
Statistical Text Analysis for Social Science

Brendan T. O’Connor

August 2014
CMU-ML-14-101



  



Statistical Text Analysis for Social Science

Brendan T. O’Connor

August 2014
CMU-ML-14-101

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, USA

Thesis Committee:
Noah A. Smith, chair

Tom Mitchell
Cosma Shalizi

Gary King, Harvard University

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

This work was supported by NSF CAREER IIS0644225, NSF CAREER IIS1054319, NSF grant IIS1211277, NSF
grant IIS1251131, DARPA grant N10AP20042, IARPA contract D12PC00347, an Alfred P. Sloan grant, Mi-
crosoft’s support for Machine Learning graduate students, Google’s support of the Worldly Knowledge project
at Carnegie Mellon University, the Berkman Faculty Development Fund at Carnegie Mellon University, the
Center for Applied Research in Technology at the Tepper School of Business, computing resources from the
Open Source Data Cloud (Grossman et al. (2012), sponsored by the Open Cloud Consortium, the Gordon
and Betty Moore Foundation, the NSF, and the University of Chicago) and computing resources from the
Pittsburgh Supercomputing Center.



Keywords: computational social science, natural language processing, text mining, quantitative
text analysis, machine learning, probabilistic graphical models, Bayesian statistics, exploratory
data analysis, social media, opinion polling, sociolinguistics, event data, international relations.

2



Abstract

What can text corpora tell us about society? How can automatic text analysis algorithms efficiently
and reliably analyze the social processes revealed in language production?

This work develops statistical text analyses of dynamic social and news media datasets to ex-
tract indicators of underlying social phenomena, and to reveal how social factors guide linguistic
production. This is illustrated through three case studies: first, examining whether sentiment
expressed in social media can track opinion polls on economic and political topics (Chapter 3);
second, analyzing how novel online slang terms can be very specific to geographic and demo-
graphic communities, and how these social factors affect their transmission over time (Chapters 4
and 5); and third, automatically extracting political events from news articles, to assist analyses of
the interactions of international actors over time (Chapter 6).

We demonstrate a variety of computational, linguistic, and statistical tools that are employed
for these analyses, and also contribute MiTextExplorer, an interactive system for exploratory anal-
ysis of text data against document covariates, whose design was informed by the experience of
researching these and other similar works (Chapter 2). These case studies illustrate recurring
themes toward developing text analysis as a social science methodology: computational and sta-
tistical complexity, and domain knowledge and linguistic assumptions.
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Chapter 1

Text analysis for the social sciences

(Parts of this chapter were originally published as O’Connor et al. (2011).)

1.1 Introduction

Corpora of news, books, and social media encode human beliefs and culture. While labor-intensive
manual content analysis is a well-established method in the social sciences—going back decades
or even centuries (Krippendorff, 2012)—interest in automated text analysis has exploded in recent
years, since it is impossible for a person to read all of these rapidly growing archives. Automated
methods can help measure and discover patterns and themes described in text corpora: records
of opinions, events, and ideas held by participants. Recent reviews, tutorials and workshops on
automated text analysis range from political science (Grimmer and Stewart, 2013) to the humani-
ties (Shaw, 2012), with a presence at meetings including New Directions in Analyzing Text as Data,
Digital Humanities, and many computer science conferences such as ACL, EMNLP, CIKM, ICWSM,
etc.

Researchers have considered a great breadth of questions. Just within academic research, there
exist many examples from political science to literature analysis (Figure 1.2). In these works, text
analysis is a methodological tool used in service of social science or humanistic questions, where
the textual data has been created as the outcome of a socially embedded generation process. This
is illustrated in Figure 1.1. A text generation process (Generator), constrained by variables of social
context (SocialAttributes), produces linguistic text data (Text). This can be thought of as a stochastic
function,

Generator(SocialAttributes) 7→ Text

This thesis develops several case studies that are instances of analyzing this process. For example,
Chapter 4 studies geographic lexical variation, in which an author’s social context is represented
as their geographic location. The parameters of the text generation process represent how people
in different locations choose to talk about different topics or use different words to talk about
them. (Maybe this is due to local topics of interest, or to geographic locality of social communities,
which guide people’s interests and vocabulary.)

Given observed text data, researchers would like to conduct inference to reverse the text gen-
eration process and learn about either social variables or the parameters of the generation process
(how social context turns into language). For the geographic example, if we have a dataset of
authors with both locations and text, we can learn the parameters of the text generation process,
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• Political Science: How do U.S. Senate speeches reflect agendas and attention? How are Sen-
ate institutions changing (Quinn et al., 2010)? What are the agendas expressed in Senators’
press releases (Grimmer, 2010)? Do U.S. Supreme Court oral arguments predict justices’ vot-
ing behavior (Black et al., 2011)? Does social media reflect public political opinion, or forecast
elections (O’Connor et al., 2010a; Metaxas et al., 2011; Gayo-Avello, 2012)? What determines
international conflict and cooperation (Schrodt et al., 1994; King and Lowe, 2003; Shellman,
2008; O’Connor et al., 2013)? How much did racial attitudes affect voting in the 2008 U.S. pres-
idential election (Stephens-Davidowitz, 2012)?

• Economics: How does sentiment in the media affect the stock market (Tetlock, 2007; Lavrenko
et al., 2000)? Does sentiment in social media associate with stocks (Gilbert and Karahalios,
2010; Das and Chen, 2007; Bollen et al., 2010)? Do a company’s SEC filings predict aspects of
stock performance (Kogan et al., 2009; Loughran and McDonald, 2011)? What determines a
customer’s trust in an online merchant (Archak et al., 2011)? How can we measure macroeco-
nomic variables with search queries and social media text (Askitas and Zimmermann, 2009;
Kahn and Kotchen, 2010; O’Connor et al., 2010a)? Can Internet data forecast consumer de-
mand for movies (Asur and Huberman, 2010; Joshi et al., 2010)?

• Psychology: How does a person’s mental and affective state manifest in their language
(Tausczik and Pennebaker, 2009)? Are diurnal and seasonal mood cycles cross-cultural
(Golder and Macy, 2011)?

• Sociology of Science: What are influential topics within a scientific community (Gerrish and
Blei, 2010)? What determines a paper’s citations (Bethard and Jurafsky, 2010; Ramage et al.,
2011; Yogatama et al., 2011)?

• Sociolinguistics: How do geography (Labov et al., 2006; Nerbonne, 2009; Eisenstein et al.,
2010), gender (Bamman et al., 2014), class, race, and other social factors (Tagliamonte, 2006;
O’Connor et al., 2010b; Eisenstein et al., 2011c) influence linguistic variation, and the lexical
diffusion process?

• Public Health: How can search queries and social media help measure levels of the flu and
better understand other public health issues (Ginsberg et al., 2009; Culotta, 2010; Paul and
Dredze, 2011; Broniatowski et al., 2013)?

• History: How did modern English legal institutions develop over the 17th to 20th centuries
(Cohen et al., 2011)? When did concepts of religion, secularism, and social institutions de-
velop over two millennia of Latin literature (Bamman and Crane, 2011)? What do topic labels
in a historical encyclopeda reveal about contemporary ways of thought (Horton et al., 2009)?

• Literature: How do demographic determinants of fictional characters affect their language
use (Argamon et al., 2009)? Who is the true author of a work of literature or historical doc-
uments (Holmes, 1998); for example, Shakespeare (Craig and Kinney, 2009) or the Federalist
Papers (Mosteller and Wallace, 1964)?

Figure 1.2: A small sample of social scientific and humanistic questions to which automated text
analysis methods have been applied.
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While it is useful to distinguish these two types of analysis goals, they are also complementary
and can sometimes reuse the same analysis methods. If a model of text can predict social vari-
ables (the measurement goal), this gives predictive validity to its text generation parameters (the
parameter understanding goal).

1.2 Text analysis methods

How should we actually do these analyses, quantitatively speaking? One attractive framework,
implied by the notation and description used above, is probabilistic generative modeling: test
and develop models of the data-generating process, and use Bayes rule to invert them to infer the
quantities of interest. Some of the work in this thesis directly uses this approach for specific aspects
of social text generation, like the geographic and demographic topic model in Section 4.2. In the
long-term, our research program should strive for this ambitious goal: develop a unified model
of human social and linguistic behavior, from which many interesting inferences and predictions
can be derived.

At the same time, social science and linguistics are vast and complex fields, and scientific
progress must proceed by deductive process of developing and exploring hypotheses concerning
many different scientific questions.1 There exist many fascinating social questions, and a tangle
of interesting but often messy text data to query for clues to their answers. Therefore social text
analysis should proceed under a data analytic approach, incorporating a variety tools from statis-
tics, social science methods, machine learning, and natural language processing. Since these are
still early times in the study of language and social behavior, we need to explore a wide vari-
ety of methods, and better understand which of them are useful and when. A useful view is to
think of automated text analysis as quantitative tools for social science investigations: quantitative
methods, alongside traditional qualitative methods, are just another set of tools to investigate core
questions of sociology, political science, and economics, and other areas (King et al., 1994).

There are easily dozens of automated text analysis methods that have been used in previous
work or could be useful in future social analysis work. In order to help organize this area for
practitioners, we suggest thinking about them on three dimensions:

1. Computational and statistical complexity
(e.g. summary statistics, convex optimization, latent variable learning),

2. Amount of domain assumptions as input
(e.g. document covariates, hand-built labels, hand-built dictionaries), and

3. Complexity of linguistic representation used in the analysis
(e.g. word and phrases, entities, opinions, argument structure)

Figure 1.3 schematically illustrates these dimensions. The chapters of this thesis, consisting of
tools and case studies, are shown on these dimensions; all of the studies listed at the start of this
chapter could be placed on these dimensions as well.

Domain assumptions refer to how much knowledge of the substantive issue in question is
used in the analysis.

1While Bayesian notation is useful to describe inferences among broad classes of variables, even if particular statis-
tical techniques are Bayesian, scientific progress may proceed under deductive, not inductive, lines in any case (Gelman
and Shalizi, 2013).
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Figure 1.3: Top: Taxonomy of analysis methods, with some examples. Bottom Left: Work de-
scribed in this thesis, compared on computation vs. linguistic complexity. Bottom Right: Com-
pared on computation vs. domain assumptions.

• A “bare documents” analysis only considers the words of documents; for example, examin-
ing the most common words in a corpus, or co-occurrence patterns among words.

• Document covariates refer to non-textual metadata about the documents, which may have
an interesting statistical relationship to the words. Typically this information takes the form
of continuous, discrete, or ordinal variables associated with documents or segments of them.

The examples in this thesis make extensive use of document covariates that represent social
variables, such as time, geography, and demographics. From a strictly computational/statistical
perspective, all covariates are not necessarily straightforwardly representative of social pro-
cesses (for example, in Chapter 2 we use the book of the Bible as a covariate); therefore we
use the term covar in the rest of this section.

• Manually labeled documents may be created in order to better understand particular quan-
tities of interest; for example, annotating news articles with topics or perspectives they de-
scribe. Creating and evaluating the codebook (that carefully defines the semantics of the
annotations a coder will produce) can be a laborious and iterative process, but is essential to
understand the problem and create a reliable coding standard (Krippendorff, 2012). A tradi-
tional content analysis project uses manual labeling for all analysis, it can also be combined
by computational techniques by relating the labels to textual data. From a strict computa-
tional/statistical perspective, a manual label is just another document covariate; the differ-
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ence is that these are produced as part of the research process, as opposed to being part of
the object under study. (This distinction is not always clear, of course; for example, correcting
coding errors may be an essential data cleaning step.)

• Finally, another source of domain information can take the form of dictionaries: lists of
terms of interest to the analysis, such as names, emotion-indicating words, event-indicating
phrases, topic-specific keywords, etc. Ideally, they may be custom-built for the problem (if
done manually, a labor-intensive task similar to coding documents), or they may be reused or
adapted from already-existing dictionaries (e.g., Freebase (Bollacker et al., 2008) for names or
LIWC (Tausczik and Pennebaker, 2009) for affect, though see Grimmer and Stewart (2013)’s
critical comments on the naı̈ve use of affect dictionaries). Useful information can be revealed
with just a handful of terms; for example, Stephens-Davidowitz (2012) analyzes the Google
search query frequencies of one highly charged racial epithet as a proxy for racial attitudes.

The second dimension is the complexity of the linguistic representation. Since natural language
processing is inherently very difficult, these representations can only be identified imperfectly
from text. For more complex representations, NLP systems tend to be less accurate and more
computationally expensive. It is useful to catalogue important linguistic phenomena in text, since
they comprise the potential objects of analysis.

• Word and phrase frequencies, ignoring their order in documents, is the most basic and essen-
tial linguistic representation—the “bag of words” representation. Word frequencies capture
lexical variation, which is extremely important since words are most basic linguistic units
of meaning in text. They are also practical, since words and phrases can often be identified
through relatively simple programs for text tokenization.2 All chapters in this thesis make
extensive use of word and phrase frequencies; and they are the primary linguistic represen-
tation for Chapters 2–4.

• Entities are people, places, or organizations that the text refers to, typically when mentioned
by name (a named entity). Often, particular actors or entities are the interesting subjects of
analysis. Chapter 3, for example, analyzes messages that mention particular of political can-
didates, and Chapter 6 analyzes news articles’ mentions of actors that represent different
countries. Depending on the problem, entities might actually not be of interest: in Section 5
we seek to analyze the diffusion of novel slang terms, and actually exclude names from the
analysis.

• Opinions about a topic are held by an opinion holder—perhaps the author of the document
(for example, in a product review), or another entity mentioned in the text (Wiebe et al.,
2005). One important aspect of an opinion might be a positive or negative opinion. Extracting
opinions from text is often called sentiment analysis. Opinions are important for many social
analysis problems, but are often difficult to reliably extract. Much work in this area uses word
frequency approaches, which we apply in Chapter 3, though ongoing work in structured
sentiment analysis will be important going forward.

• Predicate-argument structures represent the semantic relationships between words in a sen-
tence or document. For example, adjectives modify nouns, representing attributes or aspects

2Exceptions: some languages, such as Chinese, have a standard orthographic convention that does not use spaces
between words, which makes word segmentation a difficult problem. Furthermore, even in a language such as English
that usually puts spaces and punctuation between words, in social media and casual text, the orthography is much
more complicated, and tokenizers for standard text genres do not work well. We developed and use the tokenization
system of O’Connor et al. (2010c); Owoputi et al. (2013) to tackle this. (These works are not part of this thesis.)
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of a concept; and verbs have subjects and objects, which sometimes represent entites that
initiate and receive the action described by the verb.

A bag-of-words representations fails to describe the interactions between words in a docment,
whereas argument structures are inherenctly relational, a more complex representation. There
are many possible levels of linguistic argument structure to extract from text, such as syntactic
dependencies, semantic roles, frame semantics, discourse structure, and events. Chapter 6
uses a syntactic dependencies approach to extract basic event argument structures from text
in order to analyze political events described in the news, relating them to social variables of
who the actors are and the temporal context of the action.

Finally, the third dimension is computational and statistical complexity. Some methods only
involve counting words and reporting summary statistics of them; Chapter 2’s MiTextExplorer
tool is interactive software within that paradigm, and Chapter 3’s sentiment analysis of Twitter
utilizes this level of complexity as well. Other approaches involve more computationally intensive
activity such as learning latent semantic representations of words or more complex linguistic units.
Chapters 4 and 6 pursue this approach. Many considerations may guide which methods are useful
at different stages of an analysis; §4.4 contains some discussion.

In the following chapters, we make use of a wide variety of methods across these dimen-
sions. Easy-to-interpret and computationally cheap methods are often very useful at the start of
a project, when iterative exploration of a dataset is essential to gain a basic understanding; but
more elaborate models can give further insights, or better target more refined hypotheses. And
some questions simply require more computational or linguistic complexity to reach the questions
of interest. Further discussion is contained within the chapters themselves and the conclusion
(Chapter 7).

1.3 Thesis statement

We claim that automatic analysis of text corpora can reveal important attributes of society, through
statistical analysis and modeling of linguistic data. Text data can be used to predict or measure
social variables, and it can also demonstrate how socially embedded processes guide language
production. This is illustrated through several case studies addressing questions in sociolinguis-
tics and political science. While a variety of methods are necessary to accomplish this type of data
analysis, we find that latent variable models, probabilistic graphical models, and natural language
processing are all crucial tools.

The conclusion chapter contains a summary of contributions in this thesis.
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embedded in a temporal, spatial, or other continuous space, and the tool reports terms with strong
statistical associations for the region. The user can then drill down to specific term and term
groupings, viewing further associations, and see how terms are used in context. The goal is to
rapidly compare language usage across interesting document covariates.

We illustrate examples of using the tool on several datasets, including geo-located Twitter mes-
sages, which are more extensively investigated in Chapter 4. We leave a more extensive evaluation
for future work.

2.2 Motivation: Can we “just look” at statistical text data?

Exploratory data analysis (EDA) is an approach to extract meaning from data, which emphasizes
learning about a dataset through an iterative process of many analyses which suggest and refine
possible hypotheses. It is vital in early stages of a data analysis for data cleaning and sanity checks,
which are crucial to help ensure a dataset will be useful. Exploratory techniques can also suggest
possible hypotheses or issues for further investigation.

The classical approach to EDA, as pioneered in works such as Tukey (1977) and Cleveland
(1993) (and other work from the Bell Labs statistics group during that period) emphasizes vi-
sual analysis under nonparametric, model-free assumptions, in which visual attributes are a fairly
direct reflection of numerical or categorical aspects of data. As a simple example, consider the
well-known Anscombe Quartet (1973), a set of four bivariate example datasets. The Pearson cor-
relation, a very widely used measure of dependence that assumes a linear Gaussian model of
the data, finds that each dataset has an identical amount of dependence (r = 0.82). However,
a scatterplot instantly reveals that very different dependence relationships hold in each dataset
(Figure 2.2). The scatterplot is possibly the simplest visual analysis tool for investigating the rela-
tionship between two variables, in which the variables’ numerical values are mapped to horizontal
and vertical space. While the correlation coefficient is a model-based analysis tool, the scatterplot
is model-free (or at least, it is effective under an arguably wider range of data generating assump-
tions), which is crucial for this example.

This nonparametric, visual approach to EDA has been encoded into many data analysis pack-
ages, including the now-ubiquitous R language (R Core Team, 2013), which descends from ear-
lier software by the Bell Labs statistics group (Becker and Chambers, 1984). In R, tools such as
histograms, boxplots, barplots, dotplots, mosaicplots, etc. are built-in, basic operators in the lan-
guage. (Wilkinson (2006)’s grammar of graphics more extensively systematizes this approach; see
also Wickham (2010); Bostock et al. (2011).)

3/18/14 Anscombe's_quartet_3.svg

file:///Users/brendano/projects/textexplore/writing/Anscombe's_quartet_3.svg 1/1

Figure 2.2: Anscombe Quartet. (Source: Wikipedia)
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Figure 2.3: Linked brushing with the analysis software GGobi. More references at source: http:
//www.infovis-wiki.net/index.php?title=Linking_and_Brushing

In the meantime, textual data has emerged as a resource of increasing interest for many scien-
tific, business, and government data analysis applications. Consider the use case of automated
content analysis (a.k.a. text mining) as a tool for investigating social scientific and humanistic
questions (Grimmer and Stewart, 2013; Jockers, 2013; Shaw, 2012; O’Connor et al., 2011). The con-
tent of the data is under question: analysts are interested in what/when/how/by-whom different
concepts, ideas, or attitudes are expressed in a corpus, and the trends in these factors across time,
space, author communities, or other document-level covariates (often called metadata). Com-
parisons of word statistics across covariates are essential to many interesting questions or social
measurement problems, such as

• What topics tend to get censored by the Chinese government online, and why (Bamman
et al., 2012; King et al., 2013)? Covariates: whether a message is deleted by censors, time/location
of message.

• What drives media bias? Do newspapers slant their coverage in response to what readers
want (Gentzkow and Shapiro, 2010)? Covariates: political preferences of readers, competi-
tiveness of media markets.

In this work, we focus on the question: What should be the baseline exploratory tools for
textual data, to discover important statistical associations between text and document covariates?
Ideally, we’d like to “just look” at the data, in the spirit of scatterplotting the Anscombe Quartet.
An analysis tool to support this should not require any statistical model assumptions, and should
display the data in as direct a form as possible.

For low-dimensional, non-textual data, the base functionality of R prescribes a broad array of
useful defaults: one-dimensional continuous data can be histogrammed (hist(x)), or kernel den-
sity plotted (plot(density(x))), while the relationship between two dimensions of continuous vari-
ables can be viewed as a scatterplot (plot(x,y)); or perhaps a boxplot for discrete x and continous
y (boxplot(x,y)); and so on. Commercial data analysis systems such as Excel, Stata, Tableau, JMP,
StatWing, etc., have similar functionality.
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These visual tools can be useful for analyzing derived content statistics from text—for exam-
ple, showing a high-level topic or sentiment frequency trending over time—but they cannot visu-
alize the text itself. Text data consists of a linear sequence of high-dimensional discrete variables
(words). The most aggressive and common analysis approach, bag-of-words, eliminates the prob-
lematic sequential structure, by reducing a document to a high-dimensional discrete counts over
words. But still, none of the above visual tools makes sense for visualizing a word distribution;
many popular tools simply crash or become very slow when given word count data. And besides
the issues of discrete high-dimensionality, text is unique in that it has to be manually read in or-
der to more reliably understand its meaning. Natural language processing tools can sometimes
extract partial views of text meaning, but full understanding is a long ways off; and the quality of
available NLP tools varies greatly across corpora and languages. A useful exploratory tool should
be able to work with a variety of levels of sophistication in NLP tooling, and allow the user to fall
back to manual reading when necessary. The tool should support Shneiderman (1996)’s recom-
mendation of overview first, zoom and filter, then details-on-demand; the most detailed view of text
data, of course, is to support reading of individual snippets and documents

2.3 MITEXTEXPLORER: linked brushing for text and covariate
correlations

The analysis tool presented here, MITEXTEXPLORER, is designed for exploratory analysis of re-
lationships between document covariates—such as time, space, or author community—against
textual variables—words, or other units of meaning, that can be counted per document. Unlike
topic model approaches to analyzing covariate-text relationships (Mimno, 2012; Roberts et al.,
2013), there is no dimension reduction of the terms. Instead, interactivity allows a user to explore
more of the high-dimensional space, by specifying a document selection (Q) and/or a term selection
(T ). We are inspired by the linking and brushing family of techniques in interactive data visualiza-
tion, in which an analyst can select a group of data points under a query in one covariate space,
and see the same data selection in a different covariate space (Figure 2.3; see Buja et al. (1996), and
e.g. Becker and Cleveland (1987); Buja et al. (1991); Martin and Ward (1995); Cook and Swayne
(2007)). In our case, one of the variables is text.

The interface consists of several linked views, which contain:

(A) a view of the documents in a two-dimensional covariate space (e.g. scatterplot),

(B) an optional list of pinned terms,

(C) document-associated terms: a view of the relatively most frequent terms for the current docu-
ment selection,

(D) term-associated terms: a view of terms that relatively frequently co-occur with the current term
selection; and

(E) a keyword-in-context (KWIC) display of textual passages for the current term selection.

Figure 2.1 shows the interface viewing a corpus of 201,647 geo-located Twitter messages from 2,000
users during 2009-2012, which have been tagged with their author’s spatial coordinates through
a mobile phone client and posted publicly; for data analysis, their texts have been lowercased and
tokenized appropriately (Owoputi et al., 2013; O’Connor et al., 2010c). Since this type of corpus
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contains casual, everyday language, it is a dataset that may illuminate geographic patterns of
slang and lexical variation in local dialects (Eisenstein et al., 2012, 2010).

The document covariate display (A) uses (longitude, latitude) positions as the 2D space. The
corpus has been preprocessed to define a document as the concatenation of messages from a single
author, with its position the average location of the author’s messages. When the interface loads,
all points in (A) are initially gray, and all other panels are blank.

2.3.1 Covariate-driven queries

A core interaction, brushing, consists of using the mouse to select a rectangle in the (x,y) covariate
space. Figure 2.1 shows a selection around the Bay Area metropolitan area (blue rectangle). Upon
selection, the document-driven term display (C) is updated to show the relatively most frequent
terms in the document selection. LetQ denote the set of documents that are selected by the current
covariate query. The tool ranks terms w by their (exponentiated) pointwise mutual information,
a.k.a. lift, for Q:

lift(w;Q) =
p(w|Q)

p(w)

(
=

p(w,Q)

p(w)p(Q)

)
(2.1)

This quantity measures how much more frequent the term is in the queryset, compared to the
baseline global probability in the corpus (p(w)). Probabilities are calculated with simple MLE
relative frequencies, i.e.

p(w|Q)

p(w)
=

∑
d∈Q ndw∑
d∈Q nd

N

nw
(2.2)

where d denotes a document ID, ndw the count of word w in document d, and N the number of
tokens in the corpus. PMI gives results that are much more interesting than results from ranking
w on raw probability within the query set (p(w|Q)), since that simply shows grammatical func-
tion words or other terms that are common both in the queryset and across the corpus, and not
distinctive for the queryset.1

A well-known weakness of PMI is over-emphasis on rare terms; terms that appear only in
the queryset, even if they appear only once, will attain the highest PMI value. One way to ad-
dress this is through a smoothing prior/pseudocounts/regularization, or through statistical sig-
nificance ranking (see §2.4). For simplicity, we use a minimum frequency threshold filter. The user
interface allows minimums for either local or global term frequencies, and to easily adjust them,
which naturally shifts the emphasis between specific and generic language. All methods to pro-
tect against rare probabilistic events necessarily involve such a tradeoff parameter that the user
ought to experiment with; given this situation, we might prefer a transparent mechanism instead
of mathematical priors (though see also §2.4).

Figure 2.1 shows that hella is the highest ranked term for this spatial selection (and freqency
threshold), occurring 7.8 times more frequently compared to the overall corpus; this comports
with surveyed intuitions of Californian English speakers (Bucholtz et al., 2007). For full trans-
parency to the user, the local and global term counts are shown in the table. (Since hella occurred
18 times in the queryset and 90 times globally, this implies the simple conditional probability
p(Q|w) = 18/90; and indeed, ranking on p(Q|w) is equivalent to ranking on PMI, since exponen-
tiated PMI is p(Q|w)/p(Q).) The user can also sort by local count to see the raw most-frequent

1The term “lift” is used in business applications (Provost and Fawcett, 2013), while PMI has been used in many
NLP applications to measure word associations.
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specified as a region in the covariate space, is specified as a fragment of the discrete lexical space.
As illustrated in much previous work (e.g. Church and Hanks (1990); Turney (2001, 2002)), word-
to-word PMI scores can find other terms with similar meanings, or having interesting semantic
relationships, to the target term.2

This panel ranks terms u by their association with the query term v. The simplest method is to
analyze the relative frequencies of terms in documents that contain v,

bool-tt-epmi(u, v) =
p(wi = u|v ∈ supp(di))

p(wi = u)

Here, the subscript i denotes a token position in the entire corpus, for which there is a wordtype
wi and a document ID di. In this notation, the covariate PMI in 2.3.1 would be p(wi = u|di ∈
Q)/p(wi = u). supp(di) denotes the set of terms that occur at least once in document di.

This measure is a very simple extension of the document covariate selection mechanism, and
easy to understand. However, it is less satisfying for longer documents, since a larger number of
occurrences of v do not lead to a stronger association score. A possible extension is to consider the
joint random event of selecting two tokens i and j in the corpus, and ask if the two tokens being
in the same document is informative for whether the tokens are the words (u, v); that is, measure
PMI[(wi, wj) = (u, v); di = dj ],

freq-tt-epmi(u, v) =
p(wi = u,wj = v|di = dj)

p(wi = u,wj = v)

In terms of word counts, this expression has the form

freq-tt-epmi(u, v) =

∑
d ndundv
nunv

N2∑
d n

2
d

The right-side term is a normalizing constant invariant to u and v. The left-side term is interesting:
it can be viewed as a similarity measure, where the numerator is the inner product of the inverted
term-document vectors n.,u and n.,v, and the denominator is the product of their `1 norms. This
is a very similar form as cosine similarity, which is another normalized inner product, except its
denominator is the product of the vectors’ `2 norms.

Term-to-term associations allow navigation of the term space, complementing the views of
terms driven by document covariates. This part of the tool is still at a more preliminary stage
of development. One important enhancement would be adjustment of the context window size
allowed for co-occurrences; the formulations above assume a context window the size of the doc-
ument. Medium sized context windows might capture more focused topical content, especially
in very long discourses such as speeches; and the smallest context windows, of size 1, should
be more like collocation detection (though see §2.4; this is arguably better done with significance
tests, not PMI).

2.3.4 Pinned terms

The term PMI views of (C) and (D) are very dynamic, which can cause interesting terms to dis-
appear when their supporting query is changed. It is often useful to select terms to be constantly
viewed when the document covariate queries change.

2For finding terms with similar semantic meaning, distributional similarity may be more appropriate (Turney and
Pantel, 2010); this could be interesting to incorporate into the software.
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Any term can be double-clicked to be moved to the the table of pinned terms (B). The set of
terms here does not change as the covariate query is changed; a user can fix a set of terms and
see how their PMI scores change while looking at different parts of the covariate space. One
possible use of term pinning is to manually build up clusters of terms—for example, topical or
synonymous term sets—whose aggregate statistical behavior (i.e. as a disjunctive query) may be
interesting to observe. Manually built sets of keywords are a very useful form of text analysis; in
fact, the WordSeer corpus analysis tool has explicit support to help users create them (Shrikumar,
2013).

2.4 Statistical term association measures

There exist many measures to measure the statistical strength of an association between a term
and a document covariate, or between two terms. A number of methods are based on significance
testing, looking for violations of a null hypothesis that term frequencies are independent. For
collocation detection, which aims to find meaningful non-compositional lexical items through fre-
quencies of neighboring words, likelihood ratio (Dunning, 1993) and chi-square tests have been
used (see review in Manning and Schütze (1999)). For term-covariate associations, chi-square
tests were used by Gentzkow and Shapiro (2010) to find politically loaded phrases often used by
members of one political party; this same method is often used as a feature selection method for
supervised learning (Guyon and Elisseeff, 2003).

The approach we take here is somewhat different, being a point estimate approach, analyz-
ing the estimated difference (and giving poor results when counts are small). Some related work
for topic model analysis, looking at statistical associations between words and latent topics (as
opposed to between words and observed covariates in this work) includes Chuang et al. (2012),
whose term saliency function measures one word’s associations against all topics; a salient term
tends to have most of its probability mass in a small set of topics. The measure is a form of mutual
information,3 and may be useful for our purposes here if the user wishes to see a report of dis-
tinctive terms for a group of several different observed covariate values at once. Blei and Lafferty
(2009) ranks words per topic by a measure inspired by TFIDF, which like PMI downweights words
that are generically common across all topics.

Finally, hierarchical priors and regularizers can also be used; for example, by penalizing the
log-odds parameterization of term probabilities (Eisenstein et al., 2011b; Taddy, 2013). These
methods are better in that they incorporate both protection against small count situations, while
paying attention to effect size, as well as allowing overlapping covariates and regression control
variables; but unfortunately, they are more computationally intensive, as opposed to the above
measures which all work directly from sufficient count statistics. An association measure that ful-
filled all these desiderata would be very useful. For term-covariate analysis, Monroe et al. (2008)
contains a review of many different methods, from both political science as well as computer sci-
ence; they also propose a hierarchical prior method, and to rank by statistical significance via the
asymptotic standard error of the terms’ odds ratios. Kilgarriff (2001) reviews word comparison

3This is apparent as follows, using notation from their section 3.1:

saliency(w) = p(w)
∑
T

p(T |w) log[p(T |w)/p(T )] =
∑
T

p(w, T ) log[p(w, T )/[p(w)p(T )]]

This might be called a “half-pointwise” mutual information: between a specific word w and the topic random variable
T . Mutual information is

∑
w saliency(w).
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dances and keyword searches within a text; for example, Voyeur/Voyant (Rockwell et al., 2010),6

which also features some document covariate analysis through temporal trend analyses for indi-
vidual terms. Another class of approaches emphasizes the use of document clustering or topic
models (Gardner et al., 2010; Newman et al., 2010; Grimmer and King, 2011; Chaney and Blei,
2013), while Overview7 emphasizes hierarchical document clustering paired with manual tag-
ging.

Finally, considerable research has examined exploratory visual interfaces for information re-
trieval, in which a user specifies an information need in order to find relevant documents or pas-
sages from a corpus (Hearst (2009), Ch. 10). Information retrieval problems have some similarities
to text-as-data analysis in the need for an exploratory process of iterative refinement, but the
text-as-data perspective differs in that it requires an analyst to understand content and contextual
factors across multiple or many documents.

2.6 Future work

The current MITEXTEXPLORER system is an extremely simple prototype to explore what sorts of
“bare words” text-and-covariates analyses are possible. Several major changes will be necessary
for more serious use.

First, essential basic capabilities must be added, such as a search box the user can use to search
and filter the term list.

Second, the document covariate display needs to support more than just scatterplots. When
there are hundreds or more documents, summarization is necessary in the form of histograms,
kernel density plots, or other tools. For example, for a large corpus of documents over time, a
lineplot or temporal histogram is more appropriate, where each timestep has a document count.
The ACL Anthology scatterplot (Figure 2.6, Radev et al. (2009)), which has hundreds of overplot-
ted points at each (year,venue) position, makes clear the limitations of the current approach.

Better visual feedback for term selections here could be useful—for example, sizing docu-
ment points monotonically with the term’s frequency (rather than just presence/absence), or us-
ing stacked line plots—though certain visual depictions of frequency may be difficult given the
Zipfian distribution of word frequencies.

Furthermore, document structures may be thought of as document covariates. A single book
has interesting internal variation that could be analyzed itself. Figure 2.7 shows the King James
Bible, which has a hierarchical structure of book, chapter, and verse. Here, the (y,x) coordinates
represent books and chapters. A more specialized display for book-level structures, or other dis-
course structures, may be appropriate for book-length texts.

Finally, a major goal of this work is to use analysis methods that can be computed on the fly,
but the current prototype only works with small datasets. Hierarchical spatial indexing techniques
(e.g. r-trees), may make it possible to interactively compute sums for covariate PMI scoring over
very large numbers of documents. Text indexing is also important for term-driven queries and
KWIC views. Techniques from ad-hoc data querying systems may be necessary for further scale
(e.g. Melnik et al. (2010)).

Many other directions are possible. The prototype tool, as described in §2.3, is available as
open-source software at: http://brenocon.com/mte/. It is a desktop application written in
Java.

6http://voyant-tools.org/,
http://hermeneuti.ca/voyeur

7https://www.overviewproject.org/ http://overview.ap.org/
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Chapter 3

Text sentiment and opinion polling

(This chapter was originally published as O’Connor et al. (2010a).)

3.1 Introduction

If we want to know, say, the extent to which the U.S. population likes or dislikes Barack Obama,
a good approach is to ask a random sample of people—that is, take a poll. Survey and polling
methodology, extensively developed through the 20th century (Krosnick et al., 2005), gives nu-
merous tools and techniques to accomplish representative public opinion measurement.

With the dramatic rise of text-based social media, millions of people broadcast their thoughts
and opinions on a great variety of topics. Can we analyze publicly available data to infer popu-
lation attitudes in the same manner that public opinion pollsters query a population? If so, then
mining public opinion from freely available text content could be a faster and less expensive al-
ternative to traditional polls. Such analysis would also permit us to consider a greater variety
of polling questions, limited only by the scope of topics and opinions people broadcast. Extract-
ing the public opinion from social media text provides a challenging and rich context to explore
computational models of natural language, motivating new research in computational linguistics.

In this chapter, we connect measures of public opinion derived from polls with sentiment
measured from analysis of text from the popular microblogging site Twitter. We explicitly link
measurement of textual sentiment in microblog messages through time, comparing to contempo-
raneous polling data. Surprisingly, summary statistics derived from extremely simple text analysis
techniques are demonstrated to correlate with polling data on consumer confidence and political
opinion. We find that temporal smoothing is a critically important issue to support a successful
model, since the data is highly variable. This suggests there are many future challenges for using
social media analysis for opinion tracking.

3.2 Data

We begin by discussing the data used in this study: Twitter for the text data, and public opinion
surveys from multiple polling organizations.
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3.2.1 Twitter Corpus

Twitter is a popular microblogging service in which users post messages that are very short: less
than 140 characters, averaging 11 words per message. It is convenient for research because there
are a very large number of messages, many of which are publicly available, and obtaining them is
technically simple compared to scraping blogs from the web.

We use 1 billion Twitter messages posted over the years 2008 and 2009, collected by query-
ing the Twitter API,1 as well as archiving the “Gardenhose” real-time stream. This comprises a
roughly uniform sample of public messages, in the range of 100,000 to 7 million messages per day.
(The primary source of variation is growth of Twitter itself; its message volume increased by a
factor of 50 over this two-year time period.)

Most Twitter users appear to live in the U.S., but we made no systematic attempt to identify
user locations or even message language, though our analysis technique should largely ignore
non-English messages.

There probably exist many further issues with this text sample; for example, the demographics
and communication habits of the Twitter user population probably changed over this time period,
which should be adjusted for given our desire to measure attitudes in the general population.
There are clear opportunities for better preprocessing and stratified sampling to exploit these data.

3.2.2 Public Opinion Polls

We consider several measures of consumer confidence and political opinion, all obtained from
telephone surveys to participants selected through random-digit dialing, a standard technique in
traditional polling (Chang and Krosnick, 2003).

Consumer confidence refers to how optimistic the public feels, collectively, about the health
of the economy and their personal finances. It is thought that high consumer confidence leads
to more consumer spending, and further relationships with economic activity have been studied
(Ludvigson, 2004; Wilcox, 2007). Knowing the public’s consumer confidence is of great utility for
economic policy making as well as business planning.

Two well-known surveys that measure U.S. consumer confidence are the Consumer Confi-
dence Index from the Consumer Board, and the Index of Consumer Sentiment (ICS) from the
Reuters/University of Michigan Surveys of Consumers.2 We use the latter, as it is more exten-
sively studied in economics, having been conducted since the 1950s. The ICS is derived from
answers to five questions administered monthly in telephone interviews with a nationally repre-
sentative sample of several hundred people; responses are combined into the index score. Two of
the questions, for example, are:

“We are interested in how people are getting along financially these days. Would you
say that you (and your family living there) are better off or worse off financially than
you were a year ago?”

“Now turning to business conditions in the country as a whole—do you think that dur-
ing the next twelve months we’ll have good times financially, or bad times, or what?”

We also use another poll, the Gallup Organization’s “Economic Confidence” index,3 which is de-
rived from answers to two questions that ask interviewees to to rate the overall economic health

1This scraping effort was conducted by Brendan Meeder.
2Downloaded from http://www.sca.isr.umich.edu/.
3Downloaded from http://www.gallup.com/poll/122840/gallup-daily-economic-indexes.aspx.
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Figure 3.1: Monthly Michigan ICS and daily Gallup consumer confidence poll.

of the country. This only addresses a subset of the issues that are incorporated into the ICS. We
are interested in it because, unlike the ICS, it is administered daily (reported as three-day rolling
averages). Frequent polling data are more convenient for our comparison purpose, since we have
fine-grained, daily Twitter data, but only over a two-year period. Both datasets are shown in
Figure 3.1.

For political opinion, we use two sets of polls. The first is Gallup’s daily tracking poll for the
presidential job approval rating for Barack Obama over the course of 2009, which is reported as
3-day rolling averages.4 These data are shown in Figure 3.2.

The second is a set of tracking polls during the 2008 U.S. presidential election cycle, asking
potential voters whether they would vote for Barack Obama or John McCain. Many different or-
ganizations administered them throughout 2008; we use a compilation provided by Pollster.com,
consisting of 491 data points from 46 different polls.5 The data are shown in Figure 3.3.

3.3 Text Analysis

From text, we are interested in assessing the population’s aggregate opinion on a topic. Immedi-
ately, the task can be broken down into two subproblems:

1. Message retrieval: identify messages relating to the topic.

2. Opinion estimation: determine whether these messages express positive or negative opin-
ions or news about the topic.

If there is enough training data, this could be formulated as a topic-sentiment model (Mei et al.,
2007), in which the topics and sentiment of documents are jointly inferred. Our dataset, however,

4Downloaded from http://www.gallup.com/poll/113980/Gallup-Daily-Obama-Job-Approval.
aspx.

5Downloaded from http://www.pollster.com/polls/us/08-us-pres-ge-mvo.php
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Figure 3.2: 2009 presidential job approval (Barack Obama).
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Figure 3.3: 2008 presidential elections, Obama vs. McCain (blue and red). Each poll provides
separate Obama and McCain percentages (one blue and one red point); lines are 7-day rolling
averages.

is asymmetric, with millions of text messages per day (and millions of distinct vocabulary items)
but only a few hundred polling data points in each problem. It is a challenging setting to estimate
a useful model over the vocabulary and messages. The signal-to-noise ratio is typical of informa-
tion retrieval problems: we are only interested in information contained in a small fraction of all
messages.

We therefore opt to use a transparent, deterministic approach based on prior linguistic knowl-
edge, counting instances of positive-sentiment and negative-sentiment words in the context of a
topic keyword.

3.3.1 Message Retrieval

We only use messages containing a topic keyword, manually specified for each poll:

• For consumer confidence, we use economy, job, and jobs.

• For presidential approval, we use obama.

• For elections, we use obama and mccain.

Each topic subset contained around 0.1–0.5% of all messages on a given day, though with
occasional spikes, as seen in Figure 3.4. These appear to be driven by news events. All terms have
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Figure 3.4: Fraction of Twitter messages containing various topic keywords, per day.

a weekly cyclical structure, occurring more frequently on weekdays, especially in the middle of
the week, compared to weekends. (In the figure, this is most apparent for the term job since it
has fewer spikes.) Nonetheless, these fractions are small. In the earliest and smallest part of our
dataset, the topic samples sometimes come out just several hundred messages per day; but by late
2008, there are thousands of messages per day for most datasets.

3.3.2 Opinion Estimation

We derive day-to-day sentiment scores by counting positive and negative messages. Positive and
negative words are defined by the subjectivity lexicon from OpinionFinder, a word list containing
about 1,600 and 1,200 words marked as positive and negative, respectively (Wilson et al.).6 We do
not use the lexicon’s distinctions between weak and strong words.

A message is defined as positive if it contains any positive word, and negative if it contains
any negative word. (This allows for messages to be both positive and negative.) This gives similar
results as simply counting positive and negative words on a given day, since Twitter messages are
so short (about 11 words).

We define the sentiment score xt on day t as the ratio of positive versus negative messages on
the topic, counting from that day’s messages:

xt =
countt(pos. word ∧ topic word)

countt(neg. word ∧ topic word)
(3.1)

=
p(pos. word | topic word, t)
p(neg. word | topic word, t)

6Available at http://www.cs.pitt.edu/mpqa.
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where the likelihoods are estimated as relative frequencies.
We performed casual inspection of the detected messages and found many examples of falsely

detected sentiment. For example, the lexicon has the noun will as a weak positive word, but since
we do not use a part-of-speech tagger, this causes thousands of false positives when it matches
the verb sense of will.7 Furthermore, recall is certainly very low, since the lexicon is designed for
well-written standard English, but many messages on Twitter are written in an informal social me-
dia dialect of English, with different and alternately spelled words, and emoticons as potentially
useful signals. Creating a more comprehensive lexicon with distributional similarity techniques
could improve the system; Velikovich et al. (2010) find that such a web-derived lexicon substan-
tially improves a lexicon-based sentiment classifier.

3.3.3 Comparison to Related Work

The sentiment analysis literature often focuses on analyzing individual documents, or portions
thereof (for a review, see Pang and Lee (2008)). Our problem is related to work on sentiment
information retrieval, such as the TREC Blog Track competitions that have challenged systems to
find and classify blog posts containing opinions on a given topic (Ounis et al., 2008).

The sentiment feature we consider, presence or absence of sentiment words in a message, is
one of the most basic ones used in the literature. If we view this system in the traditional light—as
subjectivity and polarity detection for individual messages—it makes many errors, like all natural
language processing systems. However, we are only interested in aggregate sentiment. A high
error rate implies the sentiment detector is a noisy measurement instrument. If we have a large
number of measurements, and the cause of sentiment errors is not confounded with the substan-
tive comparisons we want to make (see §3.6), these errors will cancel out relative to the quantity
of interest: aggregate public opinion as it changes over time. Furthermore, as Hopkins and King
(2010) demonstrate, it can actually be inaccurate to naı̈vely use standard text analysis techniques,
which are usually designed to optimize per-document classification accuracy, when the goal is to
assess aggregate population proportions.

Many studies have estimated and made use of aggregated text sentiment. In earlier work,
the informal study by Lindsay (2008) focused on lexical induction in building a sentiment clas-
sifier for a proprietary dataset of Facebook wall posts (a web conversation/microblog medium
broadly similar to Twitter), and demonstrated correlations to several polls conducted during part
of the 2008 presidential election. Other earlier uses of aggregate text sentiment time series include
analyzing stock behavior based on text from blogs (Gilbert and Karahalios, 2010), news articles
(Lavrenko et al., 2000; Koppel and Shtrimberg, 2004) and investor message boards (Antweiler and
Frank, 2004; Das and Chen, 2007). Bollen et al. (2010) tried to predict stocks from Twitter, but see
the critique by Anonymous (2012). Dodds and Danforth (2009) use an emotion word counting
technique for purely exploratory analysis of several corpora.

3.4 Moving Average Aggregate Sentiment

Day-to-day, the sentiment ratio is volatile. Just like in the topic volume plots (Figure 3.4), the
sentiment ratio rapidly rises and falls each day. In order to derive a more consistent signal, and
following the same methodology used in public opinion polling, we smooth the sentiment ratio
with one of the simplest possible temporal smoothing techniques, a moving average over a win-

7We tried manually removing this and several other frequently mismatching words, but it had little effect.
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Figure 3.5: Moving average MAt of sentiment ratio for jobs, under different windows k ∈ {1, 7, 30}:
no smoothing (gray), past week (magenta), and past month (blue). The unsmoothed version
spikes as high as 10, omitted for space.

dow of the past k days:

MAt =
1

k
(xt−k+1 + xt−k+2 + ...+ xt)

Smoothing is a critical issue. It causes the sentiment ratio to respond more slowly to recent
changes, thus forcing consistent behavior to appear over longer periods of time. Too much smooth-
ing, of course, makes it impossible to see fine-grained changes to aggregate sentiment. See Fig-
ure 3.5 for an illustration of different smoothing windows for the jobs topic.

3.5 Correlation Analysis: Is text sentiment a leading indicator of
polls?

Figure 3.6 shows the jobs sentiment ratio compared to the two different measures of consumer
confidence, Gallup Daily and Michigan ICS. It is apparent that the sentiment ratio captures the
broad trends in the survey data. With 15-day smoothing, it is reasonably correlated with Gallup at
r = 0.731. The most glaring difference is a region of high positive sentiment in May-June 2008. But
otherwise, the sentiment ratio seems to pick up on the downward slide of consumer confidence
through 2008, and the rebound in February/March of 2009.

When consumer confidence changes, can this first be seen in the text sentiment measure, or
in polls? If text sentiment responds faster to news events, a sentiment measure may be useful for
economic researchers and policymakers. We can test this by looking at leading versions of text
sentiment.

First note that the text-poll correlation reported above is the goodness-of-fit metric for fitting
slope and bias parameters a, b in a one variable linear least-squares model:

yt = b+ a

1

k

k−1∑
j=0

xt−j

+ εt

33



Index

S
en

tim
en

t R
at

io

1.
5

2.
0

2.
5

3.
0

3.
5

4.
0

k=15, lead=0
k=30, lead=50

Index

G
al

lu
p 

E
co

no
m

ic
 C

on
fid

en
ce

−
60

−
50

−
40

−
30

−
20

M
ic

hi
ga

n 
IC

S

20
08

−
01

20
08

−
02

20
08

−
03

20
08

−
04

20
08

−
05

20
08

−
06

20
08

−
07

20
08

−
08

20
08

−
09

20
08

−
10

20
08

−
11

20
08

−
12

20
09

−
01

20
09

−
02

20
09

−
03

20
09

−
04

20
09

−
05

20
09

−
06

20
09

−
07

20
09

−
08

20
09

−
09

20
09

−
10

20
09

−
11

55
60

65
70

75

Figure 3.6: Sentiment ratio and consumer confidence surveys. Sentiment information captures
broad trends in the survey data.

34



−90 −50 −10 30 50 70 90

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Text lead / poll lag

C
or

r. 
ag

ai
ns

t G
al

lu
p

●●●●
●●

●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

k=30
k=15
k=7

Text leads poll

Poll leads text

−90 −50 −10 30 50 70 90

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Text lead / poll lag

C
or

r. 
ag

ai
ns

t I
C

S

k=30
k=60
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35



for poll outcomes yt, daily sentiment ratios xj , Gaussian noise εt, and a fixed hyperparameter k.
A poll outcome is compared to the k-day text sentiment window that ends on the same day as the
poll.

The lagged analysis results from introducing a lag hyperparameter L into the model, so the
poll is compared against the text window ending L days before the poll outcome.

yt+L = b+ a

1

k

k−1∑
j=0

xt−j

+ εt

Graphically, this is equivalent to taking one of the text sentiment lines on Figure 3.6 and shifting
it to the right by L days, then examining the correlation against the consumer confidence polls
below.

Polls are typically administered over an interval of time. The ICS is reported once per month
(at the end of the month), and Gallup is reported for 3-day windows. We always consider the last
day of the poll’s window to be the poll date, which is the earliest possible day that the information
could be used. Therefore, we would expect both daily measures, Gallup and text sentiment, to
always lead ICS, since it measures phenomena occurring over the previous month.

The sensitivity of text-poll correlation to smoothing window and lag parameters (k, L) is
shown in Figure 3.7. The regions corresponding to text preceding or following the poll are marked.
Correlation is higher for text leading the poll and not the other way around, so text seems to be a
leading indicator. Gallup correlations fall off faster for poll-leads-text than text-leads-poll, and the
ICS has similar properties.

If text and polls moved at random relative to each other, these cross-correlation curves would
stay close to 0. The fact they have peaks at all strongly suggests that the text sentiment measure
captures information related to the polls.

Also note that more smoothing increases the correlation: for Gallup, 7-, 15-, and 30-day win-
dows peak at r = 0.716, 0.763, and 0.794 respectively. The 7-day and 15-day windows have two
local peaks for correlation, corresponding to shifts that give alternate alignments of two differ-
ent humps against the Gallup data, but the better-correlating 30-day window smooths over these
entirely. Furthermore, for the ICS, a 60-day window often achieves higher correlation than the
30-day window. These facts imply that the text sentiment information is volatile, and if polls are
believed to be a gold standard, then it is best used to detect long-term trends.

It is also interesting to consider ICS a gold standard and compare correlations with Gallup and
text sentiment. ICS and Gallup are correlated (best correlation is r = 0.864 if Gallup is given its
own smoothing and alignment at k = 30, L = 20), which supports the hypothesis that they are
measuring similar things, and that Gallup is a leading indicator for ICS. Fixed to 30-day smooth-
ing, the sentiment ratio only achieves r = 0.635 under optimal lead L = 50. So it is a weaker
indicator than Gallup.

Finally, we also experimented with sentiment ratios for the terms job and economy, which both
correlate very poorly with the Gallup poll: 0.10 and 0.07 respectively (with the default k = 15, L =
0).8

This is a cautionary note on the common practice of stemming words, which in information
retrieval can have mixed effects on performance (Manning et al., 2008, Chapter 2). Here, stemming
would have conflated job and jobs, greatly degrading results (to r = 0.40).

8We inspected some of the matching messages to try to understand this result, but since the sentiment detector is
very noisy at the message level, it was difficult to understand what was happening.
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3.5.1 Obama 2009 Job Approval and 2008 Elections

We analyze the sentiment ratio for obama and compared it to two series of polls, presidential job
approval in 2009, and presidential election polls in 2008, as seen in Figure 3.8. The job approval
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Figure 3.8: The sentiment ratio for obama (15-day window), and fraction of all Twitter messages
containing obama (day-by-day, no smoothing), compared to election polls (2008) and job approval
polls (2009).

poll is the most straightforward, being a steady decline since the start of the Obama presidency,
perhaps with some stabilization in September or so. The sentiment ratio also generally declines
during this period, with r = 0.725 for k = 15.

However, in 2008 the sentiment ratio does not substantially correlate to the election polls
(r = −0.08); we compare to the percent of support for Obama, averaged over a 7-day window
of tracking polls: the same information displayed in Figure 3.3). Lindsay (2008) found that his
daily sentiment score was a leading indicator to one particular tracking poll (Rasmussen) over a
100-day period from June-October 2008. Our measure also roughly correlates to the same data
(r = 0.44 versus Lindsay’s r = 0.57), and only at different lag parameters.

The elections setting may be structurally more complex than presidential job approval. In
many of the tracking polls, people can choose to answer any Obama, McCain, undecided, not plan-
ning to vote, and third-party candidates. Furthermore, the name of every candidate has its own
sentiment ratio scores in the data. We might expect the sentiment for mccain to be vary inversely
with obama, but they in fact slightly correlate. It is also unclear how they should interact as part of
a model of voter preferences.

Another question is to what how topic frequencies relate to polls. This is a complex question.
First note that the message volume for obama, shown in Figure 3.8, has the usual daily spikes like
other words on Twitter shown in Figure 3.4. Some of these spikes are very dramatic; for example,
on November 5th, nearly 15% of all Twitter messages in our sample mentioned the word obama.
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Furthermore, the obama message volume substantially correlates to the poll numbers. Even the
raw volume has a 0.52 correlation to the polls, and the 15-day window version is up to r = 0.79
(basically stronger than the sentiment ratio’s correlation!). This naı̈vely seems to indicate that
media attention is associated with popularity. But the converse is not true for mccain; this word’s
15-day message volume also correlates to higher Obama ratings in the polls (r = 0.74). This
contradicts an “any press is good press” idea that media attention toward a candidate causes
more popularity. There are many possible explanations; relative frequency, for example, may be a
better measurement to investigate.

3.6 Measurement bias and inference goals

We do not focus on name frequency analysis, but other work has investigated this more thor-
oughly in other contexts. Tumasjan et al. (2010) analyzed relative name frequency for the 2009
German parliamentary elections, in Twitter messages over several weeks before the election. They
found that the proportions of name frequencies of the six major political parties at the time were
very similar to the parties’ vote shares, reporting a mean absolute difference of less than 2%.
Jungherr et al. (2012) replicated and critiqued this work, noting some sensitivity to details of data
collection and name selection (among the six parties their replication found a lower correlation;
see also Tumasjan et al. (2012)). Furthermore, they also found a remarkable sensitivity to party
selection: the upstart Pirate Party, which was not included in the original study, actually had a far
higher name frequency than any of the six major parties, but received a smaller vote share than
any of them. We show their results in Figure 3.9. This may not be surprising since the Pirate Party
was founded on a platform of of online civil liberties issues and had an especially active Internet
presence; thus its name frequency was not comparable to the mainstream political parties, at least
as an indicator of political preferences of the entire voting population.

This episode highlights a major issue of opinion analysis in social media: are the users rep-
resentative of the greater population in question? A possible explanation for this result is that
Twitter was overrepresented with Pirate-supporting users, compared to the greater population. A
related issue is possible differences in platform-specific outreach and communication by political
parties; in 2009, it may have been the case that mainstream parties were less effective at online
engagement, and thus communications concerning them were relatively less frequent.

Generally speaking, the issue of measurement bias depends on the inference goal. If the goal is
to assess the relative strengths of political parties, a relative name frequency analysis requires that
the causes of party name mentions be similar across parties. This apparently was not the case for
the Pirate Party, as might be expected since it was an outlier in many ways: it was founded just a
few years before the election; it was not among the major parties commonly assessed by German
polling firms; and it had no representation in the parliament at the time. On the other hand,
among the six mainstream parties, the correlation to name frequency is quite remarkable; perhaps
the process of their communication strategies and media coverage were comparable enough such
that there was some mechanism to produce similar frequencies as voters’ preferences—maybe
users talked about the ones they liked, or maybe media coverage focused on parties in proportion
to their support. These and other hypotheses are important to investigate in future work.

Tumasjan et al., 2010, Jungherr et al., 2012, and many other subsequent works such as Metaxas
et al. (2011); Gayo-Avello (2012); Huberty (2013) focus on comparisons of popularity between par-
ties, as a way to predict elections. The work in this chapter instead focuses on temporal cor-
relations to tracking polls over time, where the key comparisons are popularity levels between
timesteps. This suggests a number of possible reasons for non-correlations. If properties of the
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certain demographics, such as minorities and youth, often use non-standard English online, and
traditional NLP methods do not adequately capture them.

3.7 Conclusion

In the paper we find that a relatively simple sentiment detector based on Twitter data shares
some common temporal signal with consumer confidence and presidential job approval polls.
While the results do not come without caution, it is encouraging that expensive and time-intensive
polling might be supplemented with the simple-to-gather text data that is generated from online
social networking. The results suggest that more advanced NLP techniques to improve opinion
estimation may be useful.

In this work, we treat polls as a gold standard. Of course, they are also noisy indicators of the
truth, subject to biases or variability from question wording, low response rates, cell phone versus
landline reachability (AAPOR, 2010), etc. Eventually, future work should seek to understand how
these different signals reflect public opinion either as a hidden variable, or as measured from more
reliable sources like face-to-face interviews—though currently the sources of measurement error
are much better understood for polls than for social media sentiment analysis.

There exist many challenges in trying to derive opinion estimates similar to telephone polling
of a more general population. At the very least, poststratification and weighting of the user popu-
lation should be used: treating opinion analysis of social media data as conditional on user demo-
graphics, geography, or other subpopulations which can be reweighted to form an overall picture
of the greater population. Wang et al. (2014) use a weighting model of non-representative online
polls (from the Microsoft Xbox gaming service) to accurately forecast 2012 U.S. elections. More
work is necessary to additionally address issues of variability in communication and linguistic be-
haviors mentioned in the previous section. A potentially useful technique, when there is enough
data, is to use polls as a signal to learn better linguistic representations for classifiers; Beauchamp
(2013) finds terms on Twitter that correlate to trends across many U.S. state polls.

Eventually, we see this research progressing to align with the more general goal of query-
driven sentiment analysis where one can ask more varied questions of what people are thinking
based on text they are already writing. Looking for correspondences with traditional survey data
is a potential useful application of sentiment analysis. But it is also a stepping stone toward more
complex applications.
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Chapter 4

Mixed-membership analysis of
geographic and demographic lexical

variation in social media

4.1 Introduction

Even within a single language community, speakers from different backgrounds demonstrate sub-
stantial linguistic variation. Salient speaker characteristics include geography (Labov et al., 2006;
Kurath, 1949), race (Rickford, 1999), and socioeconomic status (Labov, 1966; Eckert, 1989); they
impact language at the phonological, lexical, and morphosyntactic levels (Wolfram and Schilling-
Estes, 2005).

Sociolinguistics and dialectology feature a strong quantitative tradition of studying the rela-
tionship between language and social and geographical identity (e.g., Labov (1980); Tagliamonte
(2006)). In general, these approaches begin by identifying both the communities of interest and
the relevant linguistic dimensions of variability; for example, a researcher might identify the term
“yinz” as characteristic of Pittsburgh dialect (Dressman, 1979), and then statistically model its re-
lationship to the socioeconomic status of the speaker. This approach requires extensive fieldwork
and linguistic expertise to identify the inputs that are to be analyzed. This is particularly challeng-
ing in the case of lexical variation, as a large amount of data must be analyzed in order to find
demographic patterns for rare lexical items. In terms of Chapter 1’s taxonomy of textual social
analysis methods, this approach requires a high amount of domain assumptions—a preselected
set of terms or other linguistic markers of dialect.

Given the massive quantities of everyday language that are now available in social media
data, a new approach is possible: automatically discover terms that statistically associate with
authors’ social variables. In this chapter we develop a model-based, latent variable approach for
exploratory analysis of geotagged social media, relating language to geography and demograph-
ics. Specifically, we use topic models, which are mixed-membership statistical models of text (Blei
et al., 2003; Erosheva et al., 2004). Our model of Twitter users’ language hypothesizes a number
of latent topics, each of which is a soft cluster of words, and that each user tends to talk about a
subset of these topics. The goal is to learn which words tend to belong to which topics, as well as
which topics that individual users tend to use; the model learns both of these latent variables to
best explain the data.

The specific model we develop here assumes another latent variable for a user—a community
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membership variable—that explains the users’ geographic position (or demographic makeup of
their neighborhood), which are tied to community-specific variants of topics. The model thus
learns groups of users and terms that are jointly coherent across both linguistic and social data.
Besides illustrating the model for exploratory analysis, we additionally validate the geographic
model by applying Bayesian inference on its spatio-linguistic representations to predict a user’s
geographic location based on the text of their messages. We were surprised by some of the findings
in this chapter—in particular, the huge variety of creative neologisms, sometimes very specific to
certain geographies or demographics, which are rapidly evolving—which led to, among other
work, Chapter 5 on the temporal diffusion of terms.
§4.2 explains our data and model as applied to geography, §4.3 presents an extension to analyze

demographics, and §4.4 concludes with reflections and lessons for textual social data analysis.

4.2 Geographic topic model and lexical variation

(This section was originally published as Eisenstein et al. (2010).)

4.2.1 Synopsis

The rapid growth of geotagged social media raises new computational possibilities for investigat-
ing geographic linguistic variation. In this section, we present a multi-level generative model that
reasons jointly about latent topics and geographical regions. High-level topics such as “sports”
or “entertainment” are rendered differently in each geographic region, revealing topic-specific re-
gional distinctions. Applied to a new dataset of geotagged microblogs, our model recovers coher-
ent topics and their regional variants, while identifying geographic areas of linguistic consistency.
The model also enables prediction of an author’s geographic location from raw text, outperform-
ing both text regression and supervised topic models.

Introduction

Sociolinguistics and dialectology study how language varies across social and regional contexts.
Quantitative research in these fields generally proceeds by counting the frequency of a hand-
ful of previously-identified linguistic variables: pairs of phonological, lexical, or morphosyntac-
tic features that are semantically equivalent, but whose frequency depends on social, geograph-
ical, or other factors (Paolillo, 2002; Chambers, 2009). It is left to the experimenter to determine
which variables will be considered, and there is no obvious procedure for drawing inferences
from the distribution of multiple variables. In this paper, we present a method for identifying
geographically-aligned lexical variation directly from raw text. Our approach takes the form of a
probabilistic graphical model capable of identifying both geographically-salient terms and coher-
ent linguistic communities.

One challenge in the study of lexical variation is that term frequencies are influenced by a vari-
ety of factors, such as the topic of discourse. We address this issue by adding latent variables that
allow us to model topical variation explicitly. We hypothesize that geography and topic interact,
as “pure” topical lexical distributions are corrupted by geographical factors; for example, a sports-
related topic will be rendered differently in New York and California. Each author is imbued with
a latent “region” indicator, which both selects the regional variant of each topic, and generates the
author’s observed geographical location. The regional corruption of topics is modeled through
a cascade of logistic normal priors—a general modeling approach which we call cascading topic
models. The resulting system has multiple capabilities, including: (i) analyzing lexical variation
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by both topic and geography; (ii) segmenting geographical space into coherent linguistic commu-
nities; (iii) predicting author location based on text alone.

This research is only possible due to the rapid growth of social media. Our dataset is derived
from the microblogging website Twitter,1 which permits users to post short messages to the public.
Many users of Twitter also supply exact geographical coordinates from GPS-enabled devices (e.g.,
mobile phones),2 yielding geotagged text data. Text in computer-mediated communication is often
more vernacular (Tagliamonte and Denis, 2008), and as such it is more likely to reveal the influence
of geographic factors than text written in a more formal genre, such as news text (Labov, 1966).

We evaluate our approach both qualitatively and quantitatively. We investigate the topics
and regions that the model obtains, showing both common-sense results (place names and sports
teams are grouped appropriately), as well as less-obvious insights about slang. Quantitatively, we
apply our model to predict the location of unlabeled authors, using text alone. On this task, our
model outperforms several alternatives, including both discriminative text regression and related
latent-variable approaches.

4.2.2 Data

The main dataset in this research is gathered from the microblog website Twitter, via its official
API. We use an archive of messages collected over the first week of March 2010 from the “Gar-
denhose” sample stream,3 which then consisted of 15% of all public messages, totaling millions
per day. This short timeframe was chosen in order to obtain a conveniently sized sample that
facilitated ease of experimentation. We aggressively filter this stream, using only messages that
are tagged with physical (latitude, longitude) coordinate pairs from a mobile client, and whose
authors wrote at least 20 messages over this period. We also filter to include only authors who
follow fewer than 1,000 other people, and have fewer than 1,000 followers. Kwak et al. (2010)
find dramatic shifts in behavior among users with social graph connectivity outside of that range;
such users may be marketers, celebrities with professional publicists, news media sources, etc. We
also remove messages containing URLs to eliminate bots posting information such as advertising
or weather conditions. For interpretability, we restrict our attention to authors inside a bounding
box around the contiguous U.S. states, yielding a final sample of about 9,500 users and 380,000
messages, totaling 4.7 million word tokens. We have made this dataset available online.4

Informal text from mobile phones is challenging to tokenize; we adapt a publicly available
tokenizer5 originally developed for Twitter (O’Connor et al., 2010c), which preserves emoticons
and blocks of punctuation and other symbols as tokens. For each user’s Twitter feed, we combine
all messages into a single “document.” We remove word types that appear in fewer than 40 feeds,
yielding a vocabulary of 5,216 words. Of these, 1,332 do not appear in the English, French, or
Spanish dictionaries of the spell-checking program aspell.

Every message is tagged with a location, but most messages from a single individual tend to
come from nearby locations (as they go about their day); for modeling purposes we use only a
single geographic location for each author, simply taking the location of the first message in the
sample.

The authors in our dataset are fairly heavy Twitter users, posting an average of 40 messages
per day (although we see, on average, only 15% of this total). We have little information about

1http://www.twitter.com
2User profiles also contain self-reported location names, but we do not use that information in this work.
3http://dev.twitter.com/pages/streaming_api
4http://www.ark.cs.cmu.edu/GeoText
5https://github.com/brendano/tweetmotif
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their demographics, though from the text it seems likely that this user set skews towards teens
and young adults. The dataset covers each of the 48 contiguous United States and the District of
Columbia.

4.2.3 Model

We develop a model that incorporates two sources of lexical variation: topic and geographical
region. We treat the text and geographic locations as outputs from a generative process that in-
corporates both topics and regions as latent variables.6 During inference, we seek to recover the
topics and regions that best explain the observed data.

At the base level of model are “pure” topics (such as “sports”, “weather”, or “slang”); these
topics are rendered differently in each region. We call this general modeling approach a cascading
topic model; we describe it first in general terms before moving to the specific application to
geographical variation.

Cascading Topic Models

Cascading topic models generate text from a chain of random variables. Each element in the chain
defines a distribution over words, and acts as the mean of the distribution over the subsequent
element in the chain. Thus, each element in the chain can be thought of as introducing some
additional corruption. All words are drawn from the final distribution in the chain.

At the beginning of the chain are the priors, followed by unadulerated base topics, which may
then be corrupted by other factors (such as geography or time). For example, consider a base
“food” topic that emphasizes words like dinner and delicious; the corrupted “food-California”
topic would place weight on these words, but might place extra emphasis on other words like
sprouts.

The path through the cascade is determined by a set of indexing variables, which may be
hidden or observed. As in standard latent Dirichlet allocation (Blei et al., 2003), the base topics
are selected by a per-token hidden variable z. In the geographical topic model, the next level
corresponds to regions, which are selected by a per-author latent variable r.

Formally, we draw each level of the cascade from a normal distribution centered on the previ-
ous level; the final multinomial distribution over words is obtained by exponentiating and normal-
izing. To ensure tractable inference, we assume that all covariance matrices are uniform diagonal,
i.e., aI with a > 0; this means we do not model interactions between words.

(§4.2.8 discusses this modeling approach in comparison to related work.)

The Geographic Topic Model

The application of cascading topic models to geographical variation is straightforward. Each doc-
ument corresponds to the entire Twitter feed of a given author during the time period covered by
our corpus. For each author, the latent variable r corresponds to the geographical region of the
author, which is not observed. As described above, r selects a corrupted version of each topic: the
kth basic topic has mean µk, with uniform diagonal covariance σ2k; for region j, we can draw the
regionally-corrupted topic from the normal distribution, ηjk ∼ N (µk, σ

2
kI).

Because η is normally-distributed, it lies not in the simplex but in RW . We deterministically
compute multinomial parametersβ by exponentiating and normalizing: βjk = exp(ηjk)/

∑
i exp(η

(i)
jk ).

6The region could be observed by using a predefined geographical decomposition, e.g., political boundaries. How-
ever, such regions may not correspond well to linguistic variation.
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Figure 4.1: Plate diagram for the geographic topic model, with a table of all random variables.
Priors (besides α) are omitted for clarity, and the document indices on z and w are implicit.

This normalization could introduce identifiability problems, as there are multiple settings for η
that maximize P (w|η) (Blei and Lafferty, 2006a). However, this difficulty is obviated by the pri-
ors: given µ and σ2, there is only a single η that maximizes P (w|η)P (η|µ, σ2); similarly, only a
single µmaximizes P (η|µ)P (µ|a, b2).

The observed latitude and longitude, denoted y, are normally distributed and conditioned on
the region, with mean νr and precision matrix Λr indexed by the region r. The region index r
is itself drawn from a single shared multinomial ϑ. The model is shown as a plate diagram in
Figure 4.1.

Given a vocabulary size W , the generative story is as follows:
• Generate base topics: for each topic k < K

– Draw the base topic from a normal distribution with uniform diagonal covariance: µk ∼ N (a, b2I),
– Draw the regional variance from a Gamma distribution: σ2

k ∼ G(c, d).
– Generate regional variants: for each region j < J ,

∗ Draw the region-topic ηjk from a normal distribution with uniform diagonal covariance:
ηjk ∼ N (µk, σ

2
kI).

∗ Convert ηjk into a multinomial distribution over words by exponentiating and normaliz-
ing: βjk = exp

(
ηjk

)
/
∑W

i exp(η
(i)
jk ), where the denominator sums over the vocabulary.

• Generate regions: for each region j < J ,

– Draw the spatial mean νj from a normal distribution.
– Draw the precision matrix Λj from a Wishart distribution.

• Draw the distribution over regions ϑ from a symmetric Dirichlet prior, ϑ ∼ Dir(αϑ1).

• Generate text and locations: for each document d,

– Draw topic proportions from a symmetric Dirichlet prior, θ ∼ Dir(α1).
– Draw the region r from the multinomial distribution ϑ.
– Draw the location y from the bivariate Gaussian, y ∼ N (νr,Λr).
– For each word token,

∗ Draw the topic indicator z ∼ θ.
∗ Draw the word token w ∼ βrz .
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4.2.4 Inference

We apply mean-field variational inference: a fully-factored variational distribution Q is chosen
to minimize the Kullback-Leibler divergence from the true distribution. Mean-field variational
inference with conjugate priors is described in detail elsewhere (Bishop, 2006; Wainwright and
Jordan, 2008); we restrict our focus to the issues that are unique to the geographic topic model.

We place variational distributions over all latent variables of interest: θ, z, r,ϑ,η,µ, σ2,ν, and
Λ, updating each of these distributions in turn, until convergence. The variational distributions
over θ and ϑ are Dirichlet, and have closed form updates: each can be set to the sum of the
expected counts, plus a term from the prior (Blei et al., 2003). The variational distributions q(z)
and q(r) are categorical, and can be set proportional to the expected joint likelihood—to set q(z) we
marginalize over r, and vice versa.7 The updates for the multivariate Gaussian spatial parameters
ν and Λ are described by Penny (2001).

Regional Word Distributions

The variational region-topic distribution ηjk is normal, with uniform diagonal covariance for
tractability. Throughout we will write 〈x〉 to indicate the expectation of x under the variational
distribution Q. Thus, the vector mean of the distribution q(ηjk) is written 〈ηjk〉, while the vari-
ance (uniform across i) of q(η) is written V(ηjk).

To update the mean parameter 〈ηjk〉, we maximize the contribution to the variational bound
L from the relevant terms:

L
[〈η(i)jk 〉]

= 〈log p(w|β, z, r)〉+ 〈log p(η
(i)
jk |µ

(i)
k , σ

2
k)〉, (4.1)

with the first term representing the likelihood of the observed words (recall that β is computed
deterministically from η) and the second term corresponding to the prior. The likelihood term
requires the expectation 〈logβ〉, but this is somewhat complicated by the normalizer

∑W
i exp(η(i)),

which sums over all terms in the vocabulary. As in previous work on logistic normal topic models,
we use a Taylor approximation for this term (Blei and Lafferty, 2006a).

The prior on η is normal, so the contribution from the second term of the objective (Equa-
tion 4.1) is− 1

2〈σ2
k〉
〈(η(i)jk −µ

(i)
k )2〉. We introduce the following notation for expected counts: N(i, j, k)

indicates the expected count of term i in region j and topic k, and N(j, k) =
∑

iN(i, j, k). After
some calculus, we can write the gradient ∂L/∂〈η((i))jk 〉 as

N(i, j, k)−N(j, k)〈β(i)jk 〉 − 〈σ
−2
k 〉(〈η

(i)
jk 〉 − 〈µ

(i)
k 〉), (4.2)

which has an intuitive interpretation. The first two terms represent the difference in expected
counts for term i under the variational distributions q(z, r) and q(z, r, β): this difference goes to
zero when β

(i)
jk perfectly matches N(i, j, k)/N(j, k). The third term penalizes η(i)jk for deviating

from its prior µ(i)k , but this penalty is proportional to the expected inverse variance 〈σ−2k 〉. We
apply gradient ascent to maximize the objective L. A similar set of calculations gives the gradient
for the variance of η; these are described in an online appendix (Eisenstein, 2010).

7Thanks to the mean field assumption, we can marginalize over z by first decomposing across all Nd words and
then summing over q(z).
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Base Topics

The base topic parameters are µk and σ2k; in the variational distribution, q(µk) is normally dis-
tributed and q(σ2k) is Gamma distributed. Note that µk and σ2k affect only the regional word
distributions ηjk. An advantage of the logistic normal is that the variational parameters over µk
are available in closed form,

〈µ(i)k 〉 =
b2
∑J

j 〈η
(i)
jk 〉+ 〈σ2k〉a(i)

b2J + 〈σ2k〉
V(µk) = (b−2 + J〈σ−2k 〉)

−1,

where J indicates the number of regions. The expectation of the base topic µ incorporates the prior
and the average of the generated region-topics—these two components are weighted respectively
by the expected variance of the region-topics 〈σ2k〉 and the prior topical variance b2. The posterior
variance V(µ) is a harmonic combination of the prior variance b2 and the expected variance of the
region topics.

The variational distribution over the region-topic variance σ2k has Gamma parameters. These
parameters cannot be updated in closed form, so gradient ascent optimization is again required.
The derivation of these updates is more involved; see appendix.

4.2.5 Implementation

Variational scheduling and initialization are important aspects of any hierarchical generative model,
and are often under-discussed. In our implementation, the variational updates are scheduled as
follows: given expected counts, we iteratively update the variational parameters on the region-
topics η and the base topics µ, until convergence. We then update the geographical parameters ν
and Λ, as well as the distribution over regions ϑ. Finally, for each document we iteratively update
the variational parameters over θ, z, and r until convergence, obtaining expected counts that are
used in the next iteration of updates for the topics and their regional variants. We iterate an outer
loop over the entire set of updates until convergence.

We initialize the model in a piecewise fashion. First we train a Dirichlet process mixture model
on the locations y, using variational inference on the truncated stick-breaking approximation (Blei
and Jordan, 2006). This automatically selects the number of regions J , and gives a distribution
over each region indicator rd from geographical information alone. We then run standard latent
Dirichlet allocation to obtain estimates of z for each token (ignoring the locations). From this
initialization we can compute the first set of expected counts, which are used to obtain initial
estimates of all parameters needed to begin variational inference in the full model.

The prior a is the expected mean of each topic µ; for each term i, we set a(i) = logN(i)− logN ,
where N(i) is the total count of i in the corpus and N =

∑
iN(i). The variance prior b2 is set to 1,

and the prior on σ2 is the Gamma distribution G(2, 200), encouraging minimal deviation from the
base topics. The symmetric Dirichlet prior on θ is set to 1

2 , and the symmetric Dirichlet parameter
on ϑ is updated from weak hyperpriors (Minka, 2003). Finally, the geographical model takes priors
that are linked to the data: for each region, the mean is very weakly encouraged to be near the
overall mean, and the covariance prior is set by the average covariance of clusters obtained by
running K-means.
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4.2.6 Evaluation

For a quantitative evaluation of the estimated relationship between text and geography, we assess
our model’s ability to predict the geographic location of unlabeled authors based on their text
alone.8 This task may also be practically relevant as a step toward applications for recommending
local businesses or social connections. A randomly-chosen 60% of authors are used for training,
20% for development, and the remaining 20% for final evaluation.

Systems

We compare several approaches for predicting author location; we divide these into latent variable
generative models and discriminative approaches.

Geographic Topic Model This is the full version of our system, as described in this paper. To
predict the unseen location yd, we iterate until convergence on the variational updates for the hid-
den topics zd, the topic proportions θd, and the region rd. From rd, the location can be estimated
as ŷd = arg maxy

∑J
j p(y|νj ,Λj)q(rd = j). The development set is used to tune the number of

topics and to select the best of multiple random initializations.

Mixture of Unigrams A core premise of our approach is that modeling topical variation will
improve our ability to understand geographical variation. We test this idea by fixing K = 1,
running our system with only a single topic. This is equivalent to a Bayesian mixture of unigrams
in which each author is assigned a single, regional unigram language model that generates all of
his or her text. The development set is used to select the best of multiple random initializations.

Supervised Latent Dirichlet Allocation In a more subtle version of the mixture-of-unigrams
model, we model each author as an admixture of regions. Thus, the latent variable attached to
each author is no longer an index, but rather a vector on the simplex. This model is equivalent
to supervised latent Dirichlet allocation (Blei and McAuliffe, 2008): each topic is associated with
equivariant Gaussian distributions over the latitude and longitude, and these topics must explain
both the text and the observed geographical locations. For unlabeled authors, we estimate latitude
and longitude by estimating the topic proportions and then applying the learned geographical
distributions. This is a linear prediction

f(z̄d;a) = (z̄Tda
lat, z̄Tda

lon)

for an author’s topic proportions z̄d and topic-geography weights a ∈ R2K .

Text Regression We perform linear regression to discriminatively learn the relationship between
words and locations. Using term frequency features xd for each author, we predict locations with
word-geography weights a ∈ R2W :

f(xd;a) = (xT
da

lat, xT
da

lon)

8Alternatively, one might evaluate the attributed regional memberships of the words themselves. While the Dictio-
nary of American Regional English (Cassidy and Hall, 1985) attempts a comprehensive list of all regionally-affiliated
terms, it is based on interviews conducted from 1965-1970, and the final volume (covering Si–Z) is not yet complete.
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Regression Classification accuracy (%)
System Mean Dist. (km) Median Dist. (km) Region (4-way) State (49-way)
Geographic topic model 900 494 58 24
Mixture of unigrams 947 644 53 19
Supervised LDA 1055 728 39 4
Text regression 948 712 41 4
K-nearest neighbors 1077 853 37 2
Mean location 1148 1018
Most common class 37 27

Table 4.1: Location prediction results; lower scores are better on the regression task, higher scores
are better on the classification task. Distances are in kilometers. Mean location and most common
class are computed from the test set. Both the geographic topic model and supervised LDA use
the best number of topics from the development set (10 and 5, respectively).

Weights are trained to minimize the sum of squared Euclidean distances, subject to L1 regulariza-
tion: ∑

d

(xT
da

lat − ylat
d )2 + (xT

da
lon − ylon

d )2

+ λlat||alat||1 + λlon||alon||1

The minimization problem decouples into two separate latitude and longitude models, which
we fit using the glmnet elastic net regularized regression package (Friedman et al., 2010) which
has obtained good results on other text-based prediction tasks (Joshi et al., 2010). Regularization
parameters were tuned on the development set. The L1 penalty outperformed L2 and mixtures of
L1 and L2.

Note that for both word-level linear regression here, and the topic-level linear regression in
SLDA, the choice of squared Euclidean distance dovetails with our use of spatial Gaussian like-
lihoods in the geographic topic models, since optimizing a is equivalent to maximum likelihood
estimation under the assumption that locations are drawn from equivariant circular Gaussians
centered around each f(xd;a) linear prediction. We experimented with decorrelating the loca-
tion dimensions by projecting yd into the principal component space, but this did not help text
regression.

K-Nearest Neighbors Linear regression is a poor model for the multimodal density of human
populations. As an alternative baseline, we applied supervised K-nearest neighbors to predict
the location yd as the average of the positions of the K most similar authors in the training set.
We computed term-frequency inverse-document frequency features and applied cosine similarity
over their first 30 principal components to find the neighbors. The choices of principal compo-
nents, IDF weighting, and neighborhood size K = 20 were tuned on the development set.

Metrics

Our principle error metrics are the mean and median distance between the predicted and true
location in kilometers.9 Because the distance error may be difficult to interpret, we also report

9For convenience, model training and prediction use latitude and longitude as a naı̈vely projected 2D Euclidean
space. However, properly measuring the physical distance between points on the Earth’s surface requires calculating
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Figure 4.2: The effect of varying the number of topics on the median regression error (lower is
better).

accuracy of classification by state and by region of the United States. Our data includes the 48
contiguous states plus the District of Columbia; the U.S. Census Bureau divides these states into
four regions: West, Midwest, Northeast, and South.10 Note that while major population centers
straddle several state lines, most region boundaries are far from the largest cities, resulting in a
clearer analysis.

Results

As shown in Table 4.1, the geographic topic model achieves the strongest performance on all
metrics. All differences in performance between systems are statistically significant (p < .01) using
the Wilcoxon-Mann-Whitney test for regression error and the χ2 test for classification accuracy.
Figure 4.2 shows how performance changes as the number of topics varies.

Note that the geographic topic model and the mixture of unigrams use identical code and
parametrization – the only difference is that the geographic topic model accounts for topical vari-
ation, while the mixture of unigrams sets K = 1. These results validate our basic premise that it is
important to model the interaction between topical and geographical variation.

Text regression and supervised LDA perform especially poorly on the classification metric.
Both methods make predictions that are averaged across each word in the document: in text re-
gression, each word is directly multiplied by a feature weight; in supervised LDA the word is
associated with a latent topic first, and then multiplied by a weight. For these models, all words
exert an influence on the predicted location, so uninformative words will draw the prediction
towards the center of the map. This yields reasonable distance errors but poor classification ac-
curacy. We hypothesized that K-nearest neighbors would be a better fit for this metric, but its
performance is poor at all values of K. Of course it is always possible to optimize classification
accuracy directly, but such an approach would be incapable of predicting the exact geographi-
cal location, which is the focus of our evaluation (given that the desired geographical partition

the great circle distance, for which we use the Haversine formula (Sinnott, 1984). For the continental U.S., degree-space
is a reasonable approximation for modeling. While the dimensions are are differently sized—in the geographical center
of the U.S., latitude is about 111 km/degree while longitude is about 85 km/degree—since our model includes spatial
covariance, it effectively stretches and rotates as much as necessary. Extending the model to a continental scale would
require a more sophisticated approach.

10http://www.census.gov/geo/www/us_regdiv.pdf
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“basketball”
“popular
music”

“daily life” “emoticons” “chit chat”

PISTONS KOBE
LAKERS game

DUKE NBA
CAVS STUCKEY

JETS KNICKS

album music
beats artist

video #LAKERS
ITUNES tour

produced vol

tonight shop
weekend

getting going
chilling ready

discount
waiting iam

:) haha :d :( ;)
:p xd :/

hahaha hahah

lol smh jk yea
wyd coo ima

wassup
somethin jp

Boston
+ CELTICS

victory
BOSTON

CHARLOTTE

playing
daughter

PEARL alive
war comp

BOSTON ;p gna loveee
ese exam suttin

sippin

N. California

+ THUNDER
KINGS GIANTS
pimp trees clap

SIMON dl
mountain seee 6am OAKLAND

pues hella koo
SAN fckn

hella flirt hut
iono OAKLAND

New York + NETS KNICKS BRONX iam cab oww wasssup nm

Los Angeles+ #KOBE
#LAKERS
AUSTIN

#LAKERS load
HOLLYWOOD
imm MICKEY

TUPAC

omw tacos hr
HOLLYWOOD

af papi raining
th bomb coo
HOLLYWOOD

wyd coo af
nada tacos

messin fasho
bomb

Lake Erie
+ CAVS

CLEVELAND
OHIO BUCKS

od COLUMBUS

premiere prod
joint TORONTO
onto designer

CANADA
village burr

stink
CHIPOTLE

tipsy

;d blvd BIEBER
hve OHIO

foul WIZ salty
excuses lames

officer
lastnight

Table 4.2: Example base topics (top line) and regional variants. For the base topics, terms are
ranked by log-odds compared to the background distribution. The regional variants show words
that are strong compared to both the base topic and the background. Foreign-language words
are shown in italics, while terms that are usually in proper nouns are shown in SMALL CAPS. See
Table 4.3 for definitions of slang terms; see Section 4.2.7 for more explanation and details on the
methodology.

is unknown). Note that the geographic topic model is also not trained to optimize classification
accuracy.

4.2.7 Analysis

Our model permits analysis of geographical variation in the context of topics that help to clarify
the significance of geographically-salient terms. Table 4.2 shows a subset of the results of one
randomly-initialized run, including five hand-chosen topics (of 50 total) and five regions (of 13,
as chosen automatically during initialization). Terms were selected by log-odds comparison. For
the base topics we show the ten strongest terms in each topic as compared to the background
word distribution. For the regional variants, we show terms that are strong both regionally and
topically: specifically, we select terms that are in the top 100 compared to both the background
distribution and to the base topic. The names for the topics and regions were chosen by the au-
thors.

Nearly all of the terms in column 1 (“basketball”) refer to sports teams, athletes, and place
names—encouragingly, terms tend to appear in the regions where their referents reside. Column
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term definition
af as fuck (very)
coo cool
dl download
fasho for sure
gna going to
hella very
hr hour
iam I am
ima I’m going to
imm I’m
iono I don’t know
lames lame (not cool)

people

term definition
jk just kidding
jp just playing

(kidding)
koo cool
lol laugh out loud
nm nothing much
od overdone (very)
omw on my way
smh shake my head
suttin something
wassup what’s up
wyd what are you

doing?

Table 4.3: A glossary of non-standard terms from Table 4.2. Definitions are obtained by manually
inspecting the context in which the terms appear, and by consulting www.urbandictionary.
com.

4.2.8 Related Work

The relationship between language and geography has been a topic of interest to linguists since
the nineteenth century (Johnstone, 2010). An early work of particular relevance is Kurath’s Word
Geography of the Eastern United States (1949), in which he conducted interviews and then mapped
the occurrence of equivalent word pairs such as stoop and porch. The essence of this approach—
identifying variable pairs and measuring their frequencies—remains a dominant methodology
in both dialectology (Labov et al., 2006) and sociolinguistics (Tagliamonte, 2006). Within this
paradigm, computational techniques are often applied to post hoc analysis: logistic regression (Sankoff
et al., 2005) and mixed-effects models (Johnson, 2009) are used to measure the contribution of in-
dividual variables, while hierarchical clustering and multidimensional scaling enable aggregated
inference across multiple variables (Nerbonne, 2009). However, in all such work it is assumed that
the relevant linguistic variables have already been identified—a time-consuming process involv-
ing considerable linguistic expertise. We view our work as complementary to this tradition: we
work directly from raw text, identifying both the relevant features and coherent linguistic com-
munities.

An active recent literature concerns geotagged information on the web, such as search queries (Back-
strom et al., 2008) and tagged images (Crandall et al., 2009). This research identifies the geographic
distribution of individual queries and tags, but does not attempt to induce any structural organi-
zation of either the text or geographical space, which is the focus of our research. More relevant
is the work of Mei et al. (2006), in which the distribution over latent topics in blog posts is condi-
tioned on the geographical location of the author. This is somewhat similar to the supervised LDA
model that we consider, but their approach assumes that a partitioning of geographical space into
regions is already given. The dataset we released with the published version of this paper has been
used for several studies investigating the geolocation task. Wing and Baldridge (2011); Roller et al.
(2012) focus just on the geolocation task, Eisenstein et al. (2011b) present a variant of the model
here, and Hong et al. (2012); Ahmed et al. (2013) also discover geographical topics using different
models.

Methodologically, our cascading topic model is designed to capture multiple dimensions of
variability: topics and geography. Mei et al. (2007) include sentiment as a second dimension in a
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topic model, using a switching variable so that individual word tokens may be selected from either
the topic or the sentiment. However, our hypothesis is that individual word tokens reflect both the
topic and the geographical aspect. Sharing this intuition, Paul and Girju (2010) build topic-aspect
models for the cross product of topics and aspects. They do not impose any regularity across
multiple aspects of the same topic, so this approach may not scale when the number of aspects is
large (they consider only two aspects). We address this issue using cascading distributions; when
the observed data for a given region-topic pair is low, the model falls back to the base topic. The
use of cascading logistic normal distributions in topic models follows earlier work on dynamic
topic models (Blei and Lafferty, 2006b; Xing, 2005). Paul and Dredze (2012) present an alternative
Dirichlet approach to combining multiple factors into topic-word distributions. (There has also
been previous work with hierarchical Dirichlets and their generalizations for n-gram models of
differing prefix lengths (MacKay and Peto, 1995; Teh, 2006) and interpolating against document-
level topics (Wallach, 2008, §3.4).) Eisenstein et al. (2011b) extend the additive cascading topics
approach here to have sparse deviations, and Roberts et al. (2013) embed them in a more general
covariate-influenced topic model.

4.3 Demographic lexical variation through U.S. Census data

(This section was originally published as O’Connor et al. (2010b).)

4.3.1 Introduction

In this study, we apply the model of §4.2 to discover demographic language variation from text
and metadata, in order to explain both linguistic variation and demographic features through a
set of generative distributions, each of which is associated with a (latent) community of speakers.
Thus, our model is capable of discovering both the relevant sociolinguistic communities, as well
as the key dimensions of lexical variation.

4.3.2 Data

We start with the same dataset used in Section 4.2, focusing on a randomly-selected subset of 4875
authors. For this research, we have extended the corpus with detailed demographic metadata.
While it is difficult to identify the demographic attributes of individual speakers, we can cross-
reference speaker locations against U.S. Census data to extract aggregate demographic statistics
of each user’s geographic location.12 We use the Zip Code Tabulation Areas (ZCTA) level of gran-
ularity, which partitions the U.S. into 33,178 geographic features (typically polygons). Using a
standard geospatial tool,13 we match each author’s location to the area that contains it, and use
the area’s demographics as that author’s demographic metadata. The set of features that we con-
sider are shown in Table 4.4. To give a rough view of word association, for each variable we show
the top five words ranked by the sample-corrected average demographic value among authors
who use them at least once.14 Some terms are telling by themselves, though some aspects are ob-
viously issues with the relatively small sample and narrow timeframe (e.g. mangoville); based in
part on this experience, in Chapter 5 we focus on longer-term data.

12We use year 2000 data from Summary Files 1 and 3: http://www.census.gov/support/cen2000.html
13PostGIS: http://postgis.net/
14We rank by the lower bound of the 95% confidence interval for the mean: µ̂− 1.96 σ̂/

√
n. Using the raw average

always places rare words in the top ranks, which is often due to statistical noise.
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Demographic Variable Mean SD Words with Highest Average
Percent White 52.1% 29.0 leno, fantastic, holy, military, review
Percent African-American 32.2% 29.1 lml, momz, midterms, bmore, fuccin
Percent Hispanic 15.7% 18.3 cuando, estoy, pero, eso, gracias
Percent English speakers 73.7% 18.4 #lowkey, porter, #ilovefamu, nc, atlanta
Percent population in urban areas 95.1% 14.3 odeee, thatt, m2, maddd, mangoville
Percent family households 64.1% 14.4 mangoville, lightskin, iin, af, aha
Median annual income† $39,045 (26k, 59k) mangoville, tuck, itunes, jim, dose

Figure 4.4: List of demographic variables used, selected from 2000 U.S. Census data, along with
their mean and standard deviation among authors in the data, and the words with the highest
sample-adjusted average values. The procedure for selecting words is described in Section 4.3.2;
some analysis appears in Section 4.3.4. (Income is shown in dollars, but the model uses log-dollars.
The SD column shows (µ̂± σ̂) computed on the log scale.)

While geographical aggregate statistics are frequently used to proxy for individual socioeco-
nomic status in research fields such as public health (e.g., Rushton, 2008), it is clear that interpreta-
tion must proceed with caution. Consider an author from a zip code in which 60% of the residents
are Hispanic:15 we do not know the likelihood that the author is Hispanic, because the set of Twit-
ter users is not a representative sample of the overall population. Polling research suggests that
users of both Twitter (Smith and Rainie, 2010) and geolocation services (Zickuhr and Smith, 2010)
are much more diverse with respect to age, gender, race and ethnicity than the general population
of Internet users. Nonetheless, at present we can only use aggregate statistics to make inferences
about the geographic communities in which our authors live, and not the authors themselves.

4.3.3 Model

Our latent variable model combines demographic metadata with microblog text. The goal is to
extract a set of latent sociolinguistic communities which are coherent with respect to both data
sources. Our model combines a multinomial distribution over text with a multivariate Gaus-
sian over the demographic statistics; these generative components are unified in a Dirichlet pro-
cess mixture, in which each speaker has a latent “community” index. The model corresponds to
the single-membership, “mixture of unigrams” version of Section 4.2’s Geographic Topic Model,
where K = 1. For clarity, we give a complete description of this version of the model as follows.

We hypothesize a generative stochastic process that produces the text and the demographic
data for each author. This generative process includes a set of latent variables; we will recover a
variational distribution over these latent variables using a mean field representation. The plate
diagram for this model is shown in Figure 4.5. The key latent variable is the community member-
ship of each author, which we write cd; this variable selects a distribution over both the metadata
and the text. Each distribution over metadata is a multivariate Gaussian with parameters µ and
Λ; each distribution over text is a multinomial with parameter β. Overall, we can describe the
generative process as:

• Draw the community proportions ϑ from a stick-breaking prior,

• Generate the community distributions. For each community i,
15In the U.S. Census, the official ethnonym is Hispanic or Latino; for brevity we use Hispanic in the rest of this thesis.
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Figure 4.5: Plate diagram for our model of text and demographics, with a table of all random
variables. The document indices in the figure are implicit, as are the priors on µ,Λ,β.

– Draw the metadata mean µi from a multivariate Normal prior,

– Draw the metadata precision matrix Λi from a Wishart prior,

– Draw the word distribution βi from a Dirichlet prior,

• Generate the text and metadata. For each author d,

– Draw the community cd from the distribution ϑ,

– Draw the metadata yd from a Gaussian with mean µcd and precision Λcd ,

– Draw the bag of words wd from the multinomial βcd ,

We apply mean field variational inference to recover a posterior distribution over the random
variables in this model (Bishop, 2006), as described in §4.2.4. For efficiency, we initialized by
running the Dirichlet process mixture model on the demographic data alone. The number of
active clusters from this initialization was used as the fixed number of clusters when running the
full model on both text and demographics data.

4.3.4 Analysis

Figure 4.4 shows the words associated with large values for each demographic feature, ranked
by sample-corrected averages (described above). This is informative and should be viewed as
an exploratory method in its own right; however, correlations between demographic variables
make it difficult to disentangle the underlying relationships between demography and lexical
frequencies.

In contrast, Figure 4.3.3 summarizes all of the sociolinguistic clusters identified by our model.
All clusters are shown. Each row shows a cluster that corresponds to a distribution over demo-
graphic information, along with a set of characteristic terms as chosen by likelihood ratio. This
cluster analysis allows us to associate each term with a complete demographic profile.

Several of the top terms refer to subjects which attracted only an ephemeral interest, and would
likely not appear in a dataset taken from a longer timespan. The term 19th refers to an event on
March 19, 2010 that was a frequent subject of conversation in this dataset. The term olive usually
refers to the Olive Garden restaurant; mangoville refers to a restaurant in New York City. Florida
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Mean Vector Top Words

Cluster 1
white
black
hisp

urban
family

english
income

rsvp, ent, guest, blvd, broadcasting, details, bash, lls,
retweet, ——, #free, —-, hosting, pow, vibe, 31, vol,
—–, feat, 2nite

Cluster 2
white
black
hisp

urban
family

english
income

en, de, el, que, es, por, se, un, los, pero, una, como,
para, lo, del, te, si, eso, la, tu

Cluster 3
white
black
hisp

urban
family

english
income

ii, dha, yu, uu, yuu, dhat, lols, lolss, lml, qo, qot, w—,
myy, iim, qet, yuh, smhh, niqqa, buh, &&

Cluster 4
white
black
hisp

urban
family

english
income

#ilovefamu, lmbo, grind, official, awards, #lowkey,
#famusextape, jake, track, spirit, #thatisall, mental,
famu, praying, studying, you’re, bible, midterm, joy,
awesome

Cluster 5
white
black
hisp

urban
family

english
income

lls, jawn, neighbors, joints, nivea, #famusextape,
sextape, #epicfail, cuddle, broad, midterms, jeezy,
#thatisall, basic, nigga, waited, tmobile, menu, bcuz,
famu

Cluster 6
white
black
hisp

urban
family

english
income

gimmie, hosted, —, download, b-day, dl, limit,
drake, mix, dj, mc, salute, //, #unotfromthehoodif,
ft, exclusive, birthday, models, -, lab

Cluster 7
white
black
hisp

urban
family

english
income

:], ;], - -, ˆ, bahaha, :d, papi, ˆ ˆ, ily, aha, =], fck, ha-
hah, lovee, ew, yess, :/, #urparentsever, mangoville,
jamaica

Cluster 8
white
black
hisp

urban
family

english
income

dats, dat, dis, wat, da, watz, dey, wats, den, gud,
wen, gravity, niggaz, jus, der, fuk, rite, dem, tha, dese

Cluster 9
white
black
hisp

urban
family

english
income

rare, 19th, olive, simply, adam, agent, coffee, obama,
awesome, 400, hockey, leno, thomas, worked, pen-
tagon, #fb, tone, presents, larry, peppers

Figure 4.6: Demographic mean vectors and most salient words per cluster. Demographic variables
are shown on a normalized scale; zero indicates the population mean, and the axis tick marks
denote ±1 standard deviation; see Table 4.4 for their values. For each cluster k, words shown are
the top-20 most highly ranked by the ratio of topic probability against background probability:
βk[w]
p̂(w) .
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A&M, a historically-black university, appears in the terms #ilovefamu and #famusextape. Terms that
start with hashtags (e.g., #epicfail, #thatisall) often represent “trends” that are shown on all users’
Twitter pages; many users participate by adding their own commentary on such tags (Kwak et al.,
2010). The topic lists also contain several names, including leno, obama, and the musicians drake
and jeezy.

One cluster (number 2) contains exclusively Spanish words. These words exhibit a strong
mutual association, as many authors will use only Spanish words and few if any words in English.
This cluster is relatively diffuse with regard to demographic data, and thus we would not expect
it to be detected without recourse to the linguistic properties of the speakers. Note that while
this cluster contains a high proportion of Hispanics, it also appears to contain an above-average
number of white speakers. We see two potential explanations: the speakers in this cluster may
come from mixed white-Hispanic neighborhoods, or the individual authors may identify as both
ethnicities.

We see a number of phenomena which are characteristic of computer-mediated communica-
tion, including emoticons, phonetic spelling, and abbreviations (Tagliamonte and Denis, 2008).
Emoticons (e.g., :]) are grouped in cluster 7, which contains many Hispanics and is above-average
with respect to income. Phonetic spelling is used in clusters 3 and 8, which are the two lowest-
income clusters and contain the fewest whites. The other group with an above-average number of
blacks is cluster 5, and the associated language is somewhat more standardized. Relative to clus-
ters 3 and 8, cluster 5 is wealthier, more urban, and contains more whites and fewer Hispanics.

Clusters 1, 4, and 9 are substantially less urban than the other clusters, and they contain the
most standard English words. Of particular interest is cluster 4, which is the only non-urban
cluster with lower-than-average income; the fact that this cluster is still relatively standard may
provide hint to the relative importance of urbanity and wealth with respect to relative frequency
of standard and “vernacular” language. These findings are better thought of as provisional, given
the complexities and limitations of the data, such as age and demographic skew of Twitter versus
the full population the Census considers, and the small timeframe of the dataset.

4.4 Conclusion and reflections on textual social data analysis

The relationship between language, geography, and social identity has traditionally been studied
with respect to micro-level phenomena, such as phonological features or individual words, that
have been manually identified by researchers. In this work, we take a more holistic approach to
discovering groups of words whose variation is associated with social factors, using a generative
model that operates on authors’ microblog texts. In §4.2 our model extracts geographic-linguistic
communities that are coherent with respect to geographic location and text, while in §4.3 we dis-
cover sociolinguistic communities that are coherent with respect to both demographic metadata
and text. This model also identifies individual terms that are especially characteristic of these
communities in social media.

The overwhelming prevalence of non-standard and novel words was a surprise to us, and
made evident that new forms of language are apparently being invented in the medium of on-
line discussions. While the one-week dataset was convenient for getting started with analysis
and model development, it is apparent that many aspects of language in social media might be
ephemeral, and the results in this chapter are sometimes very specific to the dates the dataset was
gathered. One lesson is that, in order to collect data for general linguistic analysis, it is important
to use data from over a long timespan; we do this in support of a part-of-speech tagging system
in Owoputi et al. (2013) (not included in this thesis). But also, this suggests that the temporal as-
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pect of how geography, demographics, and language interact—that is, the social determinants of
language change—is interesting in itself. This is the focus of the next chapter.

Finally, within the range of computational methods pursued in this thesis, this work stands at a
particular position: it consists of a fairly complex, latent variable model used for exploratory anal-
ysis. The mixed-membership clustering is very useful for understanding broader groups of terms
and authors, and it helped us get a sense that there exist large and widely used vocabularies—
entire linguistic worlds—that are very divergent from standard English.

However, latent variable approaches have some practical issues for exploratory data analy-
sis (EDA). For one, on large datasets, they can be computationally intensive to run, which runs
counter to the need of rapid iterative data analytic experimentation when doing EDA. Newer
research since this work has found ways to improve inference speed for topic models (such as
stochastic variational approximations (Hoffman et al., 2013), or more specialized moment-based
methods (Anandkumar et al., 2012; Arora et al., 2012)), but given the intractability of either poste-
rior or maximum likelihood inference, runtimes may always be much slower than simpler count-
based methods, such as the pointwise mutual information approach described in Chapter 2. In
fact, after finishing the published version of Section 4.2, we experimented further with spatial den-
sity plots of individual terms, yielding fascinating patterns shown in the next chapter (Figure 5.1),
and further investigated there. The experience of doing direct analysis of words against spatial
coordinates also informed the MiTextExplorer tool, which attempts to better automated and make
more interactive this type of exploratory text data analysis (Chapter 2).

Also, in work outside this thesis, we found PMI methods useful to summarize geographically-
specific terms in Chinese social media (Bamman et al., 2012), to better understand the nature of
government censorship of that medium. There, regions were pre-defined by the data (for example,
some are provinces in China), and thus are a discrete variable amenable to measuring PMI against
word frequencies. If there is access to coordinate-level location data, the geographic topic model
developed in this chapter is more powerful in some respects because it discovers spatial regions,
instead of pre-defining them; but this can also make analysis more difficult, since it requires effort
to understand and verify that the inferred regions are meaningful for a particular analysis.

Still, latent variable models have many uses. The next chapter utilizes latent variables not
for grouping terms, but for understanding temporal and diffusion dynamics of individual words.
And Chapter 6, which investigates textually described events between political actors, makes ex-
tensive use of a topic model in order to infer latent classes of events.
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Chapter 5

Social determinants of linguistic
diffusion in social media

(An earlier version of this work was published as Eisenstein et al. (2012).)

5.1 Synopsis

Computer-mediated communication is driving fundamental changes in the nature of written lan-
guage. We investigate these changes by statistical analysis of a dataset comprising 107 million
Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autore-
gressive model to aggregate across thousands of words, we identify high-level patterns in diffu-
sion of linguistic change over the United States. Our model is robust to unpredictable changes in
Twitter’s sampling rate, and provides a probabilistic characterization of the relationship of macro-
scale linguistic influence to a set of demographic and geographic predictors. The results of this
analysis offer support for prior arguments that focus on geographical proximity and population
size. However, demographic similarity – especially with regard to race – plays an even more
central role, as cities with similar racial demographics are far more likely to share linguistic in-
fluence. Rather than moving towards a single unified “netspeak” dialect, language evolution in
computer-mediated communication reproduces existing fault lines in spoken American English.

5.2 Introduction

An increasing proportion of informal communication is conducted in written form, mediated by
technology such as smartphones and social media platforms. Written language has been forced to
adapt to meet the demands of synchronous conversation, resulting in a creative burst of new
forms, such as emoticons, abbreviations, phonetic spellings, and other neologisms (Androut-
sopoulos, 2000; Anis, 2007; Herring, 2012). Such changes have often been considered as a single,
uniform dialect — both by researchers (Crystal, 2006; Squires, 2010) and throughout the popu-
lar press (Thurlow, 2006; Squires, 2010). But despite the fact that social media facilitates instant
communication between distant corners of the earth, the adoption of new written forms is often
sharply delineated by geography and demographics (Eisenstein et al., 2010, 2011c; Schwartz et al.,
2013). For example: the abbreviation ikr (I know, right?) occurs six times more frequently in the
Detroit area than in the United States overall; the emoticon ˆ-ˆ occurs four times more frequently
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in Southern California; the phonetic spelling suttin (something) occurs five times more frequently
in New York City.

These differences raise questions about how language change spreads in online communica-
tion. What groups are influential, and which communities evolve together? Is written language
moving toward global standardization or increased fragmentation? As language is a crucial con-
stituent of personal and group identity, examination of the competing social factors that drive
language change can shed new light on the hidden structures that shape our society. This chapter
offers a new technique for inducing networks of linguistic influence and co-evolution from raw
word counts. We then seek explanations for this network in a set of demographic and geographic
predictors.

A wave of recent research has shown how social media datasets can enable large-scale analysis
of patterns of communication (Lotan et al., 2011; Wu et al., 2011), sentiment (Dodds et al., 2011;
Thelwall, 2009; Mitchell et al., 2013), and influence (Lazer et al., 2009; Aral and Walker, 2012;
Bond et al., 2012; Gomez-Rodriguez et al., 2012; Bakshy et al., 2012). Such work has generally
focused on tracking the spread of discrete behaviors, such as using a piece of software (Aral and
Walker, 2012), reposting duplicate or near-duplicate content (Leskovec et al., 2009; Cha et al., 2010;
Lotan et al., 2011), voting in political elections (Bond et al., 2012), or posting a hyperlink to online
content (Gomez-Rodriguez et al., 2012; Bakshy et al., 2012). Tracking linguistic changes poses
a significant additional challenge, as we are concerned not with the first appearance of a word,
but with the bursts and lulls in its popularity over time (Altmann et al., 2009). In addition, the
well known “long-tail” nature of both word counts and city sizes (Zipf, 1949/2012) ensures that
most counts for words and locations will be sparse, rendering simple frequency-based methods
inadequate.

Language change has long been an active area of research, and a variety of theoretical mod-
els have been proposed. In the wave model, linguistic innovations spread through interactions
over the course of an individual’s life, so the movement of linguistic innovation from one region
to another depends on the density of interactions (Bailey, 1973). In the simplest version of this
model, the probability of contact between two individuals depends on their distance, so linguistic
innovations should diffuse continuously through space. The gravity and cascade models refine
this view, arguing that the likelihood of contact between individuals from two cities depends on
the size of the cities as well as their distance; thus, linguistic innovations should be expected to
travel between large cities first (Trudgill, 1974; Labov, 2003). However, Nerbonne and Heeringa
find little evidence that population size impacts diffusion of pronunciation differences in dialects
of the Netherlands (Nerbonne and Heeringa, 2007).

Cultural factors also play an important role in both the diffusion of, and resistance to, lan-
guage change. Many words and phrases have entered the standard English lexicon from minority
dialects (Lee, 1999); conversely, there is evidence that minority groups in the United States resist
regional sound changes associated with European American speakers (Gordon, 2000), and that
racial differences in speech persist even in conditions of very frequent social contact (Rickford,
1985). At present there are few quantitative sociolinguistic accounts of how geography and demo-
graphics interact; nor are their competing roles explained in the menagerie of theoretical models
of language change, such as evolutionary biology (Zhang and Gong, 2013; Baxter et al., 2006), dy-
namical systems (Niyogi and Berwick, 1997), Nash equilibria (Trapa and Nowak, 2000), Bayesian
learners (Reali and Griffiths, 2010), and agent-based simulations (Fagyal et al., 2010). In general,
such research is concerned with demonstrating that a proposed theoretical framework can ac-
count for observed phenomena like geographical distribution of linguistic features and their rate
of adoption over time. In contrast, this chapter is concerned with fitting a model to a large corpus
of text data from individual language users, and analyzing the social meaning of the resulting
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parameters.
Research on reconstructing language phylogenies from cognate tables is more closely related (Gray

and Atkinson, 2003; Gray et al., 2009; Bouckaert et al., 2012; Dunn et al., 2011), but rather than a
phylogenetic process in which languages separate and then develop in relative independence,
we have closely-related varieties of a single language, which are in constant interaction. Other
researchers have linked databases of typological linguistic features (such as morphological com-
plexity) with geographical and social properties of the languages’ speech communities (Lupyan
and Dale, 2010; Daumé III, 2009). Again, our interest is in more subtle differences within the same
language, rather than differences across the entire set of world languages. The typological atlases
and cognate tables that are the basis such work are inapplicable to our problem, requiring us to
take a corpus-based approach (Szmrecsanyi, 2011), estimating an influence network directly from
raw text.

The overall aim of this work is to build a computational model capable of identifying the
demographic and geographic factors that drive the spread of newly popular words in online text.
To this end, we construct a statistical procedure for recovering networks of linguistic diffusion
from raw word counts, even as the underlying social media sampling rate changes unaccountably.
We present a procedure for Bayesian inference in this model, capturing uncertainty about the
induced diffusion network. We then consider a range of demographic and geographic factors
which might explain the networks induced from this model, using a logistic regression analysis.
This lends support to prior work on the importance of population and geography, but reveals a
strong role for racial homophily at the level of city-to-city linguistic influence.

5.3 Materials and methods

We conducted a statistical analysis of a corpus of public data from the microblog site Twitter, from
2009–2012. The corpus includes 107 million messages, mainly in English, from more than 2.7 mil-
lion unique user accounts. Each message contains GPS coordinates to locations in the continental
United States. The data was temporally aggregated into 165 week-long bins. After taking mea-
sures to remove marketing-oriented accounts, each user account was associated with one of the
200 largest Metropolitan Statistical Areas (MSA) in the United States, based on their geographi-
cal coordinates. The 2010 United Census provides detailed demographics for MSAs. By linking
this census data to changes in word frequencies, we can obtain an aggregate picture of the role of
demographics in the diffusion of linguistic change in social media.

Empirical research suggests that Twitter’s user base is younger, more urban, and more heavily
composed of ethnic minorities, in comparison with the overall United States population (Mislove
et al., 2011; Duggan and Smith, 2013). Our analysis does not assume that Twitter users are a
representative demographic sample of their geographic areas. Rather, we assume that on a macro
scale, the diffusion of words between metropolitan areas depends on the overall demographic
properties of those areas, and not on the demographic properties specific to the Twitter users that
those areas contain. Alternatively, the use of population-level census statistics can be justified
on the assumption that the demographic skew introduced by Twitter — for example, towards
younger individuals — is approximately homogeneous across cities. Table 5.1 shows the average
demographics for the 200 MSAs considered in our study.

Linguistically, our analysis begins with the 100,000 most frequent terms overall. We narrow
this list to 4,854 terms whose frequency changed significantly over time. The excluded terms
have little dynamic range; they would therefore not substantially affect the model parameters,
but would increase the computational cost if included. We then manually further refine the list to
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mean st. dev
Population 1,170,000 2,020,000

Log Population 13.4 0.9
% Urbanized 77.1 12.9

Median Income 61,800 11,400
Log Median Income 11.0 0.2

Median age 36.8 3.9
% Renter 34.3 5.2
% Af. Am 12.9 10.6

% Hispanic 15.0 17.2

Table 5.1: Statistics of metropolitan statistical areas. Mean and standard deviation for demo-
graphic attributes of the 200 Metropolitan Statistical Areas (MSAs) considered in this study, from
2010 Census data.

2,603 English words, by excluding names, hashtags, and foreign language terms. Both a complete
list of terms and more detailed procedures for data acquisition are given in §5.6.

Figure 5.1 shows the geographical distribution of six words over time. The first row shows the
word ion, which is a shortened form of I don’t, as in ion even care. Systematically coding a random
sample of 300 occurrences of the string ion in our dataset revealed two cases of the traditional
chemistry sense of ion, and 294 cases that clearly matched I don’t. This word displays increasing
popularity over time, but remains strongly associated with the Southeast. In contrast, the second
row shows the emoticon - - (indicating annoyance), which spreads from its initial bases in coastal
cities to nationwide popularity. The third row shows the abbreviation ctfu, which stands for crack-
ing the fuck up (i.e., laughter). At the beginning of the sample it is active mainly in the Cleveland
area; by the end, it is widely used in Pennsylvania and the mid-Atlantic, but remains rare in the
large cities to the west of Cleveland, such as Detroit and Chicago. What explains the non-uniform
spread of this term’s popularity?

While individual examples are intriguing, we seek an aggregated account of the spatiotem-
poral dynamics across many words, which we can correlate against geographic and demographic
properties of metropolitan areas. Due to the complexity of drawing inferences about influence and
demographics from raw word counts, we perform this process in stages. (A block diagram of the
procedure is shown in Figure 5.2.) First, we model word frequencies as a dynamical system, us-
ing Bayesian inference over the latent spatiotemporal activation of each word. We use sequential
Monte Carlo (Godsill et al., 2004) to approximate the distribution over spatiotemporal activations
with a set of samples. Within each sample, we induce a model of the linguistic dynamics between
metropolitan areas, which we then discretize into a set of pathways. Finally, we perform logistic
regression to identify the geographic and demographic factors that correlate with the induced lin-
guistic pathways. By aggregating across samples, we can estimate the confidence intervals of the
resulting logistic regression parameters.

5.3.1 Modeling spatiotemporal lexical dynamics in social media data

This section describes our approach for modeling lexical dynamics in our data. We represent
our data as counts cw,r,t, which is the number of individuals who used the word w at least once
in MSA r at time t (i.e., one week). (Mathematical notation is summarized in Table 5.2. We do
not consider the total number of times a word is used, since there are many cases of a single
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Figure 5.2: Block diagram for our statistical modeling procedure. The dotted outline indicates
repetition across samples drawn from sequential Monte Carlo.

cw,r,t Number of individuals who used word w in metropolitan area r during week t.
sr,t Number of individuals who posted messages in metropolitan area r at time t.
pw,r,t Empirical probability that an individual from metropolitan area r will use word w

during week t.
ηw,r,t Latent spatiotemporal activation for word w in metropolitan area r at time t.
νw,t Global activation for word w at time t.
µr,t Regional activation (“verbosity”) for metropolitan area r at time t.
ar1,r2 Autoregressive coefficient from metropolis r1 to r2.
A = {ar1,r2} Complete autoregressive dynamics matrix.
σ2w,r Autoregressive variance for ηw,r,t, for all times t.
λ Variance of zero-mean Gaussian prior over each ar1,r2 .
ω
(k)
w,r,t Weight of sequential Monte Carlo hypothesis k for word w, metropolis r, and time

t.
zr1,r2 z-score of ar1,r2 , computed from empirical distribution over Monte Carlo samples.
B Set of ordered city pairs for whom ar1,r2 is significantly greater than zero, computed

over all samples.
B(k) Top L ordered city pairs, as sorted by the bottom of the 95% confidence interval on

{a(k)r1,r2}.
Q Random distribution over discrete networks, designed so that the marginal fre-

quencies for “sender” and “receiver” metropolises are identical to their empirical
frequencies in the model-inferred network.

Table 5.2: Table of mathematical notation.

implies that the sampling rate is approximately 10%; but in 2010 and earlier, the sampling rate
appears to be 15% or 5%.1 After 2010, the volume growth in our data is relatively smooth, im-
plying that the sampling is fair (unlike the findings of Morstatter et al., which focus on a more
problematic case involving query filters, which we do not use).

Raw counts are not appropriate for analysis, because the MSAs have wildly divergent numbers
of users and messages. New York City has four times as many active users as the 10th largest MSA

1This estimate is based on inspection of message IDs modulo 100, which appears to be how sampling was imple-
mented at that time.
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(San Francisco-Oakland, CA), twenty times as many as the 50th largest MSA (Oklahoma City,
OK), and 200 times as many as the 200th largest MSA (Yakima, WA); these ratios are substantially
larger when we count messages instead of active users. This necessitates normalizing the counts
to frequencies pw,r,t = cw,r,t/sr,t, where sr,t is the number of individuals who have written at least
one message in region r at time t. The resulting frequency pw,r,t is the empirical probability that a
random user in (r, t) used the word w. Word frequencies treat large and small cities more equally,
but suffer from several problems:

• The frequency pw,r,t is not invariant to a change in the sampling rate: if, say, half the messages
are removed, the probability of seeing a user use any particular word goes down, because
sr,t will decrease more slowly than cw,r,t for any w. The changes to the global sampling rate
in our data drastically impact pw,r,t.

• Users in different cities can be more or less actively engaged with Twitter: for example, the
average New Yorker contributed 55 messages to our dataset, while the average user within
the San Francisco-Oakland MSA contributed 21 messages. Most cities fall somewhere in
between these extremes, but again, this “verbosity” may change over time.

• Word popularities can be driven by short-lived global phenomena, such as holidays or
events in popular culture (e.g., TV shows, movie releases), which are not interesting from
the perspective of persistent changes to the lexicon. We manually removed terms that di-
rectly refer to such events (as described in Section 5.6), but there may be unpredictable
second-order phenomena, such as an emphasis on words related to outdoor cooking and
beach trips during the summer, and complaints about boredom during the school year.

• Due to the long-tail nature of both word counts and city populations (Clauset et al., 2009),
many word counts in many cities are zero at any given point in time. This floor effect means
that least squares models, such as Pearson correlations or the Kalman smoother, are poorly
suited for this data, in either the cw,r,t or pw,r,t representations.

A latent vector autoregressive model

To address these issues, we build a latent variable model that controls for these confounding ef-
fects, yielding a better view of the underlying frequency dynamics for each word. Instead of
working with raw frequencies pw,r,t, we perform inference over latent variables ηw,r,t, which rep-
resent the underlying activation of word w in MSA r at time t. This latent variable parameterizes
a distribution for the count data cw,r,t via a binomial distribution with the number of trials sr,t. A
binomial distribution requires a frequency parameter, which we attain by passing η through the
logistic function, where Logistic(η) = 1/(1 + e−η).

An η-only model, therefore, would be

cw,r,t ∼ Binomial(sr,t,Logistic(ηw,r,t)) (5.1)

This is a very simple generalized linear model with a logit link function (Gelman and Hill, 2006),
in which the maximum likelihood estimate of η would simply be a log-odds reparameterization
of the probability of a user using the word, η̂w,r,t = log(pw,r,t/(1 − pw,r,t)). By itself, this model
corresponds to directly using pw,r,t, and has all the same problems as noted in the previous section;
in addition, the estimate η̂w,r,t goes to negative infinity when cw,r,t = 0.

The advantage of the logistic binomial parameterization is that it allows an additive combina-
tion of effects to control for confounds. The η variables still represent differences in log-odds, but
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after controlling for “base rate” effects. To this end, we include two additional parameters νw,t
and µr,t:

cw,r,t ∼ Binomial(sr,t,Logistic(ηw,r,t + νw,t + µr,t)). (5.2)

The parameter νw,t represents the overall activation of the word w at time t, thus accounting for
non-geographical changes, such as when a word becomes more popular everywhere at once. The
parameter µr,t represents the “verbosity” of MSA r at time t, which varies for the reasons men-
tioned above. These parameters control for global effects due to t, such as changes to the API
sampling rate. (Because µr,t and νw,t both interact with t, it is unnecessary to introduce a main
effect for t.) These parameters subtract out nuisance effects, enabling a more stable estimate of η.

We can now measure lexical dynamics in terms of the latent variable η rather than the raw
counts c. We take the simplest possible approach, modeling η as a first-order linear dynamical
system with Gaussian noise (Gelb, 1974),

ηw,r,t ∼ N

(∑
r′

ar′,rηw,r′,t−1, σ
2
w,r

)
. (5.3)

The dynamics matrix A = {ar1,r2} is shared over both words and time; we also assume homo-
geneity of variance within each metropolitan area (per word), using the variance parameter σ2w,r.
These simplifying assumptions are taken to facilitate statistical inference, by keeping the number
of parameters at a reasonable size. If it is possible to detect clear patterns of linguistic diffusion un-
der this linear homoscedastic model, then more flexible models should show even stronger effects,
if they can be estimated successfully. We leave this investigation for future work. It is important to
observe that this model does differentiate directionality: in general, ar1,r2 6= ar2,r1 . The coefficient
ar1,r2 reflects the extent to which ηr1,t predicts ηr2,t+1, and vice versa for ar2,r1 . In the extreme case
that r1 ignores r2, while r2 imitates r1 perfectly, we will have ar1,r2 = 1 and ar2,r1 = 0. Note that
both coefficients can be positive, in the case that ηr1 and ηr2 evolve smoothly and synchronously;
indeed, such mutual connections appear frequently in the induced networks.

Equation 5.2 specifies the observation model, and Equation 5.3 specifies the dynamics model;
together, they specify the joint probability distribution,

P (η, c | s;A, σ2, µ, ν) = P (c | η, s;µ, ν)P (η;A). (5.4)

Because the observation model is non-Gaussian, the standard Kalman smoother cannot be ap-
plied. Inference under non-Gaussian distributions is often handled via second-order Taylor ap-
proximation, as in the extended Kalman filter (Gelb, 1974), but a second-order approximation to
the Binomial distribution is unreliable when the counts are small. In contrast, sequential Monte
Carlo sampling permits arbitrary parametric distributions for both the observations and system
dynamics (Cappe et al., 2007). Forward-filtering backward sampling (Godsill et al., 2004) gives
smoothed samples from the distribution P (ηw,1:R,1:T | cw,1:R,1:T , s1:R,1:T , A), so for each word w,
we obtain a set of sample trajectories η(k)w,1:R,1:T for k ∈ {1, . . . ,K = 100}.

Inference and estimation

The total dimension of η is equal to the product of the number of MSAs (200), words (2,603),
and time steps (165), requiring inference over 85 million interrelated random variables. To fa-
cilitate inference and estimation, we adopt a stagewise procedure. First we make estimates of
the parameters ν (overall activation for each word) and µ (region-specific verbosity), assuming
ηw,r,t = 0,∀w, r, t. Next, we perform inference over η, assuming a simplified dynamics matrix Ã,
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which is diagonal. Last, we perform inference over the full dynamics matrixA, from samples from
this distribution. See Figure 5.2 for a block diagram of the inference and estimation procedure.

The parameters ν (global word activation) and µ (region-specific verbosity) are estimated first.
We begin by computing a simplified νw as the inverse logistic function of the total frequency of
word w, across all time steps. Next, we compute the maximum likelihood estimates of each µr,t
via gradient descent. We then hold µ fixed, and compute the maximum likelihood estimates of
each νw,t. Inference over the latent spatiotemporal activations ηw,r,t is performed via Monte Carlo
Expectation Maximization (MCEM) (Wei and Tanner, 1990). For each word w, we construct a
diagonal dynamics matrix Ãw. Given estimates of Ãw and σ2w, we use the sequential Monte Carlo
(SMC) algorithm of forward-filtering backward sampling (FFBS) (Godsill et al., 2004) to draw
samples of ηw,1:R,1:T ; this constitutes the E-step of the MCEM process. Next, we apply maximum-
likelihood estimation to update Ãw and σ2w; this constitutes the M-step. These updates are repeated
until either the parameters converge or we reach a limit of twenty iterations. We describe each step
in more detail:

• E-step. The E-step consists of drawing samples from the posterior distribution over η. FFBS
appends a backward pass to any SMC filter that produces a set of hypotheses and weights
{η(k)w,r,t, ω

(k)
w,r,t}1≤k≤K . The role of the backward pass is to reduce variance by resampling the

hypotheses according to the joint smoothing distribution. Our forward pass is a standard
bootstrap filter (Cappe et al., 2007): by setting the proposal distribution q(ηw,r,t | ηw,r,t−1)
equal to the transition distribution P (ηw,r,t | ηw,t−1;Aw, σ2w,r), the forward weights are equal
to the recursive product of the observation likelihoods,

ω
(k)
w,r,t = ω

(k)
w,r,t−1P (cw,r,t | ηw,r,t, sw,t; νw,t, µr,t). (5.5)

The backward pass uses these weights, and returns a set of unweighted hypotheses that are
drawn directly from P (ηw,r,t | cw,r,t, sr,t; νw,t, µr,t). More complex SMC algorithms — such as
resampling, annealing, and more accurate proposal distributions — did not achieve higher
likelihood than the bootstrap filter.

• M-step. The M-step consists of computing the average of the maximum likelihood estimates
of Ãw and σ2w. Within each sample, maximum likelihood estimation is straightforward: the
dynamics matrix Ãw is obtained by least squares, and σ2w,r is set to the empirical variance
1
T

∑T
t (ηw,r,t − ãw,rηw,r,t−1)2.

Examples

Figure 5.3 shows the result of this modeling procedure for several example words. In the right
panel, each sample of η is shown with a light dotted line. In the left panel, the empirical word
frequencies are shown with circles, and the smoothed frequencies for each sample are shown with
dotted lines. Large cities generally have a lower variance over samples, because the variance
of the maximum a posteriori estimate of the binomial decreases with the total event count. For
example, in Figure 5.3(c), the samples of η are tightly clustered for Philadelphia (the sixth-largest
MSA in the United States), but are diffuse for Youngstown (the 95th largest MSA). Note also that
the relationship between frequency and η is not monotonic — for example, the frequency of ion
increases in Memphis over the duration of the sample, but the value of η decreases. This is because
of the parameter for background word activation, νw,t, which increases as the word attains more
general popularity. The latent variable model is thus able to isolate MSA-specific activation from
nuisance effects that include the overall word activation and Twitter’s changing sampling rate.
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5.3.2 Constructing a network of linguistic diffusion

Having obtained samples from the distribution P (η | c, s) over latent spatiotemporal activations,
we now move to estimate the system dynamics, which describes the pathways of linguistic dif-
fusion. Given the simple Gaussian form of the dynamics model (Equation 5.3), the coefficients A
can be obtained by ordinary least squares. We perform this estimation separately within each of
the K sequential Monte Carlo samples η(k), obtaining K dense matrices A(k), for k ∈ {1, . . . ,K}.

The coefficients of A(k) are not in meaningful units, and their relationship to demographics
and geography will therefore be difficult to interpret, model, and validate. Instead, we prefer
to use a binarized, network representation, B. Given such a network, we can directly compare
the properties of linked MSAs with the properties of randomly selected pairs of MSAs not in
B, offering face validation of the proposed link between macro-scale linguistic influence and the
demographic and geographic features of cities.

Specifically, we are interested in a set of pairs of MSAs, B = {〈r1, r2〉}, for which we are confi-
dent that ar1,r2 > 0, given the uncertainty inherent in estimation across sparse word counts. Monte
Carlo inference enables this uncertainty to be easily quantified: we compute z-scores zr1,r2 for
each ordered city pair, using the empirical mean and standard deviation of a(k)r1,r2 across samples
k ∈ {1, . . . ,K}. We select pairs whose z-score exceeds a threshold z(thresh), denoting the selected
set B = {〈ri, rj〉 : zi,j > z(thresh)}. To compute uncertainty around a large number of coefficients,
we apply the Benjamini-Hochberg False Discovery Rate (FDR) correction for multiple hypothesis
testing (Benjamini and Hochberg, 1995), which controls the expected proportion of false positives
in B as

FDR(z(thresh)) =
Pnull(zi,j > z(thresh))

P̃ (zi,j > z(thresh))
=

1− Φ(z(thresh))

[R(R− 1)]−1
∑

i6=j 1{zi,j > z(thresh)}
, (5.6)

where the null probability is a one-sided hypothesis that z exceeds z(thresh) under a standard
normal distribution, which we would expect if ai,j values were random; this has probability
1−Φ(z(thresh)), where Φ is the Gaussian CDF. P̃ is the simulation-generated empirical distribution
over z(ai,j) values. If high z-scores occur much more often under the model (P̃ ) than we would
expect by chance (Pnull), only a small proportion should be expected to be false positives; the
Benjamini-Hochberg ratio is an upper bound on the expected proportion of false positives in B.
To obtain FDR < 0.05, the individual test threshold is approximately z(thresh) = 3.2, or in terms
of p-values, p < 6 × 10−4. We see 510 dynamics coefficients survive this threshold; these indicate
high-probability pathways of linguistic diffusion. The associated set of city pairs is denoted B0.05.

Figure 5.4 shows a sparser network B0.001, induced using a more stringent threshold of FDR <
0.001. The role of geography is apparent from the figure: there are dense connections within
regions such as the Northeast, Midwest, and West Coast, and relatively few cross-country connec-
tions. For example, we observe many connections among the West Coast cities of San Diego, Los
Angeles, San Jose, San Francisco, Portland, and Seattle (from bottom to top on the left side of the
map), but few connections from these cities to other parts of the country.

Practical details. To avoid overfitting and degeneracy in the estimation of A(k), we place a zero-
mean Gaussian prior on each element a(k)r1,r2 , tuning the variance λ by grid search on the log-
likelihood of a held-out subset of time slices within η1:T . The maximum a posteriori estimate of A
can be computed in closed form via ridge regression. Lags of length greater than one are accounted
for by regressing the values of ηt against the moving average from the previous ten time steps.
Results without this smoothing are broadly similar.
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Figure 5.6: Histograms of distances between pairs of connected cities, in model-inferred networks
(top), versus “negative” networks from Q (bottom).

tively, we could take the L coefficients for which we are most confident that a(k)r1,r2 > 0. We strike
a balance between these two extremes by sorting the dynamics coefficients according to the lower
bound of their 95% confidence intervals. This ensures that we get city pairs for which a

(k)
r1,r2 is

significantly distinct from zero, but that we also emphasize large values rather than small val-
ues with low variance. Per-sample confidence intervals are obtained by computing the closed
form solution to the posterior distribution over each dynamics coefficient, P (a

(k)
r1,r2 | η

(k)
r1 , η

(k)
r2 , λ),

which, in ridge regression, is normally distributed. We can then compute the 95% confidence
interval of the coefficients in each A(k), and sort them by the bottom of this confidence interval,
ã
(k)
i,j = µ

a
(k)
i,j

− Z(.975)σ
2

a
(k)
i,j

, where Z(.975) is the inverse Normal cumulative density function eval-

uated at 0.975, Z(.975) = 1.96. We select L by the number of coefficients that pass the p < 0.05
false discovery rate threshold in the aggregated network (L = 510), as described in the previous
section. This procedure yields K = 100 different discretized influence networks B(k), each with
identical density to the aggregated network B. By comparing the logistic regression coefficients
obtained within each of these K networks, it is possible to quantify the effect of uncertainty about
η on the substantive inferences that we would like to draw about the diffusion of language change.

5.4 Results

Figure 5.7 shows the resulting logistic regression coefficients. While geographical distance is
prominent, the absolute difference in the proportion of African Americans is the strongest pre-
dictor: the more similar two metropolitan areas are in terms of this demographic, the more likely
that linguistic influence is transmitted between them. Absolute difference in the proportion of
Hispanics, residents of urbanized areas, and median income are also strong predictors. This in-
dicates that while language change does spread geographically, demographics play a central role,
and nearby cities may remain linguistically distinct if they differ demographically, particularly in
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linked mean linked s.e. nonlinked mean nonlinked s.e.
geography
distance (km) 919 36.5 1940 28.6

symmetric
abs diff % urbanized 9.09 0.246 13.2 0.215

abs diff log median income 0.163 0.00421 0.224 0.00356

abs diff median age 2.79 0.0790 3.54 0.0763

abs diff % renter 4.72 0.132 5.38 0.103

abs diff % af. am 6.19 0.175 14.7 0.232

abs diff % hispanic 10.1 0.375 20.2 0.530

asymmetric
raw diff log population 0.247 0.0246 −0.0127 0.00961

raw diff % urbanized 1.77 0.389 −0.0912 0.112

raw diff log median income 0.0320 0.00654 −0.00166 0.00187

raw diff median age −0.198 0.113 −0.00449 0.0296

raw diff % renter 0.316 0.195 −0.00239 0.0473

raw diff % af. am 0.00292 0.244 0.00712 0.109

raw diff % hispanic 0.0327 0.472 0.0274 0.182

Table 5.3: Differences between linked and (sampled) non-linked pairs of cities, summarized by
their mean and its standard error.

terms of race. African American English differs more substantially from other American varieties
than any regional dialect (Wolfram and Schilling-Estes, 2005); our analysis suggests that such dif-
ferences persist in the virtual and disembodied realm of social media. Examples of linguistically
linked city pairs that are distant but demographically similar include Washington D.C. and New
Orleans (high proportions of African-Americans), Los Angeles and Miami (high proportions of
Hispanics), and Boston and Seattle (relatively few minorities, compared with other large cities).

Of the asymmetric features, population is the most informative, as larger cities are more likely
to transmit to smaller ones. In the induced network of linguistic influence B0.05, the three largest
metropolitan areas – New York, Los Angeles, and Chicago – have 40 outgoing connections and
only fifteen incoming connections. Wealthier and younger cities are also significantly more likely
to lead than to follow. While this may seem to conflict with earlier findings that language change
often originates from the working class, wealthy cities must be differentiated from wealthy indi-
viduals: wealthy cities may indeed be the home to the upwardly-mobile working class that Labov
associates with linguistic creativity (Labov, 2001), even if they also host a greater-than-average
number of very wealthy individuals.

Additional validation for the logistic regression is obtained by measuring its cross-validated
predictive accuracy. For each of the K samples, we randomly select 10% of the instances (positive
or negative city pairs) as a held-out test set, and fit the logistic regression on the other 90%. For
each city pair in the test set, the logistic regression predicts whether a link exists, and we check the
prediction against whether the directed pair is present in B(k). Results are shown in Table 5.4. Since
the number of positive and negative instances are equal, a random baseline would achieve 50%
accuracy. A classifier that uses only geography and population (the two components of the gravity
model) gives 66.5% predictive accuracy. The addition of demographic features (both asymmetric
and symmetric) increases this substantially, to 74.4%. While symmetric features obtain the most
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Symmetric effects
Negative value means:
links are associated with
greater similarity between 
sender/receiver

Asymmetric effects
Positive value means:
links are associated with
sender having a 
higher value than receiver
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−0.956 (0.113)
−0.628 (0.087)
−0.775 (0.108)
−0.109 (0.103)
−0.051 (0.089)
−1.589 (0.099)
−1.314 (0.161)
0.283 (0.057)
0.126 (0.093)
0.154 (0.077)
−0.218 (0.076)
0.005 (0.061)
−0.039 (0.076)
−0.124 (0.099)

−2 −1 0 1

Raw Diff, % Hispanic
Raw Diff, % Af. Am
Raw Diff, % Renter
Raw Diff, Med. Age
Raw Diff, Log Med. Income
Raw Diff, % Urbanized
Raw Diff, Log Population
Abs Diff, % Hispanic
Abs Diff, % Af. Am
Abs Diff, % Renter
Abs Diff, Med. Age
Abs Diff, Log Med. Income
Abs Diff, % Urbanized
Geo. Distance

Figure 5.7: Logistic regression coefficients for predicting links between city (MSA) pairs. 95%
confidence intervals are plotted; standard errors are in parentheses. Coefficient values are from
standardized inputs; the mean and standard deviations are shown to the right.

robust regression coefficients, adding the asymmetric features increases the predictive accuracy
from 74.1% to 74.4%, a small but statistically significant difference.

mean acc std. err
geography + symmetric + asymmetric 74.37 0.08
geography + symmetric 74.09 0.07
symmetric + asymmetric 73.13 0.08
geography + population 67.33 0.08
geography 66.48 0.09

Table 5.4: Average accuracy predicting links between MSA pairs, and its Monte Carlo standard
error (calculated from K = 100 simulation samples). The feature groups are defined in Table 5.3;
“population” refers to “raw diff log population.”

5.5 Discussion

Language continues to evolve in social media. By tracking the popularity of words over time
and space, we can harness large-scale data to uncover the hidden structure of language change.
We find a remarkably strong role for demographics, particularly as our analysis is centered on
a geographical grouping of individual users. Language change is significantly more likely to be
transmitted between demographically-similar areas, especially with regard to race — although

75



demographic properties such as socioeconomic class may be more difficult to assess from census
statistics.

Language change spreads across social network connections, and it is well known that the so-
cial networks that matter for language change are often strongly homophilous in terms of both
demographics and geography (Milroy, 1991; Labov, 2001). This chapter approaches homophily
from a macro-level perspective: rather than homophily between individual speakers (Kwak et al.,
2010), we identify homophily between geographical communities as an important factor driving
the observable diffusion of lexical change. Individuals who are geographically proximate will
indeed be more likely to share social network connections (Sadilek et al., 2012), so the role of
geography in our analysis is not difficult to explain. But more surprising is the role of demo-
graphics, since it is unclear whether individuals who live in cities that are geographically distant
but demographically similar will be likely to share a social network connection. Previous work
has shown that friendship links on Facebook are racially homophilous (Chang et al., 2010), but
to our knowledge the interaction with geography has not been explored. In principle, a large-
scale analysis of social network links on Twitter or some other platform could shed light on this
question. Such sites impose restrictions that make social networks difficult to acquire, but one
possible approach would be to try to link the “reply trees” considered by Gonçalves et al. (2011)
with the geographic and demographic metadata considered here; while intriguing, this is outside
the scope of the present chapter. A major methodological contribution is that similar macro-scale
social phenomena can be inferred directly from spatiotemporal word counts, even without access
to individual social networks.

Our approach can be refined in several ways. We gain robustness by choosing metropolitan
areas as the basic units of analysis, but measuring word frequencies among sub-communities or
individuals could shed light on linguistic diversity within metropolitan areas. Similarly, estima-
tion is facilitated by fitting a single first-order dynamics matrix across all words, but some regions
may exert more or less influence for different types of words, and a more flexible model of tempo-
ral dynamics might yield additional insights. Finally, language change occurs at many different
levels, ranging from orthography to syntax and pragmatics. This work pertains only to word
frequencies, but future work might consider structural changes, such as the phonetical process
resulting in the transcription of i don’t into ion.

It is inevitable that the norms of written language must change to accommodate the new ways
in which writing is used. As with all language changes, innovation must be transmitted between
real language users, ultimately grounding out in countless individual decisions — conscious or
not — about whether to use a new linguistic form. Traditional sociolinguistics has produced
many insights from the close analysis of a relatively small number of variables. Analysis of large-
scale social media data offers a new, complementary methodology by aggregating the linguistic
decisions of millions of individuals.

5.6 Appendix: Data processing

We perform several preprocessing steps to prepare the raw Twitter feed for analysis, described in
this section: (1) a message preprocessing pipeline, and (2) a selection procedure for the words to
analyze. Supplementary files are available at:
http://brenocon.com/DiffusionOfLexicalChangeInSocialMedia

Filenames in this section refer to paths within this resource.
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5.6.1 Messages

Our initial dataset is of Twitter Gardenhose/Decahose messages from August 2009 through Septem-
ber 2012, containing approximately 17 billion tweets. 721 million were found to have a geotag, and
171 million were located in the United States. After MSA and content filtering, 107 million mes-
sages (from 2.7 million unique user accounts) remained for the analysis. The preprocessing soft-
ware is available at https://github.com/brendano/twitter_geo_preproc/ and a copy
is archived as supplementary information file preprocessing pipeline.zip.

Geotags The Twitter API’s structured data includes a field for latitude and longitude coordi-
nates from users who have enabled geo-location; typically, these come from messages authored
on mobile phones. Besides that field, there are also informal geotags in the user.location field, from
clients that insert coordinates as a string; for example, ÜT: 40.043883,-88.275849 is a geotag from
the ÜberTwitter client. These informal geotags are more common in earlier data, and are the only
source of coordinates before Twitter added official support for coordinate geotags in late 2009. A
regular expression extracts this type of coordinates; there were about twice as many messages with
informal coordinates as messages with official API coordinates. We use both types of messages.

Location We use only messages from the continental USA, locating the latitude and longitude
coordinates to a county or county-equivalent, according to the U.S. Census Bureau’s 2010 TIGER/Line
Shapefiles. (http://www.census.gov/geo/maps-data/data/tiger-line.html). The United
States Office of Management and Budget defines a set of Metropolitan Statistical Areas (MSAs),
which are not legal administrative divisions, but rather, geographical regions centered around a
single urban core (Office of Management and Budget (USA), 2010); every MSA is defined as a
set of counties. We consider the 200 most populous MSAs in the lower 48 U.S. states. The most
populous MSA is centered on New York City (population 19 million); the 200th most populous is
Fargo, North Dakota (population 200,000). We retain messages whose location belongs to one of
these MSAs. According to the 2010 census, the 200 largest MSAs include 76% of all US residents
in the lower 48 states; however, we find that these MSAs contain 89% of all Twitter messages sent
from within the lower 48 states, which coheres with recent work showing that geotagged Tweets
are more likely to come from urban areas (Hecht and Stephens, 2014).

For each MSA, demographic attributes are computed from the 2010 U.S. Census. The following
demographic attributes are included: log population, log median income, % residents in urban-
ized areas, media age, % renters, % African American; % Hispanic. We did not consider % Euro-
pean American because it has a strong negative correlation with % African American, r = −0.71;
we did not consider % Asian American because it is much smaller, with a median value of 2.8%.
Mean and standard deviations of all demographic attributes are shown in Table 2 of the main text.

Content and Follower Filtering Several additional processing steps were then performed to re-
move marketing-oriented and spam accounts. We remove all messages written by users who
have more than 1000 followers, or who follow more than 1000 people. This helps to eliminate
automated accounts, particularly content polluters (Lee et al., 2011). We remove all messages that
are retweets—either marked as such in the API’s structured data, or any message containing the
word RT (in either lowercase or uppercase). While retweeting could be a useful linguistic signal
in its own right, we prefer to focus on original text. Finally, any message containing a URL is
removed; this acts as a filter to remove automated and marketing-oriented content, which is typ-
ically designed to draw the reader to a page elsewhere on the web. Of course, these filters also
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eliminate some legitimate messages, but since there is no shortage of data, we prefer to focus on a
subsample that is more likely to contain original, non-automated content.

Time Each Twitter message includes a timestamp. We aggregate messages into seven-day inter-
vals, which facilitates computation and removes any day-of-week effects. Each interval starts on
Monday at UTC 0800, corresponding to 12am PST and 4am EDT.

5.6.2 Words

To select the set of words to analyze, we begin with the 100,000 most frequent terms, excluding
hashtags and usernames. We further require that each term must be used more than more than
twenty times in ten different metropolitan areas. We compute the variance of the word’s log prob-
ability over time (νw,t in Equation 2 of the main text, estimated in a standalone step, as described
there), and require that the variance be greater than three. This cutoff was chosen so that roughly
5,000 words would be selected; we end up with 4,854 words. From this subset, we manually elim-
inate all named entities and non-English words. This determination is ambiguous because some
strings can reference both names and words (e.g. homer, a dictionary word that often references
the character Homer Simpson) or multiple languages (e.g. y, which can mean and in Spanish, and
why in informal English). For each term, we randomly select twenty example messages and man-
ually determine from context whether the usage is as an English word. We retain terms that are
used as English non-name words in at least 80% of the examples.

The final word set contains 2,603 words. Our annotation decisions for all 4,854 words can be
seen in our supplementary information file, name annotations.tsv, and the selected words can be
seen in Figure 5.8 (or the file wordlist table.pdf ). The usage examples we inspected are available in
word examples for annotation in cluster order.html.

The overall results of our analysis are broadly similar when we do not perform manual word
filtering, but this filtering enables us to focus on changes in (English) language rather than in the
popularity of entities or in the overall multilingual composition of American Twitter users.

All text was tokenized using the Twokenize.java program, which can be downloaded at http:
//www.ark.cs.cmu.edu/TweetNLP/. Twokenize is designed to be robust to social media phe-
nomena that confuse other tokenizers, such as emoticons (O’Connor et al., 2010c; Owoputi et al.,
2013). Repetition of the same character two or more times was normalized to just two (e.g. sooooo
→ soo). No other preprocessing (e.g., stemming) was performed.
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hheeyy 
niiccee 
oommgg 
yyaayy 
bomb.com 
=d 
=p 
=o 
gooaall 
gooll 
shee 
uve 
u've 
jut 
jux 
jus 
jsut 
iaint 
ain't 
aint 
ainn 
aiint 
couldve 
wulda 
shulda 
wouldve 
shouldve 
wudda 
shudda 
wuda 
shuda 
mustve 
nevr 
neva 
eva 
evr 
evar 
onli 
evn 
eem 
realli 
alrdy 
cuda 
allready 
alreadyy 
offically 
finaly 
ion 
uma 
casually 
deadass 
obvi 
alwayz 
alwys 
definitly 
defiantly 
definetly 
definately 
qonna 
bouta 
fina 
gne 
trynaa 
fenna 
letss 
letz 

u'd 
iwanna 
imaa 
u'll 
culd 
cld 
cud 
shud 
shuld 
shld 
mite 
wud 
wuld 
wld 
iont 
dn't 
wldnt 
wuldnt 
shudnt 
wudnt 
shldnt 
cudnt 
kant 
culdnt 
cldnt 
hafta 
qotta 
knoo 
noe 
warmers 
excite 
beleive 
gaf 
4get 
rememba 
memba 
luvv 
luv 
nominate 
h8 
thnk 
thght 
4got 
thk 
quess 
gotchuu 
swea 
hav 
qot 
favorited 
hadd 
pre-ordered 
copped 
preordered 
aced 
missd 
askd 
tol 
bbm'd 
calld 
startd 
sed 
knos 
knws 
luvs 
forgives 

warms 
heats 
wlk 
plow 
re-up 
swerve 
beez 
hangout 
livee 
workin 
wrking 
wrkn 
wrkin 
workn 
sittin 
standin 
stayn 
stayin 
layin 
sittn 
chattin 
dealin 
steppin 
otp 
relaxin 
checkn 
cashin 
cuddling 
checkin 
flirtin 
grillin 
mackin 
arguin 
mobbin 
chillaxin 
wakin 
gearing 
waken 
snuggled 
turnt 
fukked 
racked 
chk 
checc 
shouts 
matata 
d/l 
preorder 
occupy 
pre-order 
nano 
sync 
conditioned 
shun 
twug 
slander 
scramble 
punt 
flee 
draw 
sweep 
spill 
sabotage 
reboot 
wobble 
swim 

twerk 
tango 
dougie 
pik 
mute 
twit 
twitt 
twitvid 
shovel 
fite 
knit 
dribble 
fling 
subtweet 
fuxx 
hitt 
bodied 
toot 
mow 
go2 
kall 
sext 
textt 
fugg 
gtf 
fcuk 
wink 
smooches 
shrugs 
sniffles 
faints 
kanyeshrug 
squee 
pouts 
sideeye 
winks 
shruggs 
grins 
shrug 
ahem 
mjb 
sadface 
pause 
cosign 
syh 
fwm 
holla 
hmu 
co-sign 
laff 
likey 
muero 
clinch 
reinstall 
install 
decorate 
transform 
tackle 
discover 
violate 
deactivate 
followback 
qet 
takee 
makee 
giv 

qo 
kum 
kome 
waiit 
elses 
happn 
i`m 
iim 
u're 
something's 
iits 
itz 
nothing's 
everything's 
thatz 
datz 
thas 
dass 
whas 
watz 
wuts 
wutz 
whts 
wats 
whatss 
whatz 
wutchu 
watchu 
nobody's 
smellin 
feeln 
feelin 
soundin 
dressin 
wus 
waz 
wass 
wuz 
iz 
izz 
;s 
buhh 
pero 
esp 
i.e. 
i.e 
iwant 
gimmie 
whys 
imiss 
ilovee 
sumtimes 
evrytime 
iguess 
mayb 
altho 
methinks 
becuase 
b/c 
kause 
wheneva 
becuz 
bcuz 
eventhough 
what're 
iif 

it- 
thiis 
dhis 
thys 
dhat 
thiz 
whr 
wut 
waht 
wher 
whut 
weneva 
wha 
yy 
veryy 
absolutly 
completly 
awkwardly 
legitimately 
uber 
f*ckin 
fuggin 
f-ing 
fukkin 
fuccin 
effn 
mf'n 
flippin 
f'n 
f'in 
effin 
s0 
liike 
liek 
lk 
boutt 
havin 
havn 
beinq 
get'n 
gettn 
follown 
followin 
callin 
treatin 
helpin 
lettn 
ignorin 
judgin 
lettin 
unfollowin 
testin 
killn 
answerin 
teachin 
stalkin 
calln 
askn 
askin 
bbm'n 
telln 
stoppin 
losin 
changin 
updating 
payin 

leavn 
droppin 
chargin 
skippin 
leavin 
guarding 
stealin 
sendin 
pushin 
usin 
catchin 
breakin 
bringin 
cuttin 
pickin 
carryin 
clockin 
keepn 
holdin 
throwin 
feedin 
showin 
puttn 
hittn 
shuttin 
addin 
scratchin 
switchin 
choppin 
tearin 
givin 
rubbin 
puttin 
settin 
lickin 
postin 
hittin 
touchin 
tackling 
installing 
takin 
expectin 
wearin 
takn 
despicable 
buyin 
makin 
makn 
watchinq 
watch'n 
watchn 
watchin 
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findin 
likin 
surfin 
blastin 
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readin 
downloadin 
rockn 
celebratin 
draggin 
grabbin 
coppin 

Figure 5.8: (Page 1 of 6): All 2,603 words used in our main analysis. They are ordered by the hier-
archical word clusters of (Owoputi et al., 2013) (http://www.ark.cs.cmu.edu/TweetNLP/)
which tends to group words with similar syntactic or semantic properties. The lowercased forms
are shown, which sometimes is not the most common form; for example, “:d” is usually written
as “:D”.
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smashin 
duin 
doinn 
doiin 
doin 
doinq 
eatin 
grilling 
cookn 
eattin 
bakin 
cookin 
drinkn 
cravin 
drinkin 
mert 
mehh 
mhe 
urself 
yaself 
yurself 
hym 
ypu 
yall 
ya'll 
y'all 
yeen 
iget 
yhuu 
yhu 
y0u 
juu 
yoy 
iht 
iit 
yurs 
urs 
evrything 
everythin 
everythng 
nuttn 
nutn 
nuffin 
nuttin 
nutin 
nuthin 
nothn 
nuthing 
nuthn 
nthn 
nun 
sumtin 
sumthn 
sumthing 
somethn 
smthn 
summin 
sumthin 
suttin 
anythin 
nething 
nebody 
any1 
ne1 
sumone 
sum1 

some1 
evryone 
evry1 
every1 
evrybdy 
everyonee 
evrybody 
oomf 
oomfs 
meeka 
no1 
whoeva 
waitn 
waitin 
rootin 
feenin 
searchin 
lookn 
look'n 
commin 
comin 
comn 
cummin 
upgrading 
startn 
startin 
plannin 
omw 
headin 
enroute 
s\o 
s/o 
shoutouts 
s|o 
s/0 
qoinq 
fixin 
crackn 
jumpin 
shakin 
rushin 
crackin 
goiin 
movin 
qoin 
stickin 
listenin 
willin 
sposed 
refering 
cooled 
mowed 
deactivated 
spendin 
wastin 
violated 
dvr'd 
muted 
graduated 
bugged 
swept 
walkd 
rained 
fouled 
biked 
ducked 

swagged 
dunked 
lookd 
swam 
sacked 
bullied 
benched 
nominated 
ranked 
snowed 
installed 
launched 
unplugged 
leaked 
hosted 
stung 
playd 
hoed 
subtweeted 
sampled 
wantd 
4ward 
starvin 
singlee 
outtie 
preggers 
siick 
sauced 
faded 
preg 
sunburned 
sunburnt 
tite 
odee 
maad 
od 
madd 
embarassed 
appalled 
dissapointed 
suprised 
butthurt 
dgaf 
xcited 
talm 
talk'n 
tlkn 
bitching 
talkn 
braggin 
talkinq 
complainin 
speakin 
thinkin 
thnkn 
talmbout 
jokin 
forgettin 
claimin 
dunno 
wonderin 
debatin 
pondering 
guessin 
hopin 
knowin 

bak 
bakk 
baq 
bacc 
bac 
riqht 
righ 
riite 
rite 
rght 
ritee 
rii 
ryte 
schemin 
hydrated 
storming 
rainin 
poppin 
snowing 
poppington 
happenin 
goodie 
poppn 
snowin 
popin 
hailing 
wronq 
premieres 
rox 
suxx 
sux 
snows 
wrks 
tackles 
scrolls 
presents 
mower 
toasty 
cozy 
warm 
rigged 
postponed 
trendin 
undefeated 
deadd 
saucer 
2go 
bk 
tangled 
doobies 
sweatin 
slackin 
chirping 
thuggin 
partyin 
lien 
wildin 
knockin 
buzzin 
cheatin 
frontin 
buggin 
dyin 
speedin 
preachin 
coughin 

dancin 
ringin 
sleepn 
beastin 
snitchin 
cryin 
hollin 
flopping 
breathin 
twerkin 
choosin 
laffin 
twerking 
laughn 
laughin 
stylin 
swaggin 
trickin 
performin 
pumpin 
flexin 
starin 
hooping 
spinnin 
blazin 
jerkin 
tweetin 
planking 
cuffin 
packin 
studyin 
trolling 
writin 
subtweeting 
twittering 
protesting 
grindin 
bbming 
chokin 
fightin 
texting 
fasting 
twitting 
recordin 
graduating 
sexin 
spellin 
studying 
blockin 
singin 
mixin 
sharin 
slammin 
twatchin 
datin 
cuffing 
typin 
smackin 
subtweetin 
scheming 
hidin 
flexing 
twatching 
learnin 
uploading 
writting 

editing 
blogging 
unpacking 
syncing 
scanning 
grading 
decorating 
knitting 
coding 
designing 
pitching 
flooding 
marvins 
marvin's 
openin 
mowing 
shoveling 
cleanin 
stocking 
cooling 
finishin 
signin 
fillin 
wrapping 
washin 
cashing 
passin 
peeling 
drivin 
travelling 
dunking 
walkn 
beaming 
walkin 
shuffling 
up- 
uhp 
uprt 
owt 
0ut 
out- 
ova 
ovr 
ovaa 
ovah 
arnd 
outsidee 
w/u 
w/me 
2gether 
2getha 
2morro 
2morrow 
tomar 
2mrw 
2mor 
2mrrw 
2moro 
2maro 
toma 
2morow 
2day 
2nite 
tonite 
tnite 
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Chapter 6

International Events from the News

(This chapter was originally published as O’Connor et al. (2013).)

6.1 Synopsis

The previous chapters described a text analysis tool, as well as opinion and sociolinguistic anal-
yses of social media, that operate at the level of word frequencies, which are a fundamental unit
of linguistic representation. However, for analyzing many social questions, the objects of interest
may involve more complex objects such as relationships among entities. This chapter specifically
looks at textual descriptions of events, which typically engage more complex linguistic structures
indicating the semantic relationships between words in a sentence. While more extensive natu-
ral language processing techniques are used, similar analysis techniques can be applied—latent
variable models, Bayesian inference, and comparisons to previously established social science
measurements and data—can be applied.

In this chapter we describe a new probabilistic model for extracting events between major
political actors from news corpora. Our unsupervised model brings together familiar compo-
nents in natural language processing (like parsers and topic models) with contextual political
information—temporal and dyad dependence—to infer latent event classes. We quantitatively
evaluate the model’s performance on political science benchmarks: recovering expert-assigned
event class valences, and detecting real-world conflict. We also conduct a small case study based
on our model’s inferences.

6.2 Introduction

The digitization of large news corpora has provided an unparalleled opportunity for the system-
atic study of international relations. Since the mid-1960s political scientists have used political
events data, records of public micro-level interactions between major political actors of the form
“someone does something to someone else” as reported in the open press (Schrodt, 2012), to
study the patterns of interactions between political actors and how they evolve over time. Scaling
this data effort to modern corpora presents an information extraction challenge: can a structured
collection of accurate, politically relevant events between major political actors be extracted au-
tomatically and efficiently? And can they be grouped into meaningful event types with a low-
dimensional structure useful for further analysis?
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We present an unsupervised approach to event extraction, in which political structure and
linguistic evidence are combined. A political context model of the relationship between a pair
of political actors imposes a prior distribution over types of linguistic events. Our probabilistic
model infers latent frames, each a distribution over textual expressions of a kind of event, as well
as a representation of the relationship between each political actor pair at each point in time. We
use syntactic preprocessing and a logistic normal topic model, including latent temporal smooth-
ing on the political context prior.

We apply the model in a series of comparisons to benchmark datasets in political science. First,
we compare the automatically learned verb classes to a pre-existing ontology and hand-crafted
verb patterns from TABARI,1 an open-source and widely used rule-based event extraction sys-
tem for this domain. Second, we demonstrate correlation to a database of real-world international
conflict events, the Militarized Interstate Dispute (MID) dataset (Jones et al., 1996). Third, we qual-
itatively examine a prominent case not included in the MID dataset, Israeli-Palestinian relations,
and compare the recovered trends to the historical record.

We outline the data used for event discovery (§6.3), describe our model (§6.4), inference (§6.5),
evaluation (§6.6), and comment on related work (§6.7).

6.3 Data

The model we describe in §6.4 is learned from a corpus of 6.5 million newswire articles from
the English Gigaword 4th edition (1994–2008, Parker et al., 2009). We also supplement it with a
sample of data from the New York Times Annotated Corpus (1987–2007, Sandhaus, 2008).2 The
Stanford CoreNLP system,3 under default settings, was used to POS-tag and parse the articles, to
eventually produce event tuples of the form

〈s, r, t, wpredpath〉

where s and r denote “source” and “receiver” arguments, which are political actor entities in a
predefined set E , t is a timestep (i.e., a 7-day period) derived from the article’s published date,
and wpredpath is a textual predicate expressed as a dependency path that typically includes a verb
(we use the terms “predicate-path” and “verb-path” interchangeably). For example, on January 1,
2000, the AP reported “Pakistan promptly accused India,” from which our preprocessing extracts

the tuple 〈PAK, IND, 678, accuse
dobj←−− 〉. (The path excludes the first source-side arc.) Entities and

verb paths are identified through the following sets of rules.
Named entity recognition and resolution is done deterministically by finding instances of

country names from the CountryInfo.txt dictionary from TABARI,4 which contains proper noun
and adjectival forms for countries and administrative units. We supplement these with a few en-
tries for international organizations from another dictionary provided by the same project, and
clean up a few ambiguous names, resulting in a final actor dictionary of 235 entities and 2,500
names.

Whenever a name is found, we identify its entity’s mention as the minimal noun phrase that
contains it; if the name is an adjectival or noun-noun compound modifier, we traverse any such

1Available from the Penn State Event Data Project: http://eventdata.psu.edu/
2For arbitrary reasons this portion of the data is much smaller (we only parse the first five sentences of each article,

while Gigaword has all sentences parsed), resulting in less than 2% as many tuples as from the Gigaword data.
3http://nlp.stanford.edu/software/corenlp.shtml
4http://eventdata.psu.edu/software.dir/dictionaries.html.
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amod and nn dependencies to the noun phrase head. Thus NATO bombing, British view, and Pales-
tinian militant resolve to the entity codes IGONAT, GBR, and PSE respectively.

We are interested in identifying actions initiated by agents of one country targeted towards
another, and hence concentrate on verbs, analyzing the “CCprocessed” version of the Stanford
Dependencies (de Marneffe and Manning, 2008). Verb paths are identified by looking at the short-
est dependency path between two mentions in a sentence. If one of the mentions is immediately
dominated by a nsubj or agent relation, we consider that the Source actor, and the other mention is
the Receiver. The most common cases are simple direct objects and prepositional arguments like

talk
prep with←−−−−− and fight

prep alongside←−−−−−−− (“S talk with R,” “S fight alongside R”) but many interesting

multiword constructions also result, such as reject
dobj←−− allegation

poss←−− (“S rejected R’s allegation”)

or verb chains as in offer
xcomp←−−− help

dobj←−− (“S offered to help R”).
We wish to focus on instances of directly reported events, so attempt to remove factively com-

plicated cases such as indirect reporting and hypotheticals by discarding all predicate paths for
which any verb on the path has an off-path governing verb with a non-conj relation. (For example,
the verb at the root of a sentence always survives this filter.) Without this filter, the 〈s, r, w〉 tuple

〈USA, CUB, want
xcomp←−−− seize

dobj←−− 〉 is extracted from the sentence “Parliament Speaker Ricardo
Alarcon said the United States wants to seize Cuba and take over its lands”; the filter removes it
since wants is dominated by an off-path verb through say

ccomp←−−− wants. The filter was iteratively
developed by inspecting dozens of output examples and their labelings under successive changes
to the rules.

Finally, only paths length 4 or less are allowed, the final dependency relation for the receiver
may not be nsubj or agent, and the path may not contain any of the dependency relations conj,
parataxis, det, or dep. We use lemmatized word forms in defining the paths.

Several document filters are applied before tuple extraction. Deduplication removes 8.5% of
articles.5 For topic filtering, we apply a series of keyword filters to remove sports and finance
news, and also apply a text classifier for diplomatic and military news, trained on several hundred
manually labeled news articles (using `1-regularized logistic regression with unigram and bigram
features). Other filters remove non-textual junk and non-standard punctuation likely to cause
parse errors.

For experiments we remove tuples where the source and receiver entities are the same, and
restrict to tuples with dyads that occur at least 500 times, and predicate paths that occur at least 10
times. This yields 365,623 event tuples from 235,830 documents, for 421 dyads and 10,457 unique
predicate paths. We define timesteps to be 7-day periods, resulting in 1,149 discrete timesteps
(1987 through 2008, though the vast majority of data starts in 1994).

6.4 Model

We design two models to learn linguistic event classes over predicate paths by conditioning on
real-world contextual information about international politics, p(wpredpath | s, r, t), leveraging the
fact there tends to be dyadic and temporal coherence in international relations: the types of actions
that are likely to occur between nations tend to be similar within the same dyad, and usually their
distribution changes smoothly over time.

5We use a simple form of shingling (ch. 3, Rajaraman and Ullman, 2011): represent a document signature as its
J = 5 lowercased bigrams with the lowest hash values, and reject a document with a signature that has been seen
before within the same month. J was manually tuned, as it affects the precision/recall tradeoff.
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Figure 6.1: Directed probabilistic diagram of the independent timestep model (left) and the
smoothed model (right).

Our model decomposes into two submodels: a Context submodel, which encodes how polit-
ical context affects the probability distribution over event types, and a Language submodel, for
how those events are manifested as textual predicate paths (Figure 6.1). The overall generative
process is as follows. We color global parameters for a frame blue, and local context parame-
ters red, and use the term “frame” as a synonym for “event type.” The fixed hyperparameter K
denotes the number of frames.

• The context model generates a frame prior θs,r,t for every context (s, r, t).

• Language model:

• Draw lexical sparsity parameter b from a diffuse prior (see §6.10.4).

• For each frame k, draw a multinomial distribution of dependency paths, φk ∼ Dir(b/V )
(where V is the number of dependency path types).

• For each (s, r, t), for every event tuple i in that context,

• Sample its frame z(i) ∼ Mult(θs,r,t).

• Sample its predicate realization w(i)
predpath ∼ Mult(φz(i)).

Thus the language model is very similar to a topic model’s generation of token topics and word-
types.

We use structured logistic normal distributions to represent contextual effects. The simplest is
the vanilla (V) context model,

• For each frame k, draw global parameters from diffuse priors: prevalence αk and variability
σ2k.

• For each (s, r, t),
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• Draw ηk,s,r,t ∼ N(αk, σ
2
k) for each frame k.

• Apply a softmax transform,

θk,s,r,t =
exp ηk,s,r,t∑K

k′=1 exp ηk′,s,r,t

Thus the vector η∗,s,r,t encodes the relative log-odds of the different frames for events appearing
in the context (s, r, t). This simple logistic normal prior is, in terms of topic models, analogous
to the asymmetric Dirichlet prior version of LDA in Wallach et al. (2009), since the αk parameter
can learn that some frames tend to be more likely than others. The variance parameters σ2k control
admixture sparsity, and are analogous to a Dirichlet’s concentration parameter.

6.4.1 Smoothing Frames Across Time

The vanilla model is capable of inducing frames through dependency path co-occurences, when
multiple events occur in a given context. However, many dyad-time slices are very sparse; for
example, most dyads (all but 18) have events in fewer than half the time slices in the dataset. One
solution is to increase the bucket size (e.g., to months); however, previous work in political sci-
ence has demonstrated that answering questions of interest about reciprocity dynamics requires
recovering the events at weekly or even daily granularity (Shellman, 2004), and in any case wide
buckets help only so much for dyads with fewer events or less media attention. Therefore we pro-
pose a smoothed frames (SF) model, in which the frame distribution for a given dyad comes from
a latent parameter β∗,s,r,t that smoothly varies over time. For each (s, r), draw the first timestep’s
values as βk,s,r,1 ∼ N(0, 100), and for each context (s, r, t > 1),

• Draw βk,s,r,t ∼ N(βk,s,r,t−1, τ
2)

• Draw ηk,s,r,t ∼ N(αk + βk,s,r,t, σ
2
k)

Other parameters (αk, σ2k) are same as the vanilla model. This model assumes a random walk pro-
cess on β, a variable which exists even for contexts that contain no events. Thus inferences about η
will be smoothed according to event data at nearby timesteps. This is an instance of a linear Gaus-
sian state-space model (also known as a linear dynamical system or dynamic linear model), and is
a convenient formulation because it has well-known exact inference algorithms. Dynamic linear
models have been used elsewhere in machine learning and political science to allow latent topic
frequencies (Blei and Lafferty, 2006b; Quinn et al., 2010) and ideological positions (Martin and
Quinn, 2002) to smoothly change over time, and thus share statistical strength between timesteps.

6.5 Inference

After randomly initializing all ηk,s,r,t, inference is performed by a blocked Gibbs sampler, alter-
nating resamplings for three major groups of variables: the language model (z,φ), context model
(α, γ, β, p), and the η, θ variables, which bottleneck between the submodels.

The language model sampler sequentially updates every z(i) (and implicitly φ via collapsing)
in the manner of Griffiths and Steyvers (2004): p(z(i)|θ, w(i), b) ∝ θs,r,t,z(nw,z+b/V )/(nz+b), where
counts n are for all event tuples besides i.

For the context model, α is conjugate resampled as a normal mean. The random walk vari-
ables β are sampled with the forward-filtering-backward-sampling algorithm (FFBS; Harrison and
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West, 1997; Carter and Kohn, 1994). There is one slight modification of the standard dynamic lin-
ear model that the zero-count weeks have no η observation; the Kalman filter implementation is
appropriately modified to handle this.

The η update step is challenging since it is a nonconjugate prior to the z counts. Logistic
normal distributions were introduced to text modeling by Blei and Lafferty (2007), who developed
a variational approximation; however, we find that experimenting with different models is easier
in the Gibbs sampling framework. While Gibbs sampling for logistic normal priors is possible
using auxiliary variable methods (Mimno et al., 2008; Holmes and Held, 2006; Polson et al., 2012),
it can be slow to converge. We opt for the more computationally efficient approach of Zeger and
Karim (1991) and Hoff (2003), using a Laplace approximation to p(η | η̄,Σ, z), which is a mode-
centered Gaussian having inverse covariance equal to the unnormalized log-posterior’s negative
Hessian (§8.4 in Murphy, 2012). We find the mode with the linear-time Newton algorithm from
Eisenstein et al. (2011b), and sample in linear time by only using the Hessian’s diagonal as the
inverse covariance (i.e., an axis-aligned normal), since a full multivariate normal sample requires
a cubic-time-to-compute Cholesky root of the covariance matrix. This η∗ sample is a proposal for a
Metropolis-within-Gibbs step, which is moved to according to the standard Metropolis-Hastings
acceptance rule. Acceptance rates differ by K, ranging approximately from 30% (K = 100) to
nearly 100% (small K).

Finally, we use diffuse priors on all global parameters, conjugate resampling variances τ2, σk
once per iteration, and slice sampling (Neal, 2003) the Dirichlet concentration b every 100 itera-
tions. Automatically learning these was extremely convenient for model-fitting; the only hyper-
parameter we set manually was K. It also allowed us to monitor the convergence of dispersion
parameters to help debug and assess MCMC mixing. For other modeling and implementation
details, see the appendix section (§6.10).

6.6 Experiments

We fit the two models on the dataset described in §6.3, varying the number of frames K, with 8
or more separate runs for each setting. Posteriors are saved and averaged from 11 Gibbs samples
(every 100 iterations from 9,000 to 10,000) for analysis.

We present intrinsic (§6.6.1) and extrinsic (§6.6.2) quantitative evaluations, and a qualitative
case study (§6.6.4).

6.6.1 Lexical Scale Impurity

In the international relations literature, much of the analysis of text-based events data makes use of
a unidimensional conflict to cooperation scale. A popular event ontology in this domain, CAMEO,
consists of around 300 different event types, each given an expert-assigned scale in the range from
−10 to +10 (Gerner et al., 2002), derived from a judgement collection experiment in Goldstein
(1992). The TABARI pattern-based event extraction program comes with a list of almost 16,000
manually engineered verb patterns, each assigned to one CAMEO event type.

It is interesting to consider the extent to which our unsupervised model is able to recover the
expert-designed ontology. Given that many of the categories are very fine-grained (e.g. “Express
intent to de-escalate military engagement”), we elect to measure model quality as lexical scale pu-
rity: whether all the predicate paths within one automatically learned frame tend to have similar
gold-standard scale scores. (This measures cluster cohesiveness against a one-dimensional con-
tinuous scale, instead of measuring cluster cohesiveness against a gold-standard clustering as in
VI (Meilă, 2007), Rand index (1971), or cluster purity.) To calculate this, we construct a mapping
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between our corpus-derived verb path vocabulary and the TABARI verb patterns, many of which
contain one to several word stems that are intended to be matched in surface order. Many of
our dependency paths, when traversed from the source to receiver direction, also follow surface
order, due to English’s SVO word order.6 Therefore we convert each path to a word sequence
and match against the TABARI lexicon—plus a few modifications for differences in infinitives and
stemming—and find 528 dependency path matches. We assign each path w a gold-standard scale
g(w) by resolving through its matching pattern’s CAMEO code.

We formalize lexical scale impurity as the average absolute difference of scale values between
two predicate paths under the same frame. Specifically, we want a token-level posterior expecta-
tion

E(|g(wi)− g(wj)| | zi = zj , wi 6= wj) (6.1)

which is taken over pairs of path instances (i, j) where both paths wi, wj are in M , the set of verb
paths that were matched between the lexicons. This can be reformulated at the type level as:7

1

N

∑
k

∑
w,v∈M
w 6=v

nw,k nv,k |g(w)− g(v)| (6.2)

where n refers to the averaged Gibbs samples’ counts of event tuples having frame k and a particu-
lar verb path,8 andN is the number of token comparisons (i.e. the same sum, but with a 1 replacing
the distance). The worst possible impurity is upper bounded at 20 (= max(g(w))−min(g(w))) and
the best possible is 0. We also compute a randomized null hypothesis to see how low impurity
can be by chance: each of ∼1000 simulations randomly assigns each path in M to one of K frames
(all its instances are exclusively assigned to that frame), and computes the impurity. On average
the impurity is same at all K, but variance increases with K (since small clusters might by chance
get a highly similar paths in them), necessitating this null hypothesis analysis. We report the 5th
percentile over simulations.

6.6.2 Conflict Detection

Political events data has shown considerable promise as a tool for crisis early warning systems
(O’Brien, 2010; Brandt et al., 2011). While conflict forecasting is a potential application of our
model, we conduct a simpler prediction task to validate whether the model is learning something
useful: based on news text, tell whether or not an armed conflict is currently happening. For a gold
standard, we use the Militarized Interstate Dispute (MID) dataset (Jones et al., 1996; Ghosn et al.,
2004), which documents historical international disputes. While not without critics, the MID data
is the most prominent dataset in the field of international relations. We use the Dyadic MIDs, each
of which ranks hostility levels between pairs of actors on a five point scale over a date interval;
we define conflict to be the top two categories “Use of Force” (4) and “War” (5). We convert the
data into a variable ys,r,t, the highest hostility level reached by actor s directed towards receiver
r in the dispute that overlaps with our 7-day interval t, and want to predict the binary indicator
1{ys,r,t ≥ 4}. For the illustrative examples (USA to Iraq, and the Israel-Palestine example below)
we use results from a smaller but more internally comparable dataset consisting of the 2 million
Associated Press articles within the Gigaword corpus.

6There are exceptions where a Source-to-Receiver path traversal can have a right-to-left move, such as dependency

edges for posessives, in e.g. S
nsubj
−−−→ partner

poss
←−−− R, as in “S is R’s partner”. This approach can not match them.

7Derivation in §6.9.1.
8Results are nearly identical whether we use counts averaged across samples (thus giving posterior marginals), or

simply use counts from a single sample (i.e., iteration 10,000).
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Figure 6.4: For Israel-Palestinian directed dyads, plots of E[θ] (proportion of weekly events in a
frame) over time, annotated with historical events. (a): Words are ‘kill, fire at, enter, kill, attack,
raid, strike, move, pound, bomb’ and ‘impose, seal, capture, seize, arrest, ease, close, deport, close,
release’ (b): ‘accuse, criticize, reject, tell, hand to, warn, ask, detain, release, order’ (c): ‘meet with,
sign with, praise, say with, arrive in, host, tell, welcome, join, thank’ (d): again the same ‘kill,
fire at’ frame in (a), plus the erroneous frame (see text) ‘include, join, fly to, have relation with,
protest to, call, include bomber

appos←−−− informer for’. Figures (b) and (c) use linear interpolation
for zero-count weeks (thus relying exclusively on the model for smoothing); (a) and (d) apply a
lowess smoother. (a-c) are for the ISR→PSE direction; (d) is PSE→ISR.

We view the conflict detection task only as one of several validations, and thus turn to lexical
evaluation of the induced frames. For lexical scale purity (right side of Figure 6.3), the models
perform about the same, with the smoothed model a little bit worse at some values of K (though
sometimes with better stability of the fits—opposite of the conflict detection task). This suggests
that semantic coherence does not benefit from the longer-range temporal dependencies.

In general, performance improves with higher K, but not beyond K = 50. This suggests the
model reaches a limit for how fine-grained of semantics it can learn.

6.6.4 Case study

Here we qualitatively examine the narrative story between the dyad with the highest frequency
of events in our dataset, the Israeli-Palestinian relationship, finding qualitative agreement with
other case studies of this conflict (Brandt et al., 2012; Goldstein et al., 2001; Schrodt and Gerner,
2004). (The MID dataset does not include this conflict because the Palestinians are not considered
a state actor.) Using the Associated Press subset, we plot the highest incidence frames from one
run of the K = 20 smoothed frame models, for the two directed dyads, and highlight some of the
interesting relationships.

Figure 6.4(a) shows that tradeoffs in the use of military vs. police action by Israel towards the
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Palestinians tracks with major historical events. The first period in the data where police actions
(‘impose, seal, capture, seize, arrest’) exceed military actions (‘kill, fire, enter, attack, raid’) is with
the signing of the “Interim Agreement on the West Bank and the Gaza Strip,” also known as the
Oslo II agreement. This balance persists until the abrupt breakdown in relations that followed the
unsuccessful Camp David Summit in July of 2000, which generally marks the starting point of the
wave of violence known as the Second Intifada.

In Figure 6.4(b) we show that our model produces a frame which captures the legal aftermath
of particular events (‘accuse, criticize,’ but also ‘detain, release, extradite, charge’). Each of the
major spikes in the data coincides with a particular event which either involves the investigation
of a particular attack or series of attacks (as in A,B,E) or a discussion about prisoner swaps or mass
arrests (as in events D, F, J).

Our model also picks up positive diplomatic events, as seen in Figure 6.4(c), a frame describ-
ing Israeli diplomatic actions towards Palestine (‘meet with, sign with, praise, say with, arrive
in’). Not only do the spikes coincide with major peace treaties and negotiations, but the model
correctly characterizes the relative lack of positively valenced action from the beginning of the
Second Intifada until its end around 2005–2006.

In Figure 6.4(d) we show the relevant frames depicting use of force from the Palestinians to-
wards the Israelis (brown trend line). At first, the drop in the use of force frame immediately
following the start of the Second Intifada seems inconsistent with the historical record. However,
there is a concucrrent rise in a different frame driven by the word ‘include’, which actually ap-
pears here due to an NLP error compounded with an artifact of the data source. A casualties
report article, containing variants of the text “The Palestinian figure includes... 13 Israeli Arabs...”,
is repeated 27 times over two years. “Palestinian figure” is erroneously identified as the PSE entity,
and several noun phrases in a list are identified as separate receivers. This issue causes 39 of all 86
PSE→ISR events during this period to use the word ‘include’, accounting for the rise in that frame.
(This highlights how better natural language processing could help the model, and the dangers of
false positives for this type of data analysis, especially in small-sample drilldowns.) Discounting
this erroneous inference, the results are consistent with heightened violence during this period.

We conclude that the frame extractions for the Israeli-Palestinian case are consistent with the
historical record over the period of study.

6.7 Related Work

6.7.1 Events Data in Political Science

Projects using hand-collected events data represent some of the earliest efforts in the statistical
study of international relations, dating back to the 1960s (Rummel, 1968; Azar and Sloan, 1975;
McClelland, 1970). Beginning in the mid-1980s, political scientists began experimenting with au-
tomated rule-based extraction systems (Schrodt and Gerner, 1994). These efforts culminated in
the open-source program, TABARI, which uses pattern matching from extensive hand-developed
phrase dictionaries, combined with basic part of speech tagging (Schrodt, 2001); a rough analogue
in the information extraction literature might be the rule-based, finite-state FASTUS system for
MUC IE (Hobbs et al., 1997), though TABARI is restricted to single sentence analysis. Later pro-
prietary work has apparently incorporated more extensive NLP (e.g., sentence parsing) though
few details are available (King and Lowe, 2003). The most recent published work we know of, by
Boschee et al. (2013), uses a proprietary parsing and coreference system (BBN SERIF, Ramshaw
et al., 2011), and directly compares to TABARI, finding significantly higher accuracy. The origi-
nal TABARI system is still actively being developed, including just-released work on a new 200
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million event dataset, GDELT (Schrodt and Leetaru, 2013).13 All these systems crucially rely on
hand-built pattern dictionaries.

It is extremely labor intensive to develop these dictionaries. Schrodt (2006) estimates 4,000
trained person-hours were required to create dictionaries of political actors in the Middle East, and
the phrase dictionary may have taken even longer; the comments in TABARI’s phrase dictionary
indicate some of its 15,789 entries were created as early as 1991. Ideally, any new events data
solution would incorporate the extensive work already completed by political scientists in this
area while minimizing the need for further dictionary development. In this work we use the actor
dictionaries, and hope to incorporate the verb patterns in future work.

6.7.2 Events in Natural Language Processing

Political event extraction from news has also received considerable attention within natural lan-
guage processing in part due to research programs such as MUC-3 and MUC-4 (Lehnert, 1994),
which focused on the extraction of terrorist events, as well as the more recent ACE program. The
work in this paper is inspired by unsupervised approaches that seek to discover types of relations
and events, instead of assuming them to be pre-specified; this includes research under various
headings such as template/frame/event learning (Cheung et al., 2013; Modi et al., 2012; Cham-
bers and Jurafsky, 2011; Li et al., 2010; Bejan, 2008), script learning (Regneri et al., 2010; Chambers
and Jurafsky, 2009), relation learning (Yao et al., 2011), open information extraction (Banko et al.,
2007; Carlson et al., 2010), verb caseframe learning (Rooth et al., 1999; Gildea, 2002; Grenager and
Manning, 2006; Lang and Lapata, 2010; Ó Séaghdha, 2010; Titov and Klementiev, 2012), and a ver-
sion of frame learning called “unsupervised semantic parsing” (Titov and Klementiev, 2011; Poon
and Domingos, 2009). Unlike much of the previous literature, we do not learn latent roles/slots.
Event extraction is also a large literature, including supervised systems targeting problems similar
to MUC and political events (Piskorski and Atkinson, 2011; Piskorski et al., 2011; Sanfilippo et al.,
2008).

One can also see this work as a relational extension of co-occurence-based methods such as
Gerrish (2013; ch. 4), Diesner and Carley (2005), Chang et al. (2009), or Newman et al. (2006), which
perform bag-of-words-style analysis of text fragments containing co-occurring entities. (Gerrish
also analyzed the international relations domain, using supervised bag-of-words regression to
assess the expressed valence between a pair of actors in a news paragraph, using the predictions
as observations in a latent temporal model, and compared to MID.) We instead use parsing to
get a much more focused and interpretable representation of the relationship between textually
co-occurring entities; namely, that they are the source and target of an action event. This is more
in line with work in relation extraction on biomedical scientific articles (Friedman et al., 2001;
Rzhetsky et al., 2004) which uses parsing to extracting a network of how different entities, like
drugs or proteins, interact.

6.8 Conclusion

Large-scale information extraction can dramatically enhance the study of political behavior. Here
we present a novel unsupervised approach to an important data collection effort in the social sci-
ences. We see international relations as a rich and practically useful domain for the development of
text analysis methods that jointly infer events, relations, and sociopolitical context. There are nu-
merous areas for future work, such as: using verb dictionaries as semi-supervised seeds or priors;

13http://eventdata.psu.edu/data.dir/GDELT.html
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interactive learning between political science researchers and unsupervised algorithms; building
low-dimensional scaling, or hierarchical structure, into the model; and learning the actor lists to
handle changing real-world situations and new domains. In particular, adding more supervision
to the model will be crucial to improve semantic quality and make it useful for researchers.

6.9 Appendix: Evaluation

All references to software and data files are for the materials available at http://brenocon.
com/irevents/. File names below are linked to URLs, but should be usable with any down-
loaded version of the software and data.

6.9.1 Type-level calculation of lexical scale impurity

As noted in §6.6.1, the measure we want is a posterior expectation defined for instance pairs,
which we can reformulate at the type level as follows. Let i and j index over instances, and w and
v index over types. Consider an expectation using a single sample to represent the posterior,

E [ |g(wi)− g(wj)| | zi = zj & wi 6= wj & wi, wj ∈M ] =
Q

N
(6.3)

where N is the number of instance pair comparisons satisfying the conditional, and Q is,

Q =
∑
ij

1{zi = zj} 1{wi ∈M} 1{wj ∈M} 1{wi 6= wj} dij (6.4)

=
∑
k

∑
ij

1{zi = k} 1{zj = k} 1{wi ∈M} 1{wj ∈M} 1{wi 6= wj} dij (6.5)

=
∑
k

∑
i

1{zi = k} 1{wi ∈M}
∑
j

1{zj = k} 1{wj ∈M} 1{wi 6= wj} dij (6.6)

=
∑
k

∑
w∈M,v∈M,w 6=v

nwk nvk dwv (6.7)

where dij = |g(wi) − g(wj)|, dwv = |g(w) − g(v)|, and nwk and nvk are from the collapsed Gibbs
sampling count tables, i.e. nwk =

∑
i 1{wi = w} 1{zi = k}.

The denominator is
N =

∑
k

∑
w∈M,v∈M,w 6=v

nw,knv,k

To properly compute a posterior expectation using multiple samples,Q/N should be re-evaluated
on several complete samples and then averaged. However, we found little variation between sam-
ples so used only one. We also tried evaluating a singleQ/N where nwk and nvk are averaged counts
from multiple samples—using this corresponds to a factored, mean-field-like approximation to the
posterior—but it also was very similar to using a single sample.

The implementation is in verbdict/score.py.

6.9.2 TABARI lexicon matching

Two additional notes:
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1. There were a number of patterns in the TABARI lexicon that had multiple conflicting codes.
See verbdict/contradictory codes.txt.

2. As described in the paper, the dependency paths are traversed from source to receiver, cre-
ating the corresponding word sequence. Prepositions are un-collapsed and put into the
sequence. There is special handling of xcomp’s, which sometimes represent an infinitival
‘to’ and sometimes do not; we generate two versions, with and without ‘to’; if either one
matches to a TABARI pattern then that counts as a match.

The implementation is in verbdict/match.py.

6.10 Appendix: Details on Inference

The full smoothed model is:

Context model (smoothed frames):
τ2 ∼ InvGamma

σ2k ∼ InvGamma
αk ∼ Normal

βs,r,1,k ∼ N(0, 100)

βs,r,t>1,k ∼ N(βk,s,r,t−1, τ
2)

ηs,r,t,k ∼ N(αk + βk,s,r,t, σ
2
k)

θs,r,t,∗ = Softmax(ηs,r,t,∗)

Language model:
b ∼ ImproperUniform
φk ∼ Dir(b/V )

z ∼ θs,r,t
w ∼ φz

(s,r)

⌘s,r,t

✓s,r,t

z

�

w

b

�2

↵

�s,r,t�1 �s,r,t ...

...

s   Source
     entity
r   Receiver
     entity
t   Timestep
w  Verb path

The blocked Gibbs sampler proceeds on the following groups of variables. These conditionals also
implicitly condition on w, s, r, t.

• Context (Politics) submodel

– [α | η, β, σ2]: Exact

– [β | η, α, σ2]: Exact, FFBS algorithm

• Context/Language bridge

– [η | β, α, z]: Laplace approximation Metropolis-within-Gibbs step

• Language submodel

– [z|η]: Exact, collapsing out φ
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• Dispersions (variances and concentrations)

– [τ2|β], [σ2|η, α], [b|z, w]

The key step is sampling instantiations of η, which is the bottleneck between the politics and
language models; given that, inference proceeds on either side of the model via well-known con-
jugate posterior resampling updates, each described as follows.

6.10.1 Language Submodel [z | η]

This is the most straightforward step in light of previous work in Bayesian language modeling.
Dirichlet-Multinomial conjugacy allows Gibbs sampling to proceed on individual z’s for indi-
vidual tuples, collapsing out φ (as in Griffiths and Steyvers (2004), though unlike that work we
condition on θ):

p(zi = k | s, r, t, w, z−i, θ, b) ∝ θs,r,t
#{z = k,w}+ b/V

#{z = k}+ b
(6.8)

where the counts are taken from the current z setting in all corpus tuples, except tuple i. b is the
Dirichlet concentration parameter, and V is the number of verb-path types.

6.10.2 Context Submodel [α, β | η]

The α update is just a conjugate normal sample; see any standard Bayesian reference, e.g. §4.4.2.1
of Murphy (2012), or Gelman et al. (2003). Let the all-but-α residual be rs,r,t,k = ηs,r,t,k − βs,r,t,k, so
r ∼ N(α, σ2k). With prior p(α) ∼ N(0, 100), then

p(αk | η, β, σ2k) = N

(
n/σ2k

n/σ2k + 1/100
r̄k, [1/100 + n/σ2k]

−1
)

where r̄k is the current residual empirical mean: r̄k =
∑

s,r,t(ηs,r,t,k − βs,r,t,k), and n is the number
of η emissions for this frame (i.e. the number contexts). η only exists for contexts with at least
one event tuple (otherwise it is vacuous variable), the sums over (s, r, t) are only over those con-
texts. Still, n is very large (hundreds of thousands) so the posterior is very peaked; updating α is
basically the same as an maximum likelihood estimate and the prior is irrelvant.

The β update is dynamic linear model inference. Because of the emissions’ diagonal covariance
diag(σ21 . . . σ

2
K), it decomposes into conditional independence for each frame’s time series for each

dyad. A single joint sample of one of these time series,

(β̂s,r,1,k . . . β̂s,r,T,k) ∼ p(βs,r,1,k . . . βs,r,T,k | α, η, σ2k, τ2)

can be drawn exactly with dynamic programming, via the forward filter, backward sampling al-
gorithm (FFBS; Harrison and West, 1997; Carter and Kohn, 1994). We leave out α, σ2k, τ

2 in the
following equations for clarity. Here, FFBS proceeds in two steps: (1) run a Kalman filter, succes-
sively computing each p(βt | η1 . . . ηt) (each of which is normal), and (2) run a sampling variant
of the RTS smoother, to sample successively each β̂t ∼ p(βt | β̂t+1, η1 . . . ηt) (each of which is also
normal). The final sequence of sampled β̂t values is a sample from the joint sequence posterior,
since p(β1 . . . βT |η1:T ) = p(βT |η1:T ) p(βT−1|βT , η1:T−1) . . . p(β1|β2, η1).
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We use µ and Σ to denote posterior beliefs about β. LetN(µt|t−1,Σt|t−1) denote p(βt | η1 . . . ηt−1),
and N(µt,Σt) denote p(βt | η1 . . . ηt) (where Σ is just a scalar variance). The full Kalman filter is
defined for much more general Gaussian state-space models: (Murphy, 2012 §18.3 notation)

zt = Azt−1 + But + N(0, Q)
yt = Czt + Dut + N(0, R)

Which for us is just
βt = βt−1 + N(0, τ2)
ηt = βt + α + N(0, σ2)

The algorithm is14

• Filter, which takes η1:T as input.

Initialize µ1|0 := 0, Σ1|0 := 100 (and skip the prediction step on the first iteration).

For t = 1..T ,

– Prediction step (infer p(βt | η1 . . . ηt−1)):
µt|t−1 := µt−1

Σt|t−1 := Σt−1 + τ2

– Measurement step (infer p(βt | η1 . . . ηt)):
r := ηt − (µt|t−1 + α) (residual)
K := Σt|t−1(Σt|t−1 + σ2)−1 (Kalman gain)
µt := µt|t−1 +Kr

Σt := Σt|t−1(1−K)

• Backward-sampler, which uses the filtered quantities µt,Σt as input.

Initially sample β̂T ∼ N(µT ,ΣT ).

For t = (T − 1)..1,

– Sample β̂t ∼ N(µt + L(β̂t+1 − µt+1|t), Σt − L2Σt+1|t)

where L = Σt(Σt+1|t)
−1

We have one modification to the standard linear dynamical system model: while a β exists for
all timesteps, there are many zero-count contexts without any event tuples. The Kalman filter is
modified to skip the measurement step for those timesteps, so simply µt := µt|t−1 and Σt := Σt|t−1.
We do not store η variables at those timesteps, since they are unnecessary for inference; but we
do simulate them when creating posterior samples for analysis in the conflict detection task. (The
time-series plots of E[θ] in section 5 of the paper do not show these samples.)

We use a custom implementation of the filter and sampler that was tested via simulation in two
ways: (1) comparing its inferences on simulated data to those from the dlm package in R (Petris,
2010), and (2) using the Cook et al. (2006) Bayesian software validation technique of checking the
simulation distribution of inferred posterior quantiles of simulated parameters. The latter was
useful for tesing other samplers as well. In fact, the softmax bug in the logistic normal inference
procedure (§6.10.5) resulted from a case where the validation tests were not used.

14See also http://www.gatsby.ucl.ac.uk/˜turner/Notes/1DKalmanFilter/1d_kalman_filter.
pdf.
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6.10.3 Logistic Normal [η | z, η̄]

Next, we must resample the η variables; for every context, sample from the posterior density

p(η | η̄, z) ∝ N(η | η̄,Σ) Mult(z | θ(η)) (6.9)

where η̄ = β+α denotes η’s prior mean. This has an unnormalized log posterior density function

`(η) =
∑
k

(
− 1

2σ2k
(ηk − η̄k)2 + nk log θ(η)k

)
(6.10)

where nk is the number of tuples in this context having frame k, and θ(η) is the value of θ deter-
ministically associated with η via the softmax function.

Unfortunately, unlike the Dirichlet, a logistic normal prior on a multinomial is not conjugate;
Equation 6.10 describes the unnormalized density, but there is no closed form for the normalized
posterior (and more to the point, no known exact sampling algorithm).

As described in the paper, we use a Laplace approximation proposal—a Gaussian approxi-
mation centered at the mode, which can be justified as the second-order approximation to the
log-posterior there—taking a proposed sample η∗ via the steps

(1) Solve MAP η̂ = arg maxη `(η)
(2) Sample η∗ ∼ N(η̂, [H(−`(η̂))]−1)

where H(−`(η̂)) denotes Hessian of the negative unnormalized log-posterior at η̂.
Step #1 could be solved in a number of ways. We use a fast linear-time Newton algorithm from

Eisenstein et al. (2011b), which was faster than gradient descent methods we tried; we reproduce
it below. The Newton step is

η := η − λH−1g

where the gradient of −` is

g(η)k = nθk − nk +
1

σ2k
(ηk − η̄k)

and the Hessian has diagonal and off-diagonal elements

Hkk = nθk(1− θk) + 1/σ2k, Hjk = −nθjθk

where n is the number of event tuples in the context (i.e. number of individual z’s). Matrix
inversion is in general a cubic time algorithm, but we apply the Sherman-Morrison formula to
only have to invert a diagonal matrix. For any invertible square matrix A and vectors u,v, the
Sherman-Morrison formula gives an alternate expression for (A + uvT)−1 in terms of A−1. For a
diagonal matrix A and vectors u, v, w, we apply the Sherman-Morrison formula and configure the
order of operations to avoid creating any non-diagonal matrices:

Z = (A+ uvT)−1w (6.11)

Z = A−1w − [1 + vTA−1u]−1(A−1u)(vTA−1w) (6.12)

Zj = (A−1jj wj)−
1

1 +
∑

k A
−1
kk vkuk

(A−1jj uj)
∑
k

A−1kk vkwk (6.13)

where the last line shows the resulting vector for one element j.
The Hessian can be rewritten as a sum of diagonal and rank-1 matrix asH = diag[nθk+1/σ2k]−

nθθT, thus the Newton step direction H−1g can be calculated in linear time by applying Eq. 6.12
with A−1kk = (nθk + 1/σ2k)

−1, w = g, u =
√
nθ, v = −

√
nθ.
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Eisenstein et al. (2011a) present this technique in the context of a variational inference algo-
rithm, but actually it applies to any MAP logistic normal inference problem under diagonal co-
variance. We find it usually converges to an η̂ estimate in only several iterations (using a line
search,15 first taking a step sized λ = 1, and if it’s not an improvement, halving λ until it is.)

Step #2 is to sample from the multivariate normal N(η̂, H−1). The simplest MVN sampling
algorithm is to take K samples from N(0, 1) and multiply that vector by the Cholesky root of the
covariance (and add the mean). But it takes cubic time to compute a Cholesky root (in the general
case), which is too expensive for large values of K. Instead, we only invert the diagonal of the
Hessian (linear time), resulting in a diagonal covariance (thus each η∗k ∼ N(η̄k, 1/Hkk)); this is
only an axis-aligned MVN approximation to the posterior.16

So this gives a ηnew proposal. It is possible to simply update to it directly; but it is more accurate
to use it as a Metropolis-Hastings proposal. Calculate the acceptance probability

a =
p(ηnew|η̄, z)
p(ηold|η̄, z)

N(ηold; η̂, H−1)

N(ηnew; η̂, H−1)

and accept the proposal at probability min(a, 1). The ratio of true posterior densities can be calcu-
lated with the unnormalized form in Equation 6.10.

See also Wang and Blei (2012) which develops a Laplace approximation for variational infer-
ence for several nonconjugate models, including a logistic normal topic model; this approach is
also applied in Roberts et al. (2013). The Metropolis-Hastings approach we use here is similar to
Hoff (2003).

6.10.4 Learning concentrations and variances

There are several parameters that control the overall variability of the above quantities. The
Dirichlet concentration parameter b controls the similarity between the frames’ predicate-path
distributions; the autoregressive variance τ2 controls how similar a dyad’s latent positions are be-
tween timesteps; and the emission variances σ2k controls how similar the frame distributions are
for two contexts with identical latent states.

All these prior parameters are learned, thus naturally leading the model to learn highly likely
levels of sparsity and variability. This is tremendously convenient in practice, since there are no
hyperparameters that need to be tuned (beyond K and data preprocessing decisions). It also
helps the model learn better solutions; for example, Asuncion et al. (2009) finds that Dirichlet
concentration learning gives much better solutions for LDA.

The symmetric Dirichlet parameter b is learned with slice sampling (Neal, 2003), under an
improper uniform prior for b. (In other experiments we have found different diffuse priors for b
make little difference.) Slice sampling only requires an (unnormalized) posterior density function;
with a uniform prior it’s just the Dirichlet-multinomial likelihood, which is, integrating out φ,

L(b) = p(w | z, b) =

K∏
k=1

Γ(b)

Γ(b+ nk)

V∏
w=1

Γ(b/V + nk,w)

Γ(b/V )
(6.14)

where V is the verb-path vocbaulary size, nk is the number of event tuples having z = k, and nk,w
the number having frame k and verb-path w. An implementation speedup is possible noting that

15e.g. http://www.cs.cmu.edu/˜ggordon/10725-F12/slides/11-matrix-newton-annotated.pdf
16In fact, this is not even the factored marginals of N(η̂, H−1), since the diagonal of a Hessian inverse is different

than the inverse of a Hessian diagonal.
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only one class, and thus have a similar lexical scale purity as the random choice baseline that
would come from one big cluster of all words.) This was later discovered to be due to a bug in
the implementation: it clamped the K’th element of η to 0 (attempting to implement an alternate
version of softmax with better identifiability), but only the first K − 1 elements of θ were used
in the posterior density evaluation for the MH step, so counts of z = K were ignored in the
likelihood. Thus the model would eventually shift θK to zero and put all the probability mass
on the first K − 1 elements. (It takes a while for the bug to cause this to happen, since the MAP
optimum and Laplace approximation for η, given a fixed θ, is computed correctly. But the density
ratio for the MH step prefers assigning low θK values, and in the limit the Markov chain should
give zero probability for non-zero θK .) If θK = 0, then the model is exactly the same as a fully
parameterized K − 1 model; since it is close to zero, it is very similar to that.
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Chapter 7

Conclusion

7.1 Summary of contributions

We have presented a series of tools and case studies that analyze social phenomena and text:
examining whether text analysis can help measure or predict social variables, and exploring hy-
potheses about how social factors guide the text generation process. These hold promise to shed
light on a variety of areas of human society where the content of ideas, opinions, events, and other
linguistically expressible concepts are crucial for how people behave. As textual and other digital
records of human behavior keep growing at a rapid pace, these types of techniques will be key
parts of the emerging discipline of computational social science (Lazer et al., 2009).

Specific contributions of this work include:

• The MiTextExplorer interactive data analysis system, for exploring the statistical relationship
between document text and covariates (Chapter 2). It uses pointwise mutual information, a
basic and useful technique for identifying phenomena worthy of further exploration. This is
useful for many social text data analysis problems, which typically see document covariates
as indicators of social attributes. (The other chapters of this thesis use these and other meth-
ods to get at these relationships.) An experimental prototype of this system is open source
and available at http://brenocon.com/mte/.

• An analysis of public opinion polls compared to opinion experessed in social media, on
several economic and political topics (Chapter 3). Some moderate correlations over time
are observed, indicating the potential of sentiment analysis as an alternative to polling, but
many challenges also exist, and are discussed.

• A mixed-membership model of geography, demographics, and lexical variation (Chapter 4),
which infers geographically coherent linguistic communities, characterized by both spatial
and word clusters. Applied to geotagged messages in social media, it reveals surprising pat-
terns of geographically specific terms. The model also allows inference of a user’s location
based on the text of their messages. This model and dataset are also applied to learning
demographically-based word groupings, by using U.S. Census data. The exploratory find-
ings here motivate the next chapter:

• A study of linguistic diffusion (Chapter 5), which analyzes how novel terms spread across
different cities in the U.S. over several years, as evidenced in social media. Our model for
this statistical analysis is robust to confounds in data sampling rates and ephemeral trends.
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We find that geography and population size are important drivers of diffusion, but also,
demographic similarity—especially with regards to race—is a crucial determinant.

• We present a method to extract events in international relations from a corpus of news arti-
cles (Chapter 6), which unlike previous work automatically infers the latent classes of events,
as well as their variation across time for different pairs of actors. The models’ inferences are
evaluated on their ability to reconstruct previous databases of international conflict, as well
as pre-existing phrase dictionaries that have been engineered for this information extrac-
tion task. This illustrates the usefulness of natural language processing techniques such as
syntactic parsing and the use of semantic arguments in probabilistic modeling.

7.2 Recurring themes

Some recurring themes in this work include the following.

Exploratory analysis. Many approaches are useful for exploring these types of social text data
in light of different questions. Chapter 2 focuses on computationally cheap and fast count-based
techniques, which are fast enough to allow rapid iteration and interactive refinement of hypothe-
ses about the relationship of text and document covariates. Chapter 3 also uses count-based
techniques for analyzing textual sentiment, but based on pre-existing linguistic dictionaries. In
contrast, Chapter 4 develops a more expensive topic model approach, which infers groupings of
terms, and Chapter 6 applies similar statistical models to a very different linguistic structure, syn-
tactic dependencies describing events between actors. In all cases, these models allow exploration
of social variables against text variables; there is a tradeoff between richness of representation and
speed and simplicity of analysis.

Social science. An understanding of social science is crucial for useful social text data analysis.
When analyzing Twitter data against time and space, many insights from the areas of sociolin-
guistics and dialectology are important to help interpret what is going on, and computational
data analysis can shed light on important hypotheses in this area (Chapters 4 and 5). Sentiment
analysis on Twitter is useful to think about in comparison to traditional polling methods (Chap-
ter 3); there are of course many differences in how these measurement methods work. In some
cases, previous work additionally provides rich datasets to work with; for example, the area of
international relations has seen much work that we use to help validate and understand what our
new event extraction methods methods are doing (Chapter 6), and in future work they may be
integrated in new approaches to yield better analysis techniques.

Probabilistic machine learning. The framework of probabilistic graphical models and statistical
modeling is used throughout. This gives a rich set of formal and computational tools to represent,
infer, and learn important relationships in the data. Even when very simple techniques are used,
it is enlightening to keep in mind statistical and machine learning interpretations of them—as in
Chapter 2’s use of pointwise mutual information for word analysis. Optimization, variational
inference, and Markov chain Monte Carlo methods allow for flexible and useful inferences for
a very wide variety of problems. A few other important techniques used in this thesis include
false discovery rate control, dynamic programming, and distributed computation. These all have
important uses in the social sciences.
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A little bit of NLP can go a long way. Techniques for text analysis (i.e., natural language pro-
cessing) are quite imperfect given the incredible complexity of language and human intelligence,
but they can extract partial views of sentiment, entities, and events, which have many important
applications in understanding social phenomena revealed in text data.

7.3 Directions for future work

Much of this work has a heavily exploratory nature. This is appropriate for early stages of gaining
understanding, especially as we are still coming to grips with the remarkable possibilities of new
social data produced by online systems.

However, the real gains will be made through deeper integration with substantive issues in the
social sciences. One relatively simple approach is to leverage data and resources from previous
social science research to guide the development of new algorithms and techniques. Chapter 3
explores to what extent traditional polling data might correlate to sentiment measured in social
media, and Chapter 6 seeks to reconstruct traditional international event data from latent syntactic
analysis techniques. This type of research has the attraction of a relatively simple framework—
the researcher checks whether a new computational method correlates to an older, established
method. In the longer term, it allows a relatively loose interaction between new computational
research and more substantive research efforts: the computational researchers run algorithms to
generate new data, then hand it off to others for further analysis. Many examples of this pat-
tern exist: previous work in international event data, for example, follows this approach (King
and Lowe, 2003; Schrodt, 2012), and a future version of our international events model could take
a similar path. In political science, the well-known NOMINATE scores, a latent variable model
of legislator partisanship (Poole and Rosenthal, 1997), are similarly inferred by a small set of re-
searchers, and then made available for download; and they have indeed been used very widely.1

A more involved, in-depth integration of computation and social science is to directly en-
gage substantive questions as part of the computational analysis. One avenue is by developing
general-purpose text analysis tools that are directly used by researchers—methods such as key-
word queries, dictionary frequencies, document classifiers, and topic models have all been widely
used—and new methods such as the interactive explorer of Chapter 2 may help as well. Here, the
computational research has substantive researchers as users; an iterative process of feedback and
refinement is crucial for future progress.

Another approach is to develop customized, computationally-heavy analysis for a particular
question, such as a statistical model of text conditioned on certain types of social variables (as in
the generative process described in §1.1). In the course of our research on sociolinguistics and
Twitter, we found that a latent variable, temporal model was necessary to investigate questions
about linguistic diffusion (Chapter 5). To support this form of development, contributions from
the computational, statistical, and linguistic sciences include the fundamental primitives of model
building (such as probabilistic graphical models), and defining the linguistic objects of analysis.
General advances in these areas, such as automatic statistical modeling frameworks like BUGS
(Lunn et al., 2009) or Stan (Stan Development Team, 2014), or more robust natural language pro-
cessing tools, can make the process of model development easier.

An exciting frontier is to incorporate ideas of measurement, causal inference, and other core so-
cial science topics into text analysis models. As mentioned in §3.6, the process by which opinions
become expressed in social media is subject to a large number of complicated behavioral factors.
In order to formulate more effective opinion measurement methods, a promising approach is to

1http://www.voteview.com/
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model the data generating process, where latent variables of user and population opinions drive
a process resulting in frequencies of different types of messages in social media. For international
events data generated by traditional rule-based systems, Lowe (2012) examines the problem of sta-
tistical aggregation by positing a latent variable measurement model, where event counts are gen-
erated based on the dyadic relationsip; from this a scaling of event classes is inferred. Our event
class model may benefit from an approach like this, or other alternative models of international
actors and their dynamics. These can be combined with sophisicated linguistic representations.
Researchers have also started to examine causal inference with text data (Roberts et al., 2014); this
is a critical area for future work. Indeed, as many interesting “big data” possibilities emerge from
digital records of human behavior from sensors or online environments, we will see more and
more need for social analysis; as Grimmer (2014) puts it, “we’re all social scientists now.”

In terms of methodology, it might be useful to think of the following goal: make text analysis
as widespread and useful as linear regression, the workhorse of much applied statistical analysis.
Though it is not always thought of in this way, linear regression is a completely computational
methodology—before computers, it was impossible to fit the types of linear regressions that are
now commonplace. Since linear regressions and related statistical analysis methods are well un-
derstood, and widely implemented and straightforward to run, their use is usually not considered
“computational social science” in the way that, say, topic models or network analyses sometimes
are. But this is only because the methodology of linear regression is more mature than many text
analysis models.

Finally, this line of research should not just provide better social science methodology, but feed
back to natural language and artificial intelligence research as well. Language and cognition are
deeply embedded in social processes: communities and their shared norms and ideas are key to
giving language meaning. The social context for an utterance is an important piece of knowledge
that should be integrated into models of language production and understanding. Research into
analysis of social text data will reveal important considerations and insights for computational
intelligence more generally.
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