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Abstract
The software development process is rapidly evolving with the advancement of

Large Language Models (LLMs). LLMs are not only transforming the way code
is written but are also increasingly integrated into AI programming tools, such as
ChatGPT and GitHub Copilot, to enhance developer productivity by generating pro-
grams from natural language instructions, identifying and fixing bugs, generating
documentation and so on.

These LLMs are pretrained on large volumes of natural language and code data.
They are trained using cross-entropy and preference losses that have no coefficient
for correctness and only optimize for matching the ground truth. Therefore, despite
their proficiency in learning code syntax, they fall short in capturing semantic sig-
nals. To date, the main focus of efforts to improve these models has been training
larger models and collecting more human preference data. However, user studies
have found notable issues with the usability of these larger models, including diffi-
culty in understanding the generated code, the presence of subtle bugs that are hard
to find, and a lack of verification of the generated code.

This dissertation demonstrates that integrating domain insights from software
engineering into AI-based code generation can enhance reliability and utility for
developers. This is done by empowering the model to take on a more active role in
building valid and usable code, instilling greater trust among users in the capabilities
of the model. I focus on three main challenges identified by prior work and propose
solutions using software-specific insights.

(1) The generated code can be difficult to understand and manipulate, especially
for non-expert programmers. To address this, I contribute LOWCODER, a tool that
abstracts away the syntactic complexity associated with traditional code and pro-
vides a more user-friendly interface using drag-and-drop functionality. As a result,
LOWCODER provides a trusted environment where users can leverage the capabili-
ties of AI without the need for extensive coding knowledge.

(2) Verifying the correctness of the generated code is hard. While LLMs excel at
generating code, they are lacking when it comes to generating tests. This is largely
because current models are trained on individual files and therefore can not consider
the code under test context. To overcome this, I contribute CAT-LM, a LLM trained
to explicitly consider the mapping between code and test files. CAT-LM can there-
fore help users with verifying code that they or other models generate, by generating
tests that align more coherently with the underlying code.

(3) The generated code often has subtle bugs that are hard to find. To address
this, I contribute DIFFSPEC, a framework for generating differential tests with LLMs
using prompt chaining to verify code correctness. DIFFSPEC makes use of various
software artifacts like natural language specification documents, source code, ex-
isting tests, and previous bug reports to generate tests to not only verify code cor-
rectness, but also checks for conformance against the specification. By highlight-
ing meaningful behavioral differences between implementations, DIFFSPEC can en-
hance the overall reliability of even extensively tested software systems.



The goal of my dissertation is to demonstrate the significance of integrating
software-specific insights when training models to make code generation more re-
liable and useful for developers. My dissertation work contributes several artifacts
including datasets, evaluation frameworks and models that are trained by integrat-
ing software-specific insights to improve the quality of generated code. Importantly,
these models are all quite small relative to cutting-edge general purpose models like
GPT-4. While large, general models can also be very useful for these tasks, they
have their own limitations: few companies can afford the immense resources re-
quired to train such large models, and most of these models are closed-source and
provide limited (free) access to the community which can be unreliable. In contrast,
my work produces smaller open-source models that are specialized to perform var-
ious programming related tasks, resulting in tools that make code generation more
reliable and useful for developers.
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Chapter 1

Introduction

The development of Large Language Models (LLMs) has led to the widespread use of AI-
powered programming tools such as ChatGPT [7] and GitHub Copilot [6] in the software engi-
neering community. These tools have fast become key resources for developers, playing a cru-
cial role across various stages of the software engineering lifecycle. They facilitate tasks ranging
from generating code to identifying and fixing bugs, generating tests for verification, and even
generating comprehensive documentation.

LLMs are generally trained in a multi-stage process. First, the model is pretrained on large
volumes of natural language and code data. This allows the LLM to learn the patterns in code
including syntax, grammar, and contextual relationships within the given data. This is followed
by a finetuning and/or instruction-tuning process to better align the model with human prefer-
ences. For code, this typically involves using code or pairs of natural language and code that help
align the model to perform specific tasks and better understand the code semantics. Predominant
training techniques often make use of cross-entropy and preference losses that just optimize for
matching the ground truth and not code correctness. Thus, when applied to code, the models are
only learning the syntax explicitly, not the semantic signals that the developers consider.

To date, the primary approach to enhancing model performance has revolved around training
larger models with increased parameters or incorporating more training data [91, 106]. However,
user studies have revealed notable issues with the usability of these larger models, including
difficulty in understanding the code generated (especially for non-expert programmers) [171,
202], the presence of subtle bugs that are hard to find [125, 202] and lack of verification of the
generated code [26, 125]. While scaling has proven to improve model performance on various
benchmarks, it does not address the issues developers face when using these models.

My work explores an alternative to the scaling-centric approach by incorporating domain in-
sights from software engineering. The goal is to address these challenges by proposing tech-
niques that draw insights from software engineering. By integrating software-specific insights
during training and evaluation of LLMs of code, we can produce more effective models that
make code generation more reliable and useful for developers.
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1.1 Challenges with LLM-based Code Generation
Despite the constant efforts being made to improve LLMs for various code understanding and
generation tasks, several challenges remain that make the generated code less useful for devel-
opers in practice. Here, I elaborate on three main challenges identified by prior work and pro-
pose techniques for addressing them, while highlighting the software-specific insights employed
in each method.

Challenge 1: Syntactic Complexity

AI programming tools like Copilot [6] and ChatGPT [7] can generate code from natural language
instructions, which is especially helpful in ecosystems with large APIs. However, a key problem
with these tools is that they generate (potentially complex) code, which can be difficult to un-
derstand and manipulate [202]. This is especially true for novices or non-expert programmers,
where the complexity of textual code often makes it difficult for them to reason about the gen-
erated code. Studies have found that individuals who are not very proficient in coding were less
inclined to use AI tools for code generation [171]. This reluctance arises from the background
knowledge and skill necessary to comprehend the correctness and quality of AI-generated code.
Additionally, intervening effectively requires programming experience in order to manipulate the
generated code into a usable format [171].

This challenge also persists with experienced programmers. Studies found that users often
discarded the code generated by Copilot when it did not behave as expected [202]. This was
largely because they did not understand several parts of the generated code and therefore did not
know how to debug the code. Others felt that it was more efficient to rewrite the whole code from
scratch rather than to spend time reading and understanding the generated code to make the nec-
essary changes [202].

Key Insight: The use of abstraction, in this case through low-code or visual programming, can
help overcome the challenge of syntactic complexity in LLM generated code.

Solution: I developed LOWCODER [170], a tool that abstracts away the syntactic complexity as-
sociated with traditional code and provides a more user-friendly interface using drag-and-drop
functionality. LOWCODER is the first low-code tool for developing AI pipelines that supports
both a visual programming interface and offers an AI-powered natural language interface. The
hypothesis is that the respective strengths of these two low-code techniques can compensate for
each other’s shortcomings. Programming by natural language (PBNL) uses AI to help users re-
trieve and use programming constructs based on natural language queries. This does not always
result in correct programs, necessitating a way to help users understand and fix generated pro-
grams. Visual programming complements PBNL by providing a clear, unambiguous representa-
tion of the program that users can directly manipulate to experiment with alternatives.

LOWCODER is leveraged to offer some of the first insights into both how and when low-
code programming and PBNL assists developers with various degrees of expertise. This is done
by conducting a user study with 20 participants with varying levels of AI expertise using LOW-
CODER to complete four tasks, half of which with the help of the AI-powered search compo-
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nent. Overall, the combination of visual programming along with the natural language interface
helped both novice and experienced users to successfully compose pipelines (85% of tasks) and
then further refine their pipelines (72.5% of tasks) when using AI-powered search interface. Ad-
ditionally, the AI-powered natural language interface helped users discover previously-unknown
operators in 75% of the tasks compared to just 32.5% using other methods like web search. This
work highlights the benefits of combining the power of AI with low-code programming and over-
comes the challenge of syntactic complexity by abstracting away textual code.

Takeaway: AI has shown a lot of potential in empowering individuals with limited or no pro-
gramming experience to write code, but this comes with its own set of challenges. The most im-
portant one being difficulty in understanding and reasoning about the generated code. We can
address this challenge by abstracting away textual code and replacing it with more intuitive in-
terfaces like drag-and-drop user interfaces. LOWCODER facilitates the integration of AI into a
trusted environment tailored to the needs of non-expert programmers. Through LOWCODER, we
show that AI can still be just as useful at this level of abstraction. Specifically, the natural lan-
guage model supports users in the visual space despite being trained on textual code. Conse-
quently, LOWCODER provides a user-friendly space where individuals can leverage the capabili-
ties of AI without the need for extensive coding knowledge, thereby enhancing accessibility and
usability.

Challenge 2: Verification

Verifying the correctness of automatically generated code is yet another challenge that comes
with using LLMs. In software development, developers use tests to verify the correctness of the
code they write. In well-tested projects, most code files are paired with at least one corresponding
test file that implements unit and/or integration test functions that evaluate the functionality of
the code. However, writing high quality tests can be time-consuming [30, 31] and is often either
partially or entirely neglected. This has led to extensive work on automated test generation,
including both classical [25, 40, 62, 72] and neural-based methods [62, 205, 219].

Classical test generation tools like EvoSuite [72] directly optimize to generate high-coverage
tests. However, the generated tests are often hard to read and may be unrealistic or even wrong
[157]. This requires time and effort from developers to verify generated test correctness [40].
Meanwhile, LLMs trained on code have made major strides in generating human-like, high-
quality functions based on their file-level context [28, 47, 73, 151]. AI-powered tools like Copi-
lot excel at code generation, and can significantly improve the productivity of its users [6]. Cur-
rently, these models are less well-suited for test generation, because they tend to be trained to
generate the code in each file separately, standard practice in natural language processing and
therefore can not consider the code under test context when generating the tests.

Key Insight: Generating meaningful tests critically requires considering the alignment between
the tests and the corresponding code under test.

Solution: To overcome this challenge, I developed CAT-LM [168], a language model trained
on aligned Code And Tests. CAT-LM is a bi-lingual GPT-style LLM with 2.7B parameters. It
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is trained on a large corpus of Python and Java projects using a novel pretraining signal that ex-
plicitly considers the mapping between code and test files, when available, while also leveraging
the (much larger) volume of untested code. Modeling the code file along with the test leads to
additional challenges regarding a model’s context length, which is overcome by training CAT-
LM with a context window of 8,192 tokens.

CAT-LM is evaluated against several strong baselines across two realistic applications: test
method generation and test method completion. For test method generation, CAT-LM is com-
pared with both human written tests as well as the tests generated by StarCoder [119] and, the
CodeGen [151] model family, which includes mono-lingual models trained on a much larger
budget than ours. CAT-LM is also compared against TeCo [150], a recent test-specific model,
for test completion.

The results show that CAT-LM effectively leverages the code file context to generate more
syntactically valid tests that achieve higher coverage on average than StarCoder and all Code-
Gen models, and substantially outperforms TeCo at test completion. CAT-LM provides a strong
prior for generating plausible tests. When combined with basic filters for compilability and cov-
erage, it frequently generates tests with coverage close to those written by human developers.
This highlights the merit of combining the power of large neural methods with a pretraining sig-
nal based on software engineering expertise—in this case, the importance of the relation between
code and test files.

Takeaway: While LLMs excel at code generation, they are limited in their ability to generate
tests because of the way they are trained to generate individual code files independently, a stan-
dard practice in natural language processing. As a result, they can not consider the code under
test context when generating the tests. CAT-LM addresses this challenge by explicitly consider-
ing the mapping between code and test files during training. This enables users to generate tests
that align more coherently with the underlying code, thereby enhancing the quality of tests pro-
duced. Moreover, CAT-LM supports users in verifying both the code they write and that which
is generated by other LLMs, ensuring a more comprehensive and reliable testing process.

Challenge 3: Reliability

Several AI powered applications now rely on querying an LLM through an API call by using de-
tailed natural language prompts. In fact, as of January 2024, there have been over 3 million cus-
tom versions of ChatGPT for specific tasks that are based on meticulously designed prompts [9].
These prompts include a detailed descriptions of all the requirements or specifications that the
model needs to conform to, in order to provide the desired output. Requirements play a critical
role in the development of these applications, and need to be explicitly stated. These could in-
clude both functional and non-functional requirements such as usability, reliability, latency, costs,
privacy and safety [126]. However, nearly 54% of participants indicated that the code generation
tools often fail to meet the specified requirements (both functional and non-functional) [125],
therefore leading to unreliable code being generated.

Ensuring that code is reliable and conforms to the given set of requirements or specifica-
tions is not easy. Currently, this is a predominantly manual process, that involves developers re-
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viewing the specifications and code to ensure it’s implemented correctly, or a handwritten set of
conformance tests [141]. This can be very tedious and expensive, and is prone to errors. Dif-
ferential testing has shown significant success especially in testing language implementations,
such as uncovering bugs in C compilers [113, 229] or browser engines, for example revealing
inconsistencies in JavaScript interpreters and JIT compilers [34]. It also can be useful for test-
ing cross-platform consistency (i.e., the same system across different configurations or operating
systems) [67] or versions (as in regression testing) [76]. The key idea is to test two or more dif-
ferent systems (or two different versions of the same system) that should behave the same way
under the same conditions on the same inputs. If their output behavior differs, it is likely that at
least one of the implementations is incorrect.

Generating tests that specifically target differences between two versions of a program is es-
pecially challenging, as it involves simultaneously searching the vast input space of two programs
to find rare inputs that trigger often subtle discrepancies [139]. Existing approaches to find such
tests limit the possible search space by borrowing techniques from symbolic execution [179],
guided semantic aware program generation [107], type aware mutations [99], and code coverage
optimizations [50]. While some approaches leverage semantic and syntactic properties of the
code or use information from static analysis tools, they are significantly limited in their ability to
harness the wealth of information available from natural language artifacts.

Key Insight: Natural language requirements and specifications are critical for checking code
conformance and ensuring that the code does what it is supposed to.

Solution: DIFFSPEC [169] is a framework for generating differential tests with LLMs using
prompt chaining. DIFFSPEC takes into consideration software artifacts like natural language
specification documents, the entire source code, existing tests, and previous bug reports. It can
generate targeted tests that align more coherently with the specification and can therefore check
the conformance of the code. These tests can also highlight meaningful behavioral differences
between implementations, that points to potential bugs.

DIFFSPEC is evaluated on multiple implementations of two extensively tested and widely
adopted frameworks: Wasm validators and eBPF runtimes. Using DIFFSPEC, we generated
1901 differentiating tests, uncovering at least four distinct and confirmed bugs in eBPF, includ-
ing a kernel memory leak, inconsistent behavior in jump instructions, undefined behavior when
using the stack pointer, and tests with infinite loops that hang the verifier in ebpf-for-windows.
We also found 299 differentiating tests in Wasm validators pointing to two confirmed and fixed
bugs. With DIFFSPEC, we show that considering software artifacts beyond just the code under
test, such as specification documents, bug reports and so on, can help generate meaningful tests
that both verifies code correctness and checks for conformance, therefore enhancing the reliabil-
ity of the software systems.

Takeaway: With DIFFSPEC, we show that considering software artifacts beyond just the code
under test, such as specification documents, bug reports and so on, can help generate meaningful
tests that both verifies code correctness and checks for conformance. DIFFSPEC is a framework
for generating differential tests with LLMs using prompt chaining. It can generate targeted tests
that align more coherently with the specification and can therefore check the conformance of the
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code. We demonstrate that these tests can highlight meaningful behavioral differences between
implementations, that point to bugs in two extensively tested systems, namely, eBPF runtimes
and Wasm validators, therefore improving the overall reliability of these systems.

1.2 Thesis
Thesis Statement

By incorporating software engineering domain insights during the training and evaluation
of Large Language Models of code, we can enhance the quality of the code they generate,
thereby making them more reliable and useful for developers.

To evaluate the claim, I focus on three main challenges identified by prior work and propose
solutions that make use of a key insight from software engineering domain.

1. I address the challenge of syntactic complexity, which makes it hard especially for non-
expert programmers to reason about the generated code, with LOWCODER. LOWCODER

abstracts away the syntactic complexity associated with traditional code and provides a
more user-friendly interface using drag-and-drop functionality. As a result, LOWCODER

provides a trusted environment where users can leverage the capabilities of AI without the
need for extensive coding knowledge.

2. I overcome the challenge of verification using AI models by proposing CAT-LM. Unlike
current LLM based models, CAT-LM is trained to explicitly consider the mapping between
code and test files, something standard models cannot do. CAT-LM can therefore help
users with verifying code that they or other models generate, by generating tests that align
more coherently with the underlying code.

3. I overcome the challenge of reliability, by generating targeted tests that checks both code
conformance against specifications, as well as code correctness. DIFFSPEC is a frame-
work for generating differential tests with LLMs using prompt chaining that generates tar-
geted tests that highlights meaningful behavioral differences between implementations by
making use of context extracted from various software artifacts including natural language
specifications, code implementations, bug reports and so on.

Empowering models to take on a more active role in building valid and usable code enables
us to enhance the reliability of the generated code and increase trust in their outputs.

1.3 Outline
In Chapter 2, I provide background on LLMs, how they are trained, along with details of how
they are used for code generation, and outline the challenges discovered with using AI-powered
tools for code generation through human studies. In the following chapters, I will discuss each
challenge along with my proposed solution that addresses the respective challenge. Table 1.1
provides an overview of the models and tools I developed that are included in this dissertation.
Chapter 3 discusses the challenge of syntactic complexity, which I overcome by abstracting the
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textual code with LOWCODER, a low-code tool for developing AI pipelines that supports both a
visual programming interface as well as an AI driven natural language interface. I then discuss
the challenge of verifying code correctness in Chapter 4 and how it’s overcome by generating
tests with CAT-LM, a LLM trained to explicitly consider the mapping between code and test
files to improve the quality of tests generated. Then, I look at the challenge of reliability in
Chapter 5 and propose DIFFSPEC, a framework to generate tests to verify code correctness and
conformance of real world systems. DIFFSPEC is a prompt chain framework for differential
testing that generates tests using natural language specifications as well as code artifacts. Lastly,
I provide a summary of my contributions in Chapter 6, followed by discussion and future work
in Chapter 7 and Chapter 8, and conclude with Chapter 9.

Table 1.1: Overview of all the tools and models in this dissertation.

Chapter Challenge Software Engineering Insight Tool or Model

3 Syntactic Complexity Abstraction of textual code LOWCODER

4 Verification Code-test dependency CAT-LM

5 Reliability Specifications and code artifacts DIFFSPEC

The contributions presented in this dissertation were carried out collaboratively with others.
In acknowledgment of these collaborations, the use of “we” is employed in the subsequent chap-
ters instead of the singular first person.
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Chapter 2

Background

2.1 A brief history of Large Language Models

Language models are predictive models of text. They learn to estimate the probability of a
token (or word) within a sequence of tokens. Accordingly, they can be used for a variety of
tasks including text generation, machine translation, question-answering, and so on [2]. Early
computational language models, such as n-gram models [87], were statistical in nature. While
simple, they were remarkably effective at predicting the likelihood of words based on patterns
from large corpora of text. More recent developments in neural networks have since led to more
advanced models such as RNNs and LSTMs [186]. While these models are effective at capturing
relationships with a sequence, they struggle to capture long-range dependencies.

The Transformer architecture, introduced by Vaswani et al. [203], was conceptualized around
the idea of attention. This made it possible to model arbitrary dependencies between tokens in
long sequences. More specifically, for each input token, attention estimates the relevance of every
other token. This proved to be highly effective in capturing contextual information in language.

The development of Transformers and self-attention is pivotal in the advancements made in
language modeling and in the development of Large Language Models (LLMs). LLMs amplify
the scale of these models, enabling them to handle a wide array of natural language processing
tasks. In contrast to earlier language models that could only reliably predict the next few words
in a sequence, LLMs can generate long sequences of texts, including entire documents.

LLMs undergo extensive training on large volumes of data, typically mined from the Inter-
net, books and other sources. Correspondingly, they require substantial amounts of compute re-
sources, with associated costs reaching millions of US dollars. Training usually involves multi-
ple stages. First, they undergo a self-supervised pretraining phase, wherein an LLM learns the
statistical relationships between tokens in textual documents. This pretraining phase is com-
monly followed by additional stages, including finetuning and instruction tuning based on rein-
forcement learning from human feedback (RLHF) [155] to refine and enhance the performance
by incorporating feedback.

Besides text generation, LLMs exhibit strong performance in NLP tasks including summa-
rization, text classification and question-answering. Their extensive training also enables them
to reason about code and math problems. An extension to enhance the capabilities of LLMs in-
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volves training with code extracted from public respositories on GitHub as well as other coding
platforms like StackOverflow and documentation pages. This makes it possible to generate pro-
grams from natural language instructions [36, 212]. Including code from open source software
has now become common practise when training LLMs such as PaLM [52], Chinchilla [91],
GPT-4 [154], and Llama [200].

2.2 LLMs for SE
LLMs have not just revolutionized the field of natural language processing; their impact also
extends to software engineering. The development of LLMs has led to the widespread use of AI-
programming tools like ChatGPT and GitHub Copilot, transforming traditional SE into an AI
augmented software development process [32]. LLMs have proven useful at assisting developers
across various stages of the software development life cycle from extracting requirements [23]
to repairing bugs [17, 102, 220]. They can be used for several tasks including: generating code
from natural language [214], generating tests to verify code correctness [62, 150, 205, 219],
finding and fixing bugs [17, 86, 102], summarizing code [16], generating documentation [135],
automatic refactoring of code [164], clone detection [63] and so on. Beyond this, they can
be used to automate code review [133], and suggest improvements [209]. LLMs can also be
used as educational tools as they are uniquely placed to support developers by providing expert
knowledge in the form of conversations, answering questions about the code to aid understanding
by providing explanations and examples [32, 146].

2.3 Training LLMs for SE
LLMs are typically pretrained on vast datasets containing both natural language and code, and
then finetuned for various code understanding and generation tasks. Program synthesis using nat-
ural language prompts first emerged with LLMs such as Codex [47], and CodeGen [151] mod-
els. Since then there have been several other models that consistently demonstrate better per-
formance on various code benchmarks, which include open source models like StarCoder [119],
CodeLLama [178], SantaCoder [18], CodeGen2 [152], Incoder [73], GPT-NeoX [37], as well as
closed source models like GPT4 [154], AlphaCode [124], CodeT5+ [216]. These models have
additionally been trained with different types of pretraining methods, these include:

• Autoregressive Language Modeling: Autoregressive or causal LM involves left to right gen-
eration where the goal is to generate the next token based on the previous tokens. These in-
clude models like Codex [47], GPT3 [42], PolyCoder [227], CodeGen [151], StarCoder [119]
and so on, where the left-to-right nature of these models make them extremely use for gener-
ation tasks such as code completion.

• Masked Language Modeling: Masked language modeling is a popular bidirectional objec-
tive function that aims to predict the masked tokens based on surrounding context. Models
like CodeBERT [68] and CuBERT [105], trained using this objective, are able to generate
useful representations of a sequence of code which can be used for downstream tasks such as
code classification, defect detection, and clone detection.
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• Infilling: Also known as causal masking objective, which allows the model to fill in the miss-
ing lines of code based on the prefix and suffix context. Models like FiM [28], InCoder [73],
CodeGen2 [152], StarCoder [119], SantaCoder [18], CodeLlama [178], make use of bidirec-
tional context to fill in masked out regions of code, allowing them to perform various tasks in-
cluding inserting missing lines of code, predicting return types of functions, generating doc-
strings, renaming variables, and inserting missing code tokens.

• Encoder-Decoder Language Modeling: Encoder-decoder models such as CodeT5 [215],
PLBART [15] first encode an input sequence, and then use a left-to-right LM to decode an
output sequence that is conditioned on the input sequence. They are pretrained using seq-
to-seq denoising sequence reconstruction (where goal is to generate the original sequence
given the corrupted sequence) or masked span prediction objectives (where the goal is to
generate the missing content for masked spans in the input sequence) and are often finetuned
on various downstream tasks including code summarization, refinement, translation, fixing
bugs.

• Hybrid Models: CodeT5+ [216] is a sequence-to-sequence model that has been trained with
a progression of objectives and pretrained initializations (including span denoising, causal
LM, contrastive loss and matching loss) that operates in different modes (encoder only, de-
coder only and encoder-decoder) to perform various code generation and understanding tasks,
including retrieval augmented generation.
These pretrained models are typically finetuned for specific tasks and, more recently, instruc-

tion tuned using RLHF to make the generations better align with the feedback provided [155].
Models like CodeLlama [178], WizardCoder [136] and InstructCodeT5+ [216], OctoCoder [143]
have been instruction tuned to improve the generalization ability of the models to a wide variety
of tasks.

On the other hand, when it comes to improving the performance of a model for a given task,
most of the advancements have focused on a scaling-centric approach — training larger models
and using more data [91]. My work proposes an alternative approach that incorporates software
specific insights to build more effective models are more reliable and useful for developers.

2.4 Studies on LLM-based AI Programming Tools

New LLMs for code are constantly being developed and continue to demonstrate better perfor-
mance on various code benchmarks. At the same time, researchers have been actively studying
the potential of these LLM based AI programming tools.

Several studies have been conducted to evaluate the quality of code generated by LLMs [70,
125, 129, 161, 202]. There have also been feasibility studies conducted for using LLMs in
development tools [26, 96, 149, 196, 202] as well as using LLMs in education [83, 109, 171].

Another class of studies focus on the usefulness of the LLM based programming tools. While
certain recent studies show no significant difference in using AI programming assistants con-
cerning task completion [202, 228] and code quality [96] , contrasting findings suggest that these
tools have a positive association with developers’ self-perceived productivity [237].

Ziegler et al. [237] analyzed telemetry data and survey responses to understand developers’

11



perceived productivity with GitHub Copilot which showed that users only accepted close to one-
fifth of the suggestions provided.

A study by Vaithilingam et al. [202] which compared the user experience of traditional auto-
complete with GitHub Copilot found no significant effect on task completion time. It was also
found that users often discarded the code generated by Copilot when it did not behave as ex-
pected and others often felt that it was more efficient to rewrite the whole code from scratch
rather than trying to spend time reading and understanding the generated code to make the nec-
essary changes.

Barke et al. [26] used grounded theory analysis to understand how programmers interact with
models that generate code using Github Copilot. They found that developers often interacted
with the tool with one of two modes, namely, acceleration and exploration. In the acceleration
mode, the programmer employed Copilot to expedite tasks with a clear understanding of the next
steps. In exploration mode, when uncertain about the next steps, the programmer used Copilot
to explore various options.

Liang et. al. [125] performed a large scale survey and found that developers are often moti-
vated to use AI programming assistants as they can aid them with code completion and recalling
syntax which in turn helps reducing the number of key-strokes and helps them finish program-
ming tasks more quickly. They also found that developers refrain from using AI programming
tools primarily due to the following reasons: (1) tools not producing code that fulfills specific
functional (e.g., security, performance) or non-functional requirements, (2) developers encoun-
tering difficulties in controlling the tool to generate the desired output and (3) developers spend-
ing too much time debugging or modifying the generated code.

Rasnayaka et. al. [171] conducted a user study with students to analyse the usefulness of
LLMs for an academic software engineering project.They found that LLMs were most effective
during the early stages of software development, especially with generating foundational code
structures. LLMs also proved useful for helping with syntax and enhanced productivity when
debugging errors. They also found interesting correlations between coding skills and prior expe-
rience with AI playing a crucial role in the adoption of AI tools.

In my dissertation, I aim to address some of the identified usability issues, namely syntactic
complexity, verification and reliability of generated code, by incorporating domain insights from
software engineering into the training and evaluation process to produce effective models that
make code generation more reliable and useful for developers.
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Chapter 3

LOWCODER for Syntactic Complexity

AI has demonstrated significant potential in empowering individuals with limited or no program-
ming experience to write code. Copilot [6] and ChatGPT [7] are popular examples of tools that
support programming by natural language (PBNL), where users can generate code from natural
language instructions. However, a key problem with these tools is that they generate (potentially
complex) code, which can be difficult to understand and manipulate. This is largely attributed to
the syntactic complexity that is associated with traditional text based code.

This challenge is prominent among non expert programmers, as studies show those with lim-
ited coding proficiency are hesitant to use AI tools for code generation. This reluctance arises
from the lack of necessary background knowledge and skills required to comprehend the correct-
ness of AI-generated code and to modify it into a usable format [171]. Experienced program-
mers also face difficulties with AI-generated code, often discarding it when unexpected behavior
occurs due to a lack of understanding. Some even find it more efficient to rewrite the code from
scratch than invest time in comprehending and debugging the generated code [202].

One viable solution to overcome this is to abstract away the syntactic complexity associated
with textual code, replacing it with more intuitive interfaces. Low-code programming [89] over-
comes this by reducing the amount of textual code developers write by offering alternative pro-
gramming interfaces. This has been embraced by software vendors to both democratize software
development and increase productivity [182]. Most low-code offerings for building AI pipelines
currently favor visual programming [35, 59, 80]. While visual programming helps users nav-
igate complex pipelines, it poorly supports discoverability of API components (basic building
blocks of code) in large APIs due to the large range of options and limited screen space [158].

At the intersection of these two paradigms, we propose LOWCODER1, the first low-code tool
to combine visual programming with PBNL. We conjecture that the respective strengths of these
two low-code techniques can compensate for each other’s weaknesses. PBNL uses AI to help
users retrieve and use programming constructs based on natural language queries. This does not
always return correct programs, necessitating a way to help users understand and fix generated
programs. Visual programming complements PBNL by providing a clear, unambiguous repre-
sentation of the program that users can directly manipulate to experiment with alternatives. In
other words, the use of abstraction, in this case through visual programming, can help overcome

1LOWCODER [170] was published at the ACM Conference on Intelligent User Interfaces (IUI) 2024
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the challenge of syntactic complexity in LLM generated code.
Most AI development today involves Python programming with popular libraries such as

scikit-learn (sklearn) [159]. Unfortunately, writing code, even in a language as high-level as
Python, is hard for citizen developers [110]—people who lack formal training in programming
but nevertheless write programs as part of their everyday work. This is a fairly common situation
for data scientists, among others. AI programming libraries also tend to be large and change
regularly. Needing to remember hundreds of AI operators and their arguments slows down even
professional developers.

Our goal is to help people who know what they want to accomplish (e.g., build an AI pipeline)
but face syntactic barriers from the programming language and library (the how part), perhaps
due to a lack of formal programming training. End-users writing software face similar “design
barriers” [110], where it is difficult to even conceptualize a solution. In contrast to other popular
low-code domains such as traditional software [173], the domain of developing AI pipelines is
particularly difficult in this regard due to its experimental nature where progress has a high degree
of uncertainty [211]. We chose to target sklearn [159] because of its pervasive use, because visual
programming naturally fits the pipeline structure of sklearn, and because PBNL is particularly
useful in aiding recall of operators from the relatively large API of sklearn.

LOWCODER’s visual programming component, LOWCODERVP, lets users snap together vi-
sual blocks for AI operators into well-structured AI pipelines. It uses Blockly [158] to provide a
Scratch-like [173] look-and-feel. The PBNL component, LOWCODERNL, lets users enter natural
language queries and predicts relevant operators, optionally configured with hyper-parameters. It
uses a fine-tuned variant of the CodeT5 model [215] that we developed through experiments with
a variety of neural models for program generation, ranging from training models from scratch to
few-shot prompting large language models [151]. We further noticed that queries usually men-
tion at most a subset of hyper-parameters for each pipeline step, so we developed a novel task
formulation tailored to this use case that improved learning outcomes.

We leverage LOWCODER to provide some of the first insights into both how and when low-
code programming and PBNL help developers with various degrees of expertise. We conduct a
user study with 20 participants with varying levels of AI expertise using LOWCODER to complete
four tasks, half of which with the help of the AI-powered component LOWCODERNL. Overall,
the combination of visual programming along with the natural language interface helped both
novice and non-novice users to successfully compose pipelines (85% of tasks) and then further
refine their pipelines (72.5% of tasks) when using LOWCODERNL. Additionally, LOWCODERNL

helped users discover previously-unknown operators in 75% of the tasks compared to just 32.5%
using other methods like web search when LOWCODERNL was not available. In addition, despite
being trained on a different dataset, LOWCODERNL accurately answered real user queries.

3.1 LOWCODER Tool Design
This work explores the intersection of visual programming and language models in an effort
to understand the benefits and limitations of using the combination in low-code programming.
We accomplish this by implementing and studying LOWCODER, a prototype low-code tool for
building ML pipelines with sklearn operators for tabular data that includes both visual program-
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Figure 3.1: LOWCODER interface with labeled components, described in the text.

ming (VP) and natural language (NL) modalities, which complement each other by mitigating
the limitations of either modality separately. Building this tool provided us with the opportunity
to examine the impact of both modalities on users. Figure 3.1 highlights the main features and
inputs of LOWCODER.

To support multiple low-code modalities, we follow the lead of projectional code editors [207]
by adopting the model-view-controller pattern. Specifically, we treat visual programming as a
read-write view, PBNL as a write-only view, and let users inspect data in a read-only view [89].
The tool keeps these three views in sync by representing the program in a domain-specific lan-
guage (DSL). The domain for the DSL is AI pipelines. A corresponding, practical desideratum is
that the DSL is compatible with sklearn [159], the most popular library for building AI pipelines,
and is a subset of the Python language, in which sklearn is implemented, which also enables us
to use AI models pretrained on Python code. The open-source Lale library [27] satisfies these
requirements, and in addition, describes hyper-parameters in JSON schema format [162], which
our tool also uses. The current version of our tool supports 143 sklearn operators. LOWCODERVP

uses a client-server architecture with a Python Flask back-end server and front-end based on the
Blockly [158] meta-tool for creating block-based visual programming tools. The front-end con-
verts the block-based representation to Lale which is then sent to the back-end. The back-end
validates the given Lale pipeline using internal schemas, then evaluates the pipeline against a
given dataset. The results of this evaluation (including any error messages) are returned to the
front-end and presented to the user.
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3.1.1 Visual Programming Interface

LOWCODERVP is our block-based visual programming interface for composing and modify-
ing AI pipelines. One goal that this tool shares with other block-based visual tools such as
Scratch [173] is to encourage a highly interactive experience. The block visual metaphor allows
for blocks that correspond to sklearn operators to be snapped together to form an AI pipeline.
The shape of the blocks suggest how operators can connect. Their color indicates how they af-
fect data: red for operators that transform data (with a transform() method) and purple for other
operators that make predictions, such as classifiers and regressors (with a predict() method).

Figure 3.1 illustrates the interface. A palette (1) on the left side of the interface contains
all of the available operator blocks. Blocks can be dragged-and-dropped from the palette to
the canvas (2). For ease of execution, our tool only allows for one valid pipeline at a time,
so blocks must be attached downstream of the pre-defined Start block to be considered part
of the active pipeline. Figure 3.1 shows an example of blocks defining a pipeline where the
SimpleImputer, StandardScaler, and DecisionTreeClassifier blocks are con-
nected to the Start block and each other. Input data are transformed by the first two operators
(SimpleImputer and StandardScaler) and then sent to DecisionTreeClassifier
for training and then scoring. Blocks not attached to the Start block are disabled but can be left
on the canvas without affecting the execution of the active pipeline. Selected operator blocks
also display a hyper-parameter configuration pane (3) on the right. The pane lists each hyper-
parameter for an operator along with a description (when hovering over the hyper-parameter
name) and default values along with input boxes to modify each hyper-parameter.

Our tool provides a stage (4) with Before and After tables to give immediate feedback with ev-
ery input on how the current pipeline affects the given dataset. When a tabular dataset is loaded,
the Before table displays its target column on the left and feature columns on the right. When
a pipeline that transforms input data is executed, the After table shows the results of the trans-
formations. At any time, a pipeline can be executed on the given dataset by pressing the “Run
Pipeline” button. Executing a pipeline will attempt to train the given pipeline on the training
portion of the given dataset and then return a preview of all data transformations on the training
data in a second table. For instance, in the example shown in Figure 3.1, executing the pipeline
with SimpleImputer and StandardScaler transforms data from the Before table by im-
puting missing values and standardizing all feature values in the After table. If training is suc-
cessful, then the trained pipeline is scored against the test set and the score (usually accuracy) is
displayed. LOWCODERVP also encourages liveness [193] by executing the pipeline when either
the active pipeline is modified or hyper-parameters are configured. For example, adding a PCA
operator and setting the n components hyper-parameter to 2 for the prior example will reduce
the feature columns in the After table to 2. Hence, users receive immediate feedback on the ef-
fect of pipeline changes on the dataset without requiring separate training or scoring steps. This
liveness encourages a high degree of interactivity [173].

3.1.2 Natural Language Interface

A potential weakness of visual low code tools is that users have trouble discovering the right
components to use [110]. For instance, the palette of LOWCODERVP contains more than a hun-
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dred operator blocks. Rather than requiring users to know the exact name of the operator or
scroll through so many operators, we provide LOWCODERNL, which allows users to describe a
desired operation in the NL interface (labeled component 5 in Figure 3.1) text box and press the
“Predict Pipeline” button. The tool then infers relevant operator(s) and any applicable hyper-
parameters using an underlying natural-language-to-code translation model and automatically
adds the most relevant operator to the end of the pipeline. The palette is also filtered to only dis-
play any relevant operator(s) such as in Figure 3.1. Pressing the “Reset Palette” button will undo
filtering (so the palette shows all available operators again) without clearing the active pipeline
or canvas. Depending on the NL search, the automatically added operator may either have hyper-
parameters explicitly defined or potentially relevant hyper-parameters highlighted. As an exam-
ple, the NL search “PCA with 2 components” will automatically add the PCA operator where
the n components hyper-parameter is set to 2 and may highlight other hyper-parameters such
as random state for the user to consider setting. Section 3.2 describes the design and imple-
mentation of this model in detail. A potential weakness of natural language low-code tools is
that the generated programs can be incorrect, due to a lack of clarity, or ambiguity, in the query,
or a lack of context for the model providing inferences [21]. In comparison, visual inputs and
representations are unambiguous [89], requiring no probabilistic interpretation, so users can eas-
ily understand and manipulate the results returned by LOWCODERNL.

To ground our evaluation of LOWCODERNL, we also provide a version of the tool without
a trained language model to users in our study (described in Section 4.5). In this setting, the
NL interface (5) text box becomes a simple substring keyword search that matches the query
against operator names. For example, inputting “classifier” filters the palette to only display
sklearn operators that contain ‘classifier’ in the name such as RandomForestClassifier
(but notably not all classifiers such as SVC). Hence, users receive immediate feedback on the
effect of pipeline changes on the dataset without requiring separate training or scoring steps.
This liveness encourages a high degree of interactivity [173].

3.1.3 Natural Language Interface
A potential weakness of visual low code tools is that users have trouble discovering the right
components to use [110]. For instance, the palette of LOWCODERVP contains more than a hun-
dred operator blocks. Rather than requiring users to know the exact name of the operator or
scroll through so many operators, we provide LOWCODERNL, which allows users to describe a
desired operation in the NL interface (labeled component 5 in Figure 3.1) text box and press the
“Predict Pipeline” button. The tool then infers relevant operator(s) and any applicable hyper-
parameters using an underlying natural-language-to-code translation model and automatically
adds the most relevant operator to the end of the pipeline. The palette is also filtered to only dis-
play any relevant operator(s) such as in Figure 3.1. Pressing the “Reset Palette” button will undo
filtering (so the palette shows all available operators again) without clearing the active pipeline
or canvas. Depending on the NL search, the automatically added operator may either have hyper-
parameters explicitly defined or potentially relevant hyper-parameters highlighted. As an exam-
ple, the NL search “PCA with 2 components” will automatically add the PCA operator where
the n components hyper-parameter is set to 2 and may highlight other hyper-parameters such
as random state for the user to consider setting. Section 3.2 describes the design and imple-
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mentation of this model in detail. A potential weakness of natural language low-code tools is
that the generated programs can be incorrect, due to a lack of clarity, or ambiguity, in the query,
or a lack of context for the model providing inferences [21]. In comparison, visual inputs and
representations are unambiguous [89], requiring no probabilistic interpretation, so users can eas-
ily understand and manipulate the results returned by LOWCODERNL.

To ground our evaluation of LOWCODERNL, we also provide a version of the tool without
a trained language model to users in our study (described in Section 4.5). In this setting, the
NL interface (5) text box becomes a simple substring keyword search that matches the query
against operator names. For example, inputting “classifier” filters the palette to only display
sklearn operators that contain ‘classifier’ in the name such as RandomForestClassifier
(but notably not all classifiers such as SVC).

3.2 Using Language Models for Low-Code
This section discusses the language modeling for LOWCODERNL.

3.2.1 Data Collection

Our goal is to make a large API accessible through a low-code tool by allowing users to describe
what they want to do when they do not know how. More specifically, we want to enable users
to build sklearn pipelines in a low-code setting, using a natural language interface that can be
used as an intelligent search tool. This problem can be solved using language models that can be
trained to translate a natural language query into the corresponding line of code [68]. However,
such models heavily rely on data to learn such behaviour and would need to be trained on an
aligned dataset of natural language queries and the corresponding sklearn line(s) of code demon-
strating how a user would want to use such an intelligent search tool. Naturally, we cannot col-
lect such a dataset without this tool, creating a circular dependency. To overcome this challenge,
we curate a proxy dataset using 140K Python Kaggle notebooks that were collected as part of
the Google AI4Code challenge.2 From these notebooks, we extracted aligned Natural Language
(NL) & Code cells related to machine learning and data science tasks. While the distribution of
the NL in the markdown cells is not completely representative of the NL queries that users would
enter in the low-code setting, they provide the model with a broad range of such examples. Re-
sults in Section 3.3.1 show that this is indeed effective.

3.2.2 Data Preprocessing

We first filter out notebooks that do not contain any sklearn code. This leaves 84,783 notebooks
– evidently, many notebooks involve sklearn. We further filter out notebooks with non-English
descriptions in all of the markdown cells, resulting in 59,569 notebooks. We then create a proxy
dataset by extracting all code cells containing sklearn code and pairing these with their preceding
NL cell to get a total of 211,916 aligned NL-code pairs. We remove any duplicate NL-code

2https://www.kaggle.com/competitions/AI4Code
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pairs, leaving 102,750 unique pairs. For each code cell, we then extract the line(s) of code
corresponding to an sklearn operation invocation statement.

We discard any code cells that do not include sklearn operation invocation statements but
include other sklearn code, leaving a final total of 79,372 NL-Code pairs. We separate these into
train/validation/test splits resulting in 64,779 train samples, 7,242 validation samples, and 7,351
test samples.

3.2.3 Tasks

Table 3.1: Task formulations highlighting the code components: mask , operator name ,
hyper-parameter name , hyper-parameter value . The Hybrid Operator Invocation setting does

not mask ‘balanced’ as it appears in the query.

Task Formulation Code for the NL query: Random forest with balanced class weight
Operator Name RandomForestClassifier
Complete Operator Invocation RandomForestClassifier ( n estimators = 100 , class weight = ‘balanced’ )

Masked Operator Invocation RandomForestClassifier ( n estimators = MASK , class weight = MASK )

Hybrid Operator Invocation RandomForestClassifier ( n estimators = MASK , class weight = ‘balanced’ )

Given the NL query, our model aims to generate a line of sklearn code corresponding to an
operation invocation that can be used to build the next step of the pipeline. We consider a range
of formulations of the task with different levels of details, as illustrated in Table 3.1.

Operator Name Generation

The simplest task is generating only the operator name from the NL query. This alone can
significantly help a developer with navigating the extensive sklearn API. We process the aligned
dataset to map the query to the name(s) of operator(s) invoked in the code cell, discarding any
other information such as hyper-parameters.

Complete Operator Invocation Generation

At the other extreme, we task the model with synthesizing the complete operation invocation
statement, including all the hyper-parameter names and values. Preliminary results (discussed in
Section 3.3.1) show that the model often makes up arbitrary hyper-parameter values, resulting in
lines of code that can rarely be used directly by developers.

Masked Operator Invocation Generation

In this scenario, we mask out all the hyper-parameter values from the invocation statement,
keeping only their names. The goal of this formulation is to ensure that the model learns to
predict the specific invocation signature, even if it is unaware of the values to provide for the
hyper-parameters.
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Hybrid Operator Invocation Generation (HOI)

Manual inspection of the NL-code pairs revealed that the queries sometimes explicitly describe
a subset of the hyper-parameter names and values to be used in the code. When this is the case,
the model has the necessary context to predict at least those hyper-parameter values. Support-
ing this form of querying enables users to express the most salient hyper-parameters up-front.
Therefore, we formulated a new hybrid task, where we keep the hyper-parameter values if they
are explicitly stated in the NL query and mask them otherwise. This gives the model an oppor-
tunity to learn the hyper-parameter names and values if they are explicitly stated in the descrip-
tion, and unburdens it from making up values that it lacks the context to predict by allowing it to
generate placeholders (masks) for them.
Evaluation: To evaluate the feasibility of predicting code using the different task formulations,
we train a simple sequence-to-sequence model (detailed in Section 3.2.4) and compare the results
for the various training tasks in Section 3.3.1. We find HOI to be the most accurate/reliable
formulation for our setting. We therefore proceed to use this task formulation for training the
models.

3.2.4 Modeling

All tasks from Section 4.2 are sequence-to-sequence tasks. We compare and contrast three dif-
ferent deep learning paradigms for this type of task, illustrated in Figure 3.2: 1) train a standard
sequence-to-sequence transformer from scratch, 2) fine-tune (calibrate) a pretrained “medium”
sized model, 3) query a Large Language Model (LLM) by means of few-shot prompting [165].
We elaborate on these models below. Note that we use top-k sampling for our top-5 results.

Transformer (from scratch)

We train a sequence-to-sequence Transformer model [203] with randomly initialized parameters
on the training data. Our relatively small dataset of ca. 70K training samples limits the size of
a model that can be trained in this manner. We use a standard model size, with 6 encoder and
decoder layers and 512-dimensional attention across 8 attention heads and a batch size of 32
sequences with up to 512 tokens each. We use a sentence piece tokenizer (trained on Python
code) with a vocabulary size of 50K tokens. The model uses an encoder-decoder architecture
that jointly learns to encode (extract a representation of) the natural language sequence and de-
code (generate) the corresponding sklearn operator sequences.

Fine-tuning CodeT5

CodeT5 is a pretrained encoder-decoder transformer model [215] that has shown strong results
when fine-tuned on various code understanding and generation tasks [134]. CodeT5 was pre-
trained on a corpus of six programming languages from the CodeSearchNet dataset [95] and
fine-tuned on several tasks from the CodeXGLUE benchmark[134] in a multi-task learning set-
ting, where the task type is prepended to the input string to inform the model of the task. We
fine-tune CodeT5 on the HOI generation task by adding the ‘Generate Python’ prefix to all NL
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Figure 3.2: Overview of the “trifecta” of training approaches used in contemporary deep learn-
ing: smaller models are directly trained from scratch on downstream task data; medium sized
models (100M-1B parameters) are pretrained with a generic training signal and then fine-tuned
on task data; large models (>1B parameters) are only pretrained on very large datasets and are
prompted with examples from the training data as demonstration followed by the query.

queries. We experiment with different size CodeT5 models: codet5-small (60M parameters),
base (220M), and large (770M).

Few-Shot Learning With CodeGen

Lastly, we explore large language models (LLMs) that are known to perform well in a task-
agnostic few-shot setting [42]. More specifically, we look at CodeGen, a family of LLMs that are
based on standard transformer-based autoregressive language modeling [151]. Pretrained Code-
Gen models are available in a broad range of sizes, including 350M, 2.7B, 6.1B and 16.1B pa-
rameters. These were all trained on three different datasets, starting with a large, predominantly
English corpus, followed by a multi-lingual programming language corpus, and concluding with
fine-tuning on just Python data, which we use in this work. The largest model trained this way
was shown to be competitive with Codex [47] on a Python benchmark [151].

Models at this scale are expensive to fine-tune and are instead commonly used for inference
by means of “few-shot prompting” [165]. LLMs are remarkably capable of providing high-
quality completions given an expanded prompt containing examples demonstrating the task [42].
We prompt our model with 5 such NL-code examples. Figure 3.3 illustrates an example prompt
with 3 such pairs. The model does in-context learning on the examples in the prompt and com-
pletes the sequence task, which results in generating the HOI code.
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Figure 3.3: Example of a few (3) shot prompting template for querying a large language model
in our study.

3.3 Evaluation
This section describes the evaluations for the language modeling that enables LOWCODERNL

along with the user studies that we conducted to analyze the benefits and challenges of using
low-code for developing AI pipelines using LOWCODER.

3.3.1 Modeling
Experimental Setup

All of our models are implemented using PyTorch transformers and the HuggingFace interface.
We use the latest checkpoints of the CodeT5 [215] and CodeGen [? ] models. Our models were
trained on a single machine with multiple 48 GB NVIDIA Quadro RTX 8000 GPUs until they
reached convergence on the validation loss. We clip input and output sequence lengths to 512
tokens, but reduce the latter to 64 when using the model in LOWCODER to reduce inference time.
We find in additional experiments that since few predictions are longer than this threshold, this
incurs no significant decrease in accuracy, but speeds up inference by 34%. We use a batch size
of 32 for training and fine-tuning all of our Transformer and CodeT5 models, except for CodeT5-
large, for which we used a batch size of 64 to improve stability during training.

Test Datasets

To ensure a well-rounded evaluation, we look at two different test datasets.
(i) Test data (from notebooks) - We use the NL-code pairs from the Kaggle notebooks we cre-
ated in Section 3.2.2 containing 7,351 samples. These are noisy – some samples contain vague
and underspecified Natural Language (NL) queries, such as - “Data preprocessing”, “Build a
model”, “Using a clustering model”. Others contain multiple operator invocation statements
corresponding to a single NL query, even though the NL description only mentions one of
them, e.g., “Model # 2 - Decision Trees” corresponds to DecisionTreeClassifier() and
confusion matrix(y true, y pred). Furthermore, these samples were collected from
Kaggle notebooks, so the distribution of the NL queries collected from the markdown cells are
not necessarily representative of NL queries that real users may enter into LOWCODERNL.
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(ii) Real user data - We log all the NL queries that users searched for in LOWCODER during the
user studies along with the list of operators that the model returned. This gives us a more accurate
distribution of NL queries that developers use to search for operators in LOWCODERNL. We
obtained a total of 218 samples in this way, which we then manually annotated to check whether
(i) the predictions were accurate, that is, if the operators in any of the predictions matches the
inferred intent in the query and (ii) the NL query was clear, with an inter-rater agreement of
97.7% and a negotiated agreement [74] of 100%.

Test Metrics

We use both greedy (top-1) and top-K (top-5) decoding when generating the operator invocation
sequences for each NL query. We evaluate the models’ ability to generate just the operator name
as well as the entire operator invocation (including all the hyper-parameter names and values)
based on the hybrid formulation.

Task Comparison

We first train a series of randomly initialized 6-layer Transformer models from scratch on each
task formulation from Section 4.2. We compare the model’s ability to correctly generate the op-
erator name and the operator invocation based on the formulation corresponding to the training
task using top-1 and top-5 accuracy as shown in Figure 3.4. We find that the hybrid formula-
tion of the operation invocation task, while challenging, is indeed feasible and allowed the model
to achieve reasonably strong performance when generating the entire operation invocation state-
ment. Contrary to the other task formulations, a model trained with the HOI signal also achieved
comparable performance to the model trained solely on operator names when evaluated purely
on operator name prediction (ignoring the generated hyper-parameter string). These results high-
light that the hybrid representation helps the model learn by unburdening it from inferring values
that it lacks the context to predict.

Model Comparison

We next evaluate the performance of the trifecta of modeling strategies from Section 3.2.4 on the
task of Hybrid Operation Invocation (HOI) generation. We benchmark across different model
sizes and compare the performance for both operator name and operator invocation generation
using top-5 accuracy in Figure 3.5. The results show that the 0.77B parameter fine-tuned CodeT5
is the best performing model with an accuracy of 73.57% and 41.27% on the test data for the
operation name and operation invocation generation respectively. The 0.22B parameter fine-
tuned CodeT5 model has comparable performance, but its inference time is approximately 2–3
seconds faster than the 0.77B fine-tuned CodeT5 model, making it more desirable for integration
with the tool.

Performance in Practice

Up to this point, all our evaluations have been based on the proxy dataset from Kaggle. To get a
better idea of the model’s performance in the real world, we further evaluate the performance of
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Figure 3.4: Accuracy of Transformer models trained from scratch on various task formulations.
‘Invocation’ test results refer to the specific invocation formulation of the training task, while
‘Names only’ just considers whether the generated code starts with the correct operator name.
Only the Hybrid Operator Invocation setting yields useful quality on both tasks.

the fine-tuned 0.22B parameter CodeT5-base from the tool on real user data that was collected
during the user studies. The distribution of NL queries collected from the user studies represents
the “true” distribution of queries that can be expected from users in a low-code setting. Out
of the 218 samples that were collected, we found only one sample in which a user explicitly
specified a hyper-parameter value in their query. We therefore only compute the accuracy of the
operation name generated rather than the entire operation invocation (as they would use default
values anyway and so the scores remain the same except for that one sample).

Out of 218 query requests, the fine-tuned CodeT5-base model that was used in our tool
answered 150 queries correctly, which would suggest an overall accuracy of 68.8%. However,
33 of these requests targeted actions that are not supported by the sklearn API, such as dropping
a column (commonly the territory of the Pandas library). Disregarding such unsupported usage,
LOWCODERNL answered 141 out of 185 queries correctly for an overall accuracy of 76.2%.
For 33 additional samples, neither annotator could infer a reasonable ground truth since the
prompt was unclear (e.g.: “empty”). Leaving these out, i.e., when the prompt is both clear and
the operator is supported by the tool, LOWCODERNL was accurate in over 90% (137/152) of
completions

3.3.2 User Study

We conducted a user study with 20 participants with varying levels of AI expertise to create AI
pipelines using LOWCODER across four tasks, replacing LOWCODERNL with a simple keyword
search in half the tasks. We collect and analyze data to investigate the following research ques-
tions:
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Figure 3.5: Accuracy vs. model size based on top-5 sampling. (*The 16B CodeGen uses top-3
due to memory constraints.) We compare the three modeling paradigms, namely training trans-
former from scratch, finetuning CodeT5, and fewshot prompting CodeGen, on both Operator
Name generation and Hybrid Operator Invocation generation.

RQ1: How do LOWCODERNL and other features help participants discover previously-unknown
operators?

RQ2: Are participants able to compose and then iteratively refine AI pipelines in our tool?
RQ3: What are the benefits and challenges of integrating language models with visual program-

ming for low-code?

Study Methodology

We recruited 20 participants within the same large technology company via internal messaging
channels. We expect that citizen developers without formal programming training may also
have varying levels of AI expertise and intentionally solicited participants of all backgrounds.
Potential participants filled out a short pre-study survey to self-report experience in the following:
machine learning, data preprocessing, and sklearn using a 1 (no experience) to 5 (expert) scale.
Participants include a mix of roles including developers, data scientists, and product managers
working in a variety of domains such as AI, business informatics, quantum computing, and
software services. 25% of the participants are female and the remaining 75% are male. 40% of
the participants self-reported being novices in machine learning by indicating a 1 or 2 in the pre-
study survey.

The study design is within-subjects [55] where each participant was exposed to two condi-
tions: using LOWCODER with (NL condition) and without (keyword condition) the natural lan-
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guage (NL) interface powered by LOWCODERNL. The keyword condition used a simple sub-
string filter for operator names. Each participant performed four tasks total across the two condi-
tions. For each task, participants were instructed to create AI pipelines with data preprocessing
and classifier steps on a sample dataset with as high a score (accuracy on the test set) as possible
during a time period of five to ten minutes. Each sample dataset was split beforehand into sepa-
rate train and test sets. Tasks were open-ended with no guidance on what preprocessing steps or
classifiers should be used.

There were four sample datasets in total and each participant was exposed to all four. The
sample datasets are public tabular datasets from the UCI Machine Learning Repository [64]. Two
of the tasks (A and D) require a specific data preprocessing step in order to successfully create
a pipeline while two (B and D) technically do not require preprocessing to proceed. For each
participant, the order of the conditions and the order of the tasks were shuffled such that there is
a uniform distribution of the order of conditions and tasks.

As our study included machine learning novices, we gave each participant a short overview
of the basics of machine learning with tabular datasets and data preprocessing. We avoided
using specific terms or names of operators in favor of more general descriptions of data-related
problems.

We then gave each participant an overview of LOWCODER. To mitigate potential biasing or
priming, the tool overview used a fifth dataset from the UCI repository [64]. To avoid operators
that were potentially useful in user tasks, the overview used both a non-sklearn operator that was
not available in the study versions of the tool as well as sklearn’s DummyClassifier that gener-
ates predictions without considering input features. Participants were allowed to use external re-
sources such as web search engines or documentation pages. Nudges were given by the study ad-
ministrators after five minutes if necessary to help participants progress in a task. Nudges were
in the form of reminders to use tool features such as the NL interface, external resources, or to
include missing steps such as data preprocessing or classifiers. Nudges did not mention specific
operator names nor guidance on specific actions to take.

For each version of the tool, study administrators would describe the unique features of the
particular version and then have participants perform tasks using two out of four sample datasets.
After performing tasks using both versions of the tool and all four sample datasets, participants
were asked to provide open-ended feedback and/or reactions for both LOWCODER and the com-
parison between the NL and keyword conditions.

Data Collection and Analysis

To answer our research questions, for each participant, we collect and analyze both quantitative
and qualitative data. For quantitative data, we report on the incidence of participants discover-
ing a previously-unknown operator (RQ1) and the incidence of completing the task and iterating
or improving the pipeline (RQ2). We consider an operator ‘previously-unknown’ if the partici-
pant found and used the operator without using the exact or similar name. For example, using an
NL query such as “deal with missing values” to find the SimpleImputer operator is consid-
ered discovering a previously-unknown operator while a query such as “simpleimpute” is not.
We report discovery using the following methods: through LOWCODERNL, generic web search
engine (Google), and scrolling through the palette. Participants may discover multiple unknown

26



Table 3.2: Incidence of tasks where participants find previously-unknown operators per condition
(40 tasks for all, 16 tasks by novices, and 24 by non-novices). Note that rows may not sum
to 100% as participants can use multiple methods to discover operators for a given task or not
discover operators at all.

Condition Participant Method of Discovery
LOWCODERNL Web search Palette

NL
All 30 (75.0%) 5 (12.5%) 5 (12.5%)

Novice 8 (50.0%) 2 (12.5%) 4 (25.0%)
Non-Novice 22 (91.7%) 3 (12.5%) 1 (4.2%)

Keyword
All Not available

in this
condition.

13 (32.5%) 11 (27.5%)
Novice 3 (18.8%) 5 (31.3%)

Non-Novice 10 (41.7%) 6 (25.0%)

operators during the same task, possibly using different methods. For each participant’s task, we
consider it ‘complete’ if the composed pipeline successfully trains against the dataset’s training
set and returns a score against the test set. We consider the pipeline iterated if a participant mod-
ifies an already-complete pipeline. More specifically, we consider the following forms of itera-
tion: a preprocessing operator block is added or swapped, a classifier block is swapped, or hyper-
parameters are tuned. We report each of these as separate types of pipeline iteration. Participants
may perform multiple types of iteration during the same task. Both sets of quantitative metrics
are counted per task (80 tasks total for 20 participants, 40 tasks per condition).

We use qualitative data to answer RQ3. This data focuses on the participants’ actions in
LOWCODER, commentary while using the tool and performing tasks, and answers to open-ended
questions after the study. Specifically, the same two authors that administered the user study
analyzed the notes generated by the study along with the audio and screen recordings when the
notes were insufficient, using discrete actions and/or quotations as the unit of analysis. The first
round of analysis performed open coding [55] on data from 16 studies to elicit an initial set of
73 themes. The two authors then iteratively refined the initial themes through discussion along
with identifying 13 axial codes which are summarized in Figure 3.6. The same authors then
performed the same coding process on a hold-out set of 4 studies. No additional themes were
derived from the hold-out set of studies, suggesting saturation.

Study Results

We answer RQ1 and RQ2 using quantitative data collected from observing participant actions
per task and answer RQ3 through open coding of qualitative data.

RQ1: How do LOWCODERNL and other features help participants discover previously-
unknown operators?

A known limitation of visual programming is discoverability [158]. Table 3.2 reports how
often participants discovered previously-unknown operators during their tasks. 80% of the par-
ticipants discovered an unknown operator across 63.8% of all 80 tasks in the study. Participants
discovered unknown operators in 82.5% of the 40 NL condition tasks compared to 45% of the 40
keyword condition tasks. The odds of discovering an unknown operator are significantly greater
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in the NL condition than keyword (p≪0.001) using Barnard’s exact test. We examine the meth-
ods of discovery in more detail, noting that LOWCODERNL is only available in the NL condi-
tion whereas web search and scrolling through the operator palette are available in both condi-
tions. Participants were not able to use the keyword search to discover unknown operators due to
needing at least part of the exact name. Using LOWCODERNL, participants discovered unknown
operators in 75% of tasks in the NL condition as opposed to an average of 22.5% using web
search engines (12.5% in the NL condition and 32.5% in the keyword condition) and an average
of 20% by scrolling through the operator palette (12.5% in the NL condition and 27.5% in the
keyword condition). Within the NL condition, the odds of an unknown operator being discov-
ered are significantly greater using LOWCODERNL as opposed to both web search (p≪ 0.001)
and scrolling (p≪ 0.001). When splitting on the experience of the participant, we find statisti-
cally greater chances of novices discovering operators in the NL condition using LOWCODERNL

as opposed to web search (p=0.013) but not scrolling (p=0.086). Non-novices were significantly
more likely to discover operators using LOWCODERNL compared to web search or scrolling (p≪
0.001, p≪ 0.001). Results do not change if considering web searches or scrolling across all 80
tasks. These results suggest that LOWCODERNL is particularly helpful in discovering previously-
unknown operators, especially compared to web search, but novices still face some challenges.
We discuss these challenges in RQ3.

RQ2: Are participants able to compose and then iteratively refine AI pipelines in our tool?
Machine learning development is intensely iterative [211] and tools should support this. Ta-

ble 3.3 reports how often participants iterated on pipelines. Participants completed 82.5% of the
80 tasks in the study and further iterated their pipelines in 72.5% of the tasks. Splitting on con-
dition, the NL condition has 85% task completion and 72.5% further iteration while the keyword
condition has 80% task completion and 72.5% iteration rate. Swapping classifiers was the most
common form of iteration at 48.8%, followed by adding or swapping preprocessors at 43.8% and
setting hyper-parameters at 30%. Comparing novices to non-novices, both types of participants
are mostly successful in iterating pipelines with no significant differences in iteration rate us-
ing Barnard’s exact test (p=0.109). This result holds when iterating preprocessors (p=0.664) but
not classifiers (p=0.038) nor hyper-parameters (p=0.005). Non-novices are more likely to com-
plete the task than novices (p=0.002). Regardless of experience, both novices and non-novices
are able to iteratively refine their pipelines, but novices face some challenges compared to non-
novices regarding actually completing the task. These challenges are discussed in the next re-
search question.

RQ3: What are the benefits and challenges of integrating language models with visual
programming for low-code?

Figure 3.6 shows our 13 axial codes for answering RQ3. These codes broadly represent three
overarching themes regarding combining visual programming and language models for low-
code:

1) Discovery of machine learning operators relevant for the task at hand, 2) Iterative Compo-
sition of the operators in the tool, and 3) Challenges that participants, particularly novices, face
regarding working with machine learning and/or using low-code tools. We also collect Feedback
from participants to inform future development of LOWCODER. Due to space limitations, we
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Table 3.3: Incidence of tasks where participants complete and iterate on preprocessors, classi-
fiers, and hyper-parameters.

Iteration Type Total Tasks (80) Novice (32) Non-Novice (48)

Task Completion 66 (82.5%) 21 (65.6%) 45 (93.8%)
Swap Classifier 39 (48.8%) 11 (34.4%) 28 (58.3%)

Add/Swap Preprocessors 35 (43.8%) 15 (46.9%) 20 (41.7%)
Set Hyper-parameters 24 (30.0%) 4 (19.0%) 20 (41.7%)

All Iterations 58 (72.5%) 20 (62.5%) 38 (79.2%)

only report on a selection of the 13 axial codes and 73 codes derived from open coding.

For the first category of Discovery, our analysis derived two axial codes related to the par-
ticipants’ goal while attempting to discover operators: 1) Know “What” Not “How” where par-
ticipants have a desired action in mind but do not know the exact operator that performs that ac-
tion (19 out of 20 participants experienced this axial code) and 2) Know “What” And “How”
where participants have a particular action and operator in mind (18/20). We dive deeper into
Know “What” Not “How” which includes the code where participants Discover a previously-
unknown operator using NL (16/20). We found in RQ1 that LOWCODERNL was helpful in finding
unknown operators compared to other methods. The qualitative data suggests that participants
were able to find unknown operators using LOWCODERNL during cases where they have an idea
of the action to perform but do not know the exact operator name for a variety of reasons. For
example, when discovering SimpleImputer with LOWCODERNL, P11 noted that they “never
used SimpleImputer but had an idea of what I wanted to do, even though I generally remove
NaNs in Pandas.” Another example is P16 who “preferred the [NL version of LOWCODER ],
even when I was doing Google searches, they... didn’t give me options, your tool at least returns
some options that I can try out and swap out.” As a novice, P16 had difficulties finding the names
of useful operators from web search results as opposed to the LOWCODERNL which directly re-
turned actionable operators. Challenges regarding general web search is also an axial code.

For the second category of Iterative Composition, we derived four axial codes related to
participant behaviors while attempting to compose and iterate on pipelines: 1) General Ex-
ploratory (13/20) iteration, 2) Exploratory iteration but where participants will select operators
or hyper-parameters seemingly at Random (18/20), 3) Targeted (19/20) iteration where partic-
ipants select operators or hyper-parameters with a particular intent, and 4) Seeking Documen-
tation (15/20) where participants search for documentation to inform iteration decisions. For
both forms of Exploratory iteration and Targeted iteration, we find examples of participants it-
erating classifiers, preprocessors, and hyper-parameters. For the axial code of seemingly Ran-
dom iteration, participants, especially (but not exclusively) novices, when unsure of how to pro-
ceed, tended to try out arbitrary preprocessors or classifiers. This was more common for more
difficult tasks that required particular data preprocessing to proceed. For example, non-novice
P9 remarked “I’m not familiar enough with it, so do I Google it or brute force it? [...] I don’t
even know what to Google to figure this out... I guess I’ll do some light brute-forcing” and pro-
ceeded to swap in and out preprocessors from the palette. In contrast, the axial code of Tar-
geted (19/20) iteration has codes that reflect particular intentions that participants derived from
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Figure 3.6: Axial codes from our qualitative analysis.

observations within the tool, such as Noticing error messages (10/20) or Making use of data ta-
bles in task (14/20). As an example of the data tables case, P11 realized through the Before data
table that the given dataset had “too many columns” and added the IncrementalPCA operator
along with setting its n components hyper-parameter to 5. Upon seeing the change in data in
the After data table, they remarked, “Wow... I really like that I can see all the hyper-parameters
that I can play with” and proceeded to tune various hyper-parameters.

The third category is the variety of Challenges that participants faced while using LOW-
CODER and performing the machine learning tasks, where we derive six axial codes: 1) General
challenges (10/20) faced by participants that are not particular to our tool or tasks, 2) Not Know-
ing “What” (15/20) where participants experienced difficulties due to knowing neither “what”
nor “how” to begin, 3) General Discovery challenges (15/20), 4) Discovery challenges around
using Web search (14/20), 5) Discovery challenges when using Tool search (17/20) or specifi-
cally using LOWCODERNL, and 6) Tool Functionality (19/20) which describes challenges partic-
ipants faced using (or not using) LOWCODER features. We dive deeper into the axial code of
Not Knowing “What” and note its contrast to the Know “What” Not “How” axial code where
participants may have intentions but not know how to execute them or the Exploratory itera-
tion axial code where participants may not have specific intentions but know how to iterate. All
novices (8/8) and most non-novices (7/12) experienced this challenge. The primary code is that
participants Did not know “what” they wanted to do (11/20). One possible cause of this lack of
progression is choice paralysis, for example on P17’s first task, “first things first, I don’t even
know where to begin... right now it’s super overwhelming, I guess I’ll start throwing stuff in
there.” We also describe the axial code of Tool search (17/20) where participants had difficulties
forming search queries for LOWCODERNL.

Participants noted that despite the interface being intended for general natural language, the
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interface still Needed a specific vocabulary (8/20). As P19, a novice, described it, “I get the
idea of how it’s supposed to work but it’s hit and miss... even if I use very layman’s terms... it
expects a non-naive explanation of what needs to be done.” Part of this challenge may be due
to a mismatch in the natural language in Kaggle notebooks used to train LOWCODERNL and the
language used by novices.

3.4 Reflection of Practical and Societal Impact
Our results show that the integration of LOWCODERVP with LOWCODERNL was helpful with
aspects like operator discovery (RQ1) or iteratively composing pipelines (RQ2), even for novice
participants. Through our work, we hope to help with the democratization of AI by supporting
users with varying levels of AI expertise. LOWCODER is especially useful for citizen developers
who have an idea of what they would like to do but do not fully know how to accomplish that,
perhaps due to a lack of formal programming training. In fact, our qualitative analysis (RQ3)
reveals that a number of our participants (including all novices who participated) struggled with
knowing what to do. End-users writing software face similar “design barriers” [110], where it
is difficult for a non-programmer to even conceptualize a solution. In contrast to other popular
low-code domains such as traditional software [173], the domain of developing machine learning
pipelines is particularly difficult in this regard due to its experimental nature, where progress has
a high degree of uncertainty [211]. This uncertainty then requires an abundance of judgment calls
that rely heavily on prior machine learning experience [88] that novices lack. Some participants
in our studies echo this, identifying that some ML knowledge is necessary to use our tool. That
suggests that our low-code approach may be best-suited for citizen developers who have some
domain knowledge but lack programming training, such as statisticians for the low-code domain
of machine learning. A further improved low-code machine learning tool could thus be made
more suitable towards novice citizen developers by guiding them to discover the what along with
the how, i.e., by helping developers acquire the necessary ML knowledge.

Assisting novices without domain knowledge may then require low-code approaches that are
orthogonal to both visual programming and language models. One such approach, suggested by
a study participant, is to provide suggestions in the form of templates or recipes for pipelines.
These suggestions could also be contextual to the given dataset or active pipeline, for example
automatically suggesting encoders when detecting categorical features. Ko et al. [110] also sug-
gest templates as a possible solution for design barriers. A related suggestion made by a num-
ber of our study participants is data visualization and summarization for the given dataset, such
as plots, charts, confusion matrices, etc. These visualizations could themselves inform contex-
tual suggestions – a histogram detecting a non-standard distribution may suggest the need for a
StandardScaler. These contextual suggestions may also help in guiding developers in what
to do, making for a more generally useful low-code tool for both citizen and experienced devel-
opers alike. Additionally, some visual programming languages risk vendor lock-in; we avoid that
problem by backing LOWCODERVP with a pre-existing, open-source DSL with the Lale library.

Threats to Validity: The user study for LOWCODER has several limitations. The study fo-
cused on relatively small, public tabular datasets and sklearn operators and may not be indica-
tive of other machine learning tasks such as deep learning on large datasets. Participants also all
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come from the same large technology company and may not be representative of general users.
However, we did intentionally elicit participation from a variety of groups and experience lev-
els to mitigate this. As our user study has a within-subjects design, there may be potential learn-
ing effects between tasks and conditions. In fact, we observed some cases of this (8/20), with
some participants explicitly mentioning selecting particular operators due to the previous task.
We mitigated this learning effect by randomizing the order of tasks and conditions, as well as by
having two tasks (A and D) require the use of preprocessing operators that were not applicable
to other tasks.

3.5 Related Work
Low-code: In adopting a visual programming approach to low-code, we follow a long tradi-
tion [38]. We were particularly inspired by Scratch, a popular visual programming environment
for children that uses lego-like connected blocks [173]. Our other inspiration came from pro-
jectional editors, where the visual programming interface is a projection, or view, over an in-
ternal domain-specific language (DSL) [207]. Our implementation uses Blockly, a meta-tool
for creating block-based visual programming tools [158], and Lale, a DSL for machine-learning
pipelines [27].

Visual programming for AI: Most low-code interfaces for programming AI pipelines use vi-
sual programming. Examples include WEKA [80], Orange [59], and KNIME [35]. Each has a
palette of operators that can be dragged onto a canvas, where they can be connected into a boxes-
and-arrows style diagram. Commercial low-code visual interfaces follow the same approach,
such as Vertex AI, Sagemaker, AzureML, and Watson Studio. A related approach for low-code
ML pipeline development is automated machine learning (AutoML) [195], which is also used
by many of the same commercial AI interfaces mentioned earlier. These tools tend to have a
black-box approach where the user has little control over the AutoML search and may not even
see the resulting pipeline. AutoML libraries such as auto-sklearn [69], TPOT [153], and hy-
peropt [33] provide a Python interface, which is intended for textual code development. There
are also natural-language interfaces for professional developers based on large language mod-
els such as GitHub Copilot which uses Codex [47] and ChatGPT. Since these support APIs for
which there is sufficient publicly available code to use as training data, they cover popular AI
libraries such as sklearn. The main difference between these low-code tools for AI and our pa-
per is that we combine the ease-of-use of visual programming with a natural language interface
to help users discover and configure operators and, inspired by Scratch [173], our tool encour-
ages liveness [193] through immediate user feedback for each user input into the system. This
contrasts with most tools that require explicit training and scoring steps for feedback. Figure 3.7
summarizes the relationship between LOWCODER and other low-code for AI tools.

Using AI for low-code development: The most prominent AI technique for low-code is pro-
gramming by natural language (PBNL). When Androutsopoulos et al. surveyed natural language
interfaces to databases in 1995, it was already a well-established field [21]. Desai et al. treat
PBNL as a program synthesis problem targeting a DSL designed for the purpose [61]. The
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Figure 3.7: Relationship between LOWCODER and other low-code for AI tools. LOWCODER is
the only low-code tool that supports both visual programming and a natural language interface.

Overnight paper addresses the problem of missing training data for PBNL interfaces by crowd-
sourcing [217]. And SwaggerBot lets users extend and customize a chatbot from within the chat-
bot itself [204]. Unlike these works, our paper uses language models for PBNL, uses PBNL for
creating AI pipelines, and integrates with a visual programming interface.

Combining low-code techniques: Our work combines visual programming with PBNL. In a
similar vein, Rousillon combines visual programming with programming by demonstration [45]
and Pumice combines programming by demonstration with PBNL [121]. Like Rousillon and
Pumice, our goal in combining techniques is to use strengths of each technique to mitigate weak-
nesses in the other. However, unlike Rousillon and Pumice, we choose different techniques to
combine and target a different domain, namely AI pipelines.

User studies on AI tools: There are a few studies that aim to evaluate whether developers per-
form better on programming tasks when working with AI tools. Vaithilingam et al. had devel-
opers use GitHub Copilot on three programming tasks and found that while neither task success
rate nor completion time improved while using Copilot, developers preferred using it compared
to the standard code completion [202]. Similarly, Xu et al. had developers perform several pro-
gramming tasks with and without the use of a natural language to code generation model and
found no significant differences with regards to code quality, task completion time and program
correctness [228]. Wang et al. interviewed several data scientists to better understand their per-
ceptions of automated AI and found that they had mixed feelings [213]. However, nearly all of
them felt that the future of data science involved collaboration between humans and AI systems.
Unlike other work which tends to focus on how AI supports software development by experi-
enced developers, our paper focuses on AI tools in the context of low-code systems where devel-
opers have varying expertise levels in both building software and AI.

3.6 Summary

One of the challenges with AI programming tools is that the generated code can be difficult to
understand due to its syntactic complexity. Low-code techniques like visual programming over-
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come this by allowing users to create programs without any textual code. However, tools that
rely only on visual development poorly support discoverability of API components (basic build-
ing blocks of code). To solve this problem, we developed LOWCODER, the first low-code tool
for developing AI pipelines that supports both a visual programming interface and offers an AI-
powered natural language interface. By evaluating LOWCODER with developers, we show both
that the visual programming interface supports rapid prototyping and that the AI driven natural
language interface helps developers discover code blocks when they know what they want to do
but not how to implement their designs.

Data Availability: The implementation of LOWCODER, datasets for training and evaluating
LOWCODERNL, results of additional experiments, as well as the material from the user study, in-
cluding the full set of (axial) codes and anonymized quantitative and qualitative data, are avail-
able at: DOIDOI 10.5281/zenodo.760120610.5281/zenodo.7601206

3.7 Takeaway
AI has shown a lot of potential in empowering individuals with limited or no programming ex-
perience to write code, but this code is often difficult to understand and manipulate. We address
this challenge by abstracting away textual code and replacing it with a more intuitive drag-and-
drop based visual interfaces. LOWCODER facilitates the integration of AI into a trusted environ-
ment tailored to the needs of non-expert programmers. Through LOWCODER, we show that AI
can still be just as useful at this level of abstraction. Specifically, the natural language model sup-
ports users in the visual space despite being trained on textual code. Consequently, LOWCODER

provides a user-friendly space where individuals can leverage the capabilities of AI without the
need for extensive coding knowledge, thereby enhancing accessibility and usability.
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Chapter 4

CAT-LM for Verification

Generating tests for verification is another prominent challenge that arises with using Large Lan-
guage Models (LLMs) for code generation. Despite excelling in code generation, LLMs face
limitations when it comes to generating tests. This is attributed to their training approach, which
focuses on generating individual code files independently, following the standard practice in nat-
ural language processing. As a result, they can not consider the code under test context when
generating the tests.

During software development, developers often write tests to verify the correctness of their
code. In projects that are well tested, most code files have at least one corresponding test file
that implements unit and/or integration test functions that evaluate the functionality of the code.
However, writing high quality tests can be time-consuming [30, 31] and is often overlooked. To
address this, there has been extensive work done in automating test generation, which includes
both classical [25, 40, 62, 72] and neural-based methods [62, 205, 219].

Classical test generation tools like EvoSuite [72] are optimized to generate tests with high-
coverage. However, the generated tests are often hard to read and may be unrealistic or even
wrong [157]. As a result, developers need to invest time and effort to verify the correctness of
generated tests [40]. Meanwhile, LLMs trained on code have made significant advancements
in generating functions that are human-like and of high quality, leveraging their file-level con-
text [28, 47, 73, 151]. Tools like Copilot excel at code generation, thereby significantly enhanc-
ing user productivity [6]. However, these models are currently less adept at generating tests, be-
cause they are trained to generate the code in each file separately - a standard practice in natural
language processing.

Generating meaningful tests, of course, critically requires considering the alignment between
the tests and the corresponding code under test. Some prior work on neural-based test generation
methods has focused on modeling this alignment [62, 150, 219]. However, this work typically
focuses on the relatively narrow task of generating individual assertions in otherwise complete
tests, based on a single method under test. Unlocking the more impactful ability to generate
entire tests requires leveraging both the entire code file and existing tests as context, which in
turn requires substantially larger models.

In this work, we make a significant step towards accurate whole-test generation via CAT-
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LM,1 a language model trained on aligned Code And Tests. CAT-LM is a bi-lingual GPT-style
LLM with 2.7B parameters. It is trained on a large corpus of Python and Java projects using a
novel pretraining signal that explicitly considers the mapping between code and test files, when
available, while also leveraging the (much larger) volume of untested code. Modeling the code
file along with the test leads to additional challenges regarding a model’s context length. Most
code generation models support a context window of up to 2,048 tokens. However, our data
analysis indicates that many code-test file pairs comprise more than 8K tokens. We thus increase
the maximum sequence input length, training CAT-LM with a context window of 8,192 tokens.

Our results show that the model effectively leverages the code file context to generate more
syntactically valid tests that achieve higher coverage. The model provides a strong prior for
generating plausible tests: combined with basic filters for compilability and coverage, CAT-LM
frequently generates tests with coverage close to those written by human developers.

We evaluate CAT-LM against several strong baselines across two realistic applications: test
method generation and test method completion. For test method generation, we compare CAT-
LM to both human written tests as well as the tests generated by StarCoder [119] and, the Code-
Gen [151] model family, which includes mono-lingual models trained on a much larger budget
than ours. We also compare against TeCo [150], a recent test-specific model, for test comple-
tion. CAT-LM generates more valid tests on average than StarCoder and all CodeGen models,
and substantially outperforms TeCo at test completion. Our results highlight the merit of com-
bining the power of large neural methods with a pretraining signal based on software engineer-
ing expertise—in this case, the importance of the relation between code and test files.

4.1 Overview
CAT-LM is a GPT-style model that can generate tests given code context. Figure 8.1 shows
an overview of our entire system, which includes data collection and preprocessing (detailed in
Section 4.3.1), pretraining CAT-LM (Section 4.4), and evaluation (Section 4.5).

We first collect a corpus of ca. 200K Python and Java GitHub repositories, focusing on those
with at least 10 stars. We split these at the project level into a train and test set (Section 4.3.1). We
filter our training set following CodeParrot [221] standards (including deduplication), resulting
in ∼15M code and test files. We align code and test files using a fuzzy string match heuristic
(Section 4.3.2).

We then prepare the training data, comprising of the code-test file pairs, paired with a unique
token (<|codetestpair|>), as well as unpaired code and test files. We tokenize the files
using a custom-trained sentencepiece tokenizer [4]. We then determine the appropriate model
size, 2.7B parameters based on our training budget and the Chinchilla scaling laws [91]. We
use the GPT-NeoX toolkit [3] enhanced with Flash Attention [58] to pretrain CAT-LM using an
auto-regressive (standard left-to-right) pretraining objective that captures the mapping between
code and test files, while learning general code and test structure.

Finally, we evaluate CAT-LM on the held-out test data. We manually set up all projects with
executable test suites from the test set to form our testing framework. We prepare our test inputs

1CAT-LM [168] was published at the IEEE/ACM International Conference on Automated Software Engineering
(ASE) 2023
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Figure 4.1: Approach overview. We extract Java and Python projects with tests from GitHub and
heuristically align code and test files (top), which, along with unaligned files, train CAT-LM,
a large, auto-regressive language model. We evaluate CAT-LM’s generated tests on a suite of
executable projects (bottom), measuring its ability to generate syntactically valid tests that yield
coverage comparable to those written by developers.

for CAT-LM by concatenating the code context to the respective test context for test generation.
The test context varies based on the task. We asses our model’s ability to generate (1) the first
test method, (2) the last test method, add (3) an additional, new test to an already complete test
suite. We also evaluate completing a statement within a test function. We tokenize prepared
input and task CAT-LM with sampling multiple (typically 10) test outputs, each consisting of a
single method. We then attempt to execute the generated tests with our testing framework and
compute metrics like number of generated tests that compile and pass, along with the coverage
they provide, to evaluate test quality.

4.2 Tasks

We describe two tasks for which CAT-LM can be used, namely test method generation (with
three settings) and test completion. Figure 4.2 demonstrates the setup for all tasks including code
context.
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public class Bank {

    public String methodName() {...}

    ...

}

<|codetestpair|>

public class BankTest {

    @Test     

    public void FirstTest() {...}

    ...

    @Test     

    public void Test_k() {

        assertNotNull(Bank());

    }

    ...

    @Test     

    public void LastTest() {...}

    @Test     

    public void ExtraTest() {...}

}

Test generation with code context

Figure 4.2: Evaluation tasks, with code context shown for completeness: test generation for
the first test method , last test method , and extra test method , along with test completion for
Java.

4.2.1 Test Method Generation

Given a partially complete test file and its corresponding code file, the goal of test method gen-
eration is to generate the next test method. Developers can use test generation to produce an en-
tire test suite, or add tests to an existing test suite to test new functionality. We evaluate three
different settings, corresponding to different phases in the testing process, namely generating (1)
the first test in the file, representing the beginning of a developer’s testing efforts. In this set-
ting, we assume that basic imports and high-level scaffolding are in place, but no test cases have
been written, (2) the final test in a file, assessing a model’s ability to infer what is missing from a
near-complete test suite. We evaluate this ability only on test files that have two or more (human-
written) tests to avoid cases where only a single test is appropriate, and (3) an extra or additional
test, which investigates whether a model can generate new tests for a largely complete test suite.
Note that this may often be unnecessary in practice.

4.2.2 Test Completion

The goal of test completion is to generate the next statement in a given incomplete test method.
Test completion aims to help developers write tests more quickly. Although test completion
shares similarities with general code completion, it differs in two ways: (1) the method under
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Table 4.1: Summary statistics of the overall dataset.

Attribute Python Java Total

Project

Total 148,605 49,125 197,730
Deduplicated 147,970 48,882 196,852
W/o Tests 84,186 15,128 99,314
W/o File pairs 108,042 23,933 131,975

Size
(GB)

Raw 123 157 280
Deduplicated 53 94 147

Files

Total 8,101,457 14,894,317 22,995,774
Filtered 7,375,317 14,698,938 22,074,255
Deduplicated 5,101,457 10,418,609 15,520,066
Code 4,128,813 8,380,496 12,509,309
Test 972,644 2,038,113 3,010,757
File pairs 412,881 743,882 1,156,763
Training 4,688,576 9,674,727 14,363,303

test offers more context about what is being tested, and (2) source code and test code often have
distinct programming styles, with test code typically comprising setup, invocation of the method
under test, and assertions about the output (the test oracle).

4.3 Dataset
This section describes dataset preparation for both training and evaluating CAT-LM. Table 4.1
provides high-level statistics pertaining to data collection and filtering.

4.3.1 Data Collection

We use the GitHub API [1] to mine Python and Java repositories that have at least 10 stars and
have new commits after January 1st, 2020. Following [19] and [132], we also remove forks, to
prevent data duplication. This results in a total of 148,605 Python and 49,125 Java repositories
with a total of ∼23M files (about 280 GB). We randomly split this into train and test set, ensuring
that the test set includes 500 repositories for Python and Java each.

4.3.2 Training Data Preparation

We first remove all non-source code files (e.g., configuration and README files) to ensure that
the model is trained on source code only. We then apply a series of filters in accordance with
CodeParrot’s standards [221] to minimize noise from our training signal. This includes remov-
ing files that are larger than 1MB, as well as files with any lines longer than 1000 characters; an
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public class UserController {

    public String getAllUsers() {

    ...

    }

}

Code Files

public class AppTest {

    @Test

    public void homePage() {

    ...

    }

}

Test Files

public class Bank {

    public String customerSummary() {

    ...

    }

}

<|codetestpair|>

public class BankTest {

    @Test

    public void customerSummary() {

    ...

    }

}

Code-Test File Pairs

11.35M 1.15M 1.85M

Figure 4.3: Distribution of files with sample code snippets

average line length of >100 characters; more than 25% non-alphanumeric characters, and indi-
cators of being automatically generated. This removes 9% of both Python and Java files. We
deduplicate the files by checking each file’s md5 hash against all other files in our corpus. This
removes approximately 30% of both Python and Java files.

We extract code-test file pairs from this data using a combination of exact and fuzzy match
heuristics. Given a code file with the name <CFN>, we first search for test files that have the
pattern test <CFN>, <CFN> test, <CFN>Test or Test<CFN>. If no matches are found,
we perform a fuzzy string match [5] between code and test file names, and group them as a pair
if they achieve a similarity score greater than 0.85. If multiple matches are found, we keep the
pair with the highest score.

Following file pair extraction, we prepare our training data by replacing the code and test files
with a new file that concatenates the contents of the code file and the test file, separating them
with a unique <|codetestpair|> token. This ensures that the model learns the mapping
between code and test files from the pretraining signal. Note that we always combine these files
starting with the code, so the model (which operates left-to-right) only benefits from this pairing
information when generating the test. We additionally include all the other code and test files
for which we did not find pairs in our training data, which results in 4.7M Python files and 9.7M
Java files. We include these unmatched files to maximize the amount of data the model can learn
from. Figure 4.3 summarizes the distribution of files in the training data along with sample code
snippets for each type of file.
Distribution of files and file pairs: Figure 4.4 summarizes the distribution of files in projects
with respect to their star count. We observe a decreasing trend in not just the number of code
files and test files, but also the file pairs. Upon manual inspection of a few randomly selected
projects, we find that popular projects with a high star count tend to be better-tested, in line with
prior literature [111, 189]. Note that we normalize the plot to help illustrate trends by aggregating
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Figure 4.4: Distribution of files in projects sorted by GitHub stars, normalized by percentiles

projects in buckets based on percentiles, after sorting them based on stars. The data distribution
varies between Python and Java: Python has approximately 3x more projects than Java, but Java
has roughly twice as many code-test file pairs.

4.3.3 Test Data Preparation and Execution Setup

To prepare our test data, we first excluded all projects without code-test file pairs. This resulted in
a total of 97 Java and 152 Python projects. We then attempted to set up all projects for automated
test execution.
Execution Setup for Java: Projects may use different Java versions (which include Java 8, 11,
14, and 17) and build systems (mostly Maven and Gradle). We manually set up Docker images
for each combination. We then attempted to execute the build commands for each project in a
container from each image. We successfully built 54 out of the 97 Java projects, containing 61
code-test file pairs.
Execution Setup for Python: We manually set up Docker containers for Python 3.8 and 3.10
with the pytest framework and attempted to run the build commands for each project until the
build was successful. We successfully built 41 of the 152 Python projects, containing 1080 code-
test file-pairs.

We further discarded all pairs within these projects with only a single code method or a
single test method to ensure that code-test file-pairs in our test set correspond to nontrivial test
suites. We additionally require the Java and Python projects to be compatible with the Jacoco
and coverage libraries respectively. This leaves a total of 27 code-test file pairs across 26
unique Java projects and 517 code-test file pairs across 26 unique Python projects. In Python,
we randomly sampled up to 10 file pairs per project to reduce the bias towards large projects (the
top two projects account for 346 tests) leading to a final set of 123 file pairs across 26 unique
Python projects. Note that we reuse these Docker containers in our testing framework (See
Section 4.5.1).
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Figure 4.5: Distribution of file pair tokens

4.4 CAT-LM

This section describes the details for preparing the input, pretraining CAT-LM and generating
the outputs.

4.4.1 Input Representation for Pretraining CAT-LM

We use the corpus of 14M Java and Python files that we prepared for the pretraining of our
model (see Section 4.3.1). We first train a subword tokenizer [112] using the SentencePiece [4]
toolkit with a vocabulary size of 64K tokens. The tokenizer is trained over 3 GB of data using
ten random lines sampled from each file. We then tokenize our input files into a binary format
used to efficiently stream data during training.
Analysing the distribution of tokens: Language models are typically constrained in the amount
of text they fit in their context window. Most current code generation models use a context
window of up to 2,048 tokens [151, 227].2 Our analysis on the distribution of tokens, visualized
in Figure 4.5, showed that this only covers 35% of the total number of file pairs. As such, while
it may be appropriate for a (slight) majority of individual files, it would not allow our model to
leverage the code file’s context while predicting text in the test file. This is a significant limitation
since we want to train the model to use the context from the code file when generating tests.

Further analysis showed that approximately 82% of all file pairs for Java and Python have
fewer than 8,192 tokens. Since the cost of the attention operation increases quadratically with the
context length, we choose this cutoff to balance training cost and benefit. Therefore, we chose
to train a model with a longer context window of 8192 tokens to accommodate an additional
∼550K file pairs. Note that this does not lead to any samples being discarded; pairs with more
tokens will simply be (randomly) chunked by the training toolkit.

2The average length of a token depends on the vocabulary and dataset, but can typically be assumed to be around
3 characters.
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4.4.2 Model and Training Details

We determined the model size based on our cloud compute budget of $20,000 and the amount of
available training data, based on the Chinchilla scaling laws [91], which suggest that the training
loss for a fixed compute budget can be minimized (lower is better) by training a model with ca.
(and no fewer than) 20 times as many tokens as it has parameters. Based on preliminary runs,
we determined the appropriate model size to be 2.7 (non-embedding) parameters, a common
size for medium to large language models [151, 227], which we therefore aimed to train with at
least 54B tokens. This model architecture consists of a 2,560-dimensional, 32 layer Transformer
model with a context window of 8,192 tokens. We trained the model with a batch size of 256
sequences, which corresponds to ∼2M tokens. We use the GPT-NeoX toolkit [3] to train the
model efficiently with 8 Nvidia A100 80GB GPUs on a single machine on the Google Cloud
Platform. We trained the model for 28.5K steps, for a total of nearly 60B tokens, across 18 days,
thus averaging roughly 1,583 steps per day3 We note that this training duration is much shorter
than many popular models [151, 200];4 the model could thus be improved substantially with
further training. The final model is named CAT-LM as it is trained on aligned Code And Tests.

4.4.3 Prompting CAT-LM to generate outputs:

Since CAT-LM has been trained using a left-to-right autogressive pretraining signal, it can be
prompted to generate some code based on the preceding context. In our case, we task it to
either generate an entire test method given the preceding test (and usually, code) file context, or
generating a line to complete the test method (given the same). We prompt CAT-LM with the
inputs for each task, both with and without code context, and sample 10 outputs from CAT-LM
with a “temperature” of 0.2, which encourages generating different, but highly plausible (to the
model) outputs. Sampling multiple outputs is relatively inexpensive given the size of a method
compared to the context size, and allows the model to efficiently generate multiple methods from
an encoded context. We can then filter out tests that do not compile, lack asserts, or fail (since we
are generating behavioral tests), by executing them in the test framework. We prepare the outputs
for execution by adding the generated test method to its respective position in the baseline test
files, without making any changes to the other tests in the file.

4.5 Experimental Setup

We describe the setup for evaluating CAT-LM across both tasks outlined in Section 4.2, namely
test method generation, and test completion.

3We further trained the model to 35.3K steps, thanks to an additional grant received for $5000, after the paper
was published. This latest checkpoint is now available on HuggingFace. Please see https://github.com/RaoNikitha/
CAT-LM for more details on usage. Note that the numbers reported in this paper make use of the older checkpoint
(28.5K steps), and may not match the numbers from the newer public checkpoint (35.3K steps).

4The “Chinchilla” optimum does not focus on maximizing the performance for a given model size, only for a
total compute budget.
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4.5.1 Test Method Generation
The test method generation task involves three different cases: generating the first test, the final
test, and an extra test in a test suite (see Section 4.2). We evaluate CAT-LM on test method
generation both with code context and, as an ablation, without code context.

Baseline Models

CodeGen is a family of Transformer-based LLMs trained auto-regressively (left-to-right) [151].
Pretrained CodeGen models are available in a wide range of sizes, including 350M, 2.7B, 6.1B
and 16.1B parameters. These models were trained on three different datasets, starting with a
large, predominantly English corpus, followed by a multi-lingual programming language corpus
(incl. Java and Python), and concluding with fine-tuning on Python data only. The largest model
trained this way is competitive with Codex [47] on a Python benchmark [151].

For our evaluation, we compare with CodeGen-2.7B-multi, which is comparable in size to
our model and trained on multiple programming languages, like our own. We also consider
CodeGen-16B-multi (with 16B parameters, ca. 6 times larger than CAT-LM) which is the
largest available model trained on multiple programming languages. For all Python tasks, we
also compare against CodeGen-2.7B-mono and CodeGen-16B-mono, variants of the aforemen-
tioned models fine-tuned on only Python code for an additional 150k training steps.

We also compare the performance of CAT-LM with StarCoder [119], which is a 15.5B pa-
rameter model trained on over 80 programming languages, including Java and Python, from The
Stack (v1.2). StarCoder has a context window of 8, 192 tokens. It was trained using the Fill-in-
the-Middle objective [28] on 1 trillion tokens of code, using the sample approach of randomiz-
ing the document order as CodeGen.

Lexical Metrics

Although our goal is not to exactly replicate the human-written tests, we provide measures of the
lexical similarity between the generated tests and their real-world counterparts as indicators of
their realism. Generated tests that frequently overlap in their phrasing with ground-truth tests are
likely to be similar in structure and thus relatively easy to read for developers. Specifically, we
report both the rate of exact matches and several measures of approximate similarity, including
ROUGE [128] (longest overlapping subsequence of tokens) and CodeBLEU [172] score (n-gram
overlap that takes into account code AST and dataflow graph). We only report lexical metrics
for our first test and last test settings, as there is no ground truth to compare against in our extra
test setting. These metrics have been used extensively in prior work on code generation and test
completion [93, 114, 150, 215].

Runtime Metrics

We also report runtime metrics that better gauge test utility than the lexical metrics. This includes
the number of generated tests that compile, and generated tests that pass the test suite. We
also measure coverage of the generated tests. For first and last tests, we compare this with
the coverage realized by the corresponding human-written tests. We hope that this work will
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Table 4.2: Baseline coverage for human written tests over the given number of file pairs.

PL Case Cov Imp % # File Pairs

Python
First test 59.3% 112
Last test 5.0% 93
Extra test 0.0% 123

Java
First test 50.5% 27
Last test 5.3% 18
Extra test 0.0% 27

encourage more widespread adoption of runtime metrics (which are an important part of test
utility), as prior work primarily focuses on lexical similarity [62, 150, 219].

Preparing Input Context and Baseline Test Files

We use an AST parser on the ground-truth test files to prepare partial tests with which to prompt
CAT-LM. For first test generation, we remove all test cases (but not the imports, nor any other
setup code that precedes the first test); for last test generation, we leave all but the final test
method, and for final test generation we only remove code after the last test. We then concate-
nate the code context to the test context using our delimiter token for the ‘with code context’
condition.

We additionally obtain coverage with the original, human-written test files under the same
conditions, keeping only the first or all tests as baselines for first and last test prediction respec-
tively. Note that there is no baseline for the extra test generation task.

Testing Framework

We evaluate the quality of the generated tests using the containers that we setup to execute
projects in Section 4.3.3. We insert the generated test into the original test file, execute the
respective project’s setup commands and check for errors, recording the number of generated
tests that compile and pass the test suite (see Section 4.5.1). If the generated test compiles
successfully (or, for Python, is free of import or syntax errors), we run the test suite and record
whether the generated test passed or failed. We compute code coverage for all passing tests,
contrasting this with the coverage achieved by the human-written test cases (when available) as
baselines.

4.5.2 Test Completion

Recall the test completion task involves generating a single line in a given test method, given the
test’s previous lines. We perform our evaluation for test completion under two conditions, with
code context and without code context.
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Figure 4.6: Passing tests by model for Python (left) and Java (right).

Baseline Model

We compare against TeCo [150], a state of the art baseline on test statement completion that has
outperformed many existing models, including CodeT5 [215], CodeGPT [134] and TOGA [62].
TeCo [150] is a encoder-decoder transformer model based on the CodeT5 architecture [215].
TeCo takes the test method signature, prior statements in the test, the method under test, the
variable types, absent types and method setup and teardown as input.

Initially, we intended to compare CAT-LM against TeCo on our test set. However, TeCo
performs extensive filtering including requiring JUnit, Maven, well-named tests, a one-to-one
mapping between test and method under test, and no if statements or non-sequential control
flow in the test method. We thus compared CAT-LM against TeCo for 1000 randomly sampled
statements from their test set.

Metrics

We compare CAT-LM against TeCo across all lexical metrics (outlined in Section 4.5.1).

4.6 Evaluation

We evaluate CAT-LM’s ability to generate valid tests that achieve coverage, comparing against
state of the art baselines for both code generation and test completion.
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Figure 4.7: Coverage improvement of our model vs humans for Python (left) and Java (right).

4.6.1 Test Method Generation

Pass Rate

Figure 4.6 shows the number of passing tests generated by each model for Python and Java. Note
that these are absolute numbers, out of a different total for each setting.5

CAT-LM outperforms StarCoder and all CodeGen models, including ones that are much
larger and language-specific in most settings. For Python, all models perform worst in the first
test setting, where they have the least context to build on. Nonetheless, equipped with the context
of the corresponding code file, our model generates substantially more passing tests than Star-
Coder (with 15.5B parameters) and the multilingual CodeGen baselines (trained with far more to-
kens) in both first and extra test setting. Only in the last-test settings do some of the models com-
pete with ours, though we note that their performance may be inflated as the models may have
seen the files in our test set during training (the test set explicitly omits files seen by CAT-LM
during training). For Java, we find that CAT-LM generates more passing tests than StarCoder
and the two multilingual CodeGen models (no Java-only model exists). The difference is most
pronounced in the extra test setting, where CAT-LM generates nearly twice as many passing tests
compared to StarCoder and the CodeGen baseline models. Overall, despite being undertrained,
CAT-LM generates more number of passing tests on average across all settings. Both StarCoder
and the CodeGen models don’t show significant gains with more parameters or longer contexts
(StarCoder can use 8, 192 tokens), highlighting that training with code context is important.

Coverage

Figure 4.7 shows the coverage distribution of CAT-LM, contrasted with that of the human-
written tests. For both the first test and last test settings, our model performs mostly comparably
to humans, with both distributions having approximately the same median and quartile ranges.
The extra test task is clearly especially hard: while our model was able to generate many tests in
this setting (Figure 4.6), these rarely translate into additional coverage, beyond what is provided

5The denominator for each group is the number of file pairs shown in Table 4.2 multiplied by 10, the number of
samples per context.
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Table 4.3: Lexical and runtime metrics performance comparison of the models on the held-out
test set for Java and Python. CodeGen refers to CodeGen-multi for Java and CodeGen-mono for
Python results. We only report lexical metrics for our first test and last test settings, as there is
no gold test to compare against in our extra test setting.

Java Python
Lexical Metrics Runtime Metrics Lexical Metrics Runtime Metrics

Model CodeBLEU XMatch Rouge Compile Pass CodeBLEU XMatch Rouge Compile Pass

First Test (Total: Java = 270, Python = 1120)

CAT-LM w Context 41.4% 15.4% 60.9% 50 22 21.0% 0.3% 39.4% 384 44
CAT-LM w/o Context 37.5% 15.4% 56.5% 9 9 17.7% 0.4% 30.2% 236 31
Codegen-2B 35.5% 7.7% 56.8% 24 14 18.2% 0.0% 30.9% 259 37
Codegen-16B 42.2% 7.7% 61.8% 25 7 20.8% 0.3% 35.1% 361 42
StarCoder 44.6% 10.9% 62.2% 28 16 24.0% 1.8% 38.8% 269 23

Last Test (Total: Java = 180, Python = 930)

CAT-LM w Context 55.4% 20.8% 70.8% 54 17 38.3% 4.8% 54.9% 335 77
CAT-LM w/o Context 53.6% 20.8% 68.9% 33 14 33.2% 1.4% 51.9% 350 79
Codegen-2B 51.7% 13.0% 69.2% 43 16 36.3% 2.2% 53.2% 326 84
Codegen-16B 56.5% 14.3% 70.9% 24 9 37.9% 3.4% 54.0% 349 83
StarCoder 56.9% 21.0% 69.9% 34 17 37.6% 4.2% 54.5% 227 65

Extra Test (Total: Java = 270, Python = 1230)

CAT-LM w Context – – – 41 17 – – – 380 98
CAT-LM w/o Context – – – 29 20 – – – 425 104
Codegen-2B – – – 17 8 – – – 376 90
Codegen-16B – – – 15 7 – – – 384 89
StarCoder – – – 17 10 – – – 269 36

by the rest of the test suite, in part because most of the developer-written test suites in our dataset
already have high code coverage (average coverage of 78.6% for Java and 81.6% for Python), and
may have no need for additional tests. Table 4.2 shows the average human coverage improvement
for the first and last test added to a test suite. Note that the average is significantly lower for last
test, as baseline coverage is already high for this mode (74.7% for Java and 76.1% for Python).

We note that we could not compute coverage for all the file pairs in each setting. We excluded
file pairs with only one test from our last test setting to differentiate it from our first test setting.
For the first test setting, some baseline files were missing helper methods between the first test
and last test in the file, preventing us from computing coverage.

Lexical Similarity

Table 4.3 shows the lexical similarity metrics results relative to the human-written tests for CAT-
LM, both with and without context, along with StarCoder and CodeGen baselines. CAT-LM
reports high lexical similarity scores when leveraging code context, typically at or above the level
of the other best model, StarCoder (with 15B parameters). This effect is consistent across first
and last test generation.
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Impact of Code Context

As is expected, CAT-LM heavily benefits from the presence of code context. When it is queried
without this context, its performance on lexical metrics tends to drop to below the level of
CodeGen-2B, which matches it in size but was trained with more tokens. The differences in lex-
ical metric performance are sometimes quite pronounced, with up to a 9.2% increase in Rouge
score and up to a 5.1% increase in CodeBLEU score.

In terms of runtime metrics, code context mainly helps on the first and last test prediction task,
with especially large gains on the former. Context does not seem to help generate more passing
tests in the extra test setting. This may be in part because the test suite is already comprehensive,
so the model can infer most of the information it needs about the code under test from the tests. It
may also be due to the test suites often being (nearly) complete in this setting, so that generating
additional tests that pass (but yield no meaningful coverage) is relatively straightforward (e.g.,
by copying an existing test Section 4.6.3). Overall, these results support our core hypothesis
that models of code should consider the relationship between code and test files to generate
meaningful tests.

Other Runtime Metrics

Table 4.3 also shows a comparison between CAT-LM and StarCoder and CodeGen baselines for
all runtime metrics. CAT-LM outperforms both StarCoder and the CodeGen baselines in both
Python in Java across compiling and passing generations, with CAT-LM typically generating
the most samples that compile and pass. The one setting where the CodeGen baselines perform
slightly better is in generating more last tests that pass for Python. However, the compile rate of
these CodeGen generated tests is significantly lower than those generated by CAT-LM. We note
that CodeGen’s performance may be inflated in the last test setting, as it may have seen the files
from the test set during training.

CAT-LM outperforms StarCoder and CodeGen for both Python and Java, generating
more passing tests on average across all settings. We find that code context improves
performance across most settings in terms of both lexical and runtime metrics.

Table 4.4: Comparison of CAT-LM and TeCo on 1000 randomly sampled statements in their
test set.

Model CodeBLEU XMatch Rouge

CAT-LM w/ Context 67.1% 50.4% 82.8%
CAT-LM w/o Context 65.9% 48.9% 82.2%
TeCo 26.7% 13.8% 60.2%
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4.6.2 Test Completion
For test completion (see Section 4.2.2 for task definition), we compare CAT-LM against TeCo
[150] on the lexical metrics outlined in Section 4.5.1. Specifically, we sample 1000 statements
at random from across the test set released by the authors of TeCo, on which we obtain similar
performance with TeCo to those reported in the original paper. Table 4.4 shows the results.
CAT-LM outperforms TeCo across all lexical metrics, with a 36.6% increase in exact match,
22.6% increase in ROUGE and 40.4% increase in CodeBLEU score. Even prompting CAT-LM
with just the test context (i.e., without the code context) yields substantially better results than
TeCo. This underscores that providing the entire test file prior to the statement being completed
as context, rather than just the setup methods, is helpful for models to reason about what is being
tested.

In contrast to the test generation task, code context only slightly helps CAT-LM in this
setting, with an increase in CodeBLEU score of 1.2% and increase in exact match accuracy of
1.5%. Apparently, many individual statements in test cases can be completed relatively easily
based on patterns found in the test file, without considering the code under tests. This suggests
that statement completion is significantly less context-intensive than whole-test case generation.
We therefore argue that entire test generation is a more appropriate task for assessing models
trained for test generation.

CAT-LM outperforms TeCo across all lexical metrics, with a 40.4% improvement in
CodeBLEU score and 36.6% improvement in exact match accuracy. We find that context
only slightly helps with test statement prediction, indicating that test completion can largely
be done without the code under test, in contrast to entire test generation.

4.6.3 Qualitative Comparisons
Finally, we conduct a small-scale qualitative case-study of tests generated by CAT-LM, CodeGen-
2B-multi [151], GPT-4 [154] and EvoSuite [72]. GPT-4 is a vastly larger language model than
ours, trained with an undisclosed budget by OpenAI. EvoSuite is a popular test generation tool
for Java based on evolutionary algorithms.

We analyze a randomly sampled passing generation from CAT-LM in contrast to the tests
generated by the other tools in the same context across each our three settings (first test, last test
and extra test). The tests here are generated for a Bank class, which includes methods to add a
customer, open an account and print a summary of all accounts and customers. Our goal is to
better understand the benefits and drawbacks of each tool’s generated tests. Specifically, we look
for characteristics of high quality tests, such as meaningful method and variable names, proper
invocation of the method under test and high quality assertions.

CAT-LM

Listing 4.1 shows the first test generation by CAT-LM. The name of the test is informative, along
with its variables. It also follows unit testing conventions of testing one specific method in the
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Bank class. This is consistent across the examples for last test and extra test. However, for our
extra test example, CAT-LM copied the previous test and changed the name of the test method,
not testing new functionality.

CodeGen

In Listing 4.2, the test generated by CodeGen is quite readable, semantically correct, and natu-
ral looking. However, it uses multiple non-existent methods from the code under test—a phe-
nomenon popularly dubbed “hallucinating”—since it lacks awareness of Bank’s implementa-
tion. StarCoder performs similarly, generating tests that are readable, semantically correct, and
natural looking but suffer from hallucinations.

GPT-4

GPT-4 consistently performs the best of all three tools, generating tests that either are identical
to the ground truth or test new functionality that none of the existing tests do. Listing 4.3 shows
GPT-4’s generation for the first test case. Similar to CAT-LM, the GPT-4 generated test has
meaningful identifier names and assertions. GPT-4 had similarly good tests for our last test and
extra test settings. However, these results come with several caveats. First, GPT-4 was trained
on a very large volume of data, including public code, so it is quite likely that it was trained on
our test data and has thus seen the original tests.6 Second, GPT-4 is a much larger, model, with a
training budget orders of magnitude higher than ours. Given our strong performance compared
to the (already much more expensive) CodeGen models, we expect that modestly scaling up our
training approach could well yield similar or better results.

EvoSuite

EvoSuite performs the worst in all three settings. Listing 4.4 shows the EvoSuite completion
for the bank class. The generated test uses very poor naming conventions, such as naming the
method test0, and each of the variables bank0, customer0, and account0. The deposit
amounts do not make logical sense, as they are not rounded to the nearest cent. There is also a
timeout of 4000 milliseconds. Such timeouts are highly likely to lead to flaky tests, where this
test might pass in one environment and timeout in a different environment. The other generations
by EvoSuite, suffer similar problems, including lacking asserts and using spurious exception
handling. Due to this lack of proper naming conventions and the use of trivial asserts, it is very
difficult to understand what is being tested in EvoSuite’s generation.

6In fact, a similar caveat applies to CodeGen, which we do outperform.
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Both GPT-4 and CAT-LM generate high quality tests, checking for realistic situations
with readable asserts. However CAT-LM struggles to generate meaningfully distinct tests
in the extra test setting. CodeGen and StarCoder produces highly readable, but incorrect
tests. EvoSuite struggles to generate meaningful tests; it uses poor naming conventions
and spurious exception handling.

4.7 Related Work

Classical Test Generation: Classical test generation techniques employ both black-box and
white-box techniques to generate test inputs and test code. Random/fuzzing techniques such as
Randoop [156], aflplusplus [71] and honggfuzz use coverage to guide generation of test prefixes.
Property testing tools such as Korat [39], QuickCheck [53] and Hypothesis [137] allow a devel-
oper to specify a set of properties and subsequently generates a suite of tests that test the spec-
ified properties. PeX [197] and Eclipser [51] use dynamic symbolic execution to reason about
multiple program paths and generate interesting inputs. The core issue with fuzzing and classical
test generation techniques is their reliance on program crashing or exceptional behavior in driv-
ing test generation [62], which limits the level of testing they provide. EvoSuite [72] addresses
these challenges by using mutation testing to make the generated test suite compact, without los-
ing coverage. However, EvoSuite generates tests that look “unnatural”, and significantly differ-
ent from human tests, suffering from both stylistic and readability problems [40, 57, 174].

Neural Test Generation: More recently, neural test generation methods have been developed
to generate more natural and human understandable tests. ConTest[205] makes use of a generic
transformer model, using the tree representation of code to generate assert statements. AT-
LAS [219], ReAssert [224], AthenaTest [201] and TOGA [62] extend this work by leveraging
the transformer architecture for this task. They show that their generated asserts are more natural
and preferred by developers when comparing against existing tools such as EvoSuite. TeCo [150]
expands the scope of test completion by completing statements in a test, one statement at a time.
They leverage execution context and execution information to inform their prediction of the next
statement, outperforming TOGA and ATLAS on a range of lexical metrics. While these neural
approaches solve many of the readability issues of classical test generation approaches, they fo-
cus on generating individual statements in a test, which offers significantly less time saving ben-
efits than generating entire tests.

Large Language Models of Code: Large language models (LLMs) can perform well across
many tasks when prompted with instructions and examples [42, 200]. Codex [47] is an au-
toregressive (left to right generation) LLM with 12B parameters, fine-tuned from GPT-3 on 54
million GitHub Python repositories. CodeGen-16B, with which we compare, outperforms this
model [151]. Later, unpublished, iterations of Codex have also been applied to commercial set-
tings, powering GitHub’s Copilot [6]. TestPilot [184] uses Codex to generate unit tests. How-
ever, it requires significant volumes of documentation as input, which is often not available for
open-source projects. While all of these models perform well at generating code, they are rela-
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tively poor (for their size) at generating tests for the code. These models are typically trained on
a randomly shuffled corpus of entire files, and thus do not learn the alignment of tests to the code
under test. We pretrained a comparatively small language model on a much more modest bud-
get that explicitly learns to align code and the corresponding test files, which yields substantially
better performance than modestly larger classically trained models.

4.8 Summary
Even automatically generated code requires verification. Developers use tests to verify the cor-
rectness of the code they write, however current AI-powered tools struggle to generate good tests
for a code file because they are typically not trained to consider the corresponding code file. To
overcome this challenge, we develop CAT-LM, a GPT-style language model with 2.7 Billion pa-
rameters that was pretrained using a novel signal that explicitly considers the mapping between
code and test files when available. We elect to use a larger context window of 8,192 tokens, 4x
more than typical code generation models, to ensure that code context is available when generat-
ing tests. We evaluate CAT-LM on both test method generation and test completion, with CAT-
LM outperforming CodeGen, StarCoder, and TeCo state-of-the-art baselines, even with Code-
Gen and StarCoder baselines significantly larger training budgets and model sizes. We show that
adding the additional context helps CAT-LM, with code context significantly improving both
lexical and runtime metric performance. Overall, we highlight how incorporating domain knowl-
edge, namely the relationship between code and test files, can be used to create more powerful
models for automated test generation.

Data Availability: The model weights for CAT-LM, code and datasets for training and evalu-
ating CAT-LM, results of additional experiments and comparison with TeCo and CodeGen are
available at: DOIDOI 10.5281/zenodo.790929910.5281/zenodo.7909299

4.9 Takeaway
While LLMs excel at code generation, they are limited in their ability to generate tests because
of the way they are trained to generate individual code files independently, a standard practice in
natural language processing. As a result, they can not consider the code under test context when
generating the tests. CAT-LM addresses this challenge by explicitly considering the mapping
between code and test files during training. This enables users to generate tests that align more
coherently with the underlying code, thereby enhancing the quality of tests produced. Moreover,
CAT-LM supports users in verifying both the code they write and that which is generated by
other LLMs, ensuring a more comprehensive and reliable testing process.
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1 @Test
2 public void testCustomerSummary() {
3 Bank bank = new Bank();
4 assertEquals("Customer Summary", "Customer Summary",

bank.customerSummary());
5 }

Listing 4.1: CAT-LM first test generation

1 @Test
2 public void testBank() {
3 Bank bank = new Bank();
4 assertEquals(0, bank.getBalance(), DOUBLE_DELTA);
5 bank.deposit(100);
6 assertEquals(100, bank.getBalance(), DOUBLE_DELTA);
7 bank.withdraw(50);
8 assertEquals(50, bank.getBalance(), DOUBLE_DELTA);
9 }

Listing 4.2: CodeGen first test generation

1 @Before
2 public void setUp() {
3 bank = new Bank();
4 }
5

6 @Test
7 public void testAddCustomerAndCustomerSummary() {
8 Customer customer1 = new Customer("John Doe");
9 bank.addCustomer(customer1);

10

11 String expectedSummary = "Customer Summary\n - John Doe (0 accounts)";
12 String actualSummary = bank.customerSummary();
13

14 assertEquals(expectedSummary, actualSummary);
15 }

Listing 4.3: GPT-4 first test generation

1 @Test(timeout = 4000)
2 public void test0() throws Throwable {
3 Bank bank0 = new Bank();
4 Customer customer0 = new Customer("v\"PD");
5 bank0.addCustomer(customer0);
6 Account account0 = new Account(0);
7 account0.deposit(148.3628547);
8 customer0.openAccount(account0);
9 double double0 = bank0.totalInterestPaid();

10 assertEquals(0.14836285470000002, double0, 0.01);
11 }

Listing 4.4: EvoSuite first test generation

Figure 4.8: Example first tests generated by CAT-LM, CodeGen, GPT-4, and EvoSuite. CAT-
LM and GPT-4 both generate realistic and readable tests; EvoSuite struggles with poor naming
conventions and unrealistic tests. CodeGen generates readable test cases, but hallucinates meth-
ods in the code under test. 54



Chapter 5

DIFFSPEC for Reliability

In Chapter 4, we showed that explicitly considering the mapping between code and test files dur-
ing training helps generate tests that align more coherently with the underlying code, thereby en-
hancing the quality of tests produced with CAT-LM. With DIFFSPEC, we take that one step fur-
ther and consider other software artifacts beyond just code under test, such as natural language
specification documents, source code, existing tests, previous bug reports and so on. We show
that using these artifacts can aid in generating targeted tests that can highlight meaningful be-
havioral differences in systems, that points to bugs in some cases, thereby improving the overall
reliability of the software system.

Large Language Models (LLMs) excel at extracting and understanding information from
large amounts of natural language text, enabling a wide variety of tasks such as program compre-
hension, bug localization, and software testing. Recent research has shown significant promise in
leveraging LLMs to enhance various testing techniques. For instance, LLMs have been used to
generate more effective mutations in mutation testing [60], to create higher-quality unit tests [20,
122, 130, 168], and to improve fuzzing methods by producing diverse and targeted inputs [226].

Given the natural language specification document, we can not only generate tests to check
for code correctness but can also check for conformance. We aim to do so with differential
testing, an approach for automatically generating potentially bug-finding tests for applications
that correspond to multiple implementations of the same functionality [139]. The key idea is
to test two or more different systems (or two different versions of the same system) that should
behave the same way under the same conditions on the same inputs. If their output behavior
differs, it is likely that at least one of the implementations is incorrect.

Differential testing has shown significant success especially in testing language implemen-
tations, such as uncovering bugs in C compilers [113, 229] or browser engines, for example re-
vealing inconsistencies in JavaScript interpreters and JIT compilers [34]. It also can be useful for
testing cross-platform consistency (i.e., the same system across different configurations or oper-
ating systems) [67] or versions (as in regression testing) [76].

Generating tests that specifically target differences between two versions of a program is es-
pecially challenging, as it involves simultaneously searching the vast input space of two programs
to find rare inputs that trigger often subtle discrepancies [139]. Existing approaches to find such
tests limit the possible search space by borrowing techniques from symbolic execution [179],
guided semantic aware program generation [107], type aware mutations [99], and code coverage
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optimizations [50]. While some approaches leverage semantic and syntactic properties of the
code or use information from static analysis tools, they are significantly limited in their ability to
harness the wealth of information available from natural language artifacts.

In this work, we propose a differential testing technique that leverages natural language and
code artifacts describing the software systems under test to inform and prompt an LLM to pro-
duce effective, and targeted, differential tests. The extracted information describes the system
specification, its source code implementation, and historical bug information.

We realize this intuition in DIFFSPEC, a general approach to differential testing of multiple
systems implemented with respect to a documented specification, and with functionality that can
be decomposed into testable units. DIFFSPEC is well-suited for testing systems that correspond
to, or integrally include, language compilers, runtimes, and verification systems, like network
protocol parsers or JVM or EVM or web browsers. This is the predominant domain for differ-
ential testing applications in research [46, 120, 188] and practice [85]. Such systems are typi-
cally associated with comprehensive language specification documentation, like the Instruction
Set Architecture (ISA) specification associated with eBPF [56], or the WebAssembly (Wasm)
language specification [77]. Moreover, testing these types of systems can be naturally decom-
posed into testing language instructions or subsets thereof.

We demonstrate DIFFSPEC on various implementations of Wasm and eBPF runtimes, which
both have rich evolving natural language artifacts that DIFFSPEC can leverage, and are widely
used in practice. Both runtimes vary in domain, the type of contextual information that our
approach must extract from the natural language artifacts, and the format and language of the
tests to be generated (see Section 5.3), demonstrating the generalizability of DIFFSPEC.

Using DIFFSPEC, we found 299 differentiating tests across four different implementations of
Wasm validators. Upon manual analysis, we found that these point to at least two bugs which
includes a type mismatch and cast of out-of-bounds. These bugs were reported to the maintain-
ers of Wasm and have now been fixed. We also generated 1901 differentiating tests, that helped
discover at least four distinct bugs across three different implementations of eBPF runtimes.
These include a kernel memory leak, inconsistent behavior in jump instructions, undefined be-
havior when using the stack pointer, and tests with infinite loops that hang the verifier in ebpf-
for-windows. These bugs were confirmed by the contributors of eBPF and issues have been filed
for them.

5.1 Illustrative Example
This section presents an example illustrating how DIFFSPEC uses natural language specifications
and code artifacts to generate tests for eBPF. First, given a natural language specification docu-
ment [], DIFFSPEC extracts a list of instructions in the underlying language, along with the cor-
responding constraints for each instruction. For example, constraints extracted for the RSH in-
struction include:
1. The RSH instruction performs a right shift operation. The destination register (dst) is shifted

right by the number of bits specified in the source operand (src or imm).
2. The source operand can come from either the src register (if the source bit in the opcode is set

to X) or the immediate value (if the source bit in the opcode is set to K).
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3. For ALU: {RSH, K, ALU} means dst = (u32)(dst >> imm) and {RSH, X, ALU} means
dst = (u32)(dst >> src).
Next, for each considered instruction DIFFSPEC extracts the implementation of that instruc-

tion from each of the two codebases corresponding to the systems under test. For example, DIFF-
SPEC extracts an implementation of RSH from the source code for eBPF in linux ARM 32, a
subset of which includes:

1 /* ... */
2 /* dst = dst >> src */
3 case BPF_ALU | BPF_RSH | BPF_X:
4 case BPF_ALU64 | BPF_RSH | BPF_X:
5 switch (BPF_SRC(code)) {
6 case BPF_X: /* Shift right by variable */
7 emit_a32_alu_r64(is64,dst,src,ctx,BPF_OP(code));
8 break;
9 case BPF_K: /* Shift right by immediate value */

10 if (unlikely(imm > 31))
11 return -EINVAL;
12 /* ...continues, elided... */

Listing 5.1: RSH source code extracted from the bpf implementation from linux arm 32
implementation

Given two code snippets, DIFFSPEC then reasons about the implementation differences, such
as “Checking of Immediate Value: The first implementation checks if the immediate value is
greater than 31 or 63 for 32-bit and 64-bit operations respectively. The second implementation
does not perform this check.”

DIFFSPEC additionally looks at historical bugs to generate a set of bug classes to guide test
generation. For example, “Shift Operation Bug: These bugs occur when the JIT compiler incor-
rectly handles shift operations, especially when the shift amount is zero. Incorrect shift opera-
tions can lead to unexpected results, or in worst cases, hang the kernel.”

Using all extracted context, DIFFSPEC first generates a set of test descriptions that detail
what the test should check for. This along with a set of hand written guidelines that provides
instructions on what makes a valid test, is then used to generate the test code. Here is an example
of the test description along with the corresponding test code generated by DIFFSPEC.

1 // Test with a zero-shift count.
2 // Check for edge cases where the shift count is zero.
3 // The source value should remain unchanged.
4 -- asm
5 mov %r0, 0x12345678
6 rsh %r0, 0
7 exit
8 -- result
9 0x12345678

Listing 5.2: Generated test code

Interestingly, there was a historical bug in the linux implementation of BPF.1 The issue titled

1https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=bb9562cf5c67
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Figure 5.1: Approach overview. DIFFSPEC extracts relevant context from natural language and
code artifacts by prompting an LLM, covering: instructions and constraints, source code and
tests, and historical bug information. DIFFSPEC then follows a two-step process: (1) it generates
test descriptions using the extracted context, and then (2) uses the test description along with few-
shot examples of human written tests along with a set of human written guidelines to generate
actual test code. Generated tests are executed on different implementations of the specification,
seeking those that are potentially differentiating.

“arm, bpf: Fix bugs with ALU64 RSH, ARSH BPF K shift by 0” describes how “The current
arm BPF JIT does not correctly compile RSH or ARSH when the immediate shift amount is 0...”
The test generated by DIFFSPEC would have caught this issue, preemptively.

5.2 Approach
Figure 8.1 provides an overview of how DIFFSPEC uses LLMs to generate tests using natural
language specifications and code artifacts. The core components of DIFFSPEC are:
• Extracting relevant context from software artifacts (Section 5.2.1) by prompting an LLM.

The information includes but is not limited to, for each instruction: relevant constraints; source
code snippets from the tested implementations; and bug information.

• Generating tests (Section 5.2.2) using the extracted information as context to prompt an LLM
to generate natural language descriptions of test cases. This description, along with relevant
human-written tests (used as few-shot examples) and a set of curated instructions guide the
model to generate actual test inputs.

• Evaluating the systems under test. Finally, we execute generated tests on the implementa-
tions under test with an evaluation harness. A generated test is differentiating if different im-
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plementations produce different outputs for the same test input. Not all such tests correspond
to defects, but they serve as a key starting point to identify potential problems in either the im-
plementation(s), or the specification.

The rest of this section describes the first two components in detail. Evaluating the systems
under test is straightforward conceptually; we provide implementation specifics with respect
to our evaluation systems in Section 5.3. We elide certain prompts to reduce redundancy and
improve flow; full prompts are available in the artifact. DOIDOI 10.5281/zenodo.1383607010.5281/zenodo.13836070

5.2.1 Extraction of relevant context from artifacts

Software systems are associated with many artifacts that encode desired and expected behavior
as well as potential incorrect behavior. DIFFSPEC leverages these artifacts to guide the LLM to
generate targeted tests that highlight informative behavioral differences between different imple-
mentations. The considered sources of information include (1) a system specification, which are
typically semi-structured natural language documents describing what the multiple systems un-
der test should do, (2) system implementations of the functionality under test, (3) system tests
provided by developers, and (4) historical bug information, drawn from a bug report database or
expert knowledge, that can provide clues about common failure modes. This results in the fol-
lowing types of information:

Instructions () and Constraints (✓) Given a natural language specification document for a given
system specification, DIFFSPEC first prompts the LLM to extract all instructions in the imple-
mented language ().

Prompt to extract language instructions

Here is the official {language} specification document that details
the exact standards that need to be followed for {language}:
{manual}. This document is used as a reference to implement the
{language} framework for different environments. Extract all language
instructions from the document, following this format...

Specification documents describe the specified behavior of each instruction in a language,
including constraints (✓) on correct implementation. DIFFSPEC therefore prompts an LLM to
extract this information for each instruction, again from the specification document. Language
specifications can be dozens to hundreds of pages long; extracting only the text that describes
each instruction allows subsequent prompts to be specific, and overcomes LLM context window
limitations.

Prompt to extract relevant specifications for each instruction

You are an expert in {language}. Here is the official {language}
document that details the exact standards that need to be followed
for {language}: {manual} This document is used as a reference to
implement the {language} framework for different environments. The
goal is to find differential tests that returns different outputs
in different implementations. Extract the key points relevant to
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the {instruction} instruction from the documentation. Make sure
you are extremely specific, and extract all the constraints and
conditions that strictly need to be followed when implementing the
{instruction} instruction..include details that can be easily missed or
misinterpreted...Do not include example tests.

Implementation code () Code-based artifacts can provide useful guidance to differential test
generation. First, for each instruction, DIFFSPEC uses its extracted constraints as a guide to iden-
tify and extract relevant source code snippets from each implementation. Although implementa-
tions of a given specification vary, they are expected by construction to be semantically equiva-
lent. We hypothesize that implementation differences can be used to guide the LLM to generate
tests that may result in differential behavior. In order to get these differences we first extract the
relevant code pertaining to the given instruction by prompting the LLM with the source code files
and the list of constraints. DIFFSPEC then uses the extracted code snippets from each implemen-
tation to prompt the LLM to reason about differences, producing a list in natural language (⋔).

Prompt to extract relevant code for given instruction from source code file

You are an expert in {language}. Here is the source code of the
{language} for {implementation} architecture. {codefile}. Here are
the key points relevant to the {instruction} instruction, along with
a set of constraints that must be strictly followed when implementing
it. {instruction constraints}. Using these points as reference,
extract the relevant code for {instruction} instruction from the code
implementation.

Prompt to extract code differences

You are an expert in {language}. The goal is to find differential
tests that returns different outputs in different implementations
of {language}. You are provided with the key points relevant to the
{instruction} instruction, along with a set of constraints that must
be strictly followed when implementing it. {instruction constraints}.
You are provided with the relevant code implementing the {instruction}
instruction in two different implementations: {code, associated with
implementations} Identify differences in the two code implementations.

LLMs have been shown effective at generating summaries, including code summaries [192].
Inspired by the self-debug [49] work, which uses an LLM to explain the code and compares the
natural language summary to the problem description to find bugs, we explore an alternative ap-
proach to extract information from the code snippets by having the LLM describe what the code
is doing in natural language. We then use the code descriptions ((<) of both the implementa-
tions to guide the test generation process. We take this one step further and also have the LLM
reason about the differences in the two descriptions (6). We compare the efficacy of these ap-
proaches in Table 5.2.
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Prompt to extract code description

You are an expert in {language}. The goal is to find differential
tests that returns different outputs in different implementations
of {language}. You are provided with the key points relevant to the
{instruction} instruction, along with a set of constraints that must
be strictly followed when implementing it. {instruction constraints}.
You are provided with the relevant code implementing the {instruction}
instruction in implementation implementations: {code}. Using the
natural language constraints as reference, can you provide a line by
line explanation of the code implementing the instruction instruction.

Prompt to extract differences in code descriptions

You are an expert in {language}. The goal is to find differential
tests that returns different outputs in different implementations
of {language}. You are provided with the key points relevant to the
{instruction} instruction, along with a set of constraints that must
be strictly followed when implementing it. {instruction constraints}.
You are provided with a detailed line by line description
of the code implementing the instruction instruction in two
different implementations: {code description, associated with
implementations}Identify differences in the two implementations based on
the natural language descriptions of the code and return the output as
a list of differences between the two implementations.

Test code () Mature software systems include human-written test suites that exercise function-
ality that DIFFSPEC also targets, like specific instruction implementations. DIFFSPEC generates
a mapping between each instruction and any human written tests for it by providing the LLM
lists of instructions, and test file names. The mapping provides two main benefits. First, it helps
identify instructions that don’t have a corresponding test, highlighting gaps. Second, the map-
ping provides examples for test generation.

Prompt to map the human-written tests to instructions

You are given a list of instructions, along with a list of tests.
Create a mapping between the list of instructions and their
corresponding and output the results as a table with the following
format: {format} List all tests that you did not find a mapping for
under UNKNOWN instruction. Here is an example: {example} Here are
the list of instructions: {instructions list}. Here are the tests:
{human test files}

Bug categories () Finally, historical bug information can help provide useful context on com-
mon edge cases or failure modes. DIFFSPEC can make use of multiple sources of such informa-
tion including bug reports, prior empirical studies, and expert knowledge; it queries an LLM to
distill the information accordingly.
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Prompt to generate bug categories

You are an expert in {language}. Here is a list of commit
messages corresponding to previously identified bugs in {system}
. {bug commits}. Provide a list of descriptive categories for
the different kinds of bugs that can occur in {system}. Include a
description of what each category means.

5.2.2 Test Generation Framework
DIFFSPEC uses the context extracted from the natural language and code artifacts to generate
differential tests. It does this in two phases:

Generating test descriptions () DIFFSPEC incorporates the specifications and constraints for
each tested instruction, along with all the additional extracted context, to prompt the LLM to
generate a configurable number (we use 10 in our experiments) of natural language descriptions
for what a test should do. This step is repeated for every combination of extracted code difference
and bug category.

Prompt to generate test descriptions

You are an expert in {language}. The goal is to find differential
tests that returns different outputs in different implementations
of {language}. You are provided with the key points relevant to the
{instruction} instruction, along with a set of constraints ... You are
provided with a key difference in the code implementations ... Your
goal is to generate {number} unique differential tests so we can test
for this difference in the implementation in {implementations}. Focus
on {bug class} when generating the tests. {bug description}. Generate
a natural language description of tests that can result in differential
behaviour... Make sure to reason about the specific constraint that
the test is checking for and include information on how the test
relates to the {bug class}.

Generating tests (/) Given a natural language test description, DIFFSPEC next prompts the
LLM to convert these into executable tests. The generated tests include expected output. We
also include an optional set of guidelines (L) for valid tests for the system, provided by a human
expert; we evaluate its contribution to test validity in Section 5.5.2. In our analysis, the two-
phase approach is generally more effective for generating syntactically valid code than a single-
phase approach (See Table 5.2).

Prompt to generate test

You are an expert in {language}. The goal is to find differential
tests that returns different outputs in different implementations
of {language}. You are provided with the key points relevant to
the {instruction} instruction, along with a set of constraints...
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Table 5.1: Selection of bug categories and descriptions for eBPF and Wasm

Target Category - Description

eBPF Instruction Encoding - Incorrect assembly code generation by the eBPF JIT compiler, involv-
ing incorrect opcodes, registers, or misinterpreting eBPF instructions.
Stack Layout - Incorrect stack frame setup or teardown, causing memory corruption.
Shift Operation - Incorrect handling of shift operations, e.g. shift by 0 errors, leading to
unexpected results, or hanging the kernel.
Register Handling - Incorrect usage, saving, or restoration of CPU registers.
Endianness Conversion - Incorrect conversions from big and little endian representations.

Wasm Branch Target Resolution - Branching instructions rely on specifying labels to determine the
branch target. A bug in resolving these labels can cause the control flow to jump to the wrong
location, leading to unexpected behavior.
Block Nesting - Failure to correctly manage block nested structures, leading to incorrect flow
of control. For instance, a br table instruction that incorrectly interprets the depth of nested
blocks can cause the control flow to exit the wrong block or loop.
Type Mismatch in Control Flow - Control flow instructions must adhere to specific type
constraints. otherwise leading to runtime type errors.
Control Flow Across Module Boundaries - Wasm modules can import and export functions,
and bugs can occur if control flow instructions don’t correctly handle calls or returns across
module boundaries.

{instruction constraints}. Your goal is to generate differential
tests so we can test for nuances in the two implementations... Here
are some examples of existing tests. {example tests}. Here is
a description of a test that can result in differential behavior
in the two implementations for the {instruction} instruction.
{nl test description}. Generate the code for the test in the same
format as the example. You are required to strictly follow these
instructions when generating the test. {optional human instructions}

5.3 Systems Under test

DIFFSPEC is a framework that can apply to many different systems for which differential test-
ing is appropriate. For the purposes of evaluation, we apply it to two complex real-world prob-
lem specifications and several associated implementations: the extended Berkeley Packet Fil-
ter (eBPF) (Section 5.3.1), a kernel-extension framework that safely runs custom bytecode pro-
grams; and WebAssembly (Wasm) (Section 5.3.2), a portable bytecode language and compila-
tion target originally designed for browser-based applications but with broad application beyond.
This Section describes these systems, with particular focus on details relevant to our evaluation.
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5.3.1 extended Berkeley Packet Filter (eBPF)

Background. The extended Berkeley Packet Filter, or eBPF, is a kernel-extension framework
originally integrated into the Linux kernel at version 3.18 [54]. It allows developers to safely run
custom bytecode programs inside the kernel, without inserting risky modules or modifying the
kernel itself. A key component of eBPF ecosystem is the verifier, which ensures safety properties
(like memory safety, crash-freedom, or termination) of user-defined extensions. Support for
eBPF framework has been implemented for multiple runtime environments and architectures
(including but not limited to x86 64, ARM, Risc-V). There furthermore exists several user-space
eBPF runtime implementations [65] that extend its reach beyond kernel-level interactions.
Tested Implementations and Code artifacts. We test three eBPF runtimes in our experiments: (1)
Linux Kernel via Libbpf [127], a user-space library that simplifies the use of eBPF programs in
the Linux kernel. (2) Userspace BPF (uBPF) [98], a lightweight, user-space implementation of
eBPF. (2) eBPF for Windows via bpf2c [140], which Microsoft has introduced into the Windows
ecosystem, again providing a user-space eBPF runtime.

We take the 206 human-written tests for bpf conformance for the test artifacts.

Natural language Artifacts. All runtime implementations of eBPF must conform to the eBPF
Instruction Set Architecture [56], standardized and documented through the IETF, and the au-
thoritative source for the specification standard. We use the BPF ISA as the specification doc-
ument for testing; DIFFSPEC extracts a total of 34 instructions from the ISA, including arith-
metic, jump, load, and store instructions. For historical bug information, we collect 55 histori-
cal bug reports from prior work [148]. We use the commit title and description of the bug fixes
in the linux implementation of eBPF as input and prompt the LLM to group the bugs into high
level categories and include a description for each category. Table 5.1 shows a subset of bug cat-
egories generated for eBPF.

Evaluation Harness. We run generated tests using the bpf conformance plugin. The BPF
Conformance project [141] aims to measure the conformance of BPF runtimes to the ISA by
providing a unified testing interface. The possible test execution outcomes are:
• PASS: “Test succeeded”. The test is valid and the execution produced the expected return

value.
• FAIL: “Plugin returned incorrect return value x expected y.” The test is valid but does not

pass. This can happen either because there is a bug in the tested implementation, or the LLM
generated the incorrect expected output. The differential testing context means that DIFFSPEC

does not rely solely on the LLM to adjudicate expected behavior, instead comparing the output
of multiple implementations.

• SKIP: “Test file contains unsupported instructions/has no BPF instructions.” The test is not a
valid BPF program.

• ERROR: “Plugin returned error code 1 and output <msg>.” The test is again an invalid program
producing an error that the conformance plugin can handle, like referencing an invalid register
ID in a program instruction.

• CRASH: “Unhandled Exception reached the top of main: <msg>.” The test is invalid in a
way that causes the conformance plugin to crash (such as an instruction referencing an invalid
label).
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5.3.2 WebAssembly (Wasm)

Background. WebAssembly [78], or Wasm, is a portable bytecode that was originally built to run
in the browser, but has since become popular in more domains such as cloud and edge computing
[92, 167, 194], embedded systems [210], industrial systems [145], and more. Wasm provides a
safe runtime for untrusted code in many languages (Rust, C/C++, OCaml, and others) as memory
is sandboxed; it is also highly performant.

A Wasm application, consisting of one-to-many modules, is run on a Virtual Machine (VM),
also referred to as engine or runtime. There are many available implementations including, Wiz-
ard Engine [198], for teaching and research; Wasmtime [14], owned by the Bytecode Alliance,
for Edge Computing; and V8 [10], used in Google Chrome, especially noted for its JavaScript
integraion.

Before a Wasm module is executed, it is validated by the wasm validator; this step protects
the host system from security vulnerabilities, runtime traps, and undefined behavior. Generally,
each Wasm VM has its own custom Validator, simplifying integration, and improving perfor-
mance. This motivates standardized testing and robust tooling to ensure runtime conformance.
An established format for testing Wasm runtimes is via .wast tests written in the human-
readable WebAssembly Text (WAT) format.

Tested implementations and code artifacts. Given the importance of validation to runtime confor-
mance, we focus our testing on the validator modules of four Wasm implementations: (1) Wasm
spec [12] (the reference implementation, considered the oracle for Wasm behavior), (2) Wizard
Engine [198], (3) Wasmtime [14], which uses wasmparser’s [13] validator under-the-hood,
and (4) V8 [10]. We take tests from the official Wasm test suite [12]. Note that DIFFSPEC was
only provided the source code context for the Wasm spec and the Wizard Engine. We test other
implementations to deem if the generated tests are useful without further prompting or context.

Natural language artifacts. We use the Wasm language specification document [77] for testing.
Focusing especially on control-flow instructions, known to be both tricky and error prone, we
extract 11 instructions to test from this documentation. DIFFSPEC identifies 11 test files with
596 test cases (from the Wasm spec codebase) for these instructions. We get an initial list of bug
categories by prompting ChatGPT (GPT 3.5). This list was then verified by a maintainer from
Wasm. Table 5.1 shows a subset of bug categories inferred for Wasm.

Evaluation Harness. DIFFSPEC generated tests for Wasm targeting the .wast format (exam-
ples in Table 5.5). For the implementations expecting a different format (like Wizard engine,
expecting bin.wast), we use the wasm-spec CLI to translate accordingly and automatically.
Note that invalid or syntactically incorrect tests fail this transformation step. Additionally, the
tested systems do not all report errors with equal precision or granularity. For consistency, we
therefore check for a simple PASS/FAIL result, ignoring the error message produced by test ex-
ecution. We also refactored multi-assertion test files to provide one assertion per test, for cleaner
comparisons of testing results. We evaluated execution results by comparing to the Wasm spec
reference implementation. The possible test execution outcomes are:
• PASS: A validator successfully labeled an invalid module as invalid (as expected by the asserts

in the .wast).
• FAIL: The validator labeled an invalid module as valid (as this behavior does not satisfy the
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asserts in the .wast).
• CRASH: An Exception was thrown during execution and printed to the console.
• INVALID: The tests fail to convert into desired format.

5.4 Experimental Design
This section describes our experimental setup for evaluating DIFFSPEC on our systems under
test. We implement DIFFSPEC in Python. We make use of GPT-4-32k as the LLM for all the
eBPF experiments. Specifically, we use the 0613 version of the GPT-4-32k checkpoint through
the Azure OpenAI API. The Wasm experiments have been run using GPT-4o, since the GPT-4-
32k model endpoints were deprecated. We use the default values for all the hyper-parameters for
both GPT-4-32k and GPT-4o. Specifically, we investigate the following research questions:
• RQ1 How effectively does DIFFSPEC produce meaningful differential tests? We evaluate this

question initially on eBPF (with results for Wasm discussed in RQ3).
• RQ2 To what extent does each component of DIFFSPEC contribute to its effectiveness?
• RQ3 How well does DIFFSPEC generalize across systems?

Finally, we qualitatively examine the generated differential tests to determine the cause of
differential behavior and possibility of bug attribution.

5.4.1 LLM-based Baselines

Both eBPF and Wasm have been extensively tested using traditional fuzzers. However, these do
not check for conformance with a specification. We define two baselines that explicitly consider
the specification document. First, we use a naive prompting technique that provides the entire
specification document and three randomly-selected human tests as context, and prompt the LLM
to generate tests for each instruction. Second, as a more targeted baseline, we extract the most
relevant sections from the document for each instruction. We then use the mapping between
the instructions and the test files to only use the tests corresponding to the given instruction as
examples in the generation prompt.

We also consider Fuzz4All [226], a fuzzing technique that generates and mutates test inputs
for projects written in different programming languages. Fuzz4All leverages a larger model,
GPT4, to automatically generate prompts for semantically interesting and syntactically valid in-
put, and a cheaper model, StarCoder to generate and mutate these inputs. To apply Fuzz4All’s
autoprompting and LLM-fuzzing loop to eBPF, we extend it by adding: (1) an interface to in-
tegrate the execution of eBPF bytecode through the Linux libBPF plugin, (2) custom functions
to filter, clean, and transform LLM generated output into the required eBPF test format. To fuzz
eBPF bytecode instructions, we provide Fuzz4All with different sections of the BPF ISA and 3
hand-selected examples of valid bytecode tests for each section. For each section of the ISA, we
run experiments with 1000 fuzzing iterations using the best performing configuration reported in
the paper. In total, we generate 4,000 tests, using the libBPF plugin to provide evaluation feed-
back to the auto-prompting and fuzzing loops. Despite having access to few shot examples and
instruction semantics from the ISA, 61% of generated tests did not include valid BPF semantics
(e.g., missing exit instructions, hallucinated instruction codes). Considering the remaining 39%
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of tests, 38.5% did not follow the expected test format (e.g. not including –asm or –result), and
0.5% of tests were successfully parsed but all failed. Upon manual inspection, none of the gener-
ated tests passed because the expected result was either empty or invalid. We require valid tests
to check for differential behavior, and therefore could not use these generated tests as a baseline.
The code and tests generated with Fuzz4All have been included in the artifact.

5.4.2 Fuzzing Baselines

We implement two fuzzing baselines to evaluate how LLM-guided test case synthesis (with
DIFFSPEC) compares to more traditional random test case generation. In order to provide a fair
comparison, we ensure that both fuzzing baselines are grammar-aware, generating syntactically-
valid eBPF and Wasm programs (but not necessarily semantically-valid).

For the Wasm fuzzer, we use GRAMMARINATOR [90] to generate syntactically-valid WAT
syntax trees according to a reference ANTLR specification. For the eBPF fuzzer, we randomly
sample valid eBPF opcodes for instructions and fill their arguments with random values. For a
fair evaluation, we ran the fuzzer for the same amount of time it took DiffSpec to generate and
run tests for both wasm and eBPF. This resulted in 300k tests for wasm run over ∼ 6 hours and
200k tests for eBPF run over ∼ 12 hours.

5.4.3 Evaluation Metrics (RQ1)

We use the following metrics in evaluating DIFFSPEC performance:
Validity. A generated test is valid if it results in PASS, FAIL, or ERROR across all implemen-
tations — that is, DIFFSPEC produced a syntactically valid test. Tests that are skipped or lead to
crashes are considered invalid.
Differentiating tests. A differentiating test is one that produces a different outcome/return value
for at least two different implementations. For example, a test resulting in PASS on one system
and FAIL or ERROR on another, or a test resulting in FAIL on two systems but return different
values that do not match the test’s expected value. Note that it is still possible for the generated
expected value to be incorrect. However, this risk is mitigated by the use of multiple systems in
the differential testing context, where their outputs can be compared independently of the test’s
oracle value.
Test complexity. Automatically generated tests can be difficult for humans to understand or
use [185]. This can be especially risky in the differential testing context [104, 229]. We use the
number of lines in the tests as a simple proxy for test complexity.
Test diversity. To assess the ability of DIFFSPEC to generate a diverse set of tests covering
many different behaviors, we examine the generated tests and compute the unique number of
features across the set. For eBPF we consider: unique instructions (e.g. eBPF opcodes), unique
registers (e.g. %r0, %r1, ...), unique memory addresses (e.g. [%r3] or [%r1+4]), and unique
immediate values (e.g. 0x1, 0x1337, ...).
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5.4.4 Configurations for ablation (RQ2)

We evaluated the performance of DIFFSPEC under multiple configurations (summarized in Ta-
ble 5.2) to evaluate the contribution of the context extracted from the different artifacts, and the
effect of the two-stage test generation procedure. These settings are:
3-shot-random: Our first baseline; uses the instruction (), the language specification (), and
three random test examples () to directly generate tests (/).
target-section: Our second baseline; uses the instruction (), the manual section under which
the instruction was listed (), and targeted examples () from the test suite to directly generate
tests(/).
prompt-chain: Asks an LLM to extract the key information about an instruction from the manual
(✓), and uses a two-step test generation process, combined using prompt chaining. We include
three random test examples () when generating the test (/) from the test descriptions ().
prompt-chain-instruct: Provides a curated set of guidelines to ensure valid tests, such as “en-
sure that the output is in %r0” for eBPF. We provide these guidelines (L) during test generation,
on top of the prompt-chain approach.
bug-centric: Builds on prompt-chain-instruct setup by additionally providing the LLM with cues
from historical bug data ().
code-description: Builds on prompt-chain-instruct setup by additionally extracting and summa-
rizing relevant code snippets (<).
code-description-diff: Builds on code-description by generating a list of implementation differ-
ences (6) in the two code descriptions.
code-diff: We observed that using the differences in descriptions (6) can help the LLM generate
differentiating tests. In this setup, we have the LLM generate a list of differences directly from the
relevant code snippets (⋔) extracted from the implementations. We then use each difference that
was generated to guide the LLM when generating test descriptions (uses two step test generation).
bug-guided-code-diff, or DIFFSPEC: Combines all useful elements: prompt-chain-instruct (✓ L )
with bug categories () and code differences (⋔), with a two step generation process (/).

Note that we conducted these experiments first on the eBPF system; we then used the con-
figuration that led to the most differential tests to subsequently test Wasm validators.

5.5 Results

This section presents experimental results, speaking to DIFFSPEC effectiveness (Section 5.5.1);
the contributions of individual design decisions and types of information to that effectiveness
(Section 5.5.2); and DIFFSPEC’s generalizability to diverse domains (Section 5.5.3).

5.5.1 RQ1: Overall effectiveness

Table 5.2 summarizes the results of running DIFFSPEC on the eBPF systems, as discussed in
Section 5.3.1. The first three rows of the tables show baselines; the final row, the results for
DIFFSPEC (the intermediate rows are discussed in Section 5.5.2).
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Table 5.2: Performance of DIFFSPEC compared against baselines (first 3 rows) and various ab-
lations on eBPF runtimes. Legend: instruction: , specification document: , relevant section of
specification document: , constraints: ✓, example tests: , test descriptions: , guidelines:
L, bug classes: , code descriptions: <, code descriptions diff: 6, code diffs: ⋔, W: windows,
L: linux, U: ubpf, †: fuzzer generates all possible instruction variants and millions of unique ad-
dresses/values

Ablation type Context used Validity Test Diversity (Unique #) Differential Tests Found
(%) Instr. Reg. Addr. Values W-L L-U W-U Total

fuzzing  100.0 † † † † 1 1 2 4
3shot-random   L ⋔ 68.3 25 2 0 79 14 13 4 14
target-section   L ⋔ 76.3 52 8 14 91 39 37 3 39

prompt-chain  ✓  L ⋔ 24.8 34 12 2 118 23 21 6 24
prompt-chain-instruct  ✓  L ⋔ 66.3 46 13 5 181 38 34 9 38
bug-centric  ✓  L ⋔ 64.8 64 15 26 500 266 251 53 271
code-description  ✓  L< 63.4 45 13 8 189 29 29 3 29
code-description-diff  ✓  L6 65.3 63 13 25 446 158 137 32 159
code-diff  ✓  L ⋔ 66.5 61 16 23 404 198 139 79 200

DIFFSPEC: bug-
guided-code-diff

 ✓  L ⋔ 69.4 87 16 106 1850 1886 1790 226 1901

The fuzzing baseline is designed to generate syntactically valid tests and therefore has a
100% validity. The two LLM-based baselines also generate tests with high validity (68% and
76%) since they primarily test for simple cases. DIFFSPEC’s integration of bug category and
code differences improves test validity (69%) over other ablations, while identifying many more
behavioral differences.

Additionally, looking at number of differential tests found, we see that despite both fuzzing
and LLM-based baseline approaches having high validity rates, they generate very few differen-
tial tests (4, 27, and 75). In contrast, DIFFSPEC identifies 1901 differential tests, while having
comparable validity. We manually analyze a random sample of 200 differential tests to identify
potential bugs in eBPF. Note that there can be multiple differentiating tests pointing to the same
underlying bug. Using this analysis, we identify 4 concrete bugs for eBPF, and have filed re-
ports with the maintainers of the associated implementations. All of them have been confirmed
as real bugs. For eBPF, we observe the following classes of tests that demonstrate meaningful
behavioral differences among different implementations; Table 5.3. shows examples of tests cor-
responding to these categories, which are:
• Uses uninitialized registers, includes not storing output in r0.
• Undefined behaviour when using stack pointers (%r10).2.
• Tests resulting in potential memory leaks.3.
• Inconsistencies in how jump instructions are handled.4.
• Tests containing call instructions to helper functions (differential behavior is expected).

2https://github.com/Alan-Jowett/bpf conformance/issues/293
3https://github.com/Alan-Jowett/bpf conformance/issues/294
4https://github.com/Alan-Jowett/bpf conformance/issues/292
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Table 5.3: Examples of differentiating tests generated by DIFFSPEC for eBPF runtimes that
identified bugs

Category Generated Test Execution Outcomes

Kernel Memory Leak -- asm
ldxw %r0, [%r1]
exit
-- mem
00 00 00 00
-- result
0x0

Windows: PASS: Test succeeded
uBPF: PASS: Test succeeded
Linux: FAIL: Plugin re-
turned incorrect return value
ffff8b09dc604100 expected 0

Inconsistencies in jump -- asm
mov %r1, 5
jset %r1, %r1,
lbl1
mov %r0, 0
exit
lbl1: mov %r0, 1
exit
-- result
0x1

Windows: FAIL: Plugin re-
turned incorrect return value 0
expected 1
uBPF: FAIL: Plugin re-
turned incorrect return value
7ffff338a820 expected 1
Linux: ERROR: Plugin returned
error code 1

• Tests with infinite loops that causes the ebpf-for-windows verifier to hang. 5

Using DIFFSPEC, we were able to generate differential tests that uncovered four different
bugs in the different implementations of eBPF, despite many of these being extensively
tested by fuzzers and other techniques. These bugs have been confirmed by the maintainers
of the bpf conformance project and are currently in the process of being fixed.

Test complexity. Figure 5.2 shows the distribution of test complexity of the tests generated by
DIFFSPEC for eBPF. We observe similar trends for Wasm. For eBPF, we additionally compare
the complexity of the tests generated by DIFFSPEC with the two baseline approaches. We find
that overall, DIFFSPEC generates short tests that average fewer than 20 lines. Additionally, we
observe that the tests generated by the baseline approaches are much shorter than the ones that
DIFFSPEC generates, which highlights that DIFFSPEC generates more complex tests that can
find differentiating behavior in different implementations. Despite the baselines having a higher
validity rate, these valid tests are not effective at finding interesting differential behavior.

Test diversity. Our test diversity results (Table 5.2) show an interesting story. Both the LLM
baselines have lower unique numbers of program features such as types of instructions and reg-
isters. As we include more context, the resulting test cases cover more of the possible eBPF in-
struction variants and test more modes of operation (such as using different memory addresses),

5https://github.com/vbpf/ebpf-verifier/issues/783
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Figure 5.2: The distribution of generated test complexity (measured by test length) for eBPF
(left) and Wasm (right). The bug-guided-code-diff (DIFFSPEC) generates a more complex distri-
bution of tests.

correlated with an increase in the number of differentiating test cases. Interestingly however, the
fuzzing baseline covers far more possible program variants (by orders of magnitude), yet finds
the fewest number of differentiating tests. These results suggest that syntax-adherence and di-
versity alone is insufficient to find interesting tests, and guidance, for example though the use of
specification, source code, guidelines, etc., is critical to exercise interesting behavior.

Instruction-level performance Figure 5.3 shows the distribution of the test status or execution
outcome of all the generated tests for each instruction using the bug-guided-code-diff approach
on the windows implementation of eBPF. Upon closer analysis, we find that the DIFFSPEC gen-
erates mostly valid tests (that PASS or FAIL) for most arithmetic and logic instructions. The
percentage of valid tests declines for more complex instructions like the jump instructions. On
the other hand, load/store instructions, namely, LD, ST, LDX, STX, along with END and MOVSX,
have the highest invalid test rate (tests either CRASH or throw an ERROR). This gives us in-
sights into the types of instructions that LLMs can and cannot reason about. We observe simi-
lar trends when the generated tests are run on other implementations of eBPF using the different
ablations. Additional plots for different ablations and different implementations can be found in
the supplementary material.

Note on specification and code coverage We manually confirmed the model successfully ex-
tracted (and generated tests for) all instructions in each language. We also manually confirmed
all specifications related to a given instruction were correctly extracted for a small sample. These
judgments informally suggest good specification coverage. Doing this completely is likely infea-
sible since the specifications are long. Given the differential testing goal (to find bugs by com-
paring implementations), we consider observed differential behavior a more instructive metric
than code coverage. We don’t expect much coverage improvement, for such well-tested projects,
with a technique that doesn’t target it.
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Figure 5.3: Visualization of test status distribution per instruction for eBPF using DIFFSPEC on
Windows.

5.5.2 RQ2: Ablations

Table 5.2 also summarizes the results of the ablations for eBPF. As above, targeted prompting
has the highest validity rate, but the generated tests are often simple. Meanwhile, comparing
prompt-chain with prompt-chain-instruct, we find that the human written instructions/ guidelines
helps improve validity by a huge margin of 42%. Bug context alone generates complex tests, and
having code context (in all forms) helps improve the validity of the tests. On the other hand, using
the bug categories and differences in code are extremely useful for generating differentiating
tests, with the number of differentiating tests going up to 271 and 200 respectively.

Overall, most ablations that only look at the natural language specifications document and
existing tests generate fewer than 40 differentiating tests. Interestingly, while the differences
in code descriptions are seemingly useful, with 159 differentiating tests generated, the code
descriptions on their own are not very useful, resulting in only 29 differentiating tests.

The bug and code diff context helps generate more complex tests that identify differential
behavior in different implementations. Guiding the model with bug categories, and differ-
ences in code are especially useful. A two-step test generation process with the human writ-
ten instructions is more effective.

5.5.3 RQ3: Generalizability to Wasm

We demonstrate DIFFSPEC’s ability to generalize beyond eBPF by evaluating its performance on
Wasm validators. We use the best combination of features, substantiated by the ablation study,
for these experiments. With respect to validity, using the Wasm spec’s translation facilities as a
proxy, 85% of the generated tests were valid (could be translated).

Table 5.4 summarizes the remaining results. We find a total of 74 differentiating tests with
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Table 5.4: DIFFSPEC vs. fuzzing baseline performance on Wasm validators, compared to the
Wasm spec reference implementation.

Comparison Differential Tests Found
DIFFSPEC Fuzzing baseline

Wizard Engine vs. Wasm spec 6 74
Wasmtime vs. Wasm spec 256 0
V8 vs. Wasm spec 37 0

Total 299 74

the fuzzing baseline. However, upon manual inspection, we found that the Wizard engine im-
poses a hard limit on memory and table size (capped at 10000000) during validation, whereas
the spec interpreter does not. Therefore, differential behavior is expected, finding no underlying
bug. On the other hand, DIFFSPEC produced a total of 299 differentiating tests across the four
different implementations of Wasm validators. Upon manual analysis, we observe the follow-
ing classes of tests that demonstrate behavioral differences among different implementations for
Wasm validators, and therefore highlight potential bugs:
• Tests with type mismatch (expected vs. actual type).
• Tests with invalid type (extremely large numbers).
• Implementations had different semantics for .wast assertions. The assert malformed

and assert invalid cases are treated differently on the Wasm spec, but the same on all
other implementations (differential behavior is expected).

• Implementations had different semantics for handling unavailable imports, error vs. validate
what is available (differential behavior is expected).

The two bugs we identified, (i) Type Mismatch: Validate that [return ]call indirect
operates on a table with funcref,6, and (ii) Unknown Type: Fix cast of out-of-bounds values,
7, have been reported to project maintainers, and have since been fixed (as of September 2024).
Table 5.5 shows the tests, which have also been added to test suite of both Wizard and wasm-
spec.8

The differential tests generated by DIFFSPEC uncovered 2 different bugs in the Wizard En-
gine validator, despite being extensively tested. These bugs were reported to the maintainers
and have now been fixed. This speaks to DIFFSPEC’s ability to differentially test a variety
of systems.

5.6 Related Work
Testing eBPF: There exists a large body of work on improving eBPF verifiers and JIT compilers
through fuzzing [94, 97, 123, 208], state embeddings [190], or rewriting the verifier with proof-

6https://github.com/titzer/wizard-engine/commit/33b58749895dc5afdd2c032a31d1848475f04ce2
7https://github.com/titzer/wizard-engine/commit/4ad7eca1b98146fa4c8884b32c7e99c41f5d5a81
8https://github.com/WebAssembly/spec/pull/1822
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Table 5.5: Differentiating tests generated by DIFFSPEC for Wasm validators that identified bugs.

Category Generated Test Execution Outcomes

Unknown type (assert invalid (module(type
(func (param i32)))
(table 1 funcref)
(func $conditional-dangling-type
(if (i32.const 1)
(then (call indirect (type
0xffffffff) (i32.const 0))))))
"unknown type")

wasm-spec: PASS
wizard-engine: CRASH

Type mismatch (assert invalid (module (type
(func))
(table 10 externref)
(func $call-indirect
(call indirect
(type 0) (i32.const 0))))
"type mismatch")

wasm-spec: PASS
wizard-engine: FAIL

carrying code [101, 148, 206], including using abstract interpretation to prove various functional
and safety properties [75]. However, as existing eBPF ecosystems continue to grow in complex-
ity and novel runtimes are added [140, 148], concerns regarding correctness remain. Despite ex-
tensive testing and verification efforts, kernel bugs introduced by the verifier and JIT, as well as
exploits leveraging unsafe extensions that pass the verifier but violate other safety properties, are
constantly reported [100].

Kernel fuzzing techniques like LKL-fuzzer [142], BRF [94], or BVF [191], generate eBPF
programs that passthe verifier to find correctness bugs, using structured program generation to
enforce the eBPF ISA grammar. DIFFSPEC instead relies on LLMs to infer the grammar and gen-
erate valid bytecode from the specification document and example tests, overcoming common
limitations of generation-based fuzzing techniques, namely that they do not evolve with the pro-
gram semantics, and they have restricted generation ability. Closer to our work is Kgent [235],
which uses LLM agents to generate valid eBPF programs grounded in formal specifications gen-
erated from natural language documentation. While we also seek to leverage informal natural
language specifications, we focus on generating executable tests with the purpose of identifying
differential behavior.

Testing Wasm: There has been work to further the correctness guaranteed by the Wasm spec
through mechanization via a custom DSL [230]. Naturally, bugs still exist due to gaps in test-
ing, diversity in use cases, variation in implementation, etc., and have been studied [176, 218].
Tools to find such bugs use static and dynamic analysis [41, 82, 115, 117, 175, 199], compiler
fuzzing [11, 79, 233] and binary fuzzing [81, 116, 234]. Some fuzzers have been developed to
target the behavior in a specific domain such as smart contracts [48].

Efforts to use differential testing for Wasm have taken several forms (such as using a stack-
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directed binary generator [160]), none of which (as far as we are aware) use LLMs or leverage
natural language. DITWO [131] leveraged differential testing to uncover missed Wasm opti-
mization opportunities. WADIFF [236], the first differential testing framework for Wasm, gen-
erated test cases for each operator and then fuzzed them. Wasmaker [43] performs similarly, but
can generate more complex binaries.

Testing with LLMs: Neural test generation techniques have been developed to address limita-
tions and challenges of traditional testing techniques, for example, improving coverage of the in-
put space and readability of the generated tests. Several works rely on LLMs to improve unit test
generation techniques, by leveraging build [20] and code coverage information [118, 163], us-
ing multi-step prompting with AST-based context retrieval [180], and training models on aligned
code and tests to improve generated test validity [168].

Fuzzing techniques, like TitanFuzz [60] which uses LLMs to generate and mutate human-like
code to test deep learning library APIs, have also been used to improve the coverage and quality
of fuzzing inputs. Fuzz4All [226] aims to address the limitations of traditional compiler fuzzers
by leveraging LLMs as an input generation and mutation engine. Fuzz4All relies on a set of user
provided documentation, example code, or formal specifications for each component under test.
It then uses autoprompting techniques to summarize these artifacts and iteratively mutate gener-
ated inputs. Our approach leverages similar inputs, however DIFFSPEC does not require users to
manually extract relevant sections of documentation and other artifacts for the component under
test. Instead, DIFFSPEC automatically extracts relevant specifications for each instruction from
the given document. This is to ensure higher level specifications, which can be at scattered across
a document, are not missed, improving the validity of the generated inputs. While TitanFuzz and
Fuzz4All generate input programs for a single system, DIFFSPEC generates test inputs that dif-
ferentiate two given programs, does not require a user defined oracle, and uses prompt chaining
to incorporate evolving differential information, such as difference in code implementations and
historic bugs, to guide test generation. The target-section baseline we use closely resembles the
Fuzz4All approach. Closest to our work is Mokav [66], an LLM-guided differential testing tech-
nique. Mokav uses execution based feedback to prompt models to generate difference exposing
tests between two versions of a python program. Similar to our work, Mokav generates natural
language descriptions of each versions of the program, however, unlike our approach it does so
independently, without prompting the model to explicitly look for differences. While Mokav tar-
gets differential testing, it does not consider other sources of natural language artifacts to guide
test generation. Other approaches, such as AID [130] and a Differential Prompting framework
introduced by Li et al. [122], leverage buggy versions of code to generate fault-localizing tests
that expose differences between a buggy and fixed version. In contrast, DIFFSPEC directly gen-
erates differentiating tests without access to a known buggy version of the code.

5.7 Summary
DIFFSPEC helps improve the overall reliability of software systems by generating tests using
context from various software artifacts like natural language specification documents, the entire
source code, existing tests, and previous bug reports. DIFFSPEC, a novel approach to differen-
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tial testing with LLMs using prompt chaining that is driven by software artifacts. DIFFSPEC

harnesses large language models to learn from vast amounts of natural language specifications,
source code, and historical bug data, enabling it to generate targeted tests that reveal meaningful
differences between the systems under test. We evaluate our approach on multiple implementa-
tions of two extensively tested and widely adopted frameworks: Wasm and eBPF runtimes. Us-
ing DIFFSPEC, we generated 1901 differentiating tests, uncovering at least four distinct and con-
firmed bugs in eBPF, including a kernel memory leak, inconsistent behavior in jump instructions,
undefined behavior when using the stack pointer, and tests with infinite loops that hang the veri-
fier in ebpf-for-windows. We also found 299 differentiating tests in Wasm validators pointing to
two confirmed and fixed bugs. Our findings again reinforce the importance of incorporating do-
main knowledge to generate more meaningful tests that can improve the reliability of even well
tested software systems. In this case the additional context provided by various artifacts that ex-
ist with large software systems, such as specifications, bug reports, etc, can be used to generate
more targeted tests that can check verify correctness and check for conformance, and find bugs
in even extensively tested systems.

Data Availability: All the code for DIFFSPEC along with the prompts to generate the tests, the
scripts to run the tests on the evaluation harness, the generated differential tests, results from
additional experiments and manual analysis are available at: DOIDOI 10.5281/zenodo.1383607010.5281/zenodo.13836070

5.8 Takeaway
With DIFFSPEC, we show that considering software artifacts beyond just the code under test,
such as specification documents, bug reports and so on, can help generate meaningful tests that
both verifies code correctness and checks for conformance. DIFFSPEC is a framework for gener-
ating differential tests with LLMs using prompt chaining. It can generate targeted tests that align
more coherently with the specification and can therefore check the conformance of the code. We
demonstrate that these tests can highlight meaningful behavioral differences between implemen-
tations, that point to bugs in two extensively tested systems, namely, eBPF runtimes and Wasm
validators, therefore improving the overall reliability of these systems.
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Chapter 6

Summary of Contributions

My dissertation makes a number of contributions to improve the reliability and usability of code
generated by LLMs using domain insights from software engineering, including:

• LOWCODER, a low-code tool which supports both visual programming interface and nat-
ural language interface to help build AI pipelines by abstracting away textual code.

• We analyze the trade-offs between the two modalities (visual programming interface and
natural language interface) and provide the first insight into the effects of using language
models for low-code programming through a user study involving 20 participants with
varying levels of AI expertise.

• CAT-LM, a specialized model trained to generate tests from code context to verify code
correctness.

• The largest corpus of code-test pairs with 1.1M code-test file pairs along with 14.4M Java
and Python files across 196K open-source projects to aid future testing related research.

• A testing framework for evaluating tests generated by CAT-LM and other language models
that uses both lexical and runtime metrics.

• DIFFSPEC, the first differential test generation framework that uses natural language spec-
ifications and code artifacts to generate tests.

• With DIFFSPEC, we extend the existing test suites for both eBPF and Wasm, and contribute
to open source.

• The tests generated by DIFFSPEC identified several bugs in the implementations of both
eBPF and Wasm runtimes, which have been reported to the maintainers of the projects.
The Wasm bugs have been fixed since we reported them.
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Chapter 7

Discussion

The advancements in LLMs are rapidly transforming the way developers build software, with
significant portions of code now being written by AI in big tech companies like Google.1 How-
ever, as demonstrated throughout this dissertation, solely scaling up model size and training data
is insufficient and presents limitations in usability and reliability that can be addressed by incor-
porating domain insights from software engineering.

Scale vs. Domain Insights. While the industry trend has largely focused on building increas-
ingly larger models trained on large volumes of data, this dissertation has demonstrated that in-
corporating software engineering domain insights can yield significant improvements in model
performance and reliability despite being smaller in size. Each chapter in this dissertation —
LOWCODER, CAT-LM, and DIFFSPEC — highlights the benefits of incorporating domain in-
sights from software engineering to improve the model performance by targeting fundamental
gaps in existing models. By addressing these challenges that exist with using LLMs for code
generation, we developed tools that are more reliable and useful for developers. The success
of these specialized approaches suggests that the future of AI-assisted programming may not
solely lie in developing ever-larger general-purpose models, but rather in creating an ecosystem
of smaller specialized models that perform specific programming related tasks by leveraging do-
main knowledge. This is especially important given that most organizations cannot afford the
immense resources required to train cutting-edge general-purpose models like GPT-4, and many
commercial models remain closed-source with limited (free) access to the community which can
be unreliable.

Shifting developer focus from writing code to verifying code correctness. As LLMs increas-
ingly automate code generation tasks, the role of software developers is evolving from primar-
ily writing code from scratch to reviewing the correctness of AI generated code. This transition
highlights the importance of tools like CAT-LM and DIFFSPEC, that can be used for test genera-
tion to support verification of both developer written and AI generated code. By generating tests
that align more coherently with the underlying code implementation, and additionally leverag-
ing other software artifacts such as natural language specifications, or bug reports, we can gen-

1https://fortune.com/2024/10/30/googles-code-ai-sundar-pichai/
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erate meaningful tests that can be used to check code correctness as well as conformance. With
DIFFSPEC, we further demonstrate how execution outcomes can be leveraged to improve the re-
liability of existing software systems. By executing the tests across different implementations
that should all conform to the same specification document, DIFFSPEC is able to highlight be-
havioral differences that points to bugs. This shift towards a verification-centric software devel-
opment suggests that future programming education and tools should place greater emphasis the
skills required to assess the correctness of code, rather than solely focusing on writing code.

Democratizing access to code generation capabilities. LOWCODER addresses the accessibil-
ity gap in AI-assisted programming by providing an interface that abstracts away syntactic com-
plexity that exists with traditional code. This enables non-expert programmers to benefit from
LLMs in a visual programming space without extensive coding knowledge, therefore democra-
tizing access to code generation capabilities. Our user studies showed that LOWCODER is espe-
cially useful for citizen developers who have an idea of what they would like to do but do not
fully know how to accomplish that, perhaps due to a lack of formal programming training. As AI
tools become increasingly integrated into software development workflows, making them acces-
sible to programmers across all skill levels is essential to avoid creating a technical divide that
might otherwise advantage only those with specialized AI expertise.

Assisting in requirements engineering. The performance of LLMs on various tasks critically
depends on the prompt used to query the model, making it extremely important to ensure that the
requirements are not under-specified or conflicting [126]. LOWCODER highlights a persistent
challenge: the ability to clearly specify what needs to be done. While LLMs excel at generating
code, they cannot replace the domain knowledge that is required to define goals and evaluation
criteria for a given task. As evidenced in our user study, participants — particularly novices —
struggled not with implementation details but with conceptualizing what they wanted to achieve
in the first place, encountering what Ko et al. [110] refer to as “design barriers”. Despite the ex-
istence of powerful LLMs, it is critical for developers to learn the ability to specify requirements
by articulating clear objectives to effectively direct these models. Therefore, future work should
focus on guiding users to discover and articulate the “what” through contextual suggestions, and
solution templates to help build fundamental domain knowledge alongside technical skills re-
quired to implement these solutions.

High-quality datasets for advancing future research. A significant contribution of this dis-
sertation is the creation of high quality specialized datasets that enable further research in LLM-
based code generation. As the field increasingly adopts post-training techniques like finetuning,
reinforcement learning from human feedback, direct preference optimization and integration of
external tools, high-quality domain-specific datasets become essential resources. The dataset de-
veloped for training CAT-LM is a significant resource for testing-related research, containing
the largest corpus of code-test pairs to date. It comprises of 1.1M code and test file pairs, supple-
mented by 14.4 million Java and Python files gathered from 196,000 open-source projects.

This dissertation has demonstrated that by targeting fundamental gaps in existing LLM-based
code generation models through software engineering domain insights, we can create more re-
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liable and useful tools for developers. As AI continues to transform software development, this
work suggests that the most effective approaches will be those that combine the generative power
of large models with specialized knowledge and capabilities tailored to the unique challenges of
software engineering. By continuing to explore exploit insights from software engineering, and
incorporating them into the training and evaluation of LLMs, we can build AI programming tools
that truly enhance developer productivity while maintaining code quality and reliability.
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Chapter 8

Future Work

Building on the research done in previous chapters, we identify two promising directions for
future work that extends our contributions to AI-assisted programming.

First, we envision an LLM-powered conversational agent specifically designed to enhance
code review processes. With DIFFSPEC (Chapter 5), we showed that extracting relevant context
from various software artifacts can be extremely useful for generating targeted tests can highlight
bugs in real world systems. LOWCODER (Chapter 3) demonstrated the effectiveness of using
LLMs to improve code search in a low-code setting. Both these insights showcase significant
improvements in performance for the task at hand by incorporating the right context and tools.

The software engineering (SE) research community has developed numerous tools to search
and extract actionable insights from software artifacts, ranging from static analysis tools to test-
ing frameworks and continuous integration pipelines (hereafter just “search tools”). Despite their
potential, many of these search tools remain underutilized during code review, a critical process
for ensuring software quality. Key challenges include the overwhelming volume of information
generated by automated tools, high false-positive rates, and the need for manual configuration or
interpretation, which disrupts the flow of review. These barriers, coupled with tight review time-
lines, often result in code review practices focusing on manual examination and collaborative
discussion, rather than leveraging comprehensive tool-based analyses. The emergence of LLMs,
is both accelerating the pace of code production and increasing the importance of robust review
processes to assess AI-generated and human-written changes. In Section 8.1, we propose a vi-
sion for an LLM-powered conversational agent designed to assist code reviewers by bridging the
gap between human reviewers and search tools. This agent would summarize relevant insights,
tailor them to the specific code change under review, and facilitate context-aware interactions. By
enhancing the human-in-the-loop nature of code review, such a tool has the potential to amplify
reviewer effectiveness, streamline the review process, and ultimately improve software quality.

Second, we aim to address code-test coevolution. With CAT-LM (discussed in Chapter 4)
we demonstrated that LLMs can be effective at generating syntactically valid tests with high
coverage that are comparable to human-written tests for a given code file. We extend this with
DIFFSPEC (in Chapter 5) and show that we can use other software artifacts such as specifica-
tions and bug reports, to generate tests that highlight differential behavior and point to bugs even
in extensively tested systems. In both cases, we only look at the given state of the code file or the
software system, however, software development is dynamic. Changes to code often necessitate
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modifications to tests to maintain relevance and effectiveness, and conversely, updates to tests
may require adjustments to code for consistency and functionality. Our goal is to develop models
that understand this bidirectional relationship, ensuring code and tests evolve harmoniously to
support reliable and maintainable software. We elaborate on the research questions and method-
ological details of this approach in Section 8.2.

8.1 Bridging Code Search and Code Review with LLMs
From previous chapters, we derive several key insights. LOWCODER (Chapter 3) established
the efficacy of leveraging LLMs to enhance code search capabilities in low-code environments.
CAT-LM (Chapter 4) demonstrated the effectiveness of using code context to generate tests that
are more aligned with the code. With DIFFSPEC (Chapter 5), we demonstrated that extracting
relevant context from various software artifacts can be extremely valuable for generating tar-
geted tests that effectively highlight bugs in real-world systems. Collectively, these findings un-
derscore a significant improvement in task performance achieved through the strategic utilization
of appropriate context and tools.

Over the past several decades, the software engineering (SE) research community has made
significant strides in developing tools and techniques to extract useful information from software
artifacts (e.g., [84]). These tools span a wide range of categories, from static analysis tools
that detect potential bugs, vulnerabilities, or code smells, to testing frameworks and continuous
integration (CI) infrastructure that monitor the behavior of software during development [22,
108, 181]. Together, these tools can be thought of as a broad class of “search” tools, designed to
mine and interpret various forms of information hidden within software systems, in source code,
the history of changes to the repository, documentation, etc.

Unfortunately, many of these tools go underutilized [103], especially during code review [44],
one commonly-used checkpoint for ensuring that changes made to software systems do not de-
grade its quality [24, 138]. Two main obstacles hinder the effective use of search tools during
code review. First, in contexts with a high degree of automation, many such tools are already
invoked as part of CI pipelines [108, 181, 222]. The sheer volume of information generated by
them, only a small fraction of which may be relevant to the particular code change under review,
can be overwhelming for reviewers [225]. Moreover, many of these tools suffer from high false
positive rates, causing alert fatigue [187, 223]. Second, if one needs to invoke tools on demand,
the diversity of available tools places a heavy burden on the reviewer, who both has to know that
they should invoke the search tool, along with the knowledge of how to use the search tool to
use it to gather information pertinent to their current review task. Many search tools are not de-
signed with the specific needs of code reviewers in mind, requiring manual configuration or in-
terpretation that can disrupt the flow of the review. These two challenges combine to impede the
velocity of code reviews, which are often constrained by tight timelines [29]. This has led mod-
ern code review practice to primarily focus on careful manual examination of compact diff-style
changes and enabling collaborative discussion, instead of incorporating deeper consideration of
more comprehensive tool-based analyses.

The emergence of AI-supported programming tools, such as Microsoft’s Copilot, is poised
to further increase the importance of code review in the software development process. This
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is due to both the increased cadence with which code can be produced using AI [8], and the
importance of having a quality gate to assess the correctness of both AI-generated and human-
written changes.

Change Set Customized
Review

Search-Surfaced Data Contextualized Actions

Interactive 
Assistant

Code base
Historical information
Existing tests
Documentation
Static analysis
Vulnerability analysis
Other artifacts
Patch reviewer    
background

Describe PR
Detect inconsistencies 
Summarize logs
Retrieve relevant information
Find defects
Suggest tests
Suggest code improvements
Prioritize changes
Mediate 
Customize all of the above

Figure 8.1: An LLM-based interactive assistant could sift through the large volume of informa-
tion produced by code search tools, and create a customized code review experience.

However, while these AI-based approaches, often using large language models (LLMs), are
inducing new pressure on the code review process, they can also improve how engineers perform
code reviews. Our vision is that instead of expecting reviewers to manually sift through logs,
warnings, and tool output, an LLM-powered conversational agent acts as a bridge between code
reviewers and the plethora of available search tools, summarizing relevant insights, presenting
them in a way that is tailored to the specific context of the code change under review, and al-
lowing back-and-forth discussion (Figure 8.1). Central to this vision is the recognition that code
review is fundamentally a human-in-the-loop process – our goal is not to replace human review-
ers but to amplify their effectiveness through improved tooling. This LLM-powered assistance
should enable reviewers to more completely, effectively, and quickly assess a given change. Con-
currently, these advances will also enable developers to improve their changes before they are
submitted for review, enabling the code review process to be more efficient and ultimately im-
proving software quality.

Commercial LLM-based code review systems are starting to emerge.1 We next outline the
main opportunities and challenges to building even more capable systems bridging code search
and code review with LLMs. Our work fits in the broader context of conversational assistants for

1https://github.blog/changelog/2025-04-04-copilot-code-review-now-generally-available/
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software engineering [147, 177].

8.1.1 Opportunity for AI-Enhanced Code Review

The current patch-centric approach to code review constrains reviewers to a narrow, change-
focused view that often lacks broader context and project-wide implications of a change. Patches
further focus reviewer effort on the exact change itself, without the additional tool-managed
metadata and analyses commonly present during modern software development (e.g., code cov-
erage information, static analysis feedback, security analyses). This format is not particularly
amenable to rich human interaction or analyses that extend beyond the immediate contents of
the patch itself. Reviewers are frequently left to manually piece together the wider impact of
changes, cross-reference related parts of the code base, and consider other broad cross-cutting
questions such as security and privacy. Each of these are time-consuming tasks that increase cog-
nitive load and reduce reviewer efficiency.

However, we argue that code review offers one of the most interesting touch points where
AI-based tools and humans could collaborate on cognitively demanding, highly technical soft-
ware engineering tasks. Such collaboration can be both natural and potentially highly effective.
Natural in that code review is already an interactive process, in which participants (historically,
humans) seek consensus on the quality of a patch and the fate of a merge request through natu-
ral language dialogue. An LLM-based conversational agent would fit naturally in this process,
providing a natural analysis interface through which developers can ask questions about the code
change, and interact with analysis tools using their own domain understanding. One major down-
side of many analysis tools is that developers must know that a tool exists, how to get the data
from it, and when to apply the tool. Being able to use natural language can free developers to fo-
cus on their intention and allow intelligent agents to manage the complexity of marshaling these
tools for them [183].

And potentially highly effective in that LLMs have shown remarkable abilities at summariz-
ing and synthesizing structured text, in addition to customizing responses [232]. By summa-
rizing and synthesizing data from various analysis tools, the AI could intelligently augment the
patch with minimal sets of important information to help the reviewer better understand the im-
pact and context behind a change. In addition, the customization capability could enable the AI
to personalize the information to the human actors involved in a way that makes it more useful.
Taken together, AI augmentation could reduce the limitations of traditional patch-based code re-
view by providing a more holistic, context-rich environment that extends far beyond the con-
straints of traditional patch-based workflows.

8.1.2 Realizing the Vision

There are an abundance of information sources that can help reviewers during the code review
process. Furthermore, there are a number of underlying actions that an LLM-based conversa-
tional agent can perform on these information sources to provide meaningful insights and an-
swer specific questions that a reviewer might have about the code change. Crucially, this is a
reviewer-driven search process that is only enabled by the LLM: all of these data are not rele-
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Table 8.1: A number of ways in which an LLM-based conversational agent could enhance the
code review experience with (information from) search tools. Information sources:  Code
Base,  Historical Information,  Existing Tests,  Documentation, | Static Analysis,  Vul-
nerability Analysis, < Artifacts, � Users. Actions: ⋔ Describe PR, é Detect Inconsistencies,
s Summarize Logs, ü Retrieve Information, L Provide Suggestions.

Goals /
Tasks

Sources of
Informa-

tion

Actions Proposed Ideas

Finding
defects

   | <⋔ é s ü The agent retrieves and learns from previous bug fixes to detect and suggest repairs for
any defects in the code, plus summarizes CI logs and build logs to identify breaking
changes. It also learns from historical changes, to identify files that are often changed
together, and suggests changes to dependencies if they are not updated.

Software
testing

  | ⋔ é s L The agent detects inconsistencies between the code change and the corresponding
tests, generates new tests when needed, and suggests changes to the existing ones. It
also summarizes findings from executing the tests, and answers questions about them.
The reviewer can ask the agent to generate a test that exercises specific lines of code
by highlighting the code. Based on reviewer background, the agent can also answer
questions about the testing framework and provide suggestions on the style/format of
the test suite.

Code im-
provements
- functional

   | s ü L The agent calls static analysis tools to detect null pointer exceptions or changes to data
flow/control flow graphs, and vulnerability detection tools to detect security issues. It
summarizes the findings from these tools. It retrieves information about alternative
APIs and frameworks that can be used by querying web search tools, links to similar
changes in the past, and suggests alternative implementations for the code change.
Based on the reviewer’s background (rather the lack thereof), the agent takes a more
active role in identifying and alerting the reviewer of various issues that may be
present in the code.

Code im-
provements
- non-
functional

  | < ⋔ ü L The agent reads the code and documentation to learn the general style of the project,
and applies these rules to the code change to ensure consistency. It also suggests
comments and documentation updates given a patch. Moreover, the agent invokes
program analysis tools to detect dead code, and removes it.

Updating
other
software
artifacts

  < ⋔ é ü L The agent detects inconsistencies between the code and other artifacts using historical
repository information. Similarly, it retrieves relevant company policies to ensure none
of them are being violated by the patch. The agent then alerts the reviewer if any
inconsistencies are detected and suggests changes to address them.

Knowledge
transfer

   < �⋔ s ü The agent retrieves and summarizes relevant API documentations for APIs present in
the patch, personalized to the reviewer’s background and expertise. It also has
information about previous related change sets and other relevant parts of the code base,
such that the reviewer has more context when reviewing the code change. It can help
junior engineers to better understand the code base when reviewing the code change.

Prioritization   � L The agent identifies groups of similar changes (e.g., refactorings) and related changes
(e.g., function definition and call sites), and presents the groups to the reviewer in a
personalized way, ordered by familiarity with the change.

Mediation  < � L The agent monitors the communication between the reviewer and the author, and
suggests edits to language that can be perceived as toxic, pushback, etc.
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vant for every patch (nor for every reviewer); providing a lightweight and intuitive mechanism
for surfacing this information is the core idea underlying this work.

In the following, we expand on the sources of information and types of actions. In addition,
we list a number of concrete ideas on how the LLM assistant could enhance the code review ex-
perience with information from search tools in Table 8.1. The list is not intended to be exhaus-
tive, although we cover the main goals of the code review process reported in the literature [24],
from finding defects to knowledge transfer; we also include two tasks part of the code review
process, where we expect AI augmentation to be fruitful — deciding how to present the change
set to the reviewer (prioritization) [166] and managing possible interpersonal conflicts between
the submitter and reviewers (mediation) [144]. Rather, we seek to illustrate the potential for sub-
stantial advances in this area, and inspire future research. Please see the supplementary material
DOIDOI 10.5281/zenodo.1526573610.5281/zenodo.15265736 for concrete examples of prompts and responses that demonstrate person-
alized support during the code review process based on reviewer background.

Sources of Information

 Code Base. Often a code change alone may not provide enough context for an effective
review, and having access to other files in the code base can be helpful, as the patch exists within
this larger context. This extra context must be added judiciously, though, to prevent the context
from overwhelming the change itself.
 Historical Information. Code bases are constantly evolving, and all of these changes are
recorded. These recordings, through version control histories, issue trackers, continuous inte-
gration logs, etc. provide access to historical information which can be used to suggest changes
or provide hints based on common observed patterns. For example, these patterns could include
previous code changes made by the same author, previous comments from the same reviewer
(providing hints on the reviewer’s commonly-held concerns), previous code changes similar to
the one being reviewed (providing hints on concerns other reviewers have had for the changed
code), and common code files that are often edited together (providing hints on whether a change
is incomplete).
 Existing Tests. The existing test suite can help ensure that changes made to the code do not
break existing functionality. Test execution traces can also help guide the patch reviewer and
patch writer towards new test cases that need to be added, or existing test cases that need to be
updated. Exposing the dynamic outcome of these tests, specifically showing the tests relevant
to a change and whether they continue to pass after the change, can further help the reviewer
understand the risk associated with a code change.
 Documentation. Documentation related to APIs being used in the code change can be useful
if the reviewer is unfamiliar with them. Inspecting API documentation can also help validate
whether they are being used appropriately.
| Static Analysis. Warnings from static analysis tools can provide useful information and help
identify issues with the code, such as null pointer exceptions, unexpected changes to data and
control flow, and changes in project-relevant code quality metrics.
 Vulnerability Analysis. Access to vulnerability datasets can be a useful for evaluating a change
for commonalities with known vulnerabilities. Changes can also be evaluated against known
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vulnerability solutions to further reinforce reviewer feedback. Both aspects can provide insight
for the reviewer into the security risks associated with a change.

< Other Artifacts. Software often has other supporting artifacts beyond code, including natural
language specification documents, design documents, diagrams for various use cases, require-
ments documents, and policy documents related to privacy, the company goals, and other con-
cerns. Source code often is intended to conform to these requirements, but the informal / un-
structured nature of many of these kinds of documentation makes ensuring both adherence and
consistency challenging. Having a system evaluate areas of support and contravention between
a change and these documentation can help ensure the overall coherence of the change.

� Patch Reviewer & Patch Writer. The patch reviewer’s and patch writer’s experience and
preferences can be learned from the past interactions. This information can be useful for fetching
relevant information that suits the needs of both stakeholders before and during code review. For
example, a reviewer looking at code changes on a file that they have never interacted with requires
more support than a reviewer who has authored or contributed to the code file. Correspondingly,
recommendations can also be made to the patch writer in advance of the reviewer actually looking
at the change, giving them a chance to preemptively improve their submission.

Actions

⋔ Describe PR. A pull request (PR) often contains many different snippets of information, in-
cluding code changes, the corresponding changes to the tests and documentation, commit mes-
sages, etc. Having the agent consume all this information to briefly summarize the changes in
the PR provides a starting point for the reviewer.

é Detect Inconsistencies. Code is rarely treated as an independent entity and often has depen-
dencies to other code files, test files, documentation, specifications, etc. These dependencies can
be learned from historical information. The agent should then be able to consume this informa-
tion to determine if there are inconsistencies between a given code change and a commit mes-
sage, a code change and the code comments, other documentation, and other artifacts.

s Summarize Logs. Many tools can be used to perform various checks for code, such as static
analysis or program analysis tools, logs from CI, security checks, performance measures, test
metrics, and so on. The agent should consume these and extract the most relevant parts. For
example, identifying new tests that do not add any new coverage, or alerting the reviewer of a
security threat.

ü Retrieve Relevant Information. The supporting artifacts for a code change can be lengthy
and difficult to consume in their raw format. For example, if the reviewer is not familiar with
the library being used, going through the entire documentation can be tedious. However, having
the agent summarize the most relevant parts of the documentation based on the reviewer’s back-
ground can save time and effort. Additionally, having the agent summarizing other artifacts such
as the design or requirements documents, company policies or relevant code and tests can help
provide relevant context without overwhelming the reviewer.

L Provide Suggestions. Having a checklist of things to look for during code review is beneficial;
one might even automatically infer this checklist based on historical information (for example,
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style guidelines, or updating test suite), and other guidelines specific to the project. The agent
can then provide suggestions based on the derived checklist to both the patch writer (to ensure
that the PR is complete) and the reviewer (to ensure they do not miss anything).

8.1.3 The Road Ahead
While Section 8.1.1 may make it seem like we are proposing an overwhelmingly disparate set
of information sources to be brought to bear on this problem, there are important commonalities
across all of these information sources that enables progress to be made in a stepwise fashion.

Several primary challenges face this work, although each can be tackled independently.

Natural Interaction. The disparate set of search tools we propose to augment code review
with each have their own unique interaction mechanisms. One research avenue for this work is to
investigate whether a consistent and natural interaction layer can be applied on top of these search
tools to reduce developer friction for invoking and interacting with these tools. Fortunately, the
output from most search tools is itself text, upon which LLMs have demonstrated strengths. This
is augmented by the context of the change, the patch, also being fully text-based, further easing
input to the LLM.

Summarization and Distillation. Each of the search tools will return results in their own
formats that must be filtered and tailored to both the specific patch under review, as well as the
individual needs of the patch reviewer. Once again, the importance of this task further leans on
the strength of LLMs to perform these kinds of tasks on structured text. The key challenge in this
space is not in the summarization itself, but in finding useful facts that can help augment code
review without overwhelming the reviewer with facts that do not improve the quality or speed of
their review.

Trust & Explainability. A fundamental challenge facing this approach is one of trust. This
can be thought most simply in terms of precision and recall. In terms of precision, the wealth of
information search tools can surface about a change can easily overwhelm the developer. This
suggests that considerable effort will be made to elide data that are not useful (e.g., the results
should have high precision with few false positives). But this puts the approach in tension with
recall. If augmenting code reviews with external information proves useful, developers will want
to be able to trust that the tool will not hide information that could have improved their code
review (e.g., the results should have high recall with few false negatives). Managing the trust of
the patch-writer and patch-reviewer is likely to be more challenging than the technical aspects of
interacting with and summarizing the results from the search tools

8.1.4 Summary
Code review plays a longstanding multi-faceted role in modern software development. By its
very nature, code review is a time-intensive human process that takes place in a complicated
technical domain. In this work we propose deploying LLMs to augment the code review process
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without specific developer-provided training and tuning in a way that can surface this additional
information, enabling reviewer time to be more effectively spent. Naturally, many challenges re-
main for this vision: can existing public models effectively fulfill this role, or do teams need to
train their own? Can locally-hosted models be directly augmented with the necessary context,
or will software development stacks gain yet another expensive service they need to pay for?
How will the continually-evolving software development ecosystem hinder the kinds of feed-
back LLMs will propose within the code review? All of these important questions remain to be
answered, but the promise itself is clear: enabling better code review decisions by extending dis-
cussions far beyond the patch itself.
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8.2 Code-Test Coevolution

In Chapter 4, we looked at the challenge of verification of generated code and how we overcome
it with CAT-LM. Our results showed that the model effectively leverages the code file context
to generate more syntactically valid tests that achieve higher coverage. The model provides
a strong prior for generating plausible tests: combined with basic filters for compilability and
coverage, CAT-LM frequently generated tests with coverage close to those written by human
developers. As a natural extension, we aim to model co-adaptations. Changes made to the
code may necessitate modifications to the tests to ensure they remain relevant and effective, and
conversely, updates to the tests may prompt adjustments to the code to maintain consistency
and functionality. The goal is to ensure that code and tests evolve harmoniously, supporting the
development of reliable and maintainable software. This is the problem of code-test coevolution.
We aim to tackle the former problem, specifically, cases where code functionality is changed in
a way that should lead to updates to the tests as well, but the latter are often forgotten [231]. We
aim to answer the following research questions related to the problem of code-test coevolution:

RQ1 Can we successfully model co-adaptations and predict whether the given code and test
methods are in the same state (consistent) or not?

RQ2 Can we automatically generate the changes to be made to the test method, given the
changes to the code method?

The code-test method pairs are identified by checking if the test method is testing the be-
havior of the given code method. We verify this by examining if the test method includes a
call to the corresponding code method. Figure 8.2 shows an example of a test method named
test norm squared norm that tests the behaviour of squared norm.

As software evolves, it is ideal for any modifications to the behavior of the code method to
prompt corresponding changes in the test method. This ensures ‘alignment’ between both the
code and test method, keeping them consistent and in sync with each other. An example of an
aligned code-test method pair can be found in Figure 8.3. Here, the code method was updated
with a type check and a warning. The corresponding test method is then updated with an assert
to test the new warning.

Figure 8.2: An example of a code-test method pair. Code on the left and the corresponding test
on the right.

To better understand the problem of code-test co-evolution, we first aim to build a dataset of
aligned code-test method pairs having both the before and after state by mining changes made to
code and test methods from GitHub. We then use this dataset to build a model to verify if a given
pair of code-test methods are aligned and if not, we generate the changes to be made to the test
method, given the change made to a code method.
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Figure 8.3: An example of code-test aligned pairs, before (left) and after (right) a change was
made.

Data Collection

We use GitHub Archive 2 to get the top 1000 python projects and clone these while keeping the
revision history. This results in 1.6M commits with modifications made to 6.8M files across all
projects. Since we are interested in studying coevolution of code and test methods, we filter out
the commits that only make changes to code or test files, resulting in 230K commits with a total
of 2.8M files where changes were made to both code and test files. Finally, we use fuzzy string
matching to map the test files to the corresponding code files, resulting in a total of 241,098 code-
test file pairs.

Next, for each file pair, we extract all the aligned code and test method pairs using static
analysis. This is done by building ASTs using the python-graphs3 framework to find which
method calls were made, and dynamic dispatch to identify the class a method call belongs to.
This results in a total 53,095 code-test method pairs. Not only does the static analysis capture
regular method calls (20,035 samples), it also handles other cases such as: implicit calls to init
during object creation, class method invocation and one to many test-code mappings. We can
use the same method to further scale up this dataset to several thousand projects across GitHub
to expand this dataset if required (based on modeling results).

Modeling Coevolution

Using the 53K code-test method pairs that we collected, we plan to finetune CAT-LM to model
co-evolutions, thereby teaching the model how the code and corresponding test changes from
the before to after state as the code/software evolves. Given that CAT-LM has a strong prior
for generating plausible tests, our hope is that it’s ability can be extended to the problem of co-
evolution and effectively model changes made to the code method and adapt them to generate
the necessary changes to the test method. We introduce a new signal here to finetune the model,
where we use several examples of the before code and test method followed by the after state.

2https://www.gharchive.org/
3https://github.com/google-research/python-graphs
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Here is an example of the training signal:
<before>
def squared_norm():

...
<codetestpair>
def test_norm_squared_norm():

...
<after>
def squared_norm():

...
<codetestpair>
def test_norm_squared_norm():

...
At inference time, we can provide the before context along with the after code method to gen-
erate the updated test method. We plan to use LoRA tuning or some other form of parameter
efficient training to finetune CAT-LM to optimize training for the available compute resources.
A potential challenge here are the cases when changes made to the code does not lead to any
changes to the test, and therefore teaching the model to predict that the test doesn’t change. We
aim to address this by splitting the inference as a two step process, first by predicting if the the
given code and test methods are in the same state (consistent) or not? And only generating the
updated test if they are not consistent. Additionally, when training the model to generate the up-
dated tests, we could include examples of cases where changes made to code does not lead to
any changes in the test, for example when the code is refactored, or if there was a bug fix. This
would require mining files from commits where changes are only made to code files and not the
test. Lastly, we plan to benchmark various models on this task and release both the dataset as
well as the trained model to facilitate further research in this space.
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Chapter 9

Conclusion

Software development has undergone a significant transformation with the emergence of Large
Language Models (LLMs). These powerful AI systems have revolutionized the coding process,
becoming essential components of modern programming tools such as ChatGPT and GitHub
Copilot. By enabling capabilities like code generation from natural language instructions, auto-
mated bug detection and resolution, and documentation generation, LLMs have substantially en-
hanced developer productivity and efficiency.

Though these models are pretrained on large volumes of natural language and code data, their
fundamental training approach — using cross-entropy and preference losses that optimize for
matching ground truth without explicit coefficients for correctness — creates inherent constraints
on their effectiveness. While this enables LLMs to achieve remarkable proficiency in learning
code syntax, they fall short in capturing crucial semantic signals. For a long time, the main
focus of efforts to improve these models has been to train larger models and collect more human
preference data. However, user studies have uncovered significant usability challenges with these
larger models, including difficulty in understanding the generated code, the presence of subtle
bugs that are hard to find, and a lack of verification of the generated code. These findings suggest
that simply scaling model size and expanding training data may not address the fundamental
limitations with training LLMs for code generation.

My research proposed solutions to these challenges by developing techniques that integrates
domain insights from software engineering into AI-based code generation with the goal of en-
hancing reliability and utility for developers. This is done by empowering the model to take on
a more active role in building valid and usable code, instilling greater trust among users in the
capabilities of the model. I focused on three main challenges identified by prior work and pro-
posed solutions using software-specific insights. (1) The generated code can be difficult to un-
derstand and manipulate, especially for non-expert programmers. To address this, I proposed
LOWCODER, a tool that abstracts away the syntactic complexity associated with traditional code
and provides a more user-friendly interface using drag-and-drop functionality. As a result, LOW-
CODER provides a trusted environment where users can leverage the capabilities of AI without
the need for extensive coding knowledge. (2) Verifying the correctness of the generated code is
hard. While LLMs excel at generating code, they are lacking when it comes to generating tests.
This is largely because current models are trained on individual files and therefore can not con-
sider the code under test context. To overcome this, I proposed CAT-LM, a LLM trained to ex-

95



plicitly consider the mapping between code and test files. CAT-LM can therefore help users with
verifying code that they or other models generate, by generating tests that align more coherently
with the underlying code. (3) The generated code often has subtle bugs that are hard to find. To
address this, I proposed DIFFSPEC, a framework for generating differential tests with LLMs us-
ing prompt chaining to verify code correctness. DIFFSPEC makes use of various software arti-
facts like natural language specification documents, source code, existing tests, and previous bug
reports to generate tests to not only verify code correctness, but also checks for conformance
against the specification. By highlighting meaningful behavioral differences between implemen-
tations, DIFFSPEC enhances the overall reliability of even extensively tested software systems.

Overall, my dissertation demonstrated the significance of integrating software-specific in-
sights when training models to make code generation more reliable and useful for developers.
This was accomplished by empowering models to take on a more active role in building valid and
usable code, instilling greater trust among users in the capabilities of these models. Additionally,
my work contributes several artifacts which include datasets for various tasks, models that are
trained using software-specific insights, and evaluation frameworks. Note that these models are
all quite small relative to cutting-edge general-purpose models like GPT-4. While large, general
models can also be very useful for these tasks, they have their own limitations: few companies
can afford the immense resources required to train such large models, and most of these models
are closed-source and provide limited (free) access to the community, which can be unreliable.
In contrast, my work produces open-source models, which are often smaller, that are specialized
to perform various programming-related tasks, resulting in tools that make code generation more
reliable and useful for developers.
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