
Modeling Coordination and Productivity in
Open-Source GitHub Projects

Samridhi Shree Choudhary Christopher Bogart
Carolyn Penstein Rosé James D. Herbsleb

June 2018
CMU-ISR-18-101

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

The work was funded by National Science Foundation Information and Intelligent Systems Division (IIS) under
grant numbers 1546393 and 1633083; the Alfred P. Sloan Foundation, and the Google Open Source Program Office.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.



Keywords: Bursty Streams, Socio-Technical Congruence, Productivity, Activity Phases, Hid-
den Markov Model, Open-Source, GitHub



Abstract

In open-source software development, coordination between globally separated developers is often
structured in ways not immediately visible to them, such as implicit groupings of people working
on similar code and related issues. This opacity is despite the availability and accessibility of a
large quantity of low-level project activity data on platforms like GitHub. This paper uses this
low-level data to construct meaningful indicators that could offer improved transparency into how
coordination is conducted in open source. Prior work has shown the value of Socio-Technical
Congruence for evaluating the quality of coordination in commercial software systems. However,
little work has successfully translated this analysis to the domain of open source, primarily due
to their less formal and inconsistent ways of partitioning work, assigning tasks and measuring
success. We present a technique for distinguishing the active phases of coordination and define
a measure of productivity for these projects. We perform a quantitative analysis of the influence
of congruence on productivity in these phases demonstrating that the associations between our
measure of productivity and the measures of congruence and other control variables are subtle but
consistent with the prior work in commercial software development and discuss some applications
of our work.





1 Introduction
In open-source ecosystems, decentralized decision-making among highly interdependent yet inde-
pendently managed projects becomes more and more challenging as their increasing scale makes
it difficult to assess the health of a project, either from the outside when choosing to adopt or
contribute to it, or from the inside when seeking to maintain a healthy collaboration. With open
source moving to a central role in software supply chains, the economic stakes of these decisions
are escalating. The ebb and flow of resources in these dynamical systems creates instability and
the need for quick and effective decision making.

Popular online work environments like GitHub1 provide detailed traces of work activities for
various open-source projects. These include the substance and structure of software artifacts along
with the maintenance metadata, such as code changes, bug reports, code reviews and feature re-
quests. The traces also contain discussion among the developers capturing explicit coordination
between them. However, while they are openly available and can be used to support decision mak-
ing, their large volume can make it noisy and difficult to contextualize; many transparent details
become opaque at a large scale. This paper presents a mixed-methods investigation to inform fu-
ture efforts at increasing visibility into the inner workings of open-source software development
on GitHub by constructing meaningful indicators from the existing low-level information.

Recent research has shed light on how developers make important decisions using the vast pool
of information available on environments like GitHub [13]. For each decision, there are a number
of “hidden qualities” that developers care about, for example, whether a community responds to
problems in a timely manner, whether the code is of good quality and whether the developers
are open to external contributions. These traits are very difficult or expensive to observe directly.
The developers tend to use visible information, emitted intentionally or unintentionally by other
developers, as “signals” to infer the presence or absence of these qualities [29]. Many such signals
have been identified in qualitative studies, with the strength of the signals estimated in quantitative
work [40]. The long term goal of our research is to construct signals related to the important
qualities of work in open-source systems that are readily observable and interpretable. In this
paper, we focus on a property that represents the extent to which a community is able to solve its
problems in a timely manner with effective coordination. We refer to this measure as productivity
of open-source projects.

Coordination in software development teams has been a recurrent topic of interest in software
engineering research. Two of the most popular approaches in this regard are that of Modularity
and Congruence. Modularity is based on a decomposability view of the software systems [6, 20].
The primary aim of a modular design is to reduce technical dependencies among different compo-
nents of the system leading to greater productivity and faster resolution times. Although this line
of research has been quite influential, it assumes a static view of the system and is not sufficient for
situations where the product dependencies rapidly change [28, 12]. Congruence offers a different
perspective on coordination that takes into account the dynamic nature of dependencies. Cataldo
et al. [8] introduced the concept of socio-technical congruence. They demonstrated that organiza-
tions are more successful when there is a ‘match’ between their coordination requirements, implied

1http://www.github.com

1



by the structure of the technical dependencies, and their capability to coordinate, as measured by
the organization’s communication patterns [9].

Although these measures have provided a useful insight into the organization of software de-
velopment, the focus of the research has been on conventional commercial software development.
There are two formidable challenges associated with generalizing these measures to open-source
platforms and practices. First, calculating congruence relies heavily on the capability to identify
the formal structure of the work: discrete tasks, the set of files changed as a part of each task,
developers who are assigned those tasks and the communication associated with the tasks. While
this data is sometimes available in commercial settings, they are quite difficult to operationalize
in open-source platforms in which tasks, teams and responsibilities may be defined less formally,
if at all, and the work is self-assigned by volunteers. Second, as we will illustrate in this pa-
per, open-source coordination often involves sporadic episodes of relatively intense and explicit
collaboration interspersed among periods of no contribution or individual contributions with im-
plicit collaboration. Congruence might be quantifiable and valid only for the explicit collaborative
episodes.

Specifically, this paper reports on an investigation aimed at addressing the following research
questions:

Research Question 1: How can the activity traces of open-source software be structured to
identify meaningful units of collaborative work, that would enable investigation of the effect of
coordination on the productive accomplishment of that work?

Research Question 2: How can the traditional measures of congruence be adapted for open-
source projects on GitHub, and is the effect of these measures on project productivity consistent
with that found in commercial projects?

In the remainder of the paper we first review the literature on structuring and segmenting data
streams into units of high activity frequency and the prior work on coordination in software de-
velopment. Next, we explain our mixed-methods approach, beginning with a description of the
corpus that we constructed from the PyPi ecosystem on GitHub and the modeling approach used
to identify the collaborative phases of activity. With this as a foundation, we define a meaningful
measure of productivity. We explain our operationalization of the measures of congruence and the
related control variables for the collaborative phases of projects. We end with a discussion of the
potential uses of not only the productivity measure to assess the overall effectiveness of a project’s
collaboration, but also of the components of the model as potential and useful corrective indicators
for the project participants.

2 Literature Survey
As evident from the stated research questions, our approach to study coordination in open-source
projects is two fold. First, we wish to segment the activity timeline of a project into coherent and
meaningful ‘units’ or ‘bursts’ of activity. Second, we attempt to study coordination and produc-
tivity in these projects with the bursts functioning as our units of work. We review the literature
pertaining to work done on studying and modeling bursty data streams and on the study of coordi-
nation in software projects in the following subsections.

2



2.1 Bursty Structure in Data Streams
A plethora of models have been developed to account for the flow of events in data streams over
time, many of them referring to the bursty nature of the flow. Burstiness has been modeled in
diverse types of streams including that of the words within a stream of documents [24] to events
within telecommunication networks [18, 16].

A considerable number of approaches have been proposed for efficient burst-detection [43, 42,
24]. The method proposed by Fung et al. [19] clusters bursty terms together as a representation
of what might be thought of as events at different points in time according to the temporal flow of
documents. Lappas et al. [27] use discrepancy theory concepts to model the burstiness of a term
in a sequence of documents over time. They formalize the notion of burstiness by defining a ‘burst
score’ of a term for an interval of time. A parameter-free, linear-time algorithm is then used to
identify the time-intervals that maximize the burst score of any given term over the entire period.

A seminal method of burst detection, which has motivated substantial work in this field, was
proposed by Kleinberg [24]. His approach uses an infinite-state automaton to model the structure of
bursty document streams over time, in which each automaton state represents a different frequency
at which a word appears in the text. At any time the automaton can be in one of the underlying set
of states that correspond to increasingly rapid rates of emission. The onset of a burst is signaled by
a state transition from a lower to a higher state. State transitions are associated with a cost in order
to limit the frequency of such transitions.

Kleinberg [24]’s automaton model draws on the formalism of Hidden Markov Models, another
popular method for studying patterns in sequential data ranging from real world signals like speech
processing [31] to the domains of computational biology [26]. A Hidden Markov Model (HMM)
is a doubly stochastic process with an underlying stochastic process that is not observable (it is
hidden), but can only be observed through another set of stochastic processes that produce the
sequence of observed symbols. In our current work we compare HMMs with Kleinberg [24]’s and
Lappas et al. [27]’s models as different ways to characterize the bursty nature of activity streams
for projects on GitHub.

2.2 Coordination in Open-Source
Many successful open-source software (OSS) projects are characterized by a globally distributed
developer force and a rapid software development process. They succeed despite spanning geo-
graphical, organizational and social boundaries achieving productive collaboration among devel-
opers. Coordination in these environments can happen both implicitly and explicitly. Bolici et al.
[5] observe that most coordination visible from the behavior traces on open-source projects is stig-
mergic: contributors are seen to coordinate implicitly through changes to the artifact as much or
more than they are seen to coordinate explicitly through discussion. However, this does not mean
that explicit planning and negotiation does not happen in open-source projects. Explicit coordi-
nation can happen through discussions across a profusion of different channels including GitHub,
mailing lists, blogs, conferences, personal emails, Slack and Twitter [39]. Dabbish et al. [13] find
that software developers generally engage in discussion in order to make social connections with
the team when joining an OSS project. Ko and Chilana [25] studied how developers discuss and

3



negotiate problems and solution designs in bug reports. Tsay et al. [40] found technical and so-
cial signals that exhibited strong associations with contribution acceptance for projects on GitHub.
Tsay et al. [41] examined how open-source developers discuss and evaluate the pull requests on
GitHub. These discussions have important implications for project management. On platforms
like GitHub, discussion is primarily visible in issue threads and pull requests. Although prior
work has noted that GitHub discussion traces are sparse [4], communication through discussion
has nonetheless been found to be consequential.

There are multiple challenges associated with appropriately measuring the effectiveness of
coordination in open source. One of the difficulties is identifying an appropriate unit of analysis.
Rossi et al. [33] noted the bursty nature of open-source projects. However, as far as we know, there
have been few attempts to empirically investigate these bursts as possible units of activity in an
open-source environment. A recent work in this field is that of Riedl and Woolley [32] that study
collaboration in crowd sourced environments. They performed a large-field experiment on team
collaboration on an online platform and found that temporal “burstiness” of team activity and the
diversity of information exchanged among team members are strong predictors of performance.
More generally, Barabási [1] suggest that human activities ranging from communication to work
patterns are found to be inherently bursty indicating that when individuals execute tasks based on
some perceived priority, the timing of the tasks will be heavy tailed. In other words, rather than a
randomly distributed pattern of communications, there tends to be periods of high activity followed
by periods of little to no activity. Olson et al. [30], in contrast, modeled Wikipedia contribution
burstiness as a function of participants’ awareness of each others’ activity, as well as circadian
and weekly activity cycles. Another difficulty is defining an effective measure of success for the
projects. Ghapanchi et al. [21] point out that there is no universally agreed upon definition of
success in OSS and there are several factors that contribute to a project’s success or failure. They
identify six broad areas of success namely: project activity, efficiency, effectiveness, performance,
user interest and product quality. Automatic quantification of these measures for GitHub projects
has proven challenging.

Prior work has studied the effect of coordination on the productivity of software projects [7].
In particular, Cataldo et al. [8] introduced the measure of congruence to quantify the quality of
coordination and studied its effect on the effectiveness of commercial software projects. However,
owing to the diverse and complex nature of OSS and the differing standards of project organization
among platforms, they have not been successfully and accurately translated to these domains.

3 Data
In this section, we explain our dataset[11] and the protocol used to collect and filter the projects. We
also study the bursty nature of the data and quantify the burstiness of the project activity streams.

3.1 Data Collection
Congruence is a somewhat subtle effect, and previous studies of congruence in commercial systems
have detected it by focusing their analysis on the data from a single company at a time, using a

4



limited number of languages and technologies. We wanted to choose a similarly homogeneous
open source dataset, in order to be consistent with this characteristic of prior work. We sought a
single software ecosystem with enough history and multiple projects on GitHub as our data source,
using a single language.

We thus chose the PyPi2 ecosystem as our domain of choice. It is a software ecosystem with a
history of fifteen years and a large pool of projects available on GitHub, written in a language that
the researchers were familiar with (Python). We began with a list of 48,668 GitHub repositories
culled from the PyPi metadata records. We then filtered for projects having at least 10 stars and 3
contributors in order to sift out small inconsequential projects without collaboration needs, leaving
us with 16,683 projects.

We used the GitHub API3 to scrape issues and pull requests, along with associated comments,
commits, close and merge events, as well as commits and commit comments that were not associ-
ated with pull requests. We used the githubarchive repository4 to identify push events, which are
not available from the GitHub API. We took data from both sources from the earliest data available
(2011) up through December 31, 2016.

3.2 Data Burstiness
In connection to the research question 1 (Section 1), we explore how to segment a stream of work
into episodes that can be used to measure productivity. Noting that the events in projects appear to
be bursty, we first test how pervasive the bursts are in the data.

In statistics, “burstiness” is defined as the intermittent increases and decreases in activity or
frequency of an event. One of the most common and simplistic measures of burstiness is the
Fano Factor, also known as the Index of Dispersion. It is the ratio between the variance and
the mean of the event counts, where a value greater than 1 signifies a bursty event stream and a
value less than 1 depicts a non-bursty stream. This measure has invariably been applied as a first
step to understand the nature of any stream [18]. As mentioned before (section 3.1), we collect
several variables related to daily project activities. These include number of commits, merges,
pushes, issue comments, issues opened, issues closed, commit comments, pull request rejections
and issues remaining open. In order to compute the fano factor for each project, we sum the counts
of all the activities of the projects per unit time (day) to get the total activity counts per day. The
mean and the variance are computed for the series of daily counts per project to get the project
Fano factor. The following were the results of this experiment:

• Average value of the Fano Factor for projects = 8.82

• Median value of the Fano Factor for projects = 4.83

• Percentage of projects with Fano Factor > 1 = 94.1%

2https://pypi.python.org/pypi
3https://developer.github.com/v3/
4https://www.githubarchive.org/

5



On average (mean or the median) the fano factor for the projects in our data is greater than
1. Moreover, roughly 94% of the projects have fano factor greater than 1, representing a large
majority of the projects having bursty activity streams. With these numbers at hand, we conclude
that the project activity data can be characterized as bursty, and we can proceed to identify and
delimit the intervals of time with high and low (or no) activity.

4 Methodology
This section elaborates on our approach to understand collaboration and productivity in open-
source projects hosted on GitHub. We deploy three segmentation models to identify active bursts
or phases of high activity in our data. This is followed by a comparison among the segmentation
models in order to choose the most appropriate one. Finally, we explain our operationalization
of coordination using the measure of socio-technical congruence. We detail the other control
measures that we use along with the congruence values to study the effect of coordination on the
productivity of a project.

4.1 Burst Detection Models
Given the evidence of the bursty nature of activity streams in GitHub, and considering the variety
of approaches to model the bursts, we compared and contrasted three alternative methods: the
linear time maximal-sum segments algorithm [27], the seminal burst detection method proposed
by Kleinberg [24] and a Hidden Markov Model (HMM) trained on the daily activity counts of
the project [31]. The pairwise alignment of their predicted burst boundaries is measured using
Beeferman et al. [2]’s Pk, that is often used to evaluate the alignment of segmentation algorithms .

In order to measure cohesion within the segments, we construct a parallel behavior stream using
the developer conversations that happen within a project by looking at the text from issue threads,
pull requests, and commit comments. Breaks in lexical cohesion are identified by a change in focus
(topics) of the verbal interactions to detect places where the project focus has changed. In order to
identify such breaks, we use the standard TextTiling approach [22]. The lexical segments thus ob-
tained are compared with the segments obtained from each of the three burst-detection algorithms
using Pk. The model with the best Pk value with the text segments represents a segmentation that
is the closest to the lexically coherent segmentation of the activity and is selected for obtaining the
final bursts of activity for a project. The process is detailed in the following subsections.

Maximal Sum Segments (Max-Sum) - We use the method suggested by Lappas et al. [27] as
our first burst-detection method. The model defines and calculates a burst score associated with
different intervals of time and uses a linear-time variation of the ‘All Maximal Sum Segments’
algorithm [34], to identify the set of intervals that maximize the score. For our data, we use a
count of activities for each day in each project. A positive or negative burst score is computed
for each day in the project timeline. The algorithm is then used to identify intervals of days with
maximal scores that are interpreted as “work episodes” or “activity bursts”. Figure 1 shows the
sequence of burst scores for the activity stream of a random project in our dataset. The x-axis
represents time and the y-axis represents burst score. Bursts appear in the figure as groups of

6



Figure 1: Burstiness sequence, B, for the GitHub activity counts of a project. Contiguous intervals
of upward-facing bars represent a burst of activity.

positive (upward facing bars) scores interspersed with negative (downward facing bars) scores. A
contiguous interval of positive bars with maximal sum forms an activity burst. Graphs similar to
this were plotted for many projects and they displayed similar pattern, further solidifying the bursty
nature of the activity streams.

Kleinberg Burst Detection (Klein) - We use Kleinberg [24]’s burst detection method as our
second segmentation model. It uses an infinite-state automaton to model the structure of bursty
document streams over time. In order to adapt this formulation for our data, we calculated the
frequency of occurrence of any activity, defined as the inverse of the inter-arrival gap as measured
in days. These frequencies are modeled using the automaton as described in the paper, where each
active timestamp (day in our case) is assigned an automaton state. In order to extract the bursts of
activity, we take the highest automaton state assigned to a day. The days with the same states are
grouped together to form bursts with same rates of emission. The output, therefore, is a series of
bursts with varying intensities wherein the bursts contain either high- or low-frequency states.

Hidden Markov Model (HMM) - As our third model, we used a Multivariate Gaussian HMM
which is a variant of the vanilla HMM except that the observation symbol probability distribution

7



is assumed to be a Multivariate Gaussian process. The activity traces collected for the projects
become the observation symbols that help in estimating the hidden states of the HMM. We exper-
imented with different number of states and the best model was selected based on the likelihood
of fit. In order to interpret the HMM states, we look at the average values of the model param-
eters (different activity counts). States with activity values less than a threshold were labelled as
“dormant”, and the rest were labelled as “active”. The trained model was used to predict the state
sequences for a given activity sequence for each project timeline. Each day that was assigned any
one of the ‘active’ states was noted for the projects. A contiguous run of these ‘active days’ (with
a maximum gap of 3 days between each subsequent active days), was grouped together to form a
burst. The creation of bursts in this way segments the project activity timeline into a set of bursts
of activity that can be compared to the burst segmentations obtained by the methods described
previously in this section.

4.2 Burst Model Comparison and Selection
In order to select the segmentation model that performs the best, we need to have a platform and an
evaluation metric for measuring the quality of the bursts yielded by them. We attempt to compare
the bursts obtained by the models above with a lexically coherent segmentation of the project
timeline using Beeferman et al. [2]’s Pk as the comparison metric.

Lexical Cohesion - TextTiling Segments (TT Segments) - The models described in the previ-
ous section considered only the raw activity counts to estimate a unit of work. Another approach
is to examine the conversation among project developers, and consider a stretch of consecutive
days with similar conversation topics as a “lexically coherent burst”. Activity bursts that are very
similar to these lexical segments would not only represent maximum activity but also represent
activity towards similar goals and hence can be inferred to be a coherent unit of work.

The lexical cohesion model that we use is a well-established method of text segmentation
known as TextTiling [22]. It was designed to segment texts into coherent units reflecting the
subtopical structure. The underlying assumption in this model is that a shift in the term distribu-
tion in text indicates a shift in the underlying topic of the text. The method starts by passing a
sliding window over a representation (vector-space in our case) of the text. At each position of
this window, a similarity score (cosine similarity) is computed between the upper and the lower
region of the window. For example, at sliding window position i, the units from i−k through i are
compared to the units from i + 1 to i + k + 1, where k is one of the parameters of the algorithm.
Scores for all possible positions i are calculated and recorded. For each i, a new score called the
depth score is calculated that gives an insight into how sharp a change occurs on both sides of the
window at position i. This is done by looking at the similarity scores to the left of i as long as it is
increasing. This peak value is subtracted from the score at i to get the left height. The same process
is repeated to get the right peak value and the right height. The two heights are added to give the
depth score at i. A segment boundary is predicted at i if its depth score exceeds a threshold.

For our data, we collected the following textual information: issue comment text, issue titles,
pull request titles, pull request comments, commit messages and commit comments. These texts
were combined for each day, cleaned, stemmed and converted to word-vectors. Therefore each
day of the project timeline was represented as a word vector. We set the value of k as 1, thereby

8



comparing each adjacent day vectors for similarity. Segment boundaries were drawn on days when
the depth score on that day exceeded a threshold. The threshold we used was µ− σ

2
, where µ and

σ are the mean and the standard deviation of the depth scores for that project.
Beeferman’s Pk - In order to evaluate the alignment between different segmentation methods,

we use the evaluation metric Pk by Beeferman et al. [2]. It is commonly used to compare the
segmentation boundaries predicted by a pair of models and find how similar or dissimilar they are.
It is defined as the probability that “a pair of [events within a stream] at a distance of k [events]
apart are inconsistently classified; that is, for one of the [models] the pair lies in the same segment,
while for the other it spans a segment boundary.” A Lower Pk value indicates a higher overlap and
is therefore preferred. The ideal value of k, as suggested in their paper, is half the average segment
length. Table 1 shows the pairwise Pk values for each pair of the non-lexical segmentation method
to uncover the similarity of the segments they predict. Since the value of k depends on which
segmentation method is selected as the first/reference method (it is the average reference segment
length), we compute the Pk in each direction for a pair and take the average value. As we can
see, HMM-Klein and Max-Sum-Klein have a high Pk indicating that the segmentation boundaries
drawn by them are distinct. However, the low value for HMM and Max-Sum suggest that they
predict similar segment boundaries. This is primarily because in both cases, the states estimated
are segmented into binary ‘active’ and ‘dormant’ classes, where clusters of ‘active’ class days form
a burst.

Model Selection - In order to find the most coherent segmentation, we first identified each
segmentation’s relative cohesion with the text stream. Table 2 shows the average pairwise Pk values
of each method with the TT segments. It also shows the average number of text segments present
in one segment of the non-lexical burst model, indicating the extent to which bursts represent one
coherent focus. As we can see, Klein has the worst Pk value and an average of 7 text segments per
Klein burst. Between HMM and Max-Sum, HMM has a slightly lower Pk but is substantially better
in terms of burst coherence, containing approximately 1 segment per HMM burst whereas Max-
Sum has almost 2 segments per burst. All three methods have different average segment lengths.
We computed the Pk values after controlling for the segment length and the results were similar.
Therefore, HMM predicts work-units that are more lexically coherent than the units predicted
by Max-Sum. In comparison to the Max-Sum model which is a parameter free model, HMM is
more interpretable. Inferences about the states of a trained HMM can be drawn by looking at the
distribution of the mean values of the parameters in the states. It, therefore gives a better view into
the characteristics of the data-stream. These reasons motivate us to choose HMM as an optimal
segmentation method for our dataset. We use the burst length (duration in days) as a measure of
‘productivity’ that serves as our success measure impacted by coordination in open source. This
is with the intuition that a productive burst would involve people working efficiently and hence
completing the tasks in a short span of time consistent with previous congruence studies [7, 10].

4.3 Coordination - Socio-Technical Congruence
In order to address our second research question, we attempt to operationalize the measures of
socio-technical congruence and the related control variables [9] to investigate their effect on pro-
ductivity (burst duration length). In a software project, task dependencies drive the need to coor-

9



Model 1 Model 2 Average Pk

HMM Klein 0.52

HMM Max-Sum 0.20

Max-Sum Klein 0.53

Table 1: Non-lexical pairwise Pk values. Lower values indicate higher overlap.

Model 1 Average # TT Segments Per Burst Average Pk with TT Segmentation
HMM 1.3 0.35

Max-Sum 1.8 0.38

Klein 7.2 0.41

Table 2: Pk values between event segmentation approaches and TT segmentation. Lower Pk

values indicate higher alignment with text segmentation and number of text segments per burst
indicate higher lexical cohesion.

dinate work activities. One of the most important questions about such coordination is who must
coordinate with whom in order to get the work done. Congruence attempts to quantify this co-
ordination. It is the measure of “fit” or “match” between the coordination requirements and the
actual coordination activities of a project. In other words, it gives us a measure of how much of
the coordination that was required to happen, did happen. Intuitively, the hypothesis is that when
a matter arises in which all the people with relevant expertise are actively participating, they can
dispense with the matter more quickly. We take inspiration from the experiments done by Cataldo
et al. [9] for their commercial dataset and adapt their measures in a way that makes them suitable
for open-source projects.

4.3.1 Congruence the Traditional Way:

Cataldo et al. [8] introduced the idea of congruence in software projects, identifying three main
components to estimating this measure: the dependencies among the tasks (Task Dependencies),
the people responsible for these tasks (Task Assignments) and the actual coordination that occurs
among the people (Actual Coordination). It is calculated as the ratio of the actual coordination to
the required coordination.

Coordination Required (CR): Given a set of dependencies among the tasks of a project, this
measure helps in identifying the individuals that need to coordinate. It is computed as a people by
people matrix using the following matrices:

Task Assignment Matrix (TA): This is formulated as a people by task matrix where a one in the
cell ij indicates that personi is assigned to taskj .

Task Dependency Matrix (TD): This is the adjacency matrix (task by task matrix) of the de-
pendency graph of the tasks where a non-zero entry in the cell ij indicates that taski is dependent
on taskj .

CR is calculated as shown in equation 1 where a non-zero entry in cell ij indicates that personi

10



should coordinate with personj while working on the assigned tasks.

CR = TA ∗ TD ∗ TA′ (1)

Actual Coordination (CA): This is formulated as a people by people matrix. A non-zero
entry in the cell ij indicates that personi actually coordinated, by different means of coordination
available, with personj .

Congruence is then calculated as a logical conjunction between the corresponding cells in the
CR and CA matrices as shown in equation 2.

Congruence(CR, CA) =

∑
(CA ∧ CR)∑

(CR)
(2)

4.3.2 Congruence the GitHub Way:

Cataldo et al. [9] calculated four measures of congruence, each for a different means of communi-
cation among people. We attempt to operationalize two of them, MR Congruence and Structural
Congruence for each burst in our final set of GitHub projects; the other two did not map well to
GitHub data. The basic definition of the matrices, explained in the previous section, remains the
same. The way each of them are translated to be valid for GitHub projects is described below.
These were calculated for each active burst for all the projects, where the files committed in the
burst are treated as the “tasks”.

TA[i][j]→ A non-zero value indicates that filej was committed by personi in the burst.
TD[i][j] →We use the FCT (Files Changed Together) method, utilized by Cataldo et al. [9],

to build an undirected dependency graph for the GitHub projects. It is constructed by looking at
the commit history of the files changed in the burst, with the assumption that the files that are
committed together are logically related to each other. Each node in this graph represents a file. A
non-zero value in TD[i][j] indicates that filei and filej have a connecting edge in the co-commit
graph and are dependent on each other.

CA[i][j] for MR Congruence → In order to communicate with each other for the changes
made for an issue or a pull-request (PR) on GitHub, people comment on the discussion thread for
those issues and PRs. Therefore, a non-zero value for CA[i][j] indicates that personi and personj
communicated with each other by commenting on the same issue thread for the active issues in the
burst.

CA[i][j] for Structural Congruence → In their implementation of structural congruence,
Cataldo et al. [9] find the people belonging to the same organizational team and mark them as
candidates who communicate with each other via periodic team meetings or informal discussions.
Since we do not have well defined formal teams on GitHub we instead infer virtual teams as
people who have worked in related parts of the code. We partition the co-commit graph using the
fast unfolding method by Blondel et al. [3], in order to find communities or groups of the files
that change together and are highly interdependent. People committing the files that belong to the
same group are very likely to have communicated with each other or commented and reviewed
the commits made by others in the group. Therefore, a non-zero value for CA[i][j] represents that

11



personi and personj have committed files that belong to the same group (network communities)
at some point and belong to the same virtual team.

4.4 Control Measures
Cataldo et al. [8] identify numerous factors that impact the productivity (measured as the resolution
time of Modification Requests (MRs)) of the commercial software systems. In later work, they use
these factors as control measures in regression models [9]. Since these factors are designed with
commercial systems in mind, we cannot directly translate all of them to the open-source systems.
We excluded Temporal Dependency, Priority, Re-assignment, Release and Multiple Location as
they were difficult to apply to GitHub data. For example, GitHub projects do not mark priority
consistently, if at all; there is no accurate way of knowing the geographical locations of the con-
tributors and the release practices are quite different across projects. There were similar blocks
for other excluded factors. The following list describes the implementation of the subset of factors
that we were able to operationalize for GitHub.

1. Change Size - This measure approximates the actual amount of work done and is calculated
as the total number of files that were committed in the burst.

2. Team Load - This is the measure of average work load and is calculated as the number of
active issues per committer in the burst.

3. Component Experience - This measure is calculated as the average number of times the
active committers of the burst have committed the same files prior to the burst. Therefore,
for k people (p1 to pk) committing a total of n files (f1 to fn) in the burst, the component
experience is calculated as shown in equation 3 where cij represents the number of commits
made by personj to the filei before the current burst started.

component experience =

∑pk
j=p1

∑fn
i=f1

(cij)

(k ∗ n)
(3)

4. Tenure - For the active committers in the burst, this measure represents the average number
of days that they have been a part of the GitHub project at the time of completion of that
burst.

5. Activity per Person - This measure is calculated as the average number of commits and
comments made per active contributor in the burst.

6. Number of Teams - As explained in Section 4.3.2, we identified distinct communities or
group of files from the co-commit network. This measure is a count of the distinct number
of these network communities involved in the burst. It signifies the amount of the cross-team
collaboration effort required for the files being committed in the burst.

12



4.5 Impact on Productivity
We use a linear regression model in order to understand the impact of congruence and the control
measures on the prediction variable - Burst Duration Length (in days). We estimated two models:
one without the congruence measure (Model I) and one with the congruence measure (Model II).
We dropped bursts in which only one developer committed, since congruence is not a valid measure
in those cases. Our final dataset consisted of 60,458 bursts across 9,960 projects. The measures
“Team Load” and “Activity per Person” were highly correlated and thus it made sense to include
only one of them. In order to be consistent with the experiments in Cataldo et al. [9], we settled
on including Team Load. Structural Congruence was not a significant indicator and was highly
correlated to MR Congruence. Therefore, we exclude that measure too from our final model. An
analysis of the pair-wise correlations of the final list of control measures indicate no significant
collinearity among them.

Model I Model II
(Intercept) −1.21∗∗ −0.08+

Team Load 0.95∗∗ 0.97∗∗

Change Size 0.07∗∗ 0.07∗∗

Component Experience −0.02∗∗ −0.02∗∗

Number of Teams 3.1∗∗ 3.2∗∗

Tenure −0.0006∗∗ −0.0006∗∗

MR Congruence −2.5∗∗

N 60458 60458

Adjusted R2 0.291 0.296

(∗∗p < 0.0001, +p < 0.5)

Table 3: Effects on Burst Duration Length

5 Results
Table 3 shows the results of our regression experiments. Model I is a baseline regression model that
considers only the control measures. Consistent with the experiments in Cataldo et al. [9] and the
previous empirical work in software engineering [17], factors such as familiarity with the software
components (component experience) and general programming experience (tenure), help in faster
completion of the work items and lead to shorter burst duration, as suggested by their negative
parameter estimates. However, the coefficient for tenure is very small indicating its low effect on
the prediction. Herbsleb and Mockus [23] found that as the number of people involved or the size
of a change required increases, the resolution time for modification requests (MRs) also increases.
As in Cataldo, Number of Teams and Change Size are significant with a positive coefficient in our

13



experiments. The similar results lend weight to the idea that the issue resolution time in Cataldo’s
commercial setting is comparable to longer burst length in GitHub projects. On the other hand,
unlike Cataldo et al. [9] where Team Load was not a significant factor, we found it to be significant
and positive; i.e. as the number of issues per person increases, the burst duration also increases,
implying that it takes longer to complete the active tasks of the burst.

Model II introduces the measure of MR Congruence in our analysis. It has a statistically sig-
nificant effect on the burst duration length. The estimated coefficient is negative, indicating that
if congruence is high, i.e. the coordination requirements for the active tasks in the burst are met,
then the tasks are completed more quickly, and thus the burst is shorter. This is in line with the
previous findings on the effect of congruence and the resolution times of the MRs of large com-
mercial systems [9, 7, 8]. Therefore, it validates our expectation that congruence has a role to play
in explaining the effect of coordination on the productivity of open-source GitHub projects. If the
required people coordinate, the burst duration might be shorter. However, its role in accounting
for the burst duration is small and there is only a slight increase in the R2 value or the model
fit (roughly 29% → 30%). Other control measures retain their significance and the coefficient
strength, as in Model I, and therefore have a similar effect on the burst length.

The code and data are available in a separate data release publication.[? ]

6 Discussion
Even though congruence only accounts for about one percent of the model fit, it does not mean
that it is not important. The low R2 value suggests that perhaps there is not a huge variability in
congruence values. We found that the larger the number of people, the lower the congruence is on
average, but most of the time, a small number of people are active in a burst. Therefore, there are
certain times when it is important in explaining the productivity of the participants, indicating it to
be salient feature over all.

Measuring productivity in open-source projects is difficult because of the lack of a clear mea-
sure of success, as well as the diversity, informality and the voluntary nature of collaboration. Open
source developers sometimes use ad-hoc measures, like number of open bugs or volume of activity,
to assess how “serious” a project is [13]. Our measure of productivity has the potential to quickly
and comprehensively assess whether a project is working efficiently at any given time. Further,
our end-to-end pipeline of identifying the bursts of activity, calculating the control measures and
operationalizing congruence can be leveraged to make aspects of collaboration visible in ways that
could help address the productivity problems.

The HMM helped us separate out interesting episodes in a project’s timeline for studying col-
laboration, but we believe it has other potential uses for identifying relevant events and phases as
a project evolves. For example, there could be distinct phases of recruitment and retention of de-
velopers or there might exist diverse patterns of work on different artifacts (code, documentation,
tests) over the project lifecycle. The segmentation of the project timeline into bursts can also be
leveraged to visualize and study different collaborative behaviors by focusing on intervals of time
that are most important. Since GitHub provides no direct way of associating commits (i.e. code
changes) with the reported issues (i.e. bug reports and feature requests), these bursts can serve as

14



a good approximation of this association to facilitate other coordination studies in open-source.
There have been studies in the past showing that individuals have difficulties identifying non-

explicit task interdependencies and dynamic coordination requirements over time [38, 8]. Many
collaboration tools have been designed to identify and exhibit these dependencies to the developers.
However, their adoption has mostly been limited to either commercial or a single large open-source
software system, where the identification of such dependencies is tractable. Their employment to
large-scale open-source platforms like GitHub has been minimal at the least. Some prior tools in
this vein include dependency checkers such as Tukan [37], CollabVS [15], and Palantı̀r [35]. They
perform basic code analysis to identify dependencies among artifacts and warn developers when
they are changed by others. There are also tools that leverage not only the technical but also the
social information of the software projects. Sarma et al. [36] developed ‘Tesseract’, an interactive
visualization tool that leverages the socio-technical information computed by congruence to show
the relationships among different project entities that could help the developers align their inter-
actions at work. Along similar lines, de Souza et al. [14] developed an Eclipse plugin ‘Ariadne’
that analyzes software projects for technical dependencies among components and translates them
into social dependencies among developers. The technique suggested in this paper could provide
a good guideline in adapting and extending these tools to GitHub.

We demonstrated this technique for a varied set of PyPi projects, but it is generic enough to be
applied to other domains on GitHub. We envision, for example, a GitHub plugin that would enable
the developers of the projects to analyze the project’s current productivity or the congruence values
in the recent episodes of activity to detect coordination breakdowns and take appropriate steps. The
information from the co-commit graphs and the user-file associations can be leveraged to identify
the socio-technical dependencies for the projects. The ‘Number of Teams’ control measure could
also be useful as a network partitioning method to identify clusters of interdependent files and the
people associated with it. This clustering of people into teams might give the developers an insight
into the implicit organization of the project and identify the team that they belong to. This would
especially be helpful for small and medium sized projects that have no commercial backing or
official teams.

All in all, platforms like GitHub could make use of a productivity measure and its compo-
nents, through the techniques presented here, in order to bring more situational awareness about
productive collaboration into the user experience on these platforms.

Future work - Socio-Technical Congruence has been a very useful metric and captures who
should coordinate for the successful completion of different tasks quite well. However, it does not
capture the matters of how they should collaborate. This is apparent by the low fit of our regression
model. In future, we would like to understand how the coordination is carried out. Open-source
developers coordinate and communicate with each other on myriad platforms of communication
ranging from bug reports, issue threads, IRC, mailing lists and so on. We would like to build a
pipeline to that would help us understand collaboration beyond what congruence can explain on
open-source projects by looking at the developer conversations and identifying indicators for user
behaviors that serve as good predictors of project health and success.

15



7 Conclusion
This paper presented our effort to synthesize a model of productive collaboration in open-source
projects on GitHub. We examined when the collaboration occurs and who should coordinate for
a successful completion of the tasks. We compared and used different burst detection models to
detect interesting and coherent episodes of activity in the open-source projects’ timeline. These
episodes were used to quantify a meaningful unit of work and a measure of productivity. Our
experiment showed that socio-technical congruence and related control variables had a significant,
albeit subtle, impact on the productivity of the active phases of the projects.

References
[1] Albert-László Barabási. Bursts: the hidden patterns behind everything we do, from your e-mail to

bloody crusades. Penguin, 2010.

[2] Doug Beeferman, Adam Berger, and John Lafferty. Statistical models for text segmentation. Machine
learning, 34(1):177–210, 1999.

[3] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10):
P10008, 2008.

[4] Francesco Bolici, James Howison, and Kevin Crowston. Coordination without discussion? socio-
technical congruence and stigmergy in free and open source software projects. In Socio-Technical
Congruence Workshop in conj Intl Conf on Software Engineering, Vancouver, Canada, 2009.

[5] Francesco Bolici, James Howison, and Kevin Crowston. Stigmergic coordination in FLOSS devel-
opment teams: Integrating explicit and implicit mechanisms. Cognitive Systems Research, 38:14–22,
2016. ISSN 13890417. doi: 10.1016/j.cogsys.2015.12.003. URL http://dx.doi.org/10.
1016/j.cogsys.2015.12.003.

[6] Tyson R Browning and Ranga V Ramasesh. A survey of activity network-based process models for
managing product development projects. Production and operations management, 16(2):217–240,
2007.

[7] Marcelo Cataldo and James D Herbsleb. Coordination breakdowns and their impact on development
productivity and software failures. IEEE Transactions on Software Engineering, 39(3):343–360, 2013.

[8] Marcelo Cataldo, Patrick A Wagstrom, James D Herbsleb, and Kathleen M Carley. Identification
of coordination requirements: implications for the design of collaboration and awareness tools. In
Proceedings of the 2006 20th anniversary conference on Computer supported cooperative work, pages
353–362. ACM, 2006.

[9] Marcelo Cataldo, James D Herbsleb, and Kathleen M Carley. Socio-technical congruence: a frame-
work for assessing the impact of technical and work dependencies on software development produc-
tivity. In Proceedings of the Second ACM-IEEE international symposium on Empirical software engi-
neering and measurement, pages 2–11. ACM, 2008.

16

http://dx.doi.org/10.1016/j.cogsys.2015.12.003
http://dx.doi.org/10.1016/j.cogsys.2015.12.003


[10] Marcelo Cataldo, Audris Mockus, Jeffrey A Roberts, and James D Herbsleb. Software dependencies,
work dependencies, and their impact on failures. IEEE Transactions on Software Engineering, 35(6):
864–878, 2009.

[11] Samridhi Sree Choudhary, Christopher Bogart, Carolyn Pennstein Rosé, and James D. Herb-
sleb. Modeling productivity in open source github projects: A dataset and codebase.
https://doi.org/10.1184/R1/6397013.

[12] Bill Curtis, Herb Krasner, and Neil Iscoe. A field study of the software design process for large
systems. Communications of the ACM, 31(11):1268–1287, 1988.

[13] Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. Social coding in github: transparency
and collaboration in an open software repository. In Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work, pages 1277–1286. ACM, 2012.

[14] Cleidson R de Souza, Stephen Quirk, Erik Trainer, and David F Redmiles. Supporting collaborative
software development through the visualization of socio-technical dependencies. In Proceedings of
the 2007 international ACM conference on Supporting group work, pages 147–156. ACM, 2007.

[15] Prasun Dewan and Rajesh Hegde. Semi-synchronous conflict detection and resolution in asynchronous
software development. In ECSCW 2007, pages 159–178. Springer, 2007.

[16] Anwar I Elwalid and Debasis Mitra. Effective bandwidth of general markovian traffic sources and
admission control of high speed networks. IEEE/ACM Transactions on Networking (TON), 1(3):329–
343, 1993.

[17] J. Alberto Espinosa. Shared Mental Models and Coordination in Large-scale, Distributed Software
Development. PhD thesis, Pittsburgh, PA, USA, 2002. AAI3065743.

[18] Victor S Frost and Benjamin Melamed. Traffic modeling for telecommunications networks. IEEE
Communications Magazine, 32(3):70–81, 1994.

[19] Gabriel Pui Cheong Fung, Jeffrey Xu Yu, Philip S Yu, and Hongjun Lu. Parameter free bursty events
detection in text streams. In Proceedings of the 31st international conference on Very large data bases,
pages 181–192. VLDB Endowment, 2005.

[20] Raghu Garud, Arun Kumaraswamy, and Richard Langlois. Managing in the modular age: architec-
tures, networks, and organizations. John Wiley & Sons, 2009.

[21] Amir Hossein Ghapanchi, Aybuke Aurum, and Graham Low. A taxonomy for measuring the success
of open source software projects. First Monday, 16(8), 2011.

[22] Marti A Hearst. Multi-paragraph segmentation of expository text. In Proceedings of the 32nd annual
meeting on Association for Computational Linguistics, pages 9–16. Association for Computational
Linguistics, 1994.

[23] James D. Herbsleb and Audris Mockus. An empirical study of speed and communication in globally
distributed software development. IEEE Transactions on software engineering, 29(6):481–494, 2003.

17



[24] Jon Kleinberg. Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery,
7(4):373–397, 2003.

[25] Andrew J Ko and Parmit K Chilana. Design, discussion, and dissent in open bug reports. In Proceed-
ings of the 2011 iConference, pages 106–113. ACM, 2011.

[26] Anders Krogh, Michael Brown, I Saira Mian, Kimmen Sjölander, and David Haussler. Hidden markov
models in computational biology: Applications to protein modeling. Journal of molecular biology, 235
(5):1501–1531, 1994.

[27] Theodoros Lappas, Benjamin Arai, Manolis Platakis, Dimitrios Kotsakos, and Dimitrios Gunopulos.
On burstiness-aware search for document sequences. In Proceedings of the 15th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 477–486. ACM, 2009.

[28] Alan MacCormack and Roberto Verganti. Managing the sources of uncertainty: Matching process and
context in software development. Journal of Product Innovation Management, 20(3):217–232, 2003.

[29] Jennifer Marlow, Laura Dabbish, and Jim Herbsleb. Impression formation in online peer production:
activity traces and personal profiles in github. In Proceedings of the 2013 conference on Computer
supported cooperative work, pages 117–128. ACM, 2013.

[30] Jamie F Olson, James Howison, and Kathleen M Carley. Paying attention to each other in visible
work communities: Modeling bursty systems of multiple activity streams. International Conference
on Social Computing (SocialCom), pages 276–281, 2010. doi: 10.1109/SocialCom.2010.46.

[31] Lawrence R Rabiner. A tutorial on hidden markov models and selected applications in speech recog-
nition. Proceedings of the IEEE, 77(2):257–286, 1989.

[32] Christoph Riedl and Anita Williams Woolley. Teams vs. crowds: A field test of the relative con-
tribution of incentives, member ability, and emergent collaboration to crowd-based problem solving
performance. Academy of Management Discoveries, 3(4):382–403, 2017.

[33] Bruno Rossi, Barbara Russo, and Giancarlo Succi. Analysis of Open Source Software Development
Iterations by Means of Burst Detection Techniques. Proc. International Conference on Open Source
Systems (OSS), 299:83–93, 2009. doi: 10.1007/978-3-642-02032-2.

[34] Walter L Ruzzo and Martin Tompa. A linear time algorithm for finding all maximal scoring subse-
quences. In ISMB, volume 99, pages 234–241, 1999.

[35] Anita Sarma, Zahra Noroozi, and André Van Der Hoek. Palantı́r: raising awareness among config-
uration management workspaces. In Software Engineering, 2003. Proceedings. 25th International
Conference on, pages 444–454. IEEE, 2003.

[36] Anita Sarma, Larry Maccherone, Patrick Wagstrom, and James Herbsleb. Tesseract: Interactive visual
exploration of socio-technical relationships in software development. In Software Engineering, 2009.
ICSE 2009. IEEE 31st International Conference on, pages 23–33. IEEE, 2009.

[37] Till Schümmer and Jörg M Haake. Supporting distributed software development by modes of collab-
oration. In ECSCW 2001, pages 79–98. Springer, 2001.

18



[38] Manuel E Sosa, Steven D Eppinger, and Craig M Rowles. The misalignment of product architecture
and organizational structure in complex product development. Management science, 50(12):1674–
1689, 2004.

[39] Margaret-Anne Storey, Leif Singer, Brendan Cleary, Fernando Figueira Filho, and Alexey Zagalsky.
The (R) Evolution of Social Media in Software Engineering. FOSE 2014 Proceedings of the on Future
of Software Engineering, pages 100–116, 2014. doi: 10.1145/2593882.2593887. URL http://dl.
acm.org/citation.cfm?doid=2593882.2593887.

[40] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and technical factors for evaluating
contribution in github. In Proceedings of the 36th international conference on Software engineering,
pages 356–366. ACM, 2014.

[41] Jason Tsay, Laura Dabbish, and James Herbsleb. Let’s talk about it: evaluating contributions through
discussion in github. In Proceedings of the 22nd ACM SIGSOFT international symposium on founda-
tions of software engineering, pages 144–154. ACM, 2014.

[42] Michail Vlachos, Christopher Meek, Zografoula Vagena, and Dimitrios Gunopulos. Identifying simi-
larities, periodicities and bursts for online search queries. In Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages 131–142. ACM, 2004.

[43] Yunyue Zhu and Dennis Shasha. Efficient elastic burst detection in data streams. In Proceedings of
the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pages
336–345. ACM, 2003.

19

http://dl.acm.org/citation.cfm?doid=2593882.2593887
http://dl.acm.org/citation.cfm?doid=2593882.2593887

	1 Introduction
	2 Literature Survey
	2.1 Bursty Structure in Data Streams
	2.2 Coordination in Open-Source

	3 Data
	3.1 Data Collection
	3.2 Data Burstiness

	4 Methodology
	4.1 Burst Detection Models
	4.2 Burst Model Comparison and Selection
	4.3 Coordination - Socio-Technical Congruence
	4.3.1 Congruence the Traditional Way:
	4.3.2 Congruence the GitHub Way:

	4.4 Control Measures
	4.5 Impact on Productivity

	5 Results
	6 Discussion
	7 Conclusion

