
CMU-ITC-84-016

Authentication Server Reference

David King

Information Technology Ceuter

I. Overview

This document describes the Authentication Server for the VICE system, pro-

viding user authentication, key distribution and usage accounting functions for

the file system and other system services. A separate document describes tile

internal organization and functioning of the authentication programs, and

another describes the authentication message algorithms in greater detail.

Authentication, in the context of a complex of distributed services pro-

vided by VICE, is the mechanism by which servers identify the users of the

workstations making use of their services, establishing their rights to the ser-

vices they request; these rights depend on the personal identity of the worksta-
tion user. It starts when the user workstation VIRTUE software makes a network

connection to the Authentication Server in the nearest cluster machine and a

call to tile Connecc service, and is ended by a call to the Disconnect ser_ice.

In between the VIRTUE software makes many requests for service, for instance,

fetch and Store calls to the file server, or J_t(_ch calls to the printer server,

each of which provides a service; in each case, the service-providing server

will ask the Authentication Server for the encryption key which VIRTUE will use.

Accounting, as a function of the authentication system, is the mechanism

used by the system administration to distribute the available network computing
resources among the potential users, and to maintain records of the resources

used bv them. _Tt involves computing resources allocated to users, expended by

them through the use of system services, and accounted for in a usage transac-
tion file.

The Authentication Server will be implemented as a set of processes running
in each cluster mac|line, one of which is designated the Central Authentication

Server for accounting d0.ta base purposes. There will be some network-wide data

bases, used by all of the servers and maintained bv the Central Server. There

wil] be some other cluster-specific data bases, used and maintained indepen-
dently by each of the servers.

July 18, 1984

- Z

1.1. Definitions

cluster machine A machine running the VICE software, generally considered
to be the primary system for a number of VIRTUE worksta-

tions. In it run the file system software processes, the

printer server process, perhaps a bulletin board server

process, and the Authentication Server processes.

file server The VICE file system software running in a cluster
ma chine.

cluster server This is an ambiguous expression and should not be used in
this document.

job number A number, unique within a single cluster machine, to dis-

tinguish the workstations authenticated to that machine.

This is necessary to allow multiple jobs for a single

user to be recognized.

username The computer-oriented user identification, as assigned by

the central administration. These are presently four-

character "man numbers," consisting of the users' two

initials followed bv two more characters for uniqueness;

my username is 'DK32' If another username policy is

proposed, it should have usernames short enough to be

conveniently specified bv users but long enough to be

unique over the lifetime of the username. Throughout

this design they are limited to eight characters, which

is enough for any reasonable username.

account number A computer-oriented code identification for a computer

usage account. At present account numbers are such

things as "R602" which has tile meaning "Computation

Center Systems Software." Throughout this design they are
limited to four characters.

er9 A unit of work; the work expended in applying a force of

one dyne over a distance of one centimeter. This is an

experimental term _o denote a unit of computer net_¢ork

utilization, i_ an qttempt to use a non-money term to

keep money and computing usage distinguished.

commodity A service provided by tile system which is to be accounted
for.

commodity code A number assigned by tile system administration to each

service provided bv the system; e.g. "disk storage,"

"network packets " " ' #o ,, -, prznter ,- pages, "printer _Fo char-
,!

acters.

1.2. Authentication

Before using any servers on a particular cluster machine, each user works-

tation will make a secure RPC connection to tlle Authentication Server on that

machine and use the Connecv service to identify itself to \'ICE. It must provide

as an argument to the RFC__fnd call a block containing the user's username, and

an encryption key generated by "crunching" the user's password (see "key crunch-

ing" in the appendix).

July 18, 1984

- 5

The Authentication Server will receive the connection and be asked for

matching key; it will look up the user's crunched password in the User Authori-

zation File. It will also generate a session key for use in messages after this

exchange. After this the Remote Procedure Call library will encrypt and

sequence-check all messages between the workstation and the Authentication

Server. The data provided in this initial message will include the user's user-

name again, tile account number, the password, and other information.

The Server will check the password and account, and internally register the

workstation as "logged in" as that user, with that encryption key. It will

return a unique "job number" to the user.

When a workstation wishes to use a particular VICE service, tile workstation

will establish an authenticated connection to it, providing the username, the

job number, and the assigned session key. The server will receive the connec-

tion and will ask the Authentication Server for the session key assigned to that

user. After that the workstation and server can authenticate and encrypt what-
ever messages they wish.

When a workstation wishes to stop using the services of a cluster machine,
it should call that Authentication Server's D_isconn_cc service. It _cill be

charged for cluster machine service until it does.

1.3. Accounting

The central administration will allocate resources to users by creating

computer usage accounts and allocating various amounts of computer usage to the

accounts; account administrators will give allocations to their users. Tile

Authentication Server system a ill keep track of the usage allocation remaining

re each user, as workstations logged in as that user make make use of services

on a session-to-session basis. As servers receive workstation requests, they

will tell their Authentication Server what sort of service was provided and "how

,nany" of that service; tile Authentication Server will deduct the proper number

of "ergs" from the user's allocation. When the user logs out from the network,

these deductions eventually make their way to a central Authentication Server

which applies the deduction to a central data base. If the user has exceeded

his allocation at this point, the several Authentication Servers are told not to

accept Connec_ requests for that user. It would be possible to have a much more

complex system which would kee_ careful track of deductions and cut off service

the instant the user reached his limit; this design does not do this.

This system will allow system usage to be rationed as the administration

wishes. All usage transactions will be saved in a file, which can be processed

afterward to provide usage distribution statistics. It might be desirable to

occasionally inform the user, by mail, of his activity (say over the last month)

and remind him of his balance. All of this is outside the scope of this system.

July 18, 1984

1.4. Assumptions

This design assumes that the Authentication Server processes can make ordi-

nary file references, in the traditional Unix manner, to certain system files

resident on tile local cluster machine, and of concern only to the Authentication
Server.

It is assumed that workstation and system server processes can communicate

with the Authentication Server using a Remote Procedure Call (RPC) mechanism.

Connections between system servers and the Authentication Server, all running on
the same machine, are assumed to be secure against user interference or observa-
tion.

Some improvements may appear in the network communications area over tile

life of tile project:

o Unlike the standard Ethernet system, a process sending a message will even-

tually need not have a complete network address for the server with which

it wishes to, although it may specify a complete address if it wishes. It

can say "send this message to the service-17 socket on whatever network

host wants to receive it"; such a generic connection will be answered bv

one cluster machine, probably the nearest one to the connection initiator.

o There may be a special "high-security" mode available for network connec-

tions, which automatically guarantees to both parties that all messages

received are from the other party, and that no ocher party can eavesdrop on
tile conversation.

o There may be high-speed encryption hardware available on workstations and
cluster machines.

o There may be a Unix network domain developed, to allow communication

between processing running on the same machine. Th_s would be usef-I for

system servers talking with the Authentication Server.

o There may be a secure network ring, connecting together the cluster

machines only; this would make secure communication between the Authentica-
tion Servers easier.

The current design takes none of these things for granted; as more advanced

features become available, they can be integrated into the server design.

July 18, 1984

2. Unresolved Issues

This design assumes that a use:" has only one "computing usage" allocation

per account. In the long run this simplifying assumption may non be adequate

for a proper rationing of scarce resources; ho_'ever, at this point the dimen-

sions along _,q:ich the overall net_,'ork resource might be divided are unclear. It

should be simple enough to break up the allocation into categories, such as

"disk access" and "printing," as the system matures.

This system takes for granted a strict separation between "system money"

and real money. If a stronger linkage between system usage allocations and real

money is required, several parts of the design will be inadequate, particular in
security and accountability.

Cutting off service when a user runs out of money has in the past been a

politically sensitive issue, there are no users who wish this to happen, but

occasionally some departmental business managers }:ave complained about their

users using more money than they were budgeted for. This design assumes that

the ITC management wishes to actual]y cut off users.

There is no provision here for a "maximum usage rate" once proposed, sent-

able by the user, to tell the system the fastest he wishes to expend ergs.

It will probably be unacceptable to charge all disk usage to one account;

if user files could have account attributes, they could be charged to different
accounts.

This design does not provide a general-purpose user-to-user accounting
facility. One has been proposed, and is awaiting discussion.

July 18, 1984

- (,

3. Externals

In this section I will describe those parts of the authentication system

which will be used by ,aser _<orkstacions and system servers, giving enough detail
for a program writer to be able to use the system. A later section _ill

describe how the server's services will _ork.

In the messages and other formats described, int means a 32-bit integer,
chat" means an 8-bit byte, and char[] means a sequence of 8-bit bytes, padded

with nulls after the last significant byte if a variable-length string is

involved. In integers, there should be an understanding that, when transmitting

a 16-bit integer to a network, the first byte transmitted is the high order
byte, followed by the lower order byte; for a 32-bit integer, the order should

be highest (2_24) byte, next highest (2_16), next-to-lowest (2_8), and lowest.

(This is a natural arrangement for the >168000.) Other arbitrary constants, such

as service code numbers, will be denoted by upper-case names.

All of the arbitrary numbers which a user or system server need to use are

defined in a header file, "authuser.h." This file also contains structure defin-

itions for a!] of the messages _,.:hicha user ne_,d send or receive. In the rest

of the document, message and object formats are described in structure form: in

all cases, the definition in the header file is the standard.

3.1. Data bases and blocks

3.1.1. User Authorization File

There _,'ilibe a User Authorization File (UAF], with a copy on every cluster

machine, in a system directory; it will be read and writteJ_ only by Authentica-

tion facilities. They should be ever}re'here identical, but will b_ ,_pdated by

each _ndividual Authentication Server, through a maintenance function. (Or,

ultimately, it might be a "replicated" file maintained by the file system, so

that a copy modified at a central site would automatically move throughout the

network.) It _,'illcontain such things as the user's username, crunched password,
and valid accounts.

3.2. Workstation and Server Access

To make calls on Authentication Server services, the user workstation

softenare, or the system server, must use the Remote Procedure Call mechanism to

establish a connection to server "authrpc" on the desired host, make remote pro-
cedure calls over the connection, and close ti_e connection when the communica-

tion is complete.

Workstations should use secure connections. In the initial connect for

Connect, the RPC "self-identification" should contain just the user's username;.

July 18, 1984

on the initial connect for o_her purposes, the self-identification should con-

tain the username and the assigned job number. (See below for details.)

Tlle request headers of the messages contain in the "Opcode" field a number

to indicate the service being requested; any arguments are contained in the

"Parameters" area of the RPC request block. Response messages will contain a

status code in the "RetnrnCode" field of the response header, with additional

information in the "Results" area of the RPC response block.

Messages sent between workstations and cluster _achines are generally pro-

tected by encryption and by message sequence numbers, by the RPC facility.

Each request a workstation or server can make consists of a set sequence of

message exchanges, where the caller sends a request and the server sends a

response. When the messages used for a particular service have been exchanged

(this is one exchange for everything besides Con1_ect] each side wi]l close the
RPC connection.

Workstations and system servers are distinguished in the services which

hey c,.n request. To designate i_self :_.sa system servcr, the server will

(eventually) be required to make all RPC _o a "PrJ\i]eg,.," service, supplying a

password, unless some means can be found for processes in the same machine with

the Authentication Server to otherwise identify themselves (Unix domain sockets

would serve this purpose).

3.3. Workstation services

3.3.1. Connect service

The user workstation VIRTUE software will first obtain from the user his

computer username, his password, and his bi!izng account number. It will con-

vert the user's password with one of the password crunching algorithms (the

algorithms are described in an appendix). It will establish a secure RPC con-

nection to the nearest cluster machine's Authentication Server, and send an

AAS CONNECT request, providing as arguments the account number and the password.

struct ms_connect {

char account[4]; /* The account number, or zero to default */

char password[16]; /* The p_ssword, in the clear */

}:

Additionally, the RPC_Bind will need the user's username as the 'self-
identification':

July 18, 1984

struc_ ms com_ect_si {

char username[8]; /* The username */

};

The server will look up the user's entry in the User Authorization File; if

it does not exist it will return _,'ithan RPC error. Otherwise, it will extract

the crunched password stored there, and tell RPC to use that for the encryption

key for the data of this message. It will pick an encryption key suitable for

RPC, and return it to the RPC package; this key will be used for all further
communications over this connection, and indeed for all future connections. It

will then read the message body, and check the username again. It will compare

the password with the one stored in the UAF, and check the account number

against the list of accounts valid for the user (obtaining the default if neces-

sary). It will internally register the user as logged in, with his job number,

account number, and encryption key. It can then return code Success.

The reply block will contain

struct ms connect r {

int job; /* The job number */

int key[8]; /* The session key */

};

The possible return codes are

AAR_SUCCESS Success.
AAR BADMSG The message was badly formatted.

AAR_BADPASS The password was incorrect.
AAR BADDACT The account was defaulted but _here is no default.

AAR_BADACCT The account was not valid.

AAR BADALLOC The accoun_ has exceeded its allocation.

Once this is done, the workstation knows his encryption key, and can close
the connection to the Authentication Server.

3.3.2. Disconnect service

To disconnect from VICE, the VIRTUE software should establish a secure con-

nection to the Authentication Server again, providing to RPC the 'self-

identification' of the user's username and job number, and the session encryp-

tion key. It should then reques_ the Disconnect service, making an RPC

AAS_DISCONNECT request, pro\'iding no parameters.

July 18, 1984

The self-identification block tills time should look like

struct ms service si {

char username[8]; /* The username */

int job; /';_The job number ";_/

},

The server will perform various cleanup functions and return a confirmation

with return code Success, and no data.

The workstation should have first used Z)fsconnoctfS to disconnect from any

file servers which it may have been using.

3.3.3. Change Authorization service (CHGAUTH)

A user can call Change Auti_orization, operation code AAS_CHGAUTH, to have

the authentication system change some things stored in his User Authorization

File entry. It must have established a secure connection in the same manner as

for Dfsconnecc. The req.uest block contains basic identification information,

and the request details.

struct ms chgauth {

char usernameI8]; /* The username again *!

char oldpwd[16]; /* The user's current password */

int item; /* The function (CHGAPWD,CHGAACT) */

char newpwd[10]; /* The new password */

char newdacct[4]; /* The new default account */

in_ checksum; /* Checksum */

};

The function code is a number indicating the thing to be changed.

AAO_CHGAPWD Change the password.

AAO_CHGAACT Change _he defau]t account.

The server will check the checksum and sequence numbers. The server will

check the old password; if it zs correct, in wili make _he change and return a
confirmation with no data. The return code will contain

July 18, 1984

_ -j, _

AAR_SUCCESS The change has been made.

AAR BADUSER Tile username was invalid.

AAR_BADNPASS Tile new password is unacceptable (criteria to be determined,

currently it must be at least 0 characters long).

AAR_BADACCT Tile new default account is not among the allowed accounts.

AAR BADFUNC The function code was not recognized.
AAR_BADPASS Tile old password is incorrect.

3.3.4. Assign Key

Two users can use this facility to establish secure and authenticated com-

munications, using the protocol of Bauer, Berson, and Feiertag (/fIA Key Distri-

bution Protocol Using Event Markers, AC._ITOCS 1:249). In this protocol, user A

tells user B his identity and an even r. m_rker, a never-reused unpredictable

number generated secret]v by A (a recommended a]goritm is to step a counter by

one, and pass it through DES to generate the next event marker). User B asks

tile Authentication Server to create a com'ers,Ttfon key for this one interaction,

providing A's identity and event marker, B's identity, and another event marker

for B. The server returns to B a messaze with two parts, the first encrypted
with A;s session key and the second with B's session key _these are the keys

assigned when the user logged in to his Authentication Server). B's message

portion contains the conversation key, A's identity for crosschecking, and B's

event marker. B is responsible for passing A's message portion, containing com-

plementary information, to A. With these messages exchanged, the two users can

now be sure that they can communicate privately, and that the other partner

knows the key only if he is the user he purports to be. (See the article for
argumentation on this.)

A's message portion will be encrypted with the Authentication Server's own

encryption algorithm, as described in the appendix. The encryption facility of

RPC cannot be used for this, although the entire message returned no B is
encrypted for him.

Since there are multiple Authentication Servers, there is the complications

that user A must also provide the name of the Server to which he is logged in,
and that B must pass this information on to B's own Server. _(Jth this informa-

tion B's Authentication Server can contact A's Server and get the session key.
If A and B have some Authentication Server in common, it would be more efficient

to use it, but that is an efficiency problem for them to consider.

User B obtains this conversation key from his Authentication Server by

opening a connection to the Server and making the AAS_ASSIGNKEY request, with
arguments

July 18, 1984

'i

struct ms_assignkey (

char hisname[8]; /* Partner's username */

int his job; /* Partner's job number */

char myevent[8]; /* Requesting user's event marker */

char hisevent[8]; /* Partner's event inarker */

char hisserver[20]; /* Partner's home cluster, or empty */
};

The server will look up the users, requesting information from tile

partner's home Authentication Server if necessary, assign the conversation key,
and return the message

struct ms assignkey_r {

struct ms_assignkey_rd { /* Encrypted block */

char otheruser[8]; /* The other user's username */

int other job; /_': The other user's job number */
char reverent[S]; /* This user's event marker */

char key[8]; "* Conversation key */

int dummy; /* Space for DES, must be zero */
} mydaca, hisdata; /* One for each user */

};

Tile server may return codes

AAR SUCCESS Success.

AAR_BADMSG The message was incomprehensible.

AAR BADUSER Your username or job number were not valid.

AAR_NOPART The other user's username or job number were not valid, or
for other reasons it was impossible to get information from
the other user's Authentication Server.

3.4. System services

These are always requested by processes running on the same system as tile

responding AUthentication Server. According]y, integers in the following mes-
sages need not be forced to the network standard, but should be in the format

appropriate to the machine.

3.4.1. Get User Data service (GETUSER)

When a user workstation requests a service from a VICE server, it _ill

July 18, 1984

i2 -

establish an authentication connection, and provide tile server with the user's

self-identification, presumably the user's username and job number. The server

will need to know the user's encryption key. To do this the server will make an

RPC call to the Authentication Server's AAS GETUSER se_'ice, providing as param-
eters the username and job number.

struct ms_getuser {

char username[8]; /* The username */

int job; /* The job number */
};

The Authentication Server will look the username and job number up in its
local databsse, and if found will return to the server the user's account number

and the user's encryption key.

struct ms_getuser_r {

char account[4]; '_'_The account number */

char key[8]; /* The encryption key */
};

The possible return codes are

AAR_S[ICCESS The user is logged in, the reply data contains details

AAR_BADMSG The message was incomprehensible.

AAR_BADUSER The user is not logged in.

Given this information, the server can tell RPC the key to use to decrypt
the user's messages, and assure itself that the sender is the one to whom that

encryption key was assigned. It can then use encryption as it wishes for what-

ever portions of its communications that require it.

3.4.2. Bill User service

After nerforming a service, a system server make a request with code
AAS BILLUSER to charge the user, providing the user's username and account

number, and a list of commodities and usage counts.

July 18, 1984

i3

struct ms_billuser (

struct ms_billuser h { /* Fixed header */

char username[8]; /* The username */

char account [4]; /* The account number */
char count; /* The number of commodities which follow */

} header ;

struct ms_billuser_c { /* Commodity block, repeaced as needed */
int comcode; /* Commodity code */
int comcount; /* Number used */

} commodity;
};

The server will compute the total usage from the commodities given, write a

transaction record to a transaction file, save in a buffer the total charge
against the user's account, and return a confirmation to the sender. The return
codes are

AAR SUCCESS The usage has been charged a inst the u'.aer's allocation

AAR_BADCOMM A commodity code was provide_ _,'hXch Js no_ defined; all o_her
commodities were billed.

AAR BADMSG The message was incomprehensible.

To reduce overhead, high-traffic servers such as the file server may be

able to maintain a small number of counters, perhaps of requests made, or files

transferred, or blocks transferred, and send it to the Authentication Server in
batches.

3.4.3. User Maintenance service

Ir is to be used by maintenance programs to update the User Authorization

File and Accounting Data Base. It would be good if it could be guaranteed _hat

the sender were suitably privileged. The request has code AAS UHAINT and param-
eters

July 18, 1984

struct ms_umaint {

struct ms_umaint_h { /* Fixed header */

int function; /* Function: ADDUSER,DELUSER,CHGAPWD,

CHGAACT, ADDACCT, CHGACCT, DELACCT */

char username[8]; /* Username to add or delete */

char password[16]; /* New password, in the clear */

int pwdtime; /='_Password change timestamp or zero */

char defacct[4]; /* New default account ='_/

char flags; /* Option flags */

='-_defineUMAIXT_CPWD 1 /* Password is already crunched */

char acctcnt; /* Number of account blocks, for ADDUSER,

ADDACCT, CHGACCT, DELACCT */
} head ;

struct ms_umaint_a { /* Account block, repeat as necessary */

char account[4] ; /* Account number */

int quota; ,/* Account a]1ocation */

char flag; /* Account flag */
} acctblk;

};

The function field contains the operation to perform:

AAO_ADDUSER Add the user to the UAF.

AA0_DELUSER Remove tile user from the UAF.

AA0_CHGAPWD Change the user' s password.

AA0_CHGAACT Change the user's default account.

AA0_ADDACCT Add the specified list of accounts, quotas, and flags to the
user's list.

AAO CHGACCT Change the account quotas and flags for tile user's accounts

specified in the list.

AAO_DELACCT Delete the specified accounts.

The server will perform the function and return a confirmation with return
code

AAR_SUCCESS Success.
AAR_BADFUNC The function requested does not exist.

AAR_DUPUSER The user to be added already exists.

AAR_BADUSER The user to be changed or de]eted does not exist.

AAR_DUPACCT The account to be added is already defined.

3.4.4. Server Status service

This is to be used by maintenance programs to obtain information on the

Authentication Server's status. At present it only returns a list of the users

logged in to the server. The request has code AAS_SSTATUS and no parameters,.

July 18, 1984

and returns the information

struc_ ms_sstatus_r {

struct ms_sstatus_rh { /* Fixed lleader */

int count; /* Number of user entries to follow */
} head ;

struct ms_sstatus_ru (/* User entry */

int job; /* Job number :'_/

char username[8]; /* Username */
char account[4]; /* Account */

int logtime, /* Time of login */
} user;

};

July IS, 1984

4. Algorithms

4.0.1. Password crunching

This is tile way in which passwords are converted into encryption keys.

Workstations must know this in order to do the initial handshaking.

Password crunching algorithm zero takes tile 16-byne password in 8-byte

chunks and passes the 64-bit number nhrough the DES algorithm with a standard

key, with chaining, and the last 64 bits resulting from this are taken as the

key. (This process courtesy of Konheim, Mack, >IcNeill, Tuckerman, and Waldbaum,

The IPS crypcogr_phfc progr_ms, IB._I Sys. J. , 19:253, 1980.)

4.0.2. Data encryption

Data will be encrypced using a corrected form of nhe Unix crypt(3) imple-

mentation of the Data Encrypnion Stm_dard, using block chaining.

July 18, 1984

