
CMU-ITC-083 2 February 1989

The Computational Power of an
Algebra for Subsequences

Wilfred J. Hansen
Information Technology Center
Carnegie-Mellon University
Pittsburgh, PA 15213

Abstract. This paper introduces an algebra for sequences which has a
number of desirable properties as a component of a programming
language. In the algebra, sequence values are modeled as subsequence
markers, each of which refers to a selected subsequence of some
underlying base sequence. Four primitive functions on markers are
described: next(), start(), extent(), and base(). Together with constants,
concatenation, and appropriate definitions for comparison and assignment,
these are shown to be necessary and sufficient for expressing all sequence
functions. The algebra is further shown sufficient to simulate a Turing
machine and thus to compute any computable function. Definitions
describe values with symbolic expressions so proofs can be done
algebraically rather than axiomatically.

'\
\
\
\

\

1. Introduction

Sequences are fundamental to computing: a file may be a sequence of records, a record a
sequence of fields, a field a sequence of characters. In numerical applications the data in
arrays are often processed sequentially. It is surprising, then, that little effort has been
devoted to algebras for sequences. This paper is an effort to describe formally one such
algebra and prove it satisfies Universal Computability, by showing that it can simulate a
Turing Machine.

Each data value in the algebra refers to a subsequence of some underlying sequence,
called its base. Each single value is an indivisible composite of references to the base
and the location and extent of a subsequence. This type of data value is called a
"subsequence marker", or "marker" for short. A marker can refer to as much as the
entirety of its base or as little as the empty subsequence between two elements. Note that
markers for empty subsequences can be distinguished if they have different locations. In
Figure 1, the base is "'Twas brillig and the slithy toves" and markers m, n, and p refer to
subsequences of that base.

Figure 1 near here

Why is each marker value a subsequence rather than a sequence in its own fight?
Consider searching and parsing algorithms where it is often desirable that the outcome of
a search indicate the location of the result as a start for further processing. When search
functions are defined with markers as arguments and results it is convenient and natural
to express complex searches with composition of functions. This does not obviate the
need for pattern matching, but it does simplify the task of matching patterns that do not
happen to fit the particular pattern paradigms provided.

We can contrast subsequence markers with another algebra sometimes considered for
character strings: the free monoid consisting of concatenation and strings over an
alphabet. We can adapt this algebra to searchingand parsing problems by defining
function argument and return values as a composite of three string values--the portions
before the match, of the match, and after the match. The resulting system is considerably
more complex and unnatural than the one presented here because the result of each
function match must have a selector applied to extract the desired portion of the
composite value.

Another model of string computation found in many programming languages is an array
of characters with integers or pointers to indicate position and extent of substrings. From
a purely formal standpoint this model is inferior because it requires the domain of
integers (or pointers) as well as the domain of sequences. In practice, the array model of
strings suffers from other deficiencies: Characters do not always fit in a single byte, or
even two bytes, so array subscription may not access distinct characters; string values are
limited in length to predeclared storage sizes; and it is not always intuitive--especially
when modifying a program--as to whether an integer i refers to the i'th character or the

preceding or following inter-character position.

A few languages have successful string processing capabilities despite some of the
defects noted above. Snobol4 [Griwold, 1971] has strings of any size and features
pattern matching, but lacks the notion of referring to a subsequence of a string. Icon
[Griswold, 1979] utilizes integers as references to strings and confuses the issue further
by defining negative subscripts as counting from the top end of the string down; two
different values can refer to each character position. PostScript [Adobe, 1985] does have
the notion of referring to a substring, but given a substring there is no way to access
adjacent portions of the parent string.

The algebra described below has been implemented at least three times. First in a
research language [Hansen, 1987], then as part of the cT system for educational
computing [Sherwood & Sherwood, 1988], and most recently in the Ness language
[Hansen, 1989] as part of the Andrew system [Morris, et al., 1986]. A subset of Ness
will be used for programming examples below. In addition to the functions of the
algebra, the subset utilizes marker declarations, assignment, if-then-else, while-do,
predicates, compound statements, function definition, call (with call-by-value
parameters), and return. Spare as it may be, this subset was sufficient to write a
preprocessor from itself into C.

Section 2 defines the fundamental primitives, applications of which are shown in Section
3 where they are used to define other functions to access substrings. Sections 4 and 5
establish that the algebra is sufficient to compute not only all subsequences of a given
sequence, but also all functions. Rather than axiomatic definitions and proofs, markers
are defined syntactically and proofs are done with syntactic manipulation. This proof
technique, and the elegance of the algebra, combine to render most proofs quite
straightforward; indeed, the goal of this paper is not so much to prove results about the
algebra, but rather to demonstrate its potential for simple expression of algorithms.

2. Subsequence Primitives

The basis of each value in the algebra is an underlying sequence of elements called the
base. An element may be an object of any sort; for examples we will use the alphabet of
ASCII characters as the elements. The value itself is a reference to a subsequence of its
base, so we call the value a subsequence marker value.

For the formal exposition in this paper, the notation for subsequence marker values must
represent both the marker subsequence and its position within its base. We write base
sequences in angle brackets like this

<slc>

Identifiers within the angle brackets are meta-variables which refer to individual
elements (a, b, c....) or to sequences of zero or more elements (p, q, r, sl, s2) .
More commonly a marker value will also contain square brackets:

-4-

Definition: A subsequence marker value (or "marker") is written as

< sl [s2] s3 >

where each s i is a sequence of zero or more elements. The portion s2 is
the marked or delimited portion of the sequence. The entire sequence <
sl s2 s3 > is the base of the marked value. If s2 is of length zero, the
marker is an empty marker.

It may appear that the definitions below require copying sequences; the intended
interpretation--and the implementation of Ness--does not require copying sequences for
any of these functions other than concatenation.

Traditional programming constructs are described as follows for marker values. In the
descriptions, the construct is followed by an arrow, =>, and then the resulting value as a
bracketed marker value.

Constants return a marker for the entire sequence. For character strings this is:

"some text" => < ["some text"] >

Concatenation (written with " ~ ") constructs a new sequence by juxtaposing the marked
portions of the arguments and returning a marker for the entire new sequence.

<sl[s2]s3> -<s4[s5]s6> => <[s2s5]>

Comparison of marker values is defined to be sequence comparison of the delimited
portion. This is well defined for equality by reference to equality tests between the
elements of the sequences. Inequalities are well defined only if there is a lexicographic
ordering of the elements. For character string sequences we have such an ordering for
any relational operator relop:

<sl[s2]s3> relop <s4[s5]s6> => <s2> relop <s5>

Assignment of marker values assigns the marker value, it does not copy the sequence.
After the assignment

a := x

if x originally has the marker value < s 1 [s2] s3 > then a and x will both have that value
after the assignment.

Printing a marker value prints the delimited portion.

-5-

print(< sl [s2] s3 >) => <s2 > is printed

Declarations in the examples will utilize the keyword marker:

marker varl, var2, ...

Parameter passing is call by value and passes the entire subsequence marker value,
including the base. Thus if f has a formal parameter m and is called with f(p) where p is
< sl [s2] s3 > then f can access any portion of the base of p. All parameters of
functions defined in this paper are marker values and parameter declarations are elided.

The algebra of subsequence expressions has the following primitive operations; their
arguments and values are all subsequence marker values. The effects of these functions
on a typical character string are illustrated in Figure 2.

Figure 2 near here
.............................

Start(m) returns a marker both of whose limits are at the beginning of the argument:

start(< sl [s2] s3 >) => < sl [] s2 s3 >

Next(m) returns a marker for the element following the argument. If the argument was
at the end of its base, next() returns the end of the base.

next(< sl [s2] e s3 >) => < sl s2 [e] s3 >
next(< sl [s2] >) => < sl s2 [] >

Base(m) returns a marker for the entire sequence surrounding the argument.

base(< sl [s2 I s3 >) => < [sl s2 s3] >

Extent(m, p) produces a marker extending from the beginning of its first argument to the
end of its second argument. If the second argument ends before the start of the first, the
result is an empty marker at the end of the second argument. Extent() expects that its
arguments be on the "same" base, that is, a base generated by a single constant or
concatenation. If the bases differ, extent() returns a unique empty constant.

extent(< sl [s2] s3 >, < s4 [s5] s6 >)
=> <sl [s7]s6 >,

if < sl s2 s3 > = < s4 s5 s6 > and there
is an s7 such that < s2 s3 > = < s7 s6 >

=> < s4 s5 [] s6 >,
if < sl s2 s3 > = < s4 s5 s6 > and there

-6-

is an s8 such that < s8 s2 s3 > = < s6 >
=> < [] >,

otherwise.

The equality < s8 s2 s3 > = < s6 > implies that sl, which must end at the same place as
s8, will end after the start of s6 and therefore after the end of s5. This complexity can be
avoided with a more informal definition that omits some square brackets. For this
scheme we adopt the rule that a missing right bracket is somewhere to the right of its left
bracket, and vice versa. Then the definition can be:

extent(< sl [s2 s3 >, < sl s2] s3 >) => < sl [s2] s3 >
extent(< sl s2 [s3 >, < sl] s2 s3 >) => < sl [] s2 s3 >
extent(< sl [s2] s3 >, < s4 [s5] s6 >)

=> < [] >, where < sl s2 s3 > _ < s4 s5 s6 >

As written, the formal definition does not require identical bases for the two arguments,
only that the base strings be equal. There is no way in the algebra to distinguish two
markers on the same base from two markers on different but equal bases. However,
implementations of extent() may return the empty string unless the two bases are indeed
from the same original source.

An example function utilizing the four primitive subsequence functions is given in
Appendix A.

In order for a set of functions to be teachable and memorable, they should be based on an
underlying set of functions that are as small as possible. The next section will present a
number of additional subsequence functions all of which can be defined in terms of the
above four primitives. To show that none of the four is redundant we have:

Theorem 2.1 (Necessity): The four primitive functions--start(), next(), base(), and
extent()--are all necessary for computation with the algebra. That is, none can be
expressed as a functional composition of the others.

Proof: We wish to demonstrate for each of the primitives, P, that there is no expression E
which behaves as defined above for P and yet does not contain P in the expression E. We
do this by exhibiting a particular value, v, and argue for each primitive that no such
expression E exists that converts this value appropriately, and therefore no expression E
exists which implements P for all arguments. The particular value v is

< "ab" ["cd"] "eft'>

-7-

Note first that

next(v) = < "abcd" ["e"] "f' >,
start(v) = < "ab" [] "cdef" >, and
base(v) = < ["abcdef'] >.

For extent() no E can exist because the value returned may have to be of any length and
the other functions return only markers of zero, one, or all the elements of a base.

For base() no E can exist because none of the other functions can otherwise generate a
marker beginning before the left bracket of v.

For next() no E can exist because no other function Creates a marker that starts at the end
ofv.

For start() there can be no E whose return value is generated by base() or next() because
they generate values with end brackets after the end of v. If the return value is generated
by extent(), its second argument must end at the start of v, but it must ultimately have
gotten this value from base() or next(), which it cannot have done.

Since none of the functions can be expressed in terms of the others, all are necessary. []

Experiments with various alternative sets of primitive functions have shown none more

convenient for programming than the set above. For instance, by symmetry the algebra
could be defined with previous() instead of next() or finish() instead of start(); but either
would emphasize right-to-left processing instead of the more natural left-to-right
processing. Next() could return an empty marker after the following element, but
algorithms often require elements rather than empty markers.

There is an algebra which is formally simpler than the one above, requiring three
primitive operations instead of four. It utilizes next() and extent() and a third function we
can all startofbase0:

StartOfBase(m) returns a marker for the empty sequence at the beginning of the entire
sequence surrounding the argument.

startofbase(< sl [s2] s3 >) => < [] sl s2 s3 >

Implementation of base() with the three primitives requires only a loop to find the end of
the base and an extent() to combine start and end. Start() is slightly trickier:

function start(m)

marker p;

p := startofbase (m) ;

if extent(p, m) then return m; end if;

while extent (next (p) , m) /= m do

-8-

p := next(p);
end while;

return extent(m, p); -- p ends where m begins

end function;

The set of three functions, however, is far less convenient for programming than the four
primitives presented above.

3. Subsequence Functions

Given a marker, many algorithms require computation of markers for nearby
subsequences; within the algebra the expressions for such computations are usually
concise. This section presents formal definitions for a number of nearby subsequences,
exhibits expressions to compute the desired marker, and proves that that expression does
indeed have the desired value. As a first example, we compute finish(), the analog of
start() which is the empty marker following a marker value.

finish(m) - Returns a marker for the empty subsequence just after m:

finish(< sl [s2] s3 >) => < sl s2 [] s3 >.

Lemma 3.1: An expression for finish(m) is start(next(m)).

Proof: If s3 is non-empty it contains a first element c and a continuation s4:

start(next(< sl [s2] c s4 >))
= start(< s1 s2 [c] s4 >)
= <sl s2 [] c s4>
= < s 1 s2 [] s3 >

while if s3 is empty we have:

start(next(< sl [s2] >))
= start(< sl s2 [] >)
=<sl s2[] >
=<sl s2[] s3>

In both cases the expression computes the correct value. []

Much of the remainder of this section is directed toward computing single element

subsequences analogous to next(), which is the first element after the marker; we want
the first element before the marker and the first and last elements within the marker. We

begin with the single element marker which starts at the same place as its argument:

front(m) - Returns a marker for the first element after start(m), if there is one, otherwise

-9-

m must be empty at the end of its base and this value is returned:

front(< sl [c s2] s3 > => < sl [c] s2 s3 >
front(<sl[]cs3>) => <sl[c]s3>
front(< sl [] >) => < sl [] >

Lemma 3.2: An expression for front(m) is next(start(m)). (Proof omitted.) []

Front() returns a single element regardless of whether its argument is the empty string,
but sometimes it is preferable to have a function first() which is empty when its argument
is. To define first() it is easiest to begin with rest(), a function to compute all but the first
element. The implementation of this function exploits the precise definition of extent().

rest(m) - Returns a marker for all elements of m other than the first; but if m is empty,
so is rest(m):

(i) rest(<sl[cs2]s3>) => <slc[s2]s3>
(ii) rest(< sl [] s3 >) => < sl [] s3 >

Lemma 3.3: An expression for rest(m) is extent(next(next(start(m))), m).

Proof: The proof of (i) has three cases depending on the lengths of s2 and s3. When s2
has at least one element we write s2 as < c2 s4 > and the proof proceeds thus:

rest(< sl [c c2 s4] s3 >)
= extent(next(next(start(< s1 [c c2 s4] s3 >))),

< sl [cc2 s4] s3 >)
= extent(next(next(< sl [] c c2 s4 s3 >)), < sl [c c2 s4] s3 >)
= extent(next(< sl [c] c2 s4 s3 >), < sl [c c2 s4] s3 >)
= extent(< sl c [c2] s4 s3 >), < sl [c c2 s4] s3 >)
=<sl c [c2 s4] s3 >

In the second case s2 is empty and s3 has one or more elements, while in the third case s2
and s3 are both empty. In both cases the marker is reduced to a empty subsequence at its
former end. These cases can be verified by an argument similar to that of the first.

For part (ii) we observe that the first argument to extent() is next(next(start(m))), which
cannot yield a marker starting before the beginning of m and the second argument is m,
which ends at the end of m. Since m is empty, the extent() must yield a marker
equivalent to m. []

first(m) - Returns the first element of m, but if m is empty, so is first(m):

first(<sl[cs2]s3>) => <sl[c]s2s3>
first(< sl [] s3 >) => < sl [] s3 >

- 10-

Lemma 3.4: An expression for first(m) is extent(m, start(rest(m))). (Proof omitted.) []

allprevious(m) - Returns a marker for the subsequence of the base of m that precedes the
start of m:

allprevious(< sl [s2] s3 >) => < [sl] s2 s3 >

Lemma 3.5: An expression for allprevious(m) is extent(base(m), start(m)). (Proof
omitted.) []

alinext(m) - Returns a marker for the subsequence of the base of m that follow the end of
m:

allnext(< sl [s2] s3 >) => < sl s2 [s3] >

Lemma 3.6: An expression for allnext(m) is extent(finish(m), base(m)). (Proof
omitted.) []

last(m) - Returns the last element of m, but if m is empty, so is last(m):

(i) last(<sl[s2c]s3>) => <sls2[c]s3>
(ii) last(< sl [] s3 >) => < sl [] s3 >

Lemma 3.7: Last(m) is computed by this function:

function last(m)

if rest(m) = "" then return m;

else return last (rest (m)) ;

end function

{This function is grossly inefficient. However, when the implementation of the algebra
stores elements in contiguous memory last() can be computed by scanning backward in
the base sequence. }

Proof: Case (ii) follows trivially from the definition of rest().

Case (i) must be proved by induction on the length of m. If m has one element, then
rest(m) is by the definition of rest(), so m is correctly returned as its own last element.
If m has more than one element, we write it as < sl [c2 s2 c] s3 >, the else clause is

executed and we return last(< sl c2 [s2 c] s3 >). By the inductive hypothesis, the latter
expression gives the correct value. []

previous(m) - Returns a marker for the element preceding m, but if m is at the beginning

-11-

of its base sequence, previous(m) returns the value start(m):

(i) previous(< sl c [s2] s3 >) => < sl [c] s2 s3 >
(ii) previous(< [s2] s3 >) => < [] s2 s3 >}

Lemma 3.8: An expression for previous(m) is last(allprevious(m)). (Proof omitted.)
[]

In algorithms which transform sequences it is desirable to retain the position of some
markers while modifying the base sequence at the position given by another marker. One
method for doing this is to define replace(a, s) which modifies the base sequence of a,
replacing the marked portion with the marked portion of s and adjusting appropriately all
other markers on base(a). Such a function is defined in the Ness implementation, but is
unnecessary for the present paper. A second method for remembering the position of a
marker is to define two functions length(m) and nextn(a, n). The former computes the
length of a sequence and the latter returns the result of applying the next function n times
to the argument a. Although these can be useful functions, this paper does not require
recourse to the domain of integers. Instead we define a function countdown(m, p) which
advances through m by the length of p.

countdown(m, p) - returns a marker for the element of m found by applying next to
start(m) once for each element of p:

(i) countdown(< sl [s2] s3 >, < s4 [s5] s6 >)
=> countdown(< sl [] s2 s3 >, < s4 [s5] s6 >)

(ii) countdown(< sl [] s7 >, < s4 [s5] s6 >)
=> <sis7[]>,

where length(s7) < length(s5)
(iii) countdown(< sl [] s8 c s9 >, < s4 [s5] s6 >)

=> <sl s8 [c] s9>,
where length(s8) = length(s5)

Lemma 3.9: This function implements countdown():

-- countdown (m, p)

-- return a marker for the single element c from base(m)

-- such that the number of elements in extent(m, start(c))

-- is equal to the number of elements in p {or if p is

-- too long, then c is next (base(m))

function countdown (m, p)

m := next (start (m)) ;

while p /..... do

m := next (m) ;

- 12-

p := rest (p) ;

end while;

return m;

end function;

Proof: Case (i) is covered by the "start(m)" in the first assignment. Case (ii) is not
needed for further proofs below and will be omitted.

The trivial portion of case (iii) is when s5 is empty and the loop body is not entered. In
this instance, s8 is also empty and the first assignment in the function body makes m refer
to c, as required.

For the general part of case (iii) we have the while loop invariant:

Just before the first assignment in the while loop, the variables have these
values:

m is <sl si[b] sjs9>
p is <s4su[sv] s6>

where <sib sj >= <s8c >, < su sv >=< s5 >, andlength(si) =
length(su).

On first entering the loop, the variables satisfy the invariant with si and su both empty: si
has been established by the initial assignment and su is initially empty.

Execution of the two statements of the loop body advances m to the next element (by the
definition of next()) and reduces p to have one less element at the front (by the definition
of rest()). Thus si and su are each one element longer, sj and sv are each one element
shorter, and the invariant is preserved.

When sv eventually becomes empty, the loop exits. Then su must be all of s5, so si is all
of s2, b is c, and sj is empty. Thus we have that m is < s 1 s2 [c] s3 > which value is
returned after the loop, satisfying case (iii). []

Corollary 3.1 (CountFront): If c is a single element and m and n are arbitrary markers,

countdown(m ~ c ~ n, m) has the value < m [c] n >. (Proof omitted.) []

4. Sufficiency

With the aid of the subsequence functions, it is possible to write an expression for any
subsequence of a sequence. To demonstrate this, consider the set of all subsequences of
a sequence. This set consists of each instance of a subsequence starting at one position in
the sequence and continuing to the same or another, later position. Here are functions to
print all the subsequences of a sequence:

-13-

function printsubsequences (s)

printsubsub (s, s) ;

if s /= "" then

printsubsequences (rest (s)) ;

end if ;

end function;

function printsubsub(t, s)

print (extent(s, start (t))) ;

if t /= "" then

printsubsub(rest (t) , s) ;

end if;

end function;

It is not difficult to show that printsubsequences(s) prints all subsequences of s. We begin
with a lemma.

Lemma 4.1 (Tail Recursion): If P is an operation and Q is a sequence of zero or more
variables each preceded by a comma, then the function f0 defined by

function f (x Q)

f(x Q);
if x /= "" then

f (rest (x) Q) ;

end if ;

end function;

performs P once for each tail of x, including the final empty subsequence. That is, ifx is
< sl [cl c2... cn] s3 > then P is executed for each of

<sl [cl c2...cn] s3>,
<sl cl [c2...cn] s3 >,
. ° o,

<sl clc2...[cn]s3>, and
<sl cl c2...cn [] s3 >.

Proof: Ifx is < sl [] s3 >, then n is zero and P is executed once; the then clause is not
executed because x = When n > 0 we argue by induction. A call to f0 evaluates P
once for the current value ofx and then calls f recursively for rest(x). By the definition of
rest, rest(x) is a tail ofx so n is one less and the general case holds by induction. []

Lemma 4.2: The call printsubsub(s, s) prints all subsequences of s that begin at start(s).

Proof: By the Tail Recursion Lemma, printsubsub(s, s) executes print(extent(s, start(t)))
for t being each tail of s. This is exactly the subsets of s that begin at the beginning of s.
[]

Lemma 4.3: The call printsubsequences(s) print all subsequences of s.

Proof: By the Tail Recursion Lemma, printsubsequences(s) executes printsubsub(s, s)

- 14-

for s being each tail of the initial s. By the preceding Lemma, this call prints the
subsequences beginning at each position within s, which is the entire set of subsequences.
[]

Theorem 4.1 (Sufficiency): The subsequence algebra is sufficient to generate all
subsequences of the base of a sequence.

Proof: By the preceding Lemma, if s is a sequence, the call printsubsequences(base(s))
will print all subsequences of the base of s. Since they are printed, they must have been
generated. Since only the functions of the algebra have been used to operate on sequence
values, those functions must be sufficient. []

Note that the Sufficiency Theorem proves that all subsequences can be generated, but not
that any specified subsequence or set of subsequences can be generated. This more
general result will be established in the next section.

5. Universal Computability

So far we have seen that the algebra is necessary and sufficient to compute all
subsequences of any base. The next, and final, step is to demonstrate that any function
whatsoever can be computed; to do so we rely on Church's Thesis that a system can
compute any function if it can simulate a Turing Machine:

Theorem 5.1 (Universal Computability): The subsequence algebra is sufficient to
simulate a Turing Machine having a tape with symbols of 0 and 1, a read head which is
examining one symbol of the tape, a state machine, and five operations: move head Left,
move head Right, write a Zero, write a One, and Halt. For each combination of state and
symbol under the read head, the state machine specifies an operation and a next state.
(Precise specification of each operation is given below.)

Proof." Consider the Turing Machine as a function TM: T -> T where the domain T is
the set of all Turing tapes. The proof proceeds by defining an injection H from T to
strings and another G from Turing Machines to Ness programs. Then it will show that
for any initial tape t_ T and initial state s we have

H(TM(t, s)) = (G(TM))(H(t), s'), (5.1)

that is, that the result of applying TM to t and then translating to a string is the same as
translating t to a string and applying the Ness program corresponding to TM. (s' is the
representation of state s in the translated Turing Machine.) Since H is an injection the
only way to have acheived (5.1) is for G(TM) to be a successful simulation of TM.

The proof is by induction over the number of state transitions executed by TM. To
reflect transitions, we convert Relation (5.1) to the indexed form

- 15-

H(TIVIi (t, s)) = (G(TM i))(H(t), s'), (5.2)

where the subscript indicates the number of state transitions that have occurred. TM 0 is
the identity function, so if (G(TM 0))(H(t), s') = H(t), then (5.2) is trivially preserved.
We need only show that each state transition in G(TM) preserves (5.2). The heart of the
proof will demonstrate that the relation is preserved by the implementations of each of
the five operations. Prior to that, we exhibit the translations H and G:

The tape translation H. Each element of T is an infinite sequence consisting of a finite
segment of mixed O's and l's preceded and followed by infinite sequences of O's. The
read head is positioned over one of the elements of the finite sequence. Capital letters are
variables over the sequence: P, Q, and R for subsequences, A, B, and C for individual O's
and l's. The symbol under the read head is underlined, so a typical tape is

0 ... P_CQ 0...

H transforms a tape to a subsequence marker value whose base is the finite string of "0"s
and "l"s corresponding to the middle segment of the tape; the infinite tails in both
directions are inserted by the Left and Right operations as required. The marked portion
of the value is the single character where the read head is positioned. Lower case letters
are variables over the strings, so the representation of the tape above is

H(0...P_CQ0...) = <sl[c]s2>,

where sl, c, and s2 have the ASCII characters "0" and "1" for the 0 and 1 symbols,
respectively, of P, C, and Q.

That H is an injection can be seen by noting that if two tapes differ one will have a 0
where the other has a 1, but in that case the translations will differ because one will have
a "0" where the other has a "1".

The Machine translation G. The translation of any Turing Machine into Ness has an
outer framework which is the same for all TM and an inner sequence of lines unique to
the particular TM. State names are represented as strings consisting of whatever names
are given to the states in TM. Thus the translation G(TM) is a Ness function with a tape
and a state name as arguments and a tape as the result. The unvarying framework of this
function is:

function GTM(t, state)

marker simulating;

simulating := "yes";

while simulating do

if false then

<< one line for each transition >>

end if;

end while;

-16-

return t ;

end function

(The if false then line is included only so every transition line can begin with elif.)

A "transistion" is the combination of an input state and a value under the read head; the
line in the program for input state u, read head value c_ operation op, and new state v is:

elif state = "u" and t = "c" then t := Op(t); state := "v_"

unless the operation is Halt, in which case the line is

elif state = "u" and t = "c" then simulating := "No"

The Op function depends on op, the operation specified by TM for the particular
transition:

op op
Write a One -> OpOne
write a Zero -> OpZero
move head Left -> OpLeft
move head Right -> OpRight

The framework executes the while loop once for each state transition, applying one of the
four OpXxxx functions to transform H(t) i into H(t) i+l • The Halt operation sets
simulating to "No", so the while loop terminates whenever TM halts. When no state
transitions occur, the original value of t is returned. It remains to show that each
OpXxxx function preserves relation (5.2).

OpOneO and OpZeroO. By symmetry it suffices to demonstrate OpOne0. The precise
specification of the 'write a One' operation for TM is

O...PC_QO...--> O...PIQO...

The Ness function accompanying GTMO is

function OpOne (t)

return countdown (allprevious (t) ~ "i" ~ allnext (t),

allprevious (t)) ;

end function

By Corollary "CountFront" and the definitions of allpreviousO and allnextO, this function
has the effect

OpOne(<sl[c]s2>) => <sl[1]s2>

so by inspection relation (5.2) is preserved.

- 17-

OpRight. For TM, the precise specification of 'move head Right' is

O...PB_CQO...--> O...PB_CQO...

The corresponding Ness function is

function OpRight (t)

if next(t) /..... then

return next (t)
else

return countdown(base(t) ~ "0" -, base(t));
end function

(The ~ "" is merely to satisfy the condition of "CountFront")

There are two cases, depending whether the read head is at the end of the finite middle
segment of the tape.

Case 1: next(t)/= "". In this case, there must be a character c such that t has the form

<sl[b]cs2> .

The first return statement is executed and, by the definition of next(), returns the value:

<slb[c]s2>

Case 2: next(t) = The form of t is

<sl [b]>

and the second return statement is executed. It first constructs by concatenation a new
value

<[slb0]>

but by Corollary "CountFront", the value returned is

<slb[0]>

In both Cases, the value returned corresponds to

H(0... PB CQ0...)

so (5.2) is preserved.

-18-

OpLeft. For TM, the precise specification of 'move head Left' is

O...PBC__QO... --> O...PBCQO...

The corresponding Ness function is

function OpLeft(t)

if previous(t) /= "" then

return previous(t)

else

return countdown(.... ~ "0" ~ base(t), "");

end function

(The ~ is merely to satisfy the condition of "CountFront")

The proof of OpLeft is similar to that for OpRight except it depends on Lemma

"Previous" instead of the definition of next().

To summarize, GTM0 is the identity function if no state transitions are executed and

(5.2) is preserved by each state transition. Therefore, we conclude by induction on the
number of state transitions that (5.1) is preserved for all TM. Since GTM0 halts exactly

when TM executes the Halt operation, GTM0 will be non-terminating whenever TM is.
Since GTM0 is the transformed function G(TM), the latter simulates TM. []

The algebra is in fact equivalent to a Turing Machine, an assertion which requires proof

of the obverse of the above theorem: that a Turing Machine can simulate programs in the

algebra. The heart of such a proof is presented in Appendix B.

Summary and Conclusion

This paper has presented an algebra for subsequence expressions, employing as
primitives the functions base(), start(), next(), extent(), concatenation, constants, and
appropriate definitions for assignment and comparison. The four functions were shown
to be necessary and sufficient for computing all subsequences of a given base sequence
and were shown--by simulation of a Turing Machine--to implement universal
computability. While these properties demonstrate that this is a complete algebra, its real
value is as a tool for describing algorithms over sequences. The algebra especially
facilitates string parsing since a single value can represent the entire substring matched
by a pattern match. The algebra has already been implemented as the string sublanguage

for two programming languages and has attracted a number of enthusiastic users.

Acknowledgements. This work began in reaction to Bruce Sherwood's search for a

string sublanguage for the cT educational computing environment. I am indebted to him,
Judy Sherwood, David Andersen, the Center for Design of Educational Computing, and

- 19-

cT users. Initial development of these ideas was done while in residence at the
Department of Computer Science, University of Glasgow, with the support of the
Science and Engineering Research Council (grant number GR/D89028), both under the
direction of Malcolm Atkinson. The work has also benefitted from conversations with

Kieran Clenaghan, David Harper, Joe Morris, John Launchberry, Mark Sherman, and
John Howard.

References

[Adobe, 1985] Adobe Systems, Inc., Postscript Language: Reference Manual, Addison-
Wesley, (Reading, Mass., 1985).

[Griswold, 1971] Griswold, R. E., J. Poage, and I. P. Polonsky, The Snobol4
Programming Language, Prentice-HaU (Englewood Cliffs, 1971).

[Griswold, 1979] Griswold, R. E., D. R. Hanson, and J. T. Korb, "The Icon
Programming Language: An Overview," SIGPLANNotices 14, 4 (April, 1979) 18-31.

[Hansen, 1987] Hansen, W. J., Ness - Reference Manual, Computer Science Dept.,
Univ. of Glasgow, 1987.

[Hansen, 1989] Hansen, W. J., Ness: Reference Manual, Information Technology
Center, Carnegie-Mellon University (January, 1989).

[Morris, 1986] Morris, J., Satyarayanan, M., Conner, M. H., Howard, J. H., Rosenthal,
D. S. H., Smith, F. D. "Andrew: A distributed Personal Computing Environment,"
Comm. ACM, V. 29, 3 (March, 1986) 184-201.

[Sherwood, 1988] Sherwood, B. A., and Sherwood, J. N., The cT Language. Stipes
Publishing Company, (Champaign, Illinois, 1988).

- 20 -

m\ n\1 L -_ J t
<'Twas brillig and the slithy toves>

Figure 1. Illustration of three markers. The base sequence is "'Twas brillig and the
slithy toves"; marker m refers to the subsequence "s bill", n refers to the empty
subsequence between the first two letters of "the", andp refers to "toves".

-21 -

m\ .\
J L n\l J L

<'Twas brillig and the slithy toves>

1/ ;z start(p) Istart(m) /Sstart(n) /__(

nTta(se)(Im)/ nTt(ane)(In)/ nebta;Pe)(p)/

m . p\J\ L _ J L
<'Twas brillig and the slithy toves>

f
extent(re, n) _ _ _ extent(re,p)

extent(p,m)l extent(p,n);

Figure 2. The four primitive functions. The base sequence for all examples is as in
Figure 1. The markers below the base show the result of applying the various functions
to m, n, and p.

-22-

Appendix A. Example function

Here is a function utilizing the algebraic operations introduced in section 2. It copies an
input string and produces a modified version with tab characters replaced with enough
spaces to make the following text at appropriate column positions.

For each cycle through the main loop, c refers to a different character from the input m.
Variable m, is advanced through the text with the expression extent(next(c), m), which--
due to the definition of extent()--will be the empty string when c is the last character of
m. Each time a tab is encountered, a segment from the original input is copied to the
output 'new' and followed with the appropriate number of spaces instead of the tab.

-- ExpandTabs (m)

-- return a copy of m with tabs expanded to spaces so

-- subsequent text is at position 9, 17, 25, 33

function ExpandTabs (m)

marker c; -- current character

marker tab; -- replace c, if it is a tab

marker p; -- start of current segment

marker eight; -- eight spaces;

marker new; -- the output string

eight := " "; -- 8 spaces

tab := eight; -- distance to ist tab

new := ""; -- init output to an empty string

p := m; -- set start of first segment

while m /..... do

c := next (start (m)) ; -- first character

m := extent (next(c), m) ; -- rest of text

if c = "\t" then

-- tab: copy preceding segment

-- and expand tab

new := new

~ extent (p, start (c)) --

segment

~ tab; -- replacement

spaces

p := m;

tab := eight;

elif c = "\n" or next(tab) then

-- newline or 1 space tab;

-- restart tab cycle

tab := eight;

else

-- non-tab: shorten tab replacement

tab := rest(tab); -- (see Lemma 3.3)

end if;

- 23 -

end while;

return new ~ extent(p, m);

end function;

Note the absence of arithmetic for determining the current output position. As an
exercise the reader is invited to write a version of ExpandTabs0 that keeps track of tab
position with integers

- 24 -

Appendix B. Turing machine implementation of the primitive functions

The text has shown how to simulate a Turing machine with the algebra, and therefore
that the algebra can compute any computable function. To demonstrate that the algebra
is not some more powerful computational engine, we sketch a proof of equivalence to a
Turing machine by showing that a Turing machine can simulate the algebra.

Rather than program in machine language for the Turing machine, we write Lisp
functions for the four primitives. The representation of a sequence itself is simply a Lisp
list: each subsequence marker value is a list of three pointer, one to the base sequence, a
second to the first element of the marked portion, and the third to the element after the
marked portion. If the marker ends (resp. begins) at the end of its base, the third pointer
(resp. second) is NIL. In a marker which represents an empty sequence on an empty base
all three pointers are NIL.

(defun next (m) (list
(car m) ; same base
(caddr m); start just after end of old value
(cond ; extend for zero or one element

((null (caddr m)) NIL) ; end of sequence: zero
(T (cdr (caddr m))) ; otherwise: one

)
))

(defun start (m) (list
(car m) ; same base
(cadr m) ; same start as existing value
(cadr m) ; empty marker at the start

))

(defun base (m) (list
(car m) ; same base
(car m) ; start of base
NIL ; end of base

))

(defun istail (a c) (and c (or (eq a c) (istail a (cdr c)))))

(defun extent (m p) (cond
((or (null (car m)) (not (eq (car m) (car p))))

; not on a base, or differing bases
(list NIL NIL NIL))

((or (null (each"m)) (istail (cadr m) (caddr p))) (list
; empty marker at start of second argumenrt
(carm)
(caddr p)

- 25 -

(caddr p)
))
(T (list

; extend from start of first arg to end of second
(carm)
(cadr m)
(caddr p)

))
))

In a practical implementation, sequence elements would be stored in consecutive
locations so the loop implied by istailO would be implemented as no more than an
address comparison.

Formal Definition of Replace()

In some applications, such as interactive text editors, it is desirable to be able to modify
base strings, so another primitive function--replace()--is required. Informally the
meaning of replace(x, y) is to modify the base string of x by removing the current
contents of the subsequence x and inserting a copy of the subsequence y. The value
returned is a subseq for a value that appears to be y, but is in the place of x in x's base.
Replace() subsumes insertion and deletion: for insertion, an empty subseq is replaced
with non-empty text; for deletion, a non-empty subseq is replaced with empty text.

An informal definition of replace in the notation we have so far used is this:

replace(< sl [s2] s3 >, < s4 [s5] s6 >)
=> < sl[s5]s3>,

if < sl [s2] s3 > is not a constant
=> Error, otherwise

Replace(x, y) modifies the base of the subseq value x so the subsequence
referred to by x now contains the marked portion of string y instead of its
former value. The value returned is a subseq delimiting the new copy of
the replacement value. All other subseq values on the same base as x are
adjusted appropriately, as defined below.

Informally, replace(x, y) affects other subseqs on the same base as x as though the value
of y is inserted at the end of x and then x is deleted. Thus subseqs that begin after x are
shifted along so they still refer to the same underlying text as they did and subseqs that
span x will have new contents for the portion that was x. For subseqs which end at the
end of x there are four cases, depending on whether each of x or the other subseq is
empty or not; the action for each case is described in Table 1 and illustrated in Figure 1.

x is empty x is non-empty

other is empty other follows insertion
other precedes insertion

other is non-empty other includes the insertion

Table 1. Adjustment of other subseqs that end where x does. The
operation performed is replace(x, y). 'Other' is some other subseq value
on the same base as x and ending where x ends. The contents of each cell
describe the relation of 'other' to the inserted copy of y.

Rather than theoretical considerations, the basis of Table 1 is practical experience with
the algebra. In most cases it has seemed preferable that empty subseqs remain empty
after a replace. An empty subseq often indicates a position to begin further processing,
so when the x and the other subseq are both empty the other is left preceding the

-2-

insertion so the insertion will be processed. But when x is non-empty the other subseq
originally followed x and should still follow the replacement.

Replace "efgh" in abcd efgh ijkl with "xyz"

The substring a / bcd / efghijkl becomes a / bcd / xyzijkl
The substring a / bcde / fghijkl becomes a / bed / xyzijkl

< The substnng a / bcdefgh / ijkl becomes a / bcdxyz / ijkl
The substring a / bcdefghi/jkl becomes a / bcdxyzi/jkl
The substnng abcd / efg / hijkl becomes abed / / xyzijkl

< The substring abcd / efgh / ijkl becomes abcd / xyz / ijkl
The substring abcd / efghi / jkl becomes abed / xyzi / jkl
The substring abcde / fg / hijkl becomes abed / / xyzijkl

< The substring abcde / fgh / ijkl becomes abed / xyz / ijkl
The subswing abcde / fghi/jkl becomes abcd/xyzi/jkl

<> The subswing abcdefgh / / ijkl becomes abcdxyz / / ijkl
> The substring abcdefgh/i/jkl becomes abcdxyz/i/jkl

Replace empty string between c and d in abcdef with "xyz"

< The substring a / bc / def becomes a / bc / xyzdef
The substring a / bed / ef becomes a / bcxyzd / ef

<> The substring abc / / def becomes abc //xyzdef
> The substring abe / d / ef becomes abexyz / d / ef

Table 1. The effect of replace() on other subseqs. The replace
performed for each group of lines is shown above the group. Each line
shows an example of some other subseq on the same base and its value
after the replacement. The base string is letters only; the spaces are for
readability and the slashes indicate the extent of each other subseq value.
In general the replacement is made by inserting the replacement at the
finish of the replaced value and then deleting the replaced value. The <'s
mark examples where the other subseq ends at the end of the replaced
swing and the >'s indicates examples where it begins there.

To formally model replace() we must introduce the notion of a memory with a collection
of base swings each having some number of subseqs. The entire contents of memory is
represented in curly braces:

{ < sl[s2]s3> < s4[s5]s6> }

To indicate that subseqs share the same base, we label the brackets of each subseq. Thus
two subseqs on the same base in memory would be:

-3-

{ < sl [j s2 [k s3]j s4]k s5> }

where the subsequence referred to by j is s2 s3 and that of k is s3 s4. We require that
the labels on all pairs of brackets be unique, so a label both identifies a base and refers to
a subsequence within it.

For convenience in the formal definition, we introduce the notion of an "extended
sequence" composed of intermixed brackets and elements from a base sequence. To
distinguish the two forms of sequence the component items in an extended sequence are
called "constituents"; each constituent is either an element of a base sequence or a left or
fight bracket which represents one end of a subseq on that base. For each label in a
well-formed extended sequence there is one left bracket and one fight bracket with that
label and the left bracket precedes the fight. The Greek letters appearing as meta-
linguistic variables below take as values subsequences of extended sequences (but not
references to these subsequences).

Using bracket labels to indicate subseq values, the function we wish to define is

replace(o_, I_) => v

which has two subseq arguments and returns a third. The memory representation prior to
executing the function is

{...< sbl [a sb2]a sb3>

... < sb4 [[3 sb5]1_sb6>... }

where

sbi is a subsequence of the extended sequence which includes all the
elements of si and all adjacent brackets other than those explictly shown.

The subsequences 0t and [3may overlap on the same base, so the formal definition must
make a copy of 13 . It does so by introducing a new base string in the memory
representation with an otherwise unused label denoted by X • The first rule just makes
this copy:

(1) {...< sbl [a sb2]a sb3>
...< sb4 [[_ sb5][_ sb6>... }

=> {... < sbl [a sb2]a sb3 >

...< sb4 [8 sb5][_ sb6>

...< [_ s5]z>}

For the case of a non-empty ct, we rewrite sb2 as s7 c b7, where

-4-

c is the last element--that is, a non-bracket--in sb2 (by assumption, sb2
has at least one character)

s7 is all elements in sb2 that precede c
b7 is all brackets from anywhere in sb2, taken in their original order

The required effect is to remove s7 and c and place all the brackets of b7 after the
insertion. Note that the copy _ is deleted and the placement is shown for the result
subseq v :

(2) {... < sbl [a sb2]o_ sb3 >

...< [_ s5]_>}
=>{...< sbl [et [v s5]v]ct b7sb3>

• • • }

For an empty _ we assume that sb2 is also empty and rewrite sbl and sb3 extracting and
splitting the set of all brackets between the last non-bracket element of sbl and the first
character of sb3:

sxl is all of sbl except the brackets on its right. If sbl has no elements, sxl is
empty.

sx3 is all of sb3 except the brackets on its left. If sb3 has no elements, sx3 is
empty.

b2 is all brackets between sxl and sx3.

We rewrite b2 as bl b3 where:

bl is is all brackets from b2 which are right brackets or the left brackets of empty
subsequences.

b3 is all left brackets from b2 which do not begin empty subsequences.

Since [orand]a bound an empty subsequence between sl and s3, they are constituents in
bl. The third rule provides for inserting the replacement text s5 between bl and b3, and
again deleting the copy Z and indicating the return value v.

(3) {...< sxl bl b3 sx3 >

...< [_ s5]_>}
=> {...< sxl bl Iv s5]v b3 sx3 >

• • e }

It may be desirable to create an empty string into which text can be inserted with
replace(). For this we provide a primitive read-write constant:

newbase() => < [] >

-5-

Creates a new, modifiable and empty, base string.

With newbase0 we can now redefine concatentation and the append operation:

s" t == base(replace(end(replace(newbase(),s)), t)).

The result contains the concatentation of the marked segments from s and t.

v -:= t == v := base(replace(finish(base(v)), t)), (where v is a variable)•

The value of variable v is appended with t and v is given the entire result as its
new value.

With these definitions, one common coding sequence can be

t := newbase ();
while do {

t := expression;

}

The variablet isinitializedto a modifiable empty stringand then textis appended to it

withintheloop.

