances. But can this special setting re-
ally be the worst-case? Perhaps surprisingly, we prove that this is the case. An inductive argu-
ment can help remove the assumption that d2 = d3 = . . . = dk: Since (1 +Hk−1) · d1 is the right
answer for k ≤ 2, we can try to proceed inductively on the number of centers to analyze

k∑
i=1

Pr[first cut removes center i] · E[expected cost of process with centers [k] \ {i}] .

Since each sub-instance in the sum has k − 1 centers, we can use the induction hypothesis to
bound every term except i = 1 in the sum by (1 + Hk−2) · d1. To bound the cost of the instance
with centers [k] \ {1}, we could proceed based on the following natural observation: the farther
away a center is, the smaller probability it has to be the last remaining center, since it is more
likely to be cut/removed at each step). This would mean that the expected cost of the process
with centers [k] \ {1} is at most d2+d3+...+dk

k−1
. And substituting, we get that the expected distance

to the last center is at most

Pr[first cut removes center 1]·d2 + d3 + . . .+ dk
k − 1

+(1− Pr[first cut removes center 1]) (1+Hk−2)·d1 ,

which is at most (1 +Hk−1) · d1 using that Pr[first cut removes center 1] = d1
d1+d2+...+dk

.

Several research groups found the above inductive proof for the separate-axis special case, and
it was one of the main motivations for the conjectured performance of the Random Thresholds
algorithm. To prove it for the general case, it “only” remains to remove the assumption that
each center is located on a separate axis. This assumption, however, turns out to be highly
non-trivial to overcome. One indication of this difficulty is that, in the general case, there are
arbitrary correlations between centers: whether center i is removed impacts the probability that j
is removed. This causes most natural monotonicity conditions not to hold anymore. For example,
when centers are arbitrarily located, a far center can be more likely to be the last one than a closer
one. We overcome these difficulties in a technical proof that manages to show that the worst-case
is as above. In this proof, we write the points as a conic combination of cuts, view the cost as a
function of this embedding, and naturally try to bound its derivative. This is where the technical
challenges appear: since the derivative is also not “well-behaved” we define a better-behaved
upper bound called the “pseudo-derivative”, and show that this pseudo-derivative is maximized
when all points are at the same distanceD from the origin (even when they are not along separate
axes). We then bound the pseudo-derivative for the non-separate-axis uniform case. This is the
technically most challenging part of the chapter, and we present it in §6.5.

A Simpler proof via Competing Exponential Clocks. Interestingly, we can present not just
one but two proofs of the correct (1+o(1)) ln k bound: we give an alternative simpler proof which
takes the viewpoint of competing exponential clocks (previously used, e.g., for the multiway cut

189

problem [38, 88, 173]). In the separate-axis case, it boils down to sampling an exponential
random variable Zi with rate di for each center i. Two well-known properties of the exponential
distribution are that (i) the probability that i “rings first” is proportional to its rate, i.e., Pr[Zi ≤
minj 6=i Zj] = di/

∑
j dj and that (ii) the distribution is memoryless Pr[Zi ≥ s + t | Zi ≥ t] =

Pr[Zi ≥ s]. This implies that taking cuts in the order of the random variables {Zi}i∈[k] (until
one center remains) is identical to the Closest Point Process. We now analyze the competing
exponential clocks as follows. For a center i ∈ [k] with i ≥ 2, let Qi be the probability that i
is the last center among the faraway centers [k] \ {1}. Conditioning on this, i is the last center
and we pay a distance of di instead of d1 if Z1 ≤ Zi. Now for the probability of Z1 ≤ Zi to be
maximized, Zi should be as large as possible in the event when i is last among [k] \ {1}. So we
can upper bound the contribution of center i by considering the upper quantile of the exponential
distribution of Zi with total probability mass Qi. Now standard calculations show that the total
contribution of center i to the cost is d1 (Qi −Qi ln(Qi)). We thus get the upper bound

d1︸︷︷︸
contribution of close center 1

+ d1

k∑
i=2

(Qi −Qi ln(Qi))︸ ︷︷ ︸
contribution of far centers

= d1(2 + ln(k − 1)) ,

where used that the entropy
∑k

i=2−Qi ln(Qi) is at most ln(k−1). What is particularly nice about
this viewpoint is that the analysis does not use the assumption of centers being on separate axes.
Indeed, we can define exponential random variables for each cut (as we did in our first proof),
and the whole machinery goes through. A small complication arises due to cuts that separate
the closest center 1 along with other points from the origin, but we can give a less precise but
still tight (up to lower order terms) bound. Apart from achieving the factor (1 + o(1)) ln k,
the arguments are also arguably cleaner and easier than even the prior non-tight analyses of the
Random Thresholds algorithm. We present these arguments in §6.2.

Lower-Bounding the Price of Explainability. Recall that the Ω(ln k) on the price of explain-
ability for k-medians [62] is based on the following idea

1. Select k centers uniformly at random from a hypercube {0, 1}d, and
2. Add a 1-ball around each center with d points, one per dimension, giving dk points..

The optimal unconstrained clustering has cost dk, so how expensive is the best explainable clus-
tering? Any pair of centers expect to differ in d/2 coordinates, and so by concentration, their
distance ≈ d/2 whp. Furthermore, in a sub-instance with k′ centers, any cut separates k′ points
from their closest center, and these incur cost≈ d/2. As the threshold tree has a height of at least
log2 k, the total cost of any explainable clustering can now be seen to be at least≈ (dk/2) log2 k.
While asymptotically tight, the above symmetric construction does not lead to stronger lower
bounds than 1

2
log2 k. We instead use an asymmetric construction to achieve our tight lower

bound of (1− o(1)) ln k, and it gives us hardness of approximability too!

1. Place a special center at the origin, and take a 1-ball around it giving d points.
2. The remaining centers are located at the characteristic vectors of some carefully chosen

subsets of {1, . . . , d}, and

190

3. Finally, add many points colocated with the centers which force any good threshold tree to
have one leaf per center.

Now the only way to separate a center from the origin is to employ a threshold cut along a
dimension, which corresponds to an element in the set corresponding to that center. Our threshold
cuts must thus form a hitting set of the set system corresponding to the non-special centers.
Furthermore, the number of points separated from their closest center is equal to the size of
this hitting set. This tight connection allows us to apply the known results for the hitting set
problem, and we get a (1− o(1)) ln k lower bound on the price of explainability for k-medians.
In addition, the connection together with Feige’s landmark paper [74] implies our hardness of
approximation results. (Interestingly enough, [18] give a very similar construction, but with
different parameters, which only gives them NP-hardness.) We remark that the hardness result for
k-means follows from that of k-medians since all points and centers are located on the hypercube,
and thus the `1-distances equal the squared `2-distances. We present the reduction from hitting
set and its implications in §6.3.

Improvements for k-means. Our final result is an O(k ln ln k) price of explainability for k-
means. We observe that there are two ways to achieve the weaker O(k ln k) bound. The first
transforms the k-means instance into k-medians, but this distorts distances by at most k using
the Cauchy-Schwarz inequality; then we lose anotherO(ln k) using our analyses above. Another
follows the approach of [73], of finding cuts that have a good cost-to-balance ratio. Both these
approaches are tight, but we show that they cannot be tight at the same time! I.e., if we lose a
factor of Ω(k) due to Cauchy-Schwarz, then the cuts partition the instance into parts that are a
constant factor smaller, and the loss becomes a geometric sum that sums to O(k). A quantitative
version of this trade-off gives our result; the details appear in §6.4.

Outline. We present the simpler exponential clocks-based proof for k-medians in §6.2, fol-
lowed by the matching hardness in §6.3. The result for k-means is in §6.4, followed by the tight
1 +Hk−1 bound for k-medians in §6.5.

6.1.2 Further Related Work
We now discuss some of the related results beyond those mentioned above. Some works consider
the effect of the dimension d of the price of explainability. Laber and Murtinho [121] showed
an O(d ln k) price of explainability for k-medians, which was improved by Esfandiari et al. [73]
to O(min{d ln2 d, ln k ln ln k}). Charikar and Hu [45] showed that the price of explainability
is at most k1−2/d poly log k for k-means, and a lower bound tight up to poly-logarithmic terms.
Esfandiari et al. [73] also gave a lower bound of Ω(d) for k-medians. Frost et al. [81] posed the
question of getting better guarantees using more than k clusters; Makarychev and Shan [134]
showed how to open (1 + δ)k centers and get a guarantee of O(1/δ · ln2 k ln ln k) for k-means.

The algorithmic problem has received much less attention. Bandyapadhyay et al. [18] gave
algorithms that find the best k-medians and k-means clusterings in time n2d · (dn)O(1). They also
showed NP-hardness, andW [2]-hardness of finding the best explainable clustering; interestingly,

191

their hardness construction is also based on the hitting set problem and is very similar to ours,
but they use a different setting of parameters and hence only infer an NP-hardness. Laber [120]
gave an APX-hardness based on a reduction from finding vertex covers in triangle-free graphs.
Our result showing a logarithmic hardness essentially settles the question for k-medians.

Both the k-medians and k-means problems have been studied extensively in the unconstrained
setting (i.e., without the explainability requirement), both for geometric spaces (see, e.g., [54,
56, 57, 80]) and general metric spaces (see, e.g., [39, 58]). The techniques and algorithms for
those settings seem orthogonal to those used for our problems.

6.1.3 Preliminaries and Notation

Given points X = {x1, . . . ,xn} ⊆ Rd, a clustering C of X is a partition of X into clusters
{C1, . . . , Ck}. Each clusterCi is assigned a centerµµµi (giving distinct centers U = {µ1, . . . ,µk} ⊆
Rd). Let π(x) be the center µj ∈ U corresponding to the cluster Cj containing x, and define the
q-norm cost of a clustering C with centers U as

costq (π,U) =
∑
x∈X

‖x− π(x)‖qq. (6.1)

The k-medians and k-means costs of a clustering are simply the minimum values for the param-
eters q = 1 and 2, minimized over all possible centers U .

Threshold Cuts and Trees. We call a hyperplane of the form xi ≤ θ a threshold cut, and represent
it as (i, θ). A threshold tree T is a binary tree with each non-leaf node u corresponding to a
threshold cut (iu, θu). Define Bu ⊆ Rd as the region corresponding to node u ∈ T , where
Br := Rd for r being the root of T ; if nodes l(u) and r(u) are the left and right children of node
u, then

Bl(u) := Bu ∩ {x | xiu ≤ θu} and Br(u) := Bu ∩ {x | xiu > θu}.

Explainable Clusterings. Given points X and a threshold tree T , the clustering CT of X explain-
able by the threshold tree T is the partition of X induced by the regions corresponding to leaves
in T , i.e., each leaf ` of T generates a cluster C` := X ∩B` of CT . A clustering C of X is said to
be an explainable clustering if there exists a threshold tree T such that C = CT .

For a set of centers U , a threshold tree T separates U if each of the regions corresponding to
leaves in T contains exactly one center in U . Let µ` denote the unique center in the singleton set
U ∩ B` for leaf ` in T . For any set of points X , centers U , and a threshold tree T that separates
U , each leaf in T corresponds to a cluster C` in the clustering CT , and also to a center µ`. Such a
tree induces an assignment πT : X → U from points to centers. With this, we can define

costq (T) = costq(πT ,U) =
∑
x∈X

‖x− πT (x)‖qq. (6.2)

192

6.2 Explainable k-medians via Exponential Clocks
We now give a bound of (1 + o(1)) ln k on the price of explainability for k-medians. This is
slightly weaker than the bound of 1 + Hk−1 ≈ ln k + O(1) promised in Theorem 1.5.1, but the
proof is simpler and more illuminating. (We give the proof of the tight bound in §6.5.)

6.2.1 The Random Threshold Algorithm and the Closest Point Process
Let us first formalize the Random Thresholds algorithm: given a reference clustering for point
set X which opens centers U and maps the data points to centers using π : X → U , we construct
a threshold tree T randomly as follows. For simplicity, let X ⊆ [a, b]d for some a, b ∈ R. We
start with the trivial threshold tree with the root corresponding to all of Rd. Now while the leaves
of T do not give us a separating partition for U , we pick a dimension i ∈ [d] and a value θ ∈ [a, b]
independently and uniformly at random. For each leaf u of T , if this threshold cut separates at
least one pair of centers which share the region Bu, partition the leaf using the threshold cut. It
is easy to see that as long as all the centers in U are distinct, this process outputs a threshold tree
that separates U . The main question is: what is the cost of the resulting explainable clustering
CT , in expectation?

Since the algorithm does not depend on the data points X , and it is invariant under translations
and scaling, we can use linearity of expectations and focus on the following simpler problem:

Definition 6.2.1 (Closest Point Process). Given a set of k pointsU ⊆ Rd, let p∗ := arg minp∈U ‖p‖1

be the point in U closest to the origin. Assume ‖p∗‖1 = 1. Run the Random Thresholds algo-
rithm to create a random threshold tree T that separates this point set U . Consider leaf node
u ∈ T whose corresponding region Bu ⊆ Rd contains the origin, and let p̂ be the unique point
of U in this region Bu. Define

f(U) := E[‖p̂‖1]. (6.3)

Finally, define α(k) := maxU :|U |=k f(U).

Lemma 6.2.2 (Focus on Closest Point). Given a reference clustering π : X → U , the expected
cost of the explainable clustering produced by the Random Thresholds algorithm is

E[cost(πT ,U)] ≤ α(|U|) · cost(π,U) .

Therefore, the price of explainability is at most α(k).

Given this reduction (which we prove in Section 6.8.1), the main result of this section is:

Theorem 6.2.3 (Exponential Clocks). For any set U with k points, f(U) ≤ (1 + o(1)) ln k.

6.2.2 The Exponential Clocks Viewpoint: the Last Point
We now focus on bounding the value f(U) for any point set U ∈ Rd. We first impose some
structure, just for the sake of analysis. Since `1 metrics can be written as a non-negative sum of
cut metrics (see, e.g., [68]), again using the data-obliviousness and translation-invariance of the
algorithm we can assume the following without loss of generality (see Section 6.8.1).

193

1. there are d = 2k dimensions (one for each subset S ⊆ U of the points), and
2. the instance is specified by non-negative values {zS}S⊆U such that for each point p ∈ U ,

it lies at location
pS := zS1(p ∈ S).

Hence the distance of a point p is ‖p‖1 =
∑

S zS1(p ∈ S) =
∑

S:p∈S zS .

Given this structure and the focus on f(U), we need to analyze the following process:

The Last Point Process. Start with some set V ⊆ U , and empty sequence S ← 〈〉.
At each step, pick a set S 6∈ S with probability zS∑

T 6∈S zT
and add it to the end of S.

If |V \ S| 6= ∅, set V ← V \ S. When all remaining sets S 6∈ S have zS = 0, stop
and output the current V , a singleton set we call Vfinal.

An inductive argument shows that if we start with V = U , the final set Vfinal has the same
distribution as the set of points in the region containing the origin in the Random Thresholds
algorithm. Specifically, the first cut is taken with probability zS∑

T 6∈S zT
and the process inductively

proceeds; the process is thus identical to the Closest Point Process, and so Vfinal contains a single
point p̂ ∈ U when the process stops with f(U) = E[‖p̂‖1].

To analyze this, we change the perspective slightly further, and recast the process in terms of
“exponential clocks”. Define independent exponential random variables XS ∼ exp(zS) for each
set S ⊆ 2U such that zS > 0. Since exponential random variables {Yi ∼ exp(ri)} have the
memorylessness property, and the property that Pr[Yj = mini{Yi}] =

rj∑
i ri

, we see the sets in
the same order S as in the last-center process above. Moreover, this order depends only on the
set U , and is independent of the starting set V ⊆ U .

Now consider the Last Point Process starting with different sets V ⊆ U (and not just the entire
point set U): naturally, the identity of the final point p̂ changes. However, it turns out we can
make the following claim. Define the event point p ∈ U is last in V if starting with the set V
results in Vfinal = {p}. It turns out that being last in this process has a nice “monotone” property.
(We defer the proof to Section 6.8.1.)

Lemma 6.2.4 (Monotonicity). For any sets T, V such that T ⊆ V , and any point p ∈ V \ T , we
have

“p is last in V ”⇒ “p is last in V \T ”.

6.2.3 Bounding the Expected Cost
By the definition of our process, we know that

f(U) =
∑
p∈U

‖p‖1 · Pr[p is last in U] ≤ γ +
∑

p:‖p‖1>γ

‖p‖1 · Pr[p is last in U] (6.4)

for any γ. (We choose γ > 1, which ensures that p 6= p∗.) We now bound (6.4) as follows.
Observe that whenever p is last in U , the following is true. There must exist a cut T that removes

194

the closest point p∗ before any cut removes p, i.e., p∗ ∈ T,p /∈ T . This implies XT ≤ XS for
all sets S such that p ∈ S,p∗ /∈ S, which can be written as

XT ≤ Xp, where Xp := min
S:p∈S,p∗ /∈S

XS .

Second, by the Monotonicity Lemma 6.2.4, we have that p is last in U implies that p is last in
U\T . Defining Fp := {T | p∗ ∈ T,p 6∈ T} to be all those cuts that could remove p∗ before p,
therefore yields the upper bound

f(U) ≤ γ +
∑

p:‖p‖1>γ

‖p‖1 · Pr[∃T ∈ Fp such that XT ≤ Xp
∧
p is last in U\T]

≤ γ +
∑

p:‖p‖1>γ

‖p‖1

∑
T∈Fp

Pr[XT ≤ Xp
∧
p is last in U\T] . (union bound)

We upper bound the contribution of a fixed point p to the above expression. By the law of total
probability, Pr[XT ≤ Xp

∧
p is last in U\T] equals∫ ∞

−∞
Pr[XT ≤ t

∧
p is last in U\T | Xp = t]fXp(t)dt , (6.5)

where fXp(t) denotes the probability density function of Xp. The event XT ≤ t is independent
from the event “p is last in U\T ” because, T does not cut any points in U\T and hence the value
of XT is irrelevant to the process restricted to points in U\T . We also know that XT and Xp are
independent. These observations can be used to rewrite the above expression as∫ ∞

−∞
Pr[XT ≤ t] · Pr[p is last in U\T | Xp = t]fXp(t)dt . (6.6)

As Pr[XT ≤ t] is an increasing function of t, the above expression is maximized if the probability
mass of the event “p is last inU\T ” is on large values of t. Formally, if we select τττ to be threshold
so that∫ ∞

−∞
Pr[p is last in U\T | Xp = t]fXp(t)dt =

∫ ∞
−∞

1[t ≥ τττ]fXp(t)dt =

∫ ∞
τττ

fXp(t)dt (6.7)

then (6.6) is upper bounded by ∫ ∞
τττ

Pr[XT ≤ t]fXp(t)dt . (6.8)

To understand this expression, recall that XT is an exponential random variable with rate zT .
Further, the random variableXp is the minimum of exponentials, and hence is itself exponentially
distributed with rate `(p) =

∑
S:p∈S,p∗ 6∈S zS . In other words, Pr[XT ≤ t] = 1 − e−zT ·t and

fXp(t) = `(p)e−`(p)t for t ≥ 0. This gives us that the choice of τττ that satisfies the identity (6.7)
is

τττ =
− lnQT (p)

`(p)
, where QT (p) is the probability that p is last in U\T .

195

The integral (6.8) can be upper-bounded by standard calculations:∫ ∞
τττ

Pr[XT ≤ t]fXp(t)dt =

∫ ∞
τττ

(1− e−zT t) · `(p) · e−`(p)tdt

= QT (p)− `(p)

`(p) + zT
e−(`(p)+zT)·τττ

≤ QT (p)

(
1− `(p)

`(p) + zT
·
(

1 +
zT lnQT (p)

`(p)

))
= QT (p) · zT

(
1− lnQT (p)

`(p) + zT

)
.

Substituting in this upper bound, we have

f(U) ≤ γ +
∑

p:‖p‖1>γ

‖p‖1

∑
T∈Fp

QT (p) · zT
(

1− lnQT (p)

`(p) + zT

)
≤ γ +

∑
p:‖p‖1>γ

‖p‖1

‖p‖1 − 1

∑
T∈Fp

QT (p) · zT (1− lnQT (p)) ,

where we use that `(p) + zT ≥ ‖p‖1 − 1. Indeed `(p) =
∑

S:p∈S,p∗ 6∈S zS ≥ ‖p‖1 − ‖p∗‖1 ≥
‖p‖1 − 1. Using the fact that x/x−1 is a decreasing function and then replacing the summation
over all p : ‖p‖1 > γ to all p 6= p∗, and exchanging the summations gives

≤ γ +
γ

γ − 1

∑
T3p∗

zT
∑
p∈U\T

QT (p)(1− lnQT (p)).

Observe that for any cut T , we have
∑
p∈U\T QT (p) = 1, and the sum is over at most k − 1

points. As the entropy
∑
p∈U\T QT (p)(− lnQT (p)) of |U\T | ≤ k − 1 outcomes is at most

ln(k− 1), the inner sum is at most 1 + ln(k− 1). Finally, using that
∑

T3p∗ zT = ‖p∗‖1 = 1, we
get

f(U) ≤ γ +
γ

γ − 1
(1 + ln(k − 1)) ≤ ln(k − 1) + 2

√
1 + ln(k − 1) + 2

by optimizing over γ. This proves Theorem 6.2.3, and gives us an asymptotically optimal bound
on the price of explainability. In the next section we show that the bound is, in fact, tight up to
lower-order terms.

6.3 Lower Bounds on the Price of Explainability
In this section, we prove a tight lower bound on the price of explainability (up to lower order
terms), and a lower bound on the approximability of explainable clustering. Both results are
obtained via a reduction from the classic hitting set problem: given a set system ([d],S), where
[d] = {1, . . . , d} denotes the ground set and S = {S1, S2, . . . , Sk} is a family of k subsets of
[d], the task is to find the smallest subset H ⊆ [d] that hits every subset in S, i.e., H ∩ Si 6= ∅
for all Si ∈ S . We further say that a hitting set instance ([d],S) is s-uniform if all subsets of S
are of the same size s. We now first present the reduction from s-uniform hitting set instances to
explainable clustering, and we then analyze its implications.

196

Reducing hitting set to explainable clustering. Given an s-uniform hitting set instance ([d],S =
{S1, S2, . . . , Sk}), define the following data set X in {0, 1}d and reference solution U :

1. The reference clustering has k+1 centers U := {µµµ0,µµµ1, . . . ,µµµk}, where µµµ0 is at the origin,
and each other µµµi ∈ {0, 1}d is the characteristic vector of the set Si.

2. The data setX consists of one point at each of the locations {ei}i∈[d], andM = poly(d, k)�
max{d, k} “colocated” points at each of the k + 1 locations in U , giving |X | = d + M ·
(k + 1).

The cost of this reference clustering U with k+1 centers is at most d, since all the d non-colocated
points can be assigned to the center µµµ0. We proceed to analyze the cost of an optimal explainable
clustering with k + 1 centers.

Lemma 6.3.1. Let h be the size of an optimal solution to the hitting set instance ([d],S) and let
OPT be the cost of an optimal (k + 1)-median explainable clustering of the data set X . Then

d+ h(s− 2− o(1)) ≤ OPT ≤ d+ h(s− 2) .

Moreover, the same bounds hold for the optimal (k + 1)-means explainable clustering.

Proof. We present the proof for (k+1)-median and then observe that all the distance calculations
also hold for (k+1)-means since all the points ofX have binary coordinates and, as we will show,
the centers will be (arbitrarily close) to such coordinates as well. Note that ‖p−q‖1 = ‖p−q‖2

2

if p,q ∈ {0, 1}d. We now proceed with the analysis for (k + 1)-median.

The M points colocated with each of the reference centers µµµi ensure that the best explainable
clustering separates each of the centers µµµi. Separating a center µµµi from µµµ0 using a threshold cut
means choosing some dimension j ∈ Si and a value θ ∈ (0, 1), which in turn also separates the
data point ej from µµµ0. Since M � k, the center for the final cluster containing ej is located at
some location very close the reference center in it, and hence this data point now incurs cost s−
(1 + o(1))) instead of 1. Here we used the fact that each set has size s and the term o(1) accounts
for the potential small difference in the locations of the centers in the explainable clustering
compared to those in the reference clustering. The above observations imply that

• the collection of threshold cuts that separate µµµ0 from other centers must form a hitting set
for the set system ([k],S); and

• if this hitting set has size h′, the cost of the explainable clustering is at least h′(s − (1 +
o(1)) + (d− h′) = d+ h′(s− 2− o(1)).

We thus have OPT ≥ d+ h(s− 2− o(1)) since h is the smallest size of a hitting set.

For the upper bound OPT ≤ d+h(s−2), letH = {i1, i2, . . . , ih} ⊆ [d] be an optimal hitting set
of size h. Starting with the reference clustering U , build a threshold tree by adding the threshold
cuts along dimensions i1, i2, . . . , ih with thresholds 1/2. Specifically, the cut along dimension
i1 is at the root of the tree and the remaining cuts are recursively added to the subinstance that
contain the reference center µµµ0. After adding these cuts we have separated µµµ0 from all other
centers, since H is a hitting set. Furthermore, the only points in X that are separated from their

197

closest center in U are ei1 , ei2 , . . . , eih . Note that the tree may still contain centers µµµi,µµµj with
i, j ≥ 1 that are yet not separated. But they can be separated without incurring any additional
cost since, in their subinstance, all points of X are colocated with the centers (or have already
been separated from their closest center µµµ0). Hence, we can build a threshold tree that has one
leaf per center in U and the only points of X that are separated from their closest center are
ei1 , ei2 , . . . , eih . Each of these separated points eij has cost at most s − 1 instead of 1 since the
hitting set instance was s-uniform and the final center µµµq that eij is assigned to correspond to a
set Sq that contains ij , and so ‖eij − µµµq‖1 = s − 1. Hence, the total cost of the clustering is at
most h · (s− 1) + d− h = d+ h(s− 2), which completes the proof of the lemma.

Having described our reduction, we now proceed to its implications.

Price of explainability for k-median. As aforementioned, the cost of the reference clustering
U is at most d. Furthermore, Lemma 6.3.1 says that the optimal (k + 1)-median explainable
clustering costs at least h(s−2−o(1))+d, where h is the size of an optimal hitting set of ([d],S).
It thus suffices to construct a set system S having large h(s − 2 − o(1)) ≈ hs. For example,
letting d = |S| = k and defining S based on the Hadamard code would give us s = k/2 and
a hitting set of size log2 k, and hence a lower bound of ≈ 1

2
log2 k. A better guarantee follows

using a probabilistic construction (selecting uniformly at random sets), whose proof we defer to
the appendix.

Lemma 6.3.2 (Hitting Set Lemma). For large enough k, there exist set systems ([k],S) with k
sets of size s each, such that the minimum hitting set satisfies h(s−2−o(1))/k ≥ ln k−O(ln ln k).

Combining the above lemma with our reduction shows that the price of explainability is at least
(1− o(1)) ln k, giving the proof of Theorem 1.5.2.

Theorem 1.5.2 (Lower Bound for k-medians). There exist instances of k-medians for which any
explainable clustering has cost at least (1 − o(1)) ln k times the cost of the optimal k-medians
clustering.

Hardness of approximation Our reduction from the hitting set problem to explainable clus-
tering immediately leads to a hardness result as well. Feige, in his landmark paper [74], proved
that it is hard to distinguish whether an s-uniform hitting set instance ([d],S) 2

• (yes case:) has a hitting set of d/s elements; or
• (no case:) any hitting set has size at least (1− o(1)) ln(k) · d/s, where k = |S|.

2We remark that the result in [74] is stated in the terminology of set cover. The instances constructed there has
a ground set of size n and a family of m subsets. Furthermore, they can be assumed to be regular: each element is
contained in s subsets and each subset is of size `. Now in the yes case, there is a set cover so that each element is
covered by exactly one set. By the regularity, this implies that the set cover has size n/` = m/s in the yes case.
Here we used that n · s = m · `. In the no case however, any set cover is at least a factor (1− o(1)) lnn larger. Now
in the terminology of hitting set, this is an hitting set instance with d = m elements and a family S of k = n many
sets, each of size s, with the stated yes case and no case.

198

Here, “hard” means that there is no polynomial-time algorithm can distinguish between these two
cases unless P = NP; it was under the stronger assumption in Feige’s original paper [74] and
then subsequently improved to hold under the weakest possible assumption P 6= NP [69, 142].

Our reduction runs in polynomial time so the above hardness together with Lemma 6.3.1 implies
the following. Assuming P 6= NP , there is no polynomial-time algorithm that, given a data set
X ⊆ Rd, distinguishes whether

• (yes case:) there is an explainable clustering with k + 1 clusters of cost at most 2d; or
• (no case:) any such clustering has cost at least (1− o(1)) ln(k)d.

As any approximation algorithm with better guarantee than (1/2− o(1)) ln(k) would allow us to
distinguish between the two cases, we have the following hardness of approximation result for
explainable clustering.

Theorem 1.5.4 (Approximability). The explainable k-medians and k-means problems are hard
to approximate better than (1/2− o(1)) ln k, unless P = NP.

The above hardness result settles the approximability of explainable k-medians up to small con-
stants: it is the same as its price of explainability! For k-means, the situation is different. Our
hardness of approximation result is far from the lower bound Ω(k) on its price of explainability.
We conjecture that there is no such hardness result matching Ω(k) and, in contrast to k-medians,
that there are significantly better approximation algorithms for explainable k-means than its price
of explainability.

6.4 Explainable k-means clustering
We now prove our improved bound on the price of explainability of the k-means problem, which
improves on the previous bound of O(k ln k). Our main result is the following:

Theorem 6.4.1. Given a data set X and a base clustering with centers U and map π, we can
output a random threshold tree T separating U such that

E[cost2(T)] ≤ O(k ln ln k) · cost2(π,U).

At a high level, the approach is similar to that for k-medians: we give an algorithm to separate a
given set of centers, but since we are dealing with squared Euclidean distances, we choose cuts
from a non-uniform distribution over dimensions and coordinate values. However, since a single
cut can increase the cost by a factor of Ω(k) we have to be careful not to lose another factor of
Ω(ln k) due to the recursion. Here we use a win-win analysis: we define a quantity called the
stretch of a pair of points and argue that the loss due to a single cut is just the stretch: moreover,
we show that if stretch is large, the recursive problems are relatively balanced and the loss in the
recursion is a geometric sum, adding up to ≈ O(k). On the other hand, if the stretch is low, we
lose less-than-the-worst-case in each round (although we now need to take a collection of “bulk”
cuts).

199

6.4.1 The Closest Point Process Again
Recall that we proved the performance of the Random Thresholds algorithm for k-medians by
reducing to the perspective of a single data point and analyzing the expected increase in its cost.
We can also define the closest point process for any `q norm and for any algorithm A separating
point sets U that is invariant under translations and scaling, as follows:

Definition 6.4.2 (`q-Norm Closest Point Process). Given a set of k points U ⊆ Rd, let p∗ :=
arg minp∈U ‖p‖q be the point in U closest to the origin according to the `q metric. Assume
‖p∗‖q = 1. Run the algorithm A to create a random threshold tree T that separates this point set
U . Consider leaf node u ∈ T whose corresponding region Bu ⊆ Rd contains the origin, and let
p̂ be the unique point of U in this region Bu. Define

fq,A(U) := E[‖p̂‖qq]. (6.9)

Finally, define αq,A(k) := max
U :|U |=k

fq,A(U).

A proof identical to that of Lemma 6.2.2 shows that the price of explainability for `q-norm
clustering is at most αq,A(k). In the rest of this section, we give some terminology and then an
algorithm A which separates the input point set U ⊆ Rd; we then bound the resulting value of
fq,A(U).

6.4.2 Terminology

2

1x yv4
1 v2

1v1
1 v3

1

v1

v4

v2
v3

Figure 6.2: Intervals defined by projections.

We use similar terminology as in [83]. Given a
set U ⊆ Rd of points, and a dimension i ∈ [d],
let `i := minv∈U vi and ui := maxv∈U vi
be the leftmost and rightmost coordinates of
points. Given two values x, y ∈ R, let Ii(x, y)
be the set of consecutive intervals along the i-
th dimension delimited by the coordinates x
and y themselves and the projections of points
in U that lie between x and y. For example,
consider the 2-dimensional point set U shown
in Figure 6.2 (the same example was given
in [83]). On the horizontal axis, two coor-
dinate values x and y are marked along with
the projections of the points: I1(x, y) consists of the three consecutive intervals [x, v4

1], [v4
1, v

2
1],

and [v2
1, y].

By the definition of Ii(x, y), we have |x− y| =
∑

[a,b]∈Ii(x,y) |b− a|. Let

Iall := ∪i∈[d] {(i, [a, b]) | [a, b] ∈ Ii(`i, ui)}

denote the collection of all dimension-interval pairs which are delimited by the projections of the

200

points onto the respective dimensions; for brevity, define Ii := Ii(`i, ui). Define

L2 :=
∑

(i,[a,b])∈Iall

|b− a|2.

A key definition is that of the pseudo-distance: for points x,y ∈ Rd, let

I(x,y) =
⋃
i∈[d]

{(i, [a, b]) | [a, b] ∈ Ii(xi, yi)}.

We then define the pseudo-distance between x and y as

d2(x,y) =
∑

(i,[a,b])∈I(x,y)

|b− a|2.

It follows that ‖x− y‖2
2 ≥ d2(x,y) ≥ 1

|U∪{x,y}|−1
· ‖x− y‖2

2.

We define a distribution D2 as follows: first select a dimension–interval pair (i, [a, b]) ∈ Iall with
probability |b− a|2/L2, and then pick θ ∈ [a, b] randomly such that the p.d.f. is

Pa,b(θ) :=
4

(b− a)2
min(θ − a, b− θ) =

4

(b− a)2
min
v∈U
{|θ − vi|}. (6.10)

Often we refer to the above concepts not for the entire point set U but for some subset V ⊆ U ;
in those cases we refer to the partition Iall(V), the sum L2(V), or the distribution D2(V), etc.
Finally, for subset V ⊆ U of points we define:

(i) Let ∆(V) := maxx,y∈V ‖x− y‖2 be the squared diameter of point set V .

(ii) Call a pair of points x,y ∈ V far if ‖x − y‖2
2 ≥ ∆(V)/2, and close if ‖x − y‖2

2 <
∆(V)/k4.

(iii) Define the stretch of a pair x,y ∈ V to be sxy(V) := ‖x − y‖2
2/d2(x,y). Define the

stretch of the set s(V) to be the maximum stretch of any far pair in V .

6.4.3 The Algorithm
The process to construct the threshold tree T for k-means is slightly more complex than for k-
medians: as before we start off with the root representing the entire point set Rd. Now, given
a node v representing some box Bv (giving us a subset Uv := U ∩ Bv), define the distribution
D2(v) := D2(Uv). Now consider the stretch s(v) := s(Uv) of the set of points.

1. (Solo Cuts) If s(v) ≥ |Uv |
ln2 |Uv |

, let p∗, q∗ be a pair of far points in Uv of stretch s(v), and pick
a threshold cut (i, θ) ∼ D2(v), conditioned on separating the pair p∗, q∗. This partitions
the box Bv into two boxes, and recurse on both.

2. (Bulk Cuts) Else if s(v) is smaller than the quantity above. In this case, repeatedly sample
cuts from D2(v) conditioned on not separating any close pairs of points in Uv, until all
pairs of far points in Uv are separated. Apply all these cuts in sequence, partitioning Bv

into potentially multiple pieces; recurse on each of them.

201

The process stops when each leaf of T contains a single point from U . For the analysis below,
we consider a compressed threshold tree T ′ which is a tree with branching at least two: if we
perform a solo cut at node v, we call it a solo node, and it has two children corresponding to
the two parts obtained by this cut. If we perform bulk cuts at node v, it has potentially multiple
children (one for each smaller box obtained by applying these cuts), and we call it a bulk node.

In the following, let S(T ′) and B(T ′) denote the solo and bulk nodes in T ′. For any node v ∈ T ′,
let L2(v) := L2(Uv), and similarly for other parameters defined above.

6.4.4 The Expected Cost Increase
We will bound the cost for the solo cuts and bulk cuts separately. First we give some preliminary
lemmas, then we bound the cost due to bulk cuts, and finally the cost for solo cuts.

Lemma 6.4.3 (Separation Probability). For any subset of points V ⊆ U and a point p ∈ V ,

Pr
(i,θ)∼D2(V)

[(i, θ) separates the origin from p] ≤ 2‖p‖2
2

L2(V)
.

Proof. The probability that a random cut sampled from D2(V) separates the origin 0 and p is:∑
i∈[d]

∑
[a,b]∈Ii

(a− b)2

L2(V)

∫ b

a

Pa,b(θ) · 1[θ is between 0 and pi] dθ

=
4

L2(V)

∑
i∈[d]

∑
[a,b]∈Ii

∫ b

a

min(θ − a, b− θ) · 1[θ is between 0 and pi] dθ (6.11)

≤ 4

L2(V)

∑
i∈[d]

∑
[a,b]∈Ii

∫ b

a

|θ − pi| · 1[θ is between 0 and pi]dθ (6.12)

=
4

L2(V)

∑
i∈[d]

∫ ∞
−∞
|θ − pi| · 1[θ is between 0 and pi] dθ =

4

L2(V)

∑
i∈[d]

(pi)
2/2 =

2‖p‖2
2

L2(V)
.

Equality (6.11) and inequality (6.12) use the expressions for Pa,b(θ) given in (6.10).

Given a set V , suppose we sample cuts from distribution D2(V) with an added rejection step
if the cut separates some pair of points in V whose distance is at most ∆(V)/k4. Formally, let
R(V) ⊆ Iall(V) be the subset of intervals which are contained in projections of close centers in
V onto the coordinate axis. Let

L′2(V) :=
∑

(i,[a,b])∈Iall(V)\R(V)

|b− a|2.

The distributionD′2(V) picks an interval [a, b] in I ′all(V) := Iall(V)\R(V) with probability (b−a)2

L′2(V)

and then a cut is chosen from this interval with the same distribution as Pa,b(θ).

Proposition 6.4.4. For any subset of points V , we have L′2(V) ≥ L2(V)/2.

202

Proof. The sum of squared length of intervals in R(V) is at most the total sum of squared dis-
tance between all pairs of close centers, which is at most(

|V |
2

)
· ∆(V)

k4
≤ ∆(V)

2k2
≤ L2(V)

2k
.

This implies that L′2(V) ≥ L2(V)(1− 1/2k) ≥ 1
2
· L2(V).

Lemma 6.4.5 (Expected Number of Cuts). For any node V , the expected number of cuts from
D′2(V) until all far pairs in V are separated is at most 24 ln |V | · s(V) · L2(V)

∆(V)
.

Proof. Consider a collection of M := 3 ln |V | · 4s(V)·L2(V)
∆(V)

cuts sampled from D′2(V), and con-
sider two “far” points p, q, i.e., such that ‖p− q‖2

2 > ∆(V)/2. Then, the probability that any one
cut separates the two is at least

Pr
(i,θ)∼D′2(V)

[(i, θ) separates p, q] ≥
d2(p, q)−

(
k
2

)∆(V)
k4

L2(V)
≥ ‖p− q‖2

2

s(V) · L2(V)
− ∆(V)

2k2 · L2(V)

≥ ∆(V)

2s(V) · L2(V)
− ∆(V)

2k2 · L2(V)

≥ ∆(V)

4s(V) · L2(V)
.

The last inequality in the above equation follows using s(V) ≤ k and k ≥ 2. Hence the proba-
bility that the M cuts do not separate some pair at distance at least ∆(V)/2 can be upper-bound
using a union bound by(

|V |
2

)
·
(

1− ∆(V)

4 · s(V) · L2(V)

)M
≤ |V |2

(
1

e

)(3 ln |V |)

= 1/|V | .

Hence, these M cuts separate all pairs that have squared distance at least ∆(V)/2 with probabil-
ity at least 1− 1/|V | ≥ 1/2. In turn, the expected number of cuts is at most 2M .

We can now start to bound the cost incurred due to bulk cuts.

Lemma 6.4.6 (Logarithmic Number of Relevant Levels). For any cut (i, θ), we have∑
v∈B(T ′)

1[0∈Bv] · 1[(i,θ)∈supp(D′2(v))] ≤ 4 ln k.

Proof. The bulk nodes in the compressed tree T ′ that correspond to the part containing the origin
0 lie on a root-leaf path; call these v1, v2, . . . , v`, with v1 closest to the root. Our algorithm
ensures that ∆(vj) ≤ ∆(vj−1)/2. Consider the lowest integer j such that (i, θ) belongs to the
support of D′2(vj), and let p, q ∈ U ∩Bvj be the closest pair of points in Bvj separated by (i, θ).
The definition of the probability distribution D′2(vj) ensures that ‖p − q‖2

2 ≥ ∆(vj)/k
4. For

j′ = j+ 4 ln k+ 1 we have that ∆(vj′) < ∆(vj)/k
4, and so there are no pairs of points separated

by (i, θ)—implying that this cut will no longer be in the support of D2(vj′′) for j′′ ≥ j′.

203

Lemma 6.4.7 (Cost for Bulk Cuts). The expected cost increase due to bulk cuts is at most O(k) ·
‖p∗‖2

2.

Proof. Consider a bulk node v in the decision tree created by the algorithm: we generate a
random number of bulk cuts Kv at this node, and each of these can cause an increase in cost. Let
Yt be the following upper bound on the increase in cost due to the tth such cut (i, θ):

Yt := ∆(v) · 1[(i,θ) seps 0,p∗] · 1[{0,p∗}⊆Bv].

Moreover, let N be the number of such cuts, then the total expected cost is E[
∑N

t=1 Yt]. Since the
Yt variables are independent and N is a stopping time, we can use Wald’s equation to infer that
the total expected cost due to these cuts is E[N] ·E[Yt]. Taking expectations of the expression for
Yt above (with respect to the distribution D′2(v)), and using Lemma 6.4.5 to bound E[N], this is
at most(
O(s(v) ln |Uv|)·

L2(v)

∆(v)

)
·∆(v)·

∑
(i,[a,b])∈I′all(v)

(b− a)2

L′2(v)

∫ b

a

Pa,b(θ)·1[(i,θ) seps 0,p∗] ·1[{0,p∗}⊆Bv] dθ.

Using Proposition 6.4.4, we know that L′2(v) ≥ L2(v)/2, so the above expression is at most

O(s(v) ln |Uv|) ·
∑

(i,[a,b])∈Iall(v)

(b−a)2

∫ b

a

Pa,b(θ) ·1[(i,θ) seps 0,p∗] ·1[{0,p∗}⊆Bv] ·1[(i,θ)∈supp(D′2(v))] dθ.

Next, we observe that for any dimension i, we have

(b− a)2 · Pa,b(θ) · 1[p∗∈Bv] ≤ 4|θ − p∗i |.

Moreover, for each bulk node we have s(v) ln |Uv| ≤ |Uv|/ ln |Uv|. This in turn is at most k/ ln k,
since the function x

lnx
is monotone and |Uv| ≤ k. Substituting both these facts, we get

O(k/ln k) ·
∑
i

∫ ∞
−∞
|θ − p∗i | · 1[(i,θ) seps 0,p∗] · 1[0∈Bv] · 1[(i,θ)∈supp(D′2(v))] dθ.

Next, we use Lemma 6.4.6 to get:∑
v∈B(T ′)

1[0∈Bv] · 1[(i,θ)∈supp(D′2(v))] ≤ O(ln k).

Now summing over all v, we get

O(k) ·
∑
i

∫ ∞
−∞
|θ − p∗i | · 1[(i,θ) seps 0,p∗] dθ = O(k) · ‖p∗‖2

2.

This completes the proof.

Finally, we turn our attention to solo cuts. For solo node v let pv, qv be the two far nodes such
that their stretch is at least |Uv |

(ln |Uv |)2 , and define the distribution D′′2(v) to be the distribution D2(v)
conditioned on separating this far pair.

204

Lemma 6.4.8 (Ratio for Solo Cuts). For any solo node v ∈ T ′,

E(i,θ)∼D′′2 (v)[cost increase at node v]

E(i,θ)∼D′′2 (v)[size of smaller child of node v]
≤ 32‖p∗‖2

2 ·
(

1 + ln

(
|Uv|
s(v)

))
.

Proof. Lemma 6.4.3 implies that

E(i,θ)∼D2(v)[cost increase] ≤ ∆(v) · 2‖p∗‖2
2

L2(v)
.

Moreover, the probability of separating pv, qv is at least

d2(pv, qv | Uv)
L2(v)

≥ ‖p− q‖2
2

s(v) · L2(v)
≥ ∆(v)

2 · s(v) · L2(v)
.

Since the cost increase is non-negative, we get that

E(i,θ)∼D′′2 (v)[cost increase] ≤ ∆(v) · 2‖p∗‖2
2

L2(v)
· 2 · s(v) · L2(v)

∆(v)
≤ 4s(v) · ‖p∗‖2

2. (6.13)

This bounds the numerator of the desired quantity; for the denominator, we prove the following
claim in Section 6.8.3:

Claim 6.4.9. If for a cut (i, θ), we define H+ := {x | xi ≥ θ} and H− = Rd \H+, then

E(i,θ)∼D′′2 (v)

[
min

(
|Uv ∩H+|, |Uv ∩H−|

)]
≥ s(v)

8(1 + ln(|Uv |/s(v)))
.

Using Claim 6.4.9 with (6.13) finishes the proof.

Lemma 6.4.10 (Cost for Solo Cuts). For any internal solo node v ∈ T ′, the expected cost
increase due to solo cuts made in the subtree T ′v is at most

32|Uv|(1 + 2 ln ln |Uv|) · 1[0∈Bv] · ‖p∗‖2
2.

Proof. The proof is by induction. The base cases are when node v has |Uv| ≤ 3. For v to
be an internal node, |Uv| ∈ {2, 3}. If it has two nodes, then s(v) = 1 < 2

ln2 2
, and hence

u cannot be a solo node. If we have 3 points, then the only solo node in the subtree T ′v is
u itself, so it suffices to argue that the expected cost increase due to this solo cut is at most
32|Uv|(1 + 2 ln ln |Uv|) · ‖p∗‖2

2. From (6.13) we know that the expected cost increase is at most
4s(u) · ‖p∗‖2

2. Now using s(u) ≤ |Uv| and |Uv| ≤ 3, we obtain the required bound.

Else consider some node v with |Uv| ≥ 4, and let χ(v) be the set of solo nodes whose closest
solo ancestor is v: it follows that

∑
w∈χ(v) |Uw| ≤ |Uv|. Moreover, suppose the random solo cut

(iv, θv) ∼ D′′2(v) partitions Uv into parts of size at least σ(v), then each |Uv| − |Uw| ≥ σ(v).
Using the induction hypothesis on each w ∈ χ(v), the total expected cost increase is at most

E[cost increase at v] +
∑
w∈χ(v)

32|Uw|(1 + 2 ln ln |Uw|) · 1[0∈Bw] · ‖p∗‖2
2. (6.14)

205

Since the origin belongs to at most one of the sets Bw∗ , the sum contributes at most

32|Uw∗|(1 + 2 ln ln |Uv|) · ‖p∗‖2
2 ≤ 32(|Uv| − E[σ(v)])(1 + 2 ln ln |Uv|) · ‖p∗‖2

2. (6.15)

(The RHS is non-negative, since σ(v) ≤ |Uv|, so the bound holds even when χ(v) = ∅.) Now
Lemma 6.4.8 implies that the cost at v is at most

E[σ(v)] · 32(1 + ln(|Uv |/s(v))) · ‖p∗‖2
2.

Finally, using that s(v) ≥ |Uv|/(ln |Uv|)2 for a solo node, and summing the two terms, completes
the proof.

We can wrap up: Using Lemma 6.4.7 and Lemma 6.4.10, we know that the expected cost increase
due to all the cuts used to separate the points in U is at mostO(k ln ln k)·‖p∗‖2

2. If p̂ is the unique
point in U in the region Bu corresponding to the leaf node u such that 0 ∈ Bu, then the cost is
upper bounded by

‖p̂‖2
2 ≤ 2 · ‖p̂− p∗‖2

2 + 2 · ‖p∗‖2
2 (6.16)

using the generalized triangle inequality. Taking expectation on both sides of Equation (6.16)
and plugging in ‖p∗‖2

2 = 1 gives f2(U) ≤ O(k ln ln k).

6.5 Tight Bounds for the Random Threshold Algorithm
We now improve the bound of (1 + o(1)) ln k from §6.2.1 to give an exact bound of 1 + Hk−1

for the Random Thresholds algorithm; we first show an example which achieves this bound, and
then give our precise analysis of the algorithm.

6.5.1 A Lower Bound
Consider an instance in Rk given by a reference clustering having one “close” center µµµ1 = e1,
and k − 1 “far” centers µµµi = M ei for each i ∈ {2, . . . , k}, where scalar M � 1. We consider
a single data point at the origin. (As always, we can imagine there being many points colocated
with each of the centers.) Let the expected assignment cost due to the algorithm for the point at
the origin on an instance with j far points be denoted by g(j). Then we get a recurrence:

g(k) = 1
M(k−1)+1

·M + M(k−1)
M(k−1)+1

· g(k − 1),

and g(0) = 1. As M →∞, this gives us g(k)→ 1 + Hk−1, as claimed. In the next section, we
will prove a matching upper bound of 1 +Hk−1.

6.5.2 Towards a Matching Upper Bound
Our proof for this case is technical, so the reader may want to keep three special cases in mind:

206

1. The “axis-aligned” case, inspired by the bad example: the points in U are {pi := diei},
where 1 = d1 ≤ d2 ≤ . . . ≤ dk,

2. the “orthogonal closest-point” case, where the closest point is e1, and all other points lie
in the orthogonal subspace to it, and

3. the “uniform” case, where all points other than the closest are at the same distance d ≥ 1.

Many of our proofs become simpler in these special cases, and thinking about these cases will
give us crucial intuition.

We start with a set of points U ⊆ Rd, recall that f(U) was defined to be E[‖p̂‖1], where p̂ is the
unique point in the box containing the origin in the Random Thresholds algorithm. As in §6.2.3,
assume we have a dimension for each cut S ⊆ U , and point p ∈ U has value zS1[p ∈ S] ≥ 0 in
this coordinate. Finally defining CS to be the collection of sets that cross S ⊆ U , we get that for
any S ⊆ U ,

f(S) =

∑
E∈CS zE · f(S \ E)∑

E∈CS zE
, and f({p}) = ‖p‖1. (6.17)

Moreover, when
∑

E∈CS zE = 0, the value of f(S) = 0. Let us denote by `(p) := ‖p‖1 and
βk−1 := 1 +Hk−1. Using Equation (6.17), we think of the function f(U) purely as an algebraic
function of the zS values, and our central goal in this section to prove the following:

Theorem 6.5.1 (Main Goal). For any point p ∈ U , the value f(U) ≤ βk−1 · `(p).

Since the ratio f(U)/`(p) is difficult to argue about, we instead focus on bounding the derivative
∂f(U)
∂zE

by βk−1. The following lemma shows that, by integrating along a path from the origin to
the point p, such a bound on the derivative suffices: (a formal proof appears in §6.8.4)

Lemma 6.5.2. For any p ∈ U , if ∂f(U)
∂zE

≤ βk−1 for all E ⊆ U with p ∈ E, then f(U) ≤
βk−1 · `(p).

6.5.3 Bounding the Derivative

We start by taking definition (6.17) and calculating the derivative ∂f(S)
∂zT

for the case |S| ≥ 2:

∂f(S)

∂zT
=

∑
E∈CS zE ·

∂f(S\E)
∂zT

+ 1[T ∈ CS] ·
(
f(S \ T)− f(S)

)∑
E∈CS zE

. (6.18)

When |S| = 1, if S = {r}, then f(S) = `(r) by definition, and so ∂f(S)
∂zT

= ∂`(r)
∂zT

. Henceforth, let
us fix a set S ⊆ U and some subset T . The next lemma (in §6.8.4) follows by direct calculations:

Lemma 6.5.3. The partial derivatives satisfy:

(i) If T ⊇ S, then ∂f(S)
∂zT

= 1.

(ii) If T ∩ S = ∅, then ∂f(S)
∂zT

= 0.

207

(iii) We have f(S) ≥
∑

E⊇S zE .

The partial derivative ∂f(S)
∂zT

is not very well-behaved: e.g., it is not guaranteed to be non-negative
(which turns out to make an inductive proof difficult). To address this issue, we define a surrogate
pseudo-derivative operator, and use bounds on this pseudo-derivative to bound the derivative.

Definition 6.5.4 (Pseudo-Derivative). The pseudo-derivative of f(S) with respect to the variable
zT such that T crosses S (i.e., T ∈ CS) is:

∂̂f(S)

∂̂zT
=

∑
E∈CS zE ·

∂̂f(S\E)

∂̂zT
+ f(S \ T)−

∑
E⊇S zE∑

E∈CS zE
. (6.19)

It is defined to be 1 if T ⊇ S, and 0 if T ∩ S = ∅.

Observe the differences with (6.18), which are marked in red: when T ∈ CS , each smaller deriva-
tive term ∂f(S\E)

∂zT
in the numerator of the derivative is naturally replaced with the corresponding

pseudo-derivative term ∂̂f(S\E)

∂̂zT
, but crucially, the term f(S) is replaced with

∑
E⊇S zE . These

are the terms corresponding to the “shift” of the set S—i.e., the cuts that separate all points in S
from the origin—and hence they form a lower bound on f(S), the expected distance to the clos-
est point in S. This latter change makes the following arguments easier (and indeed, possible),
but still maintains the intuition of the derivative being invariant under translations. In §6.8.4, we
prove the following lemma, showing it is indeed an upper bound.

Lemma 6.5.5. The pseudo-derivative is non-negative, and bounds the derivative from above.
I.e.,

max

(
∂f(S)

∂zT
, 0

)
≤ ∂̂f(S)

∂̂zT
.

Given Lemma 6.5.5, it suffices to upper bound the pseudo-derivative by βk−1, which we do next.

Theorem 6.5.6. For any S ⊆ U and any T 6= ∅, we have ∂̂f(S)

∂̂zT
≤ β|S\T |.

Theorem 6.5.6 implies our desired bound on the derivative, because |S \ T | ≤ k − 1 for any
S ⊆ U, T 6= ∅. To prove Theorem 6.5.6, we first prove it for the special case when all points in
S \ T have the same norm (the uniform case), and then reduce the general case to this uniform
case.

Proof of Theorem 6.5.6: the Uniform Case

The main reason that it is easier to prove Theorem 6.5.6 for the uniform case is because we know
the value of f(S\T) exactly which will be equal to the norm of all the points in S\T . Otherwise,
it is hard to obtain any upper bound to f(S \ T) in the general case. Moreover, we know that
the uniform property holds true for all subsets of S. This enables us to use the upper bound of
Theorem 6.5.6 to derivative terms ∂̂f(S\E)

∂̂zT
by β|S\(E∪T)|.

208

Lemma 6.5.7. If all points in S \ T have the same norm, then ∂̂f(S)

∂̂zT
≤ β|S\T |.

Proof. The proof is by induction on |S|. If T /∈ CS , we know that ∂̂f(S)

∂̂zT
is either 0 or 1. But

β|S\T | ≥ 1 as βm ≥ 1 for any m ≥ 0 which implies that we are done. Hence, for |S| = 1, we
know that T /∈ CS and we are done. From now on, we can assume |S| ≥ 2 and T ∈ CS . So
we use the definition of the pseudo-derivative from (6.19) and use the upper bound of the lemma
inductively for the recursive terms ∂̂f(S\E)

∂̂zT
to get:

∂̂f(S)

∂̂zT
≤
∑

E∈CS zE · β|S\(E∪T)| + f(S \ T)−
∑

E⊇S zE∑
E∈CS zE

. (6.20)

In order to show that ∂̂f(S)

∂̂zT
≤ β|S\T |, it is sufficient to upper bound the RHS of Equation (6.20)

by β|S\T |. Simplifying gives the following sufficient condition

f(S \ T) ≤
∑
E⊇S

zE +
∑
E∈CS

zE
(
β|S\T | − β|S\(T∪E)|

)
. (6.21)

From here on, we will prove Equation (6.21). Since T ∈ CS , we know that |S \ T | ≥ 1. All
points in S \ T have the same norm, so we can write

f(S \ T) =
1

|S \ T |
∑
r∈S\T

`(r) (6.22)

(6.45)
=

1

|S \ T |
∑
r∈S\T

∑
E:r∈E

zE (6.23)

=
∑
E

zE ·
|(S \ T) ∩ E|
|S \ T |

. (6.24)

When E ⊇ S, the coefficient of zE in Equation (6.21) is 1. The coefficient of zE in Equa-
tion (6.24) is also 1 because in this case, S ⊆ E and hence |(S \ T) ∩ E| = |S \ T |. Other-
wise, the coefficients of zE in Equation (6.21) and Equation (6.24) are β|S\T | − β|S\(T∪E)| and
|(S \ T) ∩ E|/|S \ T | respectively. It remains to show

|(S \ T) ∩ E|
|S \ T |

≤ β|S\T | − β|S\(T∪E)|. (6.25)

We can justify Equation (6.25) because the left hand side is sum of |(S \T)∩E| copies of 1
|S\T | ,

whereas the right hand side is the sum of |(S \ T) ∩ E| terms, the smallest of them equal to
1
|S\T | .

Corollary 6.5.8. If T ∈ CS and |S \ T | = 1, we have ∂̂f(S)

∂̂zT
≤ β1 = 2.

Proof. Follows from Lemma 6.5.7 because when there is only one point in S \ T , we can say
that all points in S \ T have the same norm.

209

6.5.4 Proof of Theorem 6.5.6: Reducing to the Uniform Case
The case for points in U\T have different norms is the technical heart of the proof. In this case,
we “lift” the points in such a way that the value of the pseudo-derivative ∂̂f(S)

∂̂zT
is monotonically

increasing, thereby reducing to the uniform case of Section 6.5.3. To begin, we give a few
supporting lemmas.

Supporting lemmas

Observation 6.5.9. max
b∈S

(`(b)) ≥ f(S) ≥ min
a∈S

(`(a))

Proof. The proof follows from the fact that f(S) is an expectation of norms of points in S.

Let us denote S\{p} simply as S − p.

Observation 6.5.10. For any point p ∈ S such that |S| ≥ 2, if E ∈ CS and E /∈ CS−p, then
E ∩ S is equal to either {p} or S − p.

Observation 6.5.11. LetA =
∑m

j=1 wj·vj/
∑m

j=1wj be a weighted average ofm items t1, . . . , tm
with values v1, . . . , vm weighted by respective weights w1, . . . , wm. Adding any number m′−m
items of valueA (with any weights) does not change the weighted average. I.e., the new weighted
average is

A′ =

∑m
j=1wj · vj +

∑m′

j=m+1 wj · A∑m
j=1wj +

∑m′

j=m+1 wj
= A

Observation 6.5.11 is simple but powerful.

Lemma 6.5.12. Let p be a point in S having the minimum `1 norm. If S − p 6= ∅, then

f(S − p) ≥ f(S) ≥ f({p}) (6.26)

Proof. The lower bound follows from Observation 6.5.9. Let us prove the upper bound by induc-
tion in |S|. If |S| = 2, then f(S−p) is the norm of the maximum norm point in S which is more
than f(S) by Observation 6.5.10. If |S| ≥ 3, then |S − p| ≥ 2 so we will use Equation (6.17) to
expand both f(S) and f(S − p) as

f(S − p) =

∑
E∈CS−p

zE · f((S − p)\E)∑
E∈CS−p

zE
, f(S) =

∑
E∈CS zE · f(S\E)∑

E∈CS zE
. (6.27)

Using Observation 6.5.11 and Observation 6.5.10, we can re-write f(S − p) as

f(S − p) =

∑
E∈CS−p

zE · f((S − p)\E) + z{p} · f(S − p) + zS−p · f(S − p)∑
E∈CS zE

. (6.28)

In the numerators of f(S − p) and f(S), the coefficient of zE in f(S − p) is more than that of
f(S) either by induction on |S| (S ← S\E) or using the fact that f(S − p) ≥ f({p}) from
Observation 6.5.9.

210

From now, many other lemmas will have their proofs very similar to that of Lemma 6.5.12
where we compare the function values of two different sets by expanding the functions and using
Observation 6.5.11 to normalize the denominators and then use induction and other arguments
to conclude.

The lifting operation

Now let us define the lift operation. For a set S ′ = {p1, . . . ,pk′} ⊆ U , consider the following
trajectory for the z vector

zE(t) :=

{
zE + t E = {p}, p ∈ S ′

zE otherwise .
(6.29)

Given this trajectory for the embedding, we are interested in how this changes the function value.
Let us define

∂f(S)

∂S ′
:=

dft(S)

dt

∣∣∣∣
t=0

.

Lemma 6.5.13. Let S ′ be a subset of U . Then,

1. If S ∩ S ′ = ∅, ∂f(S)
∂S′

= 0.
2. If |S| = 1, S ⊆ S ′, ∂f(S)

∂S′
= 1.

3. If |S| ≥ 2,

∂f(S)

∂S ′
=

∑
E∈CS zE ·

∂f(S\E)
∂S′

+
∑
pi∈S∩S′ (f(S − {pi})− f(S))∑
E∈CS zE

. (6.30)

Moreover, if points in S ′ ∩ S if any, have the least norm out of points in S, then ∂f(S)
∂S′
≥ 0.

Proof. Since f(S) is purely a function of points in S, and hence only depends on variables zE
such that p ∈ E for some p ∈ S. But the only variables that change with t are z{p′},p′ ∈ S ′.
Since S ′ ∩ S = ∅, we can conclude statement 1. When S = {p} and p ∈ S ′, ft(S) = `t(p).
Since z{p} is the only variable that is changing and `(p) contains this, we can conclude statement
2. Once we know that |S| = 2, using Equation (6.17) and applying the ∂

∂S′
operator on both sides

gives

∂f(S)

∂S ′
=

∑
E∈CS

(
zE · ∂f(S\E)

∂s′
+ ∂zE

∂S′
· f(S\E)

)
∑

E∈CS zE
− f(S)∑

E∈CS zE
·
∂
∑

E∈CS zE

∂S ′
. (6.31)

Using the fact that the only variables that are changing with t are z{p} for p ∈ S ′ in Equa-
tion (6.31) gives Equation (6.30). Let us argue that ∂f(S)

∂S′
≥ 0 when points in S ∩ S ′ have the

least norm of points in S using induction on |S|. For |S| = 1, using statement 2 or statement
1, we are done. Otherwise, using Equation (6.30), we have that the recursive derivative terms
∂f(S\E)
∂S′

in the numerator of Equation (6.30) are non-negative by inductive hypothesis. From
Lemma 6.5.12, we know that f(S − pi) − f(S) ≥ 0 for every pi ∈ S ∩ S ′. Combining both
these observations, we can conclude statement 3 and hence the lemma.

211

Lemma 6.5.14. If S ′ is the set of points in U\T of minimum norm, then

∂

∂S ′

(
∂̂f(S)

∂̂zT

)
≥ 0.

Proof. The proof is by induction on |S|. If T /∈ CS , this is trivially true because ∂̂f(S)

∂̂zT
is either

0 or 1. So for |S| = 1, we are done. Otherwise, we have |S| ≥ 2 and T ∈ CS . Recall from
Equation (6.19) that

∂̂f(S)

∂̂zT
=

∑
E∈CS zE ·

∂̂f(S\E)

∂̂zT
+ f(S\T)−

∑
E⊇S zE∑

E∈CS zE
.

Applying the operator ∂
∂S′

on both sides gives∑
E∈CS zE ·

∂
∂S′

(
∂̂f(S\E)

∂̂zT

)
+ ∂f(S\T)

∂S′
− ∂

∂S′

(∑
E⊇S zE

)
+
∑
p∈S′∩S

(
∂̂f(S−p)

∂̂zT
− ∂̂f(S)

∂̂zT

)
∑

E∈CS zE
.

Since |S| ≥ 2, the term ∂
∂S′

(∑
E⊇S zE

)
is zero. Using this, what remains is∑

E∈CS zE ·
∂
∂S′

(
∂̂f(S\E)

∂̂zT

)
+ ∂f(S\T)

∂S′
+
∑
p∈S∩S′

(
∂̂f(S−p)

∂̂zT
− ∂̂f(S)

∂̂zT

)
∑

E∈CS zE
.

This means, it is sufficient to show that when T ∈ CS ,

∂f(S\T)

∂S ′
+
∑

p∈S∩S′

(
∂̂f(S − p)

∂̂zT
− ∂̂f(S)

∂̂zT

)
≥ 0. (6.32)

Because, the recursive derivatives ∂
∂S′

(
∂̂f(S\E)

∂̂zT

)
are at least zero by induction on |S|. The proof

of Equation (6.32) is now given in Lemma 6.5.15.

Lemma 6.5.15. Let S ′ = {p1, . . . ,pk′} be the set of points in U\T of minimum norm. For
T ∈ CS ,

∂f(S\T)

∂S ′
+
∑

p∈S∩S′

(
∂̂f(S − p)

∂̂zT
− ∂̂f(S)

∂̂zT

)
≥ 0.

Proof. The proof is by induction on |S|. Let us work out boundary cases first. If S ∩ S ′ =

(S\T)∩S ′ = ∅, then ∂f(S\T)
∂S′

= 0 and the summation is empty which makes the entire expression
equal to 0 in which case, we are fine. So from now, we can assume S ∩ S ′ 6= ∅. If |S\T | = 1,
then S\T = {p∗} ⊆ S ′, which implies ∂f(S\T)

∂S′
= 1. The expression in this case is simply

1 +
∂̂f(S − p∗)

∂̂zT
− ∂̂f(S)

∂̂zT
= 2− ∂̂f(S)

∂̂zT

212

because S − p∗ ∈ T . For this boundary case, it remains to prove that ∂̂f(S)

∂̂zT
≤ 2. This is taken

care of Corollary 6.5.8. For the base case |S| = 2, we have |S\T | = 1 in which case, we are
done from the preceding arguments. Otherwise, if |S\T | ≥ 2 we can expand all the derivative
terms. But before we do that, we need Observation 6.5.11 so that we have the same denominator
for all the three derivatives. Now using Equation (6.30) and the fact that (S\T) ∩ S ′ = S ∩ S ′,

∂f(S\T)

∂S ′
=

∑
E∈CS\T zE ·

∂f(S\(T∪E))
∂S′

+
∑
p∈S∩S′ (f(S\(T ∪ {p}))− f(S\T))∑
E∈CS\T zE

=

∑
E∈CS\T zE ·

∂f(S\(T∪E))
∂S′

+
∑

E∈CS\CS\T zE ·
∂f(S\T)
∂S′

+
∑
p∈S∩S′ (f(S\(T ∪ {p}))− f(S\T))∑

E∈CS zE

≥
∑

E∈CS\T zE ·
∂f(S\(T∪E))

∂S′
+
∑

E∈CS\CS\T zE ·
∂f(S\T)
∂S′∑

E∈CS zE
. (6.33)

Using Equation (6.19) and the fact that T ∈ CS−p for any p ∈ S ∩ S ′,

∂̂f(S − p)

∂̂zT
=

∑
E∈CS−p

zE · ∂̂f(S\(E∪{p}))
∂̂zT

+ f(S\(T ∪ {p}))−
∑

E⊇S−p zE∑
E∈CS−p

zE

=

∑
E∈CS−p

zE · ∂̂f(S\(E∪{p}))
∂̂zT

+
∑

E∈CS\CS−p
zE · ∂̂f(S\{p})

∂̂zT
+ f(S\(T ∪ {p}))−

∑
E⊇S−p zE∑

E∈CS zE
.

Using Equation (6.19),

∂̂f(S)

∂̂zT
=

∑
E∈CS zE ·

∂̂f(S\E)

∂̂zT
+ f(S\T)−

∑
E⊇S zE∑

E∈CS zE
.

The numerator of ∂̂f(S−p)

∂̂zT
− ∂̂f(S)

∂̂zT
is

∑
E∈CS−p

zE

(
∂̂f(S\(E ∪ {p}))

∂̂zT
− ∂̂f(S\E)

∂̂zT

)
+

∑
E∈CS\CS−p

zE

(
∂̂f(S\{p})

∂̂zT
− ∂̂f(S\E)

∂̂zT

)
−

∑
E:S\E={p}

zE + (f(S\(T ∪ {p}))− f(S\T))

≥
∑

E∈CS−p

zE

(
∂̂f(S\(E ∪ {p}))

∂̂zT
− ∂̂f(S\E)

∂̂zT

)
+

∑
E∈CS\CS−p

zE

(
∂̂f(S\{p})

∂̂zT
− ∂̂f(S\E)

∂̂zT

)
−

∑
E:S\E={p}

zE. (6.34)

Note that the condition E ∈ CS\CS−p holds only when p ∈ S and E ∩ S is either S\{p} or {p}
from Observation 6.5.10. When E ∩ S = {p}, the second derivative term in Equation (6.34) is

213

zero. Otherwise, it is ∂̂f(S\{p})
∂̂zT

− ∂̂f({p})
∂̂zT

= ∂̂f(S\{p})
∂̂zT

. Using these observations, Equation (6.34)
can be simplified and can be re-written as

∑
E∈CS−p

zE

(
∂̂f(S\(E ∪ {p}))

∂̂zT
− ∂̂f(S\E)

∂̂zT

)
+

∑
E:S\E={p}

zE

(
∂̂f(S\{p})

∂̂zT
− 1

)
. (6.35)

The remaining numerator of ∂f(S\T)
∂S′

from Equation (6.33) is

∑
E∈CS\T

zE ·
∂f(S\(T ∪ E))

∂S ′
+

∑
E∈CS\CS\T

zE ·
∂f(S\T)

∂S ′
. (6.36)

It remains to prove that the sum of Equation (6.36), and Equation (6.35) summed over all p ∈
S ∩ S ′ is non-negative. Let us do that by carefully partitioning all the E into groups and do a
case analysis.

Case 1: (E ∈ CS\CS\T) First, observe that this happens only when either ∅ 6= S∩E ⊆ S∩T or
∅ 6= S\E ⊆ S ∩ T as shown in figures Figure 6.3a and Figure 6.3b respectively. Observe

U
T

S

S ′

E

(a) Case 1a

U
T

S

S ′

E

(b) Case 1b

Figure 6.3: Case 1

that in either case, for that E, we have E ∈ CS−p for any p ∈ S ∩ S ′.

Case 1a: (∅ 6= S ∩ E ⊆ S ∩ T) In this case, the coefficient of zE in the sum of Equa-
tion (6.36) and, Equation (6.35) summed over all p ∈ S ∩ S ′ is

∂f(S\T)

∂S ′
+
∑

p∈S∩S′

(
∂̂f(S\(E ∪ {p}))

∂̂zT
− ∂̂f(S\E)

∂̂zT

)
. (6.37)

Which we can re-write as

∂f((S\E)\T)

∂S ′
+

∑
pr∈(S\E)∩S′

(
∂̂f((S\E)\{p})

∂̂zT
− ∂̂f(S\E)

∂̂zT

)
.

214

This, we can argue is non-negative by induction on |S| by setting S ← S\E. But note
that before using inductive hypothesis, we need T ∈ CS\E which is not guaranteed
when E = S∩T . But in that case, the terms inside the summation of Equation (6.37)
are zero because T ∩ (S\E) = ∅ which implies that the coefficient is ∂f(S\T)

∂S′
=

∂f(S\(T∪E))
∂S′

≥ 0 from Lemma 6.5.13.

Case 1b: (∅ 6= S\E ⊆ S ∩ T) In this case, the coefficient of zE is the same expression
as Equation (6.37) but observe that S\(E ∪ {p}) = S\E which implies that the
coefficient is simply ∂f(S\T)

∂S′
which we know is non-negative from Lemma 6.5.13.

Case 2: (E ∈ CS\T) Let us branch based on whether there exists p ∈ S∩S ′ such thatE /∈ CS−p.
This can happen in two ways. First, there exists a point p∗ ∈ S∩S ′ such that S\E = {p∗}.
Second, there exists a point point p∗ ∈ S ∩ S ′ such that S\E = S\{p∗}

U
T

S

S ′

E

(a) Case 2a

U
T

S

S ′

E

(b) Case 2b

Figure 6.4: Case 2

Case 2a: (∃p∗ ∈ S ∩ S ′, S\E = {p∗}) First, note that E ∈ CS\T for such a cut (see Fig-
ure 6.4a). Observe that for any p 6= p∗ ∈ S ∩ S ′, we have S\(E ∪ {p}) = S\E
and there cannot be a different p such that S\E = {p} for the same E. This implies
that the coefficient of zE in the sum of Equation (6.36) and, Equation (6.35) summed
over all p ∈ S ∩ S ′ is

∂f(S\(T ∪ E))

∂S ′
+
∂̂f(S\{p∗})

∂̂zT
− 1

=
∂f({p∗})
∂S ′

+
∂̂f(S\{p∗})

∂̂zT
− 1

=
∂̂f(S\{p∗})

∂̂zT
≥ 0

Case 2b: (∃p∗ ∈ S ∩ S ′, S\E = S\{p∗}) First, note that E ∈ CS\T for such a cut (see
Figure 6.4b). Observe that for any p 6= p∗ ∈ S∩S ′, we have E ∈ CS−p. This implies

215

that the coefficient of zE in the sum of Equation (6.36) and, Equation (6.35) summed
over all p ∈ S ∩ S ′ is

∂f(S\(T ∪ E))

∂S ′
+

∑
p6=p∗∈S∩S′

(
∂̂f(S\(E ∪ {p}))

∂̂zT
− ∂̂f(S\E)

∂̂zT

)

=
∂f((S\{p∗})\T)

∂S ′
+

∑
p∈(S\p∗)∩S′

(
∂̂f((S\{p∗})\{p})

∂̂zT
− ∂̂f(S\{p∗})

∂̂zT

)
.

This, we can argue is non-negative by induction on |S| (S ← S\{p∗}). Note that
T ∈ CS−p∗ holds so we can use induction hypothesis.

Case 2c: (E ∈ CS−p,∀p ∈ S ∩ S ′) In this case, the coefficient of zE is simply,

∂f(S\(T ∪ E))

∂S ′
+
∑

p∈S∩S′

(
∂̂f(S\(E ∪ {p}))

∂̂zT
− ∂̂f(S\E)

∂̂zT

)

=
∂f((S\E)\T)

∂S ′
+

∑
p∈(S\E)∩S′

(
∂̂f((S\E)\{p}))

∂̂zT
− ∂̂f(S\E)

∂̂zT

)
.

This, we can again argue is non-negative by induction on |S| (S ← E). Note that if
T /∈ CS\E , then E ⊇ S ∩ T in which case, the terms in the summation are zero and
we are done directly without induction.

This completes the proof of Lemma 6.5.15.

We can now wrap up: Lemma 6.5.15 was the missing piece in the proof of Lemma 6.5.14. In turn,
because of Lemma 6.5.14 we can assume all points in S\T to have the same norm. Lemma 6.5.7
shows the desired bound of Theorem 6.5.6 for this uniform case, completing the proof.

6.6 Price of Explainability with General Threshold Cuts
Generalized Threshold Cuts and Trees. In Section 6.1.3, we defined threshold cuts as hy-
perplanes of the form xi = θ. We now generalize this to arbitrary hyperplanes of the form
〈a,x〉 = θ for some direction a ∈ Rd. We denote such a hyperplane by (a, θ). A generalized
threshold tree T is a binary tree where each internal node u corresponds to a cut (au, θu). Let
Bu ⊆ Rd denote the region associated with node u ∈ T . For the root node r, we have Br := Rd.
If l(u) and r(u) denote the left and right children of u, then:

Bl(u) := Bu ∩ {x | 〈au,x〉 ≤ θu},
Br(u) := Bu ∩ {x | 〈au,x〉 > θu}.

This generalization allows us to extend the notion of explainability to include such threshold
trees.

216

Given a dataset X = {x1, . . . ,xn} ⊆ Rd, a set of centers U = {µ1, . . . ,µk} ⊆ Rd, and an
assignment map π : X → U , the k-medians cost under the `q norm is defined as:

costmedian
q (π,U) =

∑
x∈X

‖x− π(x)‖q. (6.38)

6.6.1 k-Medians with `2 Norm
We now describe a natural extension of the random thresholds algorithm (from Section 6.2.1) to
the `2 setting using general hyperplanes. Assume the dataset X lies within the ball B(0, r) for
some r ∈ R≥0. Initialize the threshold tree T with a single root corresponding to Rd. While
some leaf of T contains more than one center, perform the following:

• Sample a random Gaussian vector g ∼ Nd(0, I).

• Sample θ ∈ [−r, r] uniformly at random.

• For each leaf u of T , if the cut (g
‖g‖2 , θ) separates any pair of centers in Bu ∩ U , then

partition the region using this cut.

This process, called the random hyperplanes algorithm, continues until all centers are isolated in
disjoint leaves.

Analyzing Explainability. As with the random thresholds algorithm, this method is indepen-
dent of the dataset X and is invariant under translations and scalings. Therefore, it suffices to
analyze the expected cost for a single point at the origin, using the `2 norm and hyperplane-based
splits.

Let U := U denote the set of centers. Let Dmed
2 (U) be the distribution over hyperplane cuts

induced by the random hyperplanes algorithm. For any subset T ⊆ U , define:

zT := Pr
(a,θ)∼Dmed

2 (U)
[U ∩ {x | sign(θ) · 〈a,x〉 ≥ |θ|} = T] . (6.39)

Since the distribution of cuts depends only on U , it remains fixed throughout. Let f(S) denote
the expected `2 norm of the unique center in the leaf region that contains the origin, assuming
the current region includes centers S ⊆ U . Then we have the recursive relation:

f(S) =

∑
E∈CS zE · f(S \ E)∑

E∈CS zE
, f({p}) = ‖p‖2,

where CS is the collection of possible subsets E corresponding to valid cuts.

Lemma 6.6.1. Let p ∈ U be a center. Then:∑
T3p

zT = ‖p‖2 · g(r, d),

for some function g(r, d) depending only on r and the dimension d.

217

Proof. The left-hand side represents the probability that a hyperplane drawn from Dmed
2 (U) sep-

arates p from the origin:∑
T3p

zT = Pr
(a,θ)∼Dmed

2 (U)
[p is separated from the origin by the hyperplane 〈a,x〉 = θ] .

Due to rotational symmetry, we may assume a = e1 and consider p as a uniformly random point
on the sphere of radius ‖p‖2. Then, the probability that p is separated from the origin by the
plane x1 = θ, for θ ∼ Uniform[−r, r], is proportional to the expected `1 norm of a uniformly
random point on the unit sphere Sd:

=
‖p‖2

2rd
· E[`1 norm of a random point on Sd].

Using Lemma 6.6.1 and the recurrence for f(U), we obtain the bound f(U) ≤ βk−1·minq∈U ‖q‖2,
implying that the price of explainability is at most βk−1.

Alternative Approach via Metric Embeddings. An alternate method to establish a bound
on POE is via metric embeddings. Specifically, consider the point set X ∪ U , and embed it
linearly and isometrically from the `2 space into an `1 space. Then, apply the random thresholds
algorithm (designed for `1) in the embedded space. Finally, interpret the resulting threshold tree
as a generalized threshold tree in the original `2 space.

6.7 Future Directions
Our work leaves several important avenues for future research:

• Closing the Approximation Gap for k-Means. For k-median, the price of explainabil-
ity is settled at Θ(ln k). A significant gap remains for k-means, however, between the
Ω(ln k) hardness of approximation and the best-known O(k ln ln k) upper bound. Clos-
ing this gap—either by improving the approximation algorithm or tightening the hardness
result—is a central open problem.

• Exploring General Explanation Models. Our framework relies on explanations from
axis-aligned decision trees. This could be generalized in several ways:

General Hyperplane Partitions. A natural extension is to allow cluster boundaries
defined by arbitrary (non-axis-aligned) hyperplanes. It is currently unclear if this
added expressive power actually reduces the price of explainability, as the best known
upper and lower bounds remain unchanged from the axis-aligned model. A key ques-
tion is whether more expressive models can provably improve the explainability-cost
trade-off.

218

Feature-Based Explainability. Another direction is to define an explainable cluster-
ing via feature selection. For instance, an explanation could be a pair (S, f), where
S ⊆ [d] is a small subset of features (e.g., |S| = k) and f : RS → [k] is a clustering
function over that subset. This framework captures a form of feature-based attribution
and connects our work to the broader goals of interpretable machine learning.

6.8 Appendix for Chapter 6

6.8.1 Proofs from Section 6.2
Proof of Lemma 6.2.2. For any client x ∈ X . Since the Random Thresholds algorithm is trans-
lation and scaling invariant, we imagine that x = 0. Now the expected cost incurred by this
client is at most the distance to the unique center in its leaf region in the tree produced by the
Random Thresholds algorithm, which is at most α(|U|). The claim now follows by scaling by
the true distance to the closest center ‖x− π(x)‖, summing over all x ∈X , and using linearity
of expectations.

Going from `1 Metrics to Cut Metrics

It is known that point set in `1 can be written as a non-negative sum of cut metrics [68]; we
give the details here for completeness. Given a point set V ∈ Rd, define `i := minv∈V vi and
ui = maxv∈V vi. Then L1(V) :=

∑d
i=1(ui − `i), and D1(V) is the uniform distribution over

{(i, θ) | θ ∈ [`i, ui]}. Define for any S ⊆ V the non-negative quantity

zS = L1(V) · Pr
(i,θ)∼D1(V)

[(V ∩ {x | sign(θ) · xi ≥ θ}) = S].

This is a scaled version of the probability that for a random threshold cut, the points of V in the
halfspace not containing the origin equals S. A direct calculation shows that for all p, q ∈ V ,
we have

‖p− q‖1 =
∑
S

zS1(|S∩{p,q}|=1).

Now define an `1-embedding ϕ : V → R2|V |
≥0 by setting, for any S ⊆ V ,

ϕ(p)S =
∑
S

zS1(p∈S).

Again, ‖p− q‖1 = ‖ϕ(p)− ϕ(q)‖1. Moreover, if the origin belongs to V , we get ϕ(0) = 0.

Proof of Lemma 6.2.4

Let S = 〈S1, . . . , S2k〉 be the sequence of cuts in increasing order of their sample values XS .
(We add the subsets with zS = 0 at the end of the sequence in some fixed but arbitrary order.)
However, it is not true that we remove points from U in this order: we need to reject cuts that do
not cross the remaining set U . (We say a set A crosses B if B ∩ A is a non-empty proper subset

219

of B: i.e., if both B \ A and B ∩ A are non-empty.) Hence, we recast the “last-point” process
again as follows. Given any subset of points U ⊆ V :

1. Define U0 := U and S0 = 〈〉. In general, U r is the set of points remaining after con-
sidering sets S1, . . . , Sr, and let Sr is a sequence of cuts selected until this point from the
sequence S.

2. We define Sr+1 ← Sr ◦ 〈Sr+1〉 if Sr+1 crosses U r, else we define Sr+1 ← Sr. Either way,
U r+1 = U\

⋃
S∈Sr+1 S.

Note that U r and Sr are both functions of (U,S). Call the cuts in S2k to be the valid cuts for
set U . Given the same sequence of cuts S we may get different subsequences for each subset U
of V . So it is not necessarily true that (U\T)r = U r\T , because the set of valid cuts can differ
when considering point sets U and U\T . But it turns out that we can still relate (U\T)r and
U r\T in some settings.

Lemma 6.8.1. Given sequence S and index 0 ≤ r ≤ 2k such that U r\T 6= ∅, we have (U\T)r =
U r\T .

Proof of Lemma 6.8.1. We prove this by induction on r. For r = 0, we know that U0\T =
U\T = U0\T . Suppose the claim holds for r = t, then we want to show it holds for r = t + 1.
SupposeU t+1\T 6= ∅, then sinceU t+1 ⊆ U> we haveU t\T 6= ∅, and by the inductive hypothesis
we get that (U\T)> = U>\T . In particular, we get that (U\T)> ⊆ U>. Hence if the new cut
St+1 crosses (U\T)>, then it also crosses U>, and therefore

(U\T)t+1 = (U\T)t \ St+1 = (U>\T) \ St+1 = (U t+1\T).

So suppose the new cut St+1 does not cross (U\T)>, and thus (U\T)t+1 = (U\T)t. There are
two cases: either (U\T)> ⊆ St+1 or (U\T)> ∩ St+1 = ∅. In the first case, if St+1 crosses U>,
then U t+1\T = (U> \ St+1) \ T = ∅, and hence there is nothing to prove. Else if St+1 does not
cross U>, then U t+1 = U> and also (U\T)t+1 = (U\T)t, so we are done using the inductive
hypothesis.

In the second case, (U\T)t ∩ St+1 = (U t\T) ∩ St+1 = ∅, so we get that (U> ∩ St+1) ⊆ T . This
means that U t+1\T = U t\T regardless of whether St+1 crosses U>. Since U t\T = (U\T)t =
(U\T)t+1, we are done.

As discussed above, |U2k | = 1, and we define this unique point p ∈ U2k to be the “last” point in
U , and we call this event “p is last in U”.

Lemma 6.2.4 (Monotonicity). For any sets T, V such that T ⊆ V , and any point p ∈ V \ T , we
have

“p is last in V ”⇒ “p is last in V \T ”.

Proof. Using the definition of the event “p is last in U”, we know that U2k = {p} and since
p /∈ T , we have U2k\T 6= ∅. Using Lemma 6.8.1, we can say that (U\T)2k = {p}.

220

6.8.2 Proofs from Section 6.3
Lemma 6.3.2 (Hitting Set Lemma). For large enough k, there exist set systems ([k],S) with k
sets of size s each, such that the minimum hitting set satisfies h(s−2−o(1))/k ≥ ln k−O(ln ln k).

Proof of Lemma 6.3.2. For some parameter p ∈ (0, 1/2), consider k independently chosen sets,
each obtained by adding in each element of [k] independently with probability p. The expected
size of each such set is s̄ := pk; moreover, each element of [k] should hit a p fraction of the sets,
so hitting all the k sets should require h̄ := ln1−p(1/k) ≈ (1/p) ln k sets, giving s̄h̄/k = ln k.
We now show that with non-zero probability, there does exist a set system with parameters close
to these.

Define B1 to be the bad event that some set Si has size smaller than s := (1 − ε)pk, and B2 to
be the bad event that the hitting set has size at most some parameter h. We now show that for
suitable choices of ε and h, we have Pr[B1] < 1/2 and Pr[B2] ≤ 1/2, which completes the proof.
We consider the event B2 first: a union bound shows that

Pr[B2] ≤
∑

H:|H|=h

Pr [∀i ∈ [k] : Si ∩H 6= ∅] =

(
k

h

)
(1− (1− p)h)k ≤ (2k)h

2
· e−k(1−p)h .

Setting this upper bound to equal 1/2, we get

lnh− h ln(1− p) = ln

(
k

ln 2k

)
. (6.40)

We now use that −p− p2 ≤ ln(1− p) ≤ −p for p ∈ [0, 1/2] to get

lnh+ hp ≤ ln

(
k

ln 2k

)
≤ lnh+ hp(1 + p). (6.41)

Since h ≥ 1, the left-most inequality of (6.41) gives h ≤ (1/p) ln(k
ln 2k

). However, we want a
lower bound on h, so we substitute this into the right-most inequality of (6.41) to get

1

1 + p
· ln
(

k

ln 2k
− 1

p
ln

(
k

ln 2k

))
︸ ︷︷ ︸

(?)

≤ p h =
s h

(1− ε)k
. (6.42)

We can now set p := 2 ln 2k
k1/3

(which ensures that the second term in (?) is at most half the first for
a large enough k) and get

sh/k ≥ 1− ε
1 + p

· ln
(

k

2 ln 2k

)
.

Now setting ε := 1/k1/3 and using a Chernoff bound and a union bound,

Pr[B1] < k · e−ε2pk/2 =
1

2
.

Taking a union bound over the two bad events, we get that with non-zero probability our sets
in S are of size ≈ k2/3 ln k, the hitting set is of size ≈ k1/3, and hs/k ≥ (1 − 2 ln 2k

k2/3
)(ln k −

O(ln ln k)).

221

6.8.3 Proofs from Section 6.4
Proof of the Stretch-vs.-Separation Claim 6.4.9

a1 a`
pi qi

aj

p

q

Figure 6.5: projection of points onto an axis

We prove a lemma about point sets that im-
mediately implies Claim 6.4.9. Consider a
set S ⊆ Rd of points, and focus on p, q ∈
S. Consider some dimension i, and consider
the projection of the points onto that dimen-
sion (as in the figure). Let a1, . . . , a` be the
lengths of intervals into which the line seg-
ment joining pi and qi is partitioned by pro-
jections of other points in S onto the ith di-
mension. Any cut (i, θ) intersecting the jth

interval splits the centers into two groups with
at least min(j, `+1−j) centers on either side.

Define the stretch si between p and q in the ith

dimension, and the expected separation sepi after choosing a random cut that cuts the jth interval
with probability proportional to a2

j as

si :=

(∑
j∈[`] aj

)2∑
j∈[`] a

2
j

and sepi :=

∑
j∈[`] a

2
j ·min(j, `+ 1− j)∑

i∈[`] a
2
j

.

Lemma 6.8.2. sepi ≥ si
8(1+ln((2|S|)/si))

.

Before we prove this, let us generalize this to higher dimensions:

Corollary 6.8.3. Consider a set S ⊆ Rd and two points p, q ∈ S having stretch s. If we choose
a threshold cut (i, θ) from the distribution D2(S) and condition on separating p, q, the expected
number of points in each side of the cut decreases by at least s

8(1+ln((2|S|)/s))
.

Proof. The stretch between p, q, and the expected separation conditioned on separating the two
centers is

s :=

∑
i∈[d]

(∑
j∈[`i]

ai,j
)2∑

i∈[d]

∑
j∈[`i]

a2
i,j

and sep :=

∑
i∈[d]

(∑
j∈[`i]

a2
i,j ·min(j, `i + 1− j)

)∑
i∈[d]

∑
j∈[`i]

a2
i,j

,

where ai,j is the width in the partition defined above along dimension i. Define a random variable
I ∈ [d] on the dimensions, that takes on value i with probability∑

j∈[`i]
a2
i,j∑

i∈[d]

∑
j∈[`i]

a2
i,j

.

Then we have s = EI [sI] and sep = EI [sepI]. Finally, the function h(x) = x
1+ln(α/x))

being

222

convex for 0 ≤ x ≤ α, we can use Jensen’s inequality to get

sep = EI [sepI]
(Lem.6.8.2)

≥ EI

 sI

8
(

1 + ln
(

2|S|
sI

))
 ≥ s

8
(

1 + ln
(
|S|
s

)) .
Finally, translating to the language of §6.4 shows that Claim 6.4.9 is just a reformulation of
Corollary 6.8.3. So it suffices to prove Lemma 6.8.2, which we do next.

Proof of Lemma 6.8.2. Let us look at the following constrained minimization problem

min sepi =
∑

j a
2
j ·min(j, `+ 1− j) (6.43)

s.t.
∑

j aj =
√
si∑

j a
2
j = 1.

The Lagrangian dual of the above primal program is

L(a, λ, γ) =
∑
j

a2
j ·min(j, `+ 1− j)− 2λ

(∑
j

aj −
√
si

)
+ γ

(∑
j

a2
j − 1

)
,

and setting the gradient to zero means the minima for a occur when aj = λ
γ+min(j,`+1−j) . (We

assume γ ≥ 0.) Substituting and simplifying gives

2λ
√
si −

∑
j

λ2

γ + min(j, `+ 1− j)
− γ.

We can maximize over λ which happens when
∑

j
λ

γ+min(j,`+1−j) =
√
si; substituting gives

si∑
j

1
γ+min(j,`+1−j)

− γ ≥ si

2 ln(1 + `+1
2γ

)
− γ ≥ 1

2

(
si

ln(1 + |S|
2γ

)
− 2γ

)
.

It remains to choose γ. For convenience, we set the above expression to γ; this means

si

ln(1 + |S|
2γ

)
= 4γ ⇐⇒ 2|S|

si
=
|S|/2γ

ln(1 + |S|
2γ

)
.

Using Observation 6.8.4 below, we get γ ≥ si
8(1+ln((2|S|)/si))

.

Observation 6.8.4. For any x ≥ 0 and y ≥ 1 such that y = x
ln(1+x)

, we have x ≤ 2y(1 + ln y).

Proof. Since x/ ln(1 + x) is an increasing function, it is sufficient to prove that

y ≤ 2y(1 + ln y)

ln(1 + 2y(1 + ln y))
.

Finally, taking derivatives shows ln(1 + 2y(1 + ln y)) ≤ 2(1 + ln y) for y ≥ 1.

223

6.8.4 Proofs from Section 6.5
Proof of Lemma 6.5.2. For a point p ∈ U , define

zE(t) :=

{
zE · t p ∈ E
zE p /∈ E.

(6.44)

Let ft(U) and `t(p) be the function value of points in U and norm of p at time t when the
embedding is changing according to the trajectory given by Equation (6.44).

We first claim that `0(p) = 0 and f0(U) = 0. Indeed, We know that `t(p) =
∑

S:p∈S zS(t) =∑
S:p∈S zS · t = t · `(p), which implies that `0(p) = 0. The second part is proved by induction

on |U |: If |U | = 1, then f0(U) = `0(p) = 0. If |U | ≥ 2 and zE(0) = 0 for all E ∈ CU , then
f0(U) = 0 by definition. Otherwise, using Equation (6.17), we can write

f0(U) =

∑
E∈CU zE(0) · f0(U\UE)∑

E∈CU zE(0)
.

In the numerator of f0(U), either zE(0) = 0 when p ∈ E, or f0(U\UE) = 0 when p ∈ U\UE
by inductive hypothesis which concludes the proof.

Now using the chain rule and the assumed bound on the derivative,

dft(U)

dt
=
∑
E⊆[k]

∂f(U)

∂zE

∣∣∣
z=z(t)

· dzE(t)

dt
=
∑
E:p∈E

zE ·
∂f(U)

∂zE

∣∣∣
z=z(t)

≤
∑
E:p∈E

zE · βk−1 = βk−1 · `(p).

Integrating gives f1(U)− f0(U) = f(U)− f0(U) = f(U) ≤ βk−1 · `(p).

Proof of Lemma 6.5.3. The proof is by induction on |S|. The base case is when |S| = 1. If
S = {r}, then we have ∂f(S)

∂zT
= ∂`(r)

∂zT
. We know that `(r) can be written as

`(r) =
∑
E3r

zE. (6.45)

The derivative ∂`(r)
∂zT

is equal to 1 if zT appears as a term in the expansion of `(r) as in Equa-
tion (6.45) and is equal to 0 otherwise. In the case of statement (i), since T ∈ C`S , we have
S ⊆ T =⇒ r ∈ T this concludes the base case for statement (i). Similarly, if statement (ii)
holds, zT does not appear as a term in the expansion of `(r) and hence the partial derivative of
f(S) = `(µr) with respect to zT is zero.

For |S| ≥ 2, we have 1[T ∈ CS] = 0 in both the cases of statements (i) and (ii). Using this in
Equation (6.18) gives

∂f(S)

∂zT
=

∑
E∈CS zE ·

∂f(S\E)
∂zT∑

E∈CS zE
. (6.46)

224

For the inductive step, since S ⊆ T in statement (i), we have (S\E) ⊆ T . By the inductive
hypothesis, the recursive derivative terms ∂f(S\E)

∂zT
are equal to 1. Using Equation (6.46), we are

done. The inductive step for the case of statement (ii) follows similarly where all terms ∂f(S\E)
∂zT

are equal to 0. Finally, using the fact that f(S) is always non-negative for any z, and the fact that
∂f(S)
∂zE

= 1 for any S ⊆ E, we have f(S) ≥
∑

E⊇S zE .

Proof of Lemma 6.5.5. The proof is by induction on |S|. Observe that for T /∈ CS , either T ⊇ S

or T ∩ S = ∅, and then ∂̂f(S)

∂̂zT
= ∂f(S)

∂zT
by Definition 6.5.4 and Lemma 6.5.3. The fact that

the pseudo-derivative is non-negative in this case is immediate from the Definition 6.5.4. For
|S| = 1, since T /∈ CS , we are done. If |S| ≥ 2 and T ∈ CS , the inductive hypothesis implies
that ∂̂f(S\E)

∂̂zT
≥ max

(
∂f(S\E)
∂zT

, 0
)

. It remains to prove that

max (f(S \ T)− f(S), 0) ≤ f(S \ T)−
∑
E⊇S

zE.

Using Lemma 6.5.3, we get f(S \ T) − f(S) ≤ f(S \ T) −
∑

E⊇S zE . The other inequal-
ity
∑

E⊇S zE ≤ f(S \ T) follows from the below argument, again using statement (iii) of
Lemma 6.5.3:

f(S \ T) ≥
∑

E⊇S\T

zE ≥
∑
E⊇S

zE

This concludes the proof of the lemma.

225

226

Part IV

Robustness

227

Chapter 7

Combinatorial Optimization using
Comparison Oracles

7.1 Introduction

Consider the following optimization problem: we are given a ground set U of n elements, a
family F ⊆ 2U of feasible subsets of the ground set U , and an unknown objective function
f : 2U → R+. At each step, we can compare any two feasible sets S, T ∈ F , and learn the
sign of f(S) − f(T), which could be negative, zero, or positive. Clearly, we can optimize the
function f over the family F using brute-force, in |F| − 1 queries, which can be exponential in
|U |. But, can we do so with only polynomially many queries in |U |, at least for linear functions
and structured classes of problems?

As a concrete representative, and a problem of central importance to algorithm design, consider
the problem of finding a minimum-weight-cut (“min-cut”) in an unknown undirected graph G =
(V,E,w : E → R+). Initially we only know the vertices V , but nothing about the edges (or
their weights). At each step, we can query a (pairwise) comparison oracle by presenting two
non-trivial subsets of vertices A,B ⊆ V to it: in response, we learn which of the two cuts ∂A
and ∂B has smaller weight (or if they have the same weight). This is a special case of the abstract
problem above, where U is the set of vertices in a graph, F = {S ⊆ U : S 6∈ {∅, U}} is the set
of all non-trivial cuts, and f(S) =

∑
e∈∂S we is the total weight of edges in the cut induced by

S. Can we find the min-cut using a small number of these cut-comparison queries?

Apart from min-cut being a fundamental problem, and a good testbed for algorithmic techniques,
a second motivation for considering it is that computing the min-cut without explicit access to
the graph has recently seen intensive activity. However, this has been in the (more informative)
value oracle model, where the algorithm can query the value of f(S) for any set S ∈ F (see,
e.g., [11, 143, 162]). By now, we know algorithms that compute the min-cut efficiently with only
linearly many value queries [11]. Observe that we can implement a comparison query using two
value queries, so these value queries are at least (half) as informative as comparison queries.

229

This begs the question: how many comparison queries do we need to compute the min-cut?
Being able to compare two structures is perhaps the minimal amount of power we can give to an
algorithm looking for the min-cost structure: what is the power and what are the limitations of
the comparison model for optimization?

Beyond the algorithmic interest in this model, the importance of comparisons (or ordinal queries)
as opposed to numerical scores (cardinal queries) is well-recognized in several disciplines.

In economics, ordinal utility was introduced in the classic work of Pareto [153]. More recently,
ordinal utility has played an important role in recommendation systems, where it is often crowd-
sourced using pairwise comparisons [46], since different users may have different scales and
may also find it difficult to score items, but they may find it easier to compare two items head-
to-head. Ordinal preferences have been used to model consumer behavior [22]. In statistics, a
well-studied problem is that of inference from experiments involving pairwise comparisons [30].
In social sciences as well, a standard model of assessment is via pairwise comparisons [104].

7.1.1 Our Results and Techniques
In this work, we explore the algorithmic power and limitations of this comparison-based model
for several basic combinatorial problems. Our primary focus is the linear optimization setting:
where there is an unknown weight we for each element e ∈ U , and the cost of a feasible set
S ∈ F is linear, namely f(S) :=

∑
e∈S we. While some natural problems such as min-cut do

not fall directly into this form—since the objective is not linear over the vertex set—they still
admit a representation that fits within our framework. In the min-cut problem, the objective is
f(S) = w(∂(S)), which is linear over the set of cut edges ∂(S), even though it is not linear
in the vertex set. This viewpoint still allows us to apply our techniques. We begin by studying
problems where the feasible family has rich structure—not only graph cuts discussed above, but
also matroid bases, matroid intersections, or paths in a graph. Despite the rich variety in these
optimization tasks, we show that they remain efficiently solvable using only comparison queries.

Graph Cuts. We consider the setting of (unweighted) simple graphs, i.e., all edge weights are 1.
We extend the work of [162], who considered the case of unweighted simple graphs in the more
informative value oracle model, and match their results using just a comparison oracle (we use
m,n to denote the number of graph edges and vertices respectively):

Theorem 1.6.1 (Minimum cut). There is a randomized algorithm that computes the exact min-
imum cut of a simple graph G with high probability using Õ(n) cut comparison queries and
Õ(n2) time.

In addition to finding the minimum cut, we show that it is possible to recover the entire edge
set of G deterministically using cut comparisons except in some degenerate cases: when G ∈
{K2, K̄2, K3, K̄3}.1

1K2 is a single edge and K3 a triangle. Their complement graphs K̄2, K̄3 are respectively empty graphs on 2
and 3 vertices.

230

Theorem 1.6.2 (Graph recovery). A simple unweighted graph G /∈ {K2, K̄2, K3, K̄3} can be
recovered using O(min{(m+ n) log n, n2}) cut comparison queries and in Õ(n2) time.

Finally, we show that cut comparisons suffice to construct sparsifiers for a broad class of graph
problems called heavy subgraph problems (which include densest subgraph and max-cut) by
combining our edge-sampling techniques with the results of [72]; see Section 7.2.4 for details.

We note that in these problems, there is a qualitative difference between the value oracle and
comparison oracle settings. For example, in the value oracle model, graph reconstruction is
immediate: evaluating the expression 1/2(f({u}) + f({v}) − f({u, v})) immediately reveals
the presence/absence of edge (u, v). In contrast, reconstructing a graph is not straightforward
with cut comparisons. For instance, all non-trivial cuts in K3 (i.e., the triangle graph) have the
same value, and this is also the case in its complement graph K̄3. Thus, these graphs cannot be
distinguished by comparison queries alone. Similarly, K2, K̄2 have only a single non-trivial cut,
rendering the comparison model useless. More generally, for weighted graphs, there is a sharp
distinction between the value oracle and comparison oracle models. In the former, the weight of
every edge (u, v) can be recovered using the expression above 1/2(f({u})+f({v})−f({u, v})).
In contrast, weighted graphs cannot be recovered at all in the comparison oracle model, even up
to scaling (see Section 7.2.5). Hence, it comes as a surprise that we can recover simple graphs
completely (except in the degenerate casesK2, K̄2, K3, K̄3) using comparison queries. The main
idea is simple in hindsight: if we consider a vertex v and set S 63 v, then comparing f(S + v)
and f(S) tells us whether more than half of v’s incident edges go into S. We build on this
observation to show how to identify edges incident to v: consider a sequence of nested sets
∅ 6= S0 ⊆ S1 ⊆ . . . ⊆ Sn−1 6= V \ {v}, and ask the question above setting S = Si for each
one. If we find a “tipping point”—a query in this sequence where the sign of f(S + v) − f(S)
changes—we have found an edge. We can further refine the process to make edge recovery
more efficient, and to perform efficient sampling on G. These primitives can then be used in
existing algorithmic frameworks for min-cut to get a randomized algorithm for min-cut using
Õ(n) comparison queries. The details of our min-cut algorithm appear in Section 7.2.

We note that our techniques don’t extend to min-cut in weighted graphs. It appears that weighted
graphs pose some unique challenges that will need new ideas beyond those in this chapter. For
instance, the ideas sketched above also give us non-adaptive algorithms for min-cut and graph
recovery in simple graphs that use poly(n) comparison queries. In contrast, we show that on
weighted graphs, any algorithm using non-adaptive comparison queries has exponential query
complexity for these tasks (see Claim 7.2.7). Furthermore, natural primitives such as finding
the maximum weight edge incident to a vertex, or sampling a random edge incident to a vertex,
are provably not implementable using comparison queries alone in weighted graphs (see Sec-
tion 7.2.5 for further discussions about these bottlenecks). We leave finding the min-cut in a
weighted graph using poly(n) comparison queries efficiently, or showing that this is impossible,
as an interesting open question.

Matroid Bases, Matroid Intersections, and Paths. Next, we consider other basic combinato-
rial objects in graphs: spanning trees, (bipartite) matchings, and s-t paths. Going beyond graphs,
we also consider natural extensions of the first two problems to matroid bases and matroid inter-

231

sections. In all these problems, we have an unknown weight function we on the edges/elements,
and the oracle compares f(A), f(B) for any two feasible sets A,B, where f(S) =

∑
e∈S we.

First, we consider the problem of finding a minimum-weight basis of a matroid, which captures
the minimum spanning tree problem as a special case:

Theorem 1.6.3 (Matroid Bases). There is an algorithm outputs the minimum-weight basis of a
matroid on n elements using O(n log n) comparison queries in Õ(n2) time.

Recall that knowing the order of element weights is enough to optimize over matroids (using the
greedy algorithm), but how can we compare element weights? The first observation is that if two
elements share a circuit, then we can find two bases which differ on exactly these two elements,
and hence compare them. But, what about elements that do not share a circuit? We show that
one can decompose any matroid so that we never need to compare such elements.

Next, we consider the problem of finding a minimum-weight independent set in the intersection
of two matroids defined on the same ground set:

Theorem 1.6.4 (Matroid Intersection). LetM1 = (U, I1) andM2 = (U, I2) be two matroids
defined on a ground set U containing n elements. Then, there is an algorithm that outputs the
minimum-weight set that is in both I1, I2 using O(n4) comparison queries in O(n4) time.

Note that this theorem can solve maximum weight bipartite matching as a special case by first
changing all edge weights from we to −we and then solving minimum weight bipartite matching
for these new weights.

For matroid intersection (and its special case, bipartite matchings), sorting the element weights
is neither doable, nor sufficient for the problem. Instead, we show how to implement the shortest
augmenting path algorithm (and its natural extension for matroid intersection) using only com-
parisons between matchings (i.e., common independent sets). The details are in Section 7.3.2.

In a similar vein to the previous result, we show that the Bellman-Ford algorithm for shortest s-t
paths can be implemented using comparisons between s-t walks to obtain the following theorem
(details in Section 7.3.3):

Theorem 1.6.5 (s-t walks). There is an algorithm that finds the minimum-length s-t path in a
graph G (or a negative cycle, if one exists) using O(n3) s-t walk comparisons and O(n3) time.

General Linear Optimization

Given these positive results, we ask: for which familiesF ⊆ 2U can we solve arg minS∈F
∑

e∈S we
for some unknown weight function w : U → R, using only poly(|U |) comparison queries? By
adapting the powerful active classification framework of [113] to the optimization setting, we
establish a surprisingly general positive result for linear optimization: we can optimize over
all Boolean families with a small number of queries!

Theorem 1.6.6 (Boolean Linear Optimization). For any family F ⊆ 2U and unknown weight
function w : U → R, we can solve arg minS∈F

∑
e∈S we using O(n log n · log |F|) = Õ(n2)

comparison queries, where n = |U |.

232

We find Theorem 1.6.6 remarkable: it shows that the number of comparison queries required
to find the optimal solution is only Õ(n2), regardless of the complexity of the set system F .
Indeed, we could consider F to represent set covers, independent sets, cliques, or other NP-hard
problems for which finding the optimal set is believed to be computationally hard—nonetheless,
the number of comparisons required is still nearly quadratic! Indeed, while the query complexity
of the procedure in Theorem 1.6.6 is polynomial, its running time could be exponential (under
standard complexity-theoretic assumptions). This shows a large gap between the information
complexity and the computational complexity in this model.

To give intuition about the results, we also present a direct, albeit weaker, proof that shows a
qualitatively similar result for settings with bounded integer weights.

Theorem 7.1.1 (Boolean Linear Optimization: Bounded Weights). For any family F ⊆ 2U and
unknown integer weight function satisfying |we| ≤ W , we can sort all sets S ∈ F by their
corresponding weight

∑
e∈S we using O(nW log nW) comparison queries, where |U | = n.

The main observation is that solutions can have at mostO(nW) distinct weights. The key insight
is that the difference vector between any two solutions with the same weight is orthogonal to the
true weight vector w∗. Our algorithm builds a single vector subspace from these difference
vectors. A new solution’s weight can often be inferred without comparisons by checking if its
difference from a known solution lies in this shared subspace. Queries are only needed when
discovering a new weight value or when a solution expands the dimension of this subspace
(details in Section 7.4.1). While Theorem 7.1.1 relies on weights being integral and bounded, it
gives a sense of how one can use the structure of Boolean linear optimization in these results.
The main difference between Theorems 1.6.6 and 7.1.1 is that the first result uses conic spans
while the second result uses only linear spans.

The framework of [113] allows us to also optimize over arbitrary point sets in Rd, with the
number of queries being related to their “conic dimension”:

Theorem 1.6.7 (General Linear Optimization). There is an algorithm that, for any point set
P ⊆ Rd with conic dimension k and unknown weights w ∈ Rd, returns the minimizer x∗ =
arg minx∈P〈w, x〉 using at most O(k log k log |P|) comparisons.

This result implies Theorem 1.6.6 using the fact that the conic dimension of the Boolean hyper-
cube is O(d log d); moreover, it can be used to establish upper bounds on the query complexity
for exact optimization when the point sets have bounded representation size, and for approximate
optimization when they have bounded norm. We discuss these results in Section 7.4. We also
note that some condition (like the bound on conic dimension) on the point set P is required in
the above theorem: without any condition, [113, Theorem 4.8] shows a lower bound of Ω(|P|)
for general point sets in R3.

Interestingly, for the problem of maximum cut in a graphG = (V,E), this result implies an upper
bound of Õ(|V |3) queries; moreover, our results can be made deterministic using the techniques
of [114, Section 5]. The work of [154] shows a lower bound of Ω(|V |2) queries in the more
informative value query model for this problem; so, our result brings the gap between upper and
lower bounds on the query complexity down to O(|V |) for the max-cut problem.

233

In summary, these results highlight the surprising power and generality of comparison queries
for combinatorial optimization, particular with linear objective functions. We hope that our work
will lead to further exploration of this largely uncharted landscape in the future.

Organization. The rest of the chapter roughly follows the outline above: we present our re-
sults for min-cuts in Section 7.2, and our results for other combinatorial problems—matroids,
matroid intersections, and shortest paths—in Section 7.3. We give our results for general and
Boolean linear optimization in Section 7.4, and end the chapter with some open problems in
Section 7.5. To maintain a smooth flow of ideas, we defer many technical proofs and digressions
to the appendix.

7.1.2 Related Work
The min-cut problem has seen a lot of work in the value query model, where the algorithm
accesses the input graph only by querying the cardinality/weight of individual cuts. The model
was proposed by [162] who gave an algorithm using Õ(n) queries in simple graphs; this was
extended by [11, 143] to the case of weighted graphs. These algorithms are randomized; the best
deterministic bound is O(n2/ log n) [91] which allows full reconstruction of the input graph.
There are also lower bounds: [90] define the cut dimension and use it to give a lower bound of
3n/2− 2 queries for weighted graphs; [126] improve the lower bound to 2n− 2, which remains
the best deterministic lower bound for this problem. The best randomized lower bound for the
problem is Ω(n log log n/ log n) queries [12, 156].

The study of value oracles is natural for general submodular function minimization, given their
natural representation is typically exponential sized.

Comparison oracles have been also studied for submodular functions and beyond: [15] show that
for any submodular function f , one can use Õ(n/ε3) exact comparison queries to the function
f construct an approximate comparison oracle f̂ that returns f̂(a) > f̂(b) for any a, b if f(a) >√
n ·f(b). [97] studied a comparison model for accessing a metric space, where an oracle returns

which of two locations j, k is closer to a fixed location i. They showed that the ordering of
distances from a fixed location i can be obtained using log n queries w.h.p. under some expansion
conditions on the metric; later work studied a similar access model for classification/regression
in Euclidean space [98]. [188] studied binary classification under noisy labeling and access to a
pairwise comparison oracle. In a similar vein, [113] studied active classification using label and
pairwise comparison queries between the data points to recover a (linear) classification boundary.
Indeed, this last result plays a central role in our work on general linear optimization. The
techniques of [114] can be used to derandomize the query strategy for general linear optimization.

There is other work on graph reconstruction using cut value queries: see, e.g., [37, 48, 91].
Recently, there is work on solving other optimization problems (e.g., minimal spanning forests)
using cut value queries; see, e.g., [14, 101, 129]. While we do not consider these kinds of
“improper” optimization problems in this work, it seems an interesting direction for research.
Further afield are more general query models, which allow for “independent set” queries, see,
e.g., [129] for references.

234

7.2 Minimum Cut using Cut Comparisons
In this section, we focus on graphs and prove Theorems 1.6.1 and 1.6.2, which we restate for
convenience.

Theorem 1.6.1 (Minimum cut). There is a randomized algorithm that computes the exact min-
imum cut of a simple graph G with high probability using Õ(n) cut comparison queries and
Õ(n2) time.

Theorem 1.6.2 (Graph recovery). A simple unweighted graph G /∈ {K2, K̄2, K3, K̄3} can be
recovered using O(min{(m+ n) log n, n2}) cut comparison queries and in Õ(n2) time.

In order to prove the two results, we draw on the following useful primitives that can be obtained
using the cut comparison queries:

Theorem 7.2.1 (Structural Primitives). When n ≥ 4, for any vertex u ∈ U :

(i) Given a set of k vertices A = {v1, . . . , vk} ⊆ U \ {u}, the neighbors of u in A can be
determined using k +O(log n) queries and Õ(n+ k) time.

(ii) Given an ordered subset T = (v1, . . . , vt) ⊆ U \ {u}, either the neighbor vi ∈ N(u) of
u with the smallest index i ∈ [t] (or a certificate that N(u) ∩ T = ∅) can be found using
O(log n) queries and Õ(n) time.

Remark 7.2.2 (A Note on Runtimes). We assume that the query input (S, T) to the comparison
oracle is given as two bit vectors encoding the sets S and T respectively. The running time
bounds are the total computation done to process the query information, where oracle calls are
assumed to take unit time. The dominant cost is writing down the input bit vectors for queries,
which takes O(n) time per query. In addition, we separately account for standard algorithmic
overhead, such as binary search or other data structure updates.

7.2.1 Graph Reconstruction
With the power of Theorem 7.2.1 behind us, the graph recovery problem is easily solved. Indeed,
using Theorem 7.2.1(i), we can discover the neighborhood of node u ∈ V using n−1+O(log n)

queries and Õ(n) time; summing over all nodes gives us the graph G in at most O(n2) queries
and Õ(n2) time.

To get the better bound of O(m log n) for sparse graphs, we use Theorem 7.2.1(ii) to prove:

Lemma 7.2.3 (Edge Extraction). When n ≥ 4, for any vertex u, a subset T ⊆ U − u of vertices,
and any integer k, we can extract r = min(k, ∂(u, T)) edges from ∂(u, T) using O(r log n)

queries and Õ(n) time.

Proof. Start with T0 := T and extract a neighbor vi ∈ N(u) ∩ Ti (if any) from ∂(u, Ti) using
Theorem 7.2.1(ii); set Ti+1 := Ti− vi, and repeat. Each step requires O(log n) queries and Õ(n)
time. Repeating this for r = min(k, ∂(u, T)) neighbors gives a total of O(r log n) queries and

235

Õ(nr) time. However, there is an more efficient implementation that gives a running time of
Õ(n). This version is provided in Section 7.6.1.

Given this efficient edge-extraction claim, we now prove the claimed bounds for graph recovery.

Proof of Theorem 1.6.2. When n ≥ 4, using Lemma 7.2.3, we can discover all the neighbors of
u using |∂(u)| · O(log n) queries and Õ(n) time. Summing over all u gives a total of at most
O((m + n) log n) queries and Õ(n2) time. Hence, we start by running this procedure until the
number of edges discovered is at least n2/ log n. At this point, we switch to the algorithm using
Theorem 7.2.1(i) to discover the remaining edges using at most O(n2) queries. This guarantees
that we use at most O(min((m+ n) log n, n2)) queries and Õ(n2) time.

When n ≤ 3 and G /∈ {K2, K̄2, K3, K̄3}, sorting the degrees of the vertices reveals the graph.

7.2.2 Finding Minimum Cuts
We now turn to finding minimum cuts. We start off by observing that when n ≤ 4, we can
bruteforce the minimum cut and otherwise, use Theorem 1.6.2 to optimize over min-cuts: we
reconstruct the graph using O(min((m + n) log n, n2)) queries and Õ(n2) time; we can then
optimize over it in Õ(n2) time. However, the number of cut queries incurred this way is quadratic
and not near-linear, as promised in Theorem 1.6.1.

However, we can use ideas from [162] to do better. Suppose G′ is a contracted graph (i.e., where
some nodes in G have been contracted into each other), and G′(p) is the “edge-percolation”
graph obtained by sub-sampling each edge of G′ independently with probability p. Distilling the
results of [162] shows that if, for any contraction G′ of G, we can obtain a sample from G′(p)

using α · p · |E(G′)| queries, then we can compute the min-cut of G using α · Õ(n) queries and
in Õ(n2) expected runtime. (A proof appears in Section 7.6.1.)

To use this result, we show how to sample percolations of contractions with α = Õ(1).

Lemma 7.2.4 (Contracted Graphs). When n ≥ 4, for any contraction G′ = (U ′, E ′) of G,
with its vertex set U ′ represented as a partition of the original vertex set U , we can sample
a subgraph G′(p) where each edge in G′ is sampled independently with probability p using
|E ′| ·O(p log n) + Õ(n) queries and Õ(n2) time in expectation.

The sampling can be done more generally for any induced subgraph G′′ = G′[S] for some
S ⊆ U ′ with |E ′(S)| ·O(p log n) + Õ(n) queries and Õ(n2) time.

Proof. For any regular vertex u, if Vu is the super vertex that contains it, we will show how to
sample edges from ∂(u, U − Vu) with each edge sampled independently with bias q ∈ [0, 1].
Call this random subgraph ∂G′(u, q). Given the primitive to sample ∂G′(u, q), taking the union
∪u∈U∂G′(u, q) of such samples for each vertex u ∈ U with q = 1−

√
1− p givesG′(p). Because,

the probability of any edge e ∈ E ′ to be selected is 1 − (1 − q)2 = p and the independence is
trivial.

236

To sample ∂G′(u, q), let T be a random subset ofU−Vu with each element sampled independently
with probability q. Reveal all the edges of u going into T using Lemma 7.2.3. This takes
|δ(u, T)| · O(log n) queries which is q · |δ(u, U − Vu)| · O(log n) in expectation and Õ(n) time.
Summing over all u ∈ U gives a total of |E ′| · O(p log n) + Õ(n) queries and Õ(n2) time in
expectation. An edge {u, v} for v ∈ U\Vu is sampled iff v ∈ T . This implies that each edge
is sampled independently with probability q. Simply replacing U with S gives the extension to
induced subgraphs.

Combining Lemma 7.2.4 with the abstraction of [162] discussed above completes our algorithm
for min-cuts (Theorem 1.6.1).

7.2.3 Proof of the Structure Primitives Theorem
Finally, we turn to the proof of the Structure Primitives result in Theorem 7.2.1. We will provide
a proof sketch here for the query complexity bounds; see Section 7.6.1 for the full proof including
the running time bounds.

Proof sketch of Theorem 7.2.1. Recall that we want to identify the edges coming out of u. The
key observation is that, for any set S not containing u, the sign of ∂(S + u) − ∂(S) tells us
whether less, equal to, or more than than half of the edges incident to u go into S (if the sign is
positive, zero, or negative).

Suppose we find a set S such that just below half of the edges from u go into S (so that expression
has a positive sign)—such an S is called a median set for u. Now if we add v to the median set
S, and the sign of ∂(S + v + u) − ∂(S + v) changes, we know that v is a neighbor of u. In
summary, once we have a median set S, we can find all the neighbors of u not in S.

How do we find a median set for u? Order all the vertices other than u (say this is v1, v2, . . . , vn−1,
define Si to be the first i elements. If u has at least one edge incident to it, the query ∂(S0 +u)−
∂(S0) has a positive sign, whereas ∂(Sn−1 + u)− ∂(Sn−1) has a negative sign (note that we use
S0 = ∅ and Sn−1 + u = U here for the sake of exposition, but such trivial cuts are not allowed in
the actual comparison model. The full proof in Section 7.6.1 handles this correctly and with full
rigor). So we can perform binary search to find a point where the sign changes, which can be
used to find a median set in log2 n comparisons. (In fact, we can find two disjoint median sets—a
prefix and a suffix of this ordering—and use the two to find all the neighbors in some k-sized set
with k +O(log n) queries.)

For part (ii), the argument builds on the use of such a median set S. Given an ordered set
T = {v1, . . . , vr} where vj is the first neighbor of u in the ordering, we first compute a median
set S that is guaranteed to exclude the prefix {v1, . . . , vj}. Then, we binary search over the chain

S ⊆ S ∪ {v1} ⊆ · · · ⊆ S ∪ (T \ S)

to locate the point at which the marginal changes sign. This transition occurs precisely at the set
S ∪ {v1, . . . , vj−1}, thus identifying vj as the first neighbor of u in T .

237

7.2.4 Sparsifiers for Heavy Subgraph Problems
The work of [72] considers a broad class of graph optimization problems, which they call heavy
subgraph problems; these include densest subgraph, densest bipartite subgraph, and d-max cut.
For these problems, they show that uniformly sampling Õ(n/ε2) edges without replacement
from the underlying graph G produces a subgraph H such that running any α-approximation
algorithm for the problem on H yields (after appropriate rescaling) an (α − ε)-approximate
solution for the original graph, with high probability. In other words, the sampled subgraph
preserves the structure of the problem up to a small loss in accuracy, and approximate solutions
on the sparsifier H translate to approximate solutions on the full graph G. We show how to
sample a fixed number of edges from G uniformly using the following lemma:

Lemma 7.2.5 (Sampling Lemma). When n ≥ 4, given cut comparison queries, for any k =
Ω̃(1), we can sample k edges uniformly without replacement using Õ(n+ k) queries and Õ(n2)
time with high probability.

Proof. Consider the process that at time step t (starting from t = 0) samples G(pt) for pt :=
2t/n2 until the sample G(pt) at t = r has at least k edges. Then, subsample k edges uniformly
from the sample G(pr).

Because edges are sampled i.i.d. from the Bernoulli Ber(pt) distribution at each step t, the sym-
metry implies that the subsample of edges is a uniform sample of k edges. Using Lemma 7.2.4,
each sample G(pt) takes pt · Õ(m) + Õ(n) queries and Õ(n2) time in expectation. Summing this
over 0 ≤ t ≤ r gives an upper bound of 2pr · Õ(m) + Õ(nr) queries and Õ(n2r) time. Using the
fact that the probability that G(p) has less than k edges for p = 2k/m, is at most e−k/4, we can
conclude that pr ≤ 4k/m with probability at least 1− e−k/4. So the expected number of queries
is upper bounded by Õ(nr+ k) = Õ(n+ k) and the running time by Õ(n2r) = Õ(n2) using the
fact that r ≤ O(log n).

Using Lemma 7.2.5 with k = Õ(n/ε2), we can obtain a random subgraph H of the unknown
graph G to get such a sample of edges using Õ(n/ε2) queries, and hence apply existing approx-
imations for all heavy subgraph problems.

7.2.5 Illustrative Examples
Non-Reconstructable Graphs

The unweighted graph pairs (K2, K̄2) and (K3, K̄3) are not distinguishable, since essentially
the only feasible sets S are singleton sets (recall that by symmetry, f(S) = f(S̄)), and all of
them have the same cut value. However, as we showed in Theorem 1.6.2, we can recover all
unweighted simple graphs other than K2, K̄2, K3, K̄3 using comparison queries.

In contrast, many connected weighted graphs cannot be recovered using just comparison queries.
This is not surprising: we cannot distinguish between a graph with weights we, and those with
weight αwe for all α > 0. But there are other kinds of barriers apart from a simple scaling
of weights—here is an example. Given any graph G = (V,E) with unit weight edges, add

238

another spanning tree T = (V, F) on the same vertices, and give the ith edge ei ∈ F a weight
of wT (ei) = n2 · 2i. This weight function ensures that the F -weights of all cuts are distinct.
Moreover, for a set S ⊆ V , w(∂S) = |∂GS|+ wT (∂TS). Since the wT weights are scaled by n2

(and hence much larger than the contribution due to the unit-weight edges), we know that

w(∂S) > w(∂S ′) ⇐⇒ wT (∂TS) > wT (∂TS)

and hence we cannot infer the structure of the unit-weight edges.

Separations between Comparison and Value Queries

In the weighted setting, consider taking two disjoint cycles C1 and C2 of k = n/2 vertices and
with unit-weight edges, and adding in a perfect matching of size k between them, with edges of
cost ε. This is the circular ladder graph, with cross-edge weight ε.

Claim 7.2.6. There exist non-adaptive algorithms makingO(n2) value queries to sets of size one
and two that can reconstruct any graph, but for any non-adaptive algorithm in the comparison-
query model making queries to sets of constant size (or even� n/2 size), there exist weighted
n-vertex graphs G+, G− which cannot find the minimum cut.

Proof. Take the circular ladder graph with ε = 2
k−1
± γ for some tiny γ > 0; the sign in front of

the γ will determine whether the min-cut is a single-vertex cut with cost 2 + ε, or the bisection
(C1, C2) with cost kε. However, we cannot distinguish these two cases if we compare sets S, T
of size� n/2. (This is true even if we know the edges of the graph and the entire construction,
except the sign in front of γ. This is in contrast to the value query setting, where asking the value
of f(S) for sets of size 1 and 2 allows us to completely reconstruct the graph.

Claim 7.2.7. There exist non-adaptive algorithms making O(n2) value queries to reconstruct the
graph, but for any non-adaptive algorithm in the comparison-query model, there exist weighted
n-vertex graphs G+, G− which require exp(n) comparison queries to have high success proba-
bility.

Proof. Again, take the circular ladder graph, and rename the vertices uniformly at random. As-
sume that the cross-edge weight is ε = 2

k−1
±γ for some tiny γ > 0; the sign in front of the γ will

determine whether the degree cut or the partition (C1, C2) is optimal. Again, for value queries
we can non-adaptively reconstruct the graph using O(n2) queries. But for comparison queries,
the only way to learn the sign in front of γ would be to query the correct partition with a degree
cut. Now if the queries are non-adaptive, and the vertices of the graph have been uniformly and
randomly renumbered, the number of non-adaptive queries would have to be exponential in n in
order to have a high probability of success.

Finding Heaviest Edge Incident to a Vertex

We can show that comparison queries do not allow us to identify, for a vertex v, the heaviest edge
adjacent to it. Finding this edge would be useful, e.g., in the min-cut algorithm of [179]. Indeed,
consider the 4-vertex graph {a, b, c, d} and the 6 edge weight variables. Here are two universes:

239

Edge Weight Universe 1 (wab > wac) Universe 2 (wab < wac)
wab 1000.01 999.99
wac 999.99 1000.01
wad 10 10
wbc 100 100
wbd 50 50
wcd 1 1

Table 7.1: Two weight configurations for a 4-vertex graph that produce identical cut orderings but differ
in which edge is heaviest incident to vertex a.

In both scenarios, wad = 10 is much less than wab and wac (which are both ∼1000). However, a
calculation shows that the order of the cuts is identical in both universes:

f({a, d}) > f({a}) > f({a, b}) > f({b}) > f({a, c}) > f({c}) > f({d}).

Hence, given this specific ordering of cuts, we cannot distinguish between Case 1 (where (a, b)
is the max-weight edge adjacent to a) or Case 2 (where (a, c) is).

7.3 Matroids, Matchings, and Paths
In this section, we give efficient comparison-based algorithms to optimize over matroids, matroid
intersections, and shortest paths.

7.3.1 Matroid Bases
We now give our algorithm to compute a minimum-weight basis of a matroidM = (U, I) with
|U | = n elements, where we are only allowed to compare matroid bases. Our main result for
matroid bases is the following:

Theorem 1.6.3 (Matroid Bases). There is an algorithm outputs the minimum-weight basis of a
matroid on n elements using O(n log n) comparison queries in Õ(n2) time.

Proof. First, let us consider graphical matroids, where the bases are spanning trees of a graph.
Given any graph with edge set E, we can first partition the graph into its 2-vertex-connected
components E1, . . . , Ek (note that these are the edge sets of the components); the edge set of the
minimum-weight spanning tree (MST) for E is the union of those for the Ei’s, so it suffices to
focus on a 2-connected component induced by the edges in some Ei. We claim we can simulate
Kruskal’s algorithm for MST, which just compares weights of edges: indeed, if this algorithm
compares edges e, e′ ∈ Ei, we can find a base B containing e, such that B′ := (B \ e)∪ e′ is also
a base. (We defer the proof, since it follows from the result below.) Now comparing e, e′ has the
same answer as comparing B,B′.

The same argument holds for arbitrary matroids, where we recall that the notion of 2-vertex
connectivity in graphs extends to matroids [151]:

240

Lemma 7.3.1. For any matroidM = (I, U), let B(M) and C(M) be the collection of all bases
and circuits in the matroid.

1. If elements e, e′ ∈ E share a circuit C ∈ C(M), then there exist bases B,B′ ∈ B(M)
such that B′ = B + e′ − e. Call such pair of elements e, e′ comparable.

2. The binary relation γM on the elements of the matroid such that (e, e′) ∈ γM iff either
e = e′ or e, e′ are comparable is an equivalence relation.

Proof. For the first part, let B be the basis that extends the independent set C − e′. This means
that the fundamental circuit in B + e′ is C implying that B′ := B + e′ − e is also a basis. The
second part is proved in [151, Proposition 4.1.2]. The equivalence classes in Lemma 7.3.1(2) are
called the connected components ofM.

Now we can run the analog of Kruskal’s greedy algorithm for matroids on the connected compo-
nents ofM; this usesO(|Ui| log |Ui|) element (and hence base) comparisons for each component;
summing over all components gives us O(|U | log |U |), as claimed.

Running time and other details: The running time consists of the time taken to decompose the
matroid into its connected components, and obtaining two bases B,B′ such that B∆B′ = {x, y}
for every pair x, y compared by the algorithm. For this, we use the results from [118] that connect
the basis exchange graph with the connected components of the matroid. The following are a
definition and a lemma:

For any basis B of M, the basis exchange graph H(B) is defined as the bipartite graph with
color classes B and U\B. For x /∈ B, y ∈ B, we have {x, y} ∈ H iff B + x− y is also a basis.
The following lemma connects this exchange graph with matroid connectivity:

Lemma 7.3.2 (Section 6, [118]). For any basis B ∈M,

1. The nodes in the connected components (in the graphic sense) of H(B) are the connected
components (in the matroid sense) of matroidM.

2. For x, y in the same connected component of H(B) (or equivalentlyM) such that x /∈ B
and y ∈ B, if P is the shortest path connecting x and y in H(B), then B′ := B∆P is a
basis such that B′ + y − x is a basis.

Given Lemma 7.3.2, the matroid decomposition step requires O(n2) matroid independence calls
(in fact, the calls are always about whether a set is a basis or not) to build the exchange graph
using Lemma 7.3.2 part 1 and O(n2) time to identify connected components.

Next, to simulate any pairwise comparison between elements x, y, we obtain the two bases
B 3 x,B′ 3 y such that B∆B′ = {x, y} using part 2 of Lemma 7.3.2. The implementa-
tion of Kruskal’s algorithm requires sorting the elements in each connected component which
requires O(ci log ci) comparisons in each component with ci elements. Each such comparison
takes O(n) time to find the path and write down the bases to input to the comparison oracle.
Adding everything, we get the O(n2 log n) time bound as claimed.

241

7.3.2 Matroid Intersection
We now turn to finding common independent sets S ∈ I1 ∩ I2 between two matroids M1 =
(U, I1) andM2 = (U, I2). Our main result in this case is the following:

Theorem 1.6.4 (Matroid Intersection). LetM1 = (U, I1) andM2 = (U, I2) be two matroids
defined on a ground set U containing n elements. Then, there is an algorithm that outputs the
minimum-weight set that is in both I1, I2 using O(n4) comparison queries in O(n4) time.

To prove this, we show that Edmond’s classical weighted matroid intersection algorithm, as pre-
sented in [171, Section 41.3], can be implemented using only comparisons of common indepen-
dent sets. As in the previous section, we first consider the simpler bipartite matching case, where
the shortest augmenting paths algorithm constructs extremal matchings via shortest paths in an
exchange graph. Our key observation is that these shortest-path steps—e.g., via Bellman–Ford—
can themselves be implemented using only comparisons between matchings.

Formally, let G = (V,E) be a bipartite graph with color classes V = L ∪ R. Given an extremal
matching M of size k (i.e., a min-cost matching with k edges), we describe a primitive to obtain
an extremal matching M ′ of size k + 1.

The M -exchange graph D orients matching edges from R to L and non-matching edges from L
to R in G. Let L′ and R′ be the unmatched vertices in L and R. An M -augmenting path is a
directed path in D from a vertex in L′ to one in R′. Define the edge length function ` : E → R
as: `(e) := −w(e) if e ∈ M , and w(e) otherwise. The following result is standard (see, e.g.,
Theorem 3.5, Proposition 1 in Section 3.5 of [168]).

Lemma 7.3.3. Let M be an extremal matching. Then:

1. The exchange graph D has no negative-length cycles.
2. If P is a minimum-length M -augmenting path, then M ′ := M4P is also extremal.

By iteratively applying Lemma 7.3.3, we construct extremal matchings of increasing size, from
size 0 to n/2, and return the one with minimum total weight. Moreover, to implement this using
only comparisons between matchings, we describe a variant of the Bellman-Ford algorithm. For
each u ∈ L, let p(k)

u be the shortest M -alternating path from L′ to u using at most k matching
edges. For matched u ∈ L, let u′ ∈ R be its partner. We initialize:

p(1)
u =

{
∅ if u ∈ L′,
s→ u′ → u for s = arg mins∈L′ `(s→ u′ → u).

Moreover, we recursively define p(k+1)
u = minv∈L

(
p

(k)
u , p

(k)
v → u′ → u

)
, where the min

operator returns the path with minimum total length `(p), ties broken arbitrarily. Each such
path P yields a matching M4P , and satisfies `(P) = w(M) − w(M4P), so comparing path
lengths reduces to comparing weights of the resulting matchings.

To reach a free vertex t ∈ R′, compute: pt = minv∈L
(
p

(n)
v → t

)
, which again defines an

alternating path. Hence, the full algorithm can be implemented using only comparisons between
matchings.

242

This insight extends naturally to the matroid intersection setting, where shortest augmenting
paths must also be minimal (i.e., having fewest arcs among paths of equal weight), a property
standard algorithms like Bellman–Ford already ensure. We show that the path-finding steps can
again be carried out using only comparisons of common independent sets. The details appear
in Section 7.6.2.

7.3.3 Shortest paths
Finally, when the combinatorial objects of interest are s − t walks, we show that the Bellman-
Ford shortest path algorithm can be used to find the shortest s − t walk (which will be a path)
using O(n3) many s− t walk comparisons.

Theorem 1.6.5 (s-t walks). There is an algorithm that finds the minimum-length s-t path in a
graph G (or a negative cycle, if one exists) using O(n3) s-t walk comparisons and O(n3) time.

Proof. Assume that for every vertex v ∈ V , there exists a path from s to v and from v to t, since
otherwise no s-t walk can pass through v, and we may ignore such vertices. For each v ∈ V ,
fix an arbitrary v-t walk tv. Let s(k)

v denote the shortest s-v walk with at most k edges, where
s

(0)
v = ∅.

Define the recurrence:

s(k+1)
v = min

u∈V

(
s(k)
u ◦ (u, v)

)
, (7.1)

where ties are broken arbitrarily. We can compute this because for any two walks s(k)
u1 ◦ (u1, v)

and s(k)
u2 ◦ (u2, v), we can compare them by extending each with tv and comparing total weights.

If w has no negative cycles, then s(n−1)
t is the shortest s-t path. To detect a negative cycle, check

whether w(s
(n)
u) < w(s

(n−1)
u) for any u ∈ V .

Since there areO(n2) entries s(k)
u , and each is computed by comparingO(n) candidate walks, the

total number of comparisons is O(n3). Although each comparison naively takes O(n) time, we
can amortize this using shared subwalks, leading to O(n) time per table entry and total runtime
O(n3).

7.4 Linear Optimization for General Set Systems
Given these algorithms for general classes of set systems, we aim high and ask a very broad
abstraction, which we call the general linear optimization (GLO) problem: suppose we are given
a set of N points P = {x1, . . . , xN} ⊆ Rd, and an unknown weight vector w∗ ∈ Rd. Again, we
are only allowed comparison queries—given x, y ∈ P , the comparison oracle responds with

sign (〈w∗, x− y〉) , (7.2)

243

i.e., the relative ordering of x and y in the ordering on P induced by w∗. The goal is to identify

x∗ := arg min
x∈P
〈w∗, x〉 (7.3)

using as few queries as possible. The above combinatorial optimization problems are all special
cases of this problem where d = |U |, and we represent each set S by its (Boolean) indicator
vector 1S ∈ {0, 1}d.

There are two natural questions we can ask for GLO:

• Certification: Is it possible to certify that a candidate solution x is optimal using only a
small number of comparisons?

• Optimization: Is it possible to find an optimal solution x∗ using only a small number of
comparisons? Naturally, this is at least as difficult as the certification problem, since we
can compare this x∗ to x.

Our results for linear optimization on more general point sets depend on the complexity of these
point sets, via the notion of the conic dimension, which we define in Definition 7.4.3. We show
how to optimize over point sets P with low conic dimension.

Theorem 1.6.7 (General Linear Optimization). There is an algorithm that, for any point set
P ⊆ Rd with conic dimension k and unknown weights w ∈ Rd, returns the minimizer x∗ =
arg minx∈P〈w, x〉 using at most O(k log k log |P|) comparisons.

Since Boolean point sets have small conic dimension [113] (see Section 7.6.3 for a proof), we
get our main theorem for Boolean optimization:

Theorem 1.6.6 (Boolean Linear Optimization). For any family F ⊆ 2U and unknown weight
function w : U → R, we can solve arg minS∈F

∑
e∈S we using O(n log n · log |F|) = Õ(n2)

comparison queries, where n = |U |.

As mentioned earlier, for the setting of maximum cut on a graph G = (V,E), this result implies
an upper bound of Õ(|V |3) queries; moreover, our results can be made deterministic using the
techniques of [114]. The work of [154] shows a lower bound of Ω(|V |2) queries in the more
informative value query model, thereby showing that a gap of only O(|V |).

7.4.1 Warm-up: Query Complexity for Bounded Weights

Theorem 7.1.1 (Boolean Linear Optimization: Bounded Weights). For any family F ⊆ 2U and
unknown integer weight function satisfying |we| ≤ W , we can sort all sets S ∈ F by their
corresponding weight

∑
e∈S we using O(nW log nW) comparison queries, where |U | = n.

Proof. We can represent the feasible sets in F as points in the boolean hypercube {0, 1}n. Let
this set of points be P . The algorithm we describe not only finds the minimum-weight point but
sorts all points in P by their weight.

244

First, we present a simpler algorithm with a query complexity of O(n2W log(nW)) and then
show how to improve it. The algorithm processes points fromP in an arbitrary order, maintaining
a sorted collection of the points seen so far.

At each step, we maintain a partition the set of points processed thus far as disjoint lists {Lv},
where each list Lv contains points that share the same objective function value v. The possible
values for v lie in the range [−nW, nW]. Although we do not know the actual values v, we
maintain the relative order of the lists.

For each list Lv, we maintain the affine subspace spanned by its points. This is done by storing
a representative point xv ∈ Lv and a basis for the vector subspace spanned by the difference
vectors {x− xv | x ∈ Lv}. When a new point xnew is considered, we first check if its value can
be determined without a query. For each existing list Lv, we test if xnew lies in the affine subspace
spanned by Lv. If xnew ∈ span(Lv), then f(xnew) = v, and we add xnew to Lv, updating the
basis if necessary.

If xnew does not lie in any of the existing affine subspaces, we must use comparison queries to
determine its value relative to the existing values. We perform a binary search over the sorted list
of values. This either places xnew into an existing list Lv (if we find f(xnew) = v) or establishes
a new list for a previously unseen value.

The complexity is determined by the total number of times a binary search is required. A binary
search, which costsO(log(nW)) queries, is performed only when a new point x cannot be placed
into an existing list Lv by checking the affine span. This happens in two cases: (1) x has a value
that has not been seen before, or (2) x has a value corresponding to a list Lv, but x increases the
dimension of the affine subspace for Lv.

The number of distinct values is at most 2nW + 1. For each of the O(nW) possible values, the
dimension of its corresponding subspace can increase at most n − 1 times. Therefore, the total
number of events that trigger a binary search is bounded by O(nW + n · nW) = O(n2W). This
leads to a total query complexity of O(n2W log(nW)).

To improve this bound, we can make a simple but crucial observation. Instead of maintaining a
separate subspace for each list Lv, we can maintain a single vector subspace A. This subspace A
is spanned by all difference vectors encountered so far, i.e., A = span{xi − xv | xi ∈ Lv, ∀v}.
All these difference vectors lie in the subspace orthogonal to the true weight vector w, since
w>(xi − xv) = f(xi)− f(xv) = v − v = 0.

When a new point xnew arrives, we check for each known representative xv whether the dif-
ference xnew − xv lies in A. If xnew − xv ∈ A, then f(xnew) = f(xv) = v, and no query is
needed. Otherwise, we use binary search on the values. The total number of dimensions we can
learn for A is at most n − 1. The number of new values we can discover is at most 2nW + 1.
Therefore, the total number of queries is bounded by the cost of binary searches for each new
value and the queries needed to build the basis for A. This gives a total query complexity of
O((n+ nW) log(nW)) = O(nW log(nW)).

Remark 7.4.1. The proof relies on the fact that the total number of possible objective function

245

values is O(nW). If there are B possible distinct values, the same argument yields a query com-
plexity of O((n + B) logB). More crucially, the proof only uses a specific type of implication:
if x′, x1, . . . , xk all have the same value, then f(xi − x′) = 0. The existence of a linear combi-
nation x − x′ =

∑
i αi(xi − x′) then implies f(x) = f(x′). One can achieve better bounds by

using inequalities and conic combinations rather than equalities and linear combinations, which
is what subsequent extensions explore.

7.4.2 Envelopes and the conic dimension of Point Sets
Let us begin by defining the envelope and conic dimension of a point set. Recall that a cone of a
point set is the collection of all positive linear combinations of these points.

Definition 7.4.2. The envelope of a sequence of points σ = (y1, . . . , yn) ∈ (Rd)n is

env(σ) := cone({yj − yi}1≤i<j≤n) = cone({yi+1 − yi}1≤i<j≤n). (7.4)

The idea behind the envelope is simple: if σ is the total order induced by w∗ on the points
{y1, . . . , yn} (i.e., if 〈w∗, yi − yj〉 ≥ 0 for i < j, then taking the envelope of σ gives us all
the “implications” of this ordering, and allows us to derive implications without performing any
further calculations.

Definition 7.4.3. The conic dimension of a set Y ⊆ Rd denoted by ConicDim(Y) is the largest
integer k for which there exists a length-k sequence σ = (y1, . . . , yk) ∈ Yk of points from Y ,
such that for each t ∈ {2, . . . , k} we have

yt − y1 6∈ env(σ1:t−1), (7.5)

where σ1:t denotes the prefix of the first t elements of sequence σ.

In other words, each 〈w∗, yt − y1〉 ≥ 0 is not implied by the comparisons in the prefix. Note
that the conic dimension is defined for a set, whereas the notion of an envelope is defined for
a sequence. A note on the name: [113] defined the inference dimension as being the size of a
largest “inference-independent” set where none of the inequalities are implied by the others. Our
definition is very similar to theirs, with two minor difference: (a) we restrict to linear optimiza-
tion, and (b) we consider sequences where each comparison is not implied by the previous ones.
Since implications using linear inequalities has a natural geometric visualization as a cone, we
call it conic dimension.

Given these definitions, it is possible to show that if a point set P has conic dimension k, then
for the optimal point y∗ ∈ P there exists proofs of optimality of size at most k − 1. In the next
section, we give an algorithm for the optimization problem, which finds an optimal point y∗ and
also gives a proof of size O(k log k log |P|).

7.4.3 An Algorithm for Finding a Minimizer
We now show the proof of the main result for general linear optimization:

246

Theorem 1.6.7 (General Linear Optimization). There is an algorithm that, for any point set
P ⊆ Rd with conic dimension k and unknown weights w ∈ Rd, returns the minimizer x∗ =
arg minx∈P〈w, x〉 using at most O(k log k log |P|) comparisons.

For point set P = {x1, . . . , xN}, consider the following iterative algorithm, which distills the
approach of [113]:

Algorithm 9 Iterative Sieving Algorithm

1: while |P| is more than O(k) do
2: Independently include each point of P in a subset Y with probability 2k/N
3: σ ← result of sorting Y using O(k log k) expected comparisons
4: y ← first (smallest) element of σ
5: Eliminate all points x ∈ P \ {y} such that x− y ∈ env(σ)
6: end while
7: Sort P using a brute-force algorithm

The proof of the algorithm follows immediately from the next lemma, which shows that each
iteration reduces the number of points in P by half in expectation. We defer the proof to Sec-
tion 7.6.3.

Lemma 7.4.4. The expected number of points that are eliminated from P at step 3 is at least
|P|/2.

We observe that the algorithm optimizes the number of queries, and not the runtime, since both
steps 2 and 3 cannot be efficiently executed in general; it remains an interesting direction to make
some version of this algorithm efficient for special classes of problems.

7.5 Future Directions
Our work initiates the study of combinatorial optimization under perhaps the weakest interesting
model of information: the ability to compare two potential solutions. In this pairwise-comparison
model, we show how to solve the graph min-cut problem for simple graphs (and give results also
for graph reconstruction, which is non-trivial in this setting). We also show how to optimize over
matroids, matroid intersections, and s-t paths using just pairwise comparisons. Finally, we show
that all Boolean point sets (and indeed, all point sets of bounded precision) have small query
complexity, even though their computational complexity may be large.

Many intriguing open questions arise from this work. We highlight some of the most pressing
directions below.

• Weighted Graphs. A natural next step is to extend our min-cut algorithm from sim-
ple graphs to weighted graphs. Finding an efficient comparison-based algorithm for the
weighted case is a primary open problem.

247

• Submodular Minimization. Can we optimize objectives beyond modular functions? De-
termining if submodular functions can be minimized with a polynomial number of com-
parison queries—even with exponential computation time—would be a significant gener-
alization of our results.

• Characterizing Efficient Problem Classes. What general properties of a set system per-
mit efficient optimization? Our results for specific structures like matroids are encourag-
ing. A central challenge is to characterize the properties that make the general framework
of Section 7.4 efficient for broader classes of combinatorial problems.

• Noisy Comparisons. How can we handle noisy queries? If each query is correct only with
a probability of 1

2
+ε, standard binary search approaches fail. While some techniques from

the value query model might be adaptable [75], this direction remains largely unexplored.

• Adaptive vs. Non-adaptive Gaps. What is the query complexity gap between comparison
and value queries in the adaptive setting? While a simple separation exists in the non-
adaptive case, a deeper understanding of the power of adaptivity in the comparison model
is needed.

7.6 Appendix to Chapter 7

7.6.1 Proofs from Section 7.2
We begin with a simple observation allowing us to test, for a vertex u and any non-empty set S
that is a proper subset of U − u, whether a majority of u’s neighbors lie inside S.

Observation 7.6.1. Suppose we perform a cut comparison query on the pair S and S + u. Then
the result of the query is:

sign(|∂(S)| − |∂(S + u)|) = sign
(
|∂(u, S)| − 1

2
|∂(u)|

)
. (7.6)

Proof. Indeed,

|∂(S)| − |∂(S + u)| = |∂(u, S)| − |∂(u, U \ (S + u))|
= 2|∂(u, S)| − |∂(u)|.

Therefore, the sign of the query (S, S + u) indicates whether a majority of u’s edges go into
S.

The above observation allows us to reason about neighborhood structure. We now formalize how
to use this to isolate individual neighbors.

Lemma 7.6.2 (tipping point). For u ∈ U , consider a set ∅ 6= S ⊆ U \ {u}, and a sequence
v1, v2, . . . , vt of vertices in U \ (S ∪ {u}). Define Si = S ∪ {v1, . . . , vi}. Suppose St 6= U − u

248

and the comparisons of the queries (S0, S0 +u) and (St, St+u) differ. Then there exists an index
i ∈ [t] such that

sign(|∂(Si−1)| − |∂(Si−1 + u)|) < sign(|∂(Si)| − |∂(Si + u)|). (7.7)

The corresponding vertex vi must be a neighbor of u, and can be identified usingO(log t) queries
and Õ(n) time via binary search.

Proof. By Observation 7.6.1, the sign(|∂(S)| − |∂(S + u)|) is monotonic in S, since the quan-
tity |∂(u, S)| increases as S grows. Therefore, if the sign changes between S0 and St, then by
monotonicity, it must strictly increase at some index i, which proves (7.7). Moreover, using the
equality in (7.6) again, (7.7) can be rewritten as

|∂(u, Si−1)| < |∂(u, Si)|, (7.8)

and hence u is adjacent to the vertex vi. Finally, a binary search over the chain finds such an i
using O(log t) queries. The binary search performs O(log t) queries, each requiring O(n) time
to write bit vectors, for a total of O(n log t) = Õ(n). The additional binary search logic takes
O(log t) time.

We now apply these ideas to construct balanced sets around each vertex.

Lemma 7.6.3 (median sets). For any vertex u with ∂(u) 6= ∅, and an ordering v1, . . . , vn−1 of
the vertices in U − u, there exist disjoint sets S−u , S

+
u ⊆ U \ {u} that are a prefix and a suffix of

the sequence such that

|∂(u, S−u)| = |∂(u, S+
u)| =

⌈
|∂(u)|

2

⌉
− 1. (7.9)

These sets can be found using O(log n) queries and Õ(n) time.

Proof. Let Lj = {v1, v2, , vj} and Rj = {vj, vj+1, . . . , vn−1} for j ∈ [n− 1]. First, check
if ∂(v1) > ∂(v1 + u) in which case, we can conclude S−u = ∅, S+

u = {v2, v3, . . . , vn−1} because
{u, v1} has to be the only edge using Observation 7.6.1. Similarly for vn−1. So from now on,
assume that ∂(v1) ≤ ∂(v1 +u) and ∂(vn−1) ≤ ∂(vn−1 +u). Equivalently, this can also be written
as ∂(R2) ≥ ∂(R2 + u), ∂(Ln−2) ≥ ∂(Ln−2 + u).

In what follows, we will first describe how to compute S−u and then use a similar argument to
compute S+

u . If ∂(v1) = ∂(v1 + u), then again we can simply conclude S−u = ∅ because this
implies that |∂(u)| = 2 and {u, v1} is an edge. Otherwise, if ∂(v1) < ∂(v1+u), we can search for
S−u as a tipping point for the chain defined by the sequence v1, v2, . . . , vn−2 using Lemma 7.6.2
because ∂(v1) < ∂(v1 + u) and ∂(v1, . . . , vn−2) ≥ ∂(v1, . . . , vn−2 + u). By the arguments
in Lemma 7.6.2, there exists i ∈ [n− 2] such that vi ∈ N(u) and

|∂(u, Li−1)| < 1
2
|∂(u)|, |∂(u, Li)| ≥ 1

2
|∂(u)|. (7.10)

249

This implies that S−u := Li−1 satisfies |∂(u, S−u)| = d |∂(u)|
2
e − 1. We can use the same argument

to get S+
u . Moreover, since S−u and S+

u are prefix and suffix of the same ordering, and contain
no more than half the neighbors of u, they must be disjoint. The proof makes two calls to
Lemma 7.6.2, one for each ordering, with O(n) preprocessing. Each call takes Õ(n) time, so the
total running time is Õ(n).

Proof of Structural Primitives Lemma

We can now prove the main structural result Theorem 7.2.1, which we restate for convenience:

Theorem 7.2.1 (Structural Primitives). When n ≥ 4, for any vertex u ∈ U :

(i) Given a set of k vertices A = {v1, . . . , vk} ⊆ U \ {u}, the neighbors of u in A can be
determined using k +O(log n) queries and Õ(n+ k) time.

(ii) Given an ordered subset T = (v1, . . . , vt) ⊆ U \ {u}, either the neighbor vi ∈ N(u) of
u with the smallest index i ∈ [t] (or a certificate that N(u) ∩ T = ∅) can be found using
O(log n) queries and Õ(n) time.

Before we prove the theorem, we first prove a primitive that shows how to identify if a vetrex is
isolated using constant queries when n ≥ 4:

Lemma 7.6.4 (Home Alone). For any three vertices u, v, w ∈ U , vertex u is isolated iff

|δ(v)| = |δ(u+ v)|, |δ(w)| = |δ(u+ w)|, |δ(v + w)| = |δ(u+ v + w)|. (7.11)

Proof. The three equalities are trivial when u is isolated. Given the equalities, we observe that
they can be written equivalently as

|δ(u, v)| = 1
2
|δ(u)|, |δ(u,w)| = 1

2
|δ(u)|, |δ(u, v + w)| = 1

2
|δ(u)|. (7.12)

Using the fact that |δ(u, v + w)| = |δ(u, v)|+ |δ(u,w)| gives |δ(u)| = 0.

Proof of Theorem 7.2.1. We first check if ∂(u) = ∅ using Lemma 7.6.4. If ∂(u) = ∅, there are
no neighbors of u inA in part (i) and we can certify thatN∩T = ∅ in part (ii). Assume ∂(u) 6= ∅
from here on.

In proving part (i), and determining which of v1, . . . , vk ∈ U \ {u} are neighbors of u, we begin
by computing the disjoint sets S−u , S

+
u ⊆ U \ {u} with exactly d |∂(u)|

2
e − 1 neighbors of u; this

takes O(log n) queries and Õ(n) time due to Lemma 7.6.3.

For each vi we choose S to be one of S−u or S+
u in which vi does not appear—say S := S+

u . Since
|∂(u, S)| < 1

2
|∂(u)|, we know from Observation 7.6.1 that sign(|∂(S)| − |∂(S + u)|) = −1. We

then add vi to S and ask for sign(|∂(S + vi)| − |∂(S + vi + u)|). Since ∂(S, u) is just one edge
short of reaching half the degree of u, this sign increases if and only if vi ∈ N(u). Thus, each
test requires one query, and the total query complexity is k + O(log n). After computing the
median sets S−u and S+

u in Õ(n) time, we partition the vertices v1, . . . , vk into two groups based
on whether each vi lies in S−u or S+

u ; this takes O(k) time using bit vector lookups. For each

250

group, we fix the corresponding set S := S+
u or S−u and write its bit vector once in O(n) time.

Each query (S+vi, S+vi+u) is then constructed inO(1) time via bit flipping. The total running
time is Õ(n+ k).

This proves Theorem 7.2.1(i).

For part (ii) of the lemma, consider the ordered sequence T = (v1, . . . , vt) ⊆ U \ {u} and
extend it to a total ordering of U \ {u} by appending the remaining vertices arbitrarily, forming
the sequence (v1, . . . , vt, vt+1, . . . , vn−1). Define suffixes Rk := {vk, . . . , vn−1} for each k; by
Lemma 7.6.3, there exists some k such that

|∂(u,Rk)| =
⌈
|∂(u)|

2

⌉
− 1, (7.13)

and such a suffix S := Rk can be found using O(log n) queries and Õ(n) time via Lemma 7.6.3.
To verify that |∂(u, T)| > 0, consider the sequence (vt+1, . . . , vn−1, v1, . . . , vt) with T placed all
the way at the end. The suffix median of this ordering computed using Lemma 7.6.3 is the same
as S iff |∂(u, T)| > 0. Otherwise, define the nested sequence

S0 := S, (7.14)
Si := S ∪ {v1, . . . , vi} for i = 1, . . . ,min(t, k). (7.15)

(Recall that |T | = t and |S| = n− k + 1.) We have:

|∂(u, S0)| = |∂(u, S)| =
⌈
|∂(u)|

2

⌉
− 1, (7.16)

|∂(u, Smin(t,k))| = |∂(u, S)|+ |∂(u, T \ S)| ≥ 1
2
|∂(u)|. (7.17)

To justify the inequality in (7.17): if |∂(u, T)| > 0, then |∂(u, T \ S)| > 0, because otherwise if
|∂(u, T \ S)| = 0, then N(u) ⊆ S. But this would imply |∂(u, S)| = |∂(u)|, contradicting the
fact that less than half the edges incident to u go into S (by the choice of S). Hence, T \ S must
contain a neighbor of u.

By Lemma 7.6.2, there exists an index i such that the sign of the query (Si−1, Si−1 +u) is strictly
smaller than that of (Si, Si + u). The corresponding vertex vi is the first vertex in T adjacent to
u, and binary search over i ∈ [min(t, k)] finds it using O(log n) queries and Õ(n) time.

Lemma 7.2.3 (Edge Extraction). When n ≥ 4, for any vertex u, a subset T ⊆ U − u of vertices,
and any integer k, we can extract r = min(k, ∂(u, T)) edges from ∂(u, T) using O(r log n)

queries and Õ(n) time.

Proof. We assume that |∂(u, T)| ≤
⌊

1
2
|∂(u)|

⌋
+ 1; otherwise, we split T into T+ := T ∩ S+

u

and T− := T ∩ S−u using the median sets from Lemma 7.6.3, and recursively extract edges from
each. Both subsets satisfy the same degree bound, and the total query and runtime complexity
remains the same. Let S be a median set disjoint from T , which exists by construction and can
be found using O(log n) queries and Õ(n) time. Let T = {v1, . . . , vt}, and define the nested sets
Sj := S ∪ {v1, . . . , vj}. We maintain two bit vectors: one for the fixed set S, and one for the

251

growing prefix of T . In each iteration, we find the smallest index j such that the sign of the query
(Sj−1, Sj−1 +u) is strictly smaller than that of (Sj, Sj +u), indicating that vj ∈ N(u). We locate
this index using the doubling version of binary search. Once vj is found, we report the edge
{u, vj}, remove v1, . . . , vj from T , and repeat. Since we extract at most r edges, we perform at
most r such searches, each requiring O(log n) queries, for a total of O(r log n) queries overall.

Running time. Constructing the median set S takes Õ(n) time. To construct the query sets,
we reuse the bit vector for S and build each query by appending a prefix {v1, . . . , vi} ⊆ T . In
each iteration, the doubling search explores prefixes of geometrically increasing size until it finds
a neighbor at index j. The total size of all prefixes queried in that iteration is O(j log t), so the
time spent constructing queries is O(j log t). Deleting v1, . . . , vj from T also takes Õ(j) time.
The values j1, . . . , jr across all r iterations sum to at most n as these are gaps between the edge
indices, so the overall total time taken is O (

∑r
i=1 ji log n) = Õ(n).

Cut sparsifiers using Õ(n) queries

Using Lemma 7.2.4, we show that we can implement the sparsifier construction from [162, Al-
gorithm 3.4] and the min-cut computation from [162, Algorithm 4.1] using Õ(n/ε2) cut com-
parison queries. The mentioned algorithms and relevant theorems from [162] are mentioned
verbatim below:

Algorithm 10 (Approximating Edge Strengths and Sampling a Sparsifier H)
Input: An accuracy parameter ε, and a cut-query oracle for graph G.

1. Initialize an empty graph H on n vertices and G0 ← G.
2. For j = 0, . . . , log n, set κj = n2−j and:

(a) Subsample G′j from Gj by taking each edge of Gj with probability

qj = min

(
100 · 40 · lnn

κj
, 1

)
.

(b) In each connected component of G′j:
i. While there exists a cut of size ≤ qj · 4

5
κj , remove the edges from the cut. Let

the connected components induced by removing the cut edges be C1, . . . , Cr.
ii. For every i ∈ [r] and every edge (known or unknown) with both endpoints in Ci,

set the approximate edge strength k′e := 1
2κj

(alternatively, subsample every edge
in Ci × Ci with probability 2qj/ε

2 and add it to H with weight ε2/2qj).
iii. Set Gj+1 as the graph obtained by contracting Ci for each i ∈ [r] in Gj .

Output: The edge strength approximators {k′e} (or the sparsifier H).

Theorem 7.6.5 (Theorem 3.5 from [162]). For each edge e ∈ G, the approximate edge strength
given in Algorithm 10 satisfies 1

4
ke ≤ k′e ≤ ke. Furthermore, the algorithm requires Õ(n/ε2)

oracle queries to produce a sparsifier H with the following properties:

• H has O(n log n/ε2) edges.

252

• The maximum weight of any edge e in H is O(ε2ke/ log n).
• Every cut in H approximates the corresponding cut in G within a (1± ε) factor.

Algorithm 11 Simpler global Min Cut with Õ(n) oracle queries
Input: Oracle access to the cut values of an unweighted simple graph G.

1. Compute all of the single-vertex cuts.
2. Compute a sparsifier H of G using Algorithm 10 with small constant ε.
3. Find all non-singleton cuts of size at most (1 + 3ε) times the size of the minimum cut in
H , and contract any edge which is not in such a cut. Call the resulting graph G′.

4. If the number of edges between the super-vertices of G′ is O(n), learn all of the edges
between the super-vertices of G′ and compute the minimum cut.

Output: Return the best cut seen over the course of the algorithm.

Theorem 7.6.6 (Theorem 4.2 from [162]). Algorithm 11 uses Õ(n) queries and finds the exact
minimum cut in G with high probability.

Proof of Theorem 1.6.1. For each 0 ≤ j ≤ log n, step 2(a) of Algorithm 10 can be implemented
using Lemma 7.2.4 with O(|Ej| · qj · log n) + Õ(n) comparison queries in expectation; which is
shown to be Õ(n) in the proof of Theorem 7.6.5. The runtime bound of the same step is Õ(n2).
Step 2(b)(ii) of Algorithm 10 also takes Õ(n/ε2) queries and Õ(n2) time because the number of
edges sampled and added to H is shown to be Õ(n/ε2) (see proof of Theorem 4.2, [162]) and
this sub-sampling can be done again using Lemma 7.2.4. In Algorithm 11, since step (1) is only
used to compare the singleton cuts to output the minimum cut seen by the algorithm, we can
implement this using comparison in O(n) queries and time. In step (3), all the approximate cuts
can be computed in Õ(n2) time using [103]. In step (4), all the edges of G′ can be learned using
Lemma 7.2.4 with p = 1. The proof of Theorem 7.6.6 shows that the number of edges in G′ is at
most O(n) with high probability. This implies that all the steps in the algorithms take Õ(n/ε2)

queries and Õ(n2) time. There are at most log n steps in any algorithm which proves the desired
bounds.

7.6.2 Proofs from Section 7.3
Generalization to Matroid Intersection

We now extend the concepts from bipartite matching to matroid intersection. LetM1 = (E, I1)
andM2 = (E, I2) be matroids over a common ground set E, and let Y ∈ I1 ∩ I2 be a common
independent set. Define the exchange graph H(M1,M2, Y) as a directed bipartite graph with
color classes Y and E \ Y . For y ∈ Y and x ∈ E \ Y :

(y, x) ∈ H ⇐⇒ Y − y + x ∈ I1,

(x, y) ∈ H ⇐⇒ Y − y + x ∈ I2.

Let H(M1, Y), H(M2, Y) be the subgraphs of H with edges corresponding toM1,M2 respec-
tively.

253

We know the following lemma (see [168, Section 10.4]):

Lemma 7.6.7 (Matching lemmas). For Y ∈ I1, let H1 = H(M1, Y).

(a) If Z ∈ I1 with |Y | = |Z|, then H1 contains a perfect matching on Y∆Z.
(b) If Z ⊆ E such that H1 contains a unique perfect matching on Y∆Z, then Z ∈ I1.

Let X1 := {x ∈ E \ Y : Y + x ∈ I1} and X2 := {x ∈ E \ Y : Y + x ∈ I2}. Given a weight
function w : E → R, define the length of any path (or cycle) P in H by:

`(P) :=
∑

e∈P∩Y

we −
∑
e∈P\Y

we.

A common independent set Y ∈ I1 ∩ I2 is extreme if it minimizes weight among all common
independent sets of the same size. We know the following lemmas (see Theorem 10.7, Theorem
10.11, Theorem 10.12 in [168])

Lemma 7.6.8. The subset Y ∈ I1 ∩ I2, is a maximum cardinality common independent set iff
there is no directed path from X1 to X2 in H .

Lemma 7.6.9. Consider a common independent set Y ∈ I1 ∩ I2.

(i) Y is extreme if and only if H(M1,M2, Y) contains no directed cycle of negative length.
(ii) If Y is extreme, and P is a shortest (minimal-hop) path from X1 to X2 in H , then Y4P is

also extreme.

To mimic the Bellman–Ford algorithm, we generalize the notion of augmenting paths using
minimal paths and cycles, defined with respect to both weight and hop-count.

Minimal Cycles and Paths. A cycle C in H is minimal if no proper subcycle C ′ satisfies
`(C ′) ≤ `(C). Similarly, for y ∈ Y , define P(y, t) to be the set of directed paths from X1 to y
in H using at most 2t− 1 arcs. A path P ∈ P(y, t) is minimal if it is lexicographically minimal
with respect to length and number of arcs:

For all P ′ ∈ P(y, t), (`(P ′), |P ′|) � (`(P), |P |).

In the following lemma, we prove our main observation that augmenting an extreme common
independent by a minimal path gives a common independent set.

Lemma 7.6.10 (Minimal paths and cycles). If Y is extreme:

1. For any minimal cycle C in H , we have Y4C ∈ I1 ∩ I2.
2. For any minimal path P ∈ P(y, t), we have Y4P ∈ I1 ∩ I2.

Proof of Lemma 7.6.10. For the proof of part (1), suppose Z := Y∆C /∈ I1 ∩ I2, assume by
symmetry that Z /∈ I1. Let N,M be the matching edges in C corresponding to M1 and M2

respectively. Using Lemma 7.6.7(a), we know that there exists a different matching N ′ 6= N
between the vertices V C ∩ Y and V C\Y with edges corresponding toM1.

254

Consider the multiset union of edges N ∪N ′ ∪ 2M which takes two copies of every edge from
M and a copy of every edge from N and N ′. Since these set of edges enter and leave every
vertex exactly twice, the set of edges can be decomposed into a collection of cycles C1, . . . , Cp
for some p ≥ 2 such that some of the cycles have strictly fewer vertices than C. We also have∑

i∈p `(Ci) = 2`(C). Using Lemma 7.6.9(i), we know `(Ci) ≥ 0 and since p ≥ 2, there exists a
cycle Ci with lesser weight or the same weight with lesser number of vertices as C contradicting
the minimality of C.

The proof of part (2) proceeds in a few steps:

(2a) (No re-entry) First, we prove that a minimal path in P(y, t) never re-enters X1 again. If
P = (x0, y1, x1, . . . , yk, xk, . . . , xt−1, yt) with xk ∈ X1, then observe that there is an edge
from yk to x0 because Y + x0 ∈ I1 as x0 ∈ I1 which implies Y + x0 − yk ∈ I1 and hence
the edge. If we let C = (x0, y1, x1, . . . , yk, x0), and P ′ = (xk, yk+1, . . . , xt−1, yt), we
have `(P) = `(C) + `(P ′) implying that P ′ has smaller length and lesser number of arcs
than P as `(C) ≥ 0 from Lemma 7.6.9(i) contradicting the minimality of P . An identical
argument can be used to show that vertices are not revisited again in minimal paths.

(2b) (Y∆P ∈ I1) Next, we show that Y∆P ∈ I1. Let Z = {y1, x1, . . . , yt−1, xt−1}. We first
show that Y∆Z ∈ I1. Let N be the set of matching edges (yi, xi) corresponding toM1

for 1 ≤ i ≤ t− 1 and M be the set of matching edges (xj−1, yj) corresponding toM2 for
1 ≤ j ≤ t. If Y∆Z /∈ I1, then there is a different matching N ′ between Z\Y and Z ∩ Y
using Lemma 7.6.7(a). Consider the multiset union of edges N ∪N ′ ∪ 2M ∪ 2(yk, x0).

Since these set of edges enter and leave every vertex exactly twice, the set of edges can
be decomposed into a collection of cycles C1, . . . , Cp for some p ≥ 2 such that some of
the cycles have strictly fewer vertices than C. We also have

∑
i∈p
`(Ci) = 2`(C). Using

Lemma 7.6.9(i), we know `(Ci) ≥ 0. Consider the two different cycles (say) C1, C2 that
each contain a copy of the edge (yt, x0). We know that one of these cycles (say) C1 should
have `(C1) ≤ `(C) and |C1| < |C|. Removing the (yt, x0) edge from C1 gives a path (say)
P1 such that (`(P), |P |) � (`(P1), |P1|) contradicting the minimality of P .

Now we will show that Y∆Z ∈ I1 ⇒ Y∆P ∈ I1. First, observe that rM1(Y ∪ Z) = |Y |
because rM1(Y + z) = rM1(Y) = |Y | for every z ∈ Z as we showed Z ∩ X1 = ∅ in
Item (2a). On the other hand, the rank rM1(Y ∪P) ≥ |Y |+1 because Y ∪P ⊇ Y +x0 ∈ I1.
Since Y∆Z ⊆ Y ∪P , there is an element in {x0, y1, y2, . . . , yt−1} that extends Y∆Z. This
has to be x0 because we know rM1(Y ∪ Z) = |Y |. This implies that

(Y∆Z) + x0 = (Y∆P) + yt ∈ I1 ⇒ (Y∆P) ∈ I1.

(2c) (Y∆P ∈ I2) Finally, we show that Y∆P ∈ I2. Let N be the set of matching edges
(yi, xi) corresponding to M1 for 1 ≤ i ≤ t − 1 along with (yt, x0). Let M be the set of
matching edges (xj−1, yj) corresponding toM2 for 1 ≤ j ≤ k. If Y∆P /∈ I2, then there
is an alternate matching M ′ from vertices in P\Y to Y \P . Consider the multiset union of
edges M ∪M ′ ∪ 2N . Similar to the argument in parts (1) and (2a) above, we find a cycle

255

(say) C1 containing the edge (yt, x0) such that `(C1) ≤ `(C) and |C1| < |C|. Deleting the
edge (yt, x0) gives a path P1 that contradicts the minimality of P .

Lemma 7.6.10 allows us to compare lengths of minimal paths using only comparisons of matroid
intersections:

`(P1)− `(P2) = w(Y4P2)− w(Y4P1),

when P1 and P2 are minimal paths or cycles. In order to optimize over minimal paths, we modify
the Bellman-Ford algorithm in the natural way.

Modified Bellman-Ford Algorithm. Let p(t)
y denote the minimal path in P(y, t). We compute

it recursively:

• Initialization: For each y ∈ Y ,

p(1)
y = min

x∈X1

(x→ y).

• Update: For t ≥ 1,
p(t+1)
y = min

{
p(t)
y , p

(t)
z → x→ y

}
,

where (z, x) ∈ Y × (E \ Y) satisfies:

1. (z, x) and (x, y) are arcs in H , and

2. Y4p(t)
z + x− y ∈ I1 ∩ I2.

• Shortest Augmenting path: After computing paths p(t)
y for all y ∈ Y and t = |Y |, we

extract a minimal shortest path P from X1 to X2 such that Y4P ∈ I1 ∩ I2, and update
Y ← Y4P .

Proof of Theorem 1.6.4. Let Yt be the extreme common independent set of size exactly t starting
with Y0 = ∅. Use the modified Bellman-Ford Algorithm to find the shortest augmenting path
Pt in the exchange graph H(M1,M2, Yt)). Using Lemma 7.6.9 part (i), the exchange graph
has no negative cycles. The shortest path computation takes O(n3) comparison queries and
time (see Section 7.3.3). After every update, we know that Yt+1 := Yt∆Pt is an extreme set
using Lemma 7.6.9 part (ii). We continue for n steps as long as there is a directed path from
X1 to X2 in the exchange graph. Using Lemma 7.6.8, we know that the maximum cardinality
intersection is reached when an augmenting path is not present anymore. Finally, we can compare
the weights of all the extreme sets obtained to output the minimum weight common intersection
O(n4) comparisons and O(n4) time.

7.6.3 Omitted Content from Section 7.4
The conic dimension of the Boolean Point Sets

An important special case is that of point sets consisting of Boolean vectors in {0, 1}d, i.e., of
subsets of the hypercube. For completeness, we present the bound on the conic dimension from
[113].

256

Lemma 7.6.11 ([113]). The conic dimension of any subset of points of {0, 1}d is at mostO(d log d).
In fact, it is the smallest k such that 2k > (2k + 1)d.

Proof. Let us first consider the case where P = {0, 1}d. For any sequence (y1, . . . , yk+1) ⊆
{0, 1}d, consider the set {∑

i∈[k]

βi(yi+1 − yi) : βi ∈ {0, 1}
}
. (7.18)

These vectors lie in the cube {−k, . . . , k}d, which has (2k+ 1)d elements. If 2k > (2k+ 1)d, by
the pigeonhole principle, two distinct β 6= γ yield the same sum.

Let t0 be the largest index where βt0 6= γt0 , and assume βt0 = 0, γt0 = 1. Then:∑
i∈[k]

(βi − γi)(yi+1 − yi) = 0. (7.19)

Add
∑
i∈[t0]

(yi+1 − yi) = yt0+1 − y1 to both sides:

yt0+1 − y1 =
∑
i∈[t0]

(βi − γi + 1)(yi+1 − yi) (7.20)

=
∑

i∈[t0−1]

(βi − γi + 1)(yi+1 − yi) (7.21)

Since βi, γi ∈ {0, 1}, the coefficients are non-negative, so yt0+1 − y1 ∈ env((y1, . . . , yt0)). This
proves that the conic dimension of the hypercube is at most k = O(d log d). Now we can use the
fact the conic dimension of any subset is no larger, to infer the same property for any subset of
the cube.

Beyond the Hypercube

In this section, we consider extensions of the above claim for the Boolean hypercube: to the
setting of hypergrids, and to getting ε-approximate solutions for other bounded sets.

Hypergrids and Bounded-Precision Solutions A more general version of Lemma 7.6.11
when points belong to {0, 1, . . . , N − 1}d shows that the conic dimension is shown to be at
most O(d log(Nd)). The proof is very similar to that of Lemma 7.6.11 above; see [113, Lemma
4.2].

ε-Approximate Solutions for Bounded Sets For bounded sets P ⊂ Bd = {x ∈ Rd; ‖x‖2 ≤
1} it is possible to bound an approximate version of the conic dimension, which leads to an
algorithm that returns an ε-approximate point. Given a comparison oracle, the algorithm returns
x̂ ∈ P such that 〈w∗, x̂〉 ≤ 〈w∗, x〉+ ε for all x ∈ P .

For the following definition, we will use the notion of the distance: given a set S ⊂ Rd and a
point x ∈ Rd, define dist(x, S) = miny∈S ‖x− y‖2.

257

Definition 7.6.12. The ε-approximate conic dimension of a set Y ⊆ Rd denoted by ConicDimε(Y)
is the largest integer k for which there exists a length-k sequence σ = (y1, . . . , yk) ∈ (Y)k of
points from Y , such that for each t ∈ {2, . . . , k} we have

dist(yt − y1, env(σ1:t−1)) ≥ ε. (7.22)

All the notions previously defined extend to the approximate conic dimension with the natural
changes. We can extend the notion of a basic subsequence Bε(σ) following the same Kruskal-
like procedure: we add an element to the basic subsequence if its distance to the previously
spanned elements is at least ε.

If k = ConicDimε(Y) we can apply Algorithm 9 with two modifications: after the first iteration,
always include the minimum point from the previous iteration in the sample; in step 2 eliminate
all points x ∈ P \ {y} such that dist(x− y, env(σ)) < ε obtaining the following results:

Corollary 7.6.13. If ‖w∗‖ ≤ 1 and k = ConicDimε(Y), the the variant of Algorithm 9 described
above returns a point x̂ such that 〈w∗, x̂〉 ≤ 〈w∗, x〉 + ε for all x ∈ P using O(k log k log |P|)
comparisons.

Proof. Observe that if y is the smallest point in the sampled subsequence then if dist(x −
y, env(σ)) < ε then let z ∈ y + env(σ) be a point such that ‖x− z‖2 ≤ ε. We know that

〈w∗, y〉 ≤ 〈w∗, z〉 = 〈w∗, x〉+ 〈w∗, z − x〉 ≤ 〈w∗, x〉+ ε

Hence we only eliminate points that are at no better than the point y by more than ε. The
modification in step 1 guarantees that the points y selected in each iteration as increasingly better.
The remainder of the proof works without any change.

Finally we bound the approximate conic dimension:

Lemma 7.6.14. The ε-approximate conic dimension of any set of points P ⊂ Bd is the smallest
k such that 2k(ε/2)d > (2k + 1)d.

Proof. The proof follows by replacing the pigeonhole argument in Lemma 7.6.11 by a volumetric
argument. We again consider the set:∑

i∈[k]

βi(yi+1 − yi) : βi ∈ {0, 1}

 ⊆ 2k · Bd (7.23)

i.e, the ball of radius 2k in Rd, which has volume (2k)d · Vol(Bd). Now, for each vector β ∈
{0, 1}k, consider the ball of radius ε/2 around

∑
i∈[k] βi(yi+1 − yi), which have total volume

2k(ε/2)d · Vol(Bd). Each of those balls is contained in the ball of radius 2k + 1 around zero.
If 2k(ε/2)d > (2k + 1)d then two of the smaller balls must intersect, so there exist vectors
β, γ ∈ {0, 1}k such that: ∑

i∈[k]

(βi − γi)(yi+1 − yi) = z, (7.24)

258

with ‖z‖2 < ε. Let t0 be the largest index where βt0 6= γt0 , and assume βt0 = 0, γt0 = 1. Doing
the same manipulations as in Lemma 7.6.11 we obtain:

z + yt0+1 − y1 =
∑

i∈[t0−1]

(βi − γi + 1)(yi+1 − yi) (7.25)

Since βi, γi ∈ {0, 1}, the coefficients are non-negative, so

dist(yt0+1 − y1, env(y1, . . . , yt0)) ≤ ‖z‖2 < ε

which shows that that ε-approximate conic dimension is at most k.

The Certification Problem

Before addressing the optimization problem, we ask whether it is even possible to certify opti-
mality efficiently. Suppose we wish to prove that some point y ∈ P is the optimal solution, i.e.,
y = arg minx∈P〈w∗, x〉, or equivalently, that

〈w∗, x− y〉 ≥ 0 ∀x ∈ P . (7.26)

We want to use as few comparisons as possible.

1. A y-certificate is a collection C of index pairs (i, j) such that for all w ∈ Rd, we have that

(〈w, xi − xj〉 ≥ 0 ∀(i, j) ∈ C)⇒ (〈w, x− y〉 ≥ 0 ∀x ∈ P) (7.27)

2. A certificate C is valid if 〈w∗, xi − xj〉 ≥ 0 for all (i, j) ∈ C.

Hence a valid y-certificate implies that y is a minimizer of 〈w∗, x〉 among points in P . In fact,
the minimum number of queries needed to find an optimal solution is lower bounded by the
minimum size of a valid certificate.

Recall that given a set V ⊆ Rd of vectors, the cone generated by V is the set of all vectors that
can be written as positive linear combinations of vectors from V ; this is denoted by cone(V).
Formally,

cone(V) =

{
x ∈ Rd : x =

∑
v∈V

αv v, αv ≥ 0

}
.

The following lemma gives a characterization of y-certificates based only on the geometry of the
point set P .

Lemma 7.6.15. A set C ⊆ [N]× [N] is a y-certificate iff P ⊆ y + cone
(
{xi − xj}(i,j)∈C

)
.

Proof. Suppose C is a y-certificate. Then, the definition implies that the system:

〈w, xi − xj〉 ≥ 0 ∀(i, j) ∈ C (7.28)
〈w, x− y〉 < 0

is infeasible for any x ∈ P . By Farkas’ lemma, this implies that x− y ∈ cone
(
{xi − xj}(i,j)∈C

)
.

Conversely, if x − y ∈ cone
(
{xi − xj}(i,j)∈C

)
and 〈w, xi − xj〉 ≥ 0 for all (i, j) ∈ C, then

〈w, x− y〉 ≥ 0 follows immediately.

259

Definition 7.6.16. For a sequence σ = (xi1 , xi2 , . . . , xik), the induced certificate is defined as
Cσ = {(i`, i`+1) : 1 ≤ ` ≤ k − 1}

Basic Subsequences

For a set Y ⊆ Rd with ConicDim(Y) = k and any sequence σ = (y1, . . . , yn) ∈ Yn, consider
a process that maintains a subsequence πt of σ for each 0 ≤ t ≤ n. We start with the empty
sequence π0 = 〈〉, and at step t+ 1, we update

πt+1 =

{
πt ◦ yt+1, if yt+1 − y1 /∈ env(πt)

πt, otherwise.

An analogy can be made to Kruskal’s algorithm, where we add the next element in the sequence
precisely when it is not conically spanned by the envelope of the current set. We observe:

1. the sequence πt is a prefix of πt+1, and moreover, πt+1 contains at most one more element.
2. |πn| ≤ k.

The first observation is immediate from the construction, and the second follows by contra-
diction: if |πn| > k, then some subsequence of size k + 1 contradicts the definition of conic
dimension. Let B(σ) := πn be the subsequence of σ obtained by this process; we call this the
“basis” of σ.

Lemma 7.6.17. Given a sequence σ = (y1, . . . , yn) ∈ Yn, we have:

cone({yj − y1}1≤j≤n) ⊆ env(B(σ)) ⊆ env(σ). (7.29)

Proof. For the rightmost inclusion, suppose B(σ) = (yi1 , . . . , yik). Then,

env(B(σ)) = cone({yi`+1
− yi`}1≤`≤k−1) ⊆ cone({yj − yi}1≤i≤j≤n) = env(σ). (7.30)

For the leftmost inclusion, let πt := B(σ1:t) denote the basis of the prefix at time t. Consider any
yt ∈ σ:

• If yt /∈ πn = B(σ), then it was excluded by the base construction algorithm, meaning:

yt − y1 ∈ env(πt−1) ⊆ env(πn) = env(B(σ)).

• If yt ∈ πn, then it is one of the elements of the basis, and we can write:

yt − y1 =
∑
`:i`≤t

(yi`+1
− yi`) ∈ cone({yi`+1

− yi`}1≤`≤k−1) = env(B(σ)).

Hence, in both cases, yt − y1 ∈ env(B(σ)), completing the proof.

We can now relate the size of valid x∗-certificates to the conic dimension of the underlying point
set.

260

Lemma 7.6.18. If some point set Y ⊆ Rd has conic dimension k, and y∗ = arg miny∈Y〈w∗, y〉,
then there exists a valid y∗-certificate C of length |C| ≤ k − 1.

Proof. Order the points in Y as the sequence σ = 〈y∗ = y1, y2, . . . , yn〉 such that 〈w∗, yi〉 ≤
〈w∗, yi+1〉 for all i, and let B(σ) = (yi1 , . . . , yik) be the basic subsequence corresponding to σ.
We claim that the induced certificate C := CB(σ) is a valid y∗-certificate. Notice that C is defined
such that

env(B(σ)) = cone({yi − yj}(i,j)∈C).

Using Lemma 7.6.17, we have Y ⊆ y1 + cone({yi − yj}(i,j)∈C), which means that C is a valid
certificate using Lemma 7.6.15. Moreover, by construction, (i, j) ∈ C means 〈w∗, yj − yi〉 ≥ 0,
which in turn means that the certificate is valid.

Proof of Lemma 7.4.4

Proof. For the analysis, consider a sequence (x1, . . . , xN) be such that 〈w∗, xi〉 ≤ 〈w∗, xi+1〉 for
all 1 ≤ i ≤ N − 1. Note that σ is distributed as a random subsequence of (x1, . . . , xN), where
each element is selected independently with probability 2k/N .

Consider a slightly modified, more lenient version of the algorithm that eliminates a point xt ∈
P \ {y} in Step 3 only if xt − y ∈ env(B(σt−1)) where σt is the prefix of σ restricted to
elements {xi}1≤i≤t; recall the definition of the basic subsequence B(·) from Section 7.6.3. This
modification ensures that elimination of xt depends only on the coin tosses at indices in [t] and
the sequence (x1, . . . , xt). This modified algorithm eliminates no more points than the original
algorithm because env(B(σt−1)) ⊆ env(σt−1) ⊆ env(σ)—each inequality just uses that the
cone of a smaller set of vertices is smaller. Hence, it suffices to prove that the expected number
of points eliminated by the modified algorithm is at least N/2.

We now use the principle of deferred randomness to analyze this version of the algorithm. Let Et
be the “evolving set” of elements in {xi}1≤i≤t that are not eliminated by the modified algorithm
after it has seen the elements x1, x2 . . . , xt in that order. Remember that σt is the subsequence
of (x1, . . . , xt) corresponding to elements that are sampled. We can simulate the process of
generating the sets Et and σt in the following way:

1. Start with E0, σ0 = 〈〉.

2. At step 1 ≤ t ≤ N , toss a biased coin with success probability 2k/N . Update

σt =

{
σt−1 ◦ xt, if coin flip succeeds at t
σt−1, otherwise.

and

Et =

{
Et−1 ◦ xt, if xt − y /∈ env(B(σt−1))

Et−1, otherwise.

where y is the first element sampled.

261

Observing that

|B(σt)| − |B(σt−1)| = 1[xt − y /∈ env(B(σt−1)) ∧ coin flip succeds at t]
= (|Et| − |Et−1|) · 1[coin flip succeds at t].

Taking expectations on both sides gives

E[|Et| − |Et−1|] =
N

2k
· E[|B(σt)| − |B(σt−1)|].

Summing this over 1 ≤ t ≤ N gives

E[|EN |] =
N

2k
· E[|B(σ)|] ≤ N

2k
· k =

N

2
.

262

Bibliography

[1] Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In
Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC
’11, page 333–342, New York, NY, USA, 2011. Association for Computing Machinery.
ISBN 9781450306911. doi: 10.1145/1993636.1993682. URL https://doi.org/
10.1145/1993636.1993682. 3.1

[2] Deeksha Adil, Rasmus Kyng, Richard Peng, and Sushant Sachdeva. Fast algorithms for
`p-regression. J. ACM, 71(5), October 2024. ISSN 0004-5411. doi: 10.1145/3686794.
URL https://doi.org/10.1145/3686794. 5.4.2

[3] Zeyuan Allen-Zhu, Yuanzhi Li, Aarti Singh, and Yining Wang. Near-optimal discrete
optimization for experimental design: A regret minimization approach. arXiv preprint
arXiv:1711.05174, 2017. 1.2, 2.1, 2.1, 2.1.4

[4] Jason Altschuler, Aditya Bhaskara, Gang Fu, Vahab Mirrokni, Afshin Rostamizadeh, and
Morteza Zadimoghaddam. Greedy column subset selection: New bounds and distributed
algorithms. In International Conference on Machine Learning, pages 2539–2548, 2016.
5.1, 5.1.1

[5] Nima Anari and Shayan Oveis Gharan. A generalization of permanent inequalities and ap-
plications in counting and optimization. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 384–396. ACM, 2017. 1.2, 1.2.1, 2.1, 2.1,
2.1.2, 2.1.4

[6] Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. Nash social welfare,
matrix permanent, and stable polynomials. In Proceedings of Conference on Innovations
in Theoretical Computer Science, 2016. 1.2, 2.1, 4, 2.1, 2.1.4

[7] Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. Nash Social Wel-
fare, Matrix Permanent, and Stable Polynomials. In Christos H. Papadimitriou, editor,
8th Innovations in Theoretical Computer Science Conference (ITCS 2017), volume 67 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 36:1–36:12, Dagstuhl,
Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN 978-3-95977-
029-3. doi: 10.4230/LIPIcs.ITCS.2017.36. URL http://drops.dagstuhl.de/
opus/volltexte/2017/8148. 1.3.1, 4.1.2, 4.1.2, 4.1.2, 4.1.2, 4.1.3, 4.2, 4.6.2,
4.6.3, 4.6.2

263

https://doi.org/10.1145/1993636.1993682
https://doi.org/10.1145/1993636.1993682
https://doi.org/10.1145/3686794
http://drops.dagstuhl.de/opus/volltexte/2017/8148
http://drops.dagstuhl.de/opus/volltexte/2017/8148

[8] Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials, en-
tropy, and a deterministic approximation algorithm for counting bases of matroids. In
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages
35–46. IEEE, 2018. 1.2, 1.2.1, 2.1, 2.1, 2.1.2

[9] Nima Anari, Tung Mai, Shayan Oveis Gharan, and Vijay V Vazirani. Nash social welfare
for indivisible items under separable, piecewise-linear concave utilities. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2274–
2290. SIAM, 2018. 1.3.1, 2.1.4

[10] Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave poly-
nomials ii: high-dimensional walks and an fpras for counting bases of a matroid. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages
1–12. ACM, 2019. 2.1.4

[11] Simon Apers, Yuval Efron, Pawel Gawrychowski, Troy Lee, Sagnik Mukhopadhyay,
and Danupon Nanongkai. Cut Query Algorithms with Star Contraction . In 2022
IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages
507–518, Los Alamitos, CA, USA, November 2022. IEEE Computer Society. doi:
10.1109/FOCS54457.2022.00055. URL https://doi.ieeecomputersociety.
org/10.1109/FOCS54457.2022.00055. 7.1, 7.1.2

[12] Sepehr Assadi and Aditi Dudeja. A simple semi-streaming algorithm for global minimum
cuts. In Hung Viet Le and Valerie King, editors, 4th Symposium on Simplicity in Algo-
rithms, SOSA 2021, Virtual Conference, January 11-12, 2021, pages 172–180. SIAM,
2021. doi: 10.1137/1.9781611976496.19. URL https://doi.org/10.1137/1.
9781611976496.19. 7.1.2

[13] Megasthenis Asteris, Dimitris Papailiopoulos, and Alexandros Dimakis. Nonnegative
sparse pca with provable guarantees. In International Conference on Machine Learning,
pages 1728–1736. PMLR, 2014. 5.1

[14] Arinta Auza and Troy Lee. On the query complexity of connectivity with global queries.
arXiv preprint arXiv:2109.02115, 2021. 7.1.2

[15] Maria-Florina Balcan, Ellen Vitercik, and Colin White. Learning combinatorial functions
from pairwise comparisons. In Conference on Learning Theory, pages 310–335. PMLR,
2016. 7.1.2

[16] Frank Ban, Vijay Bhattiprolu, Karl Bringmann, Pavel Kolev, Euiwoong Lee, and David P.
Woodruff. A PTAS for `p-low rank approximation. In Timothy M. Chan, editor, Proceed-
ings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019,
San Diego, California, USA, January 6-9, 2019, pages 747–766. SIAM, 2019. 5.1.1

[17] Frank Ban, David P. Woodruff, and Qiuyi (Richard) Zhang. Regularized weighted low
rank approximation. CoRR, abs/1911.06958, 2019. 5.1.1

[18] Sayan Bandyapadhyay, Fedor V. Fomin, Petr A. Golovach, William Lochet, Nidhi Puro-
hit, and Kirill Simonov. How to find a good explanation for clustering? In Thirty-Sixth

264

https://doi.ieeecomputersociety.org/10.1109/FOCS54457.2022.00055
https://doi.ieeecomputersociety.org/10.1109/FOCS54457.2022.00055
https://doi.org/10.1137/1.9781611976496.19
https://doi.org/10.1137/1.9781611976496.19

AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on In-
novative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February 22
- March 1, 2022, pages 3904–3912. AAAI Press, 2022. URL https://ojs.aaai.
org/index.php/AAAI/article/view/20306. 1.5.1, 6.1, 6.1.1, 6.1.2

[19] Julius B. Barbanel and Alan D. Taylor. The Geometry of Efficient Fair Division. Cam-
bridge University Press, 2005. doi: 10.1017/CBO9780511546679. 1.3, 4.1

[20] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Finding fair and effi-
cient allocations. In Proceedings of the 2018 ACM Conference on Economics and Com-
putation, pages 557–574. ACM, 2018. 1.3, 2.1.4, 4.1, 4.1.3

[21] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. Greedy algorithms
for maximizing nash social welfare. In Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems, pages 7–13. International Foundation for
Autonomous Agents and Multiagent Systems, 2018. 2.1.4

[22] William Barnett. The modern theory of consumer behavior: Ordinal or cardinal? The
Quarterly Journal of Austrian Economics, 6(1):41–65, 2003. 7.1

[23] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. On the combinatorial and al-
gebraic complexity of quantifier elimination. J. ACM, 43(6):1002–1045, 1996. 5.4.8

[24] Luca Becchetti, Marc Bury, Vincent Cohen-Addad, Fabrizio Grandoni, and Chris
Schwiegelshohn. Oblivious dimension reduction for k-means: beyond subspaces and
the Johnson-Lindenstrauss lemma. In Moses Charikar and Edith Cohen, editors, Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, Phoenix, AZ, USA, June 23-26, 2019, pages 1039–1050. ACM, 2019. doi: 10.1145/
3313276.3316318. URL https://doi.org/10.1145/3313276.3316318. 1

[25] Aditya Bhaskara, Sepideh Mahabadi, Madhusudhan Reddy Pittu, Ali Vakilian, and
David P. Woodruff. Guessing Efficiently for Constrained Subspace Approxima-
tion. In Keren Censor-Hillel, Fabrizio Grandoni, Joël Ouaknine, and Gabriele Pup-
pis, editors, 52nd International Colloquium on Automata, Languages, and Program-
ming (ICALP 2025), volume 334 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 29:1–29:20, Dagstuhl, Germany, 2025. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. ISBN 978-3-95977-372-0. doi: 10.4230/LIPIcs.ICALP.2025.
29. URL https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.ICALP.2025.29. 4, 1.4.1, 1.8

[26] Christos Boutsidis, Michael W Mahoney, and Petros Drineas. An improved approximation
algorithm for the column subset selection problem. In Proceedings of the twentieth annual
ACM-SIAM symposium on Discrete algorithms, pages 968–977, 2009. 5.1

[27] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Sparse features for pca-like
linear regression. Advances in Neural Information Processing Systems, 24, 2011. 5.1.1

265

https://ojs.aaai.org/index.php/AAAI/article/view/20306
https://ojs.aaai.org/index.php/AAAI/article/view/20306
https://doi.org/10.1145/3313276.3316318
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.29
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.29

[28] Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. Near-optimal column-
based matrix reconstruction. SIAM Journal on Computing, 43(2):687–717, 2014. 5.1

[29] Christos Boutsidis, Anastasios Zouzias, Michael W Mahoney, and Petros Drineas. Ran-
domized dimensionality reduction for k-means clustering. IEEE Transactions on Infor-
mation Theory, 61(2):1045–1062, 2014. 5.1, 5.1.1

[30] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I.
the method of paired comparisons. Biometrika, 39(3/4):324–345, 1952. 7.1

[31] Steven J. Brams and Alan D. Taylor. Fair Division: From Cake-Cutting to Dispute Res-
olution. Cambridge University Press, 1996. doi: 10.1017/CBO9780511598975. 1.3,
4.1

[32] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D.Editors Procaccia.
Handbook of Computational Social Choice. Cambridge University Press, 2016. doi:
10.1017/CBO9781107446984. 1.3, 4.1

[33] L. M. Bregman. Some properties of nonnegative matrices and their permanents. Sov.
Math., Dokl., 14:945–949, 1973. ISSN 0197-6788. 3.1

[34] Adam Brown, Aditi Laddha, Madhusudhan Reddy Pittu, and Mohit Singh. Approximation
Algorithms for the Weighted Nash Social Welfare via Convex and Non-Convex Programs,
pages 1307–1327. doi: 10.1137/1.9781611977912.52. URL https://epubs.siam.
org/doi/abs/10.1137/1.9781611977912.52. 2, 1.8

[35] Adam Brown, Aditi Laddha, Madhusudhan Pittu, and Mohit Singh. Efficient determi-
nant maximization for all matroids, 2022. URL https://arxiv.org/abs/2211.
10507. 1, 1.8

[36] Adam Brown, Aditi Laddha, Madhusudhan Pittu, Mohit Singh, and Prasad Tetali. De-
terminant maximization via matroid intersection algorithms. In 2022 IEEE 63rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 255–266, 2022. doi:
10.1109/FOCS54457.2022.00031. 1, 1.8

[37] Nader H Bshouty and Hanna Mazzawi. On parity check (0, 1)-matrix over Zp. In Pro-
ceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1383–1394. SIAM, 2011. 7.1.2

[38] Niv Buchbinder, Joseph (Seffi) Naor, and Roy Schwartz. Simplex partitioning via expo-
nential clocks and the multiway-cut problem. SIAM J. Comput., 47(4):1463–1482, 2018.
doi: 10.1137/15M1045521. URL https://doi.org/10.1137/15M1045521.
6.1.1

[39] Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa
Trinh. An improved approximation for k-median and positive correlation in budgeted
optimization. ACM Trans. Algorithms, 13(2):23:1–23:31, 2017. doi: 10.1145/2981561.
URL https://doi.org/10.1145/2981561. 6.1.2

266

https://epubs.siam.org/doi/abs/10.1137/1.9781611977912.52
https://epubs.siam.org/doi/abs/10.1137/1.9781611977912.52
https://arxiv.org/abs/2211.10507
https://arxiv.org/abs/2211.10507
https://doi.org/10.1137/15M1045521
https://doi.org/10.1145/2981561

[40] Jorge Cadima and Ian T Jolliffe. Loading and correlations in the interpretation of principle
compenents. Journal of applied Statistics, 22(2):203–214, 1995. 5.1.1

[41] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg Shah,
and Junxing Wang. The unreasonable fairness of maximum nash welfare. In Proceedings
of the 2016 ACM Conference on Economics and Computation, EC ’16, pages 305–322,
New York, NY, USA, 2016. ACM. ISBN 978-1-4503-3936-0. doi: 10.1145/2940716.
2940726. URL http://doi.acm.org/10.1145/2940716.2940726. 2.1.4

[42] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg Shah,
and Junxing Wang. The unreasonable fairness of maximum nash welfare. ACM Transac-
tions on Economics and Computation (TEAC), 7(3):1–32, 2019. 1.3, 4.1

[43] Suchan Chae and Hervé Moulin. Bargaining among groups: An axiomatic viewpoint.
International Journal of Game Theory, 39, 02 2004. doi: 10.1007/s00182-009-0157-6.
1.3, 4.1, 4.1

[44] Mithun Chakraborty, Ayumi Igarashi, Warut Suksompong, and Yair Zick. Weighted
envy-freeness in indivisible item allocation. ACM Trans. Econ. Comput., 9(3), August
2021. ISSN 2167-8375. doi: 10.1145/3457166. URL https://doi.org/10.1145/
3457166. 4.1

[45] Moses Charikar and Lunjia Hu. Near-optimal explainable k-means for all dimensions.
In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexan-
dria, VA, USA, January 9 - 12, 2022, pages 2580–2606. SIAM, 2022. doi: 10.1137/1.
9781611977073.101. URL https://doi.org/10.1137/1.9781611977073.
101. 1.5.1, 1.5.1, 6.1, 6.1, 6.1.2

[46] Xi Chen, Paul N Bennett, Kevyn Collins-Thompson, and Eric Horvitz. Pairwise ranking
aggregation in a crowdsourced setting. In Proceedings of the sixth ACM international
conference on Web search and data mining, pages 193–202, 2013. 7.1

[47] Ashish Chiplunkar, Sagar Kale, and Sivaramakrishnan Natarajan Ramamoorthy. How
to solve fair k-center in massive data models. In International Conference on Machine
Learning, pages 1877–1886, 2020. 5.1.1

[48] Sung-Soon Choi. Polynomial time optimal query algorithms for finding graphs with ar-
bitrary real weights. In Conference on Learning Theory, pages 797–818. PMLR, 2013.
7.1.2

[49] Ali Civril and Malik Magdon-Ismail. Column subset selection via sparse approximation
of SVD. Theoretical Computer Science, 421:1–14, 2012. 5.1

[50] Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the stream-
ing model. In Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, STOC ’09, page 205–214, New York, NY, USA, 2009. Association for
Computing Machinery. ISBN 9781605585062. doi: 10.1145/1536414.1536445. URL
https://doi.org/10.1145/1536414.1536445. 5.3.8

267

http://doi.acm.org/10.1145/2940716.2940726
https://doi.org/10.1145/3457166
https://doi.org/10.1145/3457166
https://doi.org/10.1137/1.9781611977073.101
https://doi.org/10.1137/1.9781611977073.101
https://doi.org/10.1145/1536414.1536445

[51] Kenneth L. Clarkson and David P. Woodruff. Input sparsity and hardness for robust sub-
space approximation. In 2015 IEEE 56th Annual Symposium on Foundations of Computer
Science, pages 310–329, 2015. doi: 10.1109/FOCS.2015.27. 5.1, 5.2

[52] Kenneth L Clarkson and David P Woodruff. Low-rank approximation and regression in
input sparsity time. Journal of the ACM (JACM), 63(6):1–45, 2017. 5.4.4, 5.4.4

[53] Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu.
Dimensionality reduction for k-means clustering and low rank approximation. In Proceed-
ings of the forty-seventh annual ACM symposium on Theory of computing, pages 163–172,
2015. 5.1, 5.1, 5.1.1, 5.1.1, 1, 5.4.4

[54] Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields ap-
proximation schemes for k-means and k-median in euclidean and minor-free metrics.
In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey,
USA, pages 353–364. IEEE Computer Society, 2016. doi: 10.1109/FOCS.2016.46. URL
https://doi.org/10.1109/FOCS.2016.46. 6.1.2

[55] Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset frame-
work for clustering. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2021, page 169–182, New York, NY, USA, 2021. Associa-
tion for Computing Machinery. ISBN 9781450380539. doi: 10.1145/3406325.3451022.
URL https://doi.org/10.1145/3406325.3451022. 5.1.1

[56] Vincent Cohen-Addad, Hossein Esfandiari, Vahab S. Mirrokni, and Shyam Narayanan.
Improved approximations for euclidean k-means and k-median, via nested quasi-
independent sets. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th
Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24,
2022, pages 1621–1628. ACM, 2022. doi: 10.1145/3519935.3520011. URL https:
//doi.org/10.1145/3519935.3520011. 6.1.2

[57] Vincent Cohen-Addad, Karthik C. S., and Euiwoong Lee. Johnson coverage hypothesis:
Inapproximability of k-means and k-median in `p-metrics. In Joseph (Seffi) Naor and
Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022,
pages 1493–1530. SIAM, 2022. doi: 10.1137/1.9781611977073.63. URL https://
doi.org/10.1137/1.9781611977073.63. 6.1.2

[58] Vincent Cohen-Addad, Fabrizio Grandoni, Euiwoong Lee, and Chris Schwiegelshohn.
Breaching the 2 LMP approximation barrier for facility location with applications to k-
median. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January
22-25, 2023, pages 940–986. SIAM, 2023. doi: 10.1137/1.9781611977554.ch37. URL
https://doi.org/10.1137/1.9781611977554.ch37. 6.1.2

[59] Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn, and
Omar Ali Sheikh-Omar. Improved coresets for euclidean k-means. In Proceedings of the

268

https://doi.org/10.1109/FOCS.2016.46
https://doi.org/10.1145/3406325.3451022
https://doi.org/10.1145/3519935.3520011
https://doi.org/10.1145/3519935.3520011
https://doi.org/10.1137/1.9781611977073.63
https://doi.org/10.1137/1.9781611977073.63
https://doi.org/10.1137/1.9781611977554.ch37

36th International Conference on Neural Information Processing Systems. Curran Asso-
ciates Inc., 2024. ISBN 9781713871088. 5.1.1, 1b

[60] Richard Cole and Vasilis Gkatzelis. Approximating the nash social welfare with indi-
visible items. In Proceedings of the forty-seventh annual ACM symposium on Theory of
computing, pages 371–380, 2015. 1.3.1, 1.3.1, 4, 2.1.4, 4.1.2, 4.1.2, 4.1.2, 4.1.2, 4.1.3,
4.3

[61] Richard Cole, Nikhil Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V Vazirani,
and Sadra Yazdanbod. Convex program duality, fisher markets, and nash social welfare.
In Proceedings of the 2017 ACM Conference on Economics and Computation, pages 459–
460, 2017. 1.3.1, 1.3.1, 2.1.4, 4.1.2, 4.1.2, 4.1.2, 4.1.2, 4.1.3, 4.3

[62] Sanjoy Dasgupta, Nave Frost, Michal Moshkovitz, and Cyrus Rashtchian. Explainable
k-means and k-medians clustering. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Pro-
ceedings of Machine Learning Research, pages 7055–7065. PMLR, 2020. URL http:
//proceedings.mlr.press/v119/moshkovitz20a.html. (document), 1.5,
1.1, 1.5.1, 1.5.1, 6.1, 6.1, 6.1, 6.1, 6.1.1

[63] Sanjoy Dasgupta, Nave Frost, and Michal Moshkovitz. Framework for evaluating faith-
fulness of local explanations. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato, editors, International Conference on Machine
Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages 4794–4815. PMLR, 2022. URL
https://proceedings.mlr.press/v162/dasgupta22a.html. 6.1

[64] Damek Davis and Dmitriy Drusvyatskiy. Stochastic model-based minimization of weakly
convex functions. SIAM Journal on Optimization, 29(1):207–239, 2019. doi: 10.1137/
18M1178244. URL https://doi.org/10.1137/18M1178244. 4.6.3

[65] Alberto Del Pia. Sparse pca on fixed-rank matrices. Mathematical Programming, 198(1):
139–157, 2023. doi: 10.1007/s10107-022-01769-9. URL https://doi.org/10.
1007/s10107-022-01769-9. 5.1, 5.1.1, 5.4.5, 2, 5.4.5, 5.4.18

[66] Amit Deshpande and Luis Rademacher. Efficient volume sampling for row/column subset
selection. In 2010 ieee 51st annual symposium on foundations of computer science, pages
329–338, 2010. 5.1

[67] Amit Deshpande, Madhur Tulsiani, and Nisheeth K. Vishnoi. Algorithms and hardness
for subspace approximation. In Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, page 482–496, USA, 2011. Society for Industrial and
Applied Mathematics. 5.1

[68] Michel Marie Deza and Monique Laurent. Geometry of cuts and metrics, volume 15 of
Algorithms and Combinatorics. Springer-Verlag, Berlin, 1997. ISBN 3-540-61611-X.
6.2.2, 6.8.1

269

http://proceedings.mlr.press/v119/moshkovitz20a.html
http://proceedings.mlr.press/v119/moshkovitz20a.html
https://proceedings.mlr.press/v162/dasgupta22a.html
https://doi.org/10.1137/18M1178244
https://doi.org/10.1007/s10107-022-01769-9
https://doi.org/10.1007/s10107-022-01769-9

[69] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In David B.
Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New York, NY, USA,
May 31 - June 03, 2014, pages 624–633. ACM, 2014. 6.3

[70] Petros Drineas, Alan Frieze, Ravi Kannan, Santosh Vempala, and Vishwanathan Vinay.
Clustering large graphs via the singular value decomposition. Machine learning, 56:9–33,
2004. 5.1

[71] Javad B Ebrahimi, Damian Straszak, and Nisheeth K Vishnoi. Subdeterminant maxi-
mization via nonconvex relaxations and anti-concentration. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 1020–1031. Ieee, 2017.
2.1.4

[72] Hossein Esfandiari, MohammadTaghi Hajiaghayi, and David P. Woodruff. Applications
of uniform sampling: Densest subgraph and beyond, 2015. URL https://arxiv.
org/abs/1506.04505. 7.1.1, 7.2.4

[73] Hossein Esfandiari, Vahab S. Mirrokni, and Shyam Narayanan. Almost tight approxima-
tion algorithms for explainable clustering. In Joseph (Seffi) Naor and Niv Buchbinder,
editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA
2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, pages 2641–2663.
SIAM, 2022. doi: 10.1137/1.9781611977073.103. URL https://doi.org/10.
1137/1.9781611977073.103. 1.5.1, 1.5.1, 6.1, 6.1, 6.1, 6.1.1, 6.1.2

[74] Uriel Feige. A threshold of lnn for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998. 6.1.1, 6.3, 2

[75] Uriel Feige, Prabhakar Raghavan, David Peleg, and Eli Upfal. Computing with noisy
information. SIAM Journal on Computing, 23(5):1001–1018, 1994. 7.5

[76] Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A ptas for k-means clus-
tering based on weak coresets. In Proceedings of the twenty-third annual symposium on
Computational geometry, pages 11–18, 2007. 5.1.1, 5.1, 5.1.1

[77] Yuda Feng and Shi Li. A note on approximating weighted nash social welfare with additive
valuations, 2024. URL https://arxiv.org/abs/2404.15607. 4.1.3, 4.5

[78] Yuda Feng, Yang Hu, Shi Li, and Ruilong Zhang. Constant approximation for weighted
nash social welfare with submodular valuations, 2024. URL https://arxiv.org/
abs/2411.02942. 4.1.3, 4.5

[79] Dean Foster, Howard Karloff, and Justin Thaler. Variable selection is hard. In Proceed-
ings of The 28th Conference on Learning Theory, volume 40 of Proceedings of Machine
Learning Research, pages 696–709. PMLR, 2015. 5.5, 5.5.3

[80] Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search
yields a PTAS for k-means in doubling metrics. In Irit Dinur, editor, IEEE 57th An-
nual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016,

270

https://arxiv.org/abs/1506.04505
https://arxiv.org/abs/1506.04505
https://doi.org/10.1137/1.9781611977073.103
https://doi.org/10.1137/1.9781611977073.103
https://arxiv.org/abs/2404.15607
https://arxiv.org/abs/2411.02942
https://arxiv.org/abs/2411.02942

Hyatt Regency, New Brunswick, New Jersey, USA, pages 365–374. IEEE Computer Soci-
ety, 2016. doi: 10.1109/FOCS.2016.47. URL https://doi.org/10.1109/FOCS.
2016.47. 6.1.2

[81] Nave Frost, Michal Moshkovitz, and Cyrus Rashtchian. Exkmc: Expanding explainable
k-means clustering. CoRR, abs/2006.02399, 2020. URL https://arxiv.org/abs/
2006.02399. 6.1.2

[82] Hu Fu, Robert Kleinberg, and Ron Lavi. Conditional equilibrium outcomes via ascending
price processes with applications to combinatorial auctions with item bidding. In Pro-
ceedings of the 13th ACM Conference on Electronic Commerce, EC ’12, page 586, New
York, NY, USA, 2012. Association for Computing Machinery. ISBN 9781450314152.
doi: 10.1145/2229012.2229055. URL https://doi.org/10.1145/2229012.
2229055. 1.3, 4.1

[83] Buddhima Gamlath, Xinrui Jia, Adam Polak, and Ola Svensson. Nearly-
tight and oblivious algorithms for explainable clustering. pages 28929–28939,
2021. URL https://proceedings.neurips.cc/paper/2021/hash/
f24ad6f72d6cc4cb51464f2b29ab69d3-Abstract.html. 1.5.1, 1.5.1, 6.1,
6.1, 6.1, 6.4.2

[84] Jugal Garg, Martin Hoefer, and Kurt Mehlhorn. Approximating the nash social welfare
with budget-additive valuations. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2326–2340. SIAM, 2018. 2.1.4

[85] Jugal Garg, Pooja Kulkarni, and Rucha Kulkarni. Approximating nash social welfare
under submodular valuations through (un) matchings. In Proceedings of the fourteenth
annual ACM-SIAM symposium on discrete algorithms, pages 2673–2687. SIAM, 2020.
1.3, 4.1

[86] Jugal Garg, Edin Husić, and László A Végh. Approximating nash social welfare under
rado valuations. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 1412–1425, 2021. 1.3, 2.1.4, 4.1, 4.1.3

[87] Jugal Garg, Edin Husić, Wenzheng Li, László A Végh, and Jan Vondrák. Approximating
nash social welfare by matching and local search. In Proceedings of the 55th Annual ACM
Symposium on Theory of Computing, pages 1298–1310, 2023. 1.3, 1.3.1, 4.1, 4.1.3

[88] Dongdong Ge, Simai He, Yinyu Ye, and Jiawei Zhang. Geometric rounding: a dependent
randomized rounding scheme. J. Comb. Optim., 22(4):699–725, 2011. doi: 10.1007/
s10878-010-9320-z. URL https://doi.org/10.1007/s10878-010-9320-z.
6.1.1

[89] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University
Press, Baltimore, 4th edition, 2013. ISBN 978-1-4214-0794-4. 5.2.1, 5.2.2

[90] Andrei Graur, Tristan Pollner, Vidhya Ramaswamy, and S. Matthew Weinberg. New
query lower bounds for submodular function minimization. In Thomas Vidick, editor,

271

https://doi.org/10.1109/FOCS.2016.47
https://doi.org/10.1109/FOCS.2016.47
https://arxiv.org/abs/2006.02399
https://arxiv.org/abs/2006.02399
https://doi.org/10.1145/2229012.2229055
https://doi.org/10.1145/2229012.2229055
https://proceedings.neurips.cc/paper/2021/hash/f24ad6f72d6cc4cb51464f2b29ab69d3-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f24ad6f72d6cc4cb51464f2b29ab69d3-Abstract.html
https://doi.org/10.1007/s10878-010-9320-z

11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January 12-
14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 64:1–64:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi: 10.4230/LIPICS.ITCS.2020.64.
URL https://doi.org/10.4230/LIPIcs.ITCS.2020.64. 7.1.2

[91] Vladimir Grebinski and Gregory Kucherov. Optimal reconstruction of graphs under the
additive model. Algorithmica, 28(1):104–124, 2000. doi: 10.1007/S004530010033. URL
https://doi.org/10.1007/s004530010033. 7.1.2

[92] Anupam Gupta, Madhusudhan Reddy Pittu, Ola Svensson, and Rachel Yuan. The price
of explainability for clustering. In 2023 IEEE 64th Annual Symposium on Foundations
of Computer Science (FOCS), pages 1131–1148, 2023. doi: 10.1109/FOCS57990.2023.
00067. 3, 1.8

[93] Aparna Gupte and Vinod Vaikuntanathan. The fine-grained hardness of sparse linear re-
gression. arXiv preprint arXiv:2106.03131, 2021. 5.5

[94] Venkatesan Guruswami and Ali Kemal Sinop. Optimal column-based low-rank matrix
reconstruction. In Proceedings of the twenty-third annual ACM-SIAM symposium on Dis-
crete Algorithms, pages 1207–1214, 2012. 5.1

[95] Venkatesan Guruswami, Prasad Raghavendra, Rishi Saket, and Yi Wu. Bypassing ugc
from some optimal geometric inapproximability results. ACM Trans. Algorithms, 12(1),
feb 2016. ISSN 1549-6325. doi: 10.1145/2737729. URL https://doi.org/10.
1145/2737729. 5.1, 5.2

[96] Leonid Gurvits and Alex Samorodnitsky. Bounds on the permanent and some applications.
In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, pages 90–99,
2014. doi: 10.1109/FOCS.2014.18. 3.1

[97] Siavash Haghiri, Debarghya Ghoshdastidar, and Ulrike von Luxburg. Comparison-based
nearest neighbor search. In Artificial Intelligence and Statistics, pages 851–859. PMLR,
2017. 7.1.2

[98] Siavash Haghiri, Damien Garreau, and Ulrike Luxburg. Comparison-based random
forests. In International Conference on Machine Learning, pages 1871–1880. PMLR,
2018. 7.1.2

[99] Sariel Har-Peled, Piotr Indyk, and Sepideh Mahabadi. Approximate sparse linear re-
gression. In 45th International Colloquium on Automata, Languages, and Programming
(ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. 5.5

[100] John C. Harsanyi and Reinhard Selten. A generalized nash solution for two-person bar-
gaining games with incomplete information. Management Science, 18(5):P80–P106,
1972. ISSN 00251909, 15265501. URL http://www.jstor.org/stable/
2661446. 1.3, 4.1

[101] Nicholas James Alexander Harvey. Matchings, matroids and submodular functions. PhD
thesis, Massachusetts Institute of Technology, 2008. 7.1.2

272

https://doi.org/10.4230/LIPIcs.ITCS.2020.64
https://doi.org/10.1007/s004530010033
https://doi.org/10.1145/2737729
https://doi.org/10.1145/2737729
http://www.jstor.org/stable/2661446
http://www.jstor.org/stable/2661446

[102] Trevor Hastie, Robert Tibshirani, and Martin Wainwright. Statistical learning with spar-
sity. Monographs on statistics and applied probability, 143(143):8, 2015. 5.1.1

[103] Zhongtian He, Shang-En Huang, and Thatchaphol Saranurak. Cactus representation of
minimum cuts: Derandomize and speed up, 2024. URL https://arxiv.org/abs/
2401.10856. 7.6.1

[104] Sandra Heldsinger and Stephen Humphry. Using the method of pairwise comparison to
obtain reliable teacher assessments. The Australian Educational Researcher, 37(2):1–19,
2010. 7.1

[105] Sedjro Salomon Hotegni, Sepideh Mahabadi, and Ali Vakilian. Approximation algorithms
for fair range clustering. In International Conference on Machine Learning, pages 13270–
13284. PMLR, 2023. 5.1.1

[106] Harold Houba, Gerard Laan, and Yuyu Zeng. Asymmetric nash solutions in the river
sharing problem. Strateg. Behav. Environ., 4, 03 2013. doi: 10.2139/ssrn.2243424. 1.3,
4.1

[107] Lingxiao Huang, Jian Li, and Xuan Wu. On optimal coreset construction for euclidean
(k, z)-clustering. In Proceedings of the 56th Annual ACM Symposium on Theory of Com-
puting, page 1594–1604, 2024. 5.1.1, 1b

[108] Yan Huo, Heng Liang, Si-Qi Liu, and Fengshan Bai. Computing monomer-dimer
systems through matrix permanent. Phys. Rev. E, 77:016706, Jan 2008. doi:
10.1103/PhysRevE.77.016706. URL https://link.aps.org/doi/10.1103/
PhysRevE.77.016706. 3.1

[109] Suk-Geun Hwang, Arnold R. Kräuter, and T.S. Michael. An upper bound for
the permanent of a nonnegative matrix. Linear Algebra and its Applications, 281
(1):259–263, 1998. ISSN 0024-3795. doi: https://doi.org/10.1016/S0024-3795(98)
10040-X. URL https://www.sciencedirect.com/science/article/
pii/S002437959810040X. 3.1

[110] Gabriela Jeronimo, Daniel Perrucci, and Elias Tsigaridas. On the minimum of a poly-
nomial function on a basic closed semialgebraic set and applications. SIAM Journal on
Optimization, 23(1):241–255, 2013. 5.4.9

[111] Matthew Jones, Huy Nguyen, and Thy Nguyen. Fair k-centers via maximum matching.
In International Conference on Machine Learning, pages 4940–4949, 2020. 5.1.1

[112] Ehud Kalai. Nonsymmetric nash solutions and replications of 2-person bargaining. Inter-
national Journal of Game Theory, 6:129–133, 1977. 1.3, 4.1

[113] Daniel M. Kane, Shachar Lovett, Shay Moran, and Jiapeng Zhang. Active Classifi-
cation with Comparison Queries . In 2017 IEEE 58th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 355–366, Los Alamitos, CA, USA, Oc-
tober 2017. IEEE Computer Society. doi: 10.1109/FOCS.2017.40. URL https:

273

https://arxiv.org/abs/2401.10856
https://arxiv.org/abs/2401.10856
https://link.aps.org/doi/10.1103/PhysRevE.77.016706
https://link.aps.org/doi/10.1103/PhysRevE.77.016706
https://www.sciencedirect.com/science/article/pii/S002437959810040X
https://www.sciencedirect.com/science/article/pii/S002437959810040X
https://doi.ieeecomputersociety.org/10.1109/FOCS.2017.40
https://doi.ieeecomputersociety.org/10.1109/FOCS.2017.40
https://doi.ieeecomputersociety.org/10.1109/FOCS.2017.40

//doi.ieeecomputersociety.org/10.1109/FOCS.2017.40. 7.1.1, 7.1.1,
7.1.1, 7.1.2, 7.4, 7.4.2, 7.4.3, 7.6.3, 7.6.11, 7.6.3

[114] Daniel M Kane, Shachar Lovett, and Shay Moran. Near-optimal linear decision trees for
k-sum and related problems. Journal of the ACM (JACM), 66(3):1–18, 2019. 7.1.1, 7.1.2,
7.4

[115] Mamoru Kaneko and Kenjiro Nakamura. The nash social welfare function. Econometrica:
Journal of the Econometric Society, pages 423–435, 1979. 1.3, 4.1

[116] Leonid G Khachiyan. Rounding of polytopes in the real number model of computation.
Mathematics of Operations Research, 21(2):307–320, 1996. 1.2, 2.1, 1, 2.1, 2.1.4

[117] Matthäus Kleindessner, Pranjal Awasthi, and Jamie Morgenstern. Fair k-center clustering
for data summarization. In International Conference on Machine Learning, pages 3448–
3457, 2019. 5.1.1

[118] Stein Krogdahl. The dependence graph for bases in matroids. Discrete Math-
ematics, 19(1):47–59, 1977. ISSN 0012-365X. doi: https://doi.org/10.1016/
0012-365X(77)90118-2. URL https://www.sciencedirect.com/science/
article/pii/0012365X77901182. 7.3.1, 7.3.2

[119] Alex Kulesza and Ben Taskar. Determinantal point processes for machine learning. Foun-
dations and Trends® in Machine Learning, 5(2–3):123–286, 2012. 1.2, 2.1, 2

[120] Eduardo Sany Laber. The computational complexity of some explainable clustering prob-
lems, 2022. 1.5.1, 6.1, 6.1.2

[121] Eduardo Sany Laber and Lucas Murtinho. On the price of explainability for some cluster-
ing problems. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th Inter-
national Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pages 5915–5925. PMLR,
2021. URL http://proceedings.mlr.press/v139/laber21a.html. 1.5.1,
6.1, 6.1.2

[122] Guanghui Lan. First-order and stochastic optimization methods for machine learning,
volume 1. Springer, 2020. 4.6.3

[123] Annick Laruelle and Federico Valenciano. Bargaining in committees as an exten-
sion of nash’s bargaining theory. Journal of Economic Theory, 132(1):291–305, 2007.
ISSN 0022-0531. doi: https://doi.org/10.1016/j.jet.2005.05.004. URL https://www.
sciencedirect.com/science/article/pii/S0022053105001249. 1.3,
4.1

[124] Lap Chi Lau and Hong Zhou. A local search framework for experimental design. In
Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1039–1058. SIAM, 2021. 2.1, 2.1.4

[125] Euiwoong Lee. Apx-hardness of maximizing nash social welfare with indivisible items.
Information Processing Letters, 122:17–20, 2017. 4.1.3

274

https://doi.ieeecomputersociety.org/10.1109/FOCS.2017.40
https://doi.ieeecomputersociety.org/10.1109/FOCS.2017.40
https://doi.ieeecomputersociety.org/10.1109/FOCS.2017.40
https://doi.ieeecomputersociety.org/10.1109/FOCS.2017.40
https://www.sciencedirect.com/science/article/pii/0012365X77901182
https://www.sciencedirect.com/science/article/pii/0012365X77901182
http://proceedings.mlr.press/v139/laber21a.html
https://www.sciencedirect.com/science/article/pii/S0022053105001249
https://www.sciencedirect.com/science/article/pii/S0022053105001249

[126] Troy Lee, Tongyang Li, Miklos Santha, and Shengyu Zhang. On the cut dimension of a
graph. In Valentine Kabanets, editor, 36th Computational Complexity Conference, CCC
2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), volume 200
of LIPIcs, pages 15:1–15:35. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi: 10.4230/LIPICS.CCC.2021.15. URL https://doi.org/10.4230/LIPIcs.
CCC.2021.15. 7.1.2

[127] Wenzheng Li and Jan Vondrák. A constant-factor approximation algorithm for nash social
welfare with submodular valuations. In 2021 IEEE 62nd Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 25–36. IEEE, 2022. 2.1.4, 4.1.3

[128] Heng Liang and Fengshan Bai. An upper bound for the permanent of (0,1)-matrices. Lin-
ear Algebra and its Applications, 377:291–295, 2004. ISSN 0024-3795. doi: https:
//doi.org/10.1016/j.laa.2003.09.003. URL https://www.sciencedirect.com/
science/article/pii/S0024379503007481. 3.1

[129] Hang Liao and Deeparnab Chakrabarty. Learning spanning forests optimally in weighted
undirected graphs with cut queries. In Claire Vernade and Daniel Hsu, editors, Proceed-
ings of The 35th International Conference on Algorithmic Learning Theory, volume 237
of Proceedings of Machine Learning Research, pages 785–807. PMLR, 25–28 Feb 2024.
URL https://proceedings.mlr.press/v237/liao24b.html. 7.1.2

[130] Vivek Madan, Mohit Singh, Uthaipon Tantipongpipat, and Weijun Xie. Combinatorial
algorithms for optimal design. In Conference on Learning Theory, pages 2210–2258,
2019. 2.1, 2.1.4

[131] Vivek Madan, Aleksandar Nikolov, Mohit Singh, and Uthaipon Tantipongpipat. Maxi-
mizing determinants under matroid constraints. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 565–576. IEEE, 2020. 1.2.1, 1.2.1, 2.1,
2.1.2, 2.1.2, 2.1.4, 2.4.3, 2.4.6, 2.4.3

[132] Arvind V. Mahankali and David P. Woodruff. Optimal `1 column subset selection and a
fast PTAS for low rank approximation. CoRR, abs/2007.10307, 2020. 5.1.1

[133] Konstantin Makarychev and Liren Shan. Near-optimal algorithms for explainable
k-medians and k-means. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research,
pages 7358–7367. PMLR, 2021. URL http://proceedings.mlr.press/v139/
makarychev21a.html. 1.5.1, 6.1, 6.1

[134] Konstantin Makarychev and Liren Shan. Explainable k-means: don’t be greedy, plant
bigger trees! In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual
ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages
1629–1642. ACM, 2022. doi: 10.1145/3519935.3520056. URL https://doi.org/
10.1145/3519935.3520056. 1.5.1, 6.1, 6.1.2

[135] Konstantin Makarychev, Yury Makarychev, and Ilya P. Razenshteyn. Performance

275

https://doi.org/10.4230/LIPIcs.CCC.2021.15
https://doi.org/10.4230/LIPIcs.CCC.2021.15
https://www.sciencedirect.com/science/article/pii/S0024379503007481
https://www.sciencedirect.com/science/article/pii/S0024379503007481
https://proceedings.mlr.press/v237/liao24b.html
http://proceedings.mlr.press/v139/makarychev21a.html
http://proceedings.mlr.press/v139/makarychev21a.html
https://doi.org/10.1145/3519935.3520056
https://doi.org/10.1145/3519935.3520056

of Johnson-Lindenstrauss transform for k-means and k-medians clustering. In Moses
Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages
1027–1038. ACM, 2019. doi: 10.1145/3313276.3316350. URL https://doi.org/
10.1145/3313276.3316350. 1

[136] Adam W Marcus, Daniel A Spielman, and Nikhil Srivastava. Interlacing families ii:
Mixed characteristic polynomials and the kadison—singer problem. Annals of Mathe-
matics, pages 327–350, 2015. 2.1.4

[137] Marvin Marcus and Henryk Minc. Permanents. The American Mathematical Monthly,
72(6):577–591, 1965. doi: 10.1080/00029890.1965.11970575. URL https://doi.
org/10.1080/00029890.1965.11970575. 3.1

[138] Antonis Matakos, Bruno Ordozgoiti, and Suhas Thejaswi. Fair column subset selection.
arXiv preprint arXiv:2306.04489, 2023. 1

[139] Henryk Minc. Upper bounds for permanents of ({0, 1})-matrices. Bulletin of
the American Mathematical Society, 69:789–791, 1963. URL https://api.
semanticscholar.org/CorpusID:117771452. 3.1

[140] Henryk Minc. Permanents. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 1984. 3.1

[141] Ankur Moitra. An almost optimal algorithm for computing nonnegative rank. SIAM J.
Comput., 45(1):156–173, 2016. 5.1.1

[142] Dana Moshkovitz. The projection games conjecture and the np-hardness of ln n-
approximating set-cover. Theory Comput., 11:221–235, 2015. 6.3

[143] Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-
query, and streaming algorithms. In Proceedings of the 52nd Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2020, page 496–509, New York, NY, USA, 2020.
Association for Computing Machinery. ISBN 9781450369794. doi: 10.1145/3357713.
3384334. URL https://doi.org/10.1145/3357713.3384334. 7.1, 7.1.2

[144] John F Nash Jr. The bargaining problem. Econometrica: Journal of the econometric
society, pages 155–162, 1950. 1.3, 4.1

[145] Balas Kausik Natarajan. Sparse approximate solutions to linear systems. SIAM journal
on computing, 24(2):227–234, 1995. 5.5

[146] Nhan-Tam Nguyen, Trung Thanh Nguyen, Magnus Roos, and Jörg Rothe. Computational
complexity and approximability of social welfare optimization in multiagent resource al-
location. Autonomous agents and multi-agent systems, 28(2):256–289, 2014. 4.1.3

[147] Aleksandar Nikolov. Randomized rounding for the largest simplex problem. In Proceed-
ings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages
861–870. ACM, 2015. 1, 2.1, 2.1.4

276

https://doi.org/10.1145/3313276.3316350
https://doi.org/10.1145/3313276.3316350
https://doi.org/10.1080/00029890.1965.11970575
https://doi.org/10.1080/00029890.1965.11970575
https://api.semanticscholar.org/CorpusID:117771452
https://api.semanticscholar.org/CorpusID:117771452
https://doi.org/10.1145/3357713.3384334

[148] Aleksandar Nikolov and Mohit Singh. Maximizing determinants under partition con-
straints. In ACM symposium on Theory of computing, pages 192–201, 2016. 2.1, 2.1.4

[149] Aleksandar Nikolov, Mohit Singh, and Uthaipon Tao Tantipongpipat. Proportional vol-
ume sampling and approximation algorithms for A-optimal design. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1369–1386.
SIAM, 2019. 1.2, 2.1, 2.1.4

[150] James B. Orlin. Improved algorithms for computing fisher’s market clearing prices: com-
puting fisher’s market clearing prices. In Proceedings of the Forty-Second ACM Sympo-
sium on Theory of Computing, STOC ’10, page 291–300, New York, NY, USA, 2010.
Association for Computing Machinery. ISBN 9781450300506. doi: 10.1145/1806689.
1806731. URL https://doi.org/10.1145/1806689.1806731. 4.1.2

[151] James Oxley. Matroid Theory. Oxford University Press, 02 2011. ISBN 9780198566946.
doi: 10.1093/acprof:oso/9780198566946.001.0001. URL https://doi.org/10.
1093/acprof:oso/9780198566946.001.0001. 7.3.1, 7.3.1

[152] Dimitris Papailiopoulos, Alexandros Dimakis, and Stavros Korokythakis. Sparse pca
through low-rank approximations. In International Conference on Machine Learning,
pages 747–755. PMLR, 2013. 5.1

[153] Vilfredo Pareto. Manuale di economia politica con una introduzione alla scienza sociale,
volume 13. Società editrice libraria, 1919. 7.1

[154] Orestis Plevrakis, Seyoon Ragavan, and S. Matthew Weinberg. On the Cut-Query Com-
plexity of Approximating Max-Cut. In Karl Bringmann, Martin Grohe, Gabriele Pup-
pis, and Ola Svensson, editors, 51st International Colloquium on Automata, Languages,
and Programming (ICALP 2024), volume 297 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 115:1–115:20, Dagstuhl, Germany, 2024. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. ISBN 978-3-95977-322-5. doi: 10.4230/LIPIcs.ICALP.
2024.115. URL https://drops.dagstuhl.de/entities/document/10.
4230/LIPIcs.ICALP.2024.115. 7.1.1, 7.4

[155] Friedrich Pukelsheim. Optimal design of experiments. SIAM, 2006. 1.2, 2.1, 3

[156] Ran Raz and Boris Spieker. On the “log rank”-conjecture in communication complexity.
Combinatorica, 15(4):567–588, 1995. 7.1.2

[157] Ilya Razenshteyn, Zhao Song, and David P. Woodruff. Weighted low rank approximations
with provable guarantees. In Proceedings of the Forty-Eighth Annual ACM Symposium on
Theory of Computing, page 250–263, 2016. 5.1.1

[158] James Renegar. On the computational complexity and geometry of the first-order theory
of the reals. part i: Introduction. preliminaries. the geometry of semi-algebraic sets. the
decision problem for the existential theory of the reals. Journal of symbolic computation,
13(3):255–299, 1992. 5.4.8

[159] James Renegar. On the computational complexity and geometry of the first-order theory

277

https://doi.org/10.1145/1806689.1806731
https://doi.org/10.1093/acprof:oso/9780198566946.001.0001
https://doi.org/10.1093/acprof:oso/9780198566946.001.0001
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.115
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.115

of the reals. part ii: The general decision problem. preliminaries for quantifier elimination.
Journal of Symbolic Computation, 13(3):301–327, 1992. 5.4.8

[160] J. Robertson and W. Webb. Cake-cutting algorithms: Be fair if you can. CRC Press, 1998.
1.3, 4.1

[161] Jrg Rothe. Economics and Computation: An Introduction to Algorithmic Game Theory,
Computational Social Choice, and Fair Division. Springer Publishing Company, Incor-
porated, 1st edition, 2015. ISBN 3662479036. 1.3, 4.1

[162] Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing Exact Min-
imum Cuts Without Knowing the Graph. In Anna R. Karlin, editor, 9th Innova-
tions in Theoretical Computer Science Conference (ITCS 2018), volume 94 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 39:1–39:16, Dagstuhl, Ger-
many, 2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-
060-6. doi: 10.4230/LIPIcs.ITCS.2018.39. URL https://drops.dagstuhl.
de/entities/document/10.4230/LIPIcs.ITCS.2018.39. 7.1, 7.1.1, 7.1.2,
7.2.2, 7.2.2, 7.6.1, 7.6.5, 7.6.6, 7.6.1

[163] Mark Rudelson and Roman Vershynin. The smallest singular value of a random rectangu-
lar matrix, 2009. URL https://arxiv.org/abs/0802.3956. 5.4.2

[164] Samira Samadi, Uthaipon Tantipongpipat, Jamie H Morgenstern, Mohit Singh, and San-
tosh Vempala. The price of fair PCA: One extra dimension. In Advances in neural infor-
mation processing systems, pages 10976–10987, 2018. 1

[165] Alex Samorodnitsky. An upper bound for permanents of nonnegative matrices. Journal
of Combinatorial Theory, Series A, 115(2):279–292, 2008. ISSN 0097-3165. doi: https:
//doi.org/10.1016/j.jcta.2007.05.010. URL https://www.sciencedirect.com/
science/article/pii/S0097316507000805. 3.1

[166] Ignacio Santamaria, Javier Vía, Michael Kirby, Tim Marrinan, Chris Peterson, and Louis
Scharf. Constrained subspace estimation via convex optimization. In 2017 25th European
Signal Processing Conference (EUSIPCO), pages 1200–1204. IEEE, 2017. 5.1.1, 5.4.1

[167] Alexander Schrijver. A short proof of minc’s conjecture. J. Comb. Theory A, 25:80–83,
1978. URL https://api.semanticscholar.org/CorpusID:24610177.
3.1

[168] Alexander Schrijver. A course in combinatorial optimization. 1990. URL https:
//api.semanticscholar.org/CorpusID:54090543. 7.3.2, 7.6.2, 7.6.2

[169] Alexander Schrijver. Counting 1-factors in regular bipartite graphs. J. Comb. Theory Ser.
B, 72(1):122–135, January 1998. ISSN 0095-8956. doi: 10.1006/jctb.1997.1798. URL
https://doi.org/10.1006/jctb.1997.1798. 3.1

[170] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley-Interscience,
2000. 2.2.1

278

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018.39
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2018.39
https://arxiv.org/abs/0802.3956
https://www.sciencedirect.com/science/article/pii/S0097316507000805
https://www.sciencedirect.com/science/article/pii/S0097316507000805
https://api.semanticscholar.org/CorpusID:24610177
https://api.semanticscholar.org/CorpusID:54090543
https://api.semanticscholar.org/CorpusID:54090543
https://doi.org/10.1006/jctb.1997.1798

[171] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume B.
01 2003. 7.3.2

[172] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer Science & Business Media, 2003. 2.1.3, 2.2.3, 2.2.3, 2.7.1

[173] Ankit Sharma and Jan Vondrák. Multiway cut, pairwise realizable distributions, and de-
scending thresholds. In David B. Shmoys, editor, Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 724–733. ACM, 2014.
doi: 10.1145/2591796.2591866. URL https://doi.org/10.1145/2591796.
2591866. 6.1.1

[174] Mohit Singh and Weijun Xie. Approximate positive correlated distributions and approxi-
mation algorithms for D-optimal design. In Proceedings of SODA, 2018. 2.1, 2.1.4

[175] Maurice Sion. On general minimax theorems. Pacific Journal of Mathematics, 8(1):171
– 176, 1958. 4.6.2

[176] George W. Solues. Extending the minc-brègman upper bound for the permanent. Linear
and Multilinear Algebra, 47(1):77–91, 2000. doi: 10.1080/03081080008818633. URL
https://doi.org/10.1080/03081080008818633. 3.1

[177] Zhao Song, Ali Vakilian, David Woodruff, and Samson Zhou. On socially fair regression
and low-rank approximation. In Advances in Neural Information Processing Systems,
2024. 1

[178] George W. Soules. New permanental upper bounds for nonnegative matrices. Linear and
Multilinear Algebra, 51(4):319–337, 2003. doi: 10.1080/0308108031000098450. URL
https://doi.org/10.1080/0308108031000098450. 3.1

[179] Mechthild Stoer and Frank Wagner. A simple min cut algorithm. In Jan van Leeuwen,
editor, Algorithms - ESA ’94, Second Annual European Symposium, Utrecht, The Nether-
lands, September 26-28, 1994, Proceedings, volume 855 of Lecture Notes in Computer
Science, pages 141–147. Springer, 1994. 7.2.5

[180] Warut Suksompong. Weighted fair division of indivisible items: A review. Inf. Process.
Lett., 187(C), January 2025. ISSN 0020-0190. doi: 10.1016/j.ipl.2024.106519. URL
https://doi.org/10.1016/j.ipl.2024.106519. 4.1

[181] Marco Di Summa, Friedrich Eisenbrand, Yuri Faenza, and Carsten Moldenhauer. On
largest volume simplices and sub-determinants. In Proceedings of the Twenty-Sixth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pages 315–323. Society for Indus-
trial and Applied Mathematics, 2015. 1, 2.1, 2.1.4

[182] Uthaipon Tantipongpipat, Samira Samadi, Mohit Singh, Jamie H Morgenstern, and San-
tosh Vempala. Multi-criteria dimensionality reduction with applications to fairness. In
Advances in Neural Information Processing Systems, pages 15135–15145, 2019. 1

[183] Joel A Tropp. Column subset selection, matrix factorization, and eigenvalue optimization.

279

https://doi.org/10.1145/2591796.2591866
https://doi.org/10.1145/2591796.2591866
https://doi.org/10.1080/03081080008818633
https://doi.org/10.1080/0308108031000098450
https://doi.org/10.1016/j.ipl.2024.106519

In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms,
pages 978–986. SIAM, 2009. 5.1

[184] L.G. Valiant. The complexity of computing the permanent. Theoretical Com-
puter Science, 8(2):189–201, 1979. ISSN 0304-3975. doi: https://doi.org/10.1016/
0304-3975(79)90044-6. URL https://www.sciencedirect.com/science/
article/pii/0304397579900446. 3.1

[185] Ameya Velingker, Maximilian Vötsch, David P. Woodruff, and Samson Zhou. Fast (1+ε)-
approximation algorithms for binary matrix factorization. In Proceedings of the 40th
International Conference on Machine Learning, ICML’23. JMLR.org, 2023. 5.1.1

[186] David P. Woodruff and Taisuke Yasuda. Nearly linear sparsification of `p subspace ap-
proximation, 2024. URL https://arxiv.org/abs/2407.03262. 5.3.3

[187] David P. Woodruff and Taisuke Yasuda. Ridge leverage score sampling for `p subspace
approximation, 2025. URL https://arxiv.org/abs/2407.03262. 5.3.4

[188] Yichong Xu, Hongyang Zhang, Kyle Miller, Aarti Singh, and Artur Dubrawski. Noise-
tolerant interactive learning using pairwise comparisons. Advances in neural information
processing systems, 30, 2017. 7.1.2

[189] Zhirong Yang and Erkki Oja. Linear and nonlinear projective nonnegative matrix fac-
torization. IEEE Transactions on Neural Networks, 21:734–749, 2010. URL https:
//api.semanticscholar.org/CorpusID:7330912. 5.1.1

[190] H. Peyton Young. Equity: In Theory and Practice. Princeton University Press, 1994. ISBN
9780691043197. URL http://www.jstor.org/stable/j.ctv10crfx7. 1.3,
4.1

[191] S. Yu, E. C. Ierland, H.-P. Weikard, and X. Zhu. Nash bargaining solutions for interna-
tional climate agreements under different sets of bargaining weights. International En-
vironmental Agreements: Politics, Law and Economics, 17(5):709–729, October 2017.
doi: 10.1007/s10784-017-9351-3. URL https://ideas.repec.org/a/spr/
ieaple/v17y2017i5d10.1007_s10784-017-9351-3.html. 1.3, 4.1

[192] Xiao-Tong Yuan and Tong Zhang. Truncated power method for sparse eigenvalue prob-
lems. Journal of Machine Learning Research, 14(4), 2013. 5.1

[193] Zhijian Yuan and Erkki Oja. Projective nonnegative matrix factorization for image com-
pression and feature extraction. In Image Analysis: 14th Scandinavian Conference, SCIA
2005, Joensuu, Finland, June 19-22, 2005. Proceedings 14, pages 333–342. Springer,
2005. 5.1.1

[194] Zhijian Yuan, Zhirong Yang, and Erkki Oja. Projective nonnegative matrix factoriza-
tion : Sparseness , orthogonality , and clustering. 2009. URL https://api.
semanticscholar.org/CorpusID:5396302. 5.1.1

[195] Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis.
Journal of computational and graphical statistics, 15(2):265–286, 2006. 5.1.1

280

https://www.sciencedirect.com/science/article/pii/0304397579900446
https://www.sciencedirect.com/science/article/pii/0304397579900446
https://arxiv.org/abs/2407.03262
https://arxiv.org/abs/2407.03262
https://api.semanticscholar.org/CorpusID:7330912
https://api.semanticscholar.org/CorpusID:7330912
http://www.jstor.org/stable/j.ctv10crfx7
https://ideas.repec.org/a/spr/ieaple/v17y2017i5d10.1007_s10784-017-9351-3.html
https://ideas.repec.org/a/spr/ieaple/v17y2017i5d10.1007_s10784-017-9351-3.html
https://api.semanticscholar.org/CorpusID:5396302
https://api.semanticscholar.org/CorpusID:5396302

	1 Introduction
	1.1 Introduction
	1.2 Diversity: Determinant Maximization
	1.3 Fairness: Nash Social Welfare Maximization
	1.4 Fairness: Constrained Subspace Approximation
	1.5 Explainability: Explainable Clustering
	1.6 Robustness: Combinatorial Optimization using Comparison Oracles
	1.7 Technical Unification
	1.8 Organization and Credits

	I Diversity
	2 Determinant Maximization
	2.1 Introduction
	2.2 The case that rank equals dimension
	2.3 Rank less than dimension
	2.4 Rank greater than dimension
	2.5 Permanental Inequalities
	2.6 Future Directions
	2.7 Appendix for chap:determinant

	3 New Permanent Inequalities
	3.1 Introduction
	3.2 Preliminaries
	3.3 Generalizing Determinantal Concepts for the Permanent
	3.4 Future Directions
	3.5 Appendix for chap:permanent

	II Fairness
	4 Nash Social Welfare Maximization
	4.1 Introduction
	4.2 Relaxations for Weighted Nash Social Welfare
	4.3 Approximation Algorithm
	4.4 Rounding via the Non-Convex Relaxation
	4.5 Conclusion and Future directions
	4.6 Appendix for chap:nash

	5 Fair Subspace Approximation
	5.1 Introduction
	5.2 Preliminaries
	5.3 Framework for Constrained Subspace Approximation
	5.4 Applications
	5.5 Hardness of Column Subset Selection with Partition Constraint
	5.6 Future Directions

	III Explainability
	6 Explainable Clustering
	6.1 Introduction
	6.2 Explainable k-medians via Exponential Clocks
	6.3 Lower Bounds on the Price of Explainability
	6.4 Explainable k-means clustering
	6.5 Tight Bounds for the Random Threshold Algorithm
	6.6 Price of Explainability with General Threshold Cuts
	6.7 Future Directions
	6.8 Appendix for chap:explainability

	IV Robustness
	7 Combinatorial Optimization using Comparison Oracles
	7.1 Introduction
	7.2 Minimum Cut using Cut Comparisons
	7.3 Matroids, Matchings, and Paths
	7.4 Linear Optimization for General Set Systems
	7.5 Future Directions
	7.6 Appendix to chap:robustness

	Bibliography

