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Abstract

In this paper, we study the combination of compression and ℓ1-norm regularization in a machine
learning context: learning compressible models. By including a compression operation into the ℓ1
regularization, the assumption on model sparsity is relaxed to compressibility: model coefficients
are compressed before being penalized, and sparsity is achieved in a compressed domain rather than
the original space. We focus on the design of different compression operations, by which we can
encode various compressibility assumptions and inductive biases, e.g., piecewise local smoothness,
compacted energy in the frequency domain, and semantic correlation. We show that use of a compres-
sion operation provides an opportunity to leverage auxiliary information from various sources, e.g.,
domain knowledge, coding theories, unlabeled data. We conduct extensive experiments on brain-
computer interfacing, handwritten character recognition and text classification. Empirical results
show clear improvements in prediction performance by including compression in ℓ1 regularization.
We also analyze the learned model coefficients under appropriate compressibility assumptions, which
further demonstrate the advantages of learning compressible models instead of sparse models.
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1 Learning Compressible Models

Since the introduction of lasso (Tibshirani, 1996), ℓ1-regularization has become very popular for
learning in high-dimensional spaces. A fundamental assumption of ℓ1-regularization is the sparsity of
model parameters, i.e., a large fraction of coefficients are zeros. Sparse models have the advantage of
being easy to interpret and good generalization ability in very high-dimensional problems. However,
the sparsity assumption on model coefficients might be too restrictive and not necessarily appropriate
in many application domains. Indeed, many signals in the real world (e.g., images, audio, videos,
time series) are found to be compressible (i.e., sparse in certain compressed domain) but not directly
sparse in the observed space. Naturally, the assumption of sparsity can be relaxed to compressibility.
Inspired by the recent development of compressive sampling (or compressed sensing) (Candes, 2006;
Donoho, 2006), we study learning compressible models : a compression on model coefficients can be
included in the ℓ1 penalty, and model is assumed to be sparse after compression.

The rest of this paper is organized as follows. In section 1.1, we will briefly introduce learning
sparse models with ℓ1-norm regularization. In Section 1.2 we discuss the definition, computation
issues and potential benefits of learning compressible models. In Sections 2–4, we propose three
classes of model compressibility assumptions and corresponding compression operations: piecewise
local smoothness, energy compaction in the frequency domain, and semantic correlation. In Sec-
tions 5–7, we empirically study several real-world problems: brain-human interfacing, handwritten
digit recognition and text classification, using compressibility as a more appropriate inductive bias
than sparsity. Experimental results demonstrate the advantages of learning compressible models.
Section 8 discusses related work and Section 9 concludes and mentions future work.

1.1 Learning Sparse Models with ℓ-Norm Regularization.

Regularization was initially proposed to solve ill-posed problems (Tikhonov & Arsenin, 1977). In
statistical learning, regularization is widely used to control model complexity and prevent overfitting
(Hastie et al., 2001). Regularization seeks a trade-off between fitting the observations and reducing
the model complexity, which is justified by the minimum description length (MDL) principle in
information theory (Rissanen, 1978) and the bias-variance dilemma in statistics (Sullivan, 1986).

Lasso (Tibshirani, 1996) is a specific example of ℓ1-norm regularization, which is formulated as:

min
α,β

||y − 1α−Xβ||22 + λ||β||1 (1)

where the n× p matrix X contains n examples and p explanatory variables (i.e., features), and the
n×1 vector y is the response variable (or 0/1 labels) of training examples. The sum of squares error
|| ||22 is an instantiation of the empirical loss function on observations. Also, 1 is a column of 1s,
and the intercept α and p× 1 vector β are model parameters. The intercept α is usually separated
from β and not penalized in regularization. The regularization parameter λ is a balance between
minimizing the empirical loss and controlling the model complexity ||β||1, and is usually determined
by cross-validation.

A notable part of lasso is the use of ℓ1 norm ||β||1 as the regularization term. As the closest convex
relaxation of ℓ0-norm, ℓ1-norm in regularization not only controls model complexity but also leads
to sparse estimation (Tibshirani, 1996). This provides both interpretable model coefficients and
generalization ability. Analytical results also show that ℓ1 regularization is capable of consistently
recovering the true signal from noisy measurements (Tropp, 2006; Zhao & Yu, 2006), given that the
true signal is sparse.
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1.2 Learning Compressible Models:

Assuming the model to be sparse and shrinking model coefficients to exactly zero might not be
the most appropriate inductive bias in many problems. For example, real-world signals (such as
audio, images, videos and time series) are usually compressible but not directly sparse in the obser-
vation domain. Interestingly, compressive sampling (Candes, 2006) or compressed sensing (Donoho,
2006) was recently developed in signal acquisition, which is also based on ℓ1 penalized optimization
framework but assumes that the target signal is compressible, i.e., sparse after being compressed.

The compressibility can also be used as an inductive bias in a machine learning context, which
relaxes the sparse assumption used by lasso and provides a more appropriate assumption. We
consider the problem of learning compressible models as follows:

min
α,β

L(y,1α+Xβ) + λ||W(β)||1 (2)

The loss function L depends on the prediction model, e.g., sum of squares loss for linear regres-
sion, log-likelihood loss for logistic regression, hinge loss for SVMs, and so forth. The compression
operation W() encodes our assumption on compressibility: model coefficients are compressed by
W() before being penalized, and thus tend to follow the compression pattern (i.e., sparse in the
compressed domain) rather than simply shrink to zero.

For simplicity, we restrict our attention to linear compression. Given that the compression oper-
ation is a linear and invertible1 transform, learning compressible models is represented by:

min
α,β

L(y,1α+Xβ) + λ||Wβ||1 (3)

The p× p matrix W denotes the linear and invertible compression transform, where p is the dimen-
sionality of model coefficients as in (1). The optimization of eq. (3) can be achieved by applying the
inverse compression transform (i.e., the decompression operation) to the feature space and solving
the standard ℓ1 regularization in the transformed space (Kim et al., 2008). First, transform the
training examples by

X̃ = XW−1 (4)

Second, solve the following standard ℓ1-regularized model (e.g., lasso or sparse logistic regression):

min
α,β̃

L(y,1α+ X̃β̃) + λ||β̃||1 (5)

Finally, the solution for eq. (3) is obtained by:

β = W−1β̃ (6)

α = α (7)

This equivalence is derived from Xβ = XW−1β̃ = X̃β̃ and ||Wβ||1 = ||WW−1β̃||1 = ||β̃||1.
Why do we want to learn compressible models, which are not necessarily sparse in the original

space? Compressible models are useful in several aspects. The first is model fitting and prediction
accuracy. The inductive bias of model compressibility might be more appropriate than model spar-
sity, especially if an informative compression operation is specified based on additional information
from domain knowledge, unlabeled data or related problems. The second reason, as claimed for
standard sparse models, is interpretability. Model coefficients that are sparse in a compressed do-
main can still be insightful in the original space in many problems, as later shown by our empirical
studies on brain-computer interface (in Section 5) and handwritten digit recognition (in Section 6).
The third reason is that, when the compression operation is known in advance, compressible models
are very efficient for storage and transmission in the compressed domain. This advantage has been
widely recognized in compressive sensing (Candes, 2006; Donoho, 2006) for general signals and thus
also valid when signals are model coefficients.

1A compression transform needs to be invertible, so that the compressed signal can be decompressed.
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2 Model Compression: Local Smoothness

In this section, we discuss compression operations related to local smoothness assumptions on models.
Smoothness characterizes the properties of derivatives of a function. For example, a constant (or
piecewise constant) function has zero first-order derivatives at all (or most) locations, and a quadratic
function has zero third-order derivatives at all locations. Here we will show that use of a compression
transform is very flexible and can represent various smoothness assumptions on model coefficients.

2.1 Order-1 Smoothness:

Suppose we have a natural order over model coefficients {βj}pj=1, e.g., in temporal domains where
each dimension corresponds to a time point, or spectral domains where each dimension corresponds
to a frequency. Order-1 smoothness assumes the coefficients “do not change very often” along the
natural order. Such an assumption characterizes the first-order derivatives. It has been studied in
fused lasso (Tibshirani et al., 2005) where absolute values of the difference of successive coefficients,
i.e.,

∑p

j=2
|βj − βj−1|, are penalized2. This idea was also explored in total variation minimization

for noise removal and image enhancement (Rudin et al., 1992). As a motivating example, we show
that the fused lasso penalty can be approximated by a linear and invertible compression in the ℓ1
penalty.

The p× p matrix W for model compression based on order-1 smoothness can be defined as:

W = S1
p =















1

p
1

p
. . . . . . . . . 1

p

1 −1 0 . . . . . . 0
0 1 −1 0 . . . 0
...

...
. . .

. . . . . .
...

0 0 . . . . . . 1 −1















(8)

Model coefficients in the compressed domain Wβ = [β, β1 − β2, . . . , βp−1 − βp] tend to be sparse
due to ℓ1 regularization, which achieves the order-1 smoothness. The averaging operation in the
first row of W makes the transform invertible. Note that if the first row of W is multiplied by a
small constant (e.g., 0.001), ||Wβ||1 approximates the fused lasso penalty. In our study, we will use
the compression in eq. (8) without scaling the averaging operation. Also, we keep the compression
operation invertible to make the optimization efficient, as discussed in eq. (4) - eq. (6).

2.2 Order-2 Smoothness and Higher-Order Smoothness:

Smoothness of higher orders is also common. For example, a piecewise linear function has piecewise
constant first-order derivatives, indicating zero second-order derivatives at most locations. This is
defined as order-2 smoothness. In this case, the p× p compression transform W can be:

W = S2
p =

[

1 0T

0 S1
p−1

]

· S1
p (9)

where 0 is a (p−1)×1 column vector. By this definition, model coefficients in the compressed domain
are Wβ = [β,∆β,∆β1,2 −∆β2,3,∆β2,3 −∆β3,4, . . . ,∆βp−2,p−1 − ∆βp−1,p], where ∆βi,i+1 = βi −
βi+1. In this sense, sparsity of the compressed model coefficients corresponds to order-2 smoothness
assumption in the original space. Also, S2

p is invertible since both S1
p−1 and S1

p are invertible. Finally,
model compression for higher-order smoothness can be defined recursively.

2In fused lasso, standard ℓ1-norm
∑p

j=1
|βj | and

∑p

j=2
|βj − βj−1| are penalized together to pursue both sparsity

and smoothness. We focus on smoothness part (
∑p

j=2
|βj − βj−1|) as a specific case of compressibility.
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2.3 Hybrid Smoothness:

Sometimes features under consideration do not follow an universal order, but can be divided into
groups, where each group of features has an order or at least some groups of features are ordered.
The compression operation can be defined as a block matrix to handle the use of different groups
of features. For example, suppose features can be divided into three groups. we assume p1 model
coefficients on the first group of features satisfy order-1 smoothness, p2 coefficients on the second
group of features satisfy order-2 smoothness, and we have no knowledge about the third group of p3
features. In this case, model compression is defined as:

W =





S1
p1

0 0

0 S2
p2

0

0 0 Ip3



 (10)

3 Model Compression: Energy Compaction

In this section, we discuss another important compressibility assumption, energy compaction in the
frequency domain, to compress model coefficients in regularized learning. The energy of many real-
world signals can be compacted by transforming signals to a frequency domain where most of their
energy is concentrated in a few frequencies, e.g., images are compressed this way (Wallace, 1992;
Christopoulos et al., 2000). If the target model is applied to classify objects (e.g., images) with
compacted energy in a frequency domain, it is reasonable to assume that the model only needs to
operate on a few relevant frequencies and thus also has compacted energy in the same frequency
domain. Otherwise, most energy of the model is wasted. Naturally, we can include an appropriate
compression transform in the ℓ1 penalty when learning model coefficients β in order to emphasize
energy compaction in a frequency domain.

The discrete cosine transform (DCT) is used in the JPEG standard (Wallace, 1992), which com-
presses an object (e.g., an image) by representing it as a sum of cosine functions at various frequen-
cies, and as a result, small coefficients can be discarded. The 2D discrete cosine transform for an
m× n object is:

(11)

G′(u, v) =
2√
mn

Λ(u)Λ(v)

m−1
∑

y=0

n−1
∑

x=0

G(x, y) cos
(2x+ 1)uπ

2n
cos

(2y + 1)vπ

2m
where u = 0, 1, . . . , n− 1

v = 0, 1, . . . ,m− 1

Λ(t) =
{

2−
1

2 if t = 0
1 otherwise

The above formula is a linear operation on m×n matrices, and can be rewritten as a linear operation
on p × 1 vectors, where p = mn is the dimension of linear models on images. This gives a p × p
matrix W. Combining such a compression operation with ℓ1-norm regularization will lead to sparse
models in an appropriate frequency domain, representing the compacted energy assumption on model
coefficients. Note that transforms in real-world image compression protocols are more sophisticated
(Wallace, 1992; Christopoulos et al., 2000), but studying sophisticated image codings is not the
focus of this paper.
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4 Model Compression: Correlation

Another common situation is that model coefficients are likely to be correlated. For example, in text
classification problems, a document is represented by a bag of words, where each feature is a binary or
count variable indicating the occurrence of a word. In this case, a true model β (intercept α omitted)
for a problem is a linear function defined on the vocabulary, and each dimension βj indicates the
effect of the jth word in the decision. In any language, there exists a semantic structure among
words, which leads to the correlation of words in constituting the meaning in an expression, and
more specifically, the correlation of their roles in a natural function β. This structure has been
studied as the semantic correlation of words (Raina et al., 2006; Zhang et al., 2008; Nallapati et al.,
2007) in a machine learning context.

Given a correlation structure on model coefficients, assuming model sparsity and imposing an
ℓ1-norm penalty are no longer appropriate. It is easy to understand the problem from the Bayesian
perspective. Imposing an ℓ1 penalty is equivalent to assuming independent Laplacian priors on
model coefficients (Hastie et al., 2001; Park et al., 2008). But the independence assumption clearly
contradicts the existence of a semantic correlation structure. Also, from the frequentist perspective,
the true model is unlikely to be very sparse if coefficients are highly correlated: nonzero coefficients
on a few words suggest nonzeros on many other semantically correlated words.

A simple solution is to decorrelate (i.e., compress) model coefficients before penalization. Given

a correlation structure Σ (e.g., semantic correlation of words) on coefficients, we set W = Σ−
1

2 and
eq. (3) becomes:

min
α,β

L(y,1α+Xβ) + λ||Σ−
1

2β||1 (12)

Model coefficients in the compressed domain Σ−
1

2β are more likely to be sparse since they have a
correlation structure Σ′ = Σ−

1

2ΣΣ−
1

2 = I. From the Bayesian perspective, eq. (12) assumes that it

is Σ−
1

2β that actually follows Laplacian priors on coefficients, and β is generated by first sampling
Σ−

1

2β from the Laplacian priors and then applying a transform Σ
1

2 on the sample. This explains
the correlation structure Σ on β.

Optimizing eq. (12) leads to sparse coefficients in the compressed domain Σ−
1

2β. In the original
space, the penalty on β corresponds to applying a large cost for choosing significantly different coeffi-
cients on semantically correlated words. To actually solve eq. (12), we follow eq. (4) to “decompress”

the data space (X̃ = XW−1 = XΣ
1

2 ) and solve the standard ℓ1 regularization in the new space X̃

as eq. (5). It is interesting to note that we actually further correlate the data space (X̃ = XΣ
1

2 ) to
decorrelate the model space.

For eq. (12) to be useful, the last question is how can we obtain the correlation structure Σ, e.g.,
the semantic correlation of words. Indeed, the correlation Σ is even harder to estimate than the
linear model β itself, since the correlation matrix generally has more degrees of freedom. However,
in text learning problems, the semantic correlation of words is considered an intrinsic structure of a
language and can be learned from other problems on text (Raina et al., 2006) or even from seemingly
irrelevant unlabeled text (Zhang et al., 2008) in the same language.

5 Empirical Study: Brain-Computer Interface

In this section, we report our empirical study on brain-computer interface data (Blankertz et al.,
2004): classifying single-trial Electroencephalography (EEG) signals. The EEG signals contain
important information from human brains. Being able to read and understand those signals is
a critical step for human-computer interaction. An EEG signal contains multiple channels (i.e.,
multiple scalp positions), and each channel is sampled over time to produce sequential measurements.
As a result, an EEG signal is a multivariate time series. If we assume local smoothness over time
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Table 1: Classification errors on classifying EEG brain signals: means (standard errors) over 50
random runs

means (standard errors) over 50 runs
Lasso 30.22%(0.34%)

LassoCP 25.98%(0.29%)
SLgr 30.00%(0%)

SLgrCP 20.92%(0.16%)

on a univariate time series, the hybrid smoothness assumption introduced in Section 2.3 is suitable
for multivariate EEG classifiers.

Descriptions of the Data Set. We use data set IV, self-paced tapping, of BCI Competition
2003 (Blankertz et al., 2004), which is a binary classification task. The task contains a training set
of 316 examples and a testing set of 100 examples. Each example has 1400 features, corresponding
to 28 channels and 50 measurements from each channel. The number of features is much larger
than the number of training examples, indicating the importance of regularization. Each example
is measured when a healthy subject, sitting in a chair with fingers in the standard typing position,
tries to press the keys using either the left hand or right hand. The objective is to classify an EEG
signal to either a left-hand movement or right-hand movement.

Experimental Procedures. The data set contains a fixed training and testing set for com-
petition. For standard ℓ1 regularized models, we train lasso and sparse logistic regression. For
compressible models, we train compressible lasso, compressible logistic regression, where the com-
pression operation is discuss later in “model and implementation details” part. We learn the four
models from the training set and measure their classification errors on the testing set. Note that there
is still randomness in the procedure: cross-validation is used to determine the optimal regularization
parameter λ. Therefore, we have 50 random runs on each model.

Model and Implementation Details. We consider lasso with labels as {+1,−1} (denoted
as Lasso in our discussions), sparse logistic regression (denoted as SLgr), compressible lasso (de-
noted as lassoCP), and compressible logistic regression (denoted as SLgrCP). Following eq. (10),
the compression operation W for learning two compressible models is a 1400× 1400 block matrix,
with 28 blocks and each block is an order-1 smoothness matrix S1

50 defined as in eq. (8). Lasso is
implemented using the spgl1 Matlab solver3, and ℓ1-regularized logistic regression is implemented as
(Lee et al., 2006) using lasso. The regularization parameter is chosen from 10−7 to 107 (step 100.5)
by 5-fold cross-validation.

Experimental Results and Analysis. Classification errors are shown in Table 1, with both
means and standard errors (of means) over 50 random runs. By learning compressible models
instead of learning sparse models, the testing error is reduced from 30.22% to 25.98% for lasso
(Lasso vs. LassoCP), and from 30% to 20.92% for logistic regression (SLgr vs. SLgrCP). During the
competition, 15 submissions were received (Blankertz et al., 2004). The best submission achieves 16%
error, using features “based on Bereitschaftspotential and event-related desynchronization” (Wang
et al., 2004). The 2nd best submission achieved 19% using 188 time-based, frequency-based, and
correlational features “compiled by hand” (Blankertz et al., 2004). For the other 13 submissions, six
attained errors between 23% and 29%, and the other seven were worse. In our study, compressible
logistic regression using 1400 raw features are comparable to the two best submissions with domain-
specific features.

We also plot the model coefficients learned by a sparse logistic regression and a compressible logistic
regression in Figure 1. From the plot we have several interesting observations. 1) Sparse logistic
regression learns sparse coefficients, and compressible LGR leads to (piecewise) smooth coefficients.

3http://www.cs.ubc.ca/labs/scl/spgl1/
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(a) Sparse LGR coefficients
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(b) Compressible LGR coefficients

Figure 1: Model coefficients of sparse and compressible (i.e., piecewise smooth) logistic regression
on brain-computer interfacing (EEG signal classification)

These two different patterns represent the inductive biases we incorporate into the learning process
(via different regularization penalties). 2) Although in the compressible logistic regression we mainly
penalize the difference of successive coefficients, most learned coefficients are actually close to zero.
The proposed regularization (piecewise local smoothness) effectively controls the model complexity
not only in terms of smoothness but also in terms of the norm of coefficients. 3) In the compressible
logistic regression, there still exist a few large coefficient jumps over successive dimensions (within
the same channel): we plot in Fig. 1b the boundaries (vertical dashed lines) of three selected channels
that contain large coefficient jumps. These jumps correspond to large coefficients in the compressed
domain (recall that the compressed domain defined by our compression operation is composed of the
difference of successive coefficients within the same channel in the original space). The existence of
a few large coefficients in the compressed domain is consistent with the notation of compressibility:
most information of the original signal is concentrated on a few components after being compressed.
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Table 2: Classification errors over 45 tasks on MNIST, 10 training examples per class: means (and
standard errors) over tasks

10 training examples per class
Lasso 9.96%

LassoCP 7.80%
SLgr 9.79%

SLgrCP 7.46%

(Lasso - LassoCP) 2.16%(0.23%)
(SLgr - SLgrCP) 2.33%(0.21%)

Table 3: Classification errors over 45 tasks on MNIST, 20 training examples per class: means (and
standard errors) over tasks

20 training examples per class
Lasso 6.94%

LassoCP 5.30%
SLgr 6.24%

SLgrCP 4.99%

(Lasso - LassoCP) 1.64%(0.18%)
(SLgr - SLgrCP) 1.25%(0.16%)

Table 4: Classification errors over 45 tasks on MNIST, 50 training examples per class: means (and
standard errors) over tasks

50 training examples per class
Lasso 4.91%

LassoCP 3.45%
SLgr 3.91%

SLgrCP 3.26%

(Lasso - LassoCP) 1.46%(0.12%)
(SLgr - SLgrCP) 0.65%(0.09%)

Mathematically, this is achieved by performing ℓ1 regularization4 in the compressed domain rather
than the original domain.

6 Empirical Study: Handwritten Character Recognition

In this section, we study handwritten character recognition on images. As discussed in Section 3,
compacted energy in the frequency domain can be used as the inductive bias for regularization,
assuming that the model only needs to operate on a few frequencies to classify images.

Descriptions of the Data Set. We use the MNIST handwritten digits data set5, which has
70000 images for 10 digits (from 0 to 9). Images are represented by pixels (in grayscale). The
number of features is p = 784, corresponding to 28× 28 pixels of an image.

Experimental Procedures. We construct 45 binary classification tasks, each to classify two
digits. For each task, a few labeled examples of the two digits are selected from the training set

4Ideally, ℓ0 norm is the best candidate for allowing a few large coefficients, while ℓ1 norm is the closest convex
relaxation.

5http://yann.lecun.com/exdb/mnist/
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Table 5: Performance comparison on individual tasks between compressible and sparse models on
MNIST, 10 training examples per class: #win/#loss over 45 tasks

10 training examples per class
LassoCP vs. Lasso 41/4
SLgrCP vs. SLgr 43/2

Table 6: Performance comparison on individual tasks between compressible and sparse models on
MNIST, 20 training examples per class: #win/#loss over 45 tasks

20 training examples per class
LassoCP vs. Lasso 42/3
SLgrCP vs. SLgr 42/3

Table 7: Performance comparison on individual tasks between compressible and sparse models on
MNIST, 50 training examples per class: #win/#loss over 45 tasks

50 training examples per class
LassoCP vs. Lasso 44/1
SLgrCP vs. SLgr 40/5

(e.g., 10, 20, or 50 images per class in our experiments). As a result, we aim to learn classifiers in a
high-dimensional space (784 dimensions) using only a few training examples. Performance for each
task is averaged from 20 random runs, with training data randomly selected. For each task, the
testing data are fixed as all the images of the two target digits in the testing set.

Model and Implementation Details. The standard ℓ1 regularized models: lasso and sparse
logistic regression are the same as in Section 5. The model compression operation used for learning
compressible lasso and compressible logistic regression is the DCT operation in eq. (11). By using a
DCT operation in the ℓ1 penalty, we impose the assumption that model coefficients should be sparse
in the DCT frequency domain, implying that the model only needs to operate in a few frequencies.
Others implementation details are the same as in Section 5.

Experimental Results and Analysis. Empirical results are shown in Table 2–Table 7 and
Figure 2.

Table 2 has two parts. The first part shows average classification errors over 45 tasks of lasso
(Lasso), compressible Lasso (LassoCP), sparse logistic regression (SLgr) and compressible logistic
regression (SLgrCP), where models are learned using 10 training examples per class in each task.
We omit standard errors (of classification errors) over 45 tasks since they correspond to the variation
of the difficulty of different tasks, which is not of interest. The second part (the last two rows) of
Table 2 are means (and also standard errors) over 45 tasks for the paired difference of classification
errors between a sparse and a compressible model. Table 3 and Table 4 show similar results as in
Table 2, with 20 and 50 training examples per class in each task, respectively. Table 2–Table 4
show that compressible lasso and compressible logistic regression generally outperform their sparse
counterparts. The less the training examples available for learning, the more obvious the advantage of
compressible models over sparse models. We also compare classification performance of compressible
and sparse models on each individual task in Table 5–Table 7. The results shows that the majority
of tasks benefit from learning compressible models.

In addition, we plot in Figure 2 the model coefficients of a compressible logistic regression from
a random run, where the task is to classify “1” (negative class) and “8” (positive class). As shown
in Fig. 2a, model coefficients in the original space (which correspond to image pixels) are mainly
changing in a few frequencies and indicate that the model is sparse in the compressed (DCT)
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Figure 2: Model coefficients of a compressible logistic regression on MNIST. Task: classifying “1”
vs. “8”.

space, i.e., has compacted energy in the frequency domain. Interestingly, when we plot the model
coefficients as a 28 × 28 image in Fig. 2b, the difference between the negative class “1” and the
positive class “8” is well emphasized. The model coefficients, although sparse in the frequency
domain induced by the DCT operation, are not sparse in the original pixel space and can represent
meaningful patterns for a classification task. This should not be a surprise: DCT is the compression
operation in the JPEG standard for compressing images, and information in an image tends to be
sparse in the DCT domain.
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Table 8: Classification errors over 190 tasks, 2% documents in Dtr for training: means (and standard
errors)

2% sampling from Dtr

Lasso 22.17%
ElasNet 19.97%
LassoCP 11.13%
SLgr 21.69%

SLgrCP 9.31%

(Lasso - LassoCP) 11.05%(0.22%)
(ElasNet - LassoCP) 8.84%(0.28%)
(SLgr - SLgrCP) 12.38%(0.30%)

Table 9: Classification errors over 190 tasks, 5% documents in Dtr for training: means (and standard
errors)

5% sampling from Dtr

Lasso 17.02%
ElasNet 12.87%
LassoCP 7.76%
SLgr 15.28%

SLgrCP 6.19%

(Lasso - LassoCP) 9.26%(0.21%)
(ElasNet - LassoCP) 5.11%(0.18%)
(SLgr - SLgrCP) 9.09%(0.22%)

7 Empirical Study: Text Classification

In this section, we study text classification. As mentioned in Section 4, we include a decorrelation
transform W = Σ−

1

2 as the compression operation. The semantic word correlation Σ is estimated
from unlabeled text (Zhang et al., 2008), and thus learning compressible models offers an approach
for semi-supervised learning.

Descriptions of the Data set. We use the 20-Newsgroups data set6. It contains 11314 training
and 7532 testing documents from 20 newsgroups. We denote training and testing sets as Dtr and
Dts, respectively. Documents are represented as bags of words. We select the vocabulary to include
the most frequent 200 words in each newsgroups except the 20 most frequent common words across
all newsgroups. This leads to p = 1443 features (words) in the vocabulary.

Experimental Procedures. Documents are from 20 newsgroups, so we construct 190 binary
classification tasks, each to classify a pair of two selected newsgroups. For each task, we randomly
sample 2% or 5% of the relevant documents in Dtr as the labeled training examples. Two newsgroups
of a task are sampled together to simulate imbalanced training examples for text learning. Results
of each task are averaged over 10 random runs. Testing documents for each task are fixed to be all
relevant documents in Dts.

Model and Implementation Details. Sparse lasso and sparse logistic regression are the same
as in previous experiments. For compressible models, decorrelation is used for compression, as
eq. (12). The correlation Σ is estimated using all the documents in Dtr as unlabeled data, as in
(Zhang et al., 2008), and then is used to specify the decorrelation operation in all 190 tasks. In
addition to two sparse models and two compressible models, we also test elastic net (Zou & Hastie,

6http://people.csail.mit.edu/jrennie/20newsgroups
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Table 10: Performance comparison on individual tasks: #win/#loss over 190 tasks

2% sampling 5% sampling
LassoCP vs. Lasso 190/0 190/0

LassoCP vs. ElasNet 188/2 188/2
SLgrCP vs. SLgr 190/0 190/0

2005). Elastic net is designed to handle correlated model coefficients, and as a convex combination
of ℓ1 norm and ℓ2 norm, provides superior performance to regularization by either norm7. For all
models, the intercept α is added into the penalty term, which slightly improves the performance.
This is possibly because α tends to overfit the imbalanced class distribution in training examples.
For lasso and logistic regression, the regularization parameter for the ℓ1 norm is chosen from 10−7

to 107 with a larger step 101 (for computation efficiency). Other details are the same as Section 5.
For elastic net, the ℓ1 norm bound is choose in the same way, and the second parameter λ2 (Zou &
Hastie, 2005) is chosen from 10−4 to 104 with step 101.

Experimental Results and Analysis. Results are shown in Table 8, Table 9 and Table 10.

The first part of Table 8 contains the means of classification errors over 190 different tasks, us-
ing lasso, elastic net, compressible lasso, sparse logistic regression, compressible logistic regression,
respectively. The second part includes means and standard errors of the paired difference of clas-
sification errors on each task between competitive models. For regression-based models (i.e., lasso,
compressible lasso and elastic net), elastic net improves standard lasso by using a convex combina-
tion of ℓ1 and ℓ2 penalty. Elastic net is designed to address correlated predictors (Zou & Hastie,
2005), and its success confirms that there exists correlations among model coefficients, corresponding
to the semantic correlation of words. Further, compressible lasso shows significant improvements
over both lasso and elastic net. Compressible lasso is superior to elastic net, because it explicitly
includes additional information (i.e., semantic correlation of words) from unlabeled text in the form
of compression operation in regularization. For logistic regression, compressible logistic regression
also show notable improvements over sparse logistic regression.

Table 9 reports similar results as in Table 8, where we sample 5% documents (instead of 2%) from
Dtr as the training data in each random run. Finally, Table 10 compares model performance on
individual tasks. Compressible models dominate other models in almost all 190 tasks, which shows
the significance of the results and indicates that learning compressible models is very effective and
reliable for text classification problems.

8 Related Work and Discussion

Compressive sampling (Candes, 2006) or compressed sensing (Donoho, 2006) was recently developed
for signal acquisition, and has received considerable attention (Baraniuk et al., 2008). According to
this theory, one can successfully acquire a signal (e.g., an image) from many fewer measurements
than required by Nyquist-Shannon sampling theory. The key is to assume that the true signal is
compressible, i.e., sparse in a compressed domain. Under this assumption, signal acquisition given
a few linear measurements on the true signal β∗ can be achieved by solving the problem:

min
β

||Wβ||1 (13)

subject to Φβ = y

Here β is a candidate signal. W is a known compression operation. The matrix Φ = [φ1, . . . ,φn]
T is

the sensing (or projection) matrix (Candes & Wakin, 2008; Donoho, 2006), whose rows correspond

7Elastic net has two regularization parameters controlling ℓ1 and ℓ2 norm, respectively. With cross-validation to
determine both parameters, elastic net includes ℓ1 regularization and ℓ2 regularization as two specific cases.
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to measuring or sensing operations conducted on the true signal β∗. A common choice of Φ is
random projections. The vector y contains projections of the true signal β∗ on predefined bases.
Recently, compressive sampling has drawn considerable attention from machine learning and data
mining communities. In (Ji & Carin, 2007), researchers suggest using sparse Bayesian regression and
active learning to solve the CS problem in eq. (13) and adaptively “learn” the optimal projection
matrix Φ. Authors in (Calderbank et al., ; Zhou et al., 2007) consider classification and regression
problems, respectively, where data are compressed and not directly observable, e.g., only random
projections of the data can be accessed. This paper is another application of compressive sampling
theory in a machine learning context: model coefficients can be compressed before being penalized,
and model sparsity is only required in a compressed domain rather than the original space. The focus
of this paper to study the inclusion of different compression operations in ℓ1 regularization, which
incorporates additional information and imposes more appropriate inductive bias in the learning
process.

Researchers have proposed various improvements based on ℓ1 regularization and learning sparse
models. Fused lasso (Tibshirani et al., 2005) includes a penalty on the absolute difference of succes-
sive coefficients, which, as shown in Section 2.1, can be approximated by a compression operation
in the ℓ1 penalty. Elastic net (Zou & Hastie, 2005) combines ℓ1 and ℓ2 norms to address the issue
of correlated coefficients, which is also the focus of OSCAR (Bondell & Reich, 2008). Group lasso
(Yuan et al., 2006) adds more restrictions on model sparsity: variables in the same group tend to
be eliminated together. Structured sparsity (Huang et al., 2009) generalizes group lasso and studies
the case that we have additional structured constraints on model sparsity, i.e., not all sparse pat-
terns are equally likely and we prefer some of them to others. In this paper, we generalize model
sparsity from another perspective: we relax the sparsity assumption by including compression into
ℓ1 regularization. As a result, model coefficients are only assumed to be sparse after compression,
which can be a more appropriate inductive bias when model sparsity is too restrictive.

9 Conclusion and Future Work

By including a compression operation into ℓ1 regularized learning, model coefficients are compressed
before being penalized and sparsity is achieved in a compressed domain. This relaxes the assumption
on model sparsity to compressibility, and provides an opportunity encode more appropriate inductive
biases, e.g., piecewise local smoothness, compacted energy in the frequency domain, and semantic
correlation. We conduct extensive experiments on brain-computer interfacing, handwritten character
recognition, and text classification. Empirical results show significant improvements in prediction
performance by including compression in the ℓ1-norm penalty. We also analyze the learned model
coefficients under different compressibility assumptions, which further demonstrate the advantages
of learning compressible models instead of sparse models.

Future work will explore the possibility of combining compression with other penalty norms, e.g.,
ℓ0 or ℓ2 norm. The ℓ2 norm is easy to optimize and widely used in regularization. However, the
notion of compressibility generally implies that most energy of the signal will concentrate on a few
components after compression. This may contradict the use of ℓ2 norm, which will heavily penalize
large coefficients (in the compressed domain). For example, most information of the compressible
model in Fig. 2a is concentrated around a few frequencies, and thus we expect to have some large
coefficients in the frequency domain8. On the other hand, ℓ0 norm is a good candidate for imposing
compressibility assumptions, but ℓ0 regularization is combinatorial in nature and difficult to solve.

Another direction is to automate the design of the compression operation in learning compressible
models. Although optimal compression is undecidable (Faloutsos & Megalooikonomou, 2007), it

8Some specific compression operation may work well under ℓ2 norm penalty. For example, the decorrelation
transform used in eq. (12), when combined with ℓ2 regularization, corresponds to a Gaussian prior based on a
correlation structure (Raina et al., 2006; Zhang et al., 2008).
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is possible to infer an effective (but not necessarily optimal) compression transform from auxiliary
information (e.g., related tasks), to select a compression operation from a finite set, or to adaptively
adjust a given compression transform. For example, reweighted ℓ1 minimization (Candes et al.,
2008) and adaptive lasso (Zou, 2006) can be performed in the compressed domain to automatically
revise the compression matrix W. This is currently under study.
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