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Abstract
Providing secure solutions for information systems relies on decisions made

by expert security professionals. These professionals must be capable of aligning
threats to existing vulnerabilities to provide mitigations needed to minimize security
risks. Despite the abundance of security controls, guidelines, and checklists, security
experts rely mostly on their background knowledge and experience to make security-
related decisions. In this thesis I explore how security experts make security-related
decisions, collect their assessments of security measures nested in scenarios, and
extract security mitigation rules. These rules could be used to build an intelligent
fuzzy logic intelligent system, which captures the knowledge of many experts in
combination. I present the Multi-factor Quality Measurement (MQM) method that I
introduced to the field of requirements engineering to empirically elicit and analyze
security knowledge from experts. This is done by using user-studies that instruments
factorial vignettes to capture the experts’ assessments of mitigations in scenarios
composed of many components affecting the decision-making process. The results
are analyzed quantitatively with multi-level modeling in order to capture the weights
and priorities assigned to security requirements, and qualitatively to explore new or
refined security requirements.

The outcome of the analysis will be used to generate membership functions for
a type-2 fuzzy logic system. The corresponding fuzzy rule-sets encode the interper-
sonal and intra-personal uncertainties among experts in decision-making.

I explore security decision-making in presence of: composite security require-
ments, varying expertise, and uncertainty. This work makes methodological con-
tributions on two aspects: empiricism, where I adapt different data collection and
analysis techniques adapted from other interdisciplinary fields and apply it to re-
quirements engineering; and modeling, where I explore a data-driven modeling ap-
proach that can fit data collected from experts in the security domain, where the
experts are scarce and the amount of data collected is not sufficient to use machine
learning.
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Chapter 1

Introduction

Despite the abundance of well-documented security best practices, we continue to see security
breaches that affect different organizations and industries. The 2014 OWASP Top 10 Application
Security Risks report shows that attacks are occurring due to the exploitation of common, well-
documented vulnerabilities, such as injection and cross-site scripting attacks [95].

Organizations rely on the judgment of security experts to evaluate the security of their sys-
tems. Despite the abundance of well-documented security best practices, such as the NIST Spe-
cial publication 800-53 that lists 256 security controls [93], security experts rely on their own ex-
pertise and tacit knowledge to assess the security risk and provide recommendations [67, 68, 69].
The analyst must often reason over potentially millions of scenarios that account for various
permutations of network type, services offered, threat type, etc. When requirements change by
adding new components and features, these risk calculations must be updated [68]. What is not
known is how changes in threats and requirements affect the analyst’s ability to perceive changes
in risk and their ability to identify and prioritize security requirements. In addition, security ex-
perts in the world are scarce. There are about 100,000 information security analysts in the U.S. in
2016 according to the U.S. Bureau of Labor statistics [120], and there is an expected 58% growth
in demand by 2018 [112]. The scarcity of experts and the need for cybersecurity as the number
of information security incidents keeps increasing, makes the provision of intelligent decision
support and semi-automated solutions a necessity.

This thesis investigates how do design secure software when: 1) security expert-knowledge
is stove-piped; 2) security decisions involve multiple factors (e.g. risk analysis, attacks, vulner-
abilities), 3) uncertainty is present degrees in human decisions, and 4) the number of experts
in security is limited and difficult to grow in sufficient time, which limits the volume of data
collected. To address these challenges, I used mixed quantitative and qualitative methods from
multiple disciplines. I collected data using interviews, surveys, and user studies that employ
factorial vignettes and mixed methods designs. For data analysis, I have used the grounded anal-
ysis from social science, the theory of situation awareness established in psychology, and the
statistical multi-level modeling. I model the analysis results using fuzzy logic, which is a formal
method used in the computational intelligence community.
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Thesis Statement
The increasing complexity of security attacks takes advantage of three challenges to making
reliable security assessments: 1) security experts’ knowledge is typically stove piped, 2) security
against specific threats is achieved through composition of multiple requirements, 3) security-
decisions carry a measurable degree of uncertainty, and 4) the limited number of security experts.
This thesis examines security requirements composition in presence of uncertainty and attempts
to extract and model experts’ knowledge in the form of rules. The theoretical outcome is a
repeatable methodology to create risk assessment models that conform to the real world, while
the practical outcome is a step towards understanding how to automate and improve security
recommendations.

Below, I will provide a summary of the technical contributions of thesis.

Exploring Challenges in Security Decision-Making
To reflect on the slow, deliberative decision-making process of security analysts, I have ob-
tained qualitative data by interviewing security experts (some with over 10 years of experience)
and used grounded analysis on interview transcripts to discover patterns of situation awareness
(SA), a decision-making theory from cognitive psychology that decomposes decision making
into four states: perception, comprehension, projections, and decision. In my work, I validated
the decision-making model of situation awareness and the discovered patterns show that ana-
lysts try to handle uncertainties using assumptions and prior knowledge. In addition, the analysis
show that even when presented with a checklist of requirements, experts’ in practice tend to put
security requirements in a context by creating their own scenarios and analyzing potential vul-
nerabilities and attacks. This work revealed the opportunity for further studies that measure how
changes in certain factors, such as a network configuration, and password requirements can in-
crease or decrease the experts security rating. Our work also revealed that experts who combine
hands-on industry experience with academic knowledge exhibit different patterns of situation
awareness compared to novices who rely on academic background alone. The experts made
assumptions when faced with uncertainty, while novices asked the interviewer for additional de-
tails. The experts also demonstrated patterns in which they adopt an attacker’s perspective, but
novices failed at demonstrating this perspective. These patterns may be useful to design tests to
measure whether novices can be effectively trained to reach expert SA. Researchers and practi-
tioners may find results from this work useful in facilitating and improving training for novices.
This work is explained in detail in Chapter 3

Establishing the scientific validity of Ad-hoc Security Measures
To ask experts about security decision-making, we must first decide on the measure to be used for
security. Our initial expert interviews (described in Chapter 3) show that experts were hesitant to
describe a feature or a component as secure or insecure, and they preferred to say “it depends”.
We examined a list of possible scales to describe security, and concluded by choosing adequacy
of security requirement(s) as a metric. In our studies, we used the adequacy metric on a semantic
scale including anchors for more or less adequacy. To align our semantic scale with intervals,
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we invited 38 security experts where we asked each expert to provide an interval for the word
on a scale from 1-10 while imagining that the word describes a security scenario. The collected
intervals show that the labels: adequate, inadequate and excessive cover the entire scale from 1-
10 when modeled using type-2 fuzzy sets. I will explain these studies in more detail in Chapters
4, 5, and 6.

Capturing the Effect and Priorities of Composed Security Requirements
Asking security experts about decision-making has five challenges: 1) composition, risk assess-
ment of a system must consider the system context in which the requirements apply, and the
composition of requirements with components of a system; 2) priorities, some requirements
have higher priorities than others, depending on their strength in mitigating threats; 3) ambiguity
in abstract terms that could lead two experts to interpret a requirement differently; 4) stove-piped
knowledge, security expertise crosses different domains, such as hardware, software, cryptogra-
phy, and operating systems; and 5) the scarcity of security experts. To address these challenges,
I developed the Multifactor Quality Measurement method (MQM), which models dependencies
among requirements, and estimates how these requirements affect a perceived level of quality
in a requirements specification, called a scenario. The MQM process starts with ad hoc boot-
strapping of scenarios using factorial vignettes, a social science method where scenarios are con-
structed using a template consisting of factors of interest. By treating the factors as variables and
manipulating the variables and their levels, we generate different instantiations of the template.
Generating multiple vignettes allows us to elicit more information from a smaller number of ex-
perts. This study design has greater statistical power (increasing power reduces the probability
of errors) because it includes both within-subject and between subject effects. In addition, the
data is analyzed later with multi-level modelling which limits the biased covariance estimates,
and hence, increases power. The manipulation of factors/levels allows researchers to study the
effect of changing security requirements on adequacy ratings, to identify dependencies, and to
prioritize requirements based on the factor contribution to the overall effect. For example, results
of the multi-level modeling suggests that, although experts realize that displaying detailed error
messages to end-users is an insecure approach that exposes internal vulnerabilities to hackers,
their overall security ratings were slightly improved when the scenario had a stronger logging
and monitoring mechanism. To close the security knowledge gap, the MQM approach helps ana-
lysts elicit new requirements from experts that have been experimentally shown to monotonically
increase security. Researchers and requirements analysts can benefit from applying this process
to their case studies to measure security or any quality of interest. I present this work in detail in
Chapter 5.

Data-driven Approach for Modeling Expert Knowledge
Formal Modelling of security knowledge is necessary to build a decision-support system or an
intelligent system in general. The security expert judgments will always contain a degree of
interpersonal uncertainty e.g., in which two experts providing different judgments and intraper-
sonal uncertainty where the same expert provides different judgments over different times. The
uncertainty in the data is a characteristic that cannot be ignored, but rather need to be modeled,

3



because it represents the diversity of opinions of experts. Type-2 fuzzy sets model the uncertain-
ties, both interpersonal and intrapersonal. To use this logic to reason over uncertain decisions, I
introduce a method to build a type-2 fuzzy logic rule-set with reduced size. I use the expert data
to retain realistic permutations of input/output, and exclude unrealistic permutations. My contri-
butions to the computational intelligence community is in the rigorous approach to eliciting and
modeling real expert data, and in the application to cybersecurity, which I will explain in further
detail in Chapter 6

Finally, I will provide conclusions from the work in this thesis along with future work and
possible research directions in Chapter 7.
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Chapter 2

Background and Related Work

Haley et al. describe security as a wicked problem [62]. Wicked problems are those difficult to
solve problems due to unclear, ambiguous, or conflicting requirements [31, 62]. Wicked prob-
lems are challenging, because the space of possible solutions are difficult to enumerate [33], and
this is the challenge that faces analysts when addressing security problems. Security analysts
may respond differently to the same security problem, and they also may find different resolu-
tions to discrepancies represented in the problem. For example, analysts can look at the same
artifact that describes a network architecture, whereby one analyst might assess the security of
the authentication mechanisms, while another is focused on encryption mechanisms. With such
wicked problems, DeGrace and Stahl, and Detoit et al. suggest that the design of solutions
should be aimed at reducing ambiguity by reaching a collective understanding of the problem
representation [31, 33].

In this chapter I focus on background and related work that highlights the challenges that
make security decision-making a wicked problem.

We believe that there are three factors that make security analysis a wicked problem: how
security requirements work together, which we call composition; the varying levels of expertise
maintained by experts themselves; and the uncertainty that is present to some level in security
decisions. In the remainder of this section we will first explain the security risk quantification
problem, because the goal of security analysis is to minimize the risk. Next, we will explain the
problem with current security checklists. Lastly, we will discuss the role of security expertise
in decision-making and how requirements composition, expertise differences, and uncertainty
affect the analyst decision-making process.

2.1 Security Checklists

Security guidelines and best practices are widely available and documented in a checklist. For
example, the U.S. National Institute of Standards and Technology (NIST) Special Publication
(SP) 800 series describes best practice security requirements [93], and the Common Criteria de-
scribes a method to evaluate system security. In particular, the NIST SP 800-53 lists 256 security
controls, which security analysts can apply in a checklist by deciding whether the control ap-
plies to their system. To make this decision, the analyst must reason over potentially millions
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of scenarios that account for various permutations of network type, services offered, threat type,
etc. Hence, the problem is not the lack of security guidelines but that they are not usable. When
requirements change by adding new components and features, these risk calculations must be up-
dated. What is not known is how changes in threats and requirements affect the analyst’s ability
to perceive changes in risk or their ability to identify and prioritize security requirements. Check-
lists only list the requirement that could decrease the risk, whereas mapping the requirement to
certain threat scenarios or to other requirements must be done by the analyst independently. In
addition, the context in which requirements exist in composition with priorities and dependen-
cies among each other is also missing from the checklists and it is the security analyst’s job to
figure out the context and the underlying dependencies [51].

Repeatable solutions in security require a certain level of abstraction. An abstract solution
exists regardless of the underlying technology(s), and this is what provides more stability for
a system [51]. For example, the Open Web Application Security Project (OWASP) is an orga-
nization that provides software security checklists in its online materials that help developers
to reduce the security risk by applying security best practices to their software [95]. However,
the technical solutions here are fine-grained to the program-level, where it is challenging for the
average developer to infer the abstraction. These specific solutions in guidelines are only appli-
cable as long as the specific technology exist, and once new technologies appear, the solutions
may not be applicable to the new technology. What is needed here is the abstract solution that
can be applied in similar contexts independent of technical details so the solution will remain
stable no matter how the technology changes. Software design patterns are a good example of
abstract solutions [4, 50, 114], although, more work is needed to understand how analysts fit
security patterns to problems.

2.2 Quantifying Security Risk
The U.S. National Institute of Standards and Technology (NIST) defines security risk to re-
searchers as the product of likelihood and impact: the likelihood of a threat to occur on a re-
source, and the impact of the threat occurrence on the organization [116]. There has been a
number of efforts where researchers suggest methods that help assess and quantify the security
risk according to the NIST definition [2, 72, 78, 116]. However, these and other approaches are
criticized for not solving the security problem [51, 52] as our systems continue to be compro-
mised by attackers [52]; and some researchers question the feasibility of such approaches [52].
For example, Butler and Fischbeck propose a multi-attribute risk assessment process that uses an
additive value models that allows managers to rank order threats [17]. The authors argue that this
approach helps prioritize requirements [17]. However, the proposed model relies on the input of
one security manager and assumes that the knowledge of the manager is complete. As I explain
in the upcoming sections, security experts knowledge varies and differences among experts can
affect their judgment of requirements. Another limitation to Butler and Fischbeck’s approach
[17], is that it ranks requirements in an ordered list without accounting for dependencies and
interactions among requirements.

The rapid growth in technology and data calls for new approaches for security risk assess-
ment. Garfinkel argues that the existing different approaches to risk assessment are not feasible
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in practice, because we cannot put an exact number on impact and likelihood of adverse events
and that is the reason why many organizations use catalogs of best practices as a way to minimize
the security risk [51].

Research in risk quantification aims to define what is secure enough, but the challenge with
risk remains: measuring to what extent a requirement or mitigation is sufficient. Chung, and
Mylopoulos et al. suggest that security requirements could only be satisficed as opposed to
satisfied [25, 92]. Since organizations are in need for risk assessment, they rely on security best-
practice checklists to perform their analysis [51], and they probably consider the checklist to be
their sufficient or enough threshold.

Checklists, however, as Garfinkel points out, lack the context or situation where the security
best practices exist in [51]. Putting security requirements in a context impacts the analysts risk
perception [61]. Haley et al. asserts that it is more feasible to assess security risk and reason
about satisfaction of a security requirement in the context of a given situation as opposed to
reasoning in a broader context, because it is harder to claim that a negative event is never going
to happen [61]. In the upcoming Chapter 5 of this thesis, I will show the effect of composing
security requirements in scenarios on experts risk assessment.

2.3 Security Risk Assessment as a Wicked Problem
Security problems are often assessed by experts who are responsible for reviewing a system
specification, and deciding what mitigations will mitigate security threats. Experts are also re-
sponsible for making sure companies are in compliance with security guidelines, such as NIST
800-53. This practice is affected by the analyst expertise and their ability to make decisions
about security requirements that exist in composition. Composition means that the requirements
do not exist independent of one another; instead they exist in a context with dependencies and
priorities among related requirements. Adding or removing a requirement affects other require-
ments in that context. For example, if an organization decides to open a web access port to its
in-house system that was closed in the past, this would affect the authentication mechanisms,
the access control policy, passwords, and so on. As we have mentioned earlier, the composition
of requirements and context in which they exist is missing from conventional representations of
guidelines and it is addressed later during the security risk assessment.

In addition to composition, security risk assessment is affected by the analyst own expertise,
and the level of uncertainty that might exist in the decisions they make. Below, we will ex-
plain the four factors that affect security analysts risk assessment: expertise, scarcity of experts,
composition, and uncertainty. We believe that these factors contribute to making security risk
assessment a wicked problem:

2.3.1 Security Analysts Knowledge and Expertise
Experts rely on tacit knowledge to conduct an analysis. Security experts are not all equal in
their knowledge and skill set. For example, security knowledge can be acquired from specialized
courses, on-the-job training, or self-study. In addition, some experts may be more specialized
in certain areas of security, such as web-security or mobile security. Ben-Asher and Gonzalez
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[14] examined how the knowledge gap between novices and experts affect the analyst ability to
detect cyber attacks as the experts performed significantly better than novices. To detect attacks
successfully, cybersecurity experts need: 1) domain knowledge [22, 42, 59] that is obtained
through formal academic learning and practical hands-on experience with tools; and 2) situated
knowledge which is organization dependent and which analysts tend to learn through continuous
interaction with certain environments [58, 59, 111]. We elaborate more on security expertise in
Chapter 3 as we show our results from 11 interviews of security experts during the conduct of
security assessments.

Defining a Security Expert

Distinguishing experts from novices is not a straight-forward process [43]. Finding the proper
metrics to defining experts, measure their expertise, and distinguish them from novices remains
a challenge in research and is affected by many factors including the domain of interest [43].
Expertise refers to the set of skills or characteristics that distinguish knowledgeable individuals
in certain domains from the general population [43]. Self-assessment of expertise is not a reli-
able approach, because of the risk of overconfidence bias or the “Dunning-Kruger [77]" effect,
wherein individuals with less expertise may fail to recognize their own weakness or knowledge
gaps, which may result in inflated self-assessments (also known by social psychologists as illu-
sory superiority) [77].

It is important, however, to assess the knowledge of experts who are providing input in em-
pirical research because the level of expert knowledge could affect their judgment. Edwards and
Tversky suggest that a decrease in knowledge could lead to an increased judgment uncertainty
[35].

Using knowledge tests in any domain requires researchers to be cautious of some confound-
ing factors that could skew or bias the results. For example, age could be one confounding
factor; a study has shown that older physicians are morel likely to score lower on knowledge
tests compared to younger physicians [24]. Knowledge tests that heavily focus on theory could
also introduce some bias; a study performed on military technical personnel, found low correla-
tion between the scores on the knowledge test and the actual performance in troubleshooting the
technical problem.

In the security field, researchers assessed the knowledge of participants in security-related
studies and there has been some evidence that security knowledgeable participants are not al-
ways following the most secure behavior on their own devices [109, 127]. Wash and radar
surveyed 1993 Internet users in the United States and found that users might hold to security
beliefs that are not correlated to their security knowledge, which means one cannot rely on using
security knowledge to predict secure online behavior [127]. In another study that investigates
users security behavior, Sawaya et al. used a set of 18 security knowledge questions to assess the
security knowledge of 3,500 participants from seven countries [109]. The study results suggest
that users confidence in their security knowledge had a more positive effect on their security be-
havior compared to their actual security knowledge [109]. As I explain later in Chapter 5, we use
security knowledge tests to assess the security knowledge of experts participating in our studies.
Being aware of possible biases highlighted above, we avoid screening participants based on the
knowledge tests. Instead, we use the knowledge tests to as a tool to measure experts’ security
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knowledge and to provide descriptive statistics about the experts in our sample population. In
the upcoming chapters of this thesis, I will explain our approach for the knowledge assessment
of experts recruited in our different studies.

2.3.2 Security Requirements Composition
Expert tacit knowledge in security includes domains, such as cryptography, network security,
web security, mobile security, database security, and malware analysis, among others. It is chal-
lenging to find one expert in all these areas, combined. Understanding complex attacks, for
example, requires knowledge combined from a number of security fields and understanding how
the “pieces of the puzzle” compose together [14, 68]. Stuxnet is a good example where the at-
tack targeted networks with hosts that run the Windows operating system and Siemens Step7
software [21]. This attack, which targets vulnerabilities found on network hosts, proves that
focusing on strengthening the security of the network alone is not sufficient as other factors,
such as the hosts, their operating systems, and other connected components, need to be taken
into consideration when performing the security risk assessment [52]. This broad understanding
helps analysts to determine the proper requirements that work together to mitigate attacks. For
example, stronger passwords with rules of 16 alphanumeric and special characters could be con-
sidered a good security requirement, but this cannot be an absolute rule. The type of password
relies on other factors such as: the type of network where the connection is made, the sensitivity
of the data involved, and so on [68]. In Chapter 5, we elaborate on this effect when we report the
results of our studies.

2.3.3 Uncertainty in Security Decisions
The research paradigm in software engineering is shifting towards recognizing uncertainty as a
first-class concern that affects design, implementation, and deployment of systems [53]. Gar-
lan argues that the human in the loop, mobility, rapid evolution, and cyber physical systems are
possible sources of uncertainty [53]. These sources of uncertainty affect the analyst security as-
sessment. In this thesis, the focus is on the uncertainty in expert security assessments that could
be interpersonal and intrapersonal. Interpersonal uncertainty exists between different experts
as experts can judge the same situation differently. Intrapersonal uncertainty is the uncertainty
within an analysts own judgment [88]. For example, an expert might describe a security re-
quirement to be adequate. The uncertainty that this expert has about whether the combination
of factors are themselves adequate is intrapersonal uncertainty, because the same experts might
provide different judgments in two different times. The interpersonal uncertainty would be be-
tween two different experts would have different judgments of the situation and could disagree
on the efficacy of the security requirement to mitigate an attack.

2.3.4 Security Experts Scarcity
The number of security experts in the world is scarce. According to the U.S. Bureau of Labor
statistics, there is around 100,000 information security analysts in the U.S. in 2016, earning a
median income of $95,510 a year [120]. Employment is projected to grow by 28% by 2026,
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which is a faster growth rate then average [120], and 56% growth in demand for security analysts
is projected by 2026 [120].
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Chapter 3

Exploring Challenges in Security
Decision-Making

It is important to first explore the problem of security-decision making, and identify how different
factors like uncertainty and expertise level could affect the decision-making process. Qualitative
data that are rich with details and context are a good fit for exploratory research.

In this chapter, I describe expert interviews as part of an exploratory study (published in the
Journal of Cybersecurity [69]) that is analyzed qualitatively using grounded analysis [29, 55] and
the theory of situation Awareness (SA) [39, 41]. The study was conducted with 11 security experts
[69] to understand how experts form decisions. We examined responses to the same artifacts
with and without checklists, a prominent security requirements analysis method. We developed
a novel coding method to apply Situation Awareness (SA) to interview data, to understand how
security experts choose appropriate security requirements. The results include decision-making
patterns that characterize how analysts perceive, comprehend and project future threats against
a system, and how these patterns relate to selecting security mitigations. Based on this analysis,
we discovered new theory to measure how security experts and novices apply attack models.
The results also highlight the role of expertise level and requirements composition in affecting
security decision-making.

3.1 Motivation
Security analysts review different artifacts of a system and decide on proper mitigations based on
their security risk assessment. As I have pointed out in the introduction and related work, these
reviews are affected by the analysts own expertise and differences among analysts could lead to
different security decisions. In addition, the lack of information system security is unlikely due
to an absence of documented security requirements. The ISO/IEC 27000 Series standards and
the U.S. National Institute of Standards and Technology (NIST) Special Publication 800 Series
are examples of documents that contain best practice security requirements. Combined with the

Excerpts from this work were previously published as H. Hibshi, T. D. Breaux, M. Riaz, and L. Williams, A
Grounded Analysis of Experts Decision-Making during Security Assessments, Journal of Cybersecurity, 2016.
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wealth of available security knowledge, we hypothesize that insecure information systems persist
because security analysts experience two challenges: a) they experience difficulty in perceiving
relevant risks in the context of their information system designs; and b) they experience difficulty
in deciding which requirements are appropriate to minimize risk.

In the upcoming sections of this chapter, I will provide background information about the
theory of situation awareness, explain the research methodology, and present results followed by
a discussion on the impact of this research.

3.2 Situation Awareness and Security Risk Assessment
Situation Awareness (SA) is framework introduced by Mica R. Endsley in 1988 [39] that dis-
tinguishes between a user’s “perception of the elements in the environment within a volume of
time and space, the comprehension of their meaning, and the projection of their status in the near
future” during their engagement with a system. Perception, comprehension and projection are
called the levels of SA, and a person ascends through these levels in order to reach a decision.
To illustrate, consider an SQL injection attack, in which an attacker inserts an SQL statement
fragment into an input variable (often via a web form) to gain unauthorized database access.
When an analyst conducts a source code vulnerability assessment, they look for cues in the code
for where to place input sanitization, which is a kind of mitigating security requirement. Upon
finding such cues (perception), the analyst proceed to reason about whether the requirement has
or has not been implemented (comprehension). Once understood, they can informally predict the
likelihood of an SQL injection attack and the consequences on the system (projection) based on
their experience and understanding of the threat and attack vector.

We believe SA can be used to explain how analysts perform risk assessments. The NIST
Special Publication 800-30 [93] defines risk as the product of the likelihood that a system’s
vulnerability can be exploited and the impact that this exploit will have on the system. The
ability to predict likelihood and impact depend on the analyst’s ability to project events based
on what they have perceived and comprehended about the system’s specification and its state of
vulnerability. If the expert succeeds in all three SA levels, then they have good SA and they
should be able to make more accurate decisions about security risks. Failure in any level results
in “poor” SA that leads to inaccurate decisions or no decisions at all. We will describe below our
method to detect the SA-levels in security expert interviews.

Endsley and other researchers [39, 40, 41]go beyond the SA definition to establish a holistic
framework that scientists in other fields could benefit from and apply. This framework entails
details and relationships to other concepts such as: expertise effect, goals, mental models, au-
tomation, uncertainty, and requirements analysis. A schema in cognitive psychology is defined
as the mental framework in human cognition to prepossess ideas that represent some aspects of
the world [6, 7, 12]. Schemata are a group of schemas organized in cognition that improve a
human’s ability to retrieve knowledge or acquire new knowledge [6, 7, 12]. For example, when
we solve new problems using a computer programming language, schema theory suggests that
our cognition matches the new problem structure with existing schemata for solving past prob-
lems and this process is what cognitive psychologists call: schema abstraction [71]. Rao et al.
found that the number and variety of training examples in programming language experiments
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had minimal effect on schema abstraction [103]. Thus, we may conclude that schema abstraction
is an expert ability that is acquired over multiple, repetitive examples across different contexts.
Endsley explains how expertise can help a person to build and enhance mental schemata, which
facilitates the person’s ability to interpret their perceptions and make necessary projections that
lead to better decisions [41].

3.2.1 Related Work in SA
The SA framework is flexible and could be customized according to the needs of a system.
Examples of fields in which SA has been applied include military operations [32], command
and control [46], cybersecurity [20, 34, 57, 74, 98] and others [41, 110]. Researchers have
modeled SA in intelligent and adaptive systems [32, 46, 110]. Feng et al. proposed a context-
aware decision support system that models situation awareness in a command-control system
[46]. Their approach was to have agents based on “rule-based inference engines” that provide
decision support for users. They applied Endsley’s concepts and focused on “shared situation
awareness” along with a computational model that they applied to a case study of a command
and control application.

In the field of requirements engineering, Alkhanifer and Ludi [5] followed a recommendation
by Endsley and Jones [41] to use the Goal-Directed Task Analysis (GDTA) for user knowledge
elicitation. The authors applied the GDTA to user goals and sub-goals during elicitation about a
system to improve orientation of the visually impaired while they navigate unfamiliar buildings
[5]. Our approach of applying SA is different, as we are using the SA stages to code interview
scripts to draw relationships that explain how requirements analysts make decisions early in
design. An approach to SA, that to our knowledge has not been widely adopted in requirements
engineering specifically.

Cyber SA Related Work

There has been multiple research efforts to use Situation Awareness to study the cybersecurity
field. Chen et al. extended a cyber intrusion detection system using a formalization of SA
concepts; the logic formalization is derived from expert experiences [20]. Jakobson proposed
a framework of situation aware multi-agent systems that could be cyber-attack tolerant [74]. A
Cyber Situation Awareness model [34] was introduced to simulate a security analyst in a network.
The proposed model relies on using Instance-based learning (IBL) and starts by recognizing
events in the network, and compares these events to past events stored in the analyst’s memory.
The model relies on the past threat experience to predict and detect network threats [34]. The
simulation results had shown that the model was affected by the defenders approach to risk (risk-
seeking/risk-aversion), and the authors note the difficulty of validating the simulation results
against real human data on real networks that could contain proprietary data [34].

Paul and Whitley proposed a “taxonomy of cyber situation awareness questions” that repre-
sents the analyst’s mental model. The authors conduct interviews to elicit questions that analysts
ask themselves, then a card sorting activity was used to help categorize the questions into groups.
The authors used qualitative methods to analyze the data and graph co-occurrence visualizations
to represent the results [98]. The results of the analysis was used to build a taxonomy of cyber
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situation awareness questions where questions were categorized based on their co-occurrence
score.

Gonzalez et al. [57] argue that to computationally represent human situation in cybersecu-
rity, it is essential to develop cognitive models that are capable to dynamically adapt, adjust, and
learn from experience and predict unforeseen situations. The authors further argue that cogni-
tive models offer an advantage over statistical approaches (e.g. machine learning), that have the
limitations of being confined to information derived from existing data and their dependencies,
without the capability to adapt to the dynamics of human cognition, such as learning processes
and short-term sequential dependencies [57]. In our SA study, we study the security analyst
to understand factors that affect their cognitive mental model, and how an analyst analyzes de-
pendencies among multiple components of a system to reach a decision in a dynamic, risky
cybersecurity environment. The intention is to build on insights and hypotheses derived from
this exploratory study, to learn how to represent the human reasoning computationally.

3.3 Using SA to Explore Security Decision-Making
We chose the definitions of SA levels to be our basis for the grounded analysis that we perform
on the interview data of 11 security experts [69]. Below we provide an overview of our approach
that consist of three phases:
• The preparation phase, in which we developed the research protocol, including tailoring

SA to security analysis, selecting the system artifacts to use in the analysis, and recruiting
the security analysts to be interviewed;

• The interview phase, wherein we elicited responses from selected analysts; and
• The qualitative data analysis phase, in which we coded the interview transcripts and sys-

tematically drew inferences from the data.
We applied grounded analysis using coding theory [107] to link SA concepts to the dataset and
validate whether our observations are consistent and complete with respect to that dataset [29,
107]. In the first cycle, we applied the hypothesis coding method to our dataset [107] using a
predefined code list derived from Endsley’s SA levels; this method tests the validity of the initial
code list. In the second cycle, we applied theoretical coding to discover decision-making patterns
from the dataset. We now discuss the three phases.

3.3.1 The Preparation Phase

The SA framework can be tailored to a field of interest by mapping SA levels to statements
made by domain analysts. We tailored the framework by verbally probing the analyst during the
interview as they were asked to evaluate the security risk of information system artifacts. We
expected the dataset to show how analysts build situation awareness. We also expected it to help
us further discover how perceptions of security risk evolve as the analysts’ awareness of both
potential vulnerability and available mitigations increases. The inability to perceive risk may be
due to limitations in analysts’ knowledge or ambiguities in the artifacts. We map Endsley’s SA
levels to security analysis as follows:
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Level 1: Perception:the participant acknowledges perceiving security cues in the given ar-
tifact. Examples include:“there is a picture of a firewall here” or “there are SQL commands in
the code snippet.” Each observation excludes any deeper interpretation into the meaning of the
perception.

Level 2: Comprehension: the participant explains the meaning of cues that they perceived
in Level 1. They provide synthesis of perceived cues, analysis of their interpretations, and com-
parisons to past experiences or situations. Examples of comprehension include: “the firewall
will help control inbound and outbound traffic...” and “the SQL commands are used to access
the database which might contain private information, so we need to check the input to those
commands, but this is not done in the code...”

Level 3: Projection: the participant has comprehended sufficient information in Level 2,
so they can project future events or consequences. In security, projections include potential,
foreseeable attacks or failures that result from poor security. Examples include: “this port allows
all public traffic, which makes the network prone to attacks... ”, or “unchecked input opens the
door to SQL injectionâĂę”

Finally after Level 3, we expect participants to make security-related decisions. Decisions
include steps to modify the system to mitigate, reduce or remove vulnerabilities. Continuing with
the SQL injection example, one decision could be: “this port should be closed” or “a function
should be added here that checks the input before passing it to the SQL statement.” Closing the
port prevents an attacker from exploiting the open port in an attack, whereas checking the input
can remove malicious SQL in an SQL-injection attack.

Selection of Security Artifacts

We presented each participant with three categories of security-related artifacts: source code,
data flow diagrams, and network diagrams (artifacts are listed in the AppendixA.1). We chose
these artifacts to cover a broad range of security knowledge, from low-level source code to high-
level architecture, noting that security requirements should be mapped to each artifact in different
ways and analysts require different skills to do this mapping. Based on our own experience
and knowledge of security expertise, we considered the effect of specialization in areas such as
secure programming, network security, and mobile security in selecting these artifacts. Hence,
the selection aims to satisfy two goals: 1) to account for diverse background and experience; and
2) to assess whether different artifacts show differences among SA levels. We selected artifacts
that are typical examples comparable to what is generally taught in college-level security courses.
We now describe the artifacts used in this study:
(a) Source Code (SC). We present participants with JavaScript code snippets, corresponding

SQL statements, and a picture of a web user interface related to the snippet. The SC con-
tains two vulnerabilities, an SQL injection attack and unencrypted username and password.
JavaScript is a subset of a general purpose programming language, i.e., no templates, point-
ers, or memory management. Thus, we expect analysts with general programming language
proficiency and knowledge of SQL injection to be able to spot these vulnerabilities in the
SC. We also list a high-level security goal to prompt participants and we ask participants if
the goal has been satisfied.
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(b) Data Flow Diagram (DFD). We present participants with a DFD for installing an application
on a mobile platform. As shown in Figure 3.1, the diagram contains high-level information
about the data flow between the user, app developer and the market. The participants are
asked about possible security requirements to ensure secure information flow, and whether
they can evaluate those requirements based on this diagram.

Figure 3.1: The Data Flow Diagram Artifact

(c) Network Diagrams (ND). We present participants two network diagrams: ND1 shows an in-
secure network, and ND2 shows a network with security measures that address weaknesses
in ND1. After participants are provided time to study ND1, we present ND2 and ask par-
ticipants to evaluate whether ND2 is an improvement over ND1. After collecting data on
participants evaluation of ND2, we present 15 security requirements to participants, which
we explain to be part of a security improvement process, and we ask participants to assess
whether the network in ND2 satisfies the 15 requirements (shown in Appendix A.2).

All of the selected artifacts are typical examples comparable to what is generally taught in
college-level security courses. For example, the network diagrams were originally used in the
Applied Information Assurance Class taught by Christopher May at Carnegie Mellon University
[85].

Selection of Security Experts

In this study, we aim to observe how security expertise affects requirements analysis. However,
security analysts are not all equal in expertise; some analysts have more experience than others
in particular areas, and training in academia is different than hands-on practice. To cover a
broad range of expertise, we invited industrial practitioners and Ph.D. students at different stages
of matriculation, all working in security. We will present the demographics data later in this
section.
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3.3.2 The interview Phase

We designed the interviews to study how analysts reach a security-related decision, and not to
study the correctness of the decision or degree of security improvement. We chose this design to
reduce a participant possible anxiety about being personally evaluated. During our interviews,
we only ask the following kinds of questions:
• What cues did the participant look at? (Perception)
• How were the cues interpreted? (Comprehension)
• Why did they interpret a cue that way? (Comprehension)
• What are the future consequences of each interpretation? (Projection)
• Based on those projected consequences, what is the best practice? (Decision)

Our approach differs from how SA is traditionally studied in human operator environments
(e.g., airplane cockpits and nuclear power plants) that use the Situational Awareness Global
Assessment Technique (SAGAT) [41], in that our participants are not immersed in a simulation
per se. Rather, we present artifacts (SC, DFD, ND1 and ND2) to participants with prompts to
evaluate artifacts for vulnerabilities asking them to act as the security analyst in this setting. We
observe their ability to conduct requirements analysis, their proposed modifications or decisions,
and their evaluation of security requirements satisfaction.

In addition, we ask participants to share information about their decision-making, such as
unstated assumptions and what artifact cues led participants to reach a decision. We were careful
not to guide participants in a particular direction by keeping our questions general. In addition,
we avoided questions such as: what do you perceive, comprehend, or project? For example, if
a participant identified an attack scenario, we would follow with “why would you think such an
attack could occur”, or “could you describe how it could happen?” Based on our approach to
limit our influence on their responses, we found participants returning to the artifact to identify
cues and to explain their interpretation.

We present ND1 before ND2, and we ask participants to draw on ND1 to improve this dia-
gram. After this step, we show participants the secure diagram ND2 and ask them to compare
this diagram to their own solution to ND1. Then, we ask participants to review the requirements
list (shown in Appendix A.2), and to answer the following questions for each requirement:
• Is the requirement satisfied or not satisfied based on the information given in the diagram?
• How would the participant evaluate the security requirement: is it good, bad, unnecessary,

immeasurable, unrealistic, etc.

The questions above are asked in a conversational style with an open-ended fashion where
participants are free to comment, explain and elaborate in their answers.

Finally, given our interest in distinguishing novices from expert analysts, we asked partici-
pants to provide a brief description of their relevant background. Questions to elicit background
information were asked twice: first, at the interview start, we ask participants about their security
background, their education, industry experience, and security topics of interest. Lastly, at the
end, we ask the participant about the analysis process they used during the interview and how it
relates to their background. We audio recorded the interviews for transcription and analysis.
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3.3.3 The Grounded Analysis Phase
Grounded analysis is used to discover new theory and to apply existing theory in a new context
[29]. We apply grounded analysis in three steps: (1) we transcribe the interviews; (2) beginning
with our initial coding frame (see Table 3.1), we code the transcripts by identifying phrases that
match our codes, while discovering new codes to further explain phrases that do not match our
preconceived view of the data; and (3), we review previously coded datasets to ensure the newly
discovered codes were consistently applied across all transcripts. After piloting the initial study
design on two participants, we observed uncertainty among participants so we added codes to
capture the uncertainty. Table Table 3.1 shows the complete coding frame: the first eight codes (P,
C, J, D, including the variants that account for uncertainty U*) constitute the initial coding frame
and were inspired by Endsley’s terminology for the Situation Awareness [41]; the remaining four
codes were discovered during our analysis to account for the interview mechanics. We employed
two coders (myself and a co-researcher) who first met to discuss the coding process and coding
frame, before separately coding the transcripts, and finally meeting to resolve disagreements.
The process to resolve disagreements led to improvements in the form of heuristics that explain
when to choose one code over the other in otherwise ambiguous situations. To efficiently iden-
tify disagreements, we used a fuzzy string-matching algorithm [8] to align the separately coded
transcripts. Finally, each coder recorded their start and stop times.

To ensure all statements are coded, we applied the null code {NA}to any statements that
did not satisfy the coding criteria, such as when participants request a scrap of paper to draw
a figure, or when they ask how much time is remaining for the interview, and so on. We code
statements, such as: “I took a course in security...” or “I saw on the news a security breach related
to this artifact” as background {BG}, which includes their personal experience and knowledge.
If the participant compares and contrasts comprehended information from the artifact to their
experience or knowledge, then that information is coded as comprehension {C}. To improve
construct validity, the two raters resolved borderline cases by discussing and refining the code
definitions and heuristics. The following heuristics were used to classify statements and draw
clearer boundaries between coded data:

Perception: The participant verbally identifies a cue in the data (e.g. line number in code, an
entity on the network diagram, a specific requirement in the text). Participants are only reporting
what they see, and are not commenting or analyzing the cue.

Comprehension: The participant analyzes, makes inferences, or makes comparisons about
what they see. This may include the name of the cue (e.g. firewall), but the statement at least
includes an interpretation in addition to reporting the perception of the cue.

Projection: The participant forecasts future attacks, possible threats or any events that could
occur based on the context found in the artifact.

Decision: The participant makes a decision with regards to the context. This includes deciding
whether the system is secure or not secure, or if a certain requirement is satisfiable. Introducing
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Table 3.1: Situation awareness annotation codes
Code Name and Acronym Definition and Coding Criteria Used to Determine Ap-

plicability of the Code
Perception {P} Participant is acknowledging that they can see certain

cue(s)
Comprehension {C} Participant are explaining the meaning of cue(s) and con-

ducting some analysis on the data perceived
Decision {D} Participant is stating their decision
Uncertain Perception {UP} Uncertainty at perception level: participant is missing cer-

tain data that would help they need to analyze the artifact
Uncertain Comprehension
{UC}

Uncertainty at comprehension level: participant is not
missing data but they can’t interpret their meaning con-
fidently

Uncertain Projection {UJ} Uncertainty at projection level: participant cannot predict
possible future consequences confidently

Uncertain Decision {UD) Uncertainty in decision: participant is not confident about
the decision that should be made

Assumption {A} Participant is stating assumption(s)
Ask Question {Q} Participant is asking the interviewer questions
Probe {Pro} Interviewer is triggering the participant’s thinking with

questions or guidance information
Background {B} Participant is providing information regarding their per-

sonal background
Null code {NA} Statement is not applicable to code criteria above

new mitigations of security threats are also considered decisions.

Uncertainty (at any SA level): To determine if the participant is uncertain, first examine the
verbal cues that indicate uncertainty, including, but not limited to: “I guess”, “I am not sure”,
and “this is not clear to me”. For example, the participant may indicate that they do not know
what an icon represents. Alternatively, if the participant acknowledges that they see a cue, but
that they cannot understand its role in the artifact, then this is an uncertain comprehension.

Assumption: The participant here needs to explicitly express that they are making an assump-
tion. Examples of such statements include: “I am going to guess that this means”, “I assume”,
“Based on my experience this means, but it’s not necessarily what the artifact tells me” and so on.
To clarify how to distinguish assumptions from comprehensions, a comprehension is when the
participant is explaining a certain cue’s meaning based on the information given in the artifact.
Assumptions, however, provide further explanation based on the participant’s experience with
similar systems to compensate for missing cues or missing information in the artifact.

After the first cycle coding, we conducted a second cycle or axial coding [107] to identify
decision-making patterns. In grounded theory, axial coding is the process of relating codes to
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each other by finding relationships, themes and phenomena that exist among the codes and cate-
gories [29, 107]. We defined cut-offs between coded sequences by sequentially numbering each
statement and then assigning group numbers to statements that address the same idea or topic
the participant is discussing. The groups serve to delineate transitions between units of analysis.
We programmatically extracted SA-level sequences (e.g., P-C for perception followed by com-
prehension) that we later associated with separate, named patterns, and we searched the dataset
without the cut offs to assess pattern validity, i.e., to detect false-positives, wherein the SA-level
sequence does not correspond to the pattern that we assigned. We used the false positives identi-
fication to compute pattern accuracy, which is the ratio of true positives over the sum of true and
false positives.

The next step in our grounded analysis includes labeling interviewee statements with entity
identifiers from the specifications, such as variables and functions in the source code or servers
and firewalls in the network diagram. The labeled artifacts allow us to sort our results by entity
to see how different participants react to and analyze the same entity and to link the decision
patterns to corresponding entities involved in the pattern.

3.3.4 Pilot Study
We piloted the study on two human subjects: participant P1 is an expert with extensive hands-on
and academic expertise in networks and systems security; and participant P2 is a novice who
has only academic security experience. The purpose of the pilot study is to test our interview
protocol and apply any needed modifications to the questions or protocol before conducting
additional interviews.

Reliance on assumptions and searching for more information are both uncertainty resolution
techniques that are explained in Endsley’s SA approach [41]. However, it is interesting to see in
our pilot results that experts and novices apply these techniques differently. Both participants P1
and P2 analyzed the network diagram artifact, but P2 was unable to provide technical details of
a the network configuration and reported a higher number of uncertainties. Another insight ob-
served in the pilot study was the ability of the more experienced participant P1 to make assump-
tions when faced with uncertainty. When the novice participant, P2, was faced with uncertainty,
their solution was to ask the interviewer clarification questions. The following excerpt below is
an example of an assumption that participant P1 made when they analyzed the requirement R9
that states implementing time synchronization for logging and auditing capabilities. Note that
each statement will have an opening and closing code tags (see Table 3.1 for codes):

{UP}I don’t see an NTP server on this network{/UP} {C}but I know that
Windows Domain Controller can act as NTP{/C}, {A}so I am going to assume
that when they install it they’ll probably leave that box checked because it
’s a default option{/A}.

{D}I think that is probably happening here{/D}

When P2 was faced with uncertainty, however, they turned to the interviewer and asked:

{Q} What kind of software does this thing has? {/Q}

Because of the conversational interview style, participants went beyond verifying security re-
quirements in ND2 to check consistency between the requirements and the network diagram
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present in the artifact, and they actually performed requirements validation, where they assess
if the requirement(s) actually meets the stakeholders’ system security goals). An explanation
may be that security experts rely on background knowledge and apply known security require-
ments. In addition, we found experts often add missing requirements, explain how to apply a
requirement, evaluate whether a requirement was feasible, list some needed specifications, and
prioritize requirements. For example, consider the following excerpt as participant P1 is evaluat-
ing R2 in the context of diagram ND2 and pointing out that this requirement is less critical than
requirement R1 that they had evaluated earlier:

{C}but I don’t think it’s as critical as say the DMZ one, but I think its
sort of whatever is the next tier of criticality{/C}.

Based on our pilot study experience and the participants feedback, we revised our study protocol.
A major change was the order of the presentation of network diagrams ND1 before ND2, and
asking participants to draw on ND1 to improve this diagram. After this modified step, we show
participants the secure diagram ND2 and ask them to compare this diagram to their own solution
to ND1. Finally, we ask participants to review the requirements list, and to answer the following
questions for each requirement:
• Is the requirement satisfied or not satisfied based on the information given in the diagram?
• How would the participant evaluate the security requirement: is it good, bad, unnecessary,

immeasurable, unrealistic, etc.?

The questions above are asked in a conversational style in an open-ended fashion where partici-
pants are free to comment, explain and elaborate in their answers. Since this study is based on a
qualitative research method, pilot data from P1 and P2 is included in our full analysis of data.

3.4 Evaluation of the Qualitative Approach

We recruited a total of 11 participants. In grounded analysis, reaching a point of theoretical
saturation is the main determinant of the number of participants (or cases) needed to complete a
qualitative study [55], because determining the exact right sample size is context-dependent on
the type of research being conducted. According to Glaser and Strauss, saturation means that
the researcher can not find additional data whereby the researcher “can develop properties of
the category [55].” This means that a researcher can stop collecting more data once the analysis
saturates and keeps showing repeated results and no more new insights, theories, themes, or
findings emerge from the new data. Atran et al. [9] estimated that a minimum of 10 participants
is needed to show consensus, while Guest et al. [60] argued that a sample size of six could be
sufficient if there is a homogeneity that exists among participants in the sample. In our sample,
we reached saturation after 8 participants, but we continued to recruit 3 more participants to
confirm theoretical saturation.

Below, we report the results from our empirical evaluation, which consists of the artifact
assignment and inter-rater reliability.

21



3.4.1 Artifact Assignment
Due to self-perceived inexperience by participants and time limitations, not every participant
analyzed all artifacts in the three categories we described above. The average total interview
time per participant to complete each interview was 29 minutes. Table 3.2 presents the partic-
ipant assignment to conditions: the shaded cells show the category of artifacts that participants
attempted; cells labeled with “X” indicate that the participant spent at least 15 minutes analyzing
the artifact. Because participants have varying skills and expertise, some participants invested
more time than others analyzing certain artifacts. The order in which the artifacts were presented
to different participants was randomized and the time allowed to complete the interview was
limited to 60 minutes. Thus, not all participants reviewed all artifacts. The Sum column in Table
3.2 presents the total number of participants who reviewed each artifact.

Table 3.2: Participants’ assignment by artifact

Artifact Participant Sum1 2 3 4 5 6 7 8 9 10 11
1) Source Code X X X X X X
2) Data Flow X X X X X
3) Network X X X X X

3.4.2 Agreement and Inter-Rater Reliability
Two raters applied the coding frame from Table 3.3 to the transcripts of participant audio record-
ings. We measured inter-rater reliability using Cohen’s Kappa, a statistic for measuring the pro-
portion of agreement between two raters above what might be expected by chance alone [26]. We
calculated Kappa for each participant, which ranges between 0.51-0.77 with a median of 0.62.
These values are considered moderate to substantial agreement [26]. The coding times were 19
and 8 hours for raters 1 and 2, respectively. Rater 1 spent more time documenting heuristics and
developing the method. In addition to the above time, 6 hours were used for the resolution of
disagreements between the two coders. Table 3.3 shows the breakdown of the total 2,595 coded
statements in our final dataset by code (including the pilot participants P1 and P2).

Table 3.3: Final dataset frequencies by code
Code Total Codes Code Total Codes
Perception 250 Uncertain Percept. 82
Comprehension 498 Uncertain Comp. 180
Projection 215 Uncertain Proj. 13
Decision 367 Uncertain Dec. 25
Question 95 Probe 535
Background 47 Assumption 45
N/A 243
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3.5 The Discovered Security Decision-Making Patterns
In this Section, I present the discovered decision-making patterns that ground the SA framework
in the data. Acronyms introduced in Table 3.1 are used to express the patterns as a sequence
of coded observations across the interview transcripts. Findings from this section are going to
motivate the discussion, analysis, relationship to expertise, and impact on security analysis that
is presented in the remainder of this Chapter.

3.5.1 The Classic SA Patterns
Endsley suggests that experts who assess risky situations engage in a process of perceiving infor-
mation, comprehending the meaning of that information, and then projecting what might occur
in the future. We call this pattern theClassic SA pattern, which proceeds from P→ C→J→D,
where the “→” means the coded statement on the left-hand side appeared adjacent and before the
coded statement on the right-hand side in the transcript. In addition to the Classic SA pattern, we
searched for contiguous fragments of the Classic SA pattern while the order is maintained, such
as P→C→J, and C→J that indicate when a participant is move to higher levels of SA.

Table 3.4 presents the pattern name, number of occurrences (Freq.) and the accuracy (Accu.),
which is the ratio of actual, confirmed pattern instances among the total number of observations
of the sequence, and, finally, the list of participants who exhibited these patterns. We believe the
pattern J→D is interesting because in combination with other patterns, we see variation fragments
of the order appear. The results indicate that the J→D pattern only appears 31 times with 10%
false positives. This observation suggests that projections and decisions, as well as other SA
levels, can occur out of sequence, which motivated our search for the other pattern fragments
shown in Table 3.4; all of these fragments are variations of the full Classic SA pattern (P→ C

→J→D). We observed that participants demonstrated the J→D pattern without the P→C pattern
component, but this does not mean that participants did not perceive cues or comprehended those
cues. Instead, participants may not be verbally reporting their perceptions and comprehension,
or they may have automatized these stages of SA as part of their prior experience.

Table 3.4: Variations of classic SA pattern
Name Pattern Freq. Accu.* Participants

Classic w/o Decision {P→C→J} 4 100% P1, P3, P6
Projection-Decision {J→D} 31 90% All except P1

Classic Skip Projection {P→C→D} 10 100% P1, P3, P4, P6, P11
Classic Skip Perception {C→J} 55 81% All

Classic Skip Perception and Projection {C→D} 56 83% All except P2 & P5
Classic Perception Comprehension {P→C} 61 81% All except P10

*Excluding false positives

Except for the first two patterns, a common feature among the patterns in Table 3.4 is the
skip factor. Participants could skip a level of SA before reaching the next expected SA level.
Because we coded participants’ verbal responses, and participants may not have verbalized each
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level of cognition, our dataset may be missing the expressions of some levels. Another explana-
tion for skipping levels is the level of expertise and exposure to the problem. If the participant
has seen several examples of a certain problem, they may jump to their decisions immediately
without providing explicit verbal analysis of the perceived cues, meanings and possible conse-
quences. The following is an example from P3’s response to the source code artifact where they
immediately projected an SQL attack without perceiving or comprehending a certain cue (we
use brackets [] to explain the item of the artifact that the participant is speaking about):

{J} this [speaking about the line of code that shows the unsanitized
input] is just pure SQL injection here {/J}

By comparison, P11 articulated moving from perception to projection while describing the
same attack scenario:

{P}And thus, [speaking about the line of code that shows the
unsanitized input], you use SQL query that explicitly say its inserting into
the customer value {/P}{J}it may suffer from the SQL injection attack. {J}

In contrast, the pattern (P→C→D) from Table 3.4 describes how a participant moves from
perception to comprehension but jumps to the decision phase without describing the projection.

The patterns (C→J) and (C→D) bypass the perception level, where participants move from
comprehension to either a projection or a decision phase. Based on our analysis, it is not unusual
for participants to begin verbalizing at the comprehension level. In this case, participants begin
by describing the meaning of a cue without explicitly identifying the cue. Consider the following
excerpt from the coded response of P9 when they were analyzing the Demilitarized Zone in the
network artifact:

{C} ...people can access this part [speaking about the DMZ subnet in
the network diagram] but it means de-militarized zone.{/C} {J}If these
machines are hacked, they can’t affect other inner parts{/J}

The last pattern in Table 3.4 reflects that participants move from the perception to the com-
prehension level, but without going immediately into projection or decision levels. We find this
pattern interesting because it shows that someone could move back and forth between perception
and comprehension without moving higher to projection or decision. This movement could indi-
cate that a participant found themselves “stuck” at comprehension where they could not proceed
further, because they lacked the needed cues, understanding to envision what comes next or how
to mitigate a threat.

3.5.2 The Reverse SA Patterns

In our dataset, we observed that SA patterns might occur in reverse order. This difference may
be due to the participant using an inductive vs. deductive reasoning style. Up until now, we
assumed that participants used a deductive reasoning style: they first report perceiving a cue,
comprehending the meaning, and from this information, they deduce and report what may occur
in the future (projection). In an inductive reasoning style, the participant verbalizes the possible
consequences and from this information, they work backward by inducing the cues that led them
to this conclusion. To accommodate the inductive reasoning style, we checked the dataset for
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patterns in the reverse direction of the classic SA pattern. Table 3.5 presents the reverse SA
pattern names, their frequencies, accuracy and participants who exhibited these patterns.

Table 3.5: Reverse SA patterns
Name Pattern Freq. Accu.* Participants

Reverse SA w/ Decision {D→J→C→P} None None None
Reverse SA w/o Decision {J→C→P} 1 100% P6

Reverse SA skip projection {D→C→P} 3 67% P6, P9
Reverse SA no perception {J→C} 35 67% All

Reverse SA no perception no projection {D→C} 46 75% All
*Excluding false positives

The following excerpt illustrates the reverse pattern exhibited by participant P6 who is an-
alyzing the source code; the participant first reports their decision to prioritize a particular part
of the diagram, followed by their understanding of this part and their perception of the part’s
character that led to the prioritization decision:

{D}It’s very important [speaking about using encryption for
communication over the Internet] {/D}{C} you’re sending the SSN over the
Internet{/C} {P}The SSN is in plain-text. {P}

3.5.3 Patterns of Uncertainty and Assumptions
Uncertainty plays an important role in security, as many security risks are probabilistic and par-
ticipants must estimate the likelihood of particular events when forming projections. Moreover,
analyst experience is likely to play a role in interpreting ambiguity in a specification and then
deciding whether that ambiguity includes an interpretation that may lead to a security exploit.
Table 3.6 presents the uncertainty patterns that we identified in the data. These patterns consist
of statements coded with uncertainty (UP, UC, UJ, and UD) and assumptions{A}, questions {Q
}, and decisions {D}. The total coded subset relevant to this discovery is comprised of 440

statements across all participants. We categorized uncertainty into three categories:
• Propagated Uncertainty occurs in the first three patterns, wherein the uncertainty in per-

ception or comprehension is propagated to a subsequent comprehension, projection or de-
cision

• Hedged Uncertainty occurs in all patterns where uncertainty leads to assumptions (e.g.,U
*→A), in which case the analyst bounds the uncertainty by interpreting an ambiguity and

concluding this interpretation in the form of an assumption; and
• Uncertainty Transfer, in which the analyst asks a question (e.g., U*→Q), to resolve uncer-

tainty by seeking outside assistance.
With hedged uncertainty, 5 out of the 8 participants who made assumptions after their uncer-

tain comprehension were able to make decisions. We found 9 instances of hedged uncertainty
leading to decisions, which may involve unstated assumptions. Finally, we observed that partic-
ipants could move from a certain state to an uncertain one. In our dataset we found participants
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transitioning to uncertain comprehension from perception (P→UC, 22 occurrences, 86% accu-
racy) or from comprehension (C→UC, 25 occurrences, 68% accuracy).

Table 3.6: Uncertianty patterns
Pattern Freq. Accu.* Participants
{UP→UC} 8 100% P1, P3, P5, P6, P9
{UC→UJ} 2 100% P2, P5
{UC→UD} 2 100% P1, P4
{UC→A} 8 75% P1, P2, P3, P9, P11

{UC→A→D} 5 100% P1, P3, P9, P11
{UC→Q} 7 100% P2, P3, P4, P5, P7, P9
{UP→A} 5 60% P1, P3
{UP→Q} 3 67% P1, P3, P5
{UC→D} 9 67% P1, P2, P5, P6, P8, P9, P11

*Excluding false positives

3.5.4 Patterns Showing Redundant SA Levels
In addition to the patterns we discussed so far, we identified several patterns that appear to show
the analyst is working harder to reach a decision. This includes patterns with accuracy rates above
60%: (C→C→C→C), (C→C→D), (P→C→C→J), (P→C→C→D), and (P→C→P→C). These patterns
appeared 21, 26, 3, 5, and 12 times, respectively. The patterns show that participants are working
harder to comprehend (note the redundancy in the C code) and interpret meanings to make more
informed decisions. The patterns and corresponding text indicate that, the more detailed and
thorough participants comprehensions were, the better and clearer their future projections or
decisions. This may explain why a participant needs more than one comprehension to reach
the projection or decision levels. Moreover, there could be situations where complex security
projections rely on multiple cues and multiple comprehensions. Moreover, the comprehension
level is where the analysis and interpretation begins, and projecting or forming a decision relies
heavily on how well the analyst understands the vulnerability. For example, when an analyst
comprehends the meaning of a firewall on the network, they consider different factors, which
could lead them to verbalize more than one comprehension. Consider the following example as
P3 was trying to analyze the network diagram ND2 against the first security requirement from
the requirements list provided:

{P}your firewall{/P} {C}which is your first point of entry to both DMZ
traffic and intranet site traffic and also to your users{/C} {P}has all of

these on separate subnets{/P}{D}the first rule here about stuff being
unavailable [speaking about the requirement R1]comes down to whether this
firewall is properly configured.{\D}

Participant P3 in the example above cannot reach a decision without comprehending two cues:
1) the firewall is the first point of entry to multiple network segments, and 2) the firewall places
the segments on different subnets. Therefore, this decision is dependent on a composition of
multiple comprehensions, which explains the redundancy in the above pattern.
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3.5.5 The SA Path to Security Analysis

From our analysis results, we extended Endsley’s SA model to account for uncertainty, the role
of assumptions and participant inquiry that results from uncertainty. Endlsey defines the stages
of SA as they occur in the human mind, but since we are annotating participant articulations of
those stages based on their verbal statements, there will be no guarantee that we will observe
patterns in the data that will exactly reflect the classic or reverse SA work-flow ({P→C→J→D}).

In the upcoming sections of this chapter, we will continue exploring security decision-making
by analyzing the SA patterns found in our dataset.

3.6 The Security Expertise Effect
We are interested in investigating whether more experienced participants would exhibit better
SA and, thus, be able to form more confident decisions. I have explained earlier in Chapter
2, the challenge of defining metrics to distinguish experts from novices. In the SA study, we
choose to report multiple factors as background data of our participants taking into account the
both industry and academic aspects of ones experience. In addition, we use the analysis that
is based on the SA patterns discovered in the data to explore differences between participants
performance and link that back to their background information to help distinguish between
novices and experts. Ericsson suggests that focusing on experts performance and understanding
how they utilize their knowledge could help develop improved learning and training approaches
that can help increase the novices performance in a domain [43].

In this section, I will present participant’s expertise and background data, followed by partic-
ipants performance and ability to demonstrate an attacker model.

3.6.1 Participants Background and Expertise

Herein, we report our findings drawn from demographic data including participants background
and experience. The participants experiences reported as remarks during their interview that we
coded as {BG}. Next, we examine the role of expertise in forming more confident decisions.
According to Endsley & Jones [41], an increase in experience may affect a participant’s ability
to project future consequences and, hence, may lead to more confident decisions.

Table 3.7 summarizes participant backgrounds: the participant number P# which is used
consistently throughout this paper; Years is the number of years of industry experience, including
internships; Security Areas are the general topics that best describe their industry experience;
Research Focus are the topics that best describe their research experience; and Degree is their
highest degree earned, or in progress; Among the total eleven, four participants (P1, P3, P4, P5)
have extensive industry experience in security (4-15 years) with diverse concentrations.

The PhD. students in our sample had varying levels of experience, from a student who com-
pleted security courses, but who did not apply these lessons in practice beyond class projects,
to students who had completed internships with a reputable company working on infrastructure
security and log visualizations. P1, and P4 hold a Ph.D. in security and specialize in systems
and infrastructure. These two PhDs and P5 have teaching experience in which they taught ad-
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Table 3.7: Summary of participants background

P# Industry Research DegreeYears Security Areas
P1 5+ Network, systems, forensics and

more.
Mobile computing, forensics,
systems security

Ph.D.

P2 < 1 Security protocols, social net-
works.

Global cyber threat Ph.D.*(5th yr)

P3 15+ Systems, Networks, programming,
and more.

NA B.S.

P4 5+ Systems, Networks, architecture,
and more

Security for real-time critical
systems & architecture

Ph.D.

P5 10+ Software Architecture, Secure Pro-
gramming

Software Architecture M.S.

P6 0 NA Cyber & system security Ph.D.*(4th yr)
P7 0 NA Android security, malware, static

analysis.
Ph.D.*(4th yr)

P8 1 Infrastructure security, log visual-
ization

Security and Privacy Ph.D.*(5th yr)

P9 0 NA Security analysis, network traffic Ph.D.*(2nd
yr)

P10 0 NA Anomaly Detection Ph.D.*(1st yr)
P11 0 NA Network traffic Ph.D.*(4th yr)

*PhD student, followed by year of matriculation in parentheses

vanced security courses. The remaining seven participants were all PhD. students with research
specialties in security.

Industry experience data in our sample, shows some correlation to participants performance.
In our study, we observe that participants with more industry experience were able to make
more assumptions compared to those with less experience. For example, participants with more
than 5+ years of industry experience made an average of 7 assumptions, while participants with
less than 5 years of experience made an average of 1 assumption. We coded statements with
assumptions when the participant explicitly mentions that they are missing relevant details and
that they have to assume or guess to complete their understanding.

Difference in artifacts presentation and notation could possibly affect situation awareness,
and could help reveal different sub-domain expertise among experts. Certain portions of an ar-
tifact were likely more unclear than others, so we may only expect to see assumptions when
participants encountered less clear portions of the artifact. The pattern (UC→A→D) was observed
for experts P1, P3, and P9, when they analyzed the network artifact, and was observed for P11
when they analyzed the source code artifact. Participant P11 demonstrates advanced understand-
ing when analyzing the source code artifact by reaching 24 decisions and this participant was
the only participant to make 2 assumptions in that artifact. Recall from Section 3.5 above, as-
sumptions were a sign of more experience in the area as the participant is making informed
assumptions based on similar past situations. Hence, P11 demonstrated more expertise when
analyzing the source code artifact.
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3.6.2 Expertise Role in the Attacker Threat Model

Expert security analysts project future attack scenarios, and then decide how to mitigate these
attacks. In security analysis, projection and decision are closely related, because security ana-
lysts may be trained to think like an attacker and have an attack model in mind [100, 123]. With
an attack model in mind, the analyst decomposes a future attack scenario into multiple steps
that exploit vulnerabilities. Under SA, we expect this decomposition to first appear as percep-
tions and comprehensions of the vulnerabilities, which then lead to the conclusion of projected
exploitation, and finally a commensurate decision to mitigate the vulnerabilities. For example,
Participant P3, notes:“what could I do since I am looking at this code to do bad stuff”, which is
their reflection on trying to walk through threat models that could be relevant to the code segment
under review. P3 further stated:“it’s critical if you’re trying to design something secure to try and
get into the mind of an attacker. If you can’t think like an attacker, then you don’t know how to
defend against an attacker”

The anlaysis of the dataset measures how often security analysts employed the attacker per-
spective. In the study, five participants (P1, P2, P6, P8, P10) demonstrated the need to think
like an attacker as demonstrated by the word attack in their statements while referring to how an
intruder would act.

The study results show 45 instances of attack words used where participants demonstrate
knowledge of an attack; out of which only 29 instances describe an application of the attacker
model where participants describe how the attack is taking place. The remaining 16 instances out
of the 45 statements include instances where participants are explaining attacks that they knew
about from their background, but without relating that knowledge to the artifact being analyzed.
For example, the word attack could show up in a {BG} statement without a relevant SA pattern.
For our analysis, we are interested in the 29 instances where participants are actually thinking like
an attacker by demonstrating an attack scenario. Table 3.8 shows our results from this analysis:
the participant number (P#) who described the attack scenario; the frequency (Freq.) that the
term attack appears, the security artifact (Art.); and the relevant in-context patterns associated
with the word âĂŞ the SA code of the statement containing the attack word is highlighted in
bolded text to show the position within the pattern. Each participant can exhibit multiple, separate
instances of thinking like an attacker, which we separated by artifact and in-context pattern.

Among the 29 instances of the word attack, we observe that most instances (25/29) occurred
in the projection stage of SA. In less than half of the instances (12/29), the projection was ob-
served after the interviewer probed the participant to explain why they were perceiving, compre-
hending or projecting prior to describing the attack scenario (coded as Pro→[*J*]). Participants
P2, P5, P7 are absent from Table 3.8, as they failed to demonstrate the attacker model.

Attack scenarios can be simple, meaning a single vulnerability is exploited to achieve an
attacker’s goal, or complex, meaning that multiple exploits are needed. In our results, we can
observe and measure the complexity of attack scenarios as a series of different SA stages needed
to demonstrate how an attack occurs within an artifact. For example, P9 projects a password
brute force attack by looking at one item: requirement R7 on the list that reads: “Company X
will require strong passwords (8 characters with complexity) for all user accounts.” Based on the
brute force projection, P9 decides that 8 characters alone are insufficient for a secure password
policy. Alternatively, consider the attack pattern that P1 and P4 found in ND1: our entity analysis
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Table 3.8: Participants use of the term attack
P# Freq. Art. In-Context Pattern

P1 5

ND1 {P→C→C→Pro→[*J*]}

ND2 {P→C→[*J*]→C}

ND2 {D→D→Pro→C→C→[*J*]→C→C}

ND2 {U→J→Pro→[*UJ*]→Pro→J}
ND2 {Pro→UJ→Pro→[*J*]}

P3 3
ND1 {P→C→D→Pro→C→D→C→D→J→D→D→Pro→[*J*]}

ND2 {D→J→Pro→J→Pro→[*J*]→Pro→[*J*]→C}

P4 2
ND2 {D→C→C→[*J*]}

SC {D→C→Pro→[*J*]→Pro→C→C→P→C}

P6 4
SC {[*J*]→D→[*J*]→J→C→C→J→Pro→C→C→Pro→P→J}

SC {C→C→[*J*]}
SC {D→[*J*]→D→D→J→Pro→C→P→J}

P8 3
SC {C→Pro→[*J*]→Pro→J→D}

DFD {C→C→D→[*J*]→Pro}

DFD {C→J→[*J*]→C→C}

P9 1 SC {Pro→[*J*]→J→D→UP→D}

P10 7
SC {D→Pro→[*J*]→J→[*J*]→D→C}

SC {[*J*]→Pro→Pro→J→[*J*]→D}

SC {[*J*]→J→Pro→[*J*]→J→[*J*]}

P11 4
SC {P→[*J*]→J→[*D*]}

SC {C→C→[*D*]}
ND2 {D→[*C*]→C→UC}

shows that in order to demonstrate the possible attack on the insecure network, both participants
where analyzing multiple items in the ND1 diagram: allowed inbound ports on the router, the
web server, the DNS controller, and the mail server. P1 further explained:

{J} From an attacker that has no other entry point he is going to look
at these three things [speaking about the 3 allowed inbound ports shown on

the router], and if they didn’t have any DNS server inside, there will be no
reason to have port 53 open {/J}

Using SA patterns, we can compare participants analysis when looking at the same entity (see
our explanation of entity analysis earlier in this chapter). For example, In Table 3.8, partici-
pant P1 presents the pattern (P→C→J→C) in ND2 by first perceiving server names (entity code:
NAME), such as Alpha, Lima, Bravo, etc. Participant P1 comprehends the server naming scheme
and subsequently projects that an attacker discovering these names alone cannot tell the role or
function of the servers. Based on our entity analysis that links SA codes to these servers across
participants, we found that participant P11 perceived the same naming scheme in their analysis
(Q→P→C→UC→C), but they were unable to project based on the meaning of the scheme and thus
were unable to see the attack scenario. Instead, P11 asks questions, experiences uncertain com-
prehension due to the meaning of the naming scheme and whether the scheme has any relevance
to network security. Unlike P1, participant P11 stops at comprehension and does not proceed to
projection or decisions. This is an example of how the same cue could be interpreted differently
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by experts of different expertise levels.
Our SA attack model shows how we can use SA to detect a certain expertise skill: thinking

like an attacker. A conclusion that is based on the background data alone that is shown in
Table 3.7 above, might indicate that participants P1, P3, P4, and P5 have more expertise with
respect to these artifacts compared to the remaining participants in the table who could be treated
as novices. This classification, which could be referred to as industry classification, is based
on participants clearly combining years of practical industry experience along with academic
degrees. However, this classification does not take into account the personal skills that a security
analyst might acquire through their job or academic learning. Our attack threat model, on the
other hand, help address this limitation by identifying the experts who demonstrate who can
think like an attacker. Table 3.8 shows that in addition to P1, P3, P4, who are already identified
experts based on their industry experience, P6, P8, P9, P10 P11 can also demonstrate the skill of
thinking like an attacker.

Going back to Table 3.8, we observe that except for P11’s ND2 pattern, all participants had
their attack keyword appearing in a projection or a decision statement, which resonates with
the definition of our projection statements where a future attack is described, and our decision
statements where mitigations to an attack is explained. By looking into the details of P11’s
pattern (D→C→C→UC), we observe how the participant is stuck at the comprehension level where
they demonstrate a level of uncertainty.

3.6.3 Expertise Role in Security Requirements Mapping
After presenting the diagram ND2 to the participants, we presented the security requirements
checklist. We observed individual differences among experts and novices when assessing a sin-
gle requirement and linking it to the diagram entities. In general, 5 out of 7 participants who were
presented with ND2 exhibited an improved ability to discuss items in the checklist that they pre-
viously missed, as compared to the two modes above. Analysts made an effort to connect each
requirement to entities in the diagram. Table 3.9 below shows the results of mapping require-
ments to entities in the diagram by the 5 participants who were presented with ND2 and were
successful in the mapping exercise. Participant P2, and P5 are absent from the table as they have
stated that they could not see how to do the mapping. None of the participants shown in Table 3.9
managed to map requirement R3 (shown in Appendix A.2), which is about âĂIJhardeningâĂİ
the network. Participant P4 stated that the rule makes no sense, as it cannot be qualified nor
quantified. Participant P3 commented: “that’s not uncommon for compliance to do that, to just
state in very general terms a requirement, and then it’s a little loose interpretation as to whether
or not you’ve met that compliance or not.” Highlighted cells in the table indicate that participants
stated that dependencies exist among the highlighted requirement. Participant P1 found the re-
quirements R11 and R12 to be related. Participants P1, P3, and P11 agreed that R9 and R10 are
related, but P11 failed to point out the entities on the diagram that map to the requirements.

Mapping the requirements-entity matching data in Table 3.9 to experience and background
data in Table 3.7, it can be observed that P1, P3, P4 who has more industry experience then P9
and P11, were able to match more requirements on the list.

Using entity analysis, participants’ responses are compared across entities in diagram ND2.
The analysis results indicate that the requirements list could help both experts and novices: the
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Table 3.9: Participants requirements mapping to entities in ND2
R#* P1 P3 P4 P9 P11
R1
DMZ

Firewall-1 Firewall-1 Firewall-1 DMZ

R2
Proxy

Proxy
(Squid)

Firewall-1,
DNS-1

Proxy
(Squid)

R3
Harden services

R4
Web filtering

Proxy
(Squid)

Proxy
(Squid)

Snort1,
Snort2,

ArpWatch

R5
Windows group policy

Windows
DC

Firewall-1,
Firewall-2,

Exchange Mail
Server

R6
Electronic mail
relay and filters

Firewall-1,
Firewall-2

Exchange
Mail

Server

Exchange Mail
Server,

DMZ Mail Server,
Firewall-1

Exchange Mail
Server

R7
Strong passwords

Windows
DC

Exchange Mail
Server

R8,
Network segments

Firewall-2 Firewall-1, Firewall-2

R9
Logging

Syslog Syslog
Nagios,

ArpWatch
Syslog

R10
Time synch

Windows
NTP

Windows
NTP

Windows
NTP

R11
IDS

Snort1,
Snort2,

ArpWatch

Snort1,
Snort2

Snort1,
Snort2,

ArpWatch

R12
Split DNS

DNS-1,
DNS-2,
DMZ

DNS-1,
DNS-2,
DMZ

DNS-1,
DNS-2,

Firewall-1,
Firewall-2

DNS-1, DNS-2

R13
Packet Sniffers

ArpWatch
Snort1,
Snort2,

ArpWatch
R14
Centralized System
Monitoring

WinMRTG,
Nagios

Syslog
WinMRTG,

Nagios

R15
Isolated admin network

Firewall-2

experts attention was focused towards a specific security component and help them reach better-
informed decisions, and the novices became aware of a requirement and/or its security justifica-
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tion. Consider requirement R12 that requires a split DNS policy: expert participants P1, P3, P4,
and P9 were able to map requirement R12 to the split DNS servers shown on the diagram and
to state that the network satisfies the requirement, and they were also able to explain why such
requirement is important from a security standpoint. Participants P1, P3, P4, P9 demonstrated
the patterns: (P→P→UP→P→UP→D),(P→Q→Pro→D→J→J→J→A→J), (Q→C→C→C→J→J),(C→P
→J→D→Pro→D→UC→C→A→C→C→J→C→D) respectively.

By investigating why P3 and P9 had longer patterns, it is found that they were demonstrating
an attacker’s attempt against the DNS server and how the split DNS increases the difficulty for
attackers to break into the system. Towards the middle of participant P9’s pattern, the participant
exhibits uncertainty about why this requirement in needed for the system’s security and thus they
made an assumption in order better comprehend and project before reaching their final decision.
Participant P11 was able to state that the requirement R12 is satisfied based on the diagram, but
was unclear why a split DNS policy is needed. This is an example of how introducing structure
to security analysis, could help analysts become aware of essential security requirements.

Table 3.9 suggests that participant P4 provided more mitigations among all participants. We
found that P4 employed a matrix-based analysis approach by drawing a table on a blank piece of
paper, listing the requirements numbers, and documenting how the requirement could be satisfied
given the information shown on the diagram. During the interview process, P4 exhibited more
depth in their analysis and had greater confidence as evidenced by the absence of uncertainty
patterns in his analysis of the ND2 and the requirements mapping. The word depth is used
here because P4 was able to refine requirements into specification levels and write down system
specification and software configurations that are essential to satisfy the requirement, and this
observation did not occur with any of the other participants.

3.7 Summary Observations
The three categories of artifact - source code, data flow diagram and network diagrams were
chosen to vary specificity in system design and operation in order to surface variations in analyst
performance. For example, the source code artifact examines participants responses when pre-
sented with details at a code-level, while the data-flow diagram is a high-level representation of
an architecture that can introduce ambiguity. We now discuss those variations based on our SA
results.

3.7.1 The Source Code (SC)
Eight participants were presented with the source code artifact, of whom seven agreed to analyze
it (see Table 3.2). Six out of the seven participants identified at least two major concerns: the
risk of SQL injection attack and of unencrypted user data. The remaining participant (P10) could
not spot the SQL injection vulnerability although he was reminded by the interviewer more than
once to look at the artifact and provide any possible security concerns they might have, or if they
have further comments.

The level of analysis and the proposed solutions varied in detail between the participants.
While some were able to explain what languages to use and what libraries to call, some found it
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sufficient to make a general statement that “there are more secure measures that exist” and good
programmers should know about these secure measures. To investigate this more, we looked
at the coded statements of participants; and compared participant P10 to others who were able
to spot the vulnerabilities. For this specific source code artifact, P10 had only 4 perceptions
compared to 12, 9, 13 perceptions for P6, P8, P11 respectively. However, P10 had 30 compre-
hension statements, which is the same as P11 who had more perceptions. When we read some
of the statements, we found that P10 spent more time comprehending the 4 perceptions and thus
deviating away from the intended attack to demonstrate other types of attacks that could occur,
such as phishing. Although Table 3.8 indicates that P10 can actually demonstrate thinking like
an attacker, results from our entity analysis showed that P10 was demonstrating possible attacks
other than the SQL injection attack, which is the main weakness of the scenario presented in the
artifact.

3.7.2 The Data Flow Diagram (DFD)

We found 4/7 occurrences of the ({UC→Ask}) pattern in the data flow diagram (DFD), as par-
ticipants have reported being confused about the chronological order of diagram entities. In
addition, the DFD shows higher comprehension uncertainty (49 {UC} statements compared to 24
UC statements for source code). From the participant responses, we infer that all seven partici-
pants agree that the diagram lacks specific details needed for analysis. This result was expected
when we designed the artifact: we deliberately created the diagram with less details to assess
how ambiguity could affect the results. In our data, we observe two participants (P2, P5) re-
sponding differently to the ambiguity although they have perceived the same cue. Participant P2
states that they do not understand the role of the digital signature shown on the diagram ({UC}).
In contrast, the participant P5 responds to the same entity by challenging the uncertainty with a
perception and scaffolding their analysis with an assumption to reach a decision:

{UC}Okay. So presumably I’m not sending my digital signature in the
clear. It’s an encrypted session, right?{/UC}{P} But again that doesn’t
really show that here{/P} {A}so if we assume that’s an encrypted session and
that I am not sharing my digital signature with somebody{/A} {D}then this

is trusted{/D} {J}but if my machine’s been compromised and someone has my
digital signature they could potentially publish things as me, right?{/J}

3.7.3 The Network Diagrams (ND1 and ND2)

The network artifacts illustrate how expertise areas and job role affect decision-making. Recall
from Section 3.6.2 how participant P1, and P11 reacted differently to the same perceived cue
of the server-naming scheme. When we matched participant background information from Ta-
ble 3.7 with their decision-making patterns, we observed that a job role, such as P1’s hands-on
experience in networking, might improve the participant’s comprehension of cues and lead them
to better decision-making.

Contrary to the SC artifact, where participants look at a code snippet showing one distinct
vulnerability: the SQL injection, network diagrams describe a composition of IT components
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(servers, routers, etc.) in which each component may have its own vulnerabilities. Thus, par-
ticipants must view these vulnerabilities together to reach certain categories of decision. These
interactions can be overwhelming for participants, if no structure is imposed on how they con-
duct their analysis. We observed three modes of security analysis: unstructured, semi-structured
and structured, which we now discuss.

The Unstructured Mode

Participants were provided the least amount of structure when they were presented with the in-
secure network diagram (ND1) that had minimal cues, text and legends. Every participant began
their analysis with a different cue or entity, and each participant arrived at their own concerns and
threat models. Table 3.8 shows that P1 and P3 demonstrated an attacker threat for ND1, but the
entity analysis shows that the two participants were looking at different entities and demonstrat-
ing different attackers. Participant P1 began their analysis from the firewall and its possible rules
for open ports and participant P3 was more focused on the insecure layout of the DNS, e-mail
and web servers. Both participants reached similar mitigation techniques, such as using a DMZ,
and network segmentation in order to reduce the attack surface.

The Semi-Structured Mode

The diagram ND2 has more legends and cues. The icons are distinguished by type of entity
and the text and legends provide more detail, such as IP address, server name, OS type, etc.
When participants analyzed ND2, they showed more structured analysis than they did with ND1.
Contrary to ND1, all participants here, novices and experts, started at the same cue: network
segmentation. They recognized the network segmentation of users, administration, management
and DMZ, and explained the security advantages of such designs. The diagram in ND2 clearly
shows the segmentation using legends and color-codes that the network segmentation becomes
very obvious. However, some participants weren’t able to explain by the diagram alone some
of the network design decisions such as the reason for having two separate DNS servers one of
which is present in the DMZ. We will show next how structured analysis helped address this
problem.

The Structured Mode

After presenting the diagram ND2 to the participants, we presented the security requirements
list. We observed individual differences among experts and novices when assessing a certain
requirement and linking it to the diagram entities, but in general participants had more insights
compared to the two modes above. However, we observed that participants P1, P3, P4, who or-
ganize their thoughts and follow a more structured approach in their analysis of the requirements
list, tend to provide more insights and recognize entities that affect security analysis that they
did not mention before looking at the requirements list. Using our entity analysis, we compared
participants’ responses across entities in diagram ND2. Our analysis results indicate that the re-
quirements list could help both experts and novices: the experts’ attention was focused towards
a specific security component and help them reach better-informed decisions, and the novices
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became aware of a requirement and/or its security justification. Consider requirement R12 that
requires a split DNS policy: expert participants P1, P3, P4, and P9 were able to map require-
ment R12 to the split DNS servers shown on the diagram and to state that the network satisfies
the requirement, and they were also able to explain why such requirement is important from a
security standpoint. Participants P1, P3, P4, P9 demonstrated the patterns: ({P→P→UP→P→UP

→D}),({P→Q→Pro→D→J→J→J→A→J}), ({Q→C→C→C→J→J}),({C→P→J→D→Pro→D→UC→C

→A→C→C→J→C→D}) respectively. We investigated why P3 and P9 had longer patterns, and
we found that they were demonstrating an attacker’s attempt against the DNS server and how
the split DNS increases the difficulty for attackers to break into the system. Towards the middle
of participant P9’s pattern, the participant exhibits uncertainty about why this requirement in
needed for the system’s security and thus they made an assumption in order better comprehend
and project before reaching their final decision. Participant P11 was able to state that the require-
ment R12 is satisfied based on the diagram, but was unclear why a split DNS policy is needed.
This is an example of how introducing structure to security analysis, could help analysts become
aware of essential security requirements.

Participant P4 took an alternative and more highly structured approach to analysis by drawing
a table on a blank piece of paper, listing the requirements numbers, and documenting how the
requirement could be satisfied given the information shown on the diagram. During the interview
process, P4 has shows more depth when analyzing the results and had confidence in their security
analysis. We use the word depth here because P4 was able to refine requirements into specifica-
tion levels and write down system specification that are essential to satisfy the requirement, and
this observation did not occur with any of the other participants.

3.8 Threats to Validity
In this section, we address threats to construct, external and internal validity.

Construct validity is whether measures actually measure the construct of interest [131]. In our
study, the construct of interest is SA, which is comprised of the four levels previously mentioned.
One threat to construct validity is the definitions of the codes for each level in the coding frame
are ambiguous and not mutually exclusive, such that the codes are inaccurately applied to the
wrong statements (i.e., the perception code, if misapplied, may not be measuring instances of
perception). To address this threat, we had two researchers meet to first discuss the coding frame
before applying it to the dataset, after which we identified points of disagreement and reconciled
these differences in a subsequent meeting. Recall from Section 3.4, we computed the inter-rater
reliability statistic Cohen’s Kappa that showed a moderate to high agreement. Unfortunately,
we cannot know when participants are making implicit or unstated assumptions before reaching
their decisions. Personality may be a co-factor that can effect whether or not participants make
assumptions, since assumption making may be related to over-confidence.

External validity refers to the extent to which the results of this study can be generalized to
other situations [131]. This study is based on grounded analysis, which limits generalizations
beyond the data set. While some might argue that our findings are thus too limited, we identified
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several prospects for future research. This includes whether we can transfer expert assumptions
to novices to facilitate transitioning novices from comprehension to decision-making, or how
can we improve perception to reduce uncertainty. These questions can be further examined in
future generalizable, controlled experiments. In this section, we discuss our results in the context
improving the evaluation of security notation in artifacts used in security analysis, and provide
suggestions moving forward explaining how hour method could be adapted to improve the design
of security training.

Internal validity refers to whether the conclusions drawn from the data are valid [131]. Based
on our coding of the data, we inferred several decision-making patterns in the data set that we re-
port in Section 3.5. The completeness of the data threatens internal validity, because participants
have unspoken perceptions, comprehension, etc. To address this threat, we employed probing
questions to prompt participants to make explicit their SA levels, and we checked our observed
patterns for accuracy across the dataset, i.e., how many instances of the pattern were consistent
with our definition of the pattern. This process led us to discover the reverse SA patterns (see
Section 3.5 above), which corresponds to differences between western deductive and eastern
inductive reasoning styles previously studied in psychology [6, 23, 99].

3.9 Discussion and Future Work

In this section, I will discuss our results in the context improving the evaluation of security
notation in artifacts used in security analysis, and provide suggestions moving forward explaining
how our SA method could be adapted to improve the design of security training.

3.9.1 Identifying Effective Cues

Throughout this chapter, we discussed how certain analysts were able to perceive certain cues
in the artifacts, comprehend them, and then, project and decide on mitigations, accordingly.
However, we also showed cases where novice analysts were facing uncertainty during compre-
hension about a cue, e.g., trying to make sense of its meaning or its possible consequences. In
Section 3.7.1, we showed how one analyst, P10, did not even reach perception; P10 failed to
perceive the cue that leads analysts to project the SQL injection attack.

In addition to measuring where analysts struggled to move past perception and comprehen-
sion, we assessed the effect of improving notations and visual cues by comparing performance
between the two network artifacts, ND1 and ND2, and also by comparing the analysis results of
the DFD artifact. Recall from Table 3.8 how only one participant P8, was able to demonstrate
an attack on the diagram. In Section 3.7.2 we showed how participants exhibited increased un-
certainty analyzing the DFD artifact, which indicates how notational elements (or lack thereof)
introduce ambiguity, which has a negative impact on the analysis.

These observations lead to the following question: How can we avoid situations where ex-
perts fail to perceive or comprehend a cue? The SA methodology that we applied helps surface
the cues that likely to need support. While experts may have little difficult reaching projection
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and decision, novices may need additional information to aid them in reaching these higher lev-
els. In addition to identifying the cues, comparing the results could help find ways to redesign the
artifacts in a way that makes the cues either more explicit (improve perception) or more mean-
ingful (improve comprehension). We even envision an adaptive security analysis system that can
adapt to the training needs of a security trainee based on their perception and comprehension
of cues. If a trainee fails to identify a cue, then the system could provide deeper training with
further cues in order to help the trainee perceive vulnerabilities, comprehend its risk, project the
impact, and decide on the proper mitigation.

In addition, deciding the appropriate cues could help inform future security experimental
designs. For example, consider a study that tests how security analysts evaluate a certain system
artifact for threats. In order to draw correct conclusions from the experiment, first we need to
evaluate the cues used in the experiment materials (online application, paper, etc.) during a pilot
study. Cues can be selected that participants perceive and understand well, and others can be
improved if they are misleading or ambiguous.

3.9.2 Structured Analysis Trade-offs

It is arguable whether or not to provide structured approaches to security analysis. Although our
findings in this work are in favor of structured analysis, we think that the decision of favoring
structured vs. unstructured analysis is based on realizing the trade-offs between the two ap-
proaches, and future research examining those trade-offs is beneficial. The structured approach
improved the experts’ security analysis of ND2. Only after going through the requirements list,
participants P1, and P2, P3, P4 noticed the split DNS design in ND2, which was an improvement
over the insecure diagram shown in ND1, but they did not point it out by looking at the diagram
alone.

3.9.3 Ambiguity and Resolution

We intentionally chose the ND1 with minimal cues and information displayed to study the role
of ambiguity in decision-making. Consequently, participants interpreted a router icon differently,
as a router or firewall. Figure 3.2 shows the different interpretations of the same entity by four
participants, including their statements in order of articulation coded by the SA method. When
the notation was improved in ND2, we observed a positive effect on P1 for example. After later
seeing the firewall icon in diagram ND2, participant P1 returned to ND1 to correct their prior
interpretation to conclude that the ND1 icon was a router.

Participants could not comprehend effectively if they did not perceive appropriate cues that
lead to a comprehension, and that could explain having uncertainty patterns appear in our dataset,
which leads an expert to transition to an uncertainty stage as shown in Figure 3.2. When analyz-
ing the DFD artifact, for example, one participant attempted to think of all possible interpreta-
tions given the absence of specific details from the diagram. In the excerpt below, we show how
participant P3 assumed that encryption existed:

{UC}that doesn’t really show that here [speaking about encryption
session for sending the digital signature] {/UC}, {A}so if we assume that’s
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Figure 3.2: Participants’ perceptions of the router icon in diagram ND1

an encrypted session and that I am not sharing my digital signature with
somebody{/A} {D}then this is trusted{/D}

In a few cases of uncertainty, assumptions helped participants resolve the ambiguity and reach
their decisions. Those assumptions were not arbitrary; they were based on former experience
and best practices adopted for network security that experts had been exposed to.

The following coded excerpt that was taken from participant P1 and illustrates such an as-
sumption:

{UP}I don’t see an NTP server on this network{/UP} {C}but I know that
Windows Domain Controller can act as NTP{/C}, {A}so I am going to assume
that when they install it they’ll probably leave that box checked because it
’s a default option{/A}. {D}I think that is probably happening here{/UD}

The above assumption is an example of a trust assumption that were applied to security
requirements by Haley et al. [63]. Trust assumptions describe desired behaviors and may be out-
side the control of the system designer. Based on the background-coded data BG (see Table 3.1
for a definition of this code), participant P1 has extensive hands-on experience in network secu-
rity, which could explain why P1 was comfortable making assumptions about the system. The
example above shows an interesting pattern ({UP→C→A→UD}). Although we did not observe the
exact same pattern with other participants, we were able to observe the latter half of the pattern:
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{A→UD} as it occurred once for P5 and P11, and twice for P3 and P9. These participants reported
significant experience in network security, so one would expect them to be more confident in
reaching certain decisions with respect to network artifacts. However, we must not ignore the
personality effect: an expert may hesitate to make confidant decisions based on assumptions,
so they express a level of uncertainty with their decision to be more cautious. As explained by
the “Dunning-Kruger effect”, more competent participants may have a cognitive bias towards
underestimating their abilities [77].

Trust assumption reported by Haley et al. [63] help restrict the domain by narrowing the
attention span of the analyst. In SA, a narrowed focus is beneficial for projection, but it can
also lock-in the analyst and prevents them from perceiving alarming cues in the environment
[41]. Our work could be extended by distinguishing which assumptions are trust assumptions to
distinguish the volatility of decisions that depend on assumptions about actors that are outside
the system boundary. If those trust assumptions turn out to be untrue, then the security analysis
that depends upon those assumptions should be revisited for possible inconsistencies

While our dataset is small in the number of participants, we did observe that experts were
more likely to use assumptions to control uncertainty and to reach a decision. In future experi-
ments, we could test if assumptions could provide another metric to distinguish between novices
and experts. Being able to distinguish users based on expertise level could have an important
impact on designing intelligent and interactive tools to help novice analysts cover more security
scenarios in a problem description or specification.

3.10 Conclusions of the “SA Study”
The SA study described throughout this chapter, has shown a new empirical research approach
to assess security expertise and decision-making. So far, we have shown a systematic method to
apply the Situation Awareness (SA) framework to distinguish security experts effective analysis
based on their differences in recognizing attack threat models. The results were presented to
show traces across the SA levels in the form of patterns that could be used to distinguish experts
from novices. We believe that other researchers can use insights from this methodology and
adapt it to evaluate their technical solutions to security analysis by improving notation, presenta-
tion, training materials, and most importantly understanding how those solutions improve novice
decision making in comparison to experts.

In short, the SA study highlights the following [69]:

Security requirements exist in composition Deciding on security requirements that mitigate
threats relies on: the context of the attack and the composition of requirements. Attack pat-
terns found in the data confirm this finding as participants need to understand and comprehend
how perceived cues interacts forming a context where a future attack can occur. This thorough
understanding can lead to deciding about proper attack mitigations

Security decision-making involves uncertainty Uncertainty in this context means missing
information that is essential to the get the full picture, or ambiguity in presentation where analysts
could have different interpretation of the same item. Experts differ in handling uncertainty based
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on their past experiences, but even when highly confident, experts tend to quantify security with
“it depends,” which means: 1) that security decisions rely on the context, and 2) we need better
linguistic expressions that accommodates the uncertainty present in security decisions.

Security expertise is broad and stove-piped The results of the SA study suggest that experts
vary in their domains of security expertise and that variation impacts their security analysis.
Participants P11 for example, performed better when analyzing the SC artifact, as they were able
to detect and mitigate the SQL injection vulnerability, but performed poorly trying to map ND2’s
entities to the requirements list. We need to measure security by evaluating domains together and
independently with respect to analyst expertise.

These findings from the SA study that listed above, had led me to design user-experiments
that instruments scenarios to present security requirements to experts. This scenario-based ap-
proach accounts for the effect of context and helps measure the effect of composed requirements
in a scenario on the overall security assessment of that scenario. When instrumenting the user-
study, I collected demographic information and used a security knowledge test to examine the
effect of an expert’s background on security assessment. More details to follow in the upcoming
chapters.
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Chapter 4

Establishing the scientific validity of
Ad-hoc Security Measures

To ask experts about security decision-making, we must first decide on the measure to be used
for security. The interviews with experts that I described in Chapter 3 show that experts were
hesitant to describe a feature or a component as secure or insecure, and they preferred to say “it
depends”. Decision scientists investigate which constructs can measure human judgment, and
this requires researchers to design and validate new scales.

Since I am asking security experts to provide security assessments in a survey, I found it
necessary to communicate security levels using a labeled scale. There has been a number of
efforts to represent security on a scale, for example, the National Institute of Standards and
Technology (NIST) special publication 800-30 recommends three levels to represent security
risk: low, medium and high. In our work, we created new labels to measure security on a scale
of adequacy.

In this chapter, I explain how to investigate a new scale. We created a new scale to measure
a construct of security adequacy. We found this to be necessary because there are no existing,
empirically valid scales to measure this construct in the security requirements context. This type
of scale is usually described in the psychometric literature as an ad hoc scale due to the lack of
valid or reliable scales [49]. Creating ad hoc scales requires evaluation to examine the reliability
of the scales rather than relying on the face validity, alone [49]. In contrast to construct validity,
face validity is subjective: if a test or measure “looks like” it will measure what it is supposed
measure, then it has face validity [91].

Below, I will describe our approach to selecting the adequacy scales to be used to describe
security requirements, and the user studies conducted for the empirical evaluation of the scales.

Excerpts from this work were previously published as: H. Hibshi, T. Breaux, and S. B. Broomell, Assessment
of Risk Perception in Security Requirements Composition, 2015 IEEE 23rd International Requirements Engineering
Conference (RE), pp. 146-155, Aug. 2015; H. Hibshi, T. D. Breaux, and C. Wagner, Improving security require-
ments adequacy: an interval type 2 fuzzy logic security assessment system, in 2016 IEEE Symposium Series on
Computational Intelligence (SSCI), 2016, pp. 1âĂŞ8.
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4.1 Approach
In this section, I will describe the details of our research methodology including, how the initial
scale labels were selected and evaluated.

4.1.1 Selecting the Initial Labels
At this stage, my goal was to answer the following question:

When given a scale, what kind of word labels best describe an increase or a decrease in
security?

The linguistic labels that we are interested in should describe a security assessment scale for
survey participants who are evaluating security requirements in a scenario. The choice of such
labels is context dependent by application, and relies on the background knowledge supported by
empirical evaluation using experiments [88, 90]. We conducted a focus group of five researchers
in our lab to discuss the initial set of labels that we are considering for security assessment.
We used the context of a concrete scenario to be able assess labels that mostly came from prior
research in fuzzy logic [88, 90], and in NIST special publications. An example of some of
the labels used in prior research include: low, medium, high, and moderate. The focus group
discussion concluded that these labels are not very well suited to describe security because it is
unclear how to define low security vs. high security?

In the focus group discussion, members explained that experts analyze threats in a security
scenario as they are concerned with risks involved with the threat. Security requirements are in-
tended to mitigate the threats and decrease the risk. With the goal of mitigating threats, security
requirements can be described as: inadequate, adequate, or excessive, because security require-
ments are often viewed by companies as cost requirements, meaning the value is not so obvious
to achieve primary system goals and stakeholders often have difficulties seeing the benefits. Fur-
thermore, excessive security has negative financial and usability effects, while adequate security
is what an organization might settle for. Hence, we developed three labels to describe security
adequacy: inadequate, adequate, and excessive. This understanding of security requirements en-
ables us to describe requirements in terms of “adequacy” of a security requirement to mitigate a
threat.

Hence, the focus group proposed with choosing the three labels: inadequate, adequate, and
excessive. Next, I will describe the experimental evaluation of the labels.

4.1.2 Experimental Evaluation of the Labels
For the purposes of my research, I evaluated adequacy scales to be used in a security context,
and asked experts to assign intervals to word labels. My purpose was to investigate how many
labels are needed on a scale to represent security adequacy? Answering this question involves
obtaining numerical intervals for the words to make sure that we select the minimum number of
word labels that covers an entire given scale (e.g. from 1-10).

We obtained an 18-word data set using a standard English dictionary by looking for synonyms
of the words: inadequate, adequate and excessive. The 18-word data set includes the original
three labels and the additional synonyms. We presented the words from the dataset to security

44



experts using a survey in which we asked participants to represent these words using as an interval
on a predefined range. This approach is commonly accepted and adopted by the fuzzy logic
research community [88, 90]

Participants were asked to specify the start and end points of intervals of the 18 words using
the text template shown below, replacing Adequate with each of the other 17 words. The word
order in the survey was randomized. Since human perception of adequacy can vary by scenario
and context, we include a security scenario to add context to each word as follows:

A security expert was asked to rate a security scenario with regards
to mitigating the Man-in-the-Middle threat.

The expert would give an overall security rating using a linguistic
term.

In the next sections of this survey, we will present 18 linguistic
terms describing the overall security of a scenario. We would like you to
mark an interval between 1-10 that represents each term.

Note: Intervals for different terms can overlap.

For each word (e.g., “adequate”), participants were asked:
Imagine "Adequate" represented by an interval on a range from 1-10.

Where would you indicate the start and end of an "Adequate" security rating?

Participants Demographics

At the end of the survey, we ask participants to provide demographic information where they
answer questions about job experience and security training, in addition to their age, gender, and
income level. It is recommended to place background and demographic questions at the end
of surveys to increase participants response rate, because research has shown that placing these
questions at the beginning may detract the participants attention from the intended survey topic
[105].

Expert Recruitment

Participants were recruited by sending out email invitations to mailing lists of security research
groups at Carnegie Mellon University. We anticipated that the survey will take a participant be-
tween 15 and 30 minutes (based on a pilot test with 4 participants), so we offered each participant
a $10 Amazon gift card.

4.2 Results
Intervals were collected from 38 security experts who consist of 74% males, 18% females, and
8% unreported. For each word, we calculated the mean and standard deviation for the interval
end points that we collected from participants. The results show that the three words, inade-
quate, adequate, and excessive are sufficient to be used as fuzzy sets covering an interval from
1-10. Figure 4.1 shows all the labels and their coverage over the 1-10 interval. The solid region
represents the interval between the mean values of the start and end points collected from the
experts. The shaded region on each side of the solid region represents the standard deviation for
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that point, which represents the uncertainty surrounding the mean value. It is only possible to
cover the entire region from 1-10 using only three labels (inadequate, adequate, and excessive)
due to the uncertainty, which yields overlapping intervals for the three words. I will explain more
in Chapter 6 about how type-2 fuzzy sets can represent a linguistic label, while maintaining the
uncertainty that is present in the data.

Figure 4.1: The fuzzy sets with the start and end means, and standard deviation

4.3 Threats to Validity
In this section, I will discuss how we addressed threats to construct, external, and internal validity.

Construct validity is whether a measure actually measures the construct of interest [131]. In
the adequacy labels study that we discussed above, one threat to validity could be that a partic-
ipant might think of the words in a context different than security requirements. For example,
we have examined in a separate online study, how participants could rank the adequacy labels
differently in four different contexts such as: describing meal portions, waiting time for a bus,
distance to parking lot, and amount of privacy protections against government surveillance [65].
To reduce the effect of such threat, we provided a security context with each word, so participants
would provide the intervals while thinking about security requirements.

External validity refers to the extent to which the results of this study can be generalized to
the population and other situations [131]. Our target population is security experts and we tar-
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geted participants by recruiting from security mailing lists that include professors, post-doctoral
researchers, and graduate level students. One possible sample bias is that our sample was drawn
from two U.S. Universities. We also used a security scenario in the study, so it is unknown
whether the intervals for the labels generalize to other contexts outside of security.

Internal validity refers to whether the conclusions drawn from the data are valid [131]. One
possible threat to validity in the labels study is the ordering effect of the words that could bias
the outcome. For example, the interpretation of Decent might shift toward 10, if it followed
Inadequate instead of Not bad.To address this threat, we randomized the order in which the
words were displayed to different participants.

4.4 Discussion and Conclusions
The results of this word-study served two purposes for my research. First, I will explain in
Chapter 5 how I applied the labels: inadequate, adequate, and excessive as anchor points on
a semantic-scale used to collect experts ratings of security requirements. Next, I will show in
Chapter 6 how I used the intervals provided in this adequacy labels study to build type-2 fuzzy
sets that will be used in a security assessment system.

The number of anchor points on a scale carries an important consideration as it affects that
user-study design, and the modeling of the word using fuzzy sets. As the number of anchor
points increases, the usability and user-friendliness of the scale could drop. The more anchors
participants need to read and comprehend, the more there is an increase in their time to answer
the questions on the survey. With regards to using fuzzy sets, I will explain in Chapter 6 in-
creasing the anchor points means increasing the number of fuzzy sets and the number of rule
combinations, which will increase the computational complexity.

One can infer from Figure 4.1 that the word excessive could be ignored as an anchor point,
given the considerable overlap of intervals between excessive and adequate. When used in a
security context, a security expert may feel one can never have excessive security. I will explain
in the upcoming Chapter 5 how the mean value of respondents ratings in the user-study remained
around the adequate anchor point even in scenarios with increased security, which supports the
claim that experts hesitate to rank security requirements as excessive.

Other researchers in the security domain, can benefit from the results of this word study by
using adequacy scales for studies where security ratings are obtained from participants. Because
of time constraints, we did not use psychometrics to validate the scales, but we envision that
future studies that uses psychometrics to validate the scales would be beneficial to the research
community.
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Chapter 5

Capturing the Effect and Priorities of
Composed Security Requirements

In Chapter 3, I have described challenges involved in security decision-making based on col-
lecting qualitative data through expert interviews. I have also presented background and related
work describing the challenges in security decision making in Chapter 2. In this chapter, I will
report results of multiple user experiments [66, 68] conducted on security experts to examine how
changing threats and requirements affect an expert’s ability to perceive security risk and make
corresponding decisions to prioritize security requirements. I will describe how I conducted user
studies on a larger scale using a mix of quantitative and qualitative analysis methods, and I will
describe the research methodologies that I adopted to handle the following challenges:
• The experts varying level of expertise and their stove-piped security knowledge and back-

ground.
• The composition of requirements corresponding to components of a system.
• The security requirements varying priorities: some requirements have higher priorities

than others, depending on their strength in mitigating threats.
• The uncertainty in security decisions, that could result from ambiguity in abstract termi-

nology that could lead to different experts interpreting the same requirement differently.
• The scarcity of security experts.
I will first motivate the use of factorial vignettes in the design of the security experts user

studies, before explaining and reporting results from two studies conducted on a sample of re-
searcher, graduate and undergraduate students from CMU and NCSU [68]. The purpose of these
two studies was to examine security requirements composition through the use of factorial vi-
gnettes that I adapted from social science. Results and insights from this work led me to develop
the Multifactor Quality Measurement method (MQM) [66]. The MQM models dependencies

Excerpts from this work were previously published as: H. Hibshi, T. Breaux, and S. B. Broomell, Assessment
of Risk Perception in Security Requirements Composition, 2015 IEEE 23rd International Requirements Engineering
Conference (RE), pp. 146-155, Aug. 2015; H. Hibshi and T. D. Breaux, Reinforcing Security Requirements with
Multifactor Quality Measurement, in 2017 IEEE 25th International Requirements Engineering Conference (RE),
Lisbon, Portugal, 2017, pp. 144-153.
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among requirements, and estimates how these requirements affect a perceived level of quality in
a requirements specification, called a scenario. I also explain how I applied the method to conduct
user experiments on 69 security experts with average 10 years of experience to evaluates security
scenarios in the four different security domains of networking, operating systems, databases and
web applications [66]. The MQM provides a defined framework for researchers and require-
ments engineers. Whether the research is for academic or industry purposes, a researcher who
wish to study a problem, phenomena, or a quality of interest (not necessarily security) where a
number of dependencies exist between different factors, and where there is a demand for input
from domain experts who happen to be scarce in that domain of interest.

As explained earlier in Chapter 2, analysts still face challenges in the selection of the appro-
priate security requirements to mitigate threats. Security requirements exist in composition. The
“composition in security requirements” means that any given security scenario could consist of
multiple components, such as authentication and network type that can contribute differently to
the security risk in the scenario. For an analyst to assess the risk and rate the overall security of a
scenario, they would need to understand all the security requirements composed in the scenario,
and how these requirements interact and contribute to increase or decrease the risk.

In the “SA study” described in Chapter 3, we interviewed 11 security experts and showed
them artifacts that consist of multiple requirements to study how experts would analyze com-
posable requirements and make security decisions. To study a larger scale of experts, it is more
beneficial and practical to use controlled experiments. I will explain below how I designed my
experiments using factorial vignettes, a methodology adopted from social science. I will also
explain how the factorial vignette design helps to capture the composition effect of multiple se-
curity requirements that are arranged in a scenario. This approach allows us to isolate the effect
of composition on security risk, and to address the limitations of differing levels of security ex-
pertise. To improve completeness and to help reduce ambiguity, the design asks analysts to report
missing requirements.

5.1 Factorial Vignettes
The vignette experiments that I describe in this chapter are based on factorial vignettes, which are
scenarios comprised of discrete factors that contribute to human judgment. Researchers system-
atically manipulate the factors to understand their composite and individual effects on a decision
[106, 126]. Factorial vignettes are proven more effective to understanding decision making than
direct questioning or single statement ratings that obscure the underlying contributions of dif-
ferent factors to the overall decision [3, 106, 126]. In addition, the use of factorial vignettes,
increases experimental realism as participants react to scenarios that are similar to what a partic-
ipant may experience in the real world [1].

Factorial vignettes are presented in surveys and user experiments using a basic template that
contains multiple dimensions of the construct of interest. In our case, each dimension is a security
requirement that influences the perceived level of security risk: some requirements increase risk,
while others decrease risk. For example, Figure 5.1 shows the natural language text template
that we used in our preliminary study to create the vignettes: a vignette is a standard scenario
generated by the template, wherein each variable name (starting with a $) is replaced by a level
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in the corresponding dimension.

Figure 5.1: A template used for vignette generation

In the study where we used the template shown in Figure 5.1, each level corresponds to a
requirement or system constraint variant, which is either a quality requirement (e.g., a weak vs.
strong password) or more concrete interpretation of an otherwise ambiguous requirement (e.g.,
unencrypted vs. encrypted Wi-Fi). Further in this chapter, I will be showing more vignette
templates from our studies along with their dimensions and levels.

5.1.1 Related Work on Factorial Vignettes

Research methods using factorial vignettes have been applied in social and decision science,
psychology, sociology, and marketing, to name a few [10, 126]. Factorial vignettes have also
been used in security and privacy research. I will highlight below related work that uses factorial
vignettes as a research methodology.

McKelvie et al. used factorial vignettes to investigate the effect of different types of un-
certainty on the decision-making of entrepreneurs in software industry [1, 87]. Based on their
results, the authors argue that entrepreneurs prefer to avoid uncertainty, but the extent of that
avoidance is affected by the type of uncertainty, the magnitude of the decision, and the domain
expertise [1, 87]. The authors argue that having their participants provide judgments to scenarios
that consist of underlying factors, is an approach found to provide more accurate and less biased
data when compared to other methods such as participant introspection [87]. In our work, we are
also interested in investigating uncertainty, risk, and expertise, but in the security domain. We
find factorial vignettes an approach that allows participants to rate scenarios composed of multi-
ple security configurations. The analysis of participant data will help investigate the composed
requirements in the scenarios and explain their effect on security expert decisions.

Factorial vignettes have been used in privacy research [15, 16, 82, 83, 84]. Martin used fac-
torial vignettes on 1600 participants from Amazon’s Mechanical turk to study how introducing
privacy notices may impact consumer trust [82]. Bhatia et al. used factorial vignettes to study
privacy risk and how it affects user willingness to share personal information [15, 16]. Martin
and Nissenbaum use factorial vignettes to show that contextual elements highly affect individual
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privacy decisions which provides an explanation to the conflicting data found in privacy litera-
ture; that is when survey results show that people are concerned about privacy, while their real
actions show that they do not care about sharing their personal information with websites [83].
Emami-Naeini et al. have used factorial vignettes to study user privacy expectations and prefer-
ences when using Internet of Things (IoT) technologies [38].

Researchers have applied factorial vignettes to study different factors that impact cybersecu-
rity. To study compliance with cybersecurity policy, researchers used factorial vignettes to ex-
plore factors that lead to policy violations [76, 86, 118]. Gomez and Villar use factorial vignettes
to study the effect of uncertainty on dealing with cyberthreats [56]. Factorial vignettes have also
been used to examine end-user security decision-making (e.g. file download) and explore their
security risk perception [64].

Except for the research conducted by Gomez and Villar [56], prior work mentioned above
that used factorial vignettes in the usable security and privacy field have focused on end-users.
Gomez and Villar recruited computer science university students and treated them as to be the
experts in their online experiments [56]. In our research, we focus on security experts. I will
show in the upcoming sections of this chapter how we focused on recruiting industry experts. In
our preliminary study, we recruited graduate and undergraduate students who perform research
in cybersecurity or who are enrolled in security classes. In addition to self-reported expertise
questions, we include a security knowledge test in our studies to be able to assess a participant’s
security expertise.

We have also applied factorial vignettes to a new application domain: security requirements.
We treat security requirements as factors and we manipulate these requirements by using specifi-
cations that should increase or decrease security in a vignette. Prior work mentioned above have
focused on studying end-user related factors such as: effect of personality traits on employees
compliance with company’s information security policy, presence of compliance policies on the
likelihood of playing online games[118], trust in cyberspace [56], and effect of gain-and-loss on
end-user security decisions [64].

5.2 Preliminary Study on Security Requirements Composi-
tion

We conducted a preliminary study that uses factorial vignettes to study the composition effect
in security decision-making. This study, which we will refer to as the requirements composition
study, consists of two online experiments that elicit risk perceptions from multiple analysts and
target the mitigating effects of specific requirements to the threats they address. This approach
examines the effect of composition on security risk, and address the limitations of differing levels
of security expertise. To reduce incompleteness and ambiguity, the design asks analysts to report
missing requirements.
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5.2.1 Approach for the Requirements Composition Study
I will now explain our research methodology for the preliminary study. This includes the research
questions, vignette design, survey design, deployment and subject recruitment, and the analysis
approach.

Research Questions

The survey used in the preliminarily study was designed to answer three research questions:
RQ1. Does requirements composition affect risk perception in a security scenario to cause var-

ied ratings of the security adequacy level, or can requirements be treated independently in
a checklist?

RQ2. Which security requirements in a security scenario contribute more weight to experts se-
curity adequacy judgment?

RQ3. Would experts be able to detect ambiguities in a security scenario and provide modifica-
tions to improve the security adequacy ratings?

To answer these questions, the survey instrument was designed with three parts: the security
vignettes, a security knowledge test, and a demographics test. Below, I describe the factorial
vignettes design, followed by the overall survey design.

Factorial Vignettes Design

We use factorial vignettes to design the study where we ask users to judge security scenarios that
include multiple security requirements. Figure 5.1 that was introduced above, shows the template
that we used in the study to create the vignettes. In Table 5.1, we present the dimensions and
levels to Figure 5.1. Each level has a code (in parentheses) that we used to analyze and report
our results. The level ($Threat = Man-in-the-Middle) occurs when an attacker intercepts the
encrypted communication between two parties by decrypting the encryption. The level ($Threat
= Packet Sniffing) is passive in that the attacker eavesdrops on network packets to steal

information without interacting with any parties, directly.
The choice of dimensions and levels in factorial vignettes is determined by the researcher’s

judgment based on the research questions. We seek to evaluate the effect of changes in require-
ments composition and in threats where the composition spans a range of security knowledge,
including network and application security, perceived sensitivity of information, and general best
practice vs. threat-targeted mitigations. The dimensions that we chose are not the only dimen-
sions that can be evaluated. In addition, the number of levels for each dimension is not the only
number that exists.

In factorial vignette design, the space of all possible dimensions and levels is called the
factorial object universe [106] and the factorial object sample is the sample across the universe
that we use to instantiate the vignette template [106]. Sampling is random or systematic and
the choice is based on prior theory, research, and reasoning [75]. Factorial sampling is used to
eliminate unrealistic combinations of levels and to exclude scenarios that are likely to produce
a predictable outcome [126]. Sampling from vignettes is more efficient than classic factorial
designs, wherein all possible combinations of factors are tested [106].
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Table 5.1: Vignette dimensions and their levels in the security requirements composition study
Dimension Level Code Level(s)

$NetworkType

EmpNetwork Your employer’s network at your office

PublicWIFI
Public unencrypted Wi-Fi at a public area
(restaurant, airport)

VPNUnencrypted
Your employer’s VPN that you connected to
through public unencrypted Wi-Fi

VPNEncrypted
Your employer’s VPN that you connected to
through public encrypted Wi-Fi

$Transaction
Email Accessing your email account and replying to confiden-

tial email
Financial Performing a financial transaction using your credit

card
$Connection SSL

$Password
Weak A password that is at least 8 characters long
Strong A password that is at least 16 characters and must

include lowercase letter, a symbol, and a number
digit

$Timer
Yes Automatically log you off the session after 15 minutes

of inactivity
No Never time-out

$Threat
M-i-t-M Man-in-the-Middle
Packet-Sniffing Packet-Sniffing

The initial scenario about logging into a remote e-mail service was chosen because it crosses
between novice and expert security knowledge, and this would allow us to measure the effect of
security expertise on risk perception. We reviewed the universe and selected dimensions that had
a sufficient number of levels to provide a rich space from which to sample; this includes network
types and password complexity. Based on Table 5.1, we have 32 (4× 2× 1× 2× 2) conditions
per $Threat type.

Our vignette selection is based on removing unrealistic and idiosyncratic scenarios. For
example, the $Connection dimension consists of one level, only, which is called a blank di-
mension. While we can evaluate unencrypted HTTP sessions in a scenario, the prevalence of
knowledge about the high risk of unencrypted sessions suggests this level would predictably lead
respondents to rate this requirement as inadequate to protect against the chosen threats. Blank
dimensions are included in the vignettes, but not as statistical variables in the analysis, because
they have no statistical effect to be measured. That said, blank dimensions are not to be elimi-
nated, because their presence and absence affect how participants make decisions. In our case,
removing SSL introduces an ambiguity: some participants may assume it exists, while others
may assume it is absent. To control for this variability, we made this requirement explicit.
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Survey Design and Research Questions

As stated above, the survey instrument was designed with three parts: the security vignettes, a
security knowledge test, and a demographics test. In addition, each participant receives a consent
form noting that participation is voluntary. Participants were with the Man-in-the-Middle threat,
where they answer all three parts of the survey. A week after taking the survey, participants were
invited back for the Packet-Sniffing threat, where they do not repeat the security knowledge test
or the demographic questions.

The Security Vignettes In this study, each participant rated four vignettes to observe all four
network levels (see Table 5.1). Since we have a total of 32 vignettes per threat, we have 8
possible combinations of the dimensions and, thus, each participant is randomly assigned to one
of eight conditions, where they rate four vignettes (8 × 4 = 32 vignettes). Each condition
randomly assigns the participant to a single level of the $Transaction, $Password, and $Timer

dimensions (between-subjects effect), which are the same across all the four vignettes that the
participant rates. The four vignettes differ by the $NetworkType dimension (within-subjects
effect) and are presented in a randomized order. For all four vignettes, a participant is asked
to first rate the overall security level of the scenario within the context of the given threat. The
rating levels are displayed in a random order from the following list:
• Excessive security measures that exceed the requirements to mitigate the threat
• Adequate security measures that are enough to mitigate the threat
• Inadequate security measures that are not enough to mitigate the threat
Next, we ask participants to rate the dimension levels based on the security requirement’s

ability to mitigate the given threat. This mitigation rating is applied to factors that represent a
mitigation that can be modified to improve security: $NetworkType, $Connection, $Password
and $Timer. Participants provide their rating on a 5-point semantic-scale, where point 1 is labeled
inadequate mitigation, point 3 is labeled adequate mitigation and point 5 is labeled excessive
mitigation. For each such dimension, we list the selected level for the vignette from Table 5.1.
These ratings are used to test which requirements (or factors) affect the overall security.

Participants are also given the opportunity to list additional security requirements that they
believe contribute to increasing the security level to adequate. These are open-ended responses
that are later analyzed using grounded analysis [107].

The Security Knowledge Test Following the vignettes, participants are required to answer ten
security knowledge questions. These questions were selected to cover from user to administrator-
level security knowledge, including cryptography, firewall rules, encryption, hashing, file per-
missions, and network security. The questions cover security concepts, and are intentionally
inconvenient to search for on the Internet to reduce cheating. The responses are used to calculate
a score that serves as a proxy expertise metric.

Demographics Survey At the end of the survey, participants answer questions about job expe-
rience and security training. It is recommended to place background and demographics questions
towards the end of surveys to avoid potential bias and to increase participants response rate [105].
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Deployment and Subjects Recruitment

Security experts were recruited using e-mail invitations to participate in the Man-in-the-Middle
study (32 vignettes, where each participant sees 4 vignettes). The invitations was sent to security
class mailing lists at Carnegie Mellon University and North Carolina State University. We also
sent invitations to security-research mailing lists at Carnegie Mellon University. Participants
were compensated with a $10 Amazon gift card for participation. A week after taking this study,
the participants were invited back to the Packet-Sniffing study (another 32 vignettes, where each
participant sees 4 vignettes), and compensated with a second $10 Amazon gift card.

Analysis Approach

Now I will explain the multi-level modeling and grounded analysis used for the analysis.

Analysis of Multi-level Models Multi-level models are statistical regression models with pa-
rameters that account for multiple levels in datasets [54]. Our study design described above
supports both within and between subjects effects (mixed-effects). We treated the data as two
studies based on the two levels of the $Threat dimension, which we assume the participant
responses to the two threats are independent due to the week delay between surveys.

The quantitative dataset consists of one major dependent variable: the $OverallRating,
which is the security experts judgment rating of the overall security level. This variable has
three possible values -1, 0, or 1 that correspond to inadequate, adequate or excessive secu-
rity, respectively. The fixed effects independent variables are the dimensions: $NetworkType,
$Transaction, $Password, $Timer, which we will refer to as requirements-mitigation variables.
The random effect, independent variable is grouped by participant $ID, because we have re-
peated measures for each subject who sees four levels of $NetworkType. We have four depen-
dent mitigation-rating variables: $NetworkRating, $Connection-Rating, $PasswordRating,
and $TimerRating, which correspond to individual ratings of the dimensions: $NetworkType,
$Connection, $Password, and $Timer, respectively. Mitigation-rating variables are assigned an
integer from 1-5.

Knowledge is quantified using a $Score variable, which is an independent exploratory vari-
able assigned an integer from 0-10 equal to the number of correct answers provided by the
participant to the 10 security screening questions.

The data is analyzed using multi-level modeling [54] to account for our mixed effect experi-
ment design. Tools to conduct the analysis include R [102] and lme4 [13]. As described earlier,
each participant rated all four levels of the $NetworkType dimension, while only rating one level
of the remaining dimensions. Hence, the analysis simultaneously accounts for dependencies in
the repeated measures, calculates the coefficients (weights) for each explanatory independent
variable, and tests for interactions. The significance of the multi-level models is tested using
the standard likelihood ratio test by: fitting the regression model of interest; fitting a null model
that excludes the independent variables used in the first model; computing the likelihood ratio;
and then, reporting the chi-square, p-value, and degrees of freedom [54]. For fitted models that
show statistical significance, the coefficient values from the regression model are reported, which
represents the dimension weight for predicting the dependent variable.
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To determine sample size, a priori power analysis was conducted using the G*Power [45]
tool to test for the required sample size of repeated measures ANOVA. An estimated sample size
>96 was needed per threat scenario for the recommended power level of 0.8 and a medium-sized
effect [27].

Grounded Analysis The open-ended questions to elicit mitigation requirements were analyzed
by first excluding seven non-mitigation responses. Then, open coding was applied [29, 55] to
code responses with short phrases (concept labels) and then group the phrases into six emergent
categories: server, if the requirement is the responsibility of a web server, client, if the require-
ment is the responsibility of an application on the user’s computer (e.g., a browser); encryption,
if the requirement primarily concerns encrypting data or communications; private network, if
the requirement suggests switching to a non-public network; attack detection and prevention,
if the requirements is aimed at preventing and/or addressing certain attacks; and identity and
authentication, if the requirement concerns verifying the identity of the user or their device.

After first cycle coding and categorization, a second-cycle coding [107] was conducted,
wherein the categories were linked to vignette dimensions and a direction as follows: a refine-
ment, if the requirement refines the dimension by extending its functionality; a reinforcement, if
the requirement adds auxiliary security not directly related to the dimension; a generalization,
if the requirement is more general than the dimension, but includes the dimension’s mitigation;
and a replacement, if the requirement replaces the dimension. For example, two requirements,
multi-factor authentication and password expiry policy, are coded by the password dimension,
yet the former is a replacement, because it replaces password with new functionality, and the
latter is a refinement, because it extends password with expiration.

5.2.2 Results of the Requirements Composition Study

I will now present the quantitative and qualitative results of the Requirements Composition study.

Descriptive Statistics

A total of 174 participants responded to the Man-in-the-Middle threat survey, of which, 116 re-
turned to respond to the Packet-Sniffing survey. These sample sizes exceed what we estimated
prior to conducting the study. The sample consists of 26% females and 73% males (1% un-
reported gender). The age groups sorted by dominance in the sample are 18-24 (63%), 25-34
(33%), and 35+ (3%). Within the sample there are 101 graduate students, 42 undergraduate
students and 2 university professors.

The average number of participants per vignette is 22 for the Man-In the-Middle threat, and
15 for the Packet-Sniffing threat. The number of participants is close but not equal across vi-
gnettes due to randomization. Tables 5.2 and 5.3 present descriptive statistics of participant
ratings.
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Table 5.2: Descriptive statistics of the $OverallRating variable
Man-in-the-Middle Packet_Sniffing

Adequacy Scale Adequacy Scale
1 0 -1 1 0 -1

$OverallRating 5 % 53% 42% 7% 92% 0%

Table 5.3: Descriptive statistics of the variables for requirements ratings
Man-in-the-Middle Packet_Sniffing

Adequacy Scale Adequacy Scale
5 4 3 2 1 5 4 3 2 1

$NetworkRating 1% 9% 37% 21% 32% 2% 7% 36% 22% 33%
$ConnectionRating 2% 12% 68% 17% 1% 0% 11% 71% 15% 3%
$PasswordRating 7% 17% 43% 21% 12% 8% 13% 39% 26% 14%
$TimerRating 2% 11% 29% 17% 41% 4% 12% 27% 21% 36%

*Percentages are calculated with respect to each threat study sample;
adequacy scale 5=Excessive, 3=Adequate, 1=Inadequate

The Overall Rating

The $OverallRating variable is the major outcome dependent variable of interest, because this
variable represents the experts security rating of the scenario based on the composition of the re-
quirements. Equation 5.1 is our main additive regression model with a random intercept grouped
by participant ID. The additive model is a formula that defines the $OverallRating in terms
of the intercept (α) and a series of components. Each component is multiplied by a coefficient
(β) that represents the weight of that variable in the formula. This formula in Equation 5.1 is
simplified as it excludes the dummy (0/1) variable coding for the reader’s convenience.

$OverallRating = α + βN$NetworkType+ βT ran$Transaction+

βP$Password+ βT ime$Timer + ε
(5.1)

For the model above, we will refer to the predictor explanatory variables: $NetworkType,
$Transaction, $Password, and $Timer as the four predictors. The β parameters in Equation 5.1
represent the weight of each dimension in explaining the data. We tested the significance of the
main effects in the additive model (Equation 5.1); and then the interaction terms, which are the
added terms generated by multiplication of the explanatory variables terms in the additive model.
The indicator variables are dummy coded (0/1) to represent the dimension levels (see Table 5.1)
To compare the $OverallRating across vignettes, we establish a base level for each variable
that fixes the variables. The intercept (α) is the sample’s mean outcome in the base case, which
includes the following base levels:
• Employer network for the $NetworkType,
• Email for $Transaction,
• Strong password for $Password and,
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• No timer for $Timer.
For the Man-in-the-Middle threat, we found a significant contribution of the four predictors

for predicting the $OverallRating (χ2(6) = 142.2, p < 0.001) but failed to find a significant
contribution from the interaction terms (χ2(11) = 4.8, p = 0.94). For the Packet-Sniffing threat,
the $OverallRating is also affected by the same four predictor variables with a significant value
over the null model (χ2(6) = 20.4, p = 0.002). We also did not see any significance for the
interaction model (χ2(11) = 6.6, p = 0.83). These results suggest that the four dimensions $

NetworkType, $Transaction, $Password, and $Timer are good predictors that explain change
in the experts overall rating. However, it is important to note here that the dataset from the
Packet-Sniffing threat is less predictive in explaining the $OverallRating variable due to the
violation of the normality assumptions. This is due to the unforeseen effect of no participant
choosing the inadequate rating in vignettes with this threat type (see Table 5.2), which reduced
the response levels from three to two.

Table 5.4 shows the assigned coefficient weights (labeled by β in the table) along with stan-
dard errors and significance levels for the two threat datasets. These weights represent the amount
of change in rating caused by the corresponding change in predictor variable level. From the ta-
ble, we conjecture that the Man-in-the-Middle threat has a significant intercept of −0.24, which
indicates that at the base case (employer’s network, email transaction, strong password, and
no timer), the mean of the $OverallRating is lower than adequate (adequate= 0). Since, $

NetworkType is the only dimension showing significance in Table 5.4, we further interpret the
intercept to indicate the mean adequacy level in the case of the employer’s network. Interest-
ingly, the public Wi-Fi network and the VPN over unencrypted network significantly decreased
the overall rating from the base level employers network. Another interesting observation in
Table 5.4 is that the VPN over encrypted network significantly increase the overall rating in the
Packet-Sniffing threat scenario, while this has no effect in the Man-in-the-Middle threat. This
result is expected from security experts who understand the difference among the two threats:
encryption is a reasonable protection against Packet-Sniffing as attackers would not benefit from
sniffing encrypted packets, but encryption alone is not enough to mitigate Man-in-the-Middle
wherein attackers intercept and decrypt encrypted communication.

Table 5.4: Regression results for the $OverallRating variable

Variable-level Man-in-the-Middle Packet Sniffing
β (Std. Error) β (Std. Error)

$Intercept −0.24(0.07)∗∗∗ 0.10(0.06)
$Network-PublicWIFI −0.50(0.05)∗∗∗ −0.03(0.05)
$Network-VPNEncrypted 0.03(0.05) 0.10(0.03)∗∗

$Network-VPNUnencrypted −0.24(0.05)∗∗∗ −0.04(0.04)
$Transaction-Financial −0.03(0.06) −0.02(0.04)
$Password-weak 0.06(0.07) −0.05(0.05)
$Timer-yes 0.14(0.08) 0.03(0.06)

∗p ≤ .05,∗∗ p ≤ .01,∗∗∗ p ≤ .001 with standard errors in parentheses
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The Security Requirements Effect

We further examine the effect of each requirement in the security scenario by analyzing par-
ticipants 5-point Likert-scale ratings of the specific mitigations. To do this analysis, we use the
same regression formula in Equation 5.1, but replace the $OverallRating outcome variable with
$NetworkRating, $ConnectionRating, $PasswordRating, or $TimerRating.

The Network Effect The $NetworkRating is a measure of the participants adequacy rating of
the network in the scenario to get more insight into how experts formed their $OverallRating

of the scenario. We found a significant contribution of the four predictors for predicting the
$NetworkRating. This significant result applies to both threat scenarios: Man-in-the-Middle
(χ2(6) = 322.1, p < 0.001), and Packet-Sniffing (χ2(6) = 209, p < 0.001). As with the variable
$OverallRating, we did not find any added significance from the interaction terms for both
threats: Man-in-the-Middle (χ2(11) = 6.4, p = 0.84), and Packet-Sniffing (χ2(11) = 6.3, p =
0.85).

Table 5.5 shows the detailed results of the regression model for the $NetworkRating out-
come variable. From the intercept value, we conjecture that participants rated the base case
(employer’s network, email transaction, strong password, and no timer) slightly lower than ade-
quate (adequate = 3). The table also shows how the network type has a significant effect on the
$NetworkRating variable. In both threat scenarios, changing from the employer’s network to
the public Wi-Fi network decreased the rating by more than one point. On the other hand, the
VPN over encrypted Wi-Fi significantly increased the $NetworkRating adequacy level over the
employer’s network. For the Packet-Sniffing threat, the VPN over unencrypted network did not
have an effect on the network rating for that threat. This means that participants view the VPN
over unencrypted Wi-Fi and the employer’s network to be at the same security adequacy level.

Table 5.5: Regression results for the $NetworkRating variable

Variable-level Man-in-the-Middle Packet Sniffing
β (Std. Error) β (Std. Error)

$Intercept 2.70(0.10)∗∗∗ 2.43(0.14)∗∗∗

$Network-PublicWIFI 1.28(0.08)∗∗∗ 1.13(0.10)∗∗∗

$Network-VPNEncrypted 0.35(0.08)∗∗∗ 0.47(0.10)∗∗∗

$Network-VPNUnencrypted −0.35(0.08)∗∗∗ 0.18(0.10)
$Transaction-Financial 0.14(0.08) 0.08(0.10)
$Password-weak 0.07(0.09) 0.06(0.13)
$Timer-yes 0.06(0.11) 0.05(0.14)

∗p ≤ .05,∗∗ p ≤ .01,∗∗∗ p ≤ .001 with standard errors in parentheses

Another observation from Table 5.5 is the absence of effect for the other requirements on
the $NetworkRating adequacy. There are two possible explanations for this result: 1) when
participants are rating the network, they isolate it from all other requirements and they only
focus on looking at the network type, and/or 2) participants are assigning a higher priority to
the $NetworkType so it acts as the deciding factor and it supersedes other requirements in the
scenario.
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The SSL Connection Effect We found slight statistically significant contribution of the four
predictors predicting the $ConnectionRating adequacy level for the Man-in-the-Middle threat
(χ2(6) = 15.1, p = 0.02), but no significant contribution in the Packet-Sniffing dataset (χ2(6) =
5.8, p = 0.5). When we further examined the regression model of the Man-in-the-Middle
dataset, we found significance only for the intercept (α = 2.9, SE = 0.10, p < 0.001) and
the public Wi-Fi network (β = 0.10, SE = 0.05, p = 0.03). This means that the mean for the
$ConnectionRating in the base case is around adequate, while it slightly drops when the net-
work changes from employer’s network to a public Wi-Fi. One possible interpretation of these
results could be that the presence of SSL in the scenario is crucial and that is why the mean is
around adequate, but the adequacy rating does not significantly change with the change of other
requirements except if the change is to an extremely low level of security such as Public Wi-Fi.

The Password Strength Effect The $PasswordRating is a measure of the participants ade-
quacy rating of the password strength in the scenario. The four-predictor model significantly
increases model fit of $PasswordRating over the null model. This is present in both threat sce-
narios: Man-in-the-Middle (χ2(6) = 37.6, p < 0.001), and Packet-Sniffing (χ2(6) = 38.6, p <
0.001). Similar to the above outcome rating variables, the interaction terms do not significantly
increase the model fit for the Man-in-the-Middle threat (χ2(11) = 11.7, p = 0.38). Although
the Packet-Sniffing threat showed a significant effect (χ2(11) = 22.5, p = 0.02), the coefficients
did not show significant p-values for the interaction terms, which may indicate that the added
significance was distributed across the terms.

Table 5.6 shows the details of the regression model for the $PasswordRating variable. In
both scenarios, the intercept at the base case where the password is strong shows significant
adequate ratings, that drops significantly when the network changes from employer’s network
(base case) to public Wi-Fi. Changing the password strength from strong to weak also drops the
password adequacy rating in both threat scenarios.

Table 5.6: Regression results for the $PasswordRating variable

Variable-level Man-in-the-Middle Packet Sniffing
β (Std. Error) β (Std. Error)

$Intercept 3.33(0.16)∗∗∗ 3.16(0.22)∗∗∗

$Network-PublicWIFI 0.15(0.05)∗∗∗ 0.18(0.05)∗∗∗

$Network-VPNEncrypted 0.01(0.05) 0.06(0.05)
$Network-VPNUnencrypted 0.05(0.04) 0.06(0.05)
$Transaction-Financial 0.05(0.14) 0.14(0.19)
$Password-weak 0.76(0.17)∗∗∗ 0.68(0.23)∗∗

$Timer-yes 0.10(0.20) 0.15(0.26)
∗p ≤ .05,∗∗ p ≤ .01,∗∗∗ p ≤ .001 with standard errors in parentheses

The Auto-logoff Timer Effect The $TimerRating is a measure of the participants adequacy
rating of the auto-logoff timer in the scenario. The four-predictor model significantly increases
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model fit of $TimerRating over the null model. This is present in both threat scenarios: Man-in-
the-Middle (χ2(6) = 54.9, p < 0.001), and Packet-Sniffing (χ2(6) = 49.2, p < 0.001). Similar
to the above outcome rating variables, the interaction terms do not significantly increase the
model fit for the Man-in-the-Middle threat (χ2(11) = 17.4, p = 0.09), or the Packet-Sniffing
threat (χ2(11) = 12.9, p = 0.30).

Table 5.7 shows the details of the regression model for the $TimerRating variable. Note
that the intercept shows a low mean that is close to inadequate (recall from Section III: inad-
equate = 1) which is expected since the base level has no auto log-off timer. In the presence
of the Man-in-the-Middle threat, the $NetworkType, $Password, and $Timer dimensions have
a significant impact on participants $TimerRating. The public Wi-Fi, VPN over unencrypted
Wi-Fi, decreased the adequacy level of the $TimerRating variable, while turning the auto logoff
timer on had significantly increased the adequacy level of the $TimerRating. In the case of
the Packet-Sniffing threat, the network type did not have a significant impact on predicting the
$TimerRating, but the presence of the timer in the scenario shows a significant increase in the
$TimerRating compared to the base case where no timer is involved.

Table 5.7: Regression results for the $TimerRating variable

Variable-level Man-in-the-Middle Packet Sniffing
β (Std. Error) β (Std. Error)

$Intercept 1.79(0.17)∗∗∗ 1.51(0.22)∗∗∗

$Network-PublicWIFI 0.18(0.05)∗∗∗ 0.08(0.05)
$Network-VPNEncrypted 0.0(0.05) 0.06(0.05)
$Network-VPNUnencrypted 0.12(0.05)∗∗ 0.07(0.05)
$Transaction-Financial 0.25(0.15) 0.22(0.18)
$Password-weak 0.60(0.18)∗∗∗ 0.82(0.22)∗∗∗

$Timer-yes 1.18(0.21)∗∗∗ 1.60(0.25)∗∗∗

∗p ≤ .05,∗∗ p ≤ .01,∗∗∗ p ≤ .001 with standard errors in parentheses

It is strange and unexpected that the weak password is showing a significant increase in
the timer adequacy rating in both scenarios. It is possible that this is a Type I error (i.e., the
password did not actually play a role in the decision and this effect is only random) or is due to
an interaction effect between password and the other predictor variables. When we examined the
coefficients of the interaction model, we observed that the weak password significantly interacts
with other variables such as public Wi-Fi and VPN over unencrypted Wi-Fi, which makes us lean
more towards the interaction explanation although the data does not show evidence of interaction.

The Knowledge Effect The $Score variable is our indicator variable for experience, as it rep-
resents participants score (out of 10) on the security test. Scored responses to our knowledge test
presented a minimum score of 1 and a maximum of 10, with a mean 5.2 and a median of 5. We
added the experience predictor variable ($Score) to Equation 5.1 and compared the new model
to the four-predictor model in 5.1 for both threat types. The new model with the experience
indicator ($Score) did not significantly improve the prediction of the overall variable compared
to the original model with the four predictors alone. We repeated the same comparison for all
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the four mitigation-rating variables: $NetworkRating, $ConnectionRating, $PasswordRating,
and $TimerRating. Except for the $PasswordRating and the $TimerRating in the Man-in-the-
Middle threat, the ($Score) variable did not significantly improve the prediction of the ratings
variables.

In the presence of the Man-in-the-Middle threat, adding the experience indicator ($Score) to
the four predictor model improved the prediction of the $PasswordRating (χ2(1) = 1.8, p <
0.001). The coefficient weight in the model shows that the $PasswordRating significantly de-
crease by−0.15 as the experience indicator ($Score) increases. Similarly, adding ($Score) to the
four predictors model improved the prediction of the $TimerRating (χ2(1) = 8.2, p = 0.004).
The coefficient weight in the model shows that the $TimerRating significantly decrease by
âĂŞ0.11 as the experience indicator ($Score) increases. In other words, more knowledgeable
participants (with higher $Score) tend to act more conservative when rating the adequacy level
of the password and timer mitigations.

Grounded Analysis of Suggested Mitigations

We elicited 905 mitigations from 108 participants: 540 for Man-in-the-Middle (104 participants)
and 365 for Packet-Sniffing (64 participants). We organized the mitigations into 6 categories.
Figure 5.2 shows all 6 categories with mitigation concepts under each category. We analyzed
elicited mitigations in response to the network effect, because our statistical results suggest that
the $NetworkType has the most influence on participants judgments. Table 5.8 shows for each
$NetworkType, the number of mitigations provided by participants, the number of respondents
providing these mitigations, and total mitigations. Table 5.9 shows the number of refinements,
which are elaborations on an existing security requirement in the vignette (e.g., SSL, VPN);
reinforcements, which describe auxiliary or new security functionality intended to complement
existing requirements; replacements, which describe a requirement to supplant an existing re-
quirement (e.g., WPA2 supplants WEP); and generalizations (Gen.), which describe more ab-
stract requirements (e.g., secure network v. VPN).

Table 5.8: Number of mitigation requirements by threat and network type
$NetworkType Man-in-the-Middle Packet-Sniffing Total

Mitigations Responses Mitigations Responses Mitigations
Employer’s Network 129 73 100 51 229
Public Wi-Fi 162 82 110 57 272
VPN over Unencrypted Wi-Fi 135 73 79 47 214
VPN over Encrypted Wi-Fi 114 73 76 42 190

In Table 5.8, the weakest network type Public Wi-Fi has the highest number of mitigations
for both threat types. Notably, Table 5.9 includes 155 auto-log off timer mitigations suggested
by participants who observed no auto logoff timer in the vignette, and 107 complex-password
mitigations suggested by participants who observed a weak password in the vignette. After
removing such refinements that we expected to see in the lower security dimension levels, we
found 125 refinements remaining. Additional findings are highlighted below.
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Figure 5.2: The elicited requirements and their categories (numbers in parentheses correspond to
number of statements)

Table 5.9: Refinements, reinforcements, replacements, and generalizations requirements by net-
work type

$NetworkType Refinements Reinforcements Replacements Gen. Total
Employer’s Network 107 41 63 18 229
Public Wi-Fi 88 33 122 29 272
VPN over Unencrypted Wi-Fi 91 23 78 22 214
VPN over Encrypted Wi-Fi 101 23 57 9 190
Total 387 120 320 78 905

Several refinements served to remove ambiguity. For example, we found 51 mitigations that
refine SSL, such as requiring updates or patching the heart bleed vulnerability [121]. One par-
ticipant suggested using WPA2 encrypted Wi-Fi, because the Wi-Fi encryption was unspecified.
Two participants stressed that VPN over encrypted network should use a reliably strong encryp-
tion.

Among reinforcements, we found 25 mitigations proposing attack detection / prevention tech-
niques (see Figure 5.2), 24 mitigations adding email encryption under the email transaction con-
dition, and 8 requirements to add browser security and pre-installed SSL certificates, among
others. Some reinforcements were inspired by the vignette: four mitigations against man-in-the-
middle attacks, four against packet sniffing, and two against email phishing attacks.

Replacement mitigations aim to replace a less secure requirement or constraint with a more
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secure alternative. We found 95 mitigations to replace the password with multi-factor authentica-
tion. We also found 21 mitigations to replace SSL with TLS or HSTS, which is a recent security
proposal receiving more attention [37, 81].

5.2.3 Discussion of the Security Requirements Composition Study
Results from the multi-level modeling and the grounded analysis suggest that risk perception
varies with how requirements are composed. The coefficients obtained from the regression sug-
gest that there are weights and priorities assigned to the requirements.

The $OverallRating variable is the major outcome dependent variable of interest, because
this variable represents the experts security rating of the scenario based on the composition of
the requirements. The multi-level regression results indicate that the $NetworkType is the only
dimension that had an effect on experts $OverallRating of the security scenario. This does not
mean the other dimensions had no effect on expert judgment. These estimates imply that the
network type had the most influence (weight) on judgments of overall rating and the importance
of each network type depends on the type of $Threat.

A composition is observed across the participants $PasswordRating, $TimerRating, and
$ConnectionRating and from the grounded analysis results. When participants rated the pass-
word level adequacy, the $PasswordRating was lowered by the Public Wi-Fi network level,
even when the password level was strong. Similarly, the $TimerRating was lowered by the use
of Public Wi-Fi or VPN over unencrypted Wi-Fi. When the $NetworkType changes to Public
Wi-Fi, respondents rate the strong password and auto-logoff timer as less than adequate, because
participants likely view these two requirements as reinforcements that raise the general level of
security, but do not mitigate the threat. From grounded analysis, we can further observe that
participants were focusing their attention on providing requirements to replace the weak net-
work. One participant stated that the timer, password, and SSL are no longer effective, if the
communication is happening over a vulnerable network like Public Wi-Fi. Another participant
explained that, despite the use of employer’s VPN, a public unencrypted Wi-Fi could still be
vulnerable. In addition, our multi-level modeling results for the $ConnectionRating show that
for the Man-in-the-Middle threat, participants generally rated SSL near adequate, but the ratings
dropped in the presence of Public Wi-Fi. Moreover, we saw participants providing requirements
refinements for SSL regardless of change in dimensions levels. For example, five participants
suggested to update the SSL version, and five participants suggested to verify SSL certificates
and they replicated these modifications for all four-network types. This observation might be
considered evidence for a ceiling effect with adequacy, meaning analysts did not perceive a limit
to how much security they could afford.

The suggested refinements for SSL levels indicate that our proposed vignettes are incom-
plete, and that we should broaden the scope of our composition to include new dimensions/levels
than what we proposed. Our grounded analysis also confirms that there are more dimensions to
consider, such as browser security configurations. Secure communication relies on the browser’s
configuration, as we found 17 browser security reinforcements that 11 participants proposed as
mitigations to increase the overall security level. Among these, seven browser security reinforce-
ments were suggested in the presence of the employer’s network and/or VPN over Encrypted
Wi-Fi. After examining all the mitigations provided by these participants, we found that when
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$NetworkType is weak, because participants marked it as inadequate or propose to replace it.
When the risk is lowered by using a more secure $NetworkType, participants propose require-
ments that target other dimensions to increase the overall security level.

The grounded analysis in this study also shows how experts identified ambiguous require-
ments proposed to reinforce, replace, and/or refine these requirements. The vignette dimensions
were observed to affect participants risk perception leading them to list mitigations based on the
dimensions and their levels. For example, participants focus attention on replacing weaker re-
quirements with stronger levels (e.g. replacing Public Wi-Fi), and that explains the high number
of replacement mitigations provided for public Wi-Fi (see Table 5.9). In addition, out of the total
907 mitigations, only 78 (9%) were unrelated to our dimensions in the study as they are member
of categories such as browser security and device identifiers (see Figure 5.2 for categories). Re-
garding ambiguity, we note that participants might assume that the public Wi-Fi is unencrypted,
because vignette description omits mention of encryption. Similarly, the vignette does not pro-
vide details about the SSL dimension and participants made their own assumptions that made
them list mitigations of refinements (e.g. version update), reinforcement, (e.g. certificate verifi-
cation), and even replacement (e.g. TLS). This observation suggests two things with regards to
ambiguity resolution: 1) when participants make assumptions to resolve ambiguity, they might
lean towards assuming lower security (e.g. unencrypted Wi-Fi, insecure SSL versions); and
2) adding and removing requirements in a composition can have interactions by increasing or
decreasing levels linked to the refined requirement (e.g. SSL).

5.2.4 Conclusions from the Security Requirements Composition Study

The purpose of this security requirements Composition Study is to empirically examine hypothe-
ses generated earlier by the SA study. We summarize the findings below:

Security requirements exist in composition Our study showed some evidence that assess-
ment of requirements relies on how they are composed together along with other requirements.
Participants did not judge security requirements independent of other existing requirements in
the scenario. For example, the network type affected the ratings of other requirements involved
in the scenario (e.g. password, timer) as participants were evaluating each factor involved in the
scenario to make their judgment.

Certain security requirements have more weight In the composition study, we have seen that
until the security of some requirements are increased; other requirements may not be introduced
or considered in depth. The evidence of this finding comes from our quantitative and qualitative
results. For example, we have demonstrated how the public Wi-Fi had an impact on decreasing
the ratings and participants would not consider other factors (e.g. connection, password) unless
the network type requirements security level improves.

The methodology introduced in this work allowed us to assess security composition, however,
additional work is needed to evaluate the effect of these elicited mitigations on the overall and
dimension-specific risk perceptions. Next, I will explain how I extended this work and structured
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the process to introduce the Multi-factor Quality Measurement Method, that can be applied to
investigate any quality of interest, not necessarily security.

5.3 Using the Multifactor Quality Measurement Method to
Assess Security Requirements Composition

The factorial vignette-based approach introduced earlier in this chapter, uses scenarios to de-
scribe an environment that mimics reality to the security analyst to discover dependencies among
requirements and elicit previously unforeseen requirements that mitigate threats. Choosing how
to write natural language scenarios is challenging, because stakeholders may over-generalize
their descriptions or overlook or be unaware of alternate scenarios. In security, this can result
in weak security constraints that are too general, or missing constraints. Another challenge is
that analysts are unclear on where to stop generating new scenarios. Hence, I will introduce the
Multifactor Quality Method (MQM) [66] that aims to help requirements analysts to empirically
collect system constraints in scenarios based on elicited expert preferences. This method com-
bines quantitative statistical analysis to measure system quality with qualitative coding to extract
new requirements. The method is bootstrapped with minimal analyst expertise in the domain
affected by the quality area, and then guides an analyst toward selecting expert-recommended
requirements to monotonically increase system quality. We report the results of applying the
method to security. This include 550 requirements elicited from 69 security experts during a
bootstrapping stage, and subsequent evaluation of these results in a verification stage with 45
security experts to measure the overall improvement of the new requirements. Security experts
in our studies have an average of 10 years of experience. The results that we discuss at the end of
this chapter, show that using our method, we can detect an increase in the security quality ratings
collected in the verification stage. In this chapter I will also discuss how the proposed MQM
method can help researchers and analysts to improve security requirements elicitation, analysis,
and measurement.

5.3.1 The Multifactor Quality Measurement

I will now describe the Multifactor Quality Measurement (MQM) method for eliciting system
constraints that affect an overall quality such as security. Earlier in this chapter, I presented
an empirical evaluation of using factorial vignettes for collecting security and found it to be
effective. I will show here, the technique is integrated into a framework, the MQM, that can be
extended and reused outside of security. Figure 5.3 shows the different stages of the MQM. In
addition, the limitations of prior work is addressed in the following way:

1. The MQM is evaluated across four security domains: networking, operating systems,
databases and web applications. In the prior security requirements composition study,
only one domain was evaluated (computer user surfing the web).

2. Participants are put in an expert role in the scenario (e.g. network administrator)

3. We recruit security experts from industry and government.
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I will now describe each phase of the MQM using a walk-through example from one of the
security domains.

Figure 5.3: The Multifactor Quality Measurement (MQM) Method

Stage 1: Bootstrapping

During bootstrapping, an analyst first chooses the quality to evaluate (which is security in this
study), and then the analyst chooses an initial scenario that describes a cohesive system viewpoint
[94]. The ad hoc scenario is selected by the analyst who might have limited knowledge, because
the MQM will collect empirically measured improvements in this stage. This scenario is a text-
based system description that includes the ways people interact with the system. An example
scenario template is shown below.

You are a website administrator responsible for security a web app against
cyber attacks. Currently, you are evaluating the following settings:
- The web app performs WebAuth− ThewebappwillStoredUserData in a database for
display to other users

The Cross-Site Request Forgery attack is a serious security concern. Please
answer the following questions with regards to mitigating this threat.

The template above is from the web applications security domain that consists of variables pre-
ceded by the ($) sign. A variable in the scenario is a security requirement category. The variables
are replaced by different values that correspond to constraints on the system. The manipulation
of variables and their values allows the analyst to generate different instantiations of the tem-
plate, called vignettes, which will increase the number of scenarios that can be evaluated at one
time. The $WebAuth variable represents the type of authentication used in the web application
and it can take one of many values. To illustrate, we consider two extremely different values:
“basic authentication,” which is a weak form of web-based authentication, or “form-based au-
thentication using encrypted credentials stored in a database,” which is stronger. Similarly, the
The $StoredUserData variable represents how the user input is being collected, and could take
the values: “collect user-supplied content from GET request,” or “require CSRF tokens and es-
cape and validate user-supplied content from POST requests before storing;” and again, the latter
value is stronger than the former.
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Study participants are asked to rate the adequacy of the overall security of the scenario on
a 5-point scale where point 1 is labeled “inadequate”, point 3 is labeled “adequate” and point
5 is labeled “excessive.” This generates the $Overall dependent variable. Similarly, users are
asked to provide ratings for the individual security requirements in the scenario, which gener-
ates a dependent variable for each rated requirement. For example, the web applications study
has the $WebAuthRating, and the $StoredUserDataRating, which are the dependent variables
representing experts ratings of the $WebAuth, and $StoredUserData, respectively.

After creating the initial ad-hoc scenario, the analyst decides the number of factors and factor
levels in the scenario:

1. Factors per domain: a domain could have its own subset of factors, with the possibility
of having factors that are shared among different domains. The factors often correspond
to categories of system constraint e.g., passwords, authentication type, etc.. In addition,
factors may, but do not necessarily have to, cross multiple domains, e.g., passwords affect
databases, networks, and systems.

2. Levels per factor: how many levels will be manipulated. The levels, which correspond
to technically specific interpretations of the factor, can be chosen as high or low levels.
The goal is to choose levels that experts can distinguish to measure an effect or interaction
among different levels. For example, if password complexity has high and low levels, we
can measure whether password complexity affects overall security adequacy in conjunction
with other security constraints.

Deciding on the number of factors depends on the quality of interest, the cost of running the
surveys, and the estimated number of experts available to rate the scenarios against the quality
of interest. An analyst would need to conduct a priori statistical power analysis to decide on the
right number of factor/level combinations. Initial pilot studies and focus groups can also help
with the design decisions in the bootstrapping phase as it would help eliminate unrealistic factor
and level combinations [68].

In addition to the web application template shown above, we describe in the following sec-
tions of this chapter how to generate more templates and integrate factors and levels for three
more security domains.

Domain experts may suggest additional unforeseen requirements that would improve the
measurements. An analyst could elicit new expert requirements from experts to improve the
measurements. For example, security experts could provide more mitigation that would increase
the adequacy ratings, so, we ask experts to list additional mitigations that they believe will in-
crease security.

Stage 2: Data Collection

Once the scenarios are ready, the analyst finalizes the design of the overall experiment. This
includes deciding which factors are between-subject or within-subject factors. The analyst in
this stage decides on how to operationalize the survey: recruitment methods (e.g. in person,
online, mailing lists), tools to be used, and whether expertise screening questions are needed
(e.g. knowledge tests, demographics). Finally, the analyst deploys the survey and starts data
collection.
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Stage 3: Quality Analysis

In this stage, the analyst uses regression analysis to discover the weights of the factor levels (e.g.,
$WebAuth, and $StoredUserData) and to discover any interactions among the variables. The
priorities of requirements are decided based on the weight of the coefficient. The type of regres-
sion (e.g. linear, multi-level) depends on the study design (within-subject vs. between-subject
effect). Linear regression is used when there is no within-subjects effect in the data, while multi-
level modeling is used if there is at least one within-subject factor. Next, the analyst classifies
the experts new requirements into broader categories and links these to the factors/levels in the
scenario. The collected new expert requirements mitigations are expressed in natural language.
The problem with natural language statements is that different experts could describe the same
requirement using different words and phrases. As a first step, requirements are coded using
short phrases (concept labels), an open coding grounded analysis approach [68, 107]. Then, the
analyst categorizes the requirements using a more abstract security concept. For example, miti-
gations coded as password salt and stronger password, are grouped under passwords; and input
sanitization and input validationare categorized under SQL injection mitigations.

After first-cycle coding and categorization, a second-cycle coding is conducted [107], where
requirements are linked to the factor levels that they appear in, which would help to filter the
requirements that we anticipated to appear vs. new unanticipated requirements. For example, in
the network study, there are scenarios with insecure Dematerialized Zone (DMZ) configuration
and a more secure split-DMZ configuration. Mitigations that suggest better network segmenta-
tion are linked to the level of the DMZ level shown in scenarios where the mitigation was elicited.
If associated with the weaker DMZ, then this makes the mitigation anticipated, but if associated
with the stronger DMZ, then that means there are further segmentation configurations for the
network and DMZ that was not anticipated in the scenario.

In addition, each requirement is assigned one of the following codes: refinement, if the re-
quirement refines the dimension by extending its functionality; a reinforcement, if the require-
ment adds auxiliary quality not directly related to the dimension; and a replacement, if the re-
quirement replaces the dimension.

Upon completion of analysis, the analyst decides to either stop and be satisfied with the data
collected, or continue to the next stage: verification. Verification is an expensive step that the
analyst could pursue if the results show rich data that needs further verification, and stop once
they reach saturation. By saturation, we mean no new requirements are being collected and the
analyst continues to see the same statistical results (e.g. same effect, same dependencies among
the variables).

Stage 4: Verification

Based on the output of stage three, the analyst defines a selection criteria and heuristics that
will guide the requirements selection process. For example, to ensure monotonically increasing
quality, an analyst may only select requirements that would increase the quality of interest in the
next scenarios.

In our series of security experiments, our goal is to increase security adequacy. Hence we
define the following criteria:
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• For each domain, select two categories from second cycle coding with the highest number
of requirements within the category.

• For each category, select the requirements with highest frequency that appear even in vi-
gnettes where the level of the requirement is strong.

In the verification stage, the requirements evaluated in the bootstrapping stage are assigned a
fixed level, which is the strong security level. By fixing these levels, the effect of unanticipated
requirements becomes the focus of measurement.

Then, the analyst will repeat steps from stages two and three to verify whether the new set
of requirements affects the quality measurements as intended. To exit the iterative process of the
MQM, the analyst establishes an end goal to be achieved.

5.3.2 Experimental Evaluation of the MQM Method
I will explain below the research approach used to evaluate the MQM on security-specific do-
mains.

Stage 1: Bootstrapping

For this stage, we select the initial security vignette that is needed to design and run a user study
to collect from security ratings of security requirements from experts. We selected four different
security domains and we ran four user studies one for each domain. A text template used for all
four studies is shown below.

A popular online retailer offers a wide variety of products for
purchase. User information in the company’s databases includes consumers’
credit card information for purchasing products in the future.

You are a $Domain administrator for the retailer who is responsible
for securing the $Domain against cyber attacks. Currently, you are
evaluating the following settings:

- $Factor1
- $Factor2
- $Factor3 ...
The $Threat attack is a serious security concern. Please answer the

following questions with regards to mitigating this threat.

The values for the variables shown in the template are changed depending on the user study
domain. Table 5.10 lists the variables used for security requirements in the four domains and
their levels. For example, the $Domain is replaced with either network, systems, database, or
web applications. The factors ($Factor1, $Factor2) are replaced with different sets of secu-
rity requirements factors for each domain. Within a domain, the factors are manipulated with
different values (levels) to generate the values for the user study corresponding to that domain.

Stage 2: Data Collection

Each vignette has a different combination of variable levels which generated 12 unique vignettes
(study conditions) for each of the network (2× 3× 2), systems (2× 2× 3), and databases studies
(2×3×2), and 8 vignettes for the web applications study (2×4). We selected one factor in each
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study to have a within-subjects effect. This approach increases power at smaller sample sizes
(security experts are scarce [70]). A participant will evaluate 4 vignettes: two domains with two
vignettes in each domain. Within a domain, the two vignettes will vary by the within-subjects
2-level factor. The variables shown in bold in Table 5.10 are within-subject variables: each
participant has seen all the levels of that variable; the remaining variables are between-subject
variables where each participant was exposed to one level only of that variable. This yields a
mixed-effect design.

Upon completion of the security ratings, participants are asked to take a security knowledge
test (14 questions); and answer demographics questions (e.g. gender, age, experience, etc.). It
is recommended to place background and demographics questions at the end of surveys to avoid
potential bias and to increase participants response rate [105].

We targeted security experts who attended the SANSFIRE 2016 conference at Washington,
DC. The SANS is a security research and education company that offers security training and cer-
tification to government and industry security analysts [108]. Each participant was compensated
with a $25 Amazon gift card.

Stage 3: Quality Analysis

As mentioned above, the qualitative data was analyzed using grounded analysis open coding. I
will explain below the use of multilevel modeling to analyze the quantitative data collected in
stage 2.

Multilevel regression models can better handle the mixed effect in the study design (between-
subject and within-subject effects) [54]. Each dependent variable generated from user ratings is
analyzed using multi-level regression. For the security knowledge test, we use a $Score variable,
which is an independent exploratory variable assigned an integer value equal to the percentage
of correctly answered security questions. The tools used include: R [102] with the lme4 [13] and
SJPlot [80] statistical packages, and the G*Power tool [45] for the power analysis.

Stage 4: Verification

Based on the selection criteria defined above, we select two new requirements from the rein-
forcement category for each security domain. The newly generated scenarios will retain the
bootstrapping requirements, and include new variables for the new reinforcement requirements.
Since the goal is to increase security ratings, the levels for the bootstrapping requirements were
fixed at the strongest level. For the new requirements, a weak and a stronger level were used to
test their effect in improving security ratings. Hence, each new study domain had a 2×2 factorial
design (2 new variables with 2 new levels each). Table 5.11 shows all the added requirements
and their levels. After deciding on the new requirements and the redesign on the new vignettes,
we ran the user experiments using the same protocol from the bootstrapping stage, but with the
following changes:
• Recruitment: we re-invited security analysts that we previously recruited for the bootstrap-

ping stage and for other security-related studies by using the emails they provided to opt-in
for future studies. We sent each participant a unique one-time code to be used to access
the online survey.
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• Experiment set-up: we set up the user experiment such that each participant sees one
vignette from each domain, so the experiment has a between-subject design (no-mixed
effects).

• Statistical analysis: since the new design is between-subject with no mixed-effect, we use
linear regression for analysis

5.3.3 Results of the MQM Study
I will now present the quantitative and qualitative results from the bootstrapping and verification
stages of the MQM study.

Descriptive Statistics from the Bootstrapping Stage

The bootstrapping stage aims to collect ratings and new requirements for an ad hoc vignette.
In this stage, we recruited 69 security participants. Table 5.12 summarizes our sample demo-
graphics, and the participants performance on the security knowledge test. Participants have an
average of 10 years of experience. The number of responses for each domain is: 39, 30, 49,
and 21 for networking, operating systems, databases, and web applications, respectively (each
participant was randomly assigned to two vignettes from two domains).

Dependency Analysis from the Bootstrapping Stage

The $OverallRating represents the experts security rating of the scenario based on the compo-
sition of the requirements. We show an example of the regression equation for the web applica-
tions domain. Equation 5.2 is our additive regression model with a random intercept ε grouped
by participant ID.

$OverallRatingwebapp = α + βw$WebAuth+ βs$StoredUserData+ ε (5.2)

The additive model is a formula that defines the $OverallRating in terms of the intercept α
and a series of components. Each component is multiplied by a coefficient (β) that represents the
weight of that variable in the formula. The formula in Equation 5.2 is simplified as it excludes
the dummy (0/1) variable coding for the reader’s convenience. We use the same formula for each
domain, but we replace the independent variables corresponding to the factors in that domain.
We follow a similar model for the individual requirements ratings. For example, Equation 5.3
below is the additive regression model for $WebAuthRatings variable.

$WebAuthRatingwebapp = α + βw$WebAuth+ βs$StoredUserData+ ε (5.3)

We report the significant results of our bootstrapping stage data in Table 5.13 . We use the
variable and level codes shown in Table 5.10. For each security domain, we establish a baseline
level for factors in that domain. The intercept (α) is the value of the dependent variable when
the independent variables are at their baseline values. The baseline levels for each domain are
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Table 5.12: Bootstrapping study: demographics

Description Participants
Number Percentage

Gender*
Male 59 86%
Female 7 10%

Years of Experience*
(Mean=10)

Less than 2 9 13%
2 - 5 years 15 22%
6 - 10 years 15 22%
11 - 15 years 9 13%
16 - 20 years 13 19%
more than 20 years 5 7%

Job Sector* Industry: non-research 24 35%
Government: non-research 22 32%
Industry: research 5 7%
Academia 5 7%
Other 9 13%

Took academic classes in security 39 57%
Took job training in security 54 78%
Self-taught security knowledge 54 78%

Job Roles

Security analyst 46 67%
Other - IT security related 6 9%
Other - IT related 13 19%
Other - Non IT 4 6%

Highest Degree Completed

High school or equivalent 8 12%
Some college, no degree 7 10%
Associate degree 5 7%
Bachelor’s degree 31 45%
Masters graduate degree 17 25%
PhD degree 1 <1%

Security Knowledge Score
Scored above 60% 18 26%
Scored between 40% and 60% 40 58%
Scored below 40% 11 16%

* A few participants did not answer this question

shown in Table 5.13. Table 5.13 also shows the coefficient estimates (Coeff. Est.), which show
by how much the security requirement level increased or decreased the mean rating of adequacy.

For the networking domain study, we found a significant contribution of the three network
factors $NetworkAccess, $NetworkAuth, and $DMZ for predicting the $OverllRating_Network

(χ2(7) = 11.3, p = 0.022), over the null model (without the factors). Table 5.13 shows a signif-
icant effect from multifactor authentication for the network authentication requirement (coded
multi8, see table 5.10), increasing the ratings over the intercept (1.83) by approximately one
point (0.96) on the adequacy scale (almost adequate). Among all networking scenario require-
ments, only $NetworkAuthRating shows a significant effect (χ2(4) = 18.3, p = 0.001) (see
table 5.13).
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Table 5.13: Significant multilevel regression results for the boostrapping data
Dependent Variable (DV) Independent Variable (IV) - level Coeff. Est. Std. Error
Networking IVs: $NetworkAccess +$NetworkAuth +$DMZ

baseline offsite + comp16 + allnosplit

OverallRating Intercept (baseline) 1.83∗∗∗ 0.28
NetworkAuth-multi8 0.96∗∗ 0.34

NetworkAuthRating Intercept (baseline) 2.28∗∗∗ 0.30
NetworkAuth-multi8 0.75∗ 0.36
NetworkAuth-stand6 −0.72∗ 0.36

Systems IVs: $SocialMedia +$AdminPriviliges +$VirusScan

baseline permit + auth + files

OverallRating Intercept (baseline) 2.2∗∗∗ 0.39
AdminPrivileges-noauth −0.95∗ 0.37

SocialMediaRating Intercept (baseline) 2.06∗∗∗ 0.40
SocialMedia-prohibit 1.13∗∗∗ 0.19

AdminPriviligesRating Intercept (baseline) 2.31∗∗∗ 0.43
AdminPrivileges-noauth −1.33∗∗∗ 0.41

VirusScanRating Intercept (baseline) 2.61∗∗∗ 0.35
VirusScan-filesmemoryprocesses 0.89∗ 0.37

Database IVs: $DBAccess +$DBMonitor +$Error

baseline extserver + available + nouser

OverallRating Intercept (baseline) 2.89∗ 0.33
interaction terms Error-user −1.35∗∗ 0.45

DBAccess-sqlauth ∗ DBMonitor-month −0.60∗∗ 0.29
DBAccess-sqlauth ∗ DBMonitor-needed −0.57∗ 0.28
DBMonitor-month ∗ Error-user 1.33∗∗ 0.60

ErrorRating Intercept (baseline) 2.80∗∗∗ 0.28
Error-user −0.98∗∗∗ 0.27

Web Applications IVs: $WebAuth +$StoredUserData

baseline basic + cescpost

OverallRating Intercept (baseline) 2.36∗∗∗ 0.21
StoredUserData-get −0.73∗∗∗ 0.25
StoredUserData-post −1.32∗∗∗ 0.29
StoredUserData-cpost −0.70∗∗∗ 0.29

NetworkAuthRating Intercept (baseline) 2.04∗∗∗ 0.26
WebAuth-form 0.76∗∗∗ 0.21

∗p ≤ .05,∗∗ p ≤ .01,∗∗∗ p ≤ .001

In the database domain, we see an effect for the interaction terms of the regression model for
the overall security rating (χ2(9) = 20.7, p = 0.01). Reporting errors to users (Error âĂŞ user

) decreased the security rating by more than a point, but when the reporting errors to users are
combined with a more frequent logging mechanism (DBMonitor - month) the rating increases
over the baseline.
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New Requirements from the Bootstrapping Stage

Participants provided a total 550 mitigations. After text cleanup and preparation, we classi-
fied 547 mitigations into 55 categories and 187 sub-categories. Table 5.14 shows the top five
categories for each domain based on number of occurrences (Freq.). The table shows how some
categories appear in multiple domains (e.g. accounts/access control), while other categories were
unique to a security domain (e.g. SQL injection mitigations).

Table 5.14: Top five mitigations categories
Networking Operating Systems

Category Frequency Category Frequency
Passwords 29 Accounts/Access Control 59
Segmentation 20 Software Installation 21
Authentication 17 Social Media 17
Firewalls 6 Malware Detection 13
Certificates 6 White/Blacklisting 12

Databases Web Applications
Category Frequency Category Frequency
Logs 74 Authentication 14
Accounts/Access Control 68 SQL Injection Mitigations 9
Error Handling 31 Web Applications Protections 9
Monitoring 10 Accounts/Access Control 4
Authentication 8 Testing 4

Descriptive Statistics from the Verification Stage

The verification stage aims to evaluate to what extent the new requirements increase security. We
sent 100 email invitations, and received 45 expert responses (45% response rate). Survey Gizmo,
a large online surveying platform reports that internal employee surveys receive a 30-40% re-
sponse rate on average and external surveys receive an average of 10-15% [48]. Compared to the
bootstrapping stage, respondents to the verification stage scored higher on the security knowl-
edge test (MeanBootsrapping = 52%,MeanV erification = 60%). Demographics of the sample
from the verification stage are shown in Table 5.15

Statistical Analysis from the Verification Stage

We now review the linear regression results from the verification stage, before comparing the
security ratings obtained from bootstrapping and verification.

Recall from Section 5.3.2, the MQM uses linear regression to analyze the results of the vi-
gnette surveys responses. The independent variables in the regression formula are the require-
ments variables shown in table 5.11 to verify the effect of the new requirements on the security
ratings. We now report the regression results for each security domain.
a. Networking: the regression model shows that different levels of the new requirements vari-

ables $MFA, and $DBSegment do not significantly predict the overall security rating, because
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Table 5.15: Verification study: demographics

Description Participants
Number Percentage

Gender*
Male 43 96%
Female 1 2%

Years of Experience*
(Mean=10)

Less than 2 1 2%
2 - 5 years 14 31%
6 - 10 years 16 36%
11 - 15 years 8 18%
16 - 20 years 4 9%
more than 20 years 2 4%

Job Sector* Industry: non-research 14 31%
Government: non-research 12 27%
Industry: research 2 4%
Academia 6 13%
Other 7 16%

Took academic classes in security 34 76%
Took job training in security 40 89%
Self-taught security knowledge 374 82%

Job Roles

Security analyst 30 67%
Other - IT security related 4 9%
Other - IT related 4 9%
Other - Non IT 4 9%

Highest Degree Completed

Bachelor’s degree 12 27%
Masters graduate degree 24 53%
High school or equivalent 2 4%
Some college, no degree 4 9%
Associate degree 1 2%
PhD degree 1 2%

Security Knowledge Score
Scored above 60% 20 44%
Scored between 40% and 60% 21 47%
Scored below 40% 4 9%

* A few participants did not answer this question

the regression model of $OverallRating as a function of the $MFA, and $DBSegment did not
show any significance over the intercept-only model (F (2, 39) = 1.595, p = 0.2). Hence,
the $OverallRating mean, which is the intercept-only model is a better predictor of the
overall security ratings for the networking study. The result is similar for the regression mod-
els constructed for the $NetworkAccessRating, $NetworkAuthRating, $DMZRating with:
(F (2, 42) = 1.2, p = 0.3), (F (2, 42) = 0.04, p = 0.9) and (F (2, 42) = 0.5, p = 0.6), re-
spectively. The $MFA variable that represent multifactor authentication is shown to be a good
predictor of the experts $MFARating (F (2, 42) = 5.3, p < 0.01). Scenarios that include
multifactor authentication show an increase of 0.85 ± 0.27 (standard error) on the scale of
$MFARating (p < 0.001). Similarly, the scenarios in which the database is in a separate seg-
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ment ($DBSegment) shows a significant increase (p < 0.001) in the $DBSegemtnRating by
1.4± 0.30 (F (2, 41) = 11.4, p < 0.001).

b. Systems: The regression model for $OverallRating as a function of the $SWInstallation

and $MalwareTools show significance (F (2, 41) = 4.57, p = 0.02) over the intercept-
only model. When inspecting the coefficients, only the intercept and $MalwareTools show
significant effects. Enabling heuristic-based and behavioral-based malware-detection tools
show a significant increase (p = 0.02) in the $OverallRating by 0.53 ± 0.22 and also
show a significant increase (p < 0.001) in the $MalwareRating by 1.68 ± 0.16; and thus,
$MalwareTools is a good predictor of the $MalwareRating (F (2, 42) = 61.26, p < 0.001).
The variable $SWInstallation is found to be good predictor of the $SWInstallationRating

(F (2, 42) = 35.25, p < 0.001). Scenarios that include testing new software prior to installa-
tion ($SWInstallation) show a significant increase of 1.5±0.18 in the participants ratings of
the software installation requirement ($SWInstallationRating). For the regression models
constructed for the $SocialMediaRating, $AdminPriviligesRating, $VirusScanRating

variables, we found no significant effect with: (F (2, 42) = 1.33, p = 0.3), (F (2, 42) =
1.63, p = 0.2) and (F (2, 42) = 1.45, p = 0.2), respectively. We also found no significant
effect for the interaction terms.

c. Databases: The regression for $OverallRating as a function of $SIEM, and $Notification

show no significance (F (2, 38) = 1.06, p = 0.35) over the intercept-only model. Except for
$DBMonitorRating and $NotificationRating, no significant effects are found for the re-
quirements ratings in the database scenarios. Database scenarios that include using a special-
ized SIEM (security information and event management) tool, show a significant (p = 0.009)
increase of 0.54±0.20 on the $DBMonitorRating The $SIEM shows significance in predicting
the $DBMonitorRating (F (2, 42) = 3.8, p = 0.03). Similarly, $Notification is a good pre-
dictor of the $NotificationRating (F (2, 42) = 24.29, p < 0.001). Scenarios that include
notifying admins about errors show a significant (p < 0.001) increase of 1.48 ± 0.22 on the
$DBMonitorRating.

d. Web Applications: Except for the regression model constructed for $SOPRating, which rates
the same origin policy, no significant effects are found for the $OverallRating nor for all
other requirements in this scenario. For the $SOPRating, it was not the $SOP variable that
significantly affected this rating, but the $InputValidation. Scenarios that include validating
the client’s input on the server-side, show a significant (p = 0.007) increase of 0.9± 0.32 on
the $SOPRating. The $InputValidation show significance in predicting the $SOPRating

(F (2, 39) = 4.03, p = 0.03).

The major takeaway is that the intercept-only model is sufficient to explain the outcome
dependent variable. The significance of the intercept-only model means that we can rely on
using the means of the dependent variables to explain the observations in the data. For the
security analyst, this means that varying levels of new factors did not show significance, but we
cannot remove the factors from the model. We will explain this further as we show the mean
values below.
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Comparing the Security Ratings Between Bootstrapping and Verification Stages

Recall from above that the purpose of the verification stage is to evaluate to what extent the new
requirements increase security. In Table 5.16, the mean ratings in the verification stage are higher
than the bootstrapping stage, except for the overall rating for database, which has a slightly lower
average than the bootstrapping stage. Table 5.16 also shows that some variables increased more
than others, for example, the $OverallRating for Networking only increased by 0.20, while the
$NetworkAuthRating increased 4.5 times by 0.90. Despite the ratings increase, the values in
Table 5.16 also indicates that all averages are close to adequate (3.0 on the 5-point scale). The
standard deviation of all the ratings ≤ 1.

Table 5.16: Comparison of experts security ratings
Bootstrapping Stage Verification StageRating Variable Name

Mean Rating Mean Rating
Networking

OverallRating 2.37 2.57
NetworkAccessRating 2.70 3.09

NetworkAuthRating 2.32 3.22
DMZRating 2.53 2.82

Operating Systems
OverallRating 2.10 2.70

SocialMediaRating 2.60 3.13
AdminPriviligesRating 1.74 3.07

VirusScanRating 2.73 2.80
Databases

OverallRating 2.51 2.34
DBAccessRating 2.62 2.71

DBMonitorRating 2.56 3.00
ErrorRating 2.25 2.60

Web Applications
OverallRating 1.80 2.62

WebAuthRating 2.05 2.69
StoredUserDataRating 1.86 3.07

5.3.4 Discussion and Conclusions from the MQM Study
The results from the MQM study show that the mean overall security ratings increased in the
verification stage over the bootstrapping stage. This means that experts view the refined scenarios
in the verification stage to have higher security adequacy than the original scenarios used in
the bootstrapping stage. The results in Table 5.16 also indicate that the average ratings are
approximately 3± 1 (STD) (adequate=3, see above sections). One possible explanation could be
that security experts are more conservative when rating security and cannot envision excessive
security. We found in earlier work that security experts do prefer more conservative security
ratings [70].
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The regression analysis of the verification stage also shows that the new requirements matters
to the analysis, but the individual levels do not vary significantly. While in the verification stage
experts report a ratings increase over the bootstrapping stage, the increase cannot be attributed to
the new requirements levels. This finding yields two key insights: security saturation, wherein
it is sufficient to accept new, elicited requirements and a verification stage may not be necessary;
and label bias, in which the excessive label is unreachable and thus reduces the ability to measure
significant differences. Below, I will further discuss these two insights.

Reaching saturation is an important point in empirical research, where analysts receive little
new information and thus they can stop iterating through a process. Saturation is also important
in practice, because security analysts would prefer a wish-list of all possible security mitigations,
but it is the financial cost that forces analysts to revise and only choose what is necessary. Our re-
sults from the verification stage indicate that increasing the requirements from the bootstrapping
stage to a stronger level is what is necessary to reach security adequacy. When we increased the
requirements to a stronger level, the overall security increased to a point that the two new added
requirements with their levels did not necessarily standout in the regression model. This is an
effect caused by the combination of strong security requirements in the scenarios tested.

The security ratings that do not rise above adequate raise a question about the adequacy scale.
The adequacy scale was evaluated in separate studies [65, 70] to select the appropriate language
labels that explain adequacy. The evaluation examined synonyms for inadequate, adequate and
excessive in four scenarios where adequacy perception is skewed by the object being evaluated
(see Chapter 4 for details). Haley et al. proposed a framework to “determine adequate security
requirements for a system” [61]. What has not been discovered, yet, however is whether security
experts view any security requirements as excessive, or whether the nature of security unknowns
inhibits experts from reaching this conclusion.

The MQM employs vignette surveys to link requirements as factors to a system quality,
and to elicit expert judgements about quality levels achieved by those requirements. This is
different from prior work in scenario-based requirements elicitation that employs interviews
[101, 117, 122]. Although interviews provide detailed scenario descriptions, our approach al-
lows analysts to attribute a quality level to specific requirements and their interactions. The
MQM does not measure coverage, but it offers increased coverage of scenarios as it allows the
manipulation of descriptions, and the measurement effects of certain requirements on the out-
come as well as the dependencies between the requirements. In addition, the use of surveys
make it more convenient to recruit more stakeholders, which increases the number of viewpoints
of the scenario, and multiple viewpoints improve inter-personal uncertainty; which means, one
expert might point out something that other experts missed while other experts find something
different. This uncertainty among experts, which impacts security assessments [68, 69, 70], is
due to differences in background or human memory limitations [69].

5.4 Threats to Validity

Factorial vignettes have been shown to improve both internal and external validity [1]. In this
section, I will discuss threats to validity in our preliminary study and the MQM study.
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Construct validity is the degree to which a measurement corresponds to the construct of in-
terest [113]. In each scenario, we present one-sentence definitions for the security level terms
inadequate, adequate, and excessive, to encourage participants to interpret the label levels, sim-
ilarly. The label name choice was evaluated in separate prior studies that were explained earlier
in Chapter 4.

External validity concerns how well results generalize to the population [113]. Our target
population is security experts. In the preliminary study we recruited participants from senior
and graduate level security classes and mailing lists. Furthermore, we conducted a security
knowledge test to measure their expertise. One possible sample bias is that our sample was
drawn from two U.S. Universities.

In the MQM study, we decided on diversifying the sample by including industry experts. We
recruit security professionals who attend security conferences. To assess security expertise, we
measured years of experience (mean=10.0 years) and we conducted a security knowledge test
that included technical questions about how to configure file permissions, network firewalls, etc.

Internal validity is the degree to which a causal relationship can be inferred between the inde-
pendent predictor variables and the outcome dependent variables [113]. In the preliminary study,
we randomized the assignment to conditions and the order of the four vignettes shown to each
participant. We also randomize the order of the 3 adequacy ratings in the overall security-rating
question, and we mask the numerical values for these ratings from participants. To address the
threats of learning and fatigue effects, we estimate a 20 minutes average time for each threat
survey, and we maintain a time space of a week minimum between threat conditions. We did not
randomize the threat scenario order, but we mitigated the effect of this decision by treating the
two threats as separate datasets during analysis.

Similarly, in the MQM study, we randomize the assignment of participants to conditions,
and we randomize the presentation order of scenarios. Based on our pilot results, we limited
the number of vignettes shown to four vignettes per participant to reduce fatigue. We ran the
verification study seven months after the bootstrapping stage to reduce learning effects.

Increasing power in user experiments reduces Type II errors (false negatives). In the prelimi-
nary study, we instrumented a mixed-models design that combines within-subjects and between-
subjects effects. We also analyze our data with multi-level regression modeling which limits the
biased covariance estimates by assigning a random intercept for each subject [54]. In the MQM
study, we increase our power in the bootstrapping stage by using repeated measures within-
subject effect, and analyzing the data with multi-level modeling, which assigns a random in-
tercept for each subject and hence, limits the biased covariance estimates [54]. For a power of
80% or above, we estimate a sample size of 30 participants for the networking, operating sys-
tems, and database scenarios and 24 participants for the web applications scenario. We achieved
higher sample sizes than these minimum estimates. For the verification phase, we estimate 30
participants per domain to achieve at least 80% power, and our actual sample size is 45 partici-
pants per domain.
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5.5 Conclusions
In this chapter, I present results from a series of experiments [66, 68] conducted on security
experts. I also describe how I used a mix of quantitative and qualitative analysis methods to
understand how a change in security requirements can affect security experts decision-making.
Our results indicate that the composition of requirements present in the scenarios affect the ex-
perts security ratings. The results also show that experts assign different priorities to different
requirements; for example, the type of network has a higher priority than the password settings
in the preliminary study. Because of the diverse background of experts and the uncertainty in
security decisions, our qualitative data analysis shows a variety of added security mitigations
suggested by these experts to increase security ratings. In the next chapter, I will explain how we
used results and insights from one of these studies to inform the design of a security assessment
system.

In addition to studying security expertise and decision-making, this chapter introduced the
MQM method, which combines different research and analysis methods adapted from fields like
social science and statistics to provide a defined framework for researchers and analysts that can
be used to study any quality of interest. For example, if an analyst can use the MQM to design
scenarios in the health care domain to analyze how changing certain settings can affect patients
privacy-related decisions; and results of the analysis can be used to improve the organization’s
privacy practices.
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Chapter 6

Data-driven Approach for Modeling
Expert Knowledge

In this chapter, I will report results from developing a security requirements rule base that char-
acterizes uncertainty in human expert reasoning to enable new decision-support systems. I will
show how to use relevant information collected from cybersecurity experts to enable the gen-
eration of: (1) interval type-2 fuzzy sets that capture intra- and inter-expert uncertainty around
vulnerability levels; and (2) fuzzy logic rules underpinning the decision-making process within
the requirements analysis. The proposed method relies on comparative ratings of security re-
quirements in the context of concrete vignettes, providing a novel, interdisciplinary approach to
knowledge generation for fuzzy logic systems. The proposed approach is tested by evaluating 52
scenarios with 13 experts to compare their assessments to those of the fuzzy logic decision sup-
port system. The initial results show that the system provides reliable assessments to the security
analysts, in particular, generating more conservative assessments in 19% of the test scenarios
compared to the experts’ ratings.

The full results of this work is discussed further in our paper published at the 2016 IEEE
Symposium on Computational Intelligence in Cyber Security (CICS 2016) [70].

6.1 Motivation and Background

As already mentioned in previous chapters, the number of cybersecurity experts is scarce. The
scarcity of experts and the need for cybersecurity, makes the demand for intelligent decision sup-
port and semi-automated solutions a necessity. The following summarizes the general challenges
to human-based security assessments:
• Context: experts risk assessment of a system must consider the system context in which

the requirements apply [68, 69].

Excerpts from this work were previously published as: H. Hibshi, T. D. Breaux, and C. Wagner, Improving
security requirements adequacy: an interval type 2 fuzzy logic security assessment system, in 2016 IEEE Symposium
Series on Computational Intelligence (SSCI), 2016, pp. 1-8.
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• Priorities: some requirements have higher priorities than others, depending on their strength
in mitigating threats [68].

• Uncertainty: security risk assessment and decision-making includes a level of uncertainty
[69, 104].

• Stove-piping: security expertise crosses different domains of knowledge such as hardware,
software, cryptography, and operating systems [69].

The goal is not to remove the above challenges through increased decision-support. Instead,
we account for these challenges by modeling human decision making with uncertainty, in a
security assessment support tool based on collected data from various security experts.

6.1.1 Uncertainty in Requirements Engineering
Uncertainty is increasingly a focal point for researchers in requirements and software engineer-
ing. In architecture, Garlan argues that the human-in-the-loop, mobility, rapid evolution, and
cyber physical systems are possible sources of uncertainty [53]. Esfahani and Malek identify
sources of uncertainty in self-adaptive systems and they include the human-in-the-loop as a
source of uncertainty [44]. In requirements engineering, Yang et. al [130] used machine learning
to capture language uncertainties in speculative requirements. The approach succeeds at iden-
tifying speculative sentences, but performs weaker at identifying the scope of uncertainty when
identifying specific parts of speech such as adjectives, adverbs, and nouns. The FLAGS is a goal
modelling language introduced to model uncertainty in self-adaptive systems [11, 97].

Cailliau and van Lamsweerde introduce a method to encode knowledge uncertainties in prob-
abilistic goals [18]. This method characterizes uncertainty as the probability of goal satisfaction
using estimates of likelihood collected from experts. Although the authors method is sound, the
reliability depends heavily on a third-party method to record expert estimates [18]. In this chap-
ter, we contribute a novel method to elicit estimates and incorporate estimates into an IT2FLS.

6.1.2 Uncertainty and Type2 Fuzzy Logic
Zadeh introduced Fuzzy Logic (FL) in 1965 as a mathematical tool, wherein the calculations use
a degree of truth rather than simple propositions: true or false [132].

To illustrate, security experts have been shown to use the linguistic adjectives inadequate,
adequate, and excessive on a 5-point semantic scale to evaluate the security of the scenarios [68].
Let X be our universe of discourse on a continuous, real-valued, inclusive scale X=[1,5] and set
A ∈ X to represent “adequate” Assume that an interval between [2,3] is adequate, as shown in
Figure 6.1(a). The function A(x) is the membership function (MF) to describe A, where 1 is true
and 0 is false:

A⇒MA(x) =

{
1 2 ≤ n ≤ 3

0 oherwise

Based on the definition above, the value 1.9 for example is not adequate, because 2 is the
inclusive threshold value for the adequate set, but 1.9 is very close to adequate or is adequate
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with a lesser degree than 1, but greater than 0. To address this concern, fuzzy set theory allows
one to express to what degree a value x belongs to a (fuzzy) set A [88, 132]. Figure 6.1(b) shows
how a fuzzy set F , captures adequate.

Figure 6.1: The definition of adequate in crisp and fuzzy sets

A fuzzy set F of values in X may be represented as a set of ordered pairs of the value x and
its membership grade [88].

F = {(x,MF (x)|x ∈ X)} (6.1)

Type-1 MFs summarize the results of experts ratings into a single MF, suppressing the uncer-
tainty in the data. Alternatively, Type-2 MFs model the uncertainty by providing a footprint of un-
certainty (FOU) [88, 90]. Figure 6.2 below highlights a prototypical Type-2 MF; it is as if we blur
the Type-1 MFs with the uncertainties. With the general Type-2 approach we construct MFs from

Figure 6.2: Type-2 FOU constructed by blurring a Type-1 MF

each expert’s response and as if we sketch all the Type-1 MFs together to form the FOU. For each
value x, there is N possible grades or MFs associated with it: MF1(x),MF2(x), .......MFN(x).
For each of these MFs, we think of the possibility of this MF value for a value x by assigning
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a weight that represents the possibility. This is called the secondary MF (in 3-D) where at each
point x, the collection of MFs and their weights is represented as: {(MFI(x), wxi), i = 1, , N}
[88, 89].

To make computation more feasible to the demand of applications and systems, the general
Type-2 approach can be simplified by assuming uniform weights, which would result in a uni-
form FOU. This type of fuzzy set (FS) is called the interval Type-2 fuzzy set (IT2FS) [88, 89].
Figure 6.2 shows an example of IT2FS.

6.1.3 Interval Type 2 Fuzzy Logic Systems
Type-2 fuzzy sets are used in rule-based intelligent systems. The rule base is expressed as a
collection of if-then statements and they can be collected by surveying experts in the field [89].
In the remainder of this chapter, I will show how we build a security system using an IT2FL
approach. Figure 6.3 shows the main components of the proposed system. The components
shown in Figure 6.3 represent what is typically found in IT2FLS [89, 90]. The components in an
IT2FLS are similar to a Type-1 FLS, but with the addition of a type reducer. The type reducer
reduces the inference engine’s IT2FS output to an interval Type-1 fuzzy set that the defuzzifier
can use to produce the final crisp output number.

Figure 6.3: IT2FLS for Security Assessment

6.2 Overall Approach
This section explains the overall research method to build a security assessment system using
IT2FLS. The contribution is two-fold:
• A comprehensive approach for developing the linguistic labels and associated membership

functions for an FLS.
• An innovative approach to designing the rule base from surveys of domain experts.
Now, I will describe these two contributions.

6.2.1 Developing Linguistic Labels and Associated Fuzzy Sets
For the FSs used in the security assessment system, a decision had to be made on the appropriate
linguistic labels, which are the vocabulary used in the system. The choice of labels relies on
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background knowledge and expertise in the field, and user surveys that support the choices made
[88, 90]. Recall from Chapter 4 how three labels to describe security adequacy were developed:
inadequate, adequate, and excessive. The labels were empirically evaluated because they are
considered a new scale to measure our construct of security adequacy, and there are no existing,
empirically valid scales to measure this construct (see Chapter 4 for details).

6.2.2 Eliciting the Membership Functions for the Fuzzy Sets
The membership function definition depends upon a scale assignment along an interval (e.g.,
from one to ten) for each word selected from our word ranking study (see Chapter 4 for details).
The approach commonly accepted by the fuzzy logic research community was adopted in which
experts are asked to assign the interval start and end points on one scale for each word [88,
90]. Participants were asked to specify the intervals of the 17 words from our previous ranking
survey plus the word adequate (total 18 words) using the text template we show below, replacing
Adequate with each of the other 17 words. We include a security scenario to add context to each
word as follows:

A security expert was asked to rate a security scenario with regards
to mitigating the Man-in-the-Middle threat.

The expert would give an overall security rating using a linguistic
term.

In the next sections of this survey, we will present 18 linguistic
terms describing the overall security of a scenario. We would like you to
mark an interval between 1-10 that represents each term.

Note: Intervals for different terms can overlap.

For each word (e.g., “adequate”), participants were asked:
Imagine "Adequate" represented by an interval on a range from 1-10.

Where would you indicate the start and end of an "AdequateâĂİ security
rating?

The word order in the survey was randomized, and we recruited participants by sending out
email invitation to security mailing lists at Carnegie Mellon University. Similar to our prior work
[66, 68], a test was used to assess the security knowledge of the survey participants.

Intervals were collected from 38 security experts that consists of 74% males, 18% females,
and 8% unreported. The average score on the security knowledge test is 6 out of 10 possible
points (sd=1.75). For each word, we calculated the average for the interval end points that we
collected from participants. The results show that the three words: inadequate, adequate, and
excessive are sufficient to be used as fuzzy sets covering an interval from 1-10. Figure 6.41shows
all the labels and the selected fuzzy sets and their coverage of the 1-10 interval. The solid region
represents the interval between the mean values of the start and end points collected from the
experts. The shaded region on each side of the solid region represents the standard deviation for
that point, which represents the uncertainty surrounding the mean value. It is only possible to
cover the entire region from 1-10 using only three labels (Inadequate, Adequate, and Excessive)
because of the uncertainty that yield overlapping intervals for the three words. Mendel explains
how this approach improves performance as it reduces the size of the rule base [88].

1we have shown this figure earlier in Chapter 4 and we repeat it here for the reader’s convenience

89



Figure 6.4: The fuzzy sets with the start and end means and standard deviation

After choosing the labels for the fuzzy sets, we now explain how to derive the MFs. We create
the Type-1 MF and then blur its mean by adding a degree of uncertainty and creating the shaded
region that represents the FOU. We calculate the mean for the Gaussian Type-1 MF by averag-
ing the two end points for the interval representing each word: Meaninterval = Meanstart +
Meanend/2. Then, we average the standard deviation : σinterval =

√
(σ2

start + σ2
end/2) .To rep-

resent the uncertainty level surrounding the Gaussian Type-1 MF: let α represent the uncertainty
level, and then calculate two means: m1 and m2 and use these for the upper and lower member-
ship calculations: m1 =Meaninterval−α, andm2 =Meaninterval+α. We assume that we have
50% uncertainty present in our data, which makes: α = 0.5. Table 6.1 shows the final means
and standard deviations for each word label for fuzzy sets. Figure 6.5 illustrates the membership
functions. We use the same MFs for the output and all the inputs: network, SSL, password, and
timer.

Table 6.1: Summary statistics of the three fuzzy sets
Word MeanInterval σInterval m1 m2

Inadequate 2.58 1.26 2.08 3.08
Adequate 6.75 1.75 6.25 7.25
Excessive 9.50 1.35 10.00 9.00
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Inadequate Adequate Excessive

Figure 6.5: The MFs of the input/output variable(s)

6.2.3 Designing the Fuzzy Logic Assessment system

A number of researchers have built software packages and tools for IT2FLSs [19, 96, 128, 129].
Packages and tools were designed for the mathematics modeling and simulation software MAT-
LAB, and are based on the .m files originally written by Mendel and Wu. We chose to use the
Juzzy and JuzzyOnline Java-based toolkit to obtain our results, because these are open-source
and actively maintained by a team of fuzzy logic researchers [124, 125]. Based on prior IT2FLSs
research [129], we made the following design choices:

Input and output MF shapes: The choice of MFs is dependent upon the context of the prob-
lem and other factors, such as continuity, and computational cost. We chose to use a Gaussian
shape for our MFs for it’s added advantage of simplicity and faster computation time [129]. As
explained in above, three membership functions were selected for each input domain: inade-
quate, adequate, and excessive.

Input Fuzzification: An important step in a fuzzy system is to fuzzify the input by mapping an
input vector X = (x′1, . . . , x

′
p) into p fuzzy sets Xi, i = 1, 2, . . . , p [88, 129]. We choose to use

the singleton fuzzifier, where: MXi(xi) = 1atxi = x′iand : MXi
(xi) = 0 otherwise. Singleton

fuzzifiers are more practical due to their simplicity [88, 129]. The input to the system would be
a number between 1-10 representing the level of the security requirements adequacy to mitigate
a threat.

Rules: we construct the rules following the Mamdani style, because of its better human in-
terpretability [88, 129]. We also chose the minimum t-norm, because we want our security
assessment system to give conservative security ratings.
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6.3 Ruleset Discovered from Security Experts
In this section I will explain how the user survey results from prior work [68] are translated to
a rule base for the assessment system. In the user study, participants rated the overall security
of scenarios using a 3-point scale: 1=excessive, 0=adequate, and -1=inadequate. Participants
also rated four individual requirements-related factors in scenarios: network type, using SSL,
password strength, and presence of a timer using a five-point semantic scale with: 5=exces-
sive, 3=adequate, and 1=inadequate with the midpoints 2,4 between inadequate-adequate and
adequate-excessive, respectively. Experts rated four security scenarios with four network types:
employer’s network, public Wi-Fi, unencrypted VPN, and encrypted VPN. Each scenario in-
cluded a password, timer, and SSL requirements. The password and timer had two conditions
each (either strong or weak) [68].

Based on our prior results [68], the rules were built as follows:
• The regression results for the overall security ratings indicate network type has the major

significant effect, it takes priority over other requirements.
• The network rating suggests that network type can drop the overall ratings significantly

with no significant effect for the other factors, hence it is safe to remove the other factors
from the rule antecedents only when the network type drops to inadequate.

• When network type increases to adequate, other requirements are included as antecedents,
because the statistical results show that the model with all the four factors exhibits an effect
over the null model.

Next, I will show how we applied the above heuristics.

6.3.1 The Inadequate Network
The public Wi-Fi and the VPN over unencrypted Wi-Fi networks significantly dropped the overall
security ratings towards inadequate (Public Wi-Fi: Mean = −0.7, VPN-unencrypted Mean =
−0.4). The public Wi-Fi ratings are closer to inadequate (Mean = 1.3) while VPN-unencrypted
ratings are in between adequate and inadequate (Mean = 2.2). From the above, we can infer
that when the network type is definitely inadequate, then the network type has more priority in
the scenario that the security levels of other requirement(s) would not matter in deciding the
adequacy of the overall security of the system. Hence, we construct the following rule:

R1 : IF NetworkType is Inadequate

THEN OverallRating is Inadequate

Reduction of rules in rulesets used in intelligent systems simplifies the reasoning for the
human analysts interacting with the system [88]. Without the results from our user study [68],
we would have 26 more rules with 26 more input combinations for the adequate network alone.
To explain, we would have a four antecedent rule, wherein each input antecedent has three MFs:
inadequate, adequate, and excessive. For the inadequate network alone, input combinations of
the remaining three inputs (SSL, password and timer) will result in 27 rules and, if we follow a
canonical approach, we would need to survey experts to obtain the consequents of all 27 rules.
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However, our approach derives rules from the statistical analysis of the empirical results in which
the non-significant factor levels are dropped.

6.3.2 The Adequate and Excessive Network Types
When the network adequacy level increases, then the rules for factors would change as well. The
remaining network types in the study: “employer’s network” and “encrypted VPN” were rated
close to adequate, but never close to excessive (Mean = 2.6, andMean = 2.9 respectively). The
overall security of the scenario was rated below adequate: (Mean = −0.19, andMean = −0.16
respectively). This data is not sufficient to infer a rule similar to R1; i.e. we cannot use network
adequacy alone in a single antecedent rule. However, as discussed previously in section 5.2,
our results from the requirements composition study does show that when the network adequacy
level improves, participants begin paying attention to the other factors in the scenario and their
decisions become based on the composition of these other factors. The regression model for the
overall security rating shows that all the factors in the scenario are predictors of the model [68].
Hence, we decide to include more input variables in our rule set antecedents. Table 6.2 below
shows the antecedents and consequent combinations for the remaining rules that we constructed
from our scenarios. The column R# is the rule number, Antecedents are the requirements that
serve as input antecedents in the if-then rules, and Consequence is the consequence output that
is the rating of the overall security.

Table 6.2: Rules for security assessment system

R#
Antecedents (IF) Consequence (THEN)

Network SSL Password Timer Overall
R1 I I
R2 A I I
R3 A I I
R4 A I I
R5 A A A A A
R6 E E E E E

6.4 System Evaluation
I will explain in the section the qualitative approach for system evaluation. Qualitative methods
are better suited to our system evaluation as we are looking for the participants description of the
process, the rationale, and their reasoning.

6.4.1 Evaluation Process
The IT2FLS was evaluated using a two stage process: first, we survey 13 experts and have each
evaluate 4 scenarios each (52 total test scenarios); and second, we conduct follow-up interviews
to discuss participants’ decisions and their rationale.
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The survey used in the first stage is similar to the survey in the original factorial vignettes
study, which examined the interaction of a public/private network with SSL-encrypted connec-
tions, varying password strengths and an automatic, timed logout feature [68]. We modified the
original design to limit the network levels to two levels that highly contrast each other: pub-
lic unencrypted Wi-Fi and encrypted VPN. Furthermore, we use two levels for the password
(weak/strong), and two levels for the logout timer (no timer, 15 min timer). We did not use a
number of different SSL levels as this would present an obvious focal point for the participant
to become concerned about security [68]. Hence, we reworded the scenario to describe SSL
as follows: “The browser is already using the latest (and patched) version of SSL/TLS for the
session.” Participants were randomly assigned to different conditions, and we randomized the
order in which they see different vignettes. Each participant rates four vignettes in total with
combinations that show the two levels of each variable: network, timer, and password.

For each of the four scenarios, participants provide their overall security judgement of the
scenario. Participants choose either: inadequate, adequate and excessive to evaluate the overall
security adequacy without the use of any scales or numbers.

The four inputs to the IT2FLS are the adequacy ratings for the network, the SSL, the pass-
word, and the timer. We use the participants’ provided ratings as inputs to our system. The output
would be the overall security rating represented by a number on an interval from 1-10. After we
calculate the output, we interview participants and remind them of their initial ratings including
the overall security judgement of the scenario. Before showing them the output of the system,
we ask them to describe the overall security ratings on a scale from 1-10, and why they rated a
scenario the way they did. Then, we show the participant the output of our security assessment
system in the form of fuzzy sets and we solicit their opinion. Finally, we ask participants to state
what they would change in the scenario to improve the adequacy ratings, and in contrast, what
would they imagine to be the worst possible change to drop the adequacy ratings further.

6.4.2 Evaluation Results
The participants’ median score on the knowledge test was 7 out of 10. Three out of 13 par-
ticipants work in cybersecurity at Federally Funded Research and Development Centers, one
participant has 10 years of experience as a security consultant, and the remaining 9 are graduate
students from Carnegie Mellon University who completed security courses and who are involved
in security research.

Table 6.3 shows the participant agreement for all eight scenario combinations: the network
type, the password, the logout timer, the total number of participants per scenario, and the per-
cent agreement, which is the total number of overall ratings that match the ratings produced by
the security assessment system. In Table 6.3, we see participants disagreed with the system’s
overall security rating predictions. We conducted follow-up interviews with nine participants.
Six participants agreed with the security assessment system’s overall ratings for 4/4 scenarios:
however, they explained that their assessment was borderline between two rating levels. Two
participants agreed with 3/4 scenarios in the system’s result: in the one disagreeable scenario,
both participants provided an excessive rating while the system rated the scenario as adequate.
Finally, the last participant P5, who scored 7 on the security knowledge test, disagreed with the
system for 4/4 scenarios, because they mistakenly believed that SSL was an adequate mitigation
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against man-in-the-middle attack in all scenarios, even when the network is public Wi-Fi. The
participant explains: “for the purpose of man-in-the-middle, SSL is all what we need; if we worry
about sniffing while in a public place, then passwords and timers are important.” The participant
acknowledged why the overall security could be inadequate: “If we are worried that users may
not understand insecure certificates, then the VPN over an encrypted connection might provide
an extra layer of security.”

Table 6.3: Participant agreement with overall security
Sceanrio Total Participants Agreement Ratio

Network (Wi-Fi) Password Timer
Public unencrypted Weak None 5 4/5 (80%)
Public unencrypted Weak 15-min 8 6/8(75%)
Public unencrypted Strong None 8 6/8(75%)
Public unencrypted Strong 15-min 5 3/5(60%)
VPN over encrypted Weak None 8 6/8(75%)
VPN over encrypted Weak 15-min 5 2/5(40%)
VPN over encrypted Strong None 5 2/5(40%)
VPN over encrypted Strong 15-min 8 4/8(50%)

The follow up interviews helped us verify the participants inputs, check for mistakes, and
identify false positives. By false positives, we mean that participants could provide assessments
that match the results of the system, but their reasons and priorities for security requirements
did not match what the rule base had encoded. We found one false positive, participant P8,
who scored 8 on the security knowledge test. Unlike P5 who disagreed with the system, P8
agreed but using a rationale similar to P5. Participant P8 mistakenly believed that SSL made the
other factors less relevant, because they believe that SSL alone is sufficient to defeat man-in-the-
middle attacks. The participant did not rate SSL as adequate, because they were concerned about
checking the certificates and about whether or not users would trust untrusted certificates.

We asked participants: “what is the most important change in the scenario that, if it occurs,
will cause you to drop your ratings?” All eight participants identified SSL, which only had
one level; participants did not see stronger or weaker SSL variants, despite the existence of
such variants. Participants identified requirements when weaker settings were presented: e.g.,
if they saw no timer, they would suggest adding a timer. This behavior was expected, because
participants saw combinations where they reviewed both weak and strong settings for network,
timer, and password.

We asked participants to identify requirements changes that would cause them to improve
their adequacy ratings. Participant P8 indicated they would improve SSL by ensuring the server
certificates are checked. The remaining six participants all suggested avoiding public unen-
crypted Wi-Fi and replacing it with a VPN over encrypted Wi-Fi or even better, as two partici-
pants suggested, using their own private home network. The six participants also suggested using
a timer for automatic logout instead of no-timer, and using a stronger password setting instead of
a plain 8-character password with no enforced character requirements. One participant suggested
adding two-factor authentication to the scenario.

Our survey results reveal when participants provide different ratings to the same requirement
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level in two different scenarios. Eight of 13 participants provided different network ratings for
the same network, but in two different scenarios. Four of eight participants clarified their choice
during a follow-up interview. Three of four participants reported not remembering their previous
choice, which suggests within-subject variance. The remaining participant reported providing
different network ratings, because they believe that their decisions were impacted by other re-
quirements settings, such as the timer and password.

6.5 Discussion and Conclusions from the Security Assessment
System

I will now discuss the results in the presence of inter- and intra-personal uncertainties in analysts’
security decisions, and explain the reliability of the security assessment system.

Interpersonal uncertainty is the uncertainty that exists between multiple analysts [88]. Secu-
rity analysts, in particular, demonstrate this uncertainty by disagreeing on the same scenario [68]
or artifact [69]. Our method does not rely on a single analyst’s assessment: if the analyst expe-
riences uncertainty, then judgments from other analysts would reduce the uncertainty, unless all
analysts are uncertain. As shown in the previous section above, two participants P5 and P8 stated
that a good SSL/TLS protocol is sufficient to defeat a man-in-the-middle attack, even if the net-
work is public Wi-Fi. While these analysts believe that SSL/TLS is sufficient, others argue that
this is insufficient over public Wi-Fi and they recommend using a secure VPN. This is an exam-
ple of interpersonal uncertainty. To illustrate, if a user is connected over public Wi-Fi, and they
are visiting a non-SSL website before being redirected to an SSL-enabled website, then it is easy
for a malicious adversary to hijack the session and redirect the user to a website with a forged
certificate. Furthermore, the attacker can use certificates signed with trusted certificates, which
can cause the SSL connection to appear safe in the browser [36, 73]. Rare events and recent
advances in technology illustrate the need for decision-support tools that can address limitations
of human memory, such as the over- or under-estimation of risk. Cognitive psychologists argue
that human memory can fail to recall relevant facts, which can be used to inform decision support
models, theories and frameworks to yield intelligent systems [28]. Even the “best” expert could
make mistakes and needs support with their evaluation.

Intrapersonal uncertainty is the uncertainty that one analyst experiences about a judgment
[88]. In our follow-up interviews, we observed how three experts provided different ratings of
the same factors, because they forgot their ratings in the prior scenario. This inability to recall
allowed these participants to demonstrate uncertainty within their own ratings. Other factors that
affect intrapersonal uncertainty include how representative a scenario appears, or how available
the analyst’s knowledge of recent events are when passing judgment [119]. In a prior study [68],
the SSL Heartbleed vulnerability that affects OpenSSL had recently been announced and this
event affected participants’ responses about adequacy ratings for SSL [68]. Thus, surveys to
collect adequacy ratings may need to be repeated to react to the evolving influences of certain
events.

We choose IT2FL to build our assessment system because it handles interpersonal and in-
trapersonal uncertainties. As shown in our results, we interviewed nine participants in order to
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verify 36 test scenarios. In only six scenarios (19%), participants disagreed with the security
assessment system. In all six disagreed test cases, the security assessment system was more con-
servative compared to the participants’ ratings, i.e., the system provides inadequate for a situation
that the participant believes is adequate, or adequate for a situation that the participant believes
is excessive. Participant P9 commented, “in security, I prefer a conservative system’s rating like
that.”

Rule reduction improves readability by human analysts. Earlier in this chapter we have shown
how the rule base is derived from expert-ratings in factorial vignette surveys and we present
heuristics to omit unnecessary inputs in the rule antecedents. However, this method has a lim-
itation in that it does not model situations that are absent from the dataset. For example, in
the scenarios that we studied, we cannot model requirements combinations that are excessive or
adequate overall, because these were not present in survey data. However, this limitation can
be addressed by improving the survey design using expert focus groups aimed at discovering
scenarios wherein security is deemed excessive.

Fuzzy logic has been applied in multiple domains [90], including security [47, 79, 115].
Fuzzy data mining techniques using Type-1 Fuzzy Logic have been introduced in intrusion de-
tection systems and have shown an improved outcome [47, 79, 115]. De Ru and Eloff proposed
modeling risk analysis using Type-1 Fuzzy Logic and explain that modelling risk analysis with
fuzzy logic produces system recommendations that are very close to real situations. They argue
that without such systems, organizations run the risk of over- or under-estimating security risks
[30]. In this work, we have shown how sometimes analysts underestimate the risk as our assess-
ment systems provided more conservative ratings in 19% of the test scenarios. De Ru and Eloff’s
use of Type-1 Fuzzy Logic addresses vagueness, but it does not account for uncertainty and their
method did not elicit security knowledge from multiple experts.

In this chapter, I have shown a new approach to build an automated security assessment sys-
tem based on an Interval Type 2 Fuzzy Logic system (IT2FLS). Survey data collected from 174
security experts were used to derive the IT2FL rules, and we built membership functions based
on this data. Finally, we evaluated the system by running 52 test scenarios on 13 participants.
Results indicate that the system succeeds in providing a reliable assessment to analysts, although,
it was more conservative in 19% of the 52 scenarios by assessing the security to be lower than
our human evaluators.

97



98



Chapter 7

Conclusion and Future Research

In this thesis, I studied security expert decision-making in the presence of uncertainty and mod-
eled this knowledge to create a human-centric intelligent solution that conforms to expert rea-
soning in the real-world. Throughout this research, I investigated a number of challenges that
impact security decision-making and risk analysis: 1) security experts’ stove-piped knowledge;
2) security requirements composition, 3) presence of uncertainty, and 4) scarcity of experts in
security, which limits the volume of data collected.

I show in previous chapters how I applied mixed quantitative and qualitative methods from
multiple disciplines to collect and analyze data, and how I model data collected from experts that
includes interpersonal and intrapersonal uncertainties using type-2 fuzzy logic. I provide below
insights and future research opportunities derived from the diversity of subtopics and research
methods used in this thesis.

7.1 Improving Security Decision-Making for Novices

In Chapter 3, I discuss how novices and experts exhibit different patterns of situation awareness
(SA) when analyzing security artifacts. Based on the results of this work, one can envision an
adaptive security analysis system that adapts to the training needs of a security trainee based
on their perception and comprehension of cues. If a trainee fails to identify a cue, then the
system could provide deeper training with further cues in order to help the trainee perceive vul-
nerabilities, comprehend its risk, project the impact, and decide on the proper mitigation. The
SA application described earlier in Chapter 3, helps to surface the cues that likely need to be
supported in such a system. While experts may have little difficulties reaching projection and
decision, novices may need additional information to help them reach these higher levels.

In Chapter 6, I present a proof-of-concept security assessment system that aims to model
expertise using expert data collected in user studies. The idea introduced is a building block to
construct more intelligent solutions for decision-support, in which rules are derived from real
expert data. Advancing this idea would be to build a system that provides recommendations for
novice security analysts, wherein the system educates the analyst about better design choices or
security configurations that improve the security ratings of their systems.
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7.2 Measuring the Effect and Priorities of Composed Require-
ments

I present in Chapter 5 the multi-factor quality measurement method to help study the effect of the
composition of security requirements and capture requirements weights. Researchers can apply
the MQM method to domains other than security where composable requirements exist. The
MQM provides a defined framework for researchers and requirements engineers in academia,
government and industry. A researcher who aims to study a quality of interest can create scenar-
ios and follow the steps defined in the MQM framework. By using MQM, one can examine the
dependencies among requirements and collect additional missing requirements. For example,
the MQM can be applied to study the privacy requirements, and help understand the weights and
priorities affecting privacy risk assessment performed by an analyst or an engineer.

The MQM process highly relies on vignette generation that would benefit from using tools for
automation, wherein any analyst creates vignettes by selecting the domain of interest and factors
in that domain. Systematic scenario generation is itself an ongoing research topic in require-
ments engineering, research in this area had focused on scenarios shown to stakeholders using
a formal representation that is closer to a model [117]. Such formal representation of scenarios,
has reduced readability compared to natural language scenarios [117]. Presenting scenarios us-
ing natural language improves readability, but systematically generating the scenarios is faced
with challenges that include, but not limited too: 1) consistency, which means ensuring that each
scenario has sufficient context; 2) completeness, which means ensuring that each scenario covers
some number of factors; and 3) precision, which means ensuring that the words used are tech-
nically specific. Such challenges would be interesting to explore in future research that aims to
automate the generation of vignettes.

7.3 Examining Scalability in Scenario-Based Approaches

Similar to other scenario-based approaches [117], one limitation of the MQM method is scal-
ability. Although the MQM offers more coverage when compared to other scenario-based ap-
proaches, scalability becomes an issue as the number of scenarios, factors, and levels increase.
The MQM would benefit from future research that improves scalability for scenario-based ap-
proaches. One future direction includes the use of classes of requirements in a taxonomy, in
which an analyst defines criteria to select factors from different classes instead of selecting in-
dividual factors as we have done in our research. Such an approach requires the creation of a
taxonomy that can define and distinguish the classes of requirements and their relationships.

7.4 Developing New Metrics

In this thesis, I explain how to develop and empirically evaluate new scales when existing metrics
are unavailable or insufficient. I discuss in Chapter 4 how a new scale was developed for security
adequacy and then applied in user experiments. In Chapter 5, observations from the MQM user
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studies indicate that security experts do not use excessive to describe requirements, so future
studies will benefit from avoiding the use of excessive as an anchor point on a semantic-scale.

Rethinking and examining new metrics can improve the construct validity and the internal
validity of empirical research conducted in computer science and software engineering. A bene-
ficial research direction is to explore techniques and methodologies used in the field of psycho-
metrics, and apply these research methods to examine new metrics. In cybersecurity specifically,
it would be interesting to explore possible security metrics other than adequacy. Examples of
other security metrics include, but not limited to, likelihood of an attack on a system, and a
systems sensitivity to threats.

7.5 Modeling Human Experts Knowledge
In application areas where there is high dependency on human reasoning, modeling human
knowledge is a necessity and a challenge. The scarcity of experts limits the amount of data
collected, which introduces a challenge because machine learning, and deep learning in particu-
lar, requires large datasets. In Chapter 6, I present an application of Interval type-2 fuzzy sets to
model linguistic security measures, and built a rule-base derived from quantitative and qualitative
analysis of survey data. For future research, it is beneficial to study how to scale my approach
and formalize the processes into a broader algorithm that can be applied to other application
areas.

This thesis is limited to using fuzzy logic. Different formal modeling approaches such as,
Markov Decision Processes (MDPs), and description logic fuzzy or probabilistic extensions
could be examined in future research. In addition, other sources for data, such as network traffic
could be explored to help build intelligent systems. In this thesis, I have surveyed experts to ob-
tain security ratings. Other possible sources to obtain security assessment data could be through
the setup of a honey-pot environment or by collecting network data that contain information
about attacker and user behavior. With security experts being scarce, adding other data sources
could create an opportunity to use machine learning and/or data mining methods to model human
expertise.

7.6 Final Remarks
This work aims to study expert reasoning to help build and create smarter tools that help hu-
man analysts achieve their goals. As explained in earlier chapters, there is high demand for
human analysts to perform the crucial task of security risk assessments, while lacking an in-
telligent decision-support tool that can aid the analyst in the process. This thesis highlights a
number of technical challenges and explains possible approaches and research methodologies
that if adopted, could become a building block towards more advanced decision-support systems
that closely model real-world human reasoning.
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Appendix A

Study Materials for the Situation
Awareness Study

A.1 Artifacts in the Situation Awareness Study
In the next pages, I will present the artifacts that were used in participants interviews in the
exploratory situation awareness exploratory study mentioned in Chapter 3

103



 

Consider a global telecommunication company 'Globocom'. Web interface to add new customers is shown below.  

 
Following code snippet shows how the information of the newly added customer is read in a .jsp file: 

 /* read the input strings entered in the web page */ 

 String cid = request.getParameter("customerid"); 

 String name = request.getParameter("name"); 

 String ssn = request.getParameter("ssn"); 

 String age = request.getParameter("age"); 

 String gender = request.getParameter("gender"); 

 String email = request.getParameter("emailaddress"); 

 

 

 

 

 

Figure A.1: The Source Code Artifact - Web Interface
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Following java code is used to insert the customer information in the database using an SQL query. The 

required libraries to create a database connection and execute queries on the database are available in the 

java.sql package. 

try { 

 /* URL to connect to the remote database server */ 

 String jdbcURL = "jdbc:msql:// 200.210.220.5:1114/Demo"; 

 /* user name and password to access the database */ 

 String user = "abc"; 

 String passwd = "xyz"; 

 /* Register mysql driver with the DriverManager */ 

 Class.forName("com.mysql.jdbc.Driver").newInstance(); 

 

 /* Create a connection to remote database using the URL and provided 

credentials */ 

 Connection conn = DriverManager.getConnection(jdbcURL, user, passwd); 

 

 /* Create a java Statement object using the database connection */ 

 Statement st = conn.createStatement();  

 

 /* java statement with SQL query to insert the customer's data (input strings 

read  from the web page) into the database */ 

 st.executeUpdate("INSERT INTO Customer VALUES('" +cid+ "','" +name+ "','" +ssn+ 

     "','" +age+ "','" +gender+ "','" +email+ "')"); 

 

} catch (SQLException e) { 

 /* print the stack trace to the output in case an exception arises */ 

 e.printStackTrace(); 

} 

 

High-Level Goal: 

 Correctly save the new customer's information in the database.  

 

Figure A.2: The Source Code Artifact - code
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Data Flow Diagram 
Consider the following data flow diagram (DFD) for installing an application on a mobile platform.  

 
 

High-Level Goal: 

Ensure secure information flows across trust boundaries. 

 

Figure A.3: The Data Flow Diagram Artifact
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2 

 
Figure 1: Existing Network 

 
 

 
Figure 2: Proposed Network 

Figure A.4: The Network Diagram Artifact
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A.2 List of Requirements Used in Artifact ND2
R1. Company X’s network, with the exception of the publicly available services which will

reside in a demilitarized zone (DMZ), will be unavailable for connections initiated from the
Internet to Company XâĂŹs network

R2. The employees of Company X will be required to use a web proxy server for connections to
the World Wide Web.

R3. Company X will harden and secure the services and operating systems of critical systems

R4. Company X will implement web content filtering and shall block inappropriate (porno-
graphic) web sites

R5. Company X will implement a Windows domain, and will manage server and user system
configurations through group policy centrally on the network

R6. Company X will implement a electronic mail relay, relaying mail from the Internet through
a mail filter, which will filter spam and malware as mail enters Company XâĂŹs network.

R7. Company X will require strong passwords (8 characters with complexity) for all user ac-
counts.

R8. Company X will implement multiple networks (management, user, data center), and will
implement strict access controls between each network.

R9. Company X will deploy system logging capabilities at all critical systems and will gather
the logs centrally for review and response

R10. Company X will implement system time synchronization on the network for logging and
auditing capabilities.

R11. Company X will implement multiple Intrusion Detection Systems (IDS) in multiple places
on the network and shall audit regularly

a. File System Integrity IDS sensors shall be implemented

b. Network packet pattern matching IDS sensors shall be implemented.

R12. Company X shall implement split Domain Name System (DNS) services.

R13. Company X will monitor network traffic with packet sniffers.

R14. Company X will implement centralized system/service availability monitoring.

R15. Company X will administer all systems either interactively from the console or remotely
from an isolated management network.
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Appendix B

Examples of Security Knowledge Questions
Used in Expert Surveys

I will provide below some example questions used in our security knowledge tests that we con-
ducted in a number of studies [66, 68, 70]. I do not list the full test as we continue to reuse some
of the questions in our ongoing research. The full list of questions, however, is available to share
with other interested researchers upon request.
• Which of the following is considered a good encryption algorithm for encrypting files on

your hard disk:

SSL

PGP

SHA256

MD5

TLS

AES

DES
• From the following list, choose the most secure algorithm for hashing:

SSL

PGP

SHA256

MD5

TLS

AES

DES
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