
Architecture-Based Graceful Degradation for
Cybersecurity
Ryan R. Wagner

CMU-S3D-25-104
May 2025

Software and Societal Systems Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Prof. David Garlan, Co-Chair

Prof. Matt Fredrikson, Co-Chair
Prof. Jonathan Aldrich

LTG Peter Kind, USA, Ret.

Submitted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Software Engineering

Copyright ©2025 Ryan Wagner

This work was sponsored by the National Security Agency (NSA) under awards no. H9823014C0140 and
H9823018D0008, the Defense Advanced Research Projects Agency (DARPA) under awards no. FA87501520277
and FA87501620042, the National Science Foundation (NSF) under awards no. CNS1704542 and CNS1943016, the
Office of Naval Research (ONR) under award no. N000141712899, Sandia National Laboratories under award no.
PO1988472, Intelligent Automation under award no. 24331, the Portuguese Science and Technology Foundation
under award no. 1031319, and Cylab under awards no. 5003308 and 5007072. The views and conclusions contained
herein are those of the author and should not be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the NSA, DARPA, NSF, ONR, Sandia National Laboratories, Intelligent
Automation, the Portugues Science and Technology Foundation, Cylab, the U.S. government or any other entity.

Keywords: Software architecture, cybersecurity, security, resilience, graceful degradation

2

Abstract

Successful attacks are nearly inevitable as sophisticated threat actors are committed to inflict-
ing damage, leaving digital and physical destruction in their wakes. As defenders recognize
the inevitability of successful attacks, they must change their defense paradigms from only
preventing attacks to also weathering the attacks that penetrate first-line defenses. Instead, the
systems’ abilities to provide functionality should be minimally disrupted while simultaneously
containing an attacker. The engineering challenge is to build and operate systems that are
resilient to attack, able to adapt to trade off some functionality to preserve trust in more-critical
functionality. We refer to this concept as graceful degradation. Defenders would be in a far
better position to address the increasingly dire situation confronting them if they had a method
and tool to support graceful degradation. However, this requires the ability to reason despite
uncertainties at architecture and design time and at run time. Automation can be supported by
formal modeling of systems, but it must not be labor-intensive. We propose and develop an
approach that directly addresses these challenges. We can architect and operate systems that
are better able to weather attacks by automating the evaluation of systems’ security properties
to enable effective automated graceful degradation of systems in the presence of uncertainty
through an approach of formally modeling systems and system behavior at an architectural
level of abstraction to explore hypothetical attacks and the systems’ abilities to respond. We
describe our approach and provide tooling to demonstrate our concept.

3

4

Dedication

To my dog Dora, who passed away during the pandemic. She was most loving, loyal companion
and study-buddy I could have ever hoped for. And to my family: I know I have some visits that
I owe you all!

5

6

Acknowledgments

I first want to thank my advisors David and Matt for their time, patience, and expertise. They
really know their stuff and guided me through this experience in a manner for which I will
always be grateful. Thank you, Jonathan, for all your feedback. General Kind, your real-world
experience and insight are invaluable guides to making sure I am trying to solve the right
problems. Bradley, Connie, Alisha: I do not know how I could have done this without your
help.

7

8

Contents

1 Introduction 14
1.1 Motivating Example . 17

1.2 Approach Overview . 19

1.3 Thesis Statement . 20

1.4 Elaboration of Thesis Statement . 21

1.5 Contributions . 23

2 Background and Related Work 24
2.1 Motivating Example Discussion . 24

2.2 Requirements . 25

2.3 Prior Work . 26

2.3.1 Resilience . 27

2.3.2 Degradation . 28

2.3.3 Formal Verification . 29

2.4 Gaps and Remaining Problems . 31

2.5 A Path Forward . 32

3 Approach 33
3.1 Approach Goals . 33

3.2 Usage Scenarios . 33

3.2.1 Architecture and Design Time . 34

3.2.2 Run Time . 35

3.3 Key Assertions . 35

3.4 High Level Approach . 38

3.5 Running Example . 40

3.6 Rationale for Architectural Level of Abstraction 41

3.7 Architectural Representations . 42

3.7.1 View Selection Rationale . 43

3.7.2 Functional View . 45

9

CONTENTS

3.7.3 Component-and-Connector (Data Flow) View 46
3.7.4 Deployment View . 47

3.8 Attacker Representation . 49
3.9 Defender Representation . 50
3.10 Uncertainty Representation . 50
3.11 Process Diagram, Information Requirements, and Burden 52
3.12 Tooling . 54

4 Implementation 55
4.1 Programming Languages . 55
4.2 Views and Styles . 56

4.2.1 Deployment View in Datalog . 56
4.2.2 Component-and-Connector View in Datalog 58
4.2.3 Functional View in Datalog . 58

4.3 Attacker and Defender Profiles . 60
4.3.1 Attacker Profile . 60
4.3.2 Defender Profile and COAs . 60

4.4 Model Evaluations . 60
4.4.1 Generation of Architecture Alternatives 61
4.4.2 Attack Scenario Generation . 61
4.4.3 Calculation of Estimated Residual Utility 62

5 Validation 63
5.1 Definition of Validation Criteria . 63

5.1.1 Effectiveness: Evaluation of Residual Risk 65
5.1.2 Scalability: Evaluation of Architecture Alternatives 73
5.1.3 Uncertainty in Tool Inputs: Sensitivity 75
5.1.4 Usability: Labor Requirements . 79
5.1.5 Usability: Explainability . 81
5.1.6 Realism: Attacker Richness . 82
5.1.7 Realism: Defender Richness . 84

5.2 Validation of Non-Enterprise Network Systems 86

6 Discussion and Conclusion 91
6.1 Key Assumptions and Decisions . 91

6.1.1 Temporality . 91
6.1.2 Cyberphysical Destruction . 92
6.1.3 Decoys and Deception . 93
6.1.4 Exfiltration of Data . 93

10

CONTENTS

6.1.5 Attacker Model . 94
6.1.6 Courses of Action . 94
6.1.7 Dataflows . 95
6.1.8 Functionality Instead of Criticality 96
6.1.9 Implementation in Datalog . 96
6.1.10 Availability of Views Documentation 97
6.1.11 Abilities of SMEs . 97
6.1.12 Effectiveness . 98
6.1.13 Validation . 98
6.1.14 Design and Run Time Integration 98

6.2 Future Work . 98
6.2.1 Scaling . 99
6.2.2 Usability . 99
6.2.3 Explainability . 100
6.2.4 Tabula Rasa Architecture Generation 100

6.3 Conclusion . 100

7 References 101

A Acronyms 108

B ICS Exemplar System Description in Datalog 111

C Attack Trace Generation in Datalog 114

D Algorithm for Estimated Residual Utility 115

11

List of Figures

3.1 Deployment View of the running example ICS system. 41
3.2 Functional View example. 46
3.3 Component-and-connector view with data flows of the running example Indus-

trial Control System (ICS) system. 48
3.4 Concept of Operations process diagram with stakeholders, data inputs, and data

outputs. 53

5.1 Allocation View depicting two possible topologies of the same security compo-
nents. The top topology is more secure; the bottom is more available. 67

5.2 Deployment View of networks with different defensive architectures. 70
5.3 Deployment View of a network with primary and backup components. 72
5.4 Architecture size and connectivity impact on evaluation times. 75
5.5 Sensitivity of Evaluation to Attacker Knowledge. 77
5.6 Sensitivity of Utility to Probability of Component Compromise. 78
5.7 Deployment View of initial satellite architecture. 87
5.8 Deployment View of initial satellite architecture with protection near ground

control. 87
5.9 Deployment View of initial satellite architecture with protection near navigation,

propulsion, and power. 87
5.10 Deployment View of initial satellite architecture with protection near Payload2. 88

12

List of Tables

5.1 Correspondence between claims and validation approach. 89
5.2 A secure firewall configuration has higher expected residual utility than the

available configuration. 90
5.3 An available firewall configuration has lower expected residual utility than the

secure configuration. 90
5.4 Time in seconds to evaluate secure firewall configuration. 90
5.5 Time in seconds to evaluate available firewall configuration. 90

13

Chapter 1

Introduction

A digital storm is brewing as important systems become smarter, more interconnected, and
increasingly complicated. Successful attacks are nearly inevitable as sophisticated threat actors
are committed to inflicting damage, leaving digital and physical destruction in their wakes.
As defenders recognize the inevitability of successful attacks, they must change their defense
paradigms from only preventing attacks to also weathering the attacks that penetrate first-line
defenses.

When under attack, it is often suboptimal to shut down an entire system [1]. This type
of complete shutdown is particularly problematic for systems with reliability or availability
requirements, such as satellites, electrical utilities, and military operations, as well as, more
generally, for commercial systems, which must maintain high availability for business reasons.
Instead, the systems’ abilities to provide functionality should be minimally disrupted while
simultaneously containing an attacker. The engineering challenge is to build and operate systems
that are resilient to attack, able to adapt to trade off some functionality to preserve trust in
more-critical functionality. We refer to this concept as graceful degradation.

A variety of causes conspire to make it difficult to create and operate systems that support
graceful degradation for security. To be most effective, graceful degradation capabilities must
be designed into the system rather than bolted on during system operations, and graceful
degradation must continue to be a first class concern through run time operations. Unfortunately,
current design methods and system representations make it difficult to reason methodically
about graceful degradation during design. Existing methods and representations are informal
and manual, and they represent facets of the system that are difficult to integrate coherently.
This problem extends into implementation and operations, when the original design artifacts
remain and new, incompatible representations are added.

Further exacerbating the problem, there are a number of known unknowns that are relevant
to graceful degradation, but difficult to incorporate into existing approaches. For example, at
design time, many implementation details are not known to the defender. Even at run time,

14

the defender cannot possibly know all the latent vulnerabilities in his system. Throughout
the system lifecycle, a sophisticated adversary may have Tactics, Techniques, and Procedures
(TTPs) that are difficult to predict; she may also deliberately make herself difficult to detect by
producing few observable artifacts. When dealing with such uncertainties regarding attackers
and systems, it might seem like a hopeless task to try to estimate risk. Explicitly designing
for graceful degradation for security – and successfully executing it in operations – is an
extraordinarily challenging task, and current methods and tooling fall short in providing support
to architects and administrators that wish to anticipate and respond to attacks.

Defenders would be in a far better position to address the increasingly dire situation
confronting them if they had a method and tool to support graceful degradation that balances
functionality with security risks. Ideally, the method and tool should integrate with current
processes, leverage existing sources of data while not requiring unobtainable information,
and it should not be onerous to use. Further, the method/tool outputs must be trusted by
system architects to guide architecture and design, and the outputs must be trusted by system
administrators to provide accurate attack response guidance at run time when time is precious
and there is little room for error. For the best results, an integrated approach must work
seamlessly from the architecture and design phase of the system lifecycle – producing design
guidance to increase system resilience against security threats – to the operations phase –
producing Courses of Action (COAs) or Automated Courses of Action (ACOAs) in response to
updated information about an attack.

In this thesis, we propose and develop an approach that directly addresses these challenges.
We integrate and extend features of existing approaches with a first class treatment of uncertainty
and a formal rigor that allows designers and operators to reason quantitatively and in an
automated fashion about graceful degradation in response to attacks. As part of this thesis,
we represent and integrate the disparate stakeholder concerns relevant to graceful degradation
for security through formal modeling at an architectural level of abstraction. This approach
captures the concerns relevant to graceful degradation for security at both the early stage design
– when few implementation details are known – and in operations – when high-level models are
needed to reason effectively about system-level responses to an ongoing security attack.

An architectural level of abstraction is defined as the “gross organization and global
control structure; protocols for communication, synchronization, and data access; assignment of
functionality to design elements; physical distribution; composition of design elements; scaling
and performance; and selection among design alternatives” [2]. Crucially, the architectural level
of abstraction is the level at which trade-offs can be evaluated among degraded architectures.
At design time, this level of abstraction is available for reasoning even when implementation
details are yet to be defined; systems can be architected to build in an ability to degrade
gracefully while under attack. At run time, an architectural level of abstraction contains the key
information for making appropriate functional trade-offs to manage risk from ongoing attacks.

15

CHAPTER 1. INTRODUCTION

At both architecture/design time and during run time, our approach evaluates risk by
exploring the space of hypothetical attack traces on architectures to estimate the resilience of
architectural alternatives to various attack scenarios. We focus on the impacts of attack traces
to data flows, and the corresponding impact to higher level functionality and events (to include
kinetic or physical events), which we will explore in depth in Chapter 3.

A key challenge when dealing with uncertainty is retaining the ability to reason precisely.
In our approach we specifically address three forms of uncertainty, mentioned earlier in this
section:

Attacker To address uncertainty in attacks, we use a stochastic approach to represent attackers’
points of presence as the probability a specific component is compromised. We also use
a probability density function to represent the range of anticipated attacker capability
(budget) that acts as a proxy for the attacker’s ability to create novel exploits. This allows
us to quantify our estimations of the attacker’s locations and ability. At design time, this
information would be collected from Subject Matter Experts (SMEs) as part of a threat
assessment. At run time, updated information about the attacker is incorporated into the
model of the attacker to refine the probabilities of her capability and points of presence.

Design Time System Uncertainty To address design time uncertainty in system implemen-
tation, our approach uses an architectural level of abstraction to abstract away imple-
mentation details that have not yet been determined. For example, we do not need to
know that two components are running Microsoft SQL Server 2019 at a particular patch
level. Instead, we simply represent that these are two devices of the same type, so we
know they are susceptible to the same vulnerabilities. A vulnerability can be modeled
based on its impact (e.g., confidentiality, integrity, availability) and cost to exploit. The
cost of exploit is estimated by a subject matter expert based on open source intelligence,
vulnerability history, attack surface, and other factors.

Run time System Uncertainty To address run time uncertainty in system implementation, we
continue to use the same approach to vulnerabilities, using an architectural level of ab-
straction to enable reasoning about the relative hypothetical vulnerability of components
and architectures without requiring knowledge of specific, known vulnerabilities. The
model can be refined via humans in the loop or via automated means as new information
becomes available. For example, if exploit code is published on the internet (so an at-
tacker can download it without the cost associated with developing an exploit), the model
can be updated to reflect that this exploit is available with no cost.

With this approach, we are able to formally represent the uncertainty relevant to graceful
degradation for security. Further, we now have a way to represent our system with a consistent
set of formal models in the form of architectural views that are interoperable with each other

16

1.1. MOTIVATING EXAMPLE

in a way that makes automated analysis possible for graceful degradation for security. These
views allow for separation of concerns, partitioning of documentation effort among subject
matter experts with differing expertise, and consistency with current practices for documenting
systems.

We expand on the description of our approach in Section 1.2 and throughout the rest of this
document. The remaining subsections of this chapter describe the problem and our approach in
greater detail.

1.1 Motivating Example

In November 2011, as National Aeronautics and Space Administration (NASA) prepared to
launch the Mars Science Laboratory (MSL) with the Curiosity rover, NASA’s Jet Propulsion
Laboratory (JPL) discovered it was under attack. According to the NASA Inspector General
(IG) report, “...intruders had compromised the accounts of the most privileged JPL users, giving
the intruders access to most of JPL’s networks” [3]. NASA and JPL had to act quickly to
identify where the attackers had presence, isolate possibly-compromised subsystems from
mission-critical subsystems, and determine if the remaining trusted subsystems could safely
accomplish the mission of launching MSL to Mars. The process of responding to attacks like
the one at JPL is very human-intensive and not something that current risk management toolsets
are customized to handle.

This incident shows how architects and administrators of critical systems struggle to prepare
for and respond to the inevitability of attacks. In particular, two problems loom large – each
motivating a set of research questions/challenges.

First, system architects need ways to evaluate and build graceful degradation capabilities
into systems at design time so the systems are architected to be able to withstand attacks
by gracefully trading off some system functionality to preserve other functionality. These
capabilities would perform much like the crumple zone in a car – one section of the architecture
(the engine block) is sacrificed to save another, far more important, part of the architecture (the
human occupants). Current approaches do not enable this kind of thinking at Preliminary Design
Review (PDR) phase,1 in large part due to the high levels of uncertainty in implementation
detail. These concerns motivate the following two Research Questions (RQs):

RQ 1: How to automate the evaluation of graceful degradation abilities in a
system at PDR?

1“The purpose of the PDR is to demonstrate that the preliminary design meets all system requirements with
acceptable risk and within the cost and schedule constraints, and that it establishes the basis for proceeding with
detailed design. The PDR will show that the correct design options have been selected, that interfaces have been
identified, and that verification methods have been described.” [4] In other words, key architectural decisions have
been made, but the detailed design / implementation is not yet complete.

17

CHAPTER 1. INTRODUCTION

RQ 2: How to automate discovery or selection of reusable graceful degradation
architecture tactics?

Second, system administrators (defenders) need ways to evaluate the impact of attacks
and deploy COAs in real time or near real time. As the JPL example demonstrates, there are
many considerations that must be taken into account when defending against attacks – such
as balancing risk with the goal of completing critical tasks – and this level of complexity can
quickly overwhelm humans. These concerns motivate two additional research questions:

RQ 3: How to automate the incorporation of attack information in a way to
provide defenders with actionable understanding of the impact of the threat
to the system and missions?

RQ 4: How to automate the incorporation of attack information to generate
real time COAs that maximize the system functionality while repelling or
containing the attack?

We believe a formal, tool-supported approach to graceful degradation can address these
four issues. Ideally, this approach would (1) utilize formal specifications of systems, (2) work
effectively despite uncertainty regarding threat actors and threats, (3) provide useful architecture
and design guidance at PDR, (4) provide for formal reasoning about attack implications in
near real time, and (5) output effective COAs for defenders; these COAs maximize system
functionality while maintaining an acceptable level of risk under attack.

Unfortunately, current approaches in both practice and research fail to realize these goals.
As we elaborate in Section 2, current approaches to the evaluation of system security properties
generally fall into one of two categories: top-down and bottom-up. Top-down approaches such
as Fault Tree Analysis (FTA) and Systems Theoretic Process Analysis (STPA) are primarily
intended for non-networked systems in which physical failure modes were the primary concern.
They do not account for determined adversaries that target specific weaknesses and move
through systems in a manner inconsistent with classical failure propagation. Additionally, these
approaches were designed to be manual approaches that are implemented at the system design
phase and revisited only as assumptions or implementation details change significantly. The
information is captured in charts and spreadsheets by subject matter experts.

Meanwhile, bottom-up approaches such as Failure Mode, Effects, and Criticality Analysis
(FMECA) and Event Tree Analysis (ETA) also do not model attackers and attack propagation;
as manual approaches that could start with any possible fault, they do not scale to the needs of
modern systems. Other bottom-up approaches that rely on the generation of attack scenarios
assume detailed, knowledge of specific implementation details, specific vulnerabilities, and/or
attacker TTPs. The information is recorded in a standard format such as those found in the
Security Content Automation Protocol [5], and formal methods can often be used for evaluation

18

1.2. APPROACH OVERVIEW

of attacker movement through systems. However, these approaches do not incorporate the
notions of system functionality and failure modes/events that are necessary to make informed
trade-off decisions. Further, the amount of certainty in knowledge required is unrealistic at
either the design or operational phases of the system lifecycle.

We bridge these two worlds by formal modeling, leveraging an interoperable set of architec-
tural views ranging from enterprise concerns to system implementation details. Data flows and
attack traces criss-cross views, enabling us to estimate the impact of various attack scenarios on
the abilities of different architectural alternatives to trade off functional requirements with risk.

As we detail later, we have a proof of concept method and tool for modeling and evaluating
system degradability at an architectural level of abstraction. This method addresses uncertainty
regarding both the system implementation details and the nature of the adversary. Our approach
is focused on realistic defense scenarios in which most or all vulnerabilities are hypothetical,2

and each vulnerability has an estimated cost the attacker must “pay” to exploit it. Attackers have
limited budgets and spend those on exploiting vulnerabilities. Our approach is generalizable
and can be applied to different types of systems and throughout their life cycles.

1.2 Approach Overview

We argue that between the top-down and bottom-up – and the high- and low-level – approaches
just outlined, there is a sweet spot within which we can use formal methods and an architectural
level of abstraction – despite high levels of uncertainty – to formally represent systems’
architectures in a way that enables evaluation for secure graceful degradation. An architectural
level of abstraction hides the superfluous or unknown details of system implementation. To
support integration and formal reasoning for graceful degradation for security, we implement
our approach using Datalog, a declarative logic programming language that consists of rules
(implications) applied to a database of facts.

The attacker’s points of presence in the system are potentially uncertain. At design time,
they are purely hypothetical targets for an attacker’s points of entry. At run time, they are
adjusted in real time based on the latest threat intelligence. These points of presence are the
starting points for attack traces, in which the attacker uses her budget to craft exploits that
enable her movement through the system. Because this budget is not fully known to the defender,
we treat it as a probability density function, which the defender can adjust as he learns more
about the attacker.3

Additionally, we assume defenders do not fully know the latent vulnerabilities in their
systems; this assumption is reasonable for similar reasons at design and run times. We instead
assume that each component has a vulnerability (or vulnerabilities of different types) with a

2We assume defenders will patch known vulnerabilities expeditiously.
3This is something that the defender would manually adjust in our approach.

19

CHAPTER 1. INTRODUCTION

cost associated with exploitation; that cost is borne by the attacker via the attacker’s limited
capability, which acts like a monetary budget, constraining the attacker.

The core of our approach is similar at both design time and run time. It ingests the above
information and generates plausible attack traces – those that begin at possible points of attacker
presence, grow through leveraging the hypothetical vulnerabilities, and are bounded by the
expectation of the attacker’s capability. We use Datalog, a declarative logic-based programming
language, as a formal reasoning system to generate attack traces and determine the impact of
each trace on the defended system’s utility.

The attack traces impact data flows, compromising the defender’s ability to deliver services
that rely upon security attributes like confidentiality, integrity, and availability of the data they
consume. The loss of the ability to guarantee security attributes leads to the compromise of
system functionality, as subsystems can no longer be trusted to fulfill their functions according
to specification. For each possible level of attacker capability, we assume the attacker follows
the worst case scenario (to the defender) attack trace.

The utilities corresponding to the worst case attack traces are then weighted based on
factors like the probability that the initial points of presence were compromised. The sum of
these weighted utilities provides an estimated residual utility of the system – the utility that is
expected to remain after an attack. We assess a variety of defender tactics to change the system
architecture in response to the attack. These tactics include things like topological changes
to system architecture – e.g., adding or removing communication channels (or connectors)
between components. In many cases, an attacker many need to excise a compromised subset
of components to bound risk while maximizing the estimated residual (remaining) utility of
the system. Our approach determines appropriate ways for a defender to increase resilience of
a system in anticipation of attack and respond to attacks through shedding functionality in a
systematic and coordinated manner. These courses of action can either be generated and applied
automatically, though a human operator could review the courses of action prior to application
if there are concerns about automated courses of action.

1.3 Thesis Statement

We can architect and operate systems that are better able to weather attacks by automating the
evaluation of systems’ security properties to enable effective automated graceful degradation
of systems in the presence of uncertainty through an approach of formally modeling systems
and system behavior at an architectural level of abstraction to explore hypothetical attacks and
the systems’ abilities to respond.

Important properties of this approach include scalability and performance, realism, usabil-
ity, and effectiveness.

20

1.4. ELABORATION OF THESIS STATEMENT

1.4 Elaboration of Thesis Statement

By “architect and operate,” we apply our techniques to both the design time and run time phases
of the system lifecycle. An architect should anticipate that the system will come under attack,
so the architect must ensure that the system has the appropriate capability to deflect and absorb
the impact of a successful attack.

We use the following definition for graceful degradation:

...the term graceful degradation means that a system tolerates failures by reducing
functionality or performance, rather than shutting down completely. In order for
graceful degradation to be possible, the system must have some level of auxiliary
functionality; i.e., it must be possible to define the system’s state as “working”
with other than complete functionality.[6]

With respect to graceful degradation in a security context, the defender must be careful
to balance the risk of attack with the requirements to provide – and expose to attack – the
functionality of a system. Further, what makes graceful degradation graceful is the fine-grained
nature of the degradation. The impact of graceful degradation to the system utility should be
the smallest amount that keeps risk within predetermined bounds. For example, rather than
shutting down a system completely in response to an attack, it may be preferable to shut down
only the compromised sub-systems.

Formal modeling of systems is broadly understood in the software and systems engineering
communities, but formal modeling of system behaviors may be less familiar to software
engineers. The formal modeling of behaviors links the contributions of subsystem components
to the complex needs of entire systems. These contributions form a hierarchy. For example, a
web service may require a front-end web server and either of two database servers. A company
may require the web service (and therefore what that web service requires) and an email service.

Although there is often uncertainty in a contested environment (i.e., one without a clearly
dominant player), we intend our uncertainty to match the kind that architects and administrators
contend with in their day-to-day work. For example, system vulnerabilities and attacker TTPs
may be unknown to the defender. Our approach reasons about this uncertainty through the
generation of hypothetical attacks. Hypothetical attacks are those that are built upon a combina-
tion of hypothetical exploited vulnerabilities and attacker TTPs. These are instantiated in the
form of attack traces, which are lists of hypothetical and/or known vulnerabilities that may be
exploited by an attacker to achieve a known or unknown goal. Our approach ensures a level of
realism, and it makes our work stand out from other approaches. A more in-depth discussion of
how we approach uncertainty in representing system and attacker data can be found in Sections
3.7 and 3.10.

21

CHAPTER 1. INTRODUCTION

Scalability is the ability of our approach to reason about larger and/or more complex systems
and provide output in a timely manner; realism is the ability of our approach to model attributes
of systems and attackers and address the concerns of defenders in real world environments,
usability is the ability of a defender to apply our approach to their system, and effectiveness is
the ability of our approach to provide risk mitigation feedback that can meaningfully improve
the system’s security.

Scalability / Performance
Even relatively small systems can represent the types of security issues that vex architects

and administrators to this day. Despite a small number of components, the number of possible
connections is still 2𝑛, where 𝑛 is the number of components in the system, so a naïve approach
will not easily scale to a large number of components. However, we demonstrate that our
approach produces meaningful results with small representations of complex systems.

Measure: This approach should work with systems large enough to meaningfully reason
about the security implications of various key architectural decisions. Detailed, side-by-side
comparisons of architectures (carried out at design time) should be computed within minutes or
hours in the compute environment provided by a small cloud network (e.g., five medium server
instances). COA recommendations should be output within minutes.

Realism
This methodology and tooling should be applicable to critical cyber-physical systems in

multiple domains. It should be able to address the concerns associated with deployed systems
and those intended for deployment in production environments.

Measure: The methodology and tooling should be generalizable to different types of
systems. We will demonstrate success through the application to three domains: aerospace,
electrical utility, and military.

Usability
The methodology and tool should integrate with and leverage existing processes, procedures,

and tooling on small-scale systems – like those used in training and simulation environments –
as well as smaller deployed systems. We use the term usability to mean practicability; while we
do not evaluate with users, a successful approach tries to minimize the burden for new sources
of inputs and requirements for additional labor.

The approach should be something that can be applied with minimal subject matter expertise.
The need for some expertise is inescapable, but the demand should not be onerous. Further, it
should integrate with and leverage existing tooling and processes.

Measures: Systems are described such that aspects that require SME input are separated
from those that do not. SME input should be required once to initiate the modeling effort; from
that point on, non-SME personnel can use the tooling. Labor should be minimized through the
ability to reuse SME-generated inputs and – with future integrations – automate of other inputs.
These measures can be evaluated with case studies that prove the concept of the approach.

22

1.5. CONTRIBUTIONS

Effective
The methodology and tool should provide outputs that aid the defender in anticipating and

responding to attacks through the output of COAs that protect higher utility functionality by
trading off insecure or questionably secure functionality.

Measure:
COAs provided by the tool align with best practices for secure system architectures.

1.5 Contributions

The contributions of this research are:

• We propose a small subset of information that must be represented to effectively reason
about graceful degradation for security. This knowledge explicitly incorporates uncer-
tainty that reflects the realism system defenders face today. Much of this information is
formally represented via architectural views.

• We provide formal representations of this knowledge at an architectural level of ab-
straction in the form of architectural views. The views are interoperable and integrate
information of disparate types including deployment/allocation, system functions, data
flows, and events.

• We describe a method to evaluate the ability of a system to anticipate and respond to
attacks – despite uncertainty – by a coordinated trade-off of functionality to manage risk
from attack.

• We demonstrate and evaluate the proof of concept of our method via a tool we developed.

In the remainder of this document we describe related work in Chapter 2, outline our
approach in Chapter 3, explain how we implemented our approach in Chapter 4, validate our
approach in Chapter 5, and close with additional discussion of our work and opportunities for
future work in Chapter 6.

23

Chapter 2

Background and Related Work

In this chapter, we will elaborate on the motivating example to gain understanding of the root
problems with graceful degradation in security. We explain why this is a problem worth solving,
and we argue that prior research addresses aspects of – but does fully solve – our motivating
problem. We then describe a set of high level requirements for a better solution that addresses
head-on the shortcomings identified earlier.

2.1 Motivating Example Discussion

In our motivating example in Section 1.1, we described an attack at National Aeronautics
and Space Administration (NASA) Jet Propulsion Laboratory (JPL). This attack occurred at a
crucial time for a launch to Mars, leading to high-stakes decision-making with time pressure.
The introduction of a small delay in the launch date to allow time for investigation and securing
all systems could have pushed the launch out a year and a half. On the other hand, a rushed and
insecure launch could have – in a worst case scenario – led to the loss of a multi-billion dollar
mission. In the end, JPL made a decision to partition its network, keeping the attacker away
from critical systems.

However, network partitioning can result in the loss of some functionality, and this must be
implemented cautiously to avoid partitioning critical systems from each other or allowing the
attacker a foothold in a critical area of the system. Automation might have helped to assess the
situation and implement a response faster and with more assurance that the result would be a
successful launch with minimal degradation to JPL systems. This is not an isolated problem. In
recent years, attacks of large critical systems have become commonplace (e.g., Stuxnet (ICS),
Sandworm, the Target credit card breach, infiltrations of Ukrainian power plants, and an attack
on the Viasat satellite communications system).

24

2.2. REQUIREMENTS

To be able to address situations like these effectively in the future, a successful approach
must advance beyond the state of current practice and fulfill a number of requirements, which
we describe in the following subsection.

2.2 Requirements

First, we need a way to automate the analysis of the security properties of architectures and
the means of graceful degradation of those architectures in response to attacks. Systems are
already very complex, and humans may not have the time to assess the effects and side effects
of graceful degradations they manually implement. Additionally, unlike manual interventions,
automation – if done right – should also be repeatable, explainable to defenders, and defensible
(i.e., reasonable given the input circumstances).

Second, a successful approach will integrate information from a variety of sources to
provide effective degradation strategies. This includes information about how an attacker might
move through a system, how a defender might change a system to respond to an attack, how
system functionality changes as the system is attacked, and how system functionality changes
as the defender changes the system.

At design time, organizations like JPL have processes like Preliminary Design Review
(PDR) to evaluate high level architectures of systems for readiness for further design and
subsequent implementation. This is a logical point in time to evaluate an architecture for its
ability to withstand and gracefully degrade in response to attacks. To successfully automate
this, an approach should leverage the artifacts that are already produced at this point in time.
Further, the best approaches work well even with Agile development processes by not requiring
significant additional labor or interfering with the Agile process.

We assume that automated graceful degradation for security will be used by organizations
designing and operating systems that 1) are of a scale complex enough to warrant a thoughtful
architecture, and 2) are critical so that the degradation or failure of the systems could lead to
serious injury, large scale financial impact, or loss of life. These organizations should be using
“architecture-focused design” principles [7].

At run time, the approach updates its model of the system and environment based on new
information, such as updated threat or attack information. It generates effective Courses of
Action (COAs) that can 1) adapt the system to become more resilient against the updated
attacker or 2) mitigate ongoing attacks through a graceful degradation of system functionality.
These COAs must be available within a matter of hours or less to effectively defend against
modern threats [8]. To convince skeptical system administrators, evidence is produced in a way
that can explain COA reasoning to a human.

Regardless of the software development life-cycle process, handling uncertainty is key to
success. According to one report produced for NASA, PDR “is conducted when the design

25

CHAPTER 2. BACKGROUND AND RELATED WORK

layouts are 95% completed and the detailed design is 10% completed” [9]. In an Agile world, a
“risk-driven model of architecture guides developers to do just enough architecture then resume
coding” [7]. Thus, architectural documentation will be – at best – light on implementation
details. Successful approaches are able to produce effective guidance based on information that
modern-day architects and system administrators have available in the real world. This includes
treating unknown vulnerabilities as first class and being able to evaluate despite uncertainty
around attacker Tactics, Techniques, and Procedures (TTPs).

To properly model security, successful approaches model specific attributes. “Before pro-
ceeding with discussing what to model, it is important to distinguish between prevention and
detection of a transition into an insecure state” [10]. This corresponds to our requirements that a
successful approach can work at both design time (prevention) and run time (detection, though
our focus is mitigation) – with the ability to adapt at run time as new information emerges.
Model requirements are broken down into the categories of target system, users, adversaries,
and measures/countermeasures [10].

Finally, to be able to gracefully degrade, models must contain the necessary attributes to
ensure evaluations do not simply result in all-or-no functionality. Successful approaches model
nuanced tradeoffs so a system can continue to provide a subset of functionality securely by
trading off a different subset of functionality. We expect these to align with common degradation
measures like perimeters, tiers, redundancy, diversity, etc.

2.3 Prior Work

The studies of resilience to system failures and graceful degradation have existed for years,
and our research builds on these concepts. Resilience has been an area of study since systems
became complex enough to warrant understanding how failures propagate as faults through
systems until bad things – known as “losses” – occur. By the mid 20th century, techniques
had been developed for predicting the resilience of complex systems to catastrophes caused
by natural phenomena. Subsequent work addressed graceful degradation in the physical world.
Often, these forms of analyses are high-level tabletop-style exercises involving high degrees of
uncertainty. As cybersecurity became an issue, techniques were developed to formally evaluate
systems, as well as predict attacker movements. One approach, the use of attack graphs, is
applicable directly to cybersecurity; it formally models systems and assumes a high degree
of system implementation knowledge and certainty; it can automate understanding low-level
impacts of specific attacks [11].

To successfully automate secure graceful degradation, we need a formal approach that
requires only the realistic amount of knowledge and certainty that defenders can be expected to
have, while limiting the labor and compute resources required to use the approach. For effective

26

2.3. PRIOR WORK

evaluation of trade offs of functionality for security, the impacts should tie back to high-level
system requirements.

2.3.1 Resilience

Since the dawn of the Cold War, a number of techniques have emerged to evaluate and mitigate
the causes and consequences of faults. These techniques were developed and honed for complex
systems of systems like rocketry. These techniques fall into two basic categories that each
answer a different question.

Bottom-up approaches, sometimes referred to as inductive approaches, begin with some
failure or initial event, and they move forward in time, evaluating the cascade of faults or pivotal
events that lead to a hazardous state, in which a loss (e.g., of life or system components) is
possible [12]. These techniques address the question of what happens if a failure occurs.

A well-known inductive approach is a Failure Mode and Effects Analysis (FMEA) or
Failure Mode, Effects, and Criticality Analysis (FMECA) when the criticality of the effect is
considered [12]. These types of techniques usually begin with the identification of a single
failure at a time, describing the modes (ways) the component might fail, the probability of
component failure for each mode, and the category of the resulting effect (e.g., critical or not
critical). This process is entirely manual.

Top-down approaches, sometimes referred to as deductive approaches, go chronologically
backward by starting with identifying the possible losses and related hazards, and then recur-
sively answering the question of What could cause this?, continuing backward in time until an
initiating event or failure is identified. These techniques address the question of how a particular
hazardous condition might occur. Fault Tree Analysis (FTA) is a well-known example of an
inductive technique [12].

The fault tree itself is a graphic model of the various parallel and sequential
combinations of faults that will result in the occurrence of the predefined undesired
event....

A fault tree is a complex of entities known as “gates” which serve to permit or
inhibit the passage of fault logic up the tree. The gates show the relationships
of events needed for the occurrence of a “higher” event. The “higher” event is
the “output” of the gate; the “lower” events are the “inputs” to the gate. The gate
symbol denotes the type of relationship of the input events required for the output
event. Thus, gates are somewhat analogous to switches in an electrical circuit or
two valves in a piping layout. [12]

Another top-down approach gaining popularity is Systems Theoretic Process Analysis
(STPA), a qualitative technique [13]. Like other deductive techniques, STPA begins by defining

27

CHAPTER 2. BACKGROUND AND RELATED WORK

the losses and hazardous conditions that must be avoided. Rather than focusing on component
failures, STPA uses a control system model; this system control structure – including humans in
the loop – is recursively refined to the depth necessary for analysis. Unsafe Control Actions are
identified, and these are used to create Accident Causal Scenarios. Systems Theoretic Process
Analysis-Security (STPA-Sec) is a security-specific variant of STPA [14]. STPA-Sec is being
used by the US Air Force as a key aspect of its Mission-based Risk Assessment Process for
Cyber (MRAP-C) risk assessments [15].

Some approaches, such as Probabilistic Risk Assessment (PRA), combine bottom-up and
top-down approaches [16]. PRA begins with the construction of a Master Logic Diagram,
which is used to work deductively from undesirable end states through system functionality
and subsystem hierarchy until Initiating Events are identified. Then, event sequence diagrams
or event trees inductively identify the Pivotal Events between each Initiating Event and a
corresponding series of possible end states. For each Pivotal Event, a fault tree deductively
determines the system components that must fail – and their failure modes – to cause the Pivotal
Event.

All of the above approaches are highly manual, requiring meetings of Subject Matter
Experts (SMEs) each time an analysis is conducted. They are generally performed at the
architecture and design phase of the system life cycle, though they could be used to evaluate
deployed systems. Each re-evaluation of a system after a modification results in the need for
SMEs to meet once again and determine the impact of the system or environment modification.
These approaches are not automatable or intended to generate results to deny or deter attacks.
With the exception of STPA-Sec, they are not security-specific, so there is no modeling of an
attacker.

2.3.2 Degradation

Degradation has been studied in non-security contexts, and there are useful lessons-learned
from the prior work. The Simplex Architecture aims to provide a means for safely upgrading a
system while it is running [17]. In Simplex, if the experimental (new) controller is problematic,
the system falls back to a safety (backup) controller while the experimental controller is fixed.
This can be an all-or-nothing ordeal for the functionality provided by that controller, and the
higher-level impacts of the fall-back are not a part of any evaluation.

Subsequent research specific to graceful degradation focused on how to scale it. This work
focused on physical systems. A key insight was to leverage an architectural level of abstraction to
hide subsystem complexity where possible, enabling analyses of graceful degradation properties
to scale to larger systems of systems such as automobiles [6].

Graceful degradation is different in the context of security, and the prior work here does not
sufficiently address this for our needs. Most resilience and degradation approaches are intended

28

2.3. PRIOR WORK

for use in situations in which faults are the result of stochastic processes. However, attackers
may deliberately avoid doing what is expected for fear of discovery. This means that attacks do
not follow nice Gaussian distributions that are easily predicted and modeled using traditional
means.

Additionally, the propagation of failures in traditional contexts is different from that in
a security context. Attackers move in ways that are constrained by a system’s physical and
virtual topology, with impacts that also propagate through a hierarchy of system functionality.
Since exploits are reusable with little to no marginal cost, faults of similar components have
little independence. As with resilience techniques, degradation techniques do not meet the
requirements for a success in a security context.

2.3.3 Formal Verification

Application-Specific Verification

One way to approach security is through formal verification of that system specifications guar-
antee specific properties or that a system implementation meets the specification requirements.
These have historically been difficult undertakings for even small or moderate sized software
projects. For example, the verification of the seL4 microkernel took about 20 person-years
[18]. This type of approach is not feasible for an organization performing a PDR-style analysis,
much less one trying to make run time decisions on how to gracefully degrade.

To reduce the labor required for small applications, the developers of Ironclad Apps took
a different approach [19]. As part of the application development process, they first created
the specifications and code in Dafny, a high-level language with built-in verification by the Z3
Satisfiability Modulo Theories (SMT) solver. An untrusted compiler then builds out the code
in a verifiable manner, and this code goes through a verification process to ensure it meets the
specifications. The developers of the Ironclad Apps approach claim significant savings in time
for the development of verified applications. Because the design is not specified down to the
code level at design time – and we assume a level of implementation uncertainty at run time –
the technological limit of formal verification of large scale systems is likely to be a verification
of specifications. Regardless, this approach requires considerable time and advanced knowledge
to implement.

This has two bearings on our approach. First, most software is currently not formally
verified to this level, so there are likely to be many latent vulnerabilities remaining in systems
to be defended. Second, the Ironclad approach demonstrates the utility of using a model of the
system – in this case, in the form of the specifications – to understand and constrain system
behavior, as well as to identify problems in a manner that is less demanding of SME labor.
However, a number of properties can be formally verified, so formal verification does not
necessarily imply graceful degradation unless that is a property to be specifically verified.

29

CHAPTER 2. BACKGROUND AND RELATED WORK

These approaches require high levels of expertise and significant amounts of labor from
SMEs, and they are not meant for use in complex, highly uncertain environments.

Vulnerability and Attack Surface Analysis

Prior work has explored using attack graphs to evaluate the impact of known vulnerabilities
within systems [20]. Attack graphs describe the application of exploits to vulnerabilities and
subsequent movement of attackers through systems. This work has focused on how to describe
vulnerabilities and system architectures, but not been used extensively for attempts to mitigate
vulnerabilities architecturally through graceful degradation.

MulVal [11] builds on the concept of attack graphs; it takes as input a description of the
system architecture and vulnerability information along with security policy requirements;
it either finds no policy violations or it outputs attack counterexamples. MulVal includes
a capability for reasoning about hypothetical vulnerabilities for predicting the impact of a
particular hypothetical vulnerability (or vulnerabilities) on a system.

MulVal shares some goals and design choices with our approach — in particular its use of
Datalog as both a specification language and reasoning engine. However, we differ significantly
in several ways. We introduce “functionality” as way of understanding the relationship between
system connectivity, component compromise, and utility; this enables evaluations of scenarios
like the check clearing scenario proposed in Jha [21], in which connectivity is key to evaluating
system utility. We also make the secure flow of data central to our evaluations of system utility.
Additionally, our approach is geared toward finding an architectural alternative that gracefully
degrades the system by shedding some functionality during compromise to maximize remaining
utility.

Another thread of research explores how defenders can evaluate the security resilience
of architectures with respect to zero day vulnerabilities. The k-Zero Days approach uses the
number of zero days an attacker would need to move from one point in a system to another as a
metric for the resilience of that system to attack [22]. We leverage a similar insight to evaluate
graceful degradation, which transitions a system from one architecture to another.

These approaches do not make uncertainty first class elements, and they do not have a
capability to demonstrate the concept of graceful degradation through the application of COAs.

Other related research focuses on how to evaluate the impact of vulnerabilities on the
ability of a system to execute its functionality in an assured manner [21]. This research
uses computation tree logic (CTL) to describe guarantees that a system must uphold. These
guarantees include nuances like the connectivity between nodes. While this research does not
present a complete theory of how to describe functionality, nor does it provide a method for
adapting architectures to become more resilient, it provides a step forward through the use of

30

2.4. GAPS AND REMAINING PROBLEMS

sophisticated means of describing the types of guarantees a system must uphold to provide its
full utility.

Other research has focused more on adaptation rather than static resilience. One approach
is the Simplex architecture [23]. Simplex provides a fallback mode that can be switched to in
real time. It could be considered to be a particularly coarse method of graceful degradation [17].
This approach is akin to the use of a safe mode, albeit with additional complexity.

The Rainbow framework leverages a model of the architecture of a system to predict future
state and ensure appropriate adaptive reactions based on the current state [2][24]. This is a
general-purpose approach focused only on run time and not specifically geared toward modeling
attacks to gracefully degrade system functionality.

Robustness

Another promising approach based on formal verification is behavioral notion of robustness
[25]. This approach formally defines robustness as “the largest set of deviating environmental
behaviors under which the system is capable of guaranteeing a desired property.” Robustness
can be used to understand how a system will respond to specific environmental triggers and
to ensure safety properties given those triggers. It is not a security-specific approach, so it
is not suited for evaluating how attackers may move through systems. While robustness and
graceful degradation are related concepts, this approach does not incorporate notions of utility
or fine-grained functionality for the purpose of evaluating how to gracefully degrade systems
under attack.

2.4 Gaps and Remaining Problems

While each of these works represents an important contribution, a number of problems remain
unsolved.

A variety of the high-level (architectural level of abstraction) approaches leverage human
experts in manual processes to evaluate snapshot-in-time systems in ways that explore graceful
and catastrophic degradation [26][27][28][16][14]. Furthermore, most of these approaches
focus on natural phenomena that can negatively impact systems. Natural phenomena occur
in ways that lend themselves well to probabilistic analyses (e.g., mean time to failure of a
component), but attack analysis needs to consider worst-case, not average-case outcomes.

Additionally, these approaches are not designed to be automated. They require experts to
not only describe the architectures and probability distributions of various phenomena, but –
in many cases – to also walk through the analyses step-by-step to understand the follow-on
impacts or contributing factors to a particular step.

31

CHAPTER 2. BACKGROUND AND RELATED WORK

The more automated approaches like Mulval do not treat uncertainty as first class and are
also unable to model graceful degradation [11]. Of the more quantitative approaches that are
generally designed for use at run time, many assume knowledge of system implementation
details, including the knowledge of system vulnerabilities. For these reasons, the approaches
are not appropriate at design time, and the level of expected knowledge is unrealistic at run
time. Further, many of these quantitative approaches do not factor in the critical functional and
mission knowledge necessary to enable graceful degradation for security.

2.5 A Path Forward

We believe automation of self-adaptive secure graceful degradation is possible by leveraging
formal reasoning to integrate the various advances in the prior work. The solution lies between
manual top-down approaches that incorporate attributes like functionality and bottom-up
approaches that enable tracing attacks through deployed or to-be-deployed system architectures.
A successful approach incorporates the knowledge and uncertainties captured in enterprise
architecture levels with knowledge and uncertainties captured in system architectures, leverages
existing processes and tools, is security-specific, is highly automatable, and can be applied
at both architecture/design and run time. Further, a successful approach can complement a
human-in-the-loop approach, but it can also be run with a human out of the loop.

32

Chapter 3

Approach

In this chapter, we explain our approach and provide the rationale for key decisions we made.
The following chapter, Chapter 4, contains an in-depth technical discussion. We begin the
current chapter by briefly describing the primary goals of our approach. Next, we provide
usage scenarios to describe the approach’s intended use cases. This is followed by the key
principles and design constraints we place on ourselves. With these in place, we describe the
high level approach we took. Later, we introduce an example system to be defended and expand
on some of the most important design decisions we made on how we model systems and their
environments, using the example for illustration. Finally, we introduce the proof-of-concept
tool we developed to implement our approach.

3.1 Approach Goals

Our primary goal is for our approach to provide effective guidance for software architects and
system administrators who must understand and respond to the impacts of attacks by gracefully
degrading system functionality. For systems in the architecture and design phase, our approach
should identify ways to build graceful degradation for security into the system architecture,
identify and mitigate points where security resilience can be increased, and understand the
mission impact of different attacker scenarios (i.e., attacker starting points and capabilities)
before the system is implemented. For operational systems, our approach should help defenders
understand the impacts of attacks on system operations and develop one or more Automated
Courses of Action (ACOAs) to deny, deter, or delay the attacks.

3.2 Usage Scenarios

The usage scenarios in this section provide an overview of how our approach would be used in a
real-world environment. We describe how our approach’s pieces fit together into a self-adaptive

33

CHAPTER 3. APPROACH

system, what the inputs and outputs are of that system, and how users would interact with that
system.

A high-level diagram showing the inputs, flow, and processing of information, and outputs
is shown in Figure 3.4 in Section 3.11.

3.2.1 Architecture and Design Time

The goal of the architecture and design time use of our approach is to guide architects and
designers to create resilient and gracefully degradable systems. This is achieved by evaluating
and comparing how different architecture alternatives resist attacks.

At design time, the primary stakeholder is the system architect and/or engineer. They may
begin with no predetermined final architecture, and their understanding of the attacker (e.g.,
which component is the attacker’s target, is the goal destruction or intelligence gathering, how
capable is the attacker) is likely to be highly limited. Specific implementation decisions such as
commercial / open source software brands and versions and subsystem architectures have yet
to be made. However, architects are likely to have one or more options for comparison. These
options form the initial input models for our approach when used in this phase of the system
life cycle.

To evaluate the secure graceful degradation properties of the initial system under consider-
ation, the architect must be able to model the salient aspects of the system. We go into more
depth on this later in this chapter. Additionally, the architect must be able to document the
consequences of the compromise of parts of the system. For example, the defender will need
to understand if an attack’s effects can be contained to a single subsystem or if the attack
inevitably causes a catastrophic affect to the entire system. This can be determined without
detailed implementation decisions.

Our approach evaluates the system model (including other relevant information about the
attacker and defender), and it compares that with similar models generated to be within a
specified graph edit distance of the original model. By evaluating how an attacker might exploit
the system, the approach outputs system models that are adaptations of the input model, but
these incorporate the attacks and may degrade the system by trading off some aspects of the
system to protect other parts.

This approach is meant to be used as part of an iterative process of specification and
generation. As implementation decisions are made, these decisions are reflected in manual
updates to the model representing the defended system in our approach, resulting in improved
guidance regarding security resilience and graceful degradation. For example, if the architect
learns which components use the same software (e.g., the same operating system or service),
this information can be used to identify common points of failure for which an adversary could
reuse a single exploit multiple times.

34

3.3. KEY ASSERTIONS

3.2.2 Run Time

The goal of the run-time use case of our approach is to guide or augment system administrators
in responding to ongoing attacks once a system is deployed. This is accomplished through using
our approach to determine degradation options and compare the associated models’ abilities to
continue to fulfill system requirements. The best option found in the evaluation can be carried
out with or without a human in the loop.

At run time, the system administrator is our defender. They must react quickly and are
likely to be constrained by previous architecture and implementation decisions such as the
operating system vendor of host components and current network topology. Unlike the prior
work described in Chapter 2, our approach is meant to be effective even if most of the existing
vulnerabilities are unknown.

The system administrator uses our approach to react to new information about the attacker.
The sequence of events is shown in Figure 3.4 in Section 3.11. First, our approach begins with
the model that represents the current architecture and its environment.

With these inputs, our approach generates a set of Courses of Action (COAs), which are
sequences of tactics to change the system model to alternative architectures. Our approach
evaluates the expected value of the system’s utility – after factoring in possible anticipated
attacks – of each of the alternatives. The COA with the highest estimated residual utility is the
one output by the tool as the preferred COA for the defender to take.

As time is typically of the essence in responding to attacks, COAs or ACOAs can be
generated in advance by simulating various specific scenarios that are considered the most
likely to be encountered. For example, if Virtual Private Network (VPN)-based attacks are
considered likely, and if the best response to an attack on the VPN is to remove the VPN service
from the network, that ACOA could be generated and stored in advance – and simply looked
up and applied in the case of an observed successful attack on the VPN.

3.3 Key Assertions

Degradation implies trade-offs. In a security context, our goal is to intentionally trade off
insecure functionality to maximize remaining secure functionality within a predetermined level
of certainty or risk tolerance. Our approach to automated secure graceful degradation explores
the trade space between system functionality and security risk, and is based on the following
key assertions:

Information requirements do not exceed what can be expected of today’s defenders. We
are cognizant that defenders have limited knowledge of attackers and even of their own systems.
Therefore, we are careful not to require that the defenders produce information that they cannot
be expected to know. There may be implicit information that a defender must make explicit

35

CHAPTER 3. APPROACH

– like the expected capability of an attacker or the vulnerability of a component. However,
defenders must already have rough estimates as part of their mental models today.

Uncertainty must be treated as first class. To be realistic, we directly incorporate uncertainty
into our approach. Uncertainty is key to how modern systems are defended. After all, if
a defender knows exactly how an attacker would attack, the defender will mitigate those
vulnerabilities and nothing more. Similarly, if a defender knows specific vulnerabilities in their
system, they are likely to mitigate those vulnerabilities. That leaves the unknown vulnerabilities
and unknown attacks as key to what defenders must protect their systems from. Of course, this
is not something typically quantified.

We represent vulnerabilities by the estimated “cost” to exploit a component in a particular
way. This is akin to the cost to develop, buy, or otherwise obtain an exploit for that component.
This may be estimated based on information such as attack surface, vulnerability history, and
even exploit market value information [29].

Attackers are represented by their capabilities (i.e., budgets) and probabilities of having an
established point of presence on specific components.1 The points of presence represent antici-
pated starting points for any attacks. The uncertainty in capabilities is explicitly represented
with a probability density function. This is because an attacker does not know the specific
capability of the attacker, and there are possibilities of “Black Swan” (i.e., low probability, high
impact) events that should be represented to ensure realism in the model. Uncertainty in attacker
points of presence is represented by the percentage values assigned to specific components.
These values represent the likelihood that the component is compromised at the outset of the
analysis.

Architectural level of abstraction is the appropriate level of abstraction for secure grace-
ful degradation analysis. An architectural level of abstraction includes “gross organization
and global control structure; protocols for communication, synchronization, and data access;
assignment of functionality to design elements; physical distribution; composition of design
elements; scaling and performance; and selection among design alternatives.” [2] We use
an architectural level of abstraction in our models because it represents the things we care
about (i.e., components, connections, data, functionality) while allowing us to abstract or hide
information that either is not relevant to or unnecessarily bogs down evaluations of system
alternatives. Furthermore, we expect this high-level architecture information is available at both
an early stage of design time and during run time. Architectural levels of abstraction also hide
superfluous details, including details about which there are uncertainties not directly relevant
to our analysis. An example is software code; while vulnerabilities can arise from oversights
in software, the uncertainty in whether and where vulnerabilities exist means we should not

1A capability is like a budget. An attacker can use their capability to create various combinations of reusable
exploits as long as they stay within their budget.

36

3.3. KEY ASSERTIONS

focus on specific vulnerabilities – rather, we should focus on the extent to which components
are vulnerable and how difficult it is likely to be to exploit those vulnerabilities.

Formalism is key to automation. To automate evaluations of graceful and secure degrada-
tion, inputs must be machine-readable. Formal modeling of the system and environment using
architectural views – and definition of the attacker and defender profile using the parameters
described above – results in quantitative, machine-readable formatting.

Attack scenarios are critical for evaluating security implications of architectures. Our
approach constructs attack scenarios based on a small number of assumptions of how attackers
and defenders affect system functionality. These attack scenarios are the core of how system
architectures are evaluated for their security properties. A system with a number of plausible,
devastating attack scenarios is less secure than a system of similar functionality and few
plausible, attack scenarios of minor impact. Approaches to evaluating reliability use fault
propagation through physical systems as their core; we use attack scenarios in lieu of fault
propagation, resulting in an evaluation of security rather than reliability.

The integration of information from multiple views informs evaluation of secure graceful
degradation. Secure graceful degradation implies trade-offs. Any sort of graceful degradation
must be based on a trade-off that optimizes functionality given security realities that reduce func-
tionality. In our attack scenarios, attacker movement through a system can be clearly represented
in an allocation view. System functionality is represented in a separate, but related, functional
view. Data flows to and from components are represented in component-and-connector views.
Functionality vis-à-vis the data flows is what is ultimately being protected – not a specific
component. Components are integral to functionality because of the data flows they produce,
consume, or transmit. An attack that compromises a particular component also compromises
the data flows to, from, or through that component; this compromise of a data flow subsequently
compromises functionality. Thus, there is a relationship between the allocation views, func-
tional views, and component-and-connector views. Therefore, our approach must integrate
these architecture views to evaluate and compare the security and functional implications of
architecture alternatives.

Simple assumptions regarding system security explain best practices. Our approach
makes a set of general assumptions about the elements that a model should contain and how
those elements interact. These are similar to axiomatic principles, and they are not domain-
specific. We will show how it is possible to automate secure graceful degradation – and provide
explanation-aiding artifacts – using analyses of attack traces across an integrated multi-view
architecture. By considering the impacts of possible attacks on system functionality, we perform
side-by-side comparisons of different architecture alternatives to determine the best one to
degrade to based on the available information.

In the following sections, we describe our approach in more detail, showing how our tool
implements our approach.

37

CHAPTER 3. APPROACH

3.4 High Level Approach

In this section, we provide an overview of our approach that will be elaborated on further in the
rest of this chapter. Along with our approach, we provide a tool that ingests and integrates the
system model in the form of architecture views, styles, and associated data to make graceful
degradation decisions. An architecture view is “a representation of a set of system elements
and the relationships associated with them,” and a style is “a specialization of element and
relation types, together with a set of constraints on how they can be used” [30]. An example
of a style is a client-server style; clients are constrained to connecting to servers, whereas
servers can cannect with clients or other servers. Styles are associated with views and place
constraints on architectures; they generally stay static during a system lifecycle while views
may change. Architectural views and styles are standardized in ISO/IEC/IEEE 42020 [31].
The architecture views and styles are currently manually created by architecture and system
administration Subject Matter Experts (SMEs). The parameters that describe the attacker are
input to the interpreter that runs the tool’s analysis.

Given an initial architecture and a graph edit distance parameter to constrain permutations
from the original architecture, the tool generates architecture alternatives to which the defender
may wish to degrade. At architecture and design time, this distance could represent the number
of architectural permutations (e.g., adding and removing connections) from the initial architec-
ture. At run time, this could represent the maximum number of architecture changes a defender
make before the attacker makes other moves in the defended system. Different tactics may
be assigned different costs based on their relative difficulty. For architecture alternatives, we
currently consider different topological arrangements of components (i.e., adding or removing
connections) but not changes to components themselves. This process generates and evaluates
the estimated utility of all possible COAs constrained by the defender’s budget for changes
to the existing architecture and other user-definable constraints. This is currently an anytime
algorithm [32], so the evaluation could be stopped at any time, and the best alternative found so
far could be selected as the target of graceful degradation.

Our approach evaluates the initial and alternative architectures for their utility in the face
of the anticipated attack scenarios. An attack scenario includes the attacker’s possible starting
points and series of movements and exploits (including stealing and reusing credentials) as
they proceed to compromise more and more of the system. Attack scenario artifacts can
aid in explanation and act as evidence for architecture and design milestone decisions (e.g.,
Preliminary Design Review (PDR)). The scenarios provide specific cases of attack – with
documented impacts on system functionality – to be used by architects, designers, and system
administrators as they degrade systems in response to attacks.

38

3.4. HIGH LEVEL APPROACH

The best architecture is the one with the highest expected utility in the face of anticipated
attacks. This is output as a COA with the associated resulting architecture, which is the one to
which the defender should gracefully degrade.

When run at architecture and design time, the architect may use several runs of our ap-
proach using as starting points models that correspond to the architecture alternatives under
consideration. Outputs can demonstrate which model is more resilient and how the systems
should be adapted to be more resilient for the purposes of secure graceful degradation.

At run time, a system administrator will provide an initial input model that corresponds
to the current system state. As new information (e.g., about the attacker) arrives or the system
state changes (e.g., a server is shut down), the administrator will update the model and rerun
the analysis. The output will show the administrator an option for degradation based on the
inputs provided.

Inputs to our approach are as follows:

• An initial architecture, including expected locations of and usage of credentials, plus
expected levels of difficulty for crafting exploits.

– In the design time use case, this initial architecture is an architecture under consid-
eration.

– In the run-time use case, it is the current system architecture.

• An attacker profile, which consists of the expected attacker capabilities and points of
presence is developed by a SME.

• A defender profile, which is a budget the defender has to implement defensive actions in
response to an attacker.

With these inputs, our approach is outlined as follows:

1. From the initial architecture, generate a set of alternative architectures (described in
Section 5.1.2) to consider for degradation.

2. For each architecture alternative, including the initial architecture:

(a) Construct all possible attack scenarios given the attacker profile and the set of
hypothetical system vulnerabilities.

(b) For each attack scenario on a given architecture alternative:

i. Determine the residual utility of the attack scenario on the architecture alterna-
tive.

ii. Multiply the likelihood of the attack scenario by the residual utility.

39

CHAPTER 3. APPROACH

(c) Calculate the sum of the multiples calculated above. This is the estimated residual
utility for the architecture alternative.

3. Output the architecture alternative and corresponding COA with the highest estimated
residual utility. Provide evidentiary artifacts such as possible attack scenarios to aid in
explainability of COAs and increase users’ trust in system outputs.

There are key differences between the design time and run time modes of operation of our
approach. At design time, the uncertainty is much higher for implementation details, specific
vulnerabilities, and attacker profiles. There is also no need for a swift reaction to an attack yet.
Because the system has not been built, the cost to change from one architecture to another is far
less; it is a design effort rather than an implementation one.

At run time, the implementation is complete. Specific vulnerabilities are still unknown
because known ones have hopefully already been patched. However, a security SME can
estimate a component’s vulnerability based on the attack surface and other implementation
details. When an attack is underway, specific points of compromise become known with
certainty, and the attacker’s Tactics, Techniques, and Procedures (TTPs) can aid with the
identification and estimation of the attacker’s profile. While this decrease in uncertainty is
beneficial, reaction time and the cost of a response are important factors in the defender’s
success in mitigating attack damage. Our approach must ingest the updated parameters and
provide effective COAs in time to stop attacks. At the same time, COAs must be reasonable to
implement; i.e., it would be impractical to provide a COA that is a ground-up restructuring of a
system that is already deployed and operational.

3.5 Running Example

As a running example, consider the Industrial Control System (ICS) depicted in Figure 3.1.
This system is representative, but simplified, of real grids in use today to control electricity
transmission [33]. The system consists of remote components like relays that open and close to
transmit or cut the flow of electricity to transformers (used to change the voltage) and Remote
Terminal Units (RTUs) that monitor the system and environmental parameters. The Supervisory
Control And Data Acquisition (SCADA) server provides moment-to-moment tuning of the
control system, while a Human Machine Interface (HMI) exists for a human in the loop to
monitor and adjust day-to-day operations. The Open Platform Communications (OPC) service
translates data between the disparate formats produced and consumed by the ICS that is the
overall electrical transmission system [33]. These architectural elements serve together to
ensure proper electrical transmission functionality [34]. Further, an engineering workstation
allows an engineer to adjust the parameters used by the SCADA server and make more changes
to the ICS operations than the HMI, providing additional grid management functionality.

40

3.6. RATIONALE FOR ARCHITECTURAL LEVEL OF ABSTRACTION

Figure 3.1: Deployment View of the running example ICS system.

Because electrical transmission is a business, there are additional enterprise functions.
Examples of typical business functions include billing, accounts payable, payroll, etc., which
keep the enterprise running. The printer is used for routine enterprise use and is not necessary
to a functioning grid. The VPN service allows users to remotely access network resources. The
historian is a type of database used for logging.

3.6 Rationale for Architectural Level of Abstraction

There are four primary reasons for why architectural models are appropriate for the problem we
are trying to solve. First, as we claimed in Section 3.3, an architectural level of abstraction con-
tains nearly all the data we require for our evaluations. Second, it contains limited superfluous
data. Third, architectures are expressed in views, and these views are common to industry such
as in [31], so they are well supported by other tools and are often created as part of the system
life cycle. Fourth, these models are available and definable at the architecture and design phase
and at the run time phase of the system life cycle.

Architecture and design models need only be refined to the point where they answer risk-
based questions for graceful degradation. “You want to build successful systems by taking a path
that spends your time most effectively. That means addressing risks by applying architecture
and design techniques but only when they are motivated by risks” [7]. That concept to guide
abstraction allows ambiguity (uncertainty) for some implementation details and reduces the
work to apply our approach. Information requirements and estimated collection burden are
described in Section 3.11.

We wish to balance the needs for usability and performance with the need to produce
realistic and effective COAs. We balance these needs by carefully selecting the elements we

41

CHAPTER 3. APPROACH

model. In particular, as we noted in our requirements in Section 2.2, we must model the
technical aspects of the system being defended (i.e., the system), the mission-oriented and
functional aspects of this system, the users of this system, the attackers (i.e., adversaries), and
measures/countermeasures. These break down into the following, adapted from [10].

• Target system: Data at rest (i.e., store), in transit (i.e., network), and in transition (i.e.,
compute/process). Functionality.

• Users: Credentials

• Attackers: Capabilities. Resources. Goals.

• Measures/Countermeasures: Courses of Action (COAs)

The system data can be modeled with widely-used architecture views that capture compo-
nent and connector information, annotated with where data is stored, processed, and networked.
User credentials can also be modeled here as attributes associated with components [30]. Attack
scenarios can be modeled as exploits on vulnerable components, capturing data and credentials,
with attackers moving laterally through a system via the connections. Functionality can also be
modeled by leveraging industry-standard enterprise architecture views to represent functional
hierarchies and dependencies that functions have on other aspects of the system architecture.
The COAs are actions that change the system’s technical architecture, including attributes of
components or connectors in the architecture. An architectural level of abstraction works well
for modeling information required by our approach.

3.7 Architectural Representations

We use a specific set of architectural views and their associated styles to capture the knowledge
needed to model graceful degradation. Views are architectural representations of components of
a system model and their relationships, while styles place constraints on those components and
relationships. For example, in our running example, the Allocation View shows how the various
networked components are connected in an instance of a transmission grid support network;
the style constrains the network connections so that network services must connect to a switch
or router (i.e., they cannot connect directly to each other).

First, we discuss the rationale for the inclusion of these specific views. The views in-
cluded are explained in the following subsections in this order: 1. Functionality, a hierarchical
understanding of how system functions contribute to higher-level functionality; 2. Component-
and-Connector (Data Flow), including producers and consumers of data; and 3. Deployment
(or Allocation), the runtime layout of components within the system.

42

3.7. ARCHITECTURAL REPRESENTATIONS

3.7.1 View Selection Rationale

Happily, much of the data we need to satisfy our requirements described in Section 2.2 for
automating evaluation of graceful degradation can be represented using three architectural views
that are commonplace in either the software architecture or enterprise architecture fields. The
table below shows how the key elements for our approach are modeled in the three architectural
views we have selected.

Key Elements Architectural View

System Data in Transit C&C
System Data at Rest or in Transition Deployment

Functionality Functional
Credentials Deployment

Attacker Capability N/A (Parameter)
Attacker Points of Presence Deployment
Defender Countermeasures Deployment

Defender Budget N/A (Parameter)

The Deployment View describes the layout of components and their connectors in a network,
and it can be used to map out the possible attack traces. The attacker exploits vulnera-
bilities that exist on the components, and she then moves across the connectors to other
components as she extends her attack trace. Her points of presence with the probability
that she is there may be annotated on this view. However, her estimated capability for
attack is not something represented in our selected architectural views; instead, it is
represented as a parameter elsewhere in the evaluation.

The Component-and-Connector View is similar to a Deployment View, but it abstracts away
some details so the focus can be on data producers, data consumers, and the data flows
between the two. Data flows represent the transmission of data from a source to a
destination.2 A data flow does not imply an established “connection,” as connectionless
protocols like UDP transmissions or DNS queries can also be represented as data flows.
In our approach, we usually refer to the source of the data as the producer and the
destination of the data as the consumer. The data transmitted is the flow.

To concretely show the difference between a Deployment view and Component-and-
Connector (C&C) View, in an enterprise network the Deployment View will show
switches and routers, while the C&C View abstracts these details away simply showing
producer components, consumer components, and the relationships between producers
and consumers.

2In network monitoring, a data flow is usually defined by the transmission of data from a source IP address / port
pair to a destination IP address / port pair, plus the actual data that is transmitted between the two.

43

CHAPTER 3. APPROACH

The Functional View is a view showing the functions of a system and how they contribute to
other functions in a hierarchy of nested functional requirements. That is some functions
require other functions, which in turn require other functions. In this view, we integrate
our components and data flows with their corresponding functions.

These views are interrelated. Functionality in a system requires data flows securely from
producers to consumers. The producer-consumer relationships are represented in the C&C View.
We determine if data flows securely by finding any overlaps of data flows (between producers
and consumers) and attack scenarios. If an attacker compromises a component critical to a
data flow, then the data flow is no longer secure. The attack scenarios and paths for data flows
both exist in the Deployment View. Through evaluation across these three views, we are able
to determine the impacts of attack scenarios on system functionality so we can evaluate an
architecture for the purposes of graceful degradation.

For each type of system, architecture styles are also required. Recall that styles prescribe a
vocabulary of system elements and relations between those elements together with constraints
and rules about how those elements are composed. Using the Deployment View as an example,
in a typical network, services connect to a router or switch; in a spacecraft, multiple components
may directly connect to each other, or they may use a bus. Therefore, the constraints on how
components connect – defined in the style – may vary depending on the type of system. These
styles ensure that architecture alternatives conform with relevant architectural restrictions on
those systems, and the styles can also constrain the number of valid alternatives.

As these are rules about the constraints in architectures, only a SME with deep architectural
understanding can describe the style correctly. Styles are reusable between systems of similar
types. Architecture styles are independent of system implementation and can be completed
prior to design or drawn from a library of predefined styles. For example, a single style would
likely be reusable between satellites, while another style would likely be reusable between
electrical industrial control systems.

This selection of views is supported by both National Institute of Standards and Technology
(NIST) and Consultative Committee for Space Data Systems (CCSDS). NIST states, “Three
predominant viewpoints of system security include system function, security function, and life
cycle assets. These viewpoints shape the considerations that are used as trustworthy secure
design considerations for any system type, intended use, and consequence of system failure.”

The NIST security function views include passive and active aspects. Passive aspects
“include the system architecture and design elements.” This is analogous to our use of the
Deployment View. Active aspects are behaviors of the system and “include engineered features
and devices, referred to as controls, countermeasures, features, inhibits, mechanisms, overrides,
safeguards, or services.” As they are behaviors, we represent them as tactics and COAs rather
than in static views.

44

3.7. ARCHITECTURAL REPRESENTATIONS

The NIST system function view is “the predominant viewpoint and establishes the context
for the security function and the associated system life cycle assets.” It is “the system’s purpose
or role as fulfilled by the totality of the capability it delivers combined with its intended use.”
This corresponds with our Functional View. NIST states “the purpose of a system is to deliver
a capability.” To this end, it proposes a view called a “Model for a System and Its Elements.”
This hierarchical decomposition tracks closely with our approach to a Functional View.

The NIST life cycle assets include intellectually property to be protected, data flows within
the system, and data dependencies between the system and the external environment. We
capture these in our C&C View.

3.7.2 Functional View

The key to graceful degradation is the ability to evaluate trade-offs. In the case of graceful
degradation for security, we evaluate the trade-offs between security and functionality. We are
specifically concerned with the ability of each function to consume its associated data flows
while meeting that function’s needs for confidentiality, integrity, and availability. We focus on
data flows rather than components because, with rare exceptions, the primary target of hackers
and the resource defenders protect is the data – not the hardware.

First, graceful degradation is about trade-offs At the highest level, a system performs
functions. The functions are what give the system its utility, and – when under attack – some
functions are sacrificed in a deliberate manner to preserve other functions. A hierarchy of
functions allows us to evaluate trade-offs in a nuanced manner. We can also evaluate the
cascading effects of various COAs on system functions. This is why the information contained
in a functional view is necessary for evaluating graceful degradation.

Functional views are well-understood in the field of enterprise architecture [35], and we
leverage this prior work and refine it for use in software architecture.

At the highest level, our functional view is a logic diagram of AND and OR operators to de-
fine the relationships between functions and sets of sub-functions. Some functions have utilties
associated with their completion, while others do not. Only functions that provide value on their
own have an associated utility. Just like an avionics system provides no value when not installed
in an aircraft, an HMI provides no value when not part of a functioning electrical transmission
system. Functionality provides utility when the functionality’s required components are not
compromised and the functionality’s data flow consumers can retrieve necessary data from
producers with pre-specified security attributes (i.e., confidentiality, integrity, availability).

At the leaves of the upside-down tree are associations between functions and dataflows.
The leaves connect a function or sub-function to a consuming component’s ability to consume
a dataflow securely.

45

CHAPTER 3. APPROACH

Figure 3.2: Functional View example.

A function that is a consumer of a data flow determines the confidentiality, integrity, and
availability requirements for its associated data. A component that is a producer of data may
offer some guarantees (e.g., the data is cryptographically signed, so the integrity is assured),
but it the consumer (and its associated function) that establishes the consumer’s requirements.

Consider the metaphor of weather forecasts: The weather service may provide the local
forecast without knowing all of the possible consumers of the forecast or all of the possible
ways in which the forecast is used. A civilian consumer of weather data may not be concerned
with confidentiality, but a military consumer can be if the weather data provides a combat
advantage. Both consumers will be concerned about the integrity and availability of the data.
Thus, the onus for requirements on data flows is placed on the consumer of the data.

An example of part of a Functional View for the running example (introducted in Section
3.5) is shown in Figure 3.2. In this example, the HMI function serves to represent the purpose
fulfilled by either a Primary or Backup HMI component. These two components consume
system status data (in the REST format) on behalf of the HMI function. In our example, the
transmission management functionality requires the transmission functionality (or there would
be nothing to manage), and the transmission functionality requires the human machine interface
service.

3.7.3 Component-and-Connector (Data Flow) View

A data-centric approach is advantageous over approaches that consider only the protection of
components. Functions require secure storage, processing, and transmission of data. Data is
transmitted from a producer to a consumer. A Component-and-Connector View is an architec-
tural model that highlights the relationships between data producers and consumers. The C&C

46

3.7. ARCHITECTURAL REPRESENTATIONS

View abstracts away details such as the specific paths the data takes through the Deployment
View. It represents only data flows, data producers (and associated security requirements), data
consumers (and associated security guarantees), and their relationships.

A C&C view shows elements that have some runtime presence, such as processes,
objects, clients, servers, and data stores. The elements are called components.
Additionally, component-and-connector views include as elements the pathways
of interaction, such as communication links and protocols, information flows, and
access to shared storage. Such interactions are represented as connectors in C&C
views. [30]

In our implementation of C&C views, we focus on the consumers and producers of infor-
mation, and we hide (abstract away) elements that do not produce or consume the data flows
relevant to our models, such as routers, switches, and firewalls.

Figure 3.3 depicts a component-connector view of the running example system. While
the C&C View does not represent some details of the Deployment View like switches and
routers, it does represent details like which component is producing a data flow and which
one is consuming it. This provides insight into the flow of data at a more logical, as opposed
to physical, level. Data flows are the glue that binds together the architectural views for our
evaluations of secure graceful degradation.

3.7.4 Deployment View

With our approach, we are able to dynamically consider how alternate paths for data flows
can optimize functionality in the face of attacks and graceful degradations. To do so, we must
integrate the prior views with one that shows exactly how data flows through the system and
also how the attacker moves through the system. Because the C&C View is focused on the
producers and consumers of the data flows, it abstracts away the intermediate components
through which data may flow and across which attackers move.

Attacks can originate from multiple points of presence [36], and we represent these in the
Deployment View. Each system component has an associated probability of being compromised
and becoming an attacker point of presence. By representing attacks from multiple points in this
way, we can represent Black Swan (low probability, high impact) events [37]. Not only can we
represent probable attacks (e.g., originating from the internet), we can simultaneously represent
improbable high impact events like insider threats. Without this simultaneous representation,
our approach would need to choose between protecting from one threat or the other; with a
simultaneous representation, we do not need to ignore the low possibility of a Black Swan event.
This also allows us to explain the usefulness of tiered architectures. Rather than a monolithic
perimeter with all the security expenditure in one place, a tiered architecture distributes security

47

CHAPTER 3. APPROACH

Figure 3.3: Component-and-connector view with data flows of the running example ICS system.

through multiple perimeters separating tiers. An attack attempt originating from the Internet
is probably much more likely than an insider attack; however, an insider attack could be
devastating if there are no precautions in place to protect against this scenario.

Elements of a Deployment View can include software and hardware. Software is allocated
to specific hardware components, and network connections provide for data transmission
between components [30]. The deployment view does not represent information flows, but it
does include components through which data flows like network routers and switches that are
abstracted away (hidden) in a C&C View.

Figure 3.1 depicts a deployment view, showing the physical (OSI Layer 1 and 2) connectivity
of the system components. This view is useful in determining how an attacker can move laterally.

In our model, we also have a notion of credentials. These can be passwords, session tokens,
or anything similar that can be stolen and reused. Components may have or use credentials.
If an attacker exploits a component that has a store of credentials, she gains access to those
credentials, which she may use elsewhere just like an exploit to gain access to other components
that use those same credentials for access. These have been vital to the propagation of attacks
in the real world, and our model includes them. A component can be “exploited” by the
unauthorized use of a credential.

48

3.8. ATTACKER REPRESENTATION

3.8 Attacker Representation

As specified in the requirements in Section 2.2, we choose to represent the attacker as omniscient
about the defender’s system. In other words, we model attackers’ capabilities and points of
presence in a way that represents uncertainty about the possible attack scenarios. To address
uncertainty about attacker goals, we do not assume a particular goal for the attacker; instead,
we use the worst case attack scenarios in our evaluations. Just as there may be uncertainty about
the location of the attacker as discussed in Section 3.7.4, there may be uncertainty about the
capability of an attacker. Here, too, we must consider Black Swan events if we wish to avoid
being the victim of them – in this case, we can represent the unlikely possibility an attacker
has a high level of capability. This ensures that the defender does not simply take the expected
capability of the attack and rest comfortably, with a 50% probability of being caught off-guard.
And by allowing for multiple points of presence, we ensure we capture the possibilities of
multiple attackers or a single attacker leveraging multiple simultaneous attacks.

The attacker moves through a system by expending capability to develop exploits against
components represented in the Deployment View. Exploits act on specific component types
(and the subtypes of that type). They have user-definable impacts on confidentiality, integrity,
and availability. The first use of an exploit comes with a cost to the attacker’s capability. This
represents the initial cost to develop an exploit in the real world. The connectivity between
components in the Deployment View constrains how an attacker moves through a system.

As an attack progresses, the attacker can reuse exploits on components of the same type
without an additional marginal cost of exploit development. In reality, there may be a small
additional cost to reuse an exploit against a new target (e.g., customizing scripts to point to the
new target IP address), but this is far smaller than the cost to develop an exploit for a given
vulnerability, so we simplify by treating the cost of reusing an exploit as zero. Additionally,
the attack scenario may look more like a tree than a single line from Point A to Point B. This
is important when evaluating how a backup system can contribute to graceful degradation. If
a backup subsystem is a clone of the primary subsystem, the attacker may be able to branch
the attack scenario and compromise both the primary and backup systems with little or no
additional cost beyond compromising just the primary system. Therefore, we need to represent
types of components (e.g., Windows 11), reuse of exploits, and branching attack scenarios.

Beyond exploits of vulnerabilities, we must also represent credential theft and reuse. This
allows us to evaluate attack TTPs like those found in the Solar Winds attack. If a component is
compromised, some credentials stored on the component may be compromised, too, and these
can be used for lateral movement or privilege escalation elsewhere in the attack scenario.

49

CHAPTER 3. APPROACH

3.9 Defender Representation

We must also represent how our active defender may react to an attack scenario to gracefully
degrade the system. First, we introduce some basic assumptions about the defender. Then
we discuss the types of tactics that could be available to the defender and evaluable with an
approach such as ours.

We assume our defender has a budget that he can spend on defense. This limits his ability
to make defensive changes to his system. However, the cost of changes will be different at
architecture and design time versus run time. The graph edit distance approach also limits
the search space for alternatives. For example, the “cost” to add a connection or remove a
connection is incurred by the defender each time one of these tactics is applied.

The types of defensive tactics we can represent correspond closely with what we represent
in our model. These tactics include:

Adding a Connection Inserts a direct network connection between two components.

Removing a Connection Deletes a direct network connection between two components.

Adding a Component Using a component that already exists in the model but is isolated from
the rest of the network, add a connection to connect this component to the larger network.

Removing a Component Remove all connections to a component.

Adding a Credential Add a new credential to a component for storage on that component or
use by it.

Removing a Credential Remove an existing credential that is stored on or used by a compo-
nent.

Changing a Credential Change the credential that a component uses (by removing one and
adding another in its place).

These defensive tactics can emulate key tactics used as defense in real attacks.

3.10 Uncertainty Representation

We address uncertainty throughout our approach. For the system, we represent hypothetical
vulnerabilities with estimated costs to exploit. For attackers, we use estimated capabilities
and points of presence with associated probabilities of compromise. There are some slight
differences in how uncertainty is represented in architecture and design time versus run time.
In this section, we begin with a discussion of architecture and design time considerations for

50

3.10. UNCERTAINTY REPRESENTATION

uncertainty. Next, we describe how we address run time uncertainty. Finally, we discuss how
the uncertain values of parameters can be estimated.

At architecture and design time, many of the implementation decisions have not yet been
made, so we cannot assume, for example, that a system will have a particular operating system
version with a database from a specific vendor and with a specific version. However, we will
know that there will be an operating system and a database, and any associated values (e.g., cost
to exploit) are estimated. For subsystems that have not yet been designed and decomposed into
constituent components, we use architectural abstraction to hide the undecided details of the
defended system early on. For example, a subsystem can be represented as a single component
rather than a set of components.

Also at architecture and design time, we assume the defender does not know the exact
identity, specific capabilities (i.e., exploits, budget), or goal of our attacker. However, the
defender might partially understand and make assumptions about the threats against the system.
For example, a bank or gambling site might be subject to attacks by organized crime seeking
to steal money. An aerospace company might be subject to attacks by a nation state seeking
to understand the manufacturer’s state of the art and steal its intellectual property, though the
specifics might not be understood. We can still bound the attacker based on relative levels of
capabilities. Additionally, we might know at design time where the attacker is likely to gain
presence on a system.

At run time, we assume that system administrators are unlikely to leave known vulner-
abilities unpatched for long periods of time. As responsible administrators, they will patch
systems as soon as possible. If a patch is unavailable, other mitigations might be an effective
– if temporary – solution. Therefore, our attacker model still relies on the use of unknown
vulnerabilities.

At run time all estimated values – cost of exploit, attacker capability, and points of presence
– can be updated. For example, when there is clear evidence of an attack, the probability of
attacker presence on a particular component can adjusted to be at or near 1.0 (100%). These
updates trigger a re-analysis of the architecture to identify options for graceful degradation.

It is possible to estimate these values at both architecture and design time and at run time.
Attacker capability is determined by SMEs as part of a threat assessment. In our research to
date, the capability is represented by the number of zero-day attacks3 an attacker has. However,
this capability could also represent a monetary equivalent that an attacker has access to, with
each zero-day vulnerability reducing the remaining attacker capability.

SMEs for threat intelligence can leverage historical data to inform attacker capability
estimates. For example, the sophisticated Stuxnet attack on Iranian centrifuges used four zero
day vulnerabilities [38]. Though the cost to create these zero days is not publicly known, other

3A zero-day attack is one in which an exploit is used against a vulnerability that is unknown to the defender.

51

CHAPTER 3. APPROACH

sources have provided black market sales prices for zero days [29]. This sale information can be
used by SMEs who must estimate the vulnerability (difficulty of exploiting) component types.
Other data sources include attack surface estimates [39], penetration testing data, and historical
vulnerability data [40]. Some zero day exploits are sold to only one customer, while others are
sold to multiple customers, amortizing the cost of exploit production. This information can be
used to generate rough order of magnitude estimates with which to assign a cost to exploit a
particular component type.

3.11 Process Diagram, Information Requirements, and Burden

The information that must be gathered is summarized in the table below. The most costly
information is that which is gathered by a SME, not automatable, and mutable (i.e., it can
change through that part of the system life cycle). Data requirements are described for both
architecture and design time and run time.

Data Source SME Automatable Mutable

Deployment View (D*) Architecture Y N Y

Deployment View (R**) Scanning N Y Y

Deployment Style (D/R) Architecture Y N N

Component-and-Connector View (D) Architecture Y N Y

Component-and-Connector View (R) Scanning N Y Y

Component-and-Connector Style (D/R) Architecture Y N N

Functional View (D/R) Architecture Y N N

Functional Style (D/R) Architecture Y N N

Attacker Representation (D/R) Threat Sources Y Partial Y

Defender Representation (D/R) Internal Sources Y N Y

* (D) Architecture and Design Time ** (R) Run Time

Our approach integrates the architectural views with the attacker and defender profiles,
evaluating the information contained within them. The output of the approach is an optimal
defensive COA for this model of the system and environment. The entire process – with inputs
and outputs – is captured in Figure 3.4.

The process begins with an initial architecture. The architecture is provided by the architect
(at design time) or system administrator (run time) in the form of an Allocation View and
architecture styles that constrain the architecture. The implementation of our approach produces
a number of architecture alternatives for consideration; these alternatives are constrained by the
defender profile.

52

3.11. PROCESS DIAGRAM, INFORMATION REQUIREMENTS, AND BURDEN

Figure 3.4: Concept of Operations process diagram with stakeholders, data inputs, and data
outputs.

53

CHAPTER 3. APPROACH

Each of the alternatives is then evaluated for its resilience to attacks. The attacker profile
(provided by a threat analyst SME) and architecture styles constrain the attack scenarios that are
produced. The set of attack scenarios for the architecture is overlaid on the system’s data flows
to identify where the attack scenarios may compromise data flows; the data flows are provided
in the C&C View. The Functional View contains the information necessary to determine how
the compromise of data flows impacts functionality and thus utility. A utility is evaluated for
each possible attack scenario of each architecture alternative.

Our approach evaluates an estimated utility for each alternative based on the probability of
each combination of attacker initial conditions (i.e., presence and capability). The worst case
attack scenario for a combination of attacker initial conditions is considered the representative
attack scenario for those initial conditions. We compare the alternatives based on their estimated
utilities.

The alternative with the highest estimated utility is the recommended architecture of
our approach. This architecture, the COA to transition from the initial architecture to the
recommended architecture, and evidentiary artifacts (i.e., attack scenarios and evaluations) are
produced as outputs in the process.

3.12 Tooling

To prove the concept of our approach, we implemented a tool called Defensive degradation of
Resilient Architectures (DORA). This tool demonstrates how careful modeling of systems (via
architecture views and styles), attackers, and defenders – combined with a formal approach to
evaluation – can be used to understand systems’ levels of security and how they can gracefully
degrade in response to attacks. In the following chapters, we describe the implementation of
DORA and our evaluation of it.

54

Chapter 4

Implementation

In Chapter 3, we introduced our approach and described high level design decisions. To
demonstrate the concepts of our approach, we implemented a tool we call Defensive degradation
of Resilient Architectures (DORA). The implementation details of DORA are described in this
chapter. First, we explain our reasoning for the specific programming languages that DORA
is implemented in. Next, we explain how we represent architecture views and styles. After
that, we show how the attacker and defender are represented with respect to the architecture
views. Finally, we explain how we implement the generation of architecture alternatives, create
the attack scenarios within those architectures, and evaluate the graceful degradation security
properties of each architecture.

4.1 Programming Languages

We chose Python and PyDatalog as the primary tools to implement our approach. Python is an
interpreted language that is widely used, well-supported, easy to program, and has integrations
with many third-party tools, resulting in great extensibility. PyDatalog is a Python-based tool
that evaluates Datalog, the language we chose for representing and evaluating architecture
alternatives in various attack scenarios [41].1

Attack scenarios occur step by step. Attackers do not teleport around systems – they
must move to adjacent components or networks by exploiting components one after another.
Similarly, the systemic implications of a loss of particular functions can be determined through
inductive reasoning. Declarative logic programming languages are ideal for these kinds of
analyses.

Datalog is a declarative logic programming language related to Prolog. It has many useful
attributes: Simple facts and rules (logical implications) are easy to read and write. We induc-

1PyDatalog is no longer actively supported. However, the concepts in this paper are generalizable to other
implementations of Datalog and even other declarative logic programming languages.

55

CHAPTER 4. IMPLEMENTATION

tively evaluate the rules to build attack scenarios, which are at the core of how our analysis
works. We also use Datalog rules to reason about how data flows through the system and the
implications of various attack scenarios on system functionality. Datalog has a successful track
record, having already been used with MulVal [11], which we discuss in Section 2.3.3.

We considered alternatives to pyDatalog. Tools such as PRISM and Alloy solve problems
differently. For example, PRISM is a probabilistic model checking tool that answers questions
like “‘what is the probability of a failure causing the system to shut down within 4 hours?’,
‘what is the worst-case probability of the protocol terminating in error, over all possible initial
configurations?’, ‘what is the expected size of the message queue after 30 minutes?’, or ’what
is the worst-case expected time taken for the algorithm to terminate?”’ [42][43] It addresses
uncertainty well but does not have a straightforward means to generating attack scenarios or data
flow paths. Alloy leverages satisfiability solvers to find solutions to problems with constraints
[44]. While we are trying to find solutions within constraints, graceful degradation requires
finding an optimal (or near optimal) solution given uncertainties. Secure graceful degradation
requires us to be able to sequentially build out attack scenarios. Alloy is also not well-suited
to build out attack scenarios and calculate utility. For these reasons, we found that Datalog
(implemented in pyDatalog) was likely to be the most straightforward tool to implement our
approach.

4.2 Views and Styles

In our tool, we separate architecture views and styles into separate files. Styles are constructed
through a set of Datalog rules. Styles are reusable for architectures of similar types of systems
(e.g., enterprise networks, satellites, etc.). They are not likely to change during the course of a
system life cycle. A Subject Matter Expert (SME) with Datalog and architecture expertise can
define the style.

Views can be constructed through a set of Datalog facts. They are system-specific and
change to reflect modifications to the system architecture over the system’s life cycle. Views
are more straightforward to define than styles, so they can be defined by a system architect (at
architecture and design time) or system administrator (at run time), and they are amenable to
integration with automated tooling.

4.2.1 Deployment View in Datalog

To implement our running example in Datalog, we begin with our Deployment View, depicted
in Figure 3.1. First, we define the components that comprise the system. For example, we
define that the email server is of type “emailServerT,” and SwitchA and SwitchB are network
switches:

56

4.2. VIEWS AND STYLES

1 + isType(’emailServer’,’emailServerT’)

2 + isType(’switchA’,’switch’)

3 + isType(’switchB’,’switch’)

We also need to define the vulnerability of the components. The following line of code
defines that the emailServerT type (email server type) component takes one unit of attacker
capability to exploit, and it zeroes out any confidentiality, integrity, and availability guarantees
of the component:

1 + isVulnerable(’emailServerT’,’emailServerExploit’,1.0,0.0,0.0,0.0)

We can create type hierarchies, which are useful for exploits that might be shared across
various subtypes of components. This is useful for components made by a common vendor
that run slightly different versions of software. In these cases, the components may have
common vulnerabilities. For example, we can specify that a corporateFW component is an
enterpriseFirewall1 type, and an enterpriseFirewall1 type is also a firewall type.

1 + isType(’corporateFW’,’enterpriseFirewall1’)

2 + isSubType(’enterpriseFirewall1’,’firewall’)

In this example, any exploit that is against the firewall type will apply to the enterpriseFire-
wall1 type, which includes the corporateFW component.

In addition to creating exploits, attackers can guess or steal credentials such as passwords
and session tokens. An attacker accumulates credentials from a component when that component
is compromised. Components can have more than one credential that the attacker can steal. Just
like an exploit, a credential – once available to the attacker – can be reused with no additional
“cost” to the attacker (i.e., to the attacker’s capability). We represent a credential on a component
with a Datalog fact. In the following example, the corporate firewall component has the firewall
password and a network management session token on it. If the attacker compromises this
component, the attacker gains access to both credentials. The firewall password can be used to
access the corporate firewall, and the management session token can be used to access both the
corporate firewall and the email DMZ component.

1 + hasCredentials(’corporateFW’,[’fwPassword’,’mgmtToken’])

2 + usesCredential(’corporateFW’,’fwPassword’)

3 + usesCredential(’corporateFW’,’mgmtToken’)

4 + usesCredential(’emailDMZ’,’mgmtToken’)

In addition to defining the components and their attributes, we define the connectors across
which data and attackers move. Connectors indicate a relationship between two components.
In this case, the connector indicates that the two components can communicate directly with
each other. Each connector also provides confidentiality, integrity, and availability guarantees
as specified in the Datalog fact that defines it.

The Datalog fact below defines a (bi-directional for this type of system) connection between
the corporate firewall and the network device that establishes an email DMZ ("de-militarized

57

CHAPTER 4. IMPLEMENTATION

zone," a subnetwork with a trust level between other subnetworks in a system). The three
boolean values that follow the component names define the extent to which this connection
guarantees confidentiality, integrity, and availability. In this case, all three are fully guaranteed.

1 + connectsTo(’corporateFW’,’emailDMZ’,1.0,1.0,1.0)

The deployment view also has associated architectural style rules. One example is a rule
that a service (e.g., web service, mail service, file service) on the network must connect to a
network device (e.g., router, switch) rather than directly to another network. The rule states that,
if a service type connects to a switch type, that is a valid network connection.

1 validNewConnectsTo(SourceService,TargetService) <= isType(SourceService,’

switch’) & isType(TargetService,’service’) & ~(SourceService ==

TargetService) & ~connectsTo(SourceService,TargetService)

Listing 4.1: Networking Style

4.2.2 Component-and-Connector View in Datalog

In the simplified version of the Component-and-Connector View for our electrical system
in Figure 3.3, we see how the OPC component produces status data in the REST format.
For the purpose of supporting the electrical transmission function (functions are described
in Section 4.2.3), the SCADA server and HMI consume this status data flow; they do not
require confidentiality, but integrity is twice as important as availability. The associated facts
represented as Datalog predicates are shown below:

1 + producesData(’opc’,’statusRest’)

2 + consumesData(’transF’,[’scada’],’statusRest’,0,0.67,0.33)

3 + consumesData(’transF’,[’hmi’],’statusRest’,0,0.67,0.33)

Listing 4.2: Data Flows

Note how the Component-and-Connector View differs from the Deployment View. It shows
data producing and consuming components with their associated data flows while abstracting
away intermediate nodes like firewalls and switches.

4.2.3 Functional View in Datalog

The Functional View depicts the various functions that hierarchically contribute to each other
and the system’s overall utility; evaluation across these functions is how we ensure that changes
to a system provide graceful degradation rather than indiscriminate effects. The Functional view
is a logical hierarchy that expresses composition/decomposition of functional requirements:

Leaf nodes. These connect data flow consumer nodes to functions based on the consumes
statements we describe earlier in this chapter.

58

4.2. VIEWS AND STYLES

Intermediate nodes without utility. These nodes are either logical AND or logical OR nodes.
while these nodes are part of the functional hierarchy, they do not, by themselves,
represent a subset of functionality that has a utility. Consider the case of a web server
front end intermediate node. The servers cannot perform their roles without the back
end intermediate node functionality working in tandem. So, a web server front end node
would have no utility associated with it.

Root and intermediate nodes with utility. These nodes are also logical AND or logical OR
nodes. However, these nodes represent a subsystem that by itself can provide some
functionality. Continuing on the example above, a web service intermediate node might
require the front end intermediate node AND the back end intermediate node to both
indicate secure functionality so the web service is securely functional.

We implement elements of the Functional View shown in Figure 3.2 in Datalog.
First, some functions directly contribute to overall system utility. For example, the Trans-

mission function has a utility of 50, as defined below:

1 + utility(’transmissionF’,50.0)

Listing 4.3: Utility Definition

In our example, the Transmission Management functionality requires the Transmission
functionality (or there would be nothing to manage), and the Transmission functionality requires
the Human Machine Interface (HMI) service. This is defined in Datalog as:

1 + fNodeAnd(’transmissionMgmtF’,[’transmissionF’,[’opcF’,’hmiF’,’scadaF’,’

relaysF’,’rtusF’])

Listing 4.4: Functional Relationships

We define that the HMI data production can be fulfilled by either a Primary or Backup HMI
component.

1 + producesData(’hmiPrimaryServer’,’setPointsRestData’)

2 + producesData(’hmiBackupServer’,’setPointsRestData’)

Listing 4.5: Backup Data Producer Representation

Functions may require data flows with specific security attributes. Note that the above two
components consume system status data (in the REST format) on behalf of the HMI function.
The Supervisory Control And Data Acquisition (SCADA) server consumes the set points data
(in REST format) as shown in the code below; integrity and availability are equally important,
while confidentiality is not important. Either component that produces the set points data in
REST format can be a source of data for the SCADA server. The consumption of data flows
is common to both the Component-and-Connector (C&C) and Functional Views, and it binds
those two views together.

59

CHAPTER 4. IMPLEMENTATION

1 + consumesData(’scadaF’,[’scada’],’setPointsRestData’,0.0,0.5,0.5)

Listing 4.6: Data Consumption Representation

4.3 Attacker and Defender Profiles

4.3.1 Attacker Profile

The attacker is represented by points of compromise and probability of compromise. In the
following example code, the attacker has a 90% probability of having a presence on the “internet”
component, which is an abstraction representing the internet. If the attacker has presence there,
she zeros out (since False is equal to 0.0) the confidentiality, integrity, and availability guarantees
respectively of that component. She also has a 10% probability of appearing as an insider on
a corporate owned workstation, with similar effects to that component. In our assessments,
the possibility of an insider threat is a crucial assumption that informs the rationale for tiered
architectures.

We define our points of possible compromise like so:

1 + compromised(’internet’,0.9,False,False,False)

2 + compromised(’businessWorkstations’,0.1,False,False,False)

4.3.2 Defender Profile and COAs

A defender can modify the system through application of pre-defined tactics. Each sets of tactics
is referred to as a Course of Action (COA). Each tactic has a corresponding cost associated
with it. The tactics that can be applied are bounded by the defender’s budget, implemented as a
numerical parameter in Python. Tactics are applied to the Datalog model via Python code that
adds or removes facts from the system.

Tactics can address the architecture directly. For example, adding and removing connections
can change the topology of a network. These tactics can also result in the addition or removal
of components from a network. In our implementation, all components exist at the outset of the
evaluation, though they might not all be connected into the system being defended.

4.4 Model Evaluations

With a method to model the defended system, attacker, and defender we have the ability to
create related architecture alternatives, simulate attack scenarios, and calculate and estimated
residual utility (i.e., utility after accounting for attack) for each alternative. In the following
subsections, we describe each of these steps.

60

4.4. MODEL EVALUATIONS

4.4.1 Generation of Architecture Alternatives

Architecture alternatives are generated in Python. These begin with an initial architecture that is
pre-specified. Sets of tactics, or COAs can be applied by the defender to change the architecture
from the initial architecture to an architecture alternative. The cost of a COA acts as a graph
edit distance from the initial architecture. A pre-defined constraint of the defender’s budget acts
as a constraint on the number of possible architecture alternatives at run time. At architecture
and design time, this constraint limits the search space to architectures similar to the initial
architecture. We do not create and evaluate all the alternatives in PyDatalog at once; rather, we
evaluate them one at a time.

4.4.2 Attack Scenario Generation

Our tool inductively applies Datalog rules to construct attack scenarios. A scenario originates
at a compromised component. It extends one move at a time through the exploitation of
vulnerabilities, use of credentials, or movement where no exploit is required (e.g., moving
through a network switch). The scenario terminates when the attacker has expended her budget,
as defined by her capability, or has no other possible moves. The attack scenario generation
code snippet is also found in Appendix C.

In the code below, we see a Datalog rule for an inductive case to add an edge to an
existing scenario. The scenario is defined by where it begins (SourceService), where it ends
(TargetService), a path, a list of exploits used so far, a list of attacker moves (i.e., use of a
particular exploit against a particular component), and the cost of the trace to the attacker. If
a current scenario exists, and that scenario termination can be extended via the use of a new
exploit (shown as VulnType._not_in(E2)), then a new scenario is created and added to the
Datalog logic database. The prior scenario remains in the database, also. The new scenario
reflects the new termination point, new exploit, and additional cost of the exploit.

1 #Inductive case to continue connectivity, new exploit

2 attackPaths(SourceService,TargetService,P,E,AttackerMoves,TotalC) <=

attackPaths(SourceService,IntermediateService1,P2,E2,AttackerMoves2,

TotalC2) & cToWithPrivileges(IntermediateService1,TargetService,VulnType

,C) &

3 (P==P2+[IntermediateService1]) & (VulnType._not_in(E2)) & (E==E2+[VulnType

]) & (TotalC==TotalC2+C) & (TotalC2+C <= MaxR) & (AttackerMove==[

IntermediateService1,TargetService,VulnType]) & (AttackerMove._not_in(

AttackerMoves2)) & (AttackerMoves==AttackerMoves2+[AttackerMove]) & (

SourceService!=TargetService) & (SourceService._not_in(P2)) & (

TargetService._not_in(P2))

In the case an attacker reuses an existing exploit (reflected in VulnType._in(E2)), the cost of
the scenario does not increase (shown as TotalC==TotalC2). This is shown in the code below.

61

CHAPTER 4. IMPLEMENTATION

1 #Inductive case to continue connectivity, previously-used exploit

2 attackPaths(SourceService,TargetService,P,E,AttackerMoves,TotalC) <=

attackPaths(SourceService,IntermediateService1,P2,E2,AttackerMoves2,

TotalC2) & cToWithPrivileges(IntermediateService1,TargetService,VulnType

,C) & (P==P2+[IntermediateService1]) & (VulnType._in(E2)) & (E==E2+[

VulnType]) & (TotalC==TotalC2) & (TotalC2+C <= MaxR) & (AttackerMove==[

IntermediateService1,TargetService,VulnType]) & (AttackerMove._not_in(

AttackerMoves2)) & (AttackerMoves==AttackerMoves2+[AttackerMove]) & (

SourceService!=TargetService) & (SourceService._not_in(P2)) & (

TargetService._not_in(P2))

4.4.3 Calculation of Estimated Residual Utility

For each architecture alternative, we generate a residual estimated utility. The residual estimated
utility represents the estimated value of the utility of the architecture alternative after accounting
for our attacker. This is all evaluated with PyDatalog code.

To estimate this value, for each possible attacker capability, we determine the residual
utility of the architecture alternative for that attacker capability. We multiply this value by the
probability the attacker has this capability; the sum of these multiples is the estimated residual
utility.

The residual utility of a specific architecture alternative with a given attacker capability is
determined by inductively producing all possible attack scenarios for this attacker capability.
The worst case scenario attack scenario (i.e., the one the results in the lowest utility) is used to
represent that combination of architecture alternative and attacker capability.

Datalog can capture the worst case scenarios for a range of attacker capabilities using this
code:

1 (worstCasePath[TotalC] == max_(UtilPathPair, order_by=U)) <=

pathCompromisesWithCost(X,C) & (pathCompromisesUtilities[X] == U) & (

pathCompromisesFunctions[X] == FList) & (UtilPathPair==[U,FList,X]) & (

TotalC >= C)

The max_ function takes the worst case path, ordered by utility, of the UtilPathPairs, which
capture the traces, affected functions, and resulting utilities.

This process of calculating residual utility does not assume any particular type of system
(e.g., enterprise network, control system network, etc.). The rules are reusable for different
types of systems.

62

Chapter 5

Validation

5.1 Definition of Validation Criteria

In this chapter, we describe the properties that we are evaluating and how they can be traced
back to the claims made in the thesis statement in Section 1.3:

We can architect and operate systems that are better able to weather attacks by automating
the evaluation of systems’ security properties to enable effective automated graceful degradation
of systems in the presence of uncertainty through an approach of formally modeling systems
and system behavior at an architectural level of abstraction to explore hypothetical attacks and
the systems’ abilities to respond.

Important properties of this approach include scalability and performance, realism, usabil-
ity, and effectiveness.

Some of these claims are evaluated through experimentation using case studies, whereas
others are evaluated through qualitative arguments. The approach to evaluation depends on
the type of property being tested. Where we can evaluate quantitatively, we do so. In cases in
which we cannot (e.g., due to resource constraints or the qualitative nature of the evaluation),
we evaluate qualitatively. In one case, we use an ensemble analysis,1 making minor changes in
the inputs and measuring changes in the outputs. The correspondence between the claim and
the validation type is shown in Table 5.1.

Our validation applies to both the architecture and design time and run time use cases. The
inputs are either estimated (architecture and design time) or mostly known (run time). The
amount of time to evaluate architecture alternatives is most relevant at run time, when time is
of the essence; however, Courses of Action (COAs) can be generated and stored in advance to
anticipate attacks and ensure rapid responses.

1We borrow the term “ensemble” from the field of meteorology, in which an ensemble forecast is an average of
multiple forecast runs using small variations to the initial conditions.

63

CHAPTER 5. VALIDATION

To evaluate the effectiveness of our approach, we use a combination of argument and case
studies. This is because there is no agreed-upon ground-truth quantification of the security of a
system. Similarly, Subject Matter Experts (SMEs) could bring their own biases toward modern
conventions on secure architecture patterns, and we wish to avoid any preconceived notions
in our evaluations. Our smaller case studies demonstrate the key properties of our approach
in an uncomplicated manner. They demonstrate how they correspond with best practices for
secure system architectures. Through larger examples, we demonstrate that these key properties
continue to hold. We argue that effectiveness will continue to hold for larger, more complex
examples.

Because of the amount of time and computation for each full run (i.e., including the
consideration of multiple architecture alternatives) of our approach, we cannot evaluate large
numbers of examples for a fine-grained quantitative assessment of how our approach scales.
Instead, we use case studies of varying sizes (i.e., number of components, attacker points of
presence, etc.) to estimate the scalability of our approach. By stepping through our approach
and tool algorithmically, we argue how the computational and time requirements scale with
respect to the size of the case study. Although there will be some variation, the scalability of
our approach should be roughly comparable to an interpolation of the case studies we present.

Uncertainty is, by its nature, uncertain. We argue that our approach models relevant uncer-
tainties that defenders face in real-world environments. We use a sensitivity analysis to show
that our approach to modeling uncertainty provides value by anticipating a range of possible
attack scenarios while not introducing so much uncertainty as to make the analysis generic (i.e.,
COAs rarely change) or unstable (i.e., COAs change dramatically with each small change to
input).

Usability can be difficult to quantify, since it varies from one user to another based on their
knowledge and experience. A study with human subjects could provide insight into how SMEs
approach determining factors that are not easily quantifiable (e.g., probability of compromise
of a component, required capability to compromise a component, attacker capability). We
argue that other research shows that these numbers can be estimated by SMEs. We argue that
our knowledge requirements are the minimum needed for an evaluation of secure graceful
degradation and we make data collection and reuse as simple as possible and minimize the use
of SMEs. We show through a sensitivity analysis that the numbers can vary some without large
changes to evaluation output. Our effectiveness analysis shows that these rough estimates are
sufficient for our approach to produce useful COA outputs.

Realism is a measure of our approach’s ability to model relevant aspects of a real world
system with its environment, attack scenarios, and defensive COAs. Realism does not require
modeling all the details of the real world – just those that are most relevant to secure graceful
degradation. In our validation, we evaluate three different types of systems of three different

64

5.1. DEFINITION OF VALIDATION CRITERIA

scales. These case studies demonstrate our ability to model relevant details in different contexts.
We argue that this can be extrapolated to systems of various types and sizes.

In the following sections, we describe our evaluation approach. We define each claim,
provide a measure or metric, describe our approach to determining the measurement, and
explain our success criteria. In some cases, we include additional discussion to explain our
validation choices.

5.1.1 Effectiveness: Evaluation of Residual Risk

Definition:

When comparing two COAs, our approach should identify the COA that better balances the
tensions between the requirements of graceful degradation. For our analyses, it is sufficient to
assume that inputs are within a reasonable range.

Measure/Metric:

The residual utility of a system given a specific attacker profile.

Methodology:

Pairwise comparison between small architectures. One architecture alternative will align
with secure architecture patterns from trusted sources. The other will be similar but just different
enough to not align with best practices.

Criteria:

The architecture alternative that aligns with the best practices should have a higher residual
utility as estimated by our approach.

Discussion:

Our pairwise comparisons rely on the ability to objectively determine which of two compet-
ing architectures is more secure. However, it can be difficult to make these claims objectively.
SMEs may determine that a particular architecture alternative is superior based on experience,
but an explanation of why that architecture is better might be more difficult to coax out and
even more difficult to quantify. Our approach attempts to fill these gaps by offering an objective
and quantifiable comparison that provides artifacts that can be used to answer the question
why one architecture alternative is better than another. Since human subjects information is
not readily available, we turn to best practices as a way to solve our dilemma about evaluating
effectiveness.

We make two key assumptions here. The first is that the best practices for secure system
architectures are, indeed, superior practices. Second, we assume that an approach that demon-
strates – via small examples – alignment with best practices captures the key aspects of secure
architectures and evaluates them in a manner that scales to demonstrate – via larger examples –
continued alignment with best practices.

65

CHAPTER 5. VALIDATION

To this end, we have identified a number of best-practice secure architecture patterns that
are testable by our approach. For each of the best practices, we provide at least two possible
architectures – one that is consistent with the secure architecture pattern in question and one
that is not. These architectures are designed to be simple vignettes, so the evaluation has fewer
possible confounding factors to skew the result, but in some cases, best practices are used in
combination to create a desired effect.

Diversity

Diversity is sometimes also called heterogeneity. The concept is to have components that have
different failure modes. For example, rather than having a primary and backup system that are
both Microsoft-based, one might choose the primary to be Microsoft-based and the backup
to be Linux-based. This can be a double-edged sword, since this adds to the attack surface.
Judicious use of diversity can have benefits for security [45].

In our firewall example depicted in Figure 5.1 we show two architecture options. The option
at the top shows the attacker is connected to two firewalls of type (i.e., brand) A. Each of the
type A firewalls is connected to a type B firewall. The two type B firewalls are connected to a
database, which is the component we wish to protect from the attacker.

This example is very small and lends itself to human reasoning with little mathematics. It is
clear from the top example that the attacker needs an exploit for a type A firewall and an exploit
for a type B firewall to reach the database. At that point, she has two possible paths of equal
difficulty. If we wanted to formalize the cost, it would be:

𝑐 = 𝑥𝐴 + 𝑥𝐵 + 𝑥𝑑𝑏 (5.1)

where 𝑥𝐴 is the cost of exploiting a type A firewall, 𝑥𝐵 is the cost of exploiting a type B
firewall, and 𝑥𝑑𝑏 is the cost of exploiting the database.

Our second example for comparison has the attacker connected to one type A firewall and
one type B firewall. The type A firewall is connected to a second type A firewall, which is itself
connected to the database. The type B firewall is connected to a second type B firewall, which
then connects to the database.

The comparison is clear: In this second example, the attacker needs either an exploit for a
type A firewall (which she uses twice in a row at no marginal cost) or an exploit for a type B
firewall (also used twice in a row). This architecture is less secure than the previous one.2 The
cost for the attacker to reach the database is:

2An important caveat is that we are evaluating how security resilience impacts functionality. Other factors such
as availability are excluded from our evaluation. From an availability perspective, the second architecture is superior,
since it is resilient to a failure of either both type A firewalls or both type B firewalls, whereas the first example
architecture is resilient to neither of those cases.

66

5.1. DEFINITION OF VALIDATION CRITERIA

Figure 5.1: Allocation View depicting two possible topologies of the same security components.
The top topology is more secure; the bottom is more available.

67

CHAPTER 5. VALIDATION

𝑐 = min(𝑥𝐴 + 𝑥𝑑𝑏, 𝑥𝐵 + 𝑥𝑑𝑏) (5.2)

For our evaluation, we make simplifying assumptions that both firewall types cost one
unit to exploit, the database costs another unit to exploit, and the attacker’s probability of
having a particular capability (i.e., budget) is evenly distributed as 20% each for zero, one, two,
three, and four units of capability. The utility of the client being able to communicate with the
database is 100 utils.

For the first configuration, we have a 20% chance of 100 utils (zero attacker capability),
20% chance of 100 utils (one unit attacker capability), 20% of 100 utils (two units attacker
capability), 20% of 0 utils (three units attacker capability) and 20% of 0 utils (four units attacker
capability). The expected value is 60 utils.

For the second configuration, we have a 20% chance of 100 utils (zero attacker capability),
20% chance of 100 utils (one unit attacker capability), 20% of 0 utils (two units attacker
capability), 20% of 0 utils (three units attacker capability) and 20% of 0 utils (four units attacker
capability). The expected value is 40 utils. This configuration is less secure.

The output of our approach is below. It shows that as the attacker capability increases, the
affected functionality changes.

Our approach determined that the more secure option is the second configuration, which is
intuitive in this small example.

Perimeters and Tiers

In computer networks, the perimeter pattern is that of grouping components of a similar trust
level together in a subnet. Subnets have security services between them to mediate communi-
cations. Perimeterization is advocated for by the US Department of Homeland Security [46].
Cisco implements this through the concept of “security zones” [47]. Each security zone has an
assigned trust score from zero to one hundred. A component like a firewall sits between subnets
of different trust levels and mediates the connections. An example initial configuration would
allow all connections from higher trust zones to lower trust zones while denying all connections
from lower trust zones to higher trust zones. Exceptions are defined in the configuration as
needed.

Intuition for perimeterization can be gleaned from research on attack surfaces [39]. Each
device in a subnet has its own attack surface. If there is no mediation of access between an
external attacker and the subnet, the attack surface of the subnet is the sum of the attack surfaces
of each of its components. However, by placing a security device like a firewall between the
subnet and the attacker – establishing a perimeter around the subnet – the attack surface of the
subnet (i.e., the things directly accessible to the attacker) is the sum of the attack surface of the

68

5.1. DEFINITION OF VALIDATION CRITERIA

security device and the attack surfaces of the services listening on any of the explicitly allowed
connections into the subnet.

Complicated critical systems use a defense strategy that consists of dividing systems into
multiple tiers based on considerations of their functionality, criticality, and requirements for
trust. The US Department of Homeland Security recommends “Implement a network topology
for ICS that has multiple layers, with the most critical communications occurring in the most
secure and reliable layer” [46]. Their guidebook for Industrial Control System (ICS), contains
a tiered architecture that they recommend as a template for network architects to use [48].
Elsewhere, US federal guidance refers to one use of this practice as “segmentation” or “domain
separation” [45]. An alternative to grouping components by security requirements is to group
by function [49]. This may help to avoid the loss of multiple functions at once.

Figure 5.2 shows several different configurations for a network. In each, there is an attacker
component representing an untrusted internet, a corporate workstation, a corporate printer,
a server with financial data, and a server with inventory data. For the important function of
finances, the financial server consumes inventory data from the inventory server. For the slightly
less important function of inventory management, the corporate workstation consumes the same
inventory data. The third, far less important function, is printing, in which the printer receives
print jobs from the workstation. While the internet is definitely compromised, there is a 50%
chance that the printer is.

Architecture A is in line with best practices. The workstation and printer are on one
subnetwork, while the financial and inventory servers are on another. Firewalls separate the
internet from the first subnet, and also the two subnets from one another. Our evaluation
provides this with alternative with the highest utility (40.0 out of 100.0).

When there are two points of compromise, there is a benefit when those points of com-
promise are separated from each other and from other network functionality. The addition of
the “insider threat” justifies the tiered architecture. With a possible attack originating from the
printer, our critical back-end functionality between the two servers must be protected from both
the printer and the internet-based attacker components.

Architecture B also uses a tiered approach. However, this example makes a disastrous
decision to locate the inventory server – needed for the two highest utility functions – adjacent
to the possibly-compromised printer. Our evaluation yields a utility of 29.0.

It is key that the subnets in our tiers attempt to isolate functions (based on their consuming
and producing components) from the points of compromise. If one subnet contains components
critical to many functions, and that subnet also contains a compromised components, the
number of functions that the attacker can compromise increases substantially compared to a
best practices approach in which functions are more isolated from each other.

Architecture C creates a single, strong perimeter. The two firewall components are placed
back-to-back to separate the internet from the internal network. Because the printer is com-

69

CHAPTER 5. VALIDATION

Figure 5.2: Deployment View of networks with different defensive architectures.

70

5.1. DEFINITION OF VALIDATION CRITERIA

promised 50% of the time, this architecture has the same utility of 40.0 as the correctly tiered
architecture (Architecture A). It balances the advantages of bolstering the internet-connected
part of the network with the disadvantage of having no separation on the internal network. If the
printer were less than 50% likely to be compromised, our approach would prefer the correctly
tiered architecture.

Architecture D shows a flat network with no perimeters. As we would expect, this network
has the lowest utility; our evaluation yields a utility of only 20.0.

We also ran our analysis on several variations of the exemplar system from Section 3.5.
In the first set, we moved the printer — a low value component. With the printer on the high
trust control network, the residual utility was 68. With the printer connected to the lower trust
network (SwitchB), it was 149 — a best practice alternative. In the second set, we kept the
printer on the low trust network and moved the SCADA server — a high value component — to
the same low trust network, dropping the utility to 67. The alternative with the highest residual
utility aligns with current best practices for ICS system architectures [50].

Redundancy

When a component fails, it can be helpful if another component is available to provide the
necessary functionality. Of course, this requires the proper placement of the component, since
if these components all are collocated in the network topology and have the same failure
mode, they may all fail at once. This pattern may be implemented with the Diversity pattern.
Redundancy is called out as a security strategy in guidance from the US [45].

We test redundancy with the following vignettes:

• This architecture alternative has a collocated backup component of the same type (i.e.,
with no diversity) for a critical component.

• This alternative has redundancy that is collocated and diverse.

Evaluation:
The two architectures are shown in Figure 5.3. Both have two components that can perform

the server functions. The top architecture has a server and backup server of different types. This
architecture degrades well because the attacker must be compromise both servers (i.e., using
two different exploits) to cause a loss of the server-related functionality. Our tool evaluates this
architecture as having a utility of 60.0.

The bottom architecture contains a server and backup that are of the same type, so they
have the same vulnerabilities. Because of this, both the server and its backup have the same
failure mode, and we assume the attacker compromises both because it does not cost her more
to do so. This backup strategy does not provide a security benefit, so our tool evaluates this
architecture as having a utility of 40.0.

71

CHAPTER 5. VALIDATION

Figure 5.3: Deployment View of a network with primary and backup components.

72

5.1. DEFINITION OF VALIDATION CRITERIA

Least Privilege and Least Sharing

Least privilege and least sharing are overlapping concepts that encourage the assignment of
minimal functionality to each system component [45]. That way, when a component fails, the
impact is limited to a smaller set of functions. Least privilege is an excellent principle; our
approach can provide more nuance. Additionally, those functions must contribute to higher
level functions. If one function (e.g., failure of an electrical relay) is going to turn off the power
for a neighborhood, another failure of a different function leading to the same loss does may
reduce the utility.

This pattern is related to the Perimeter and Tier patterns. In this case, perimeters are applied
around components of similar functionality; this is done is a way that minimizes the number of
functions depending on the security each subnet.

We test least privilege / least sharing with the following vignette:

• One of our architecture alternatives has a subnetwork that supports multiple functions.

• The other alternative separates the components across subnetworks in a way that mini-
mizes the need for support multiple functions in a single subnet.

Evaluation:
We validate this concept in our earlier evaluation of perimeters and tiers. In Figure 5.2, the

second architecture allocates components to subnets in a way that causes unnecessary overlap
of functional dependencies on each subnet. The improper allocation results in a suboptimal
architecture when compared with the top architecture in the figure.

5.1.2 Scalability: Evaluation of Architecture Alternatives

Definition:
Scalability is the manner in which the computing and/or temporal resource requirements of

our approach increase with respect to the size and complexity of the input system models.
Measure/Metric:
The number of input components, complexity of input components, and a polynomial or

exponential expression describing resource-consuming actions like creating an architecture
alternative or generating or querying a set of attack traces.

Methodology:
Manual evaluation of the input model, utility calculation, and COA search. Verification

through experimentation.
Criteria:
Representative models from respected, open sources should be processed for COA identifi-

cation in eight hours for real time evaluation and five days for design time evaluation.

73

CHAPTER 5. VALIDATION

Evaluation:
In the current implementation of our approach, we bound the generation of architecture

alternatives by requiring them to be within a pre-specified graph edit-like distance from the
original architecture under consideration (see Chapter 3 for more details). Restrictions on
scaling come from two primary sources: 1) the number of architecture alternatives that are
possible and 2) the complexity of analysis of each architecture alternative.

In the architecture and design phase of the system development lifecycle, there is no cost to
change architectures because none have been implemented. While this may increase the number
of plausible alternatives, there is no need for near real time outputs from our approach. For
the purposes of scalability, we currently require the seeding of our algorithm with architecture
alternatives, and we perform the graph edit distance bounded evaluations from these seeded
architectures. However, other implementations could be more efficient while conserving the
basic concepts of our approach.

At run time, the need for speed and scalability is more important because an attack may
be imminent or ongoing. Our current implementation performs an exhaustive search through
all the possible sets of defensive tactics given a particular defender budget as applied to the
initial architecture. This is an anytime algorithm implementation, so we could output the
best adaptation recommendation found so far. Another option is to precompute various attack
scenarios so they can be rapidly applied if and when a similar attack occurs.

Scaling richness (i.e., realism expressed through modeling additional system and environ-
mental details) and number of components and connectors has a direct correlation on the time
to evaluate the expected utility of an architecture post-COA implementation. It also has a direct
correlation on the time to search across the COAs to find the optimal COA and corresponding
architecture alternative. As a graph, the number of possible edges grows with the square of the
number components. This corresponds to the total number of possible architecture alternatives.
For each architecture in a fully connected graph, the number of possible paths (for attacker
movement or data flows) through a graph grows on the order of 𝑛!, where 𝑛 is the number of
nodes. And when we generate attack scenarios, if there are 𝑎 number of attackers, there are
2𝑎 possible combinations of attackers. These all contribute to the growth of state space in our
approach.

For one of our evaluations of the ability to scale, we ran both the security and availability
configurations of our firewall example three times each on three different configurations of
instances of Github Codespaces. The three different configurations were:

• Small: 2-core, 8GB RAM, 32GB storage

• Medium: 4-core, 16GB RAM, 32GB storage

• Large: 8-core, 32GB RAM, 64GB storage

74

5.1. DEFINITION OF VALIDATION CRITERIA

Figure 5.4: Architecture size and connectivity impact on evaluation times.

We found that the time to evaluated the security configuration (see Table 5.4) and availability
configuration (see Table 5.5) did not change as the machine type grew more capable. We believe
this is because pyDatalog runs in a single thread, so it does not benefit from additional CPU
cores. Some of the work could be parallelizable (e.g., determining the possible data flow paths
and computing the possible attack scenarios), so there are opportunities to make the evaluations
more efficient.

We also evaluated scalability in terms of the number of nodes, edges, and branches in the
Deployment view of our architectures. The architectures and times to evaluate are shown in
Figure 5.4. Increasing the number of either nodes or edges increases the evaluation time. In
particular, when the graph becomes more dense, evaluation times increase to reflect the possible
branches that could be taken by the attacker and the data flows.

Architectures A, B, C in the first column demonstrate the impact to performance when we
add branches, each with an additional component. In the second column, architectures D, E,
F, and G each have the same number of total components, but the number of interconnections
increases from one architecture to the next. As the architecture becomes more dense from
interconnections, performance decreases – even if the number of components remains constant.

5.1.3 Uncertainty in Tool Inputs: Sensitivity

Definition:

75

CHAPTER 5. VALIDATION

Sensitivity is a measure of the variation of outputs with respect to the variation of the inputs.
This is to ensure SME inputs do not have to be precise to be effective.

Measure/Metric:
Percentage change in value of an input parameter; percentage change in residual utility;

COAs selection.

Methodology:
Pairwise comparison of input to output selecting inputs evenly spaced from zero to one

hundred percent input change in no greater than 1% increments.

Criteria:
Oscillations of outputs should not appear across input changes.

Evaluation:
We have evaluated this approach on the exemplar system from our running example

described in Section 3.5. In our evaluation, we assessed the output results (i.e., were the
mitigations sensible), the sensitivity of the outputs to changes in the inputs, and the performance
of the evaluations.

The results matched best practices. We were able to demonstrate that a misplaced component
– the printer on the control system network – posed a higher risk to system resilience than
connecting the printer to a switch on the internet-side of the firewall. By deliberately misplacing
the switch, we were able to generate a COA to move the printer to this better location.

A major concern was the sensitivity of our approach to subjectively-derived quantitative
inputs. An example of this is the probability of compromise of a particular component. For
example, as the probability of compromise of the Virtual Private Network (VPN) is increased
from 80 to 81 to 82% and so on, does the estimated residual utility of the system vary widely, or
does it change slightly? We demonstrated that the utility changed smoothly, in small quantities.
This suggests that, as long as the subjectively-derived quantitative inputs are in the “ballpark,”
the evaluation outcomes should be sensible.

We evaluated the sensitivity of our approach to changes in attacker capability, probability
of component compromise, and changes in utility. These variables are derived from expert
knowledge, and experts can reasonably disagree about the specific values, so our goal was
to demonstrate that minor disagreements in input values do not result in major differences in
evaluation outputs.

The primary mission of this system is electrical transmission, so we assigned this top-level
functionality a high utility of 100. The transmission can run autonomously for a short period,
but it ultimately needs management to continue, so we chose a utility of 50 for transmission
management. Logging is important for billing and compliance purposes, so we assigned it a
utility of 20. The enterprise computer systems are not critical to the main purpose of the system.
The ability to work from home is similarly helpful but not critical, so we assigned each a utility
of 5. Thus, the total utility of our system is 180.

76

5.1. DEFINITION OF VALIDATION CRITERIA

Figure 5.5: Sensitivity of Evaluation to Attacker Knowledge.

For evaluation purposes, the attacker capability estimate is from zero to four exploits, with
a probability of 20% for each capability.

To begin with, our system’s initial estimated residual utility is 165.4. This is because we
specify that the VPN is compromised with a probability of 90% and the printer with a probability
of 10%. Note that both or neither devices can be compromised because their probabilities of
compromise are independent.

Attacker Capability

To gain a better sense of the impact of attacker capability distributions on utility, we
evaluated an attacker with a capability range of zero to four. For each distinct capability value,
the probability the attacker has that capability could be 0, 20, 40, 60, 80, or 100%. The sum
of the probabilities of the different possible capabilities must be 100%. Thus, we explored the
range of capabilities, including Black Swan events in which a low probability, high impact event
might occur. The results are depicted below in Figure 5.5. As can be seen, the residual utility is
sensitive to the degree of uncertainty of attacker capability. It gradually slopes downward as
attacker capability increases. The step-wise decreases in utility are a result of the all-or-nothing
aspects of the way functionality utility contributes to total utility: If a functionality is considered
compromised, its fully utility is lost. Most average attacker capability values have multiple gray
(or blue) dots organized vertically because there are multiple possible capability probability
distribution functions with that specific mean capability value.

77

CHAPTER 5. VALIDATION

Figure 5.6: Sensitivity of Utility to Probability of Component Compromise.

Probability of Compromise

The probability that a given component is compromised affects utility. In our analysis,
we consider the probabilities of compromise for the printer on the control network in ranges
from 0-100% (increments of 10%) and compromise of the internet in ranges from 0-100%
(increments of 10%). The probability of compromise of each of the components is independent.
The results are depicted in Figure 5.6 below. For this analysis, we assumed the probability
of any given attacker capability was evenly distributed from zero to four, and the printer was
co-located with the control system section of the network.

Note that the printer’s probability of compromise has a more dramatic impact on residual
utility than the VPN’s probability of compromise. This is what we would expect because of the
printer’s proximity to high-utility functionality.

Utilities

Consider a scenario in which either the transmission or enterprise utilities are increased by
15. Changing the enterprise utility from 5 to 20 changes the residual estimated utility from 149
to 163. Changing the transmission utility from 100 to 115 also changes the residual estimated

78

5.1. DEFINITION OF VALIDATION CRITERIA

utility to 163. The implies that, if utilities of functionalities are selected in a manner that is
roughly proportional to each other, the outcome of the evaluation should be reasonable.

5.1.4 Usability: Labor Requirements

Definition:
For labor usability, we consider the inputs necessary to implement our approach. In particu-

lar, we consider the labor to produce or format these inputs – labor that would not be required
but for our approach. This additional labor can include using existing skills, acquiring new ones
such as Datalog, or involving personnel that are not traditionally part of the system life cycle.

Measure/Metric:
We expect that architecture SMEs with Datalog experience will create the architecture styles

for systems. Threat SMEs with minimal knowledge of Datalog will provide inputs like attacker
descriptions. Threat SMEs are not traditionally part of system development life cycles, though
it is not uncommon for threat briefings to be provided by threat SMEs to system stakeholders
for critical infrastructure and national defense systems. Architecture views are defined either
by architects or system administrators. SME labor needs can be estimated by the number of
parameters, attributes, and architecture style rules that must be input by SMEs. The number
of SME-input parameters, attributes, and rules that change over the course of design time, run
time, or complete system lifecycle. These are grouped by type of SME.

Methodology:
Manual evaluation to identify what must be input by a SME, scaled to the size of our

evaluation systems.

Criteria:
Inputs to our approach should not require hiring new personnel for specialized skill sets.

Additionally, the architecture views should not require significant Datalog experience; they
should also use existing architecture artifacts where possible and not require major amounts of
effort to produce or format. Architecture style rules should not require updating.

Evaluation:
Requirements for additional labor – particularly for new types of labor – are minimal with

our approach. The Deployment View is a common architecture view that we expect to be readily
available for any well-built system. Each component is described by a few lines of Datalog
(e.g., one to define the type of component, one to define if it holds any credentials, one to define
if it uses any credentials, one line for each network connection, etc.) A small number of lines of
code construct the hierarchy of component types (e.g., Windows 11 specific version, Windows
11, Windows). At architecture and design time, we expect the architect will anticipate provide a
rough idea of the type (i.e., Windows rather than a specific version). At run time, automated
network discovery tooling can identify components on a network, aiding the production of the

79

CHAPTER 5. VALIDATION

Deployment View. The implementation of this view is aided by following the templates of the
smaller examples in this paper.

The most novel part of the Deployment View compared to a traditional Deployment View is
the need to define levels of vulnerability of (i.e., expected cost to exploit) the various component
types. A naïve implementation can just use a value of 1.0. Our small examples used exactly
that. As architects or administrators gain new information (e.g., through examination of relative
costs for exploits for sale on the black market), these values can be adjusted, and the evaluations
should be rerun with the new values.

The Component-and-Connector (C&C) View requires more knowledge, but existing com-
mercial tooling like net flow analysis tools identify data flows that an architect or system
administrator can label and format for our approach. This requires one line of Datalog code to
represent each data flow producer (source) and one line to represent each data flow consumer
(destination). An architect or administrator should know the consumers’ needs for confidential-
ity, integrity, and availability. The implementation of this view is aided by following a template
like one of smaller examples in this paper.

The Functional View is the least amenable to automation and also may not be readily
available. Unlike the Deployment View and C&C View, system functions are not discoverable
via automation. These functions must be described by a well-informed architect or system
administrator. At architecture and design time, it is reasonable to expect that the architect will
understand the purpose of each of the components in the system. At run time, the starting
point for the Functional View is the C&C View, since the data flows must be associated with
system functions. System stakeholders will need to work together to produce the Functional
View by assigning data flows to functionality and producing the hierarchical tree of functional
requirements.

Each function is described with one line of Datalog code. The tree-like hierarchy requires
additional lines of Datalog code, but this code is structured simply and can be implemented by
following a template. Most of the Functional View will stay static over the system lifecycle, but
some changes to data flows may cause minor changes of the leaf nodes in this view.

While architecture views are the most straightforward to create, architecture styles (i.e.,
constraints on architectures based on the type of system) require careful creation by a SME who
is familiar with both Datalog and the type of system for which the style is being designed. The
styles take the form of a series of rules that constrain how components interact. As an example,
one could define that connections are bidirectional. These rules are defined once per system
type, and they can be reused for systems of the same type. In our examples, if the system type
did not change, then changes to the styles were unnecessary.

The table below summarizes the need for creating wholly new artifacts, developing new
skills, the ability to automate data collection and formatting, and whether or not the data changes
over the course of the system life cycle.

80

5.1. DEFINITION OF VALIDATION CRITERIA

Requirement New Artifacts New Skills Automatable Mutable
Deployment View No No Yes Yes

C&C View Maybe No Yes Yes

Functional View Likely No No Limited

Architecture Styles Yes Yes No No

Attacker Capability Yes Yes No Yes

Attacker Points of Presence No No Yes Yes

Defender Budget No Yes No Yes

5.1.5 Usability: Explainability

Definition:
Explainability is the ability of the artifacts produced by our system to be able to defend the

recommended architectures. This does not necessarily mean that a human is convinced, but it
may help a human understand and agree with the output of our system.

Measure/Metric:
Are artifacts sufficient to understand counterfactuals?
Methodology:
Demonstration that artifacts can explain why one output architecture is more secure than

another.
Measure/Metric:
The optional and available artifacts that can be provided by the approach.
Criteria:
Key information to show the inferiority of an alternative architecture should be present.
Evaluation:
We use the following pyDatalog query on individual architecture alternatives in our evalua-

tion:

1 query = "(worstCaseScenarioByStart[CompromiseSet,PC,TotalC] == X) & (

estResidualU[True] == U)"

The output provides a number of useful artifacts that can aid and explain:

• The estimated utility for the architecture after accounting for the possible attack scenarios.

• For each possible combination of attacker starting points:

– The probability of that combination of attacker starting points.

– For each possible attacker capability level:

* The exact sequence of steps in the attacker scenario, including which exploit
was used and on which component.

81

CHAPTER 5. VALIDATION

* The estimated best path for each data flow, if applicable, and its resulting
ability to guarantee confidentiality, integrity, and availability.

This information explains, for each of the possible combinations of attacker starting points
and attacker capabilities, the estimated worst case attack scenario step-by-step and its ultimate
impacts to the data flows of the system being defended.

A sample of output from the evaluation of the Homogeneous Redundancy architecture in
Figure 5.3 is shown here:

((’attacker’,),

1.0,

2.0,

(((’attacker’, ’attacker’, ’compromisedattacker’),

(’attacker’, ’fwA1’, ’fwAExploit’),

(’fwA1’, ’server’, ’serverExploit’),

(’fwA1’, ’serverBackup’, ’serverExploit’)),

(((’userAuthorization’,

(’serverBackup’, ’fwA1’, ’server’, ’client’),

0.0),

’databases’,

(),

0.0),),

0.0),

40.0),

The attacker component is the one that is compromised. The chance of this happening is
100%. The attacker has a capability of 2. The attacker’s steps are first the compromise of itself,
then the generation of a fwAExploit to compromise fwA1. Then a serverExploit is used to
compromise the server. The serverExploit is reused to compromise the serverBackup. This
causes the data flow to be compromised such that no functionality is provided at greater than
0 utils. The total utility of this architecture is zero under this attack scenario. Overall, the
architecture has an estimated utility of 40 utils when evaluated across the entire range of the
attacker profile.

5.1.6 Realism: Attacker Richness

Definition:
Attacker richness is the extent to which our model captures the salient details of real world

attacks.

82

5.1. DEFINITION OF VALIDATION CRITERIA

Measure/Metric:

Evaluation of the usefulness of attacker and attack attributes not in our model.

Methodology:

Manual evaluation to identify key attributes of industry best practice models for attacks.
Comparison with the attributes used in our models.

Criteria:

Attributes in our models should cover the key real world attributes identified.

Evaluation:

The attacker is an external actor (with respect to our system and its stakeholders) about
which we deliberately assume as little as possible. We do have to make some assumptions.
For example, knowing the possible starting points of attacks is key, as we have seen earlier in
this chapter, to ensuring the proper placement of defenses such as perimeters and tiers. The
probability of an attacker having access to those possible starting points is key to determining
how likely a defense is to be useful when placed in specific areas of the network topology.
The capability of the attacker is absolutely essential – without this, it is impossible to know if
defenses are insufficient or overkill.

We do mix attacker points of presence and attacker capability ranges. For example, we do
not currently have a way to describe that an attacker from the internet is more likely to have
higher or lower capability than an insider. Instead, we consider one attacker at a time, and that
attacker encompasses all likely points of presence and capabilities. This keeps the modeling
simpler and avoids further state space explosion issues. Based on our prior evaluations, this
sacrifice does not degrade the outputs in any significant way.

The US defense contractor Lockheed Martin developed a “cyber kill chain” that describes
the steps in an attack [51]. A US Department of Defense research and development center
MITRE developed a competing taxonomy called ATT&CK [52]. ATT&CK is more detailed
than the cyber kill chain, but the two overlap significantly.

In each, the first step is reconnaissance. This can be performed online, offline, or via a mix
of both. We do not represent reconnaissance. This is because it can be performed offline – and
therefore out of scope of our approach – and also because we assume a worst case scenario
omniscient attacker.

The next step is weaponization (Cyber Kill Chain) or resource development (ATT&CK).
This could include the actual creation of an exploit. We represent the cost to create an exploit in
the estimated level of vulnerability of component types and in the limited budget of the attacker.

After that, there is delivery (Cyber Kill Chain) or initial access (ATT&CK). There are
multiple ways this could occur. We have shown how we model an adversary making incremental
progress by beginning their attack on the internet and working their way through defenses
one at a time. Initial access deeper in a system, such as through phishing, is slightly different,

83

CHAPTER 5. VALIDATION

since the attacker point of presence may seem to originate from the phishing-compromised
component, and it can be modeled that way.

The next two steps are exploitation and installation (Cyber Kill Chain), or execution and
establishing persistence (ATT&CK). We represent exploitation/execution in attack scenarios
each time an exploit is applied. While an attacker may not establish persistence on a component
that she exploits, we assume the worst case scenario – that she establishes a continued presence
on each exploited component.

ATT&CK continues with a series of tactics not explicitly enumerated by the Cyber Kill
Chain. These are Privilege Escalation, Defense Evasion, Credential Access, Discovery, Lateral
Movement, and Collection. While we did not evaluate for privilege escalation in our validations
in Chapter 5, this step can be represented by dividing a host into user-level and superuser
components, with style rules governing movement between the two. Defense Evasion is an ob-
servability concern, which is out of scope of our approach. Our approach represents credentials
(e.g., passwords and session tokens) as items that can be stolen from specified components to be
reused on others. Discovery is similar to reconnaissance; here again we assume the worst case
scenario of an omniscient attacker. Attack scenarios show lateral movement with step-by-step
artifacts enumerating the sequence of components compromised by the attacker. Collection is
when the attacker gains access to the data types that she wishes to compromise. In our approach,
a data flow is considered compromised when an attacker compromises any component that
produces, transmits, or consumes a data flow.

The next common step for both the Cyber Kill Chain and ATT&CK is Command and
Control. In this step, the attacker maintains communications with exploited components to
continue attack objectives. We assume a worst case scenario – that the attacker has unfettered
access to components once compromised – though a future extension of our work could
add nuance to demonstrate how actions to restrict attacker command and control can benefit
defenses. However, with the continued advancement of machine learning, semi-autonomous or
fully autonomous malware could reduce the need for command and control.

Finally, we have Actions on Objectives (Cyber Kill Chain) or Impact (ATT&CK). Here,
the attacker attempts to achieve whatever her goals are (e.g., data exfiltration, data corruption,
system destruction). We assume any compromise of component confidentiality, integrity, or
availability can and does achieve the loss of that security attribute. Because of our assumption
that the defender does not know the goals of the attacker in advance, we assume the worst case
scenario for each component compromise.

5.1.7 Realism: Defender Richness

Definition:

84

5.1. DEFINITION OF VALIDATION CRITERIA

Defender richness is the extent to which our model captures the salient attributes of real-
world defenses against attacks.

Measure/Metric:
Evaluation of the usefulness of defender and system under test attributes not in our model.

Methodology:
Manual evaluation to identify key attributes of industry best practices for modeling defend-

ers. Comparison with the attributes used in our models.

Criteria:
Attributes in our models should cover the key real world defender attributes identified that

may meaningfully contribute to an evaluation of the secure graceful degradation of a system.

Evaluation:
While the Cyber Kill Chain does not directly address defenses, MITRE maintains a taxon-

omy called D3FEND [53]. This taxonomy consists of the following categories: Model, Harden,
Detect, Isolate, Deceive, Evict, Restore. Deception is outside the scope of our approach. We
will discuss how the other categories apply to our approach.

First, modeling is exactly what we do in our approach when we create models for evaluating
secure graceful degradation. However, the modeling itself is not a defensive tactic. It is an
approach to understanding a system and its properties.

Hardening is the act of making a system more robust against attack. In the D3FEND context,
hardening generally is not system-level but rather component-level. Our models can reflect
hardening through changes to the model. These changes include raining the expected cost
to exploit a component type (e.g., following in-depth static source code review and dynamic
application security analysis). For credentials, the name of the credential can be changed to
reflect that a password was changed or session token reissued.

Measures to increase detection are outside the scope of our approach. However, if an
attacker is detected or suspected, the model should be updated to reflect the known probabilities
of presence, points of presence, and capability of the attacker. The defender should rerun the
evaluation with the updated model.

Our evaluations are particularly well-suited to evaluating isolation. Isolation can be achieved
through removing credentials from a subsystem that should be isolated from the rest of the
system, and it can be achieved by removing or reducing connectivity between a subsystem and
the rest of the system. The defender can reduce connectivity by the appropriate placement of a
security component like a firewall.

Eviction is the act of removing an attacker’s presence and access. We model the removal
of an attacker’s presence by updating the attacker’s probabilities of presence and points of
presence. Other changes to the model are associated with eviction. For example, one can shut
down a system. In our model, that is achievable through removing a component from the system
or equivalently through completely isolating that component from the rest of the system. If our

85

CHAPTER 5. VALIDATION

defender changes or removes credentials from a component, this act can also be part of the
eviction process. If the defender reboots a system to remove malware that is solely based in
ephemeral memory, we model this by only updating the attacker’s corresponding probability
and point of presence.

The final category is restoration. Restoration is the act of regaining lost functionality. We
can model aspects of restoration through changes to credentials (including adding credentials
back to a component) and restoring connectivity to a component.

5.2 Validation of Non-Enterprise Network Systems

In the prior sections of this chapter, we demonstrated that our approach is applicable to enterprise
network architectures and industrial control system architectures (i.e., where tiers are critical to
graceful degradation). Our approach is generalizable to other types of systems. In this section,
we evaluate our approach with one such system that is not an enterprise network.

To demonstrate the broader applicability of our approach, we simplified and adapted a
small satellite architecture [54]. The satellite’s communications subsystem connects to a ground
control system. The communications then connect to a Controller Area Network (CAN) bus.
The CAN connects to two payloads and the navigation, propulsion, and power subsystems.
For simplification, we bundle the navigation, propulsion, and power into one component
representing the three separate subsystems.

We further have defined two possible points of presence for an attacker. She could be
present on the ground control system with a probability of 25%. Additionally, she could have
compromised the Payload2 component with a probability of 75%. The two probabilities are
independent of each other. The compromise of the payload is the type of concern a satellite
operator might have if the payloads are developed by customers or international partners for
whom trust is limited.

The utility from the operation of the satellite (not accounting for the payloads) is 70.
Payload1’s science mission has a utility of 20, and Payload2’s science mission has a utility
of 10. For our evaluation, we consider how alternative placements of a security device like a
firewall promote the ability to gracefully degrade in response to compromise.

The initial architectures is shown in Figure 5.7; with no security device, it has an estimated
residual utility of 10.125. The same utility applied when the device was place either between
the ground station and communications (Figure 5.8), and when it was placed between the CAN
and navigation / propulsion / power component (Figure 5.9). However, when the security device
was placed between the CAN and Payload2 (Figure 5.10), the utility increased to 20.25. This is
because the ground station is critical to all utility; any compromise of it completely eliminates
utility. If Payload2 is compromised, there is some utility possible from the satellite continuing

86

5.2. VALIDATION OF NON-ENTERPRISE NETWORK SYSTEMS

Figure 5.7: Deployment View of initial satellite architecture.

Figure 5.8: Deployment View of initial satellite architecture with protection near ground control.

to operate, as well as a possible utility from Payload1. The evaluations took between 100 and
152 seconds per alternative.

Figure 5.9: Deployment View of initial satellite architecture with protection near navigation,
propulsion, and power.

87

CHAPTER 5. VALIDATION

Figure 5.10: Deployment View of initial satellite architecture with protection near Payload2.

88

5.2. VALIDATION OF NON-ENTERPRISE NETWORK SYSTEMS

Claim Requirement Validation Strat-
egy

Effectiveness Correctly shows functional effects of attack
scenarios

Arguing and Case
Studies

Outputs are reasonable degradations Arguing and Case
Studies

Works effectively at design time Case Studies
Works effectively at run time Case Studies

Scalability Scales enough to inform architecture decisions Case Studies
Runs in time to be effective at design time Arguing and Case

Studies
Runs in time to be effective at run time Arguing and Case

Studies

Uncertainty Sensitivity is low to small differences in inputs Arguing and Sensi-
tivity Analysis

Design time uncertainty is appropriately ac-
counted for

Arguing

Run time uncertainty is appropriately ac-
counted for

Arguing

Usability Approach is automated Arguing
Minimal changes are necessary between de-
sign and run times

Arguing and Case
Studies

Inputs are similar to what industry already uses
or has available

Arguing

Compatible with Agile development Arguing
SME labor is minimized Arguing
Outputs are explainable Case Studies

Realism Incorporates multiple views Arguing and Case
Studies

Correctly shows how attackers move Arguing and Case
Studies

Shows the types of defenses defenders actually
use

Case Studies

Table 5.1: Correspondence between claims and validation approach.

89

CHAPTER 5. VALIDATION

Probability Capability Utility

20% 0 100

20% 1 100

20% 2 100

20% 3 0

20% 4 0

Expected Value: 60

Table 5.2: A secure firewall configuration has higher expected residual utility than the available
configuration.

Probability Capability Utility

20% 0 100

20% 1 100

20% 2 0

20% 3 0

20% 4 0

Expected Value: 40

Table 5.3: An available firewall configuration has lower expected residual utility than the secure
configuration.

Machine Time 1 Time 2 Time 3

Small 39.5 37.8 38.0

Medium 38.8 38.1 38.6

Large 36.2 36.3 36.6

Table 5.4: Time in seconds to evaluate secure firewall configuration.

Machine Time 1 Time 2 Time 3

Small 34.4 33.1 33.1

Medium 34.9 34.9 35.0

Large 33.5 31.5 31.2

Table 5.5: Time in seconds to evaluate available firewall configuration.

90

Chapter 6

Discussion and Conclusion

The approach described in this paper addresses our motivation to automate graceful degradation
of systems in response to attacks. Our implementation is a proof-of-concept that can be extended
in the future. As outlined in the thesis statement in Section 1.3, we have multiple goals, including
realism, effectiveness, practicality, and performance. These properties often compete with each
other. For example, a more realistic model may result in decreased performance by expanding
the amount of computation necessary for each evaluation; it could also result in a less usable
interface by overwhelming a user with requirements for a detailed model description.

In previous chapters, we made a number of assumptions and decisions to balance these
against each other. In this section, we discuss the key assumptions and decisions we made that
were not discussed elsewhere in this paper. For each, we explain the limitation that created the
trade-off, why we made the decision the way we did, what it would take to compensate for or
avoid the trade-off, and why our trade-off is appropriate for secure graceful degradation.

6.1 Key Assumptions and Decisions

6.1.1 Temporality

Our approach does not explicitly address temporality. We assume near-instantaneous actions
and reactions (i.e., attack scenarios and defensive Courses of Action (COAs)). Therefore, our
model does not include considerations like the time it takes an attacker to exploit a system,
crack a password, etc.; similarly, we do not model how long a defender may take to mount a
defense like installing and configuring a firewall or modifying network topology. We also do
not model multiple turns as in a game-theoretic analysis. Although temporal considerations can
be important for understanding whether a defense can occur fast enough to counter an attacker,
we argue that our approach still provides significant value without them.

91

CHAPTER 6. DISCUSSION AND CONCLUSION

Our approach utilizes architecture views to represent the system component allocations,
information flows, and system functionality. These views do not have temporal attributes, and
we do not have a dedicated temporal view. Additionally, our evaluation of attack scenarios and
defensive COAs do not include notions of time. The addition of time as first class would create
significant new complexity in both how it is represented and how it is evaluated.

There are two primary ways to represent temporality: In one way, time is represented by
“turns” taken between the attacker and defender; this would be compatible with game theory.
The other way, time is represented in absolute terms along a timeline; for example, a particular
exploit could take 2.7 seconds, and a subsequent response might take another 3.1 seconds.

A turn-based (i.e., game theory-like) approach requires more assumptions about the attacker
than our approach, which assumes a worst-case scenario attack. A temporal approach may
similarly make some assumptions about the amount of time that specific actions take. One could
extend the implementation of our approach to include the notion of turns, though an attacker
would have to be modeled with more specificity, such as having a specific goal. Running
our approach multiple times would reduce performance while requiring additional model
specification.

In a timeline-based approach, it would be difficult – but possible – to include time as a
constraint just like attacker capability; the search space for attack traces might then extend only
as far as a predefined time limit allows for the attack before the defender has an opportunity
to reassess and react. One would need to consider whether the attacker capability can be
recharged with time or if it monotonically decreases. This increases the complexity of the
model specification and the analysis.

We assume the worst about an attacker – they will instantaneously attempt the most
damaging attack they are capable of – and we defend for that. We assume that defenders
generally wish to evict attackers as quickly as possible from systems, so we treat graceful
degradation as a brief, temporary state rather than as a series of turns that take place over
extended periods of time.

6.1.2 Cyberphysical Destruction

Our approach treats dataflows as the entity to be protected rather than components. In some
cases, that might not be the correct assumption. For example, an internet-connected light bulb
loses its utility if an attack manages to brick the bulb so that it will never boot or light up
again. In a sense, the physical bulb itself loses availability from the perspective of a human
user. While not perfect, a workaround is to treat the production of light as a dataflow producer
with an availability attribute that is reduced during an attack. A human is then also modeled as
the consumer of that "dataflow" with an availability requirement represented in some sort of
function (e.g., "reading a book") with an associated utility.

92

6.1. KEY ASSUMPTIONS AND DECISIONS

6.1.3 Decoys and Deception

Our approach does not model decoys (e.g., honeypots and honeynets) or deception. These
tactics can slow an attacker and increase their observability so that the defender can detect
and evict them. Attackers spend time and resources attacking decoys. However, we chose
to keep our model simpler and assume a worst-case scenario, in which the attackers avoid
the decoys altogether. An extension of our approach could include decoys and deception by
modifying the attack scenario evaluation algorithm to be, for example, something like an
expected value of attack scenarios rather than the worst case scenario. By including attack
scenarios through decoys, the inclusion of decoys results in a number of unproductive or limited
damage scenarios. However, attackers may be smart enough to spot and avoid these decoys, so
a worst case scenario should be modeled, too.

6.1.4 Exfiltration of Data

Our approach considers the confidentiality of a dataflow to be compromised the moment
an attacker accesses it. This simplifies the modeling and assumes the worst case scenario.
Therefore, data exfiltration does not change the utility of the system once the associated
dataflow is compromised. However, some may wish to model exfiltration in a way that clearly
shows how an attack can go from bad to worse. One way to do this would be to include a
notion of attacker functionality, parallel to the defender’s functional view. Attacker functionality
would result in negative utility, and the exfiltration of data would contribute to the attacker
functionality. This requires making additional assumptions about the attacker (e.g., the attacker
will ask for ransom for the data) that we do not require.

In addition, we need to include the components and connectors for exfiltration in our model.
The ability to add and remove connections is something we currently reserve for the defender
since the defender is the one presumably in control of their network architecture, but a more
robust attacker model would include an ability for an attacker to change an architecture within
pre-specified constraints (e.g., establishing an exfiltration connector is allowed, modifying the
system under test internal architecture is disallowed).

Although this addition would increase realism, we believe that our model is sufficient
without this additional complexity. It is reasonable to assume that the data is compromised at
its initial access prior to exfiltration. Additionally, exfiltration could occur surreptitiously so
that the defender is uncertain as to whether or not it has occurred. Therefore, a cautious, worst
case scenario approach is warranted.

93

CHAPTER 6. DISCUSSION AND CONCLUSION

6.1.5 Attacker Model

Our approach allows for simultaneous consideration of multiple attackers by allowing multiple
possible points of initial presence and a range of attacker capabilities in the form of a Probability
Density Function (PDF). For example, using our running example, we could consider a low
probability insider threat at the same time as a high probability internet-based threat. As a
simplification, the attacker capability PDF is considered to be the same regardless of where
the attack scenario originates. This keeps our modeling simpler than if we considered multiple
Tactics, Techniques, and Procedures (TTPss). However, it may be more realistic to consider
these two or more attackers as different types of threats with different TTPss and capabilities.
This would require some cross-cutting changes to our implementation to associate a capability
PDF with each compromised component rather than as a global value associated with a single
attacker type.

We decided to use a PDF to describe attacker capabilities because we wanted to ensure
that we could address both the uncertainty for any given attacker and the different capabilities
of different attackers. We use a capability rather than saying an attacker has specific exploits
available a priori because we believe that this is more realistic than one single capability value.
As the Economist and reports on Pegasus spyware have shown, there is a thriving commercial
industry that develops exploits on demand for attackers, and exploits have a variety of prices
[29].

An attacker goal can be useful for constraining attack traces. However, we erred on the side
of caution and high uncertainty. If attacker goals can be anticipated, they could significantly
improve scalability and performance.

As attacks are in progress, we anticipate that the points of presence and capabilities will be
updated in the model to reflect the ongoing attacks, showing high probabilities of compromise
in some components and lower ones in others. The capability PDF may also reflect increased
confidence in knowledge of the capability of the current attacker rather than a distribution of
probabilities of capabilities among multiple possible attackers. A defender can achieve this by
updating the attacker data and rerunning the evaluation as new information is received.

6.1.6 Courses of Action

For COAs, we assume that each particular tactic has a cost that is independent of the other
tactics. Together, this cost becomes the cost of the COA. For simplicity, much of our modeling
has assumed an equal cost for tactics of adding and removing connections. While our approach
allows for defining different costs for different types of tactics (e.g., adding a connection could
cost more than removing one), we do not have the ability to say, for example, that one particular
connection will cost more than another one to add (or remove).

94

6.1. KEY ASSUMPTIONS AND DECISIONS

One could extend the model to include more fine-grained cost differences for tactics.
However, this could be very complex. As an example using connection costs, one would need to
separately determine and define the cost of each possible connection. For 𝑛 possible components
in the model, the number of connections can grow on the order of 𝑛2. This would be very
difficult to scale.

A coarser option is to have different connection types like Local Area Network (LAN)
and Wide Area Network (WAN) connections where all LAN connections would have one
cost and all WAN connections would have a different cost. For each component, we would
need to specify the type and an instance in the case of a LAN, since there could be multiple
separate LANs in the model. The architecture style would neet to be modified to constrain LAN
connections to be between two components of the same LAN instance. Only WAN connections
could connect two LANs together. While this is less difficult to scale than the fine-grained
option, it still adds significant complexity to our modeling. It also may result in the placement
of unnecessary constraints (e.g., LAN separation strategies) on the model, reducing the ability
of our approach to search creative areas of the search space that could include COAs like
combining or splitting LANs.

Although this may limit the richness, we believe that our approach has yielded useful results.
It allows for searching novel architectures while keeping our model as simple as possible. As
we demonstrated in Chapter 5, our approach is able to reason through effective responses to
attacks.

6.1.7 Dataflows

We choose to protect dataflows rather than components. Our reasoning is that in most informa-
tion systems, the data is what is most critical. The compromise of a server is not the primary
issue – what happens to the data on it is. This extends to cyberphysical systems.

We use dataflows because they are critical to understanding the impacts to functions. An
asset-centric approach may miss this. We use data consumers and producers because this is
more realistic and dynamic than if we hard coded the data flows into our models. This allows
us to evaluate the impacts of adapting dataflows to use backup producers. (This may also be
easier to model, as it does not require hand coding each dataflow.)

Our knowledge requirements for producers and consumers are minimal. The producer does
not necessarily know the use case for the data it produces. For example, weather forecasts could
be used to determine whether or not to bring an umbrella (low impact) or whether or not it
is safe to fly a helicopter (high impact). There can be multiple data producers. The consumer
knows how it is using the data it consumes. The consumer component is agnostic as long as
security requirements are met.

95

CHAPTER 6. DISCUSSION AND CONCLUSION

6.1.8 Functionality Instead of Criticality

We chose to include a functional view rather than assign specific utility values to components.
We believe this provides increased richness, though it comes at the cost of requiring a view that
software engineers may find unfamiliar.

The functional approach is superior to one based on assets values or criticality. We avoid
the pitfalls of focusing on big budget line-items while small components can be an Achilles’
heel. A functional view allows us to realistically model how impacts can cascade.

Only some functions have an associated utility. This is because some functions do not
provide any real world value on their own; they must be combined with other functions to
provide a value. Taking an engine off a two engine airplane does not reduce the utility of that
aircraft – it eliminates it. A similar conceptual approach applies to system functionality.

6.1.9 Implementation in Datalog

We chose to implmement Defensive degradation of Resilient Architectures (DORA) in Datalog
for several reasons. First, it has been used successfully in prior research for generating attack
traces in situations where vulnerabilities are known in advance. We rely on Datalog to induc-
tively build attack scenarios leveraging hypothesized vulnerabilities, to construct data flows,
and to evaluate the implications of the attack scenarios on data flows and system functionality.
Datalog provides evidence for its outputs in ways that can be clearer for defenders to understand
than alternatives like machine learning, in which some of the “under the hood” evaluation may
not be explainable.

Other alternative approaches include game theory and satisfiability (SAT) solvers. Game
theory is a very different type of analysis from our approach. Game theory, by definition,
requires that the players (i.e., the attacker and defender) take turns. We assume a worst case
scenario of an instantaneous attack. Similarly, we expect defenders to act as quickly as possible
– without giving the attacker time to adjust their approach mid-defense. If we relax these
assumptions, a game theoretic approach may add value. For example, it could address how
an attacker might respond to an incomplete eviction of the attacker, or it could address how a
defender might observe and learn about an attacker’s acpttps so a subsequent eviction is more
likely to be successful.

A game theoretic approach is still incomplete without the contributions of our approach. It
does not provide a framework to understand how an attacker can move through a network, how
a particular attack scenario has a cascading effect on system functionality, or how a specific
COA can impact an attack scenario. The core of our approach provides all three. In that sense,
game theory can build on and extend our approach, but it is not a substitute.

An alternative approach is to use a SAT solver to find a “solution” to the constraints in
our model (e.g., ensuring data flows maintain the necessary security attributes despite attack).

96

6.1. KEY ASSUMPTIONS AND DECISIONS

However, this requires a special type of SAT solver with the ability to gradually weaken the
constraints until the next-best solution is found. Others are researching this topic [25]. A SAT
solver would replace the part of our approach that searches for defensive COAs, but like the
game theoretic approach, it would still require much of the same evaluation of how attack
scenarios impact system functionality – though this could be performed with an alternative
language to Datalog. The theoretical underpinnings of our approach would remain while the
implementation specifics would change.

While Datalog works well for our use cases, it has drawbacks. It was not built for speed
in the way that tools like SAT solvers are. It can consume enormous amounts of processing
time and memory if it is not sufficiently constrained. It is not purpose-built for rapid searching
and finding optimal solutions. The facts and many rules may be easier to for non-experts to
understand than game theory or SAT solvers, but there is a performance cost. While we believe
Datalog is excellent for proving our concept elicited in our thesis statement, other tools may
make this approach more practical in a real-world setting.

6.1.10 Availability of Views Documentation

We believe that much of the information our approach requires will be available in mature (in
terms of process) software projects. These projects are critical enough for which graceful degra-
dation is an important property, and this criticality should also result in additional consideration
for software architecture.

The views we use are adapted from the types of views commonly used in industry. The
exception is the functional view, which is less common, though it can be found in some
architecture frameworks like the Department of Defense Architecture Framework (DoDAF)
[55]. The functional view – while less commonly used – is based on information that is and
must be readily available to a system architect or administrator, regardless of whether or not the
information has been documented before.

6.1.11 Abilities of SMEs

Our sensitivity analysis shows that when Subject Matter Experts (SMEs) inputs are “in the
ballpark” of each other, our approach should produce similar outputs without wild oscillations.
However, the follow up is whether SMEs can achieve even that. We believe this is possible.

The cost or difficulty in exploiting components can be derived from the historical black
market street value of exploits for those components. For components without known exploits,
comparisons can be made to those with known exploits. These comparisons are made based on
properties like relative vulnerability history and attack surface.

97

CHAPTER 6. DISCUSSION AND CONCLUSION

6.1.12 Effectiveness

We argue that we can begin with a small set of basic principles and create best practice,
systematically apply them, and create secure architecture patterns as a direct result. The
principles include the use of attack traces as a way to measure the security of a system
architecture. These basic principles are not specific to a particular use case, so we believe they
are extensible to a variety of system architectures.

6.1.13 Validation

While challenges could be brought against our approach to validation, we believe our evaluation
demonstrated the value of our approach. One could argue might have an unrepresentative set
of small architectures or that our architectures might not be a representative sample. For these
evaluations, we used architectures that demonstrated multiple security best practices.

Our idea of what it means to be more secure for our small architectures might not be as
universal as we think. Our approach to convincing the reader through the use of small examples
might be flawed and not scale. We believe security best practices are a reasonable source of
“ground truth.” This is analogous to using SMEs to evaluate if systems are more or less secure.
As systems scale, our approach can provide quantitative artifacts with outputs so the artifacts
can be used to explain how one architecture may be more robust to attack than another.

6.1.14 Design and Run Time Integration

We addressed the design and run time differences in the CONOPS in Section 3.2. At design time,
the source of information is almost completely manual, but at run time, it may be possible (with
integrations to system administration tooling) to source some information about system state
automatically. Some changes in assumptions – for example, the cost to modify architectures,
the expectations for attackers – will still need to be provided manually on an as-needed basis to
reflect changes and ensure outputs match reality.

6.2 Future Work

There are many possibilities for extending our work. Currently, manual or “table top” analyses
can use the same inputs as our approach, including the same architecture views and attacker and
defender profiles. As we show in our evaluation, this information can be used to determine attack
scenarios and subsequent impacts to system functionality and utility. Improving scalability is
the next step with the most potential to improve the impact of our research. Once our approach
can scale to larger systems with more components, improvements to usability and explainability
will make our approach more practical and valuable.

98

6.2. FUTURE WORK

6.2.1 Scaling

Perhaps the largest factor in using our approach today in a production environment is its ability
to scale to provide near real time evaluations in production-sized models. This is because of our
use of Datalog and our strategy for searching the state space of COAs.

Other strategies for efficiently searching for run time COAs are left to future work. Pos-
sibilities include use of genetic algorithms, better-bounded search (e.g., if attacker goals are
known), identifying and pruning degenerate architectures before evaluating them (if possible).
Non-optimal searches might be a good tradeoff of performance and optimality. It may be that
the state space could be efficiently searched through the use of emerging computing paradigms
like quantum computing.

Additionally, a compositional divide-and-conquer approach may have the potential to
increase scalability. In some circumstances, sets of components may be abstracted into a single
component. In contrast, components may be refined into constituent components as necessary
for an analysis focused on that higher-level component. Careful abstraction – with refinement
as necessary – may enable evaluations of a system one subsystem at a time so evaluation can
limit the exponential nature of the analysis.

6.2.2 Usability

Although a Graphical User Interface (GUI) would help in the generation of formal models of
the views and is viewed as a possible extension of our core research in this thesis, we currently
require a human to write the description of the architecture views in Datalog. A GUI would
make this process much easier for system architects and administrators. It would also reduce
the likelihood of syntax and other manual errors.

Automation would also improve usability in the run-time use case. System administration
tools such as network scanning tools can be used to automate the discovery of components
and connections on a network, providing real-time updates as the system architecture changes.
Security Information and Event Management (SIEM) tools are sources of information such as
suspected or known points of compromise.

As security monitoring infrastructure detects attacks, future integrations could ensure the
tool automatically responds to known compromises of components by updating and rerunning
the analysis. SMEs can also manually refine the attacker capability and location estimates in
the model as updated threat intelligence emerges. The cost to exploit components can also be
manually or automatically (with future work) refined as new information arrives. Updates to the
model require a rerun of the evaluations with the new inputs. Re-analysis outputs the degraded
architecture to which the current architecture should reconfigure, along with hypothetical attack
trace data for explanatory and evidentiary purposes. The adaptation can be carried out either

99

CHAPTER 6. DISCUSSION AND CONCLUSION

automatically (with future integration) as an automated COA (Automated Course of Action
(ACOA)) or manually with a human in the loop as a COA.

Some parts of our approach are difficult to automate but are reusable. For example, the
development of architecture styles requires reasoning that goes beyond translating data from
one format to another, but once a style is created, it can be reused across similar systems
with minimal to no changes. We believe that this process can be eased through the creation of
examples and templates, significantly reducing the learning curve to apply our approach.

6.2.3 Explainability

Our approach and tool produce detailed artifacts, so explanations can be produced using the
evidence provided. We are not subject to the same explainability limitations of “black box”
types of machine learning algorithms. Information in the form of facts is created and stored
through the application of Datalog rules, so it may require cross-cutting changes to the code
if the currently-tracked artifacts are insufficient. However, the information that is currently
tracked can be formatted with a small effort to provide useful evidence for explaining the COA
outputs.

6.2.4 Tabula Rasa Architecture Generation

One of the more difficult scenarios for a system architect could be to produce the initial
architecture for a system, since the possibilities are seemingly limitless when starting from a
clean slate. Our use of Datalog makes it difficult for us to produce an initial architecture from
nothing, since our assumption is to begin with an initial architecture and produce alternatives to
it. Other techniques like Satisfiability (SAT) solvers could produce options for starting points,
and our approach could then compare those options to each other and similar architectures.

6.3 Conclusion

In our research, we set out to assist system defenders who wish to build and operate systems that
can gracefully degrade when attacked. Tooling has not kept up with the threat, and evaluating
how to respond to attacks is still mostly dependent on manual (i.e., human) labor. In part,
other approaches to reasoning about graceful degradation do not embrace levels of uncertainty
common to real world scenarios, they do not incorporate first class notions of data flows and
complex system functionality, and they are not formalizable and automatable. We describe our
approach to solving this problem and demonstrate that – even with such incomplete knowledge
– we can meaningfully evaluate architectures for resilience to attacks and provide defenders
with COAs for preserving critical system functionality.

100

Chapter 7

References

101

Bibliography

[1] S. R. Goerger, A. M. Madni, and O. J. Eslinger, “Engineered resilient systems: A DoD
perspective,” Procedia Computer Science, vol. 28, pp. 865–872, 2014, ISSN: 1877-0509.
DOI: 10.1016/j.procs.2014.03.103.

[2] D. Garlan and M. Shaw, “An introduction to software architecture,” Carnegie Mellon
University, Tech. Rep. CMU-CS-94-166, 1993. [Online]. Available:
https://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_

softarch/intro_softarch.pdf.

[3] “Cybersecurity management and oversight at the jet propulsion laboratory,” NASA
Office of the Inspector General, Tech. Rep. IG-19-022, Jun. 2019. [Online]. Available:
https://oig.nasa.gov/docs/IG-19-022.pdf (visited on 09/14/2020).

[4] “NASA systems engineering handbook,” [Online]. Available:
https://www.nasa.gov/connect/ebooks/nasa-systems-

engineering-handbook.

[5] Security content automation protocol undefined CSRC. [Online]. Available:
https://csrc.nist.gov/projects/security-content-

automation-protocol (visited on 12/01/2020).

[6] C. P. Shelton, P. Koopman, and W. Nace, “A framework for scalable analysis and design
of system-wide graceful degradation in distributed embedded systems,”
Proceedings of the Eighth International Workshop on Object-Oriented Real-Time Dependable Systems, 2003. (WORDS 2003),
pp. 156–163, 2003. DOI: 10.1109/words.2003.1218078.

[7] G. Fairbanks and D. Garlan,
Just Enough Software Architecture: A Risk-driven Approach. Marshall & Brainerd,
ISBN: 9780984618101. [Online]. Available:
https://books.google.com/books?id=ITsWdAAzVYMC.

[8] Palo alto networks CEO stresses modern, integrated cybersecurity. [Online]. Available:
https://www.cnbc.com/2023/08/21/palo-alto-networks-ceo-

102

https://doi.org/10.1016/j.procs.2014.03.103
https://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
https://www.cs.cmu.edu/afs/cs/project/able/ftp/intro_softarch/intro_softarch.pdf
https://oig.nasa.gov/docs/IG-19-022.pdf
https://www.nasa.gov/connect/ebooks/nasa-systems-engineering-handbook
https://www.nasa.gov/connect/ebooks/nasa-systems-engineering-handbook
https://csrc.nist.gov/projects/security-content-automation-protocol
https://csrc.nist.gov/projects/security-content-automation-protocol
https://doi.org/10.1109/words.2003.1218078
https://books.google.com/books?id=ITsWdAAzVYMC
https://www.cnbc.com/2023/08/21/palo-alto-networks-ceo-stresses-modern-integrated-cybersecurity.html
https://www.cnbc.com/2023/08/21/palo-alto-networks-ceo-stresses-modern-integrated-cybersecurity.html

BIBLIOGRAPHY

stresses-modern-integrated-cybersecurity.html (visited on
08/22/2023).

[9] J. Holmes and G. Pruitt, “Assessment of the NASA flight assurance review program,”
ARINC Research Corporation, Annapolis, MD, Tech. Rep., 1983. [Online]. Available:
https://ntrs.nasa.gov/api/citations/19840015333/downloads/

19840015333.pdf.

[10] O. Saydjari,
Engineering Trustworthy Systems: Get Cybersecurity Design Right the First Time.
McGraw-Hill Education, ISBN: 9781260118186. [Online]. Available:
https://books.google.com/books?id=bEBiDwAAQBAJ.

[11] X. Ou, S. Govindavajhala, and A. W. Appel, “MulVAL: A logic-based network security
analyzer,” in
Proceedings of the 14th Conference on USENIX Security Symposium - Volume 14,
ser. SSYM’05, Berkeley, CA, USA: USENIX Association, 2005, p. 8. [Online].
Available: http://dl.acm.org/citation.cfm?id=1251398.1251406.

[12] “Fault tree handbook,” U.S. Nuclear Regulatory Commission, Tech. Rep. NUREG-0492,
1981. [Online]. Available:
https://www.nrc.gov/docs/ML1007/ML100780465.pdf.

[13] T. Ishimatsu, N. Leveson, J. Thomas, M. Katahira, Y. Miyamoto, and H. Nakao,
“Modeling and hazard analysis using STPA,” in
Proceedings of the 4th IAASS Conference, Making Safety Matter, ser. ESA Special
Publication, vol. 680, Huntsville, Alabama, USA: International Association for the
Advancement of Space Safety (IAASS), 2010, p. 31, ISBN: 978-92-9221-244-5.
[Online]. Available: https:
//dspace.mit.edu/bitstream/handle/1721.1/79639/Leveson_

Modeling%20and%20hazard.pdf?sequence=2&isAllowed=y (visited on
09/24/2020).

[14] W. Young and N. Leveson, “Systems thinking for safety and security,” in
Proceedings of the 29th Annual Computer Security Applications Conference,
ser. ACSAC ’13, New York, NY, USA: Association for Computing Machinery, 2013,
pp. 1–8, ISBN: 9781450320153. DOI: 10.1145/2523649.2530277. [Online].
Available: https://doi-
org.proxy.library.cmu.edu/10.1145/2523649.2530277.

[15] “Mission-based risk assessment process for cyber (MRAP-c) guidebook,” US Air Force,
Tech. Rep. Version 2.1, 2010.

103

https://www.cnbc.com/2023/08/21/palo-alto-networks-ceo-stresses-modern-integrated-cybersecurity.html
https://www.cnbc.com/2023/08/21/palo-alto-networks-ceo-stresses-modern-integrated-cybersecurity.html
https://www.cnbc.com/2023/08/21/palo-alto-networks-ceo-stresses-modern-integrated-cybersecurity.html
https://ntrs.nasa.gov/api/citations/19840015333/downloads/19840015333.pdf
https://ntrs.nasa.gov/api/citations/19840015333/downloads/19840015333.pdf
https://books.google.com/books?id=bEBiDwAAQBAJ
http://dl.acm.org/citation.cfm?id=1251398.1251406
https://www.nrc.gov/docs/ML1007/ML100780465.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/79639/Leveson_Modeling%20and%20hazard.pdf?sequence=2&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/79639/Leveson_Modeling%20and%20hazard.pdf?sequence=2&isAllowed=y
https://dspace.mit.edu/bitstream/handle/1721.1/79639/Leveson_Modeling%20and%20hazard.pdf?sequence=2&isAllowed=y
https://doi.org/10.1145/2523649.2530277
https://doi-org.proxy.library.cmu.edu/10.1145/2523649.2530277
https://doi-org.proxy.library.cmu.edu/10.1145/2523649.2530277

BIBLIOGRAPHY

[16] M. Stamatelatos, H. Dezfuli, G. Apostolakis, et al., “Probabilistic risk assessment
procedures guide for NASA managers and practitioners,” NASA, Tech. Rep., 2011.
[Online]. Available: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.
nasa.gov/20120001369.pdf.

[17] J. G. Rivera, A. A. Danylyszyn, C. B. Weinstock, L. R. Sha, and M. J. Gagliardi, “An
architectural description of the simplex architecture.,” Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, Tech. Rep., 1996. [Online]. Available:
http://resources.sei.cmu.edu/library/asset-

view.cfm?AssetID=12521.

[18] G. Klein, J. Andronick, K. Elphinstone, et al., “Comprehensive formal verification of an
OS microkernel,” ACM Transactions on Computer Systems (TOCS), vol. 32, no. 1,
p. 2, 2014, ISSN: 0734-2071. DOI: 10.1145/2560537.

[19] C. Hawblitzel, J. Howell, M. Kapritsos, et al., “IronFleet: Proving practical distributed
systems correct,” in
Proceedings of the ACM Symposium on Operating Systems Principles (SOSP), 2015.
DOI: 10.1145/2815400.2815428.

[20] O. M. Sheyner, “Scenario graphs and attack graphs,” Copyright - Database copyright
ProQuest LLC; ProQuest does not claim copyright in the individual underlying works;
Last updated - 2020-05-08, Ph.D. dissertation, 2004.

[21] S. Jha and J. M. Wing, “Survivability analysis of networked systems,”
Proceedings of the 23rd International Conference on Software Engineering. ICSE 2001,
pp. 307–317, 2001. DOI: 10.1109/icse.2001.919104.

[22] L. Wang, M. Albanese, and S. Jajodia, “SpringerBriefs in computer science,” 2014,
ISSN: 2191-5768. DOI: 10.1007/978-3-319-04612-9.

[23] D. Seto, B. Krogh, L. Sha, and A. Chutinan, “Dynamic control system upgrade using the
simplex architecture,” IEEE Control Systems, vol. 18, no. 4, pp. 72–80, 1998, ISSN:
1066-033X. DOI: 10.1109/37.710880.

[24] S.-W. Cheng, D. Garlan, and B. Schmerl, “Evaluating the effectiveness of the rainbow
self-adaptive system,”
2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems,
pp. 132–141, 2009, ISSN: 2157-2305. DOI: 10.1109/seams.2009.5069082.

[25] C. Zhang, “Behavioral robustness of software system designs,” 2025. DOI:
10.1184/r1/28500467.v1. [Online]. Available:
https://kilthub.cmu.edu/articles/thesis/Behavioral_

Robustness_of_Software_System_Designs/28500467.

104

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120001369.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20120001369.pdf
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12521
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12521
https://doi.org/10.1145/2560537
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1109/icse.2001.919104
https://doi.org/10.1007/978-3-319-04612-9
https://doi.org/10.1109/37.710880
https://doi.org/10.1109/seams.2009.5069082
https://doi.org/10.1184/r1/28500467.v1
https://kilthub.cmu.edu/articles/thesis/Behavioral_Robustness_of_Software_System_Designs/28500467
https://kilthub.cmu.edu/articles/thesis/Behavioral_Robustness_of_Software_System_Designs/28500467

BIBLIOGRAPHY

[26] W. S. Lee, D. L. Grosh, F. A. Tillman, and C. H. Lie, “Fault tree analysis, methods, and
applications – a review,” IEEE Transactions on Reliability, vol. R-34, no. 3,
pp. 194–203, 1985, ISSN: 0018-9529. DOI: 10.1109/tr.1985.5222114.

[27] P. L. Goddard, “Software FMEA techniques,”
Annual Reliability and Maintainability Symposium. 2000 Proceedings. International Symposium on Product Quality and Integrity (Cat. No.00CH37055),
pp. 118–123, 2000, ISSN: 0149-144X. DOI: 10.1109/rams.2000.816294.

[28] D. J. Reifer, “Software failure modes and effects analysis,”
IEEE Transactions on Reliability, vol. R-28, no. 3, pp. 247–249, 1979, ISSN:
0018-9529. DOI: 10.1109/tr.1979.5220578.

[29] “The digital arms trade; cyber-security,” English, The Economist, vol. 406, no. 8829,
pp. 65–66, 2013, Copyright - (Copyright 2013 The Economist Newspaper Ltd. All rights
reserved.; Document feature - Charts; Last updated - 2017-11-20; CODEN - ECSTA3.
[Online]. Available: https://search-proquest-com.proxy.library.
cmu.edu/docview/1321932258?accountid=9902.

[30] D. Garlan, F. Bachmann, J. Ivers, et al.,
Documenting Software Architectures: Views and Beyond, 2nd. Addison-Wesley
Professional, 2010, ISBN: 9780321552686.

[31] “ISO/IEC/IEEE international standard - software, systems and enterprise – architecture
processes,” ISO/IEC/IEEE 42020:2019(E), pp. 1–126, 2019. DOI:
10.1109/ieeestd.2019.8767004.

[32] M. Boddy and T. Dean, “Solving time-dependent planning problems,” in
Proceedings of the 11th International Joint Conference on Artificial Intelligence - Volume 2,
ser. IJCAI’89, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
pp. 979–984.

[33] K. Stouffer, V. Pillitteri, S. Lightman, M. Abrams, and A. Hahn, “Guide to industrial
control systems (ICS) security,” DOI: 10.6028/nist.sp.800-82r2.

[34] “Secure data transfer guidance for industrial control and SCADA systems,” Pacific
Northwest National Laboratory, Tech. Rep. [Online]. Available:
https://www.pnnl.gov/main/publications/external/technical_

reports/PNNL-20776.pdf (visited on 02/08/2023).

[35] K. Hardy, Enterprise Risk Management A Guide for Government Professionals, eng.
Hoboken: Wiley, 2014, ISBN: 1-118-91112-1.

[36] B. I. Koerner,
Inside the OPM hack, the cyberattack that shocked the US government undefined WIRED,
Oct. 2016. [Online]. Available: https://www.wired.com/2016/10/inside-
cyberattack-shocked-us-government/ (visited on 03/24/2025).

105

https://doi.org/10.1109/tr.1985.5222114
https://doi.org/10.1109/rams.2000.816294
https://doi.org/10.1109/tr.1979.5220578
https://search-proquest-com.proxy.library.cmu.edu/docview/1321932258?accountid=9902
https://search-proquest-com.proxy.library.cmu.edu/docview/1321932258?accountid=9902
https://doi.org/10.1109/ieeestd.2019.8767004
https://doi.org/10.6028/nist.sp.800-82r2
https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-20776.pdf
https://www.pnnl.gov/main/publications/external/technical_reports/PNNL-20776.pdf
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/
https://www.wired.com/2016/10/inside-cyberattack-shocked-us-government/

BIBLIOGRAPHY

[37] N. N. Taleb, The black swan : the impact of the highly improbable (Business book
summary), eng, First Edition. New York: Random House, 2007, ISBN: 9781400063512.

[38] T. M. Chen and S. Abu-Nimeh, “Lessons from stuxnet,” Computer, vol. 44, no. 4,
pp. 91–93, 2011, ISSN: 0018-9162. DOI: 10.1109/mc.2011.115. [Online].
Available: http://dx.doi.org/10.1109/MC.2011.115.

[39] P. K. Manadhata and J. M. Wing, “An attack surface metric,”
IEEE Transactions on Software Engineering, vol. 37, no. 3, pp. 371–386, 2011, ISSN:
0098-5589. DOI: 10.1109/tse.2010.60.

[40] NVD - home. [Online]. Available: https://nvd.nist.gov/ (visited on
12/21/2020).

[41] Pcarbonn/pyDatalog: A datalog implementation in python. [Online]. Available:
https://github.com/pcarbonn/pyDatalog (visited on 11/28/2023).

[42] PRISM - probabilistic symbolic model checker. [Online]. Available:
https://www.prismmodelchecker.org/ (visited on 11/30/2023).

[43] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of probabilistic
real-time systems,” in
Proc. 23rd International Conference on Computer Aided Verification (CAV’11),
ser. LNCS, vol. 6806, Springer, pp. 585–591. DOI:
10.1007/978-3-642-22110-1_47.

[44] D. Jackson, “Alloy,” Communications of the ACM, vol. 62, no. 9, pp. 66–76, 2019,
ISSN: 0001-0782. DOI: 10.1145/3338843.

[45] R. Ross, V. Pillitteri, R. Graubart, D. Bodeau, and R. McQuaid, “Developing
cyber-resilient systems :,” 2021. DOI: 10.6028/nist.sp.800-160v2r1.

[46] Recommended cybersecurity practices for industrial control systems. [Online].
Available: https://www.cisa.gov/sites/default/files/
publications/Cybersecurity_Best_Practices_for_Industrial_

Control_Systems.pdf (visited on 09/14/2022).

[47] About security zones. [Online]. Available: https://www.cisco.com/assets/
sol/sb/isa500_emulator/help/guide/ag1463340.html (visited on
09/20/2022).

[48]
Recommended practice: Improving industrial control system cybersecurity with defense-in-depth strategies.
[Online]. Available: https://www.cisa.gov/uscert/sites/default/
files/recommended_practices/NCCIC_ICS-

CERT_Defense_in_Depth_2016_S508C.pdf (visited on 09/21/2022).

106

https://doi.org/10.1109/mc.2011.115
http://dx.doi.org/10.1109/MC.2011.115
https://doi.org/10.1109/tse.2010.60
https://nvd.nist.gov/
https://github.com/pcarbonn/pyDatalog
https://www.prismmodelchecker.org/
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1145/3338843
https://doi.org/10.6028/nist.sp.800-160v2r1
https://www.cisa.gov/sites/default/files/publications/Cybersecurity_Best_Practices_for_Industrial_Control_Systems.pdf
https://www.cisa.gov/sites/default/files/publications/Cybersecurity_Best_Practices_for_Industrial_Control_Systems.pdf
https://www.cisa.gov/sites/default/files/publications/Cybersecurity_Best_Practices_for_Industrial_Control_Systems.pdf
https://www.cisco.com/assets/sol/sb/isa500_emulator/help/guide/ag1463340.html
https://www.cisco.com/assets/sol/sb/isa500_emulator/help/guide/ag1463340.html
https://www.cisa.gov/uscert/sites/default/files/recommended_practices/NCCIC_ICS-CERT_Defense_in_Depth_2016_S508C.pdf
https://www.cisa.gov/uscert/sites/default/files/recommended_practices/NCCIC_ICS-CERT_Defense_in_Depth_2016_S508C.pdf
https://www.cisa.gov/uscert/sites/default/files/recommended_practices/NCCIC_ICS-CERT_Defense_in_Depth_2016_S508C.pdf

BIBLIOGRAPHY

[49] C. P. Shelton, “Scalable graceful degradation for distributed embedded systems,”
Copyright - Database copyright ProQuest LLC; ProQuest does not claim copyright in
the individual underlying works; Last updated - 2020-05-08, Ph.D. dissertation, 2003.

[50] Secure architecture design undefined CISA. [Online]. Available:
https://us-cert.cisa.gov/ics/Secure-Architecture-Design

(visited on 09/13/2020).

[51] I.-C. MIHAI, S, . PRUNĂ, and I.-D. BARBU, “Cyber kill chain analysis,”
International Journal of Information Security and Cybercrime, vol. 3, no. 2, pp. 37–42,
2014, ISSN: 2285-9225. DOI: 10.19107/ijisc.2014.02.04. [Online]. Available:
https://www.lockheedmartin.com/content/dam/lockheed-

martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_

Kill_Chain.pdf.

[52] “MITRE ATT&CK: Design and philosophy,” MITRE, Tech. Rep. MP180360R1, 2020.
[Online]. Available: https://attack.mitre.org/docs/ATTACK_Design_
and_Philosophy_March_2020.pdf.

[53] P. E. Kaloroumakis and M. J. Smith, “Toward a knowledge graph of cybersecurity
countermeasures,” MITRE, Tech. Rep., 2020. [Online]. Available:
https://d3fend.mitre.org/resources/D3FEND.pdf.

[54] RapidEye - eoPortal directory - satellite missions. [Online]. Available:
https://directory.eoportal.org/web/eoportal/satellite-

missions/r/rapideye (visited on 02/16/2022).

[55]
DODAF - DOD architecture framework version 2.02 - DOD deputy chief information officer,
Mar. 2011. [Online]. Available: https:
//dodcio.defense.gov/Library/DoD-Architecture-Framework/

(visited on 09/02/2020).

107

https://us-cert.cisa.gov/ics/Secure-Architecture-Design
https://doi.org/10.19107/ijisc.2014.02.04
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://attack.mitre.org/docs/ATTACK_Design_and_Philosophy_March_2020.pdf
https://attack.mitre.org/docs/ATTACK_Design_and_Philosophy_March_2020.pdf
https://d3fend.mitre.org/resources/D3FEND.pdf
https://directory.eoportal.org/web/eoportal/satellite-missions/r/rapideye
https://directory.eoportal.org/web/eoportal/satellite-missions/r/rapideye
https://dodcio.defense.gov/Library/DoD-Architecture-Framework/
https://dodcio.defense.gov/Library/DoD-Architecture-Framework/

Appendix A

Acronyms

108

Acronyms

ACOA Automated Course of Action

C&C Component-and-Connector

CAN Controller Area Network

CCSDS Consultative Committee for Space Data Systems

COA Course of Action

DORA Defensive degradation of Resilient Architectures

ETA Event Tree Analysis

FMEA Failure Mode and Effects Analysis

FMECA Failure Mode, Effects, and Criticality Analysis

FTA Fault Tree Analysis

GUI Graphical User Interface

HMI Human Machine Interface

ICS Industrial Control System

IG Inspector General

JPL Jet Propulsion Laboratory

LAN Local Area Network

MRAP-C Mission-based Risk Assessment Process for Cyber

MSL Mars Science Laboratory

NASA National Aeronautics and Space Administration

109

APPENDIX A. ACRONYMS

NIST National Institute of Standards and Technology

OPC Open Platform Communications

PDF Probability Density Function

PDR Preliminary Design Review

PRA Probabilistic Risk Assessment

RQ Research Question

RTU Remote Terminal Unit

SAT Satisfiability

SCADA Supervisory Control And Data Acquisition

SIEM Security Information and Event Management

SME Subject Matter Expert

SMT Satisfiability Modulo Theories

STPA Systems Theoretic Process Analysis

STPA-Sec Systems Theoretic Process Analysis-Security

TTPs Tactics, Techniques, and Procedures

VPN Virtual Private Network

WAN Wide Area Network

110

Appendix B

ICS Exemplar System Description in
Datalog

1 #Components, Types, and Vulnerabilities

2 + isType(’opc’,’opcT’)

3 + isVulnerable(’opcT’,’opcExploit’,1.0,0.0,0.0,0.0)

4 + hasCredentials(’opc’,[’admin’])

5 + usesCredential(’opc’,’admin’)

6

7 + isType(’hmi’,’hmiT’)

8 + isVulnerable(’hmiT’,’hmiExploit’,1.0,0.0,0.0,0.0)

9 + hasCredentials(’hmi’,[])

10

11 + isType(’scada’,’scadaT’)

12 + isVulnerable(’scadaT’,’scadaExploit’,1.0,0.0,0.0,0.0)

13 + hasCredentials(’scada’,[])

14

15 + isType(’engineerWorkstation’,’engineerWorkstationT’)

16 + isVulnerable(’engineerWorkstationT’,’engineerWorkstationExploit’

,1.0,0.0,0.0,0.0)

17 + hasCredentials(’engineerWorkstation’,[])

18

19 + isType(’historian’,’historianT’)

20 + isVulnerable(’historianT’,’historianExploit’,1.0,0.0,0.0,0.0)

21 + hasCredentials(’historian’,[])

22

23 + isType(’ntp’,’ntpT’)

24 + isVulnerable(’ntpT’,’ntpExploit’,1.0,0.0,0.0,0.0)

25 + hasCredentials(’ntp’,[])

26

27 + isType(’switchA’,’switch’)

28 + isVulnerable(’switch’,’switchExploit’,0.0,1.0,1.0,1.0)

111

APPENDIX B. ICS EXEMPLAR SYSTEM DESCRIPTION IN DATALOG

29 + hasCredentials(’switchA’,[])

30

31 + isType(’switchB’,’switch’)

32 + hasCredentials(’switchB’,[])

33

34 + isType(’dmzFirewall’,’firewallT’)

35 + isVulnerable(’dmzFirewallT’,’dmzFirewallExploit’,1.0,0.0,0.0,0.0)

36 + hasCredentials(’dmzFirewall’,[])

37

38 + isType(’printer’,’printerT’)

39 + isVulnerable(’printerT’,’printerExploit’,1.0,0.0,0.0,0.0)

40 + hasCredentials(’printer’,[])

41

42 + isType(’secondaryHistorian’,’historianT’)

43 + hasCredentials(’secondaryHistorian’,[])

44

45 + isType(’vpn’,’vpnT’)

46 + isVulnerable(’vpnT’,’vpnExploit’,1.0,0.0,0.0,0.0)

47 + hasCredentials(’vpn’,[])

48

49 + isType(’relay1’,’relayT’)

50 + isVulnerable(’relayT’,’relayExploit’,1.0,0.0,0.0,0.0)

51 + hasCredentials(’relay1’,[])

52

53 + isType(’relay2’,’relayT’)

54 + hasCredentials(’relay2’,[])

55

56 + isType(’rtus’,’rtuT’)

57 + isVulnerable(’rtuT’,’rtuExploit’,1.0,0.0,0.0,0.0)

58 + hasCredentials(’rtus’,[])

59

60 # Attacker Profile

61 probCapability[0.0] = 0.2

62 probCapability[1.0] = 0.2

63 probCapability[2.0] = 0.2

64 probCapability[3.0] = 0.2

65 probCapability[4.0] = 0.2

66 + compromised(’vpn’,1.0,True,True,True)

67 + compromised(’printer’,0.5,True,True,True)

68

69 # Data Flows

70 + producesData(’hmi’,’setPointsRestData’)

71 + consumesData(’hmiF’,[’hmi’],’statusRestData’,0.0,0.75,0.25)

72

73

74 + consumesData(’monitoringF’,[’printer’],’statusRestData’,0.0,0.75,0.25)

75 + consumesData(’monitoringF’,[’printer’],’setPointsRestData’,0.0,0.75,0.25)

112

76

77 + consumesData(’relay1F’,[’relay1’],’actionsModbusData’,0.0,0.75,0.25)

78

79 + consumesData(’relay2F’,[’relay2’],’actionsModbusData’,0.0,0.75,0.25)

80

81 + producesData(’rtus’,’statusModbusData’)

82

83 + consumesData(’scadaF’,[’scada’],’actionsRestData’,0.0,0.75,0.25)

84 + consumesData(’scadaF’,[’scada’],’statusRestData’,0.0,0.75,0.25)

85 + consumesData(’scadaF’,[’scada’],’setPointsRestData’,0.0,0.75,0.25)

86 + producesData(’scada’,’actionsRestData’)

87

88 + consumesData(’workstationF’,[’engineerWorkstation’],’actionsRestData’

,0.0,0.75,0.25)

89 + consumesData(’workstationF’,[’engineerWorkstation’],’statusRestData’

,0.0,0.75,0.25)

90 + consumesData(’workstationF’,[’engineerWorkstation’],’setPointsRestData’

,0.0,0.75,0.25)

91

92 + consumesData(’historianF’,[’historian’],’actionsRestData’,0.0,0.75,0.25)

93 + consumesData(’historianF’,[’historian’],’statusRestData’,0.0,0.75,0.25)

94 + consumesData(’historianF’,[’historian’],’setPointsRestData’

,0.0,0.75,0.25)

95 + consumesData(’historianF’,[’historian’],’timeData’,0.0,0.75,0.25)

96

97 + producesData(’ntp’,’timeData’)

98

99 + consumesData(’opcF’,[’opc’],’actionsRestData’,0.0,0.75,0.25)

100 + consumesData(’opcF’,[’opc’],’statusModbusData’,0.0,0.75,0.25)

101 + producesData(’opc’,’actionsModbusData’)

102 + producesData(’opc’,’statusRestData’)

103

104 #Functions

105

106 + utility(’transmissionMgmt’,50.0)

107 + utility(’transmission’,100.0)

108

109 + fNodeOr(’transmissionMgmt’,[’transmission’])

110 + fNodeAnd(’transmissionMgmt’,[’transmission’])

111 + fNodeAnd(’transmission’,[’opcF’,’hmiF’,’scadaF’,’relaysF’,’historianF’,’

workstationF’])

112 + fNodeAnd(’relaysF’,[’relay1F’,’relay2F’])

Listing B.1: ICS Exemplar Sample in Datalog

113

Appendix C

Attack Trace Generation in Datalog

1 #Base case special case for no capability

2 attackPaths(SourceService,SourceService,P,[],0) <= compromised(

SourceService) & (P==[])

3 #Base case

4 attackPaths(SourceService,TargetService,P,[VulnType],TotalC) <= compromised

(SourceService) & cToWithPrivileges(SourceService,TargetService,VulnType

,TotalC) & (P==[]) & (TotalC <= MaxR)#Inductive case, new exploit

5 attackPaths(SourceService,TargetService,P,E,TotalC) <= attackPaths(

SourceService,IntermediateService1,P2,E2,TotalC2) & cToWithPrivileges(

IntermediateService1,TargetService,VulnType,C) & (SourceService!=

TargetService) & (SourceService._not_in(P2)) & (TargetService._not_in(P2

)) & (P==P2+[IntermediateService1]) & (VulnType._not_in(E2)) & (E==E2+[

VulnType]) & (TotalC==TotalC2+C) & (TotalC2+C <= MaxR)

6 #Inductive case, previously-used exploit

7 attackPaths(SourceService,TargetService,P,E,TotalC) <= attackPaths(

SourceService,IntermediateService1,P2,E2,TotalC2) & cToWithPrivileges(

IntermediateService1,TargetService,VulnType,C) & (SourceService!=

TargetService) & (SourceService._not_in(P2)) & (TargetService._not_in(P2

)) & (P==P2+[IntermediateService1]) & (VulnType._in(E2)) & (E==E2+[

VulnType]) & (TotalC==TotalC2) & (TotalC2+C <= MaxR)

Listing C.1: Attack Trace Generation

The first base case applies to the case in which the starting point in the trace is compromised,
but no others are compromised. The second base case applies to the case in which the starting
point in the trace is compromised, and a vulnerability in a neighboring component allows for
extension of the attack trace from the starting point to the neighbor of the starting point. There
are two inductive cases. Each applies to a case in which an existing trace can be extended to an
additional node. In one case, an existing exploit is reused to extend the attack trace at no extra
cost to the attacker. In the other case, the attacker must use a portion of her remaining
capability budget to generate a new exploit and extend the trace.

114

Appendix D

Algorithm for Estimated Residual
Utility

115

APPENDIX D. ALGORITHM FOR ESTIMATED RESIDUAL UTILITY

function ESTRESIDUALUTILITY(𝑎, 𝐶𝑎𝑝)
𝑏𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑈𝑡𝑖𝑙 ← UTIL(𝑎)
𝑢 ← 0
𝑎 ← ASSUMEALLVULNERABILITIES(𝑎)
for 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0..𝑚𝑎𝑥(𝐶𝑎𝑝) do

𝑇 ← ALLATTACKTRACES(𝐴, 𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦)
𝑤𝑜𝑟𝑠𝑡𝐶𝑎𝑠𝑒𝑈𝑡𝑖𝑙 ← 𝑏𝑒𝑠𝑡𝐶𝑎𝑠𝑒𝑈𝑡𝑖𝑙

for all 𝑡 ⊂ 𝑇 do
𝑎 ← APPLYATTACKTRACE(𝑎, 𝑡)
𝑎𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑈𝑡𝑖𝑙 ← 𝑢𝑡𝑖𝑙 (𝑎)
if 𝑎𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑈𝑡𝑖𝑙 < 𝑤𝑜𝑟𝑠𝑡𝐶𝑎𝑠𝑒𝑈𝑡𝑖𝑙 then

𝑤𝑜𝑟𝑠𝑡𝐶𝑎𝑠𝑒𝑈𝑡𝑖𝑙 ← 𝑎𝑡𝑡𝑎𝑐𝑘𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑈𝑡𝑖𝑙

end if
end for
𝑢 ← 𝑢 + 𝐶𝑎𝑝(𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟𝐶𝑎𝑝𝑎𝑏𝑖𝑙𝑖𝑡𝑦) ∗ 𝑤𝑜𝑟𝑠𝑡𝐶𝑎𝑠𝑒𝑈𝑡𝑖𝑙

end for
return 𝑢

end function

Algorithm 1: Residual utility estimation

116

	Introduction
	Motivating Example
	Approach Overview
	Thesis Statement
	Elaboration of Thesis Statement
	Contributions

	Background and Related Work
	Motivating Example Discussion
	Requirements
	Prior Work
	Resilience
	Degradation
	Formal Verification

	Gaps and Remaining Problems
	A Path Forward

	Approach
	Approach Goals
	Usage Scenarios
	Architecture and Design Time
	Run Time

	Key Assertions
	High Level Approach
	Running Example
	Rationale for Architectural Level of Abstraction
	Architectural Representations
	View Selection Rationale
	Functional View
	Component-and-Connector (Data Flow) View
	Deployment View

	Attacker Representation
	Defender Representation
	Uncertainty Representation
	Process Diagram, Information Requirements, and Burden
	Tooling

	Implementation
	Programming Languages
	Views and Styles
	Deployment View in Datalog
	Component-and-Connector View in Datalog
	Functional View in Datalog

	Attacker and Defender Profiles
	Attacker Profile
	Defender Profile and COAs

	Model Evaluations
	Generation of Architecture Alternatives
	Attack Scenario Generation
	Calculation of Estimated Residual Utility

	Validation
	Definition of Validation Criteria
	Effectiveness: Evaluation of Residual Risk
	Scalability: Evaluation of Architecture Alternatives
	Uncertainty in Tool Inputs: Sensitivity
	Usability: Labor Requirements
	Usability: Explainability
	Realism: Attacker Richness
	Realism: Defender Richness

	Validation of Non-Enterprise Network Systems

	Discussion and Conclusion
	Key Assumptions and Decisions
	Temporality
	Cyberphysical Destruction
	Decoys and Deception
	Exfiltration of Data
	Attacker Model
	Courses of Action
	Dataflows
	Functionality Instead of Criticality
	Implementation in Datalog
	Availability of Views Documentation
	Abilities of SMEs
	Effectiveness
	Validation
	Design and Run Time Integration

	Future Work
	Scaling
	Usability
	Explainability
	Tabula Rasa Architecture Generation

	Conclusion

	References
	Acronyms
	ICS Exemplar System Description in Datalog
	Attack Trace Generation in Datalog
	Algorithm for Estimated Residual Utility

