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Abstract

Modern software development depends heavily on third-party libraries and frameworks, which expose their

functionality through APIs and bring substantial productivity gains. However, as libraries evolve to meet new

technical or market demands, clients must often adapt their code to accommodate breaking changes or even

newer libraries. This form of software maintenance, known as API refactoring, is a time-consuming and error-

prone task, which has led to significant interest in automating it. A common approach to automating API

refactoring is to mine historical data from client repositories to extract match-replace rules. However, these

approaches are limited by the availability of high-quality examples: many clients do not refactor in public, and

those that do leave insufficient traces to learn from.

This thesis presents a set of alternative methods for learning API migration rules without requiring large-

scale mining of client code. Instead, we explore three complementary sources of information: documentation,

the API development process, and natural language. First, we use API documentation to infer mappings be-

tween old and new APIs, which guide the synthesis of migration scripts. Second, we extract migration knowl-

edge from the evolution of the library itself, especially from pull requests that introduce breaking changes and

update internal tests. Finally, we show that large language models trained on natural language artifacts can

be used to generate migration examples, which are then validated and generalized into reusable scripts. We

operationalize these ideas in four refactoring tools, each targeting a different aspect of the problem. These

tools combine program synthesis with machine learning to synthesize and apply migrations automatically.

We evaluated our techniques in real-world Python libraries and synthetic benchmarks, showing that it is pos-

sible to automate migration effectively using only indirect sources of information, without requiring curated

datasets or repository mining.
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1.4 Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Motivation

Modern software development relies heavily on third-party libraries and frameworks. These libraries facili-

tate software reuse [1], allow developers to leverage quality implementations for a desired functionality, and

yield significant productivity benefits [2]. Libraries expose their functionality through Application Programming

Interfaces (APIs). APIs serve as contracts between the library developers and its clients [3], providing function-

ality through a set of functions and methods, and hiding concrete implementation details [4, 5]. Although

stable API selection is desirable, the dynamic nature of software often renders it impractical. This dynamism

in software [6] is driven by changing technical requirements and shifts in stakeholder or market needs [7]. As

requirements and libraries evolve, clients may need to migrate APIs to accommodate these shifts [7]. Further-
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more, APIs themselves might break, become deprecated [8], or become exploitable, posing severe security

risks, thus forcing downstream clients to update their usage accordingly.

The task of changing APIs to accommodate non-functional changes is a specific instance of software refac-

toring, a crucial software engineering practice. Refactoring involves modifying code with the goal of enhanc-

ing its quality and reducing its overall complexity [9]. Broadly, refactoring facilitates new feature develop-

ment [10], assists managing technical debt [11], and prevents codebase decay [12]. Neglecting to refactor

can escalate future costs; for example, the Consortium for Information & Software Quality (CISQ) estimates

the cost to address the accumulated technical debt in the U.S. at approximately $1.31 trillion [13].

However, refactoring is generally labor-intensive and error-prone [14]. Even seemingly straightforward

tasks, like moving between two libraries that provide similar functionality, can be challenging and tricky. For

instance, PyTorch[15] and Tensorflow[16], two of the most popular deep learning libraries, have different con-

ventions regarding the order of values in tensor dimensions, which can lead to subtle bugs during a migration.

Migrating APIs requires significant domain-specific expertise in both the source and target libraries [17]. Fur-

thermore, achieving the desired functionality often extends beyond simple method mappings. Developers

may need to write additional boilerplate code, figure out the correct argument combination in the replace-

ment API, and manage cascading changes like type migrations and removing/adding import statements.

Migration tasks are also difficult as APIs continuously evolve, often rendering prior knowledge obsolete.

The complexity of API refactoring has inspired numerous research efforts towards the automation of this

task. At a high level, the goal is to automatically infer and generalize API refactorings from minimal user/de-

veloper input in order to reapply them on a large scale. These refactorings include migrations, updates from

breaking changes, or handling deprecations. Like in any automation task, the goal is to orchestrate refac-

toring in such a way that user intervention is minimal. However, full automation is hard, and existing tools

typically provide partial support rather than a fully integrated refactoring experience (e.g., [18–22]).

The most common approach to automated API refactoring is to use heuristics or learning algorithms

to establish mappings between APIs and create match-replace rules [23]. The data for these algorithms is

typically sourced from large-scale collaborative coding platforms like GitHub [24]. The data is obtained either

by mining commits from library client projects that have undergone migrations [19, 21, 22], and can also be

supplemented by information from new client projects in the most up-to-date APIs [18].

One significant challenge with these mining approaches is that the effectiveness of the tools is limited by

their reliance on mining data from client projects that have already refactored their APIs. Unfortunately, this

data is scarce. For example, a recent study found that 81.5% of projects maintain outdated dependencies [25].

Additionally, the mining process can only occur after clients begin transitioning between versions, precluding

use shortly after a new version of the library is released [26, 27]. On the other hand, unsupervised learn-

ing methods [28] circumvent the issue of pair-wise data scarcity. However, they require extensive training

data. This would in theory primarily benefit well-established libraries and APIs but, in practice unsupervised

2



methods are not as effective. Moreover, they cannot tackle lesser-known libraries and proprietary code.

1.2 Thesis

In this work, we present novel methods for automated API refactoring that require neither extensive training

data nor pairwise migration examples from downstream client projects. Specifically, we tackle two refactoring

challenges: 1. cross-library migrations, and 2. same-library migration to cope with breaking changes.

Our techniques are based on two different approaches:

1. inferring match-replace rules for updating APIs;

2. refactoring the APIs directly using a tool.

We observe that a wealth of high-quality information for automated API refactoring can be sourced from

API documentation, the development processes of the APIs, and other self-contained information in libraries,

along with natural language associated with the API development process.

Thesis Statement

Self-contained data in libraries and synthesis techniques enable automated API refactoring, by supporting

the generation of migration scripts and facilitating code migration without relying on pairwise training data.

Next, we explain the hypotheses behind the thesis statement.

1.2.1 API Documentation

APIs intended for widespread reuse are often reasonably well-documented [29]. The quality, quantity, and

structure of this documentation can vary widely [30]. However, as code meant to be called and reused by

unrelated client applications, documentation is often key to successful API uptake [30]. High-quality API doc-

umentation usually includes detailed descriptions of each function, method, and class, along with their ex-

pected inputs, outputs, and error conditions [31]. This information can be leveraged for classifying APIs,

finding alternatives, or adapting usage when breaking changes are introduced.

In general, documentation may also contain examples and best practices [31, 32], which can be analyzed

to infer latent properties of the APIs. These properties can then inform automated refactoring tools, ensuring

that the transformation results in a use case aligned with the API’s purpose. Furthermore, modern API doc-

umentation is increasingly enriched with metadata, such as annotations in dynamically typed programming

languages [33]. This metadata can also be leveraged to guide the automated refactoring process.

In the case of breaking API changes, documentation evolves alongside the API itself [34], reflecting changes

and deprecations in API behavior. If the documentation of evolving APIs provides transition examples from

3



old usage to new usages, or even natural language descriptions of how to adapt to the changes, then these

can also be leveraged for automated refactoring.

In short, our hypothesis is that we can: 1. leverage API documentation to establish mappings between closely

related APIs and libraries to facilitate API refactoring, 2. use examples and structured information from the docu-

mentation to guide the refactoring process, and 3. leverage metadata to increase the accuracy of the refactoring.

1.2.2 API Development Process

Pull requests have become the de facto standard for software development on collaborative platforms like

GitHub [35, 36]. In this method, a developer first clones the project (i.e., makes a personal copy of the project),

makes changes in their copy, and finally submits these changes to the central repository for review. Pull

requests typically include a title, a natural language description of the proposed changes, how they relate to

project milestones or issues, and a set of commits (i.e., code file changes). These are reviewed by a core group

of maintainers who decide whether to accept, request revisions, or reject the changes.

Pull requests involving API changes are also a rich source of data for mining transformation rules for API

refactoring. Our hypothesis is that by examining pull requests (PRs) submitted to libraries where APIs are

broken, we can identify and extract rules governing these changes. First, we can use tags in PRs to identify

API changes by searching for labels such as "deprecated", "breaking change", and "API change". If the PR cor-

responds to such an API change, we can use self-contained commits in the PRs to learn code transformation

rules for updating client code. The internal updates to the library source code resulting from the API change

(such as test case changes) serve as the ground truth for mining rules and adapting client code.

1.2.3 Natural Language

Software development involves much more than writing code—it is surrounded by a rich ecosystem of natural

language data, including commit messages, issue reports, discussions, and code comments [37]. Although

unstructured, this information plays a critical role in guiding and informing automated API refactoring tools.

Developers frequently describe intended API changes in documentation and issue trackers [38]. Because

of this, general-purpose large language models (LLMs) [39] trained on this data across many libraries are

well-positioned to assist in addressing breaking changes and migration tasks.

Moreover, LLMs, through pretraining on large-scale code corpora, implicitly learn joint representations

of APIs and the semantic relationships between them, including those across different libraries [40]. While

this embedded knowledge can be noisy or incomplete, it is often sufficient to generate synthetic data for

mining API migration patterns. Specifically, models can produce code snippets in both the source and target

libraries, along with tests to validate their behavioral equivalence. Through this generate-and-test strategy,

we can extract useful migration examples that form the backbone of automated migration tooling.
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In addition to synthetic data generation, other natural language signals are also valuable during refactor-

ing. Compiler error messages, for example, often highlight incorrect API usage and suggest potential fixes.

Interpreting these messages can help automated tools converge more quickly on the correct transformations.

1.2.4 Program Synthesis

So far, our observations have highlighted alternative data sources that can be leveraged for automated API

migration. In this section, we discuss how we will leverage them towards automated API refactoring. Specifi-

cally, we frame automated API refactoring as a program synthesis problem.

Program synthesis is a research area focused on automatically generating programs that comply with

a given specification, such as natural language or input-output examples [41]. In our work, we frame API

refactoring as a synthesis problem in two distinct ways:

1. Direct Migration using Synthesis: We approach the API refactoring problem by synthesizing programs

directly. Specifically, given a program that uses library 𝐴, our goal is to generate an equivalent program

that replaces all usages of 𝐴 with an alternative library 𝐵. Unlike the general setup in synthesis (such

as programming-by-example [41]), our specification is complete, that is, the source program fully de-

scribes the intended behavior of the program to be synthesized.

2. Script-based Migration Synthesis: Instead of generating code per se, we also learn migrations more

broadly and generalize them into edit or migration scripts that can be applied across multiple projects.

For example, we can generate a script that automatically migrates projects from 𝐴 to 𝐵. In this work,

we represent our scripts using declarative languages for matching and replacing code based on match-

replace rules [5, 23].

1.3 Evaluation Methodology

We test our hypotheses by developing automated API refactoring methods based upon them. The evaluation

of each method is as follows.

1.3.1 Metrics

To measure the effectiveness and efficiency of our techniques, we use the following metrics:

1. Refactoring Accuracy: This metric evaluates the quality of the refactorings produced by our tools.

Specifically, for fixing breaking changes, we upgrade client projects to a new library version (e.g., 𝑣1

to 𝑣2) and run their tests post-upgrade both before and after refactoring. In the context of library

migrations, we migrate the code and run the same test suite where feasible. If this is not possible, we

use automatically generated tests.
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2. Runtime Performance: We assess the runtime taken by our tools during refactoring. We also measure

the impact of each component of our proposed approaches in ablation studies. Finally, we compare our

tools to state-of-the-art alternatives where such comparison is possible and fair.

3. Refactoring Rule Accuracy: Validating refactoring rules is hard, as ground truth for the rule typically

does not exist, and there are infinitely many programs that could spur different behaviors from the rule.

Thus, instead, we manually validate the quality of the match-replace rules generated by our proposed

approach. Our manual analyses always take into consideration the context and the intent of the rule.

For rules to fix breaking changes, we examine documentation, developer comments, and online dis-

cussions to determine if our rule for addressing the breaking change preserves the original behavior.

We use inter-rater agreement [42] as outlined by best practices for all our manual validations.

1.3.2 Benchmark Datasets

The benchmarks used vary depending on the underlying task. To assess refactoring accuracy and runtime

performance, we rely on two types of benchmarks: real-world projects from GitHub and synthetic examples

written in python. Each benchmark instance is accompanied by a set of test cases, some of which are auto-

matically generated. These tests play a critical role in ensuring that the program’s behavior remains consistent

before and after refactoring. The benchmarks feature outdated API usages that require migration.

We choose to target python because it is the most widely used programming language today and repre-

sents a well-known gap in existing refactoring tooling [43].

To assess rule accuracy, we select relevant API migrations and breaking changes from open-source li-

braries, focusing particularly on ones where the author has direct expertise. We infer behavior-preserving

refactoring rules and validate their correctness by manually checking whether the match-replace rules are

generally applicable. This validation considers available documentation, developer discussions, and other

public resources.

1.4 Contributions and Outline

We propose several techniques and prototype tools based on our ideas:

• Synthesis-based Refactoring Using Documentation and Error Messages (Chapter 3): A novel tech-

nique, named SOAR, that uses readily available API documentation to learn API representations and

migrate code between libraries. SOAR uses program synthesis to automatically compute the correct

configuration of arguments and necessary glue code for API invocation. It also integrates the inter-

preter’s error messages to refine the search space during refactoring. This work was published in the

proceedings of the International Conference on Software Engineering 2021 [44].
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• Mining API Migration Rules from Pull Requests (Chapter 4): A novel technique, named MELT, that

generates lightweight API refactoring rules for fixing breaking changes by using data from the pull

requests that broke the API. The data is used in two ways: first, natural language descriptions and code

changes in pull requests are used to generate adaptation examples. The examples are then tested and

generalized into API transformation rules. Secondly, code changes to test cases within the library that

were adapted to cope with the breaking change are also used to mine rules. This work was published

in the proceedings of the International Conference on Automated Software Engineering 2023 [45].

• A Multi-Language Code Transformation Tool (Chapter 5): We develop a new declarative domain-

specific language (DSL), called PolyglotPiranha, for expressing interdependent multi-language code

transformations . The language aims to make lightweight transformation tools more expressive for

complex refactorings. The language takes inspiration from other lightweight match-replace languages

and enhances their design. We demonstrate the language and toolset effectiveness and expressiveness

in an industrial setting, as well as its ease of use. This work was published at the International Conference

on Programming Language Design and Implementation 2024 [5].

• Distilling code migration knowledge from LLMs (Chapter Chapter 6): We introduce a hybrid ap-

proach that leverages large language models to extract concrete API migration examples and then

generalizes these into reusable, rule-based transformation scripts in the PolyglotPiranha language.

This method transforms the LLM’s unstructured migration knowledge into testable and repeatable mi-

gration logic, eliminating the need for existing migration corpora or manual effort. This work is under

submission.

This work is a compilation of the papers discussed above.
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In this chapter, we delve into two fundamental concepts to this work and to modern software development

in general: Application Programming Interfaces (APIs) and refactoring. We start by offering a concise overview

of APIs, discussing their role in creating re-usable software systems (Section 2.1). Following this, we overview

the practice of refactoring in software engineering, a key process for enhancing code quality (Section 2.2). We

then address the challenges developers encounter during refactoring, emphasizing the need for automated

solutions (Section 2.3). We also give an overview of how researchers have developed automated approaches

for API refactoring, highlighting trends and gaps in this area (Section 2.4). Finally, we review recent work

leveraging large language models (LLMs) for source code transformation tasks, particularly refactoring and

library migration (Section 2.5).
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2.1 Application Programming Interfaces

Developers oftentimes build software meant for use by other software, rather than directly by end-users.

An important consideration in such cases is to decide which functionality is intended to be provided and the

abstractions to be exposed to developer clients. According to design best practices [46], there must be a

clear separation between the software’s functional requirements (what it does) and its concrete implemen-

tation (how it does it). This separation is critical to ensure that clients are not burdened with irrelevant im-

plementation details. The functionalities made available to clients are collectively known as an Application

Programming Interface, or API.

The term API has been loosely used to describe a wide array of concepts, interpreted differently across

technical domains [47]. Indeed, there is considerable debate about its meaning and usage [48]. However, in

this work, we use the term ’API’ to denote a software API, typically exposed and implemented as a library with

a collection of classes, functions, or methods (depending on the programming language) that expose certain

functionalities for other programmers to use. A single API can have multiple implementations (or none, if

abstract) in the form of bindings that share the same programming interface. For example, because Scala

and Java compile to compatible bytecode, Scala programs may use APIs implemented in Java.

Since APIs are intended for reuse, they often come with documentation, describing classes, methods,

and sometimes typical usage cases, design rationales, and performance discussions [49, 50]. Regardless of

what constitutes a particular API, the important underlying concept is that an API is a well-defined interface

providing specific services to other software components.

APIs are the cornerstone of modern software engineering. Modern applications are often built on top of

many APIs, which are also built upon other APIs. This approach yields significant productivity gains, allow-

ing developers to focus on their specific tasks. Various research studies have investigated API design [51],

evolution [52], and usability [53].

2.2 Refactoring

Real-world software is constantly evolving, often driven by the need for enhancements and changes to meet

new requirements [54]. As software adapts to additional functionality, code complexity tends to increase,

and the software drifts from its original design. This issue is further exacerbated when developers prioritize

short-term fixes over comprehensive, long-term solutions. While these immediate solutions might initially

appear cost-effective, they frequently result in significant, hidden long-term maintenance costs. Such esca-

lating complexity eventually leads to a gradual deterioration, a phenomenon known as technical debt [11]. The

longer technical debt remains unaddressed, the more ’interest’ it accrues, making it increasingly challenging

to develop new features and maintain existing code.

Providing accurate estimates for software maintenance spending is challenging, but it is widely accepted
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that the expenses related to software maintenance — including bug fixes, design enhancements, and code

restructuring — vastly exceed the cost of actual new feature development. Complex code often results in

extended development periods, subtle bugs, and increased cost of change [55]. Additionally, according to

Minelli et al. [56], developers allocate approximately 70% of their time to understanding code rather than

coding. Therefore, a well-thought-out design and adherence to best practices are crucial to reduce this ef-

fort [57].

One way to tackle this spiral of complexity is through a software engineering practice known as refactor-

ing. Refactoring is defined as the process of changing a software system in such a way that it does not alter the

external behavior of the code, yet improves its internal structure [9]. Sometimes, refactoring is colloquially used

in a more generic and less rigorous manner than this definition suggests, and indeed, some authors argue

that refactoring is not always behavior-preserving [58]. However, in this document, we are primarily con-

cerned with behavior-preserving refactorings, aiming to improve maintainability without external changes,

as refactorings that do not preserve behavior have limited potential for full automation (i.e., cannot be tested).

In general, a refactoring is parameterized as a sequence of program transformations applied either man-

ually or automatically with a tool, along with a specification that guarantees behavior preservation if satisfied.

In modern software development, tests are the most widely adopted form of specification. Formally, we run

a given program on a set of predefined inputs and then check if the observed output matches the expected

output. Although refactoring can be applied in different paradigms, we focus on imperative programming

languages. Many forms of refactoring also exist, like renaming variables, moving methods, migrating across

languages [59], or refactoring APIs [60] (the primary focus of this work).

There are two primary API refactoring tasks of interest: library migration and library updates. A library

migration involves replacing a third-party library (the source library) in a project with an alternative one (the

target library). In the case of a library update, the task is to replace an old version with its newer iteration.

Numerous factors can drive such migrations or updates, including (but not limited to) the introduction of

new features, performance enhancements, improved community support and documentation, compatibility

issues, license changes or restrictions, and deprecation, among others.

2.3 Challenges in Refactoring

The implementation and frequency of refactoring practices vary and are influenced by several factors.

Perception and Management Challenges. The majority of developers recognize the need for continuous

refactoring in the development life cycle [61]. However, developers also report that a significant barrier to

refactoring is lack of time, as they often need to prioritize immediate functional tasks over enhancements in

source code quality, either due to pressing deadlines, high workloads. [61]. A major obstacle to refactoring

implementation is the widespread perception that it slows down the development of new features [62]. This
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view poses a challenge in securing management support for refactoring initiatives, as the tangible benefits

of refactoring are often long-term and not immediate [63].

Other studies corroborate this issue, showing that refactoring, especially API refactoring, tends to be

delayed and postponed, leading to future compatibility challenges and maintenance overheads [26]. This

creates a paradox: while refactoring is intended to simplify development processes and reduce the cost of

changes, the prevailing industry practices and perceptions often prevent its effective implementation.

Refactoring in a small, single-developer codebase is hard enough; performing refactoring in large, in-

dustrial codebases with many developers introduces additional socio-technical complexities. Large projects

entail coordination across teams, agreement on design changes, and careful sequencing of refactorings to

avoid disrupting ongoing work. Kim et al. [14] reported that “the need for coordination with other develop-

ers and teams” was frequently mentioned as an inherent challenge when refactoring at Microsoft. Because

one team’s refactoring may impact modules owned by other teams, extensive communication and planning

are required. In agile environments, this is often at odds with fast iteration cycles, and in more plan-driven

environments, it may require bureaucratic change control. Either way, the overhead of coordination can dis-

courage refactoring altogether unless the benefits are very clear. Moreover, in distributed teams or large

organizations, not everyone may agree that a given refactoring is worthwhile, leading to social barriers. For

instance, a developer might refrain from improving a messy component if its original author or owner is

resistant to changes.

Interviews from the Windows refactoring effort revealed that having a designated refactoring team helped

bypass some of these issues, as that team had a mandate to make systemic improvements and could nego-

tiate changes across component boundaries [14, 58]. However, most projects do not have such dedicated

refactoring task forces; instead, individual developers must champion and justify each non-trivial refactoring,

which is a socio-technical negotiation that many prefer to avoid.

Risks Associated with Refactoring. In addition to time constraints and management challenges, developers

also perceive refactoring as a task fraught with risks. A recurring concern is the fear of inadvertently intro-

ducing bugs or causing regressions in existing functionalities. In a field study with Microsoft engineers, Kim

et al. [14] found that 76% of the participants acknowledge that refactoring is a task that leads to subtle bugs

and regressions. This perception has been observed and confirmed in other studies [64], noting a correlation

between API refactoring and an immediate increase in bugs. Moreover, developers also reported concerns

related to extra time required for code reviews, and dealing with merge conflicts, as well as risks of over-

engineering during the refactoring process. These risks add to the perception of refactoring as a fault-prone

activity, as highlighted in other studies [65].

Refactoring can also incur the cost of re-testing and re-validation. Even if no bugs are introduced, signif-

icant refactorings demand re-running the test suite and performing thorough reviews to ensure behavior is

unchanged. In the Microsoft field study [14], about 24% of developers pointed out that refactoring increases
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testing overhead, as all regression tests must pass after the changes. Many engineers reported that without

adequate tests, they simply “have no safety net” and thus avoid refactoring. One interviewee advised that “if

there are no tests. . . refactoring should not be done” given the inability to catch errors.

Lack of Tool Support and Automation. Empirical studies agree that the refactoring commands shipped with

modern IDEs are far from routine practice. Kim et al. [14] report that developers perform about 86 percent

of their refactorings by hand, and fully half of the respondents never invoke an automated command, even

when available. Participants cite three main reasons: tool edits are hard to merge and review, the engines

operate at too low a level of abstraction, and there is little support for confirming behavior preservation.

A survey by Vassallo et al. [61] also ranks the absence of automatic refactoring tooling as the third most

common barrier to continuous refactoring, mentioned by 16.7% of participants [61]. A recent systematic re-

view of API evolution literature lists improving the performance and usability of refactoring and migration

tools among the key open research challenges that must be addressed before widespread adoption is possi-

ble [27]. Industrial reflections echo the same need, emphasizing that robust automation is a prerequisite for

treating refactoring as a regular engineering task [66].

Another aspect of tool inadequacy is poor integration with other development workflows. Tools often

fail to support the broader refactoring process, such as incorporating large refactoring changes into version

control, code review, and continuous integration. Developers voiced the need for refactoring-aware code re-

view and merge tools [14]. Tempero et al. [67] report that source control systems were cited as a barrier:

one respondent noted that “source control makes [a large refactoring] quite painful,” as rename and move

operations do not map cleanly to line-based diffs, obscuring change history. This pain point can make teams

reluctant to accept refactoring contributions, as they complicate blame analysis and branch merges. More-

over, automated tools sometimes fail to guarantee behavior preservation in practice, undermining developer

trust. Murphy-Hill and Black [68] observed that many refactoring tools were not fully “fit for purpose,” i.e.,

they did not meet the principles of “safe, frequent, and unobtrusive” refactoring. For example, some tools do

not allow easy intermixing of small refactorings with other edits, which is how developers often work. Such

usability limitations may help explain the empirical finding that developers abort or undo a significant fraction

of automated refactoring operations [69].

Together, these findings point to a clear research gap: we still need refactoring engines that operate

on higher-level program concepts, integrate smoothly with version control, testing, and review workflows,

and provide developers with immediate evidence that intended behavior is preserved, along with realistic

effort–benefit estimates.
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2.4 Automated Techniques for API Refactoring

The challenges associated with refactoring have motivated multiple research efforts in automation. In this

section, we provide a brief overview of key ideas and trends in automated API refactoring.

2.4.1 Code Transformation Languages

As discussed in Section 2.2, a refactoring is parameterized as a sequence of program transformations. For

large-scale, automated refactoring, it is necessary to represent this sequence of transformations in a lan-

guage. Here, we give a brief overview of code transformation languages proposed over the years.

Code transformation languages and toolsets can be divided into declarative and imperative.

2.4.1.A Declarative Code Transformation Toolsets

Declarative languages for code transformations work with find-replace rules; each rule has two parts: (1) a

template for selecting the source code to be transformed, and (2) a replacement template that shows how the

matched code should be transformed. Declarative match-replace toolsets can either be language-specific or

language-agnostic. Language-specific toolsets include Coccinelle [70], widely adopted in the Linux commu-

nity for C, and Refaster [71]. Variants of these tools include Coccinelle4J [72] for Java and GoPatch [73]

for Go. Another well-known toolset is libclang [74] and its AST matchers. libclang provides a declara-

tive language for searching over code using AST matchers and other predicates, which can then be rewritten

imperatively using the library’s rewrite API. All these tools are language-specific, allowing them to leverage

existing compiler infrastructure and semantic information, such as control flow, to enable precise transfor-

mations. However, a significant disadvantage is that substantial effort is required to introduce and maintain

new language front-ends for these tools because of this reliance on compiler infrastructure.

In contrast, lightweight tools like comby [23] and ast-grep [75] present alternatives that rely on ad-hoc

simple grammars and parse trees without name resolution or deeper language understanding. This allows

them to support multiple languages with minimal maintenance overhead. For example, comby only requires

users to define a simple Dyck-extended grammar, specifying which constructs are used for brackets, com-

ments, etc. Nonetheless, lightweight declarative tools have their own limitations. Since they generally have

limited understanding of code context and semantics, it becomes challenging to express non-atomic trans-

formations that rely on inspection and semantic information.

Language workbenches, like Spoofax [76] (which incorporates Stratego [77]) and Rascal [78], offer com-

prehensive toolsets for designing and implementing languages, including metalanguages for writing code

transformations. Similarly, DMS [79] provides a declarative rewrite language for transforming code and al-

lows users to combine it with procedural rewrites. However, these tools require the specification of the target

language’s grammar and its extension to support metasyntax using the toolset.
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TXL [80] is a multi-language transformation tool that requires users to write both grammar specifications

and transformation rules within the TXL language. TXL transformations often use non-terminal symbols

in rewrite rules, which makes them non-trivial to write and use. Cubix [81] provides an alternative multi-

language solution using compositional data types. Cubix, as described by its authors, is not intended for the

lay programmer and requires significant effort and expertise to learn.

Query languages for code that support complex analyses, namely CodeQL [82], can also be used for

searching code. This enhances the precision of rule matching with semantic awareness and can be useful

in some scenarios. Note, however, that CodeQL has limited language support, may introduce performance

overheads, and can require additional integration effort due to its build system dependencies.

2.4.1.B Imperative Code Transformations

Researchers and tool builders have also invested heavily in the development of advanced imperative refactor-

ing engines [83–86], migration [87–89], and cleanup tools [90], such as ErrorProne [91] or OpenRewrite [92].

In particular, OpenRewrite (which is language-specific) offers a framework based on the visitor pattern to im-

plement transformation recipes. Powerful imperative frameworks are also usually built around compiler in-

frastructure and can leverage symbolic information (e.g., name resolution) and other semantic context. Their

usage is justified in cases where in-depth analysis is needed. However, not all real-world code transformations

require such heavyweight infrastructure (as we will see in Chapters 4 to 6).

It is also possible to do source code manipulation with parser generator libraries (e.g., tree-sitter [93]),

which avoids the problem of deep integration with compiler infrastructure. tree-sitter provides many

community-maintained grammars and multiple front-ends for over 100 languages, as well as a common in-

terface between all of them, making it ideal for general source code manipulations. Indeed, tree-sitter is

used as the backend for multiple refactoring engines (including our declarative language PolyglotPiranha)

presented in Chapter 5, and other alternatives like ast-grep [75]. tree-sitter serves as a foundation for

building language-agnostic but syntax-aware refactoring engines with minimal overhead.

2.4.2 Learning API Transformations

Code transformation languages and toolsets allow us to manipulate source code, but they do not automate

the refactoring process. In this section, we review how researchers have partially automated API refactoring

tasks over the years.

2.4.2.A Mining to Learn Edit Scripts

Automating API refactorings requires automatically inferring transformation data from reliable sources. Prior

research has primarily focused on mining API clients to learn these rules. The key idea behind these ap-

proaches is to locate API clients on collaborative online coding platforms such as GitHub [24] and analyze
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their version history (i.e., commits). The goal is then to identify commits where clients have either migrated

to a newer API version or updated their API usage. This data is aggregated and used to mine refactoring rules

using various algorithms.

The majority of approaches to mining rules have primarily targeted APIs in object-oriented languages

(specifically, Java and C#). Examples include A3 [19] and Meditor [21]. Although these tools use various

techniques for the mining process and adopt different internal representations to express the refactorings,

their approaches are based on similar ideas. Some tools represent refactorings as sequences of edits on

structure rather than as match-replace rules. For example, APIFix [18] mines transition examples from

both previously-migrated and new client repositories to learn refactoring actions. APIFix represents code

transformation as a sequence of tree edits using Refazer’s [94] program synthesis engine, rather than

using regular match-replace rules. Abstract Syntax Tree (AST) edits are typically more challenging to under-

stand [95].

APIMigrator [22] and AppEvolve [20] also mine client repositories for commit data to generate refac-

toring rules and apply them to clients. A key difference in these tools compared to prior work is that they

also leverage differential testing techniques [96] to validate edits on clients, rather than only checking the

syntactical validity of transformed code.

A major issue with existing mining approaches is that data for mining is often very scarce, which limits

the applicability and usefulness of these approaches. A recent study by Kula et al. found out that 81.5% of

projects keep outdated dependencies. Additionally, the mining process can occur only after the clients begin

to transition between versions, preventing use shortly after a new version of the library is released [26, 27].

2.4.2.B Mining API Mappings

Another line of research focuses on discovering mappings between old and new APIs (i.e., “what to replace”

in a migration). Instead of learning how to transform the code, these approaches tackle the problem of es-

tablishing mappings between a source and a target APIs. These approaches mine API mappings, i.e., pairs of

functions, classes, or other API elements that serve analogous roles across libraries or versions. For example,

SemDiff [98] infers mappings between two versions of a library by examining client code: if an API element

is removed or changed in a new version, SemDiff looks for usages of the old element in client projects and

correlates them with newly introduced or alternative API calls after the library update. In this way, it rec-

ommends likely replacement methods or classes for a given deprecated API. Such mapping inference can

identify one-to-one replacements (e.g., method OldX is replaced by NewY) with high recall. Other approaches

use more sophisticated analyses to filter candidate mappings (for example, PART [99]), aiming to reduce false

positives. However, mapping-only techniques generally do not describe how to adapt the rest of the code,

focusing solely on the API call substitutions.

Researchers have also explored doing cross-language API mappings. For example, StaMiner [100] and

16



MAM [59] learn equivalences between libraries in different programming ecosystems by leveraging large cor-

pora of “bilingual” projects or code that has been ported. MAM (Mining API Mappings) analyzes projects that

have both Java and C# versions to statistically infer which Java API calls correspond to which C# API calls

providing similar functionality. StaMiner extends this idea by incorporating usage context and frequency

information to improve the confidence of each mapping; its output has been used to enhance an existing

Java to C# transpiler (Java2CS [101]), to improve the quality of the transpiler’s output.

Recently, semantic embedding techniques have been applied to this problem: for instance, DeepAM [28]

embeds API elements and their usage contexts into a vector space to automatically find “analogous APIs”

across different libraries or frameworks, much like we do in Chapter 3. Such an approach can uncover map-

pings even when simple naming or structural cues are absent, by relying on learned semantic similarities in

how the APIs are used. In general, mining API mappings tackles the migration problem at the level of iden-

tifying the correct target API elements. These techniques excel at suggesting what new API corresponds to

a given deprecated one, and they have shown high effectiveness in finding correct replacements for numer-

ous legacy APIs. Nevertheless, as noted by prior studies, knowing the mapping alone is often insufficient for

complex migrations that require additional code adaptations (beyond a direct call replacement) [19].

2.4.2.C Example-based approaches

Instead of taking existing examples (e.g., from GitHub) to learn transformation rules, researchers have pro-

posed refactoring-by-example techniques. These approaches infer the transformations as a program in a low-

level DSL from input-output examples. The idea is for the developer to provide an example which is then

generalized, rather than mining from client projects. For example, LASE [102] and Bluepencil [103] infer

an edit script from two example edits. More recently, Overwatch [104] integrates refactoring by example

ideas into core IDE infrastructure to learn edit sequences, not just from input-output examples but also from

intermediate steps (i.e., using temporal context). Catchup! [105] follows a different approach. Instead of

asking users for examples, it asks library developers to record refactoring operations. The idea is to provide

a patch alongside the new library version so that clients can automatically update their dependencies.

By learning from concrete usage scenarios, example-based approaches can tackle more complex edits

(e.g., reordering calls, inserting new method invocations, or other major refactoring) that pure mapping can-

not represent or infer from version histories. The main idea of the example-based approach is to keep the

developer in the loop and iterate on the change until it arrives at a correct solution.

2.5 Large Language Models

Large-scale language models (LLMs) pretrained on vast corpora of source code and natural-language text

have rapidly become a foundational technology for automated software engineering tasks, including auto-
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mated refactoring and library migration [39, 106–110]. This section reviews how LLMs are being applied to

support code transformation, library migration, and other refactoring activities.

LLMs have demonstrated the ability to perform non-trivial code refactorings and transformations given

natural language instructions. For example, they can identify and apply common refactoring operations

in code, such as renaming methods or extracting methods, by following prompts describing the desired

change [111, 112]. In an empirical study on automated refactoring, Liu et al. [113] evaluated LLMs on 180

real-world Java refactoring tasks. They found that with proper guidance (e.g., explaining the refactoring type

and narrowing the search scope), models would complete simple refactoring actions with a success rate of

86.7% on their benchmark.

Despite these promising results, LLM-based refactoring is not yet fully reliable. In the same study, Liu et

al. [113] report that a subset of LLM refactoring suggestions (approximately 7% of them) had subtly introduced

bugs, either by altering program behavior or introducing syntax errors. Indeed, it is well known that using

LLMs to transform code directly is generally opaque and lacks formal guarantees of correctness, which can

result in subtle bugs [114]. To mitigate such risks, researchers have proposed hybrid approaches that combine

LLM intelligence with traditional verified transformation tools. For instance, the RefactoringMirror [113]

technique replays the refactoring edits proposed by an LLM through a deterministic engine (like an IDE’s

refactoring tool) to validate and apply only behavior-preserving changes, similar to CatchUp!, where human-

made refactorings are recorded and then replayed [105].

Researchers have explored both training and zero-shot prompting paradigms for leveraging LLMs in code

migration tasks. DeepMig [115] introduces a transformer-based model that is trained on paired examples of

real-world API migrations to learn how to jointly recommend library upgrades and transform dependent code.

However, this approach requires curated training data from projects that have undergone such migrations.

In contrast, Islam et al. [116] show that prompting an LLM can be surprisingly effective for library mi-

gration in Python, even without any additional fine-tuning. Their method relies on instructing the model to

replace the usage of one library with another and explain the changes. Their study migrated 321 real-world

instances of library replacement (covering 2.9K line changes) and found that the LLMs could correctly apply

89–94% of the code modifications needed compared to ground truth migrations. However, note that these

results need to be interpreted cautiously due to data leakage [117] since the benchmark consists of open-

source migration examples publicly available on GitHub. In terms of functional correctness, around 36–64%

of the LLM-migrated projects passed all existing unit tests, depending on the model (with larger GPT-4 vari-

ants performing best). These results suggest that LLMs can learn not only to map APIs but also to adjust

surrounding glue code, such as import statements, data types, and error handling.

Recent reports have also shown the viability of LLMs for source code manipulation in industrial appli-

cations. Commercial tools such as Amazon Q Developer [118] leverage LLMs to automate framework and

language version upgrades (e.g., Java 8 to Java 17), applying large-scale transformations across codebases.
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Similarly, Google has reported success using LLMs to assist in large-scale migrations such as test framework

updates and legacy API deprecation [119], integrating these models with tools like OpenRewrite for down-

stream integration and verification.

Overall, while LLMs can automate a wide range of source-to-source transformations, they need careful

oversight or coupling with rule-based systems to avoid introducing bugs. In our work, we show ways to

integrate LLM capabilities for reliable API refactoring.
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3
Synthesis-Driven Refactoring with

Documentation and Error Messages
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In this chapter, I discuss my completed and published work on a “Synthesis Approach for Open Source API

Refactoring” (SOAR) [44]. In this work, we leverage: 1. API documentation (including metadata), and 2. inter-

preter error messages to automatically refactor APIs. Unlike previous approaches, SOAR does not require any

pairwise training data to find API mappings. Moreover, SOAR migrates code using a program synthesis based

approach rather than using refactoring rules. This makes SOARmore powerful and expressive, as some trans-

formations cannot be expressed as match-replace rules. SOAR is one the first end-to-end, synthesis-based

approaches to API refactoring requiring minimal to no training data. In the evaluation, we show that it can
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1     import tensorflow.keras.layers as tf

2     . . . .
41                                                           
42 self.conv1 = tf.Conv2D(

filters=32, 
kernel_size=3, 
strides=(2, 2))

43  . . . .
48  self.dense1 = tf.Dense(10)

49  self.dense2 = tf.Dense(1568)

50  . . . .
55  self.deconv1 = tf.Conv2DTranspose(

filters=64, 

kernel_size=3, 

strides=2)

56  . . . .
63  self.relu6 = tf.ReLU()

1     import torch

2     . . . .
39                                                           
40 self.var0 = torch.nn.Conv2d(

in_channels=32, 
out_channels=32,
kernel_size=(3, 3),
stride=(2, 2),
padding=(0, 0))

41  . . . .
51  self.var5 = torch.nn.Linear(64 , 10)

52  self.var6 = torch.nn.Linear(10, 1568)

53  . . . .
57  self.var8 = lambda t: t.permute(0, 3, 1, 2)

58  self.var9 = torch.nn.ConvTranspose2d(

in_channels=32, 

out_channels=64, 

kernel_size=(3, 3),

stride=(2, 2),

padding=(0, 0)) 

59  . . . .
62  self.var13 = torch.nn.ReLU()

A

B

C

D

Figure 3.1: An example of howSOAR refactors a program written withTensorFlow (left) to usingPyTorch (right). Note
that the whole program consists of 15 APIs calls to TensorFlow, though we only show four blocks of them
(i.e., A, B, C and D) for brevity. SOAR can migrate the full program in 161 seconds.

successfully migrate functions / programs of up to 45 lines within reasonable time frames.

3.1 Motivating Example

We illustrate some of the difficulties of manual API refactoring via example. Consider the code snippet de-

picted on the left-hand side of Figure 3.1. This code snippets features an autoencoder, a specific type of neural

network, developed using the TensorFlow API. Our objective is to transition this code to the PyTorch API

as shown in the right-hand side. For context, an autoencoder is an encoder-decoder style neural network

designed for data compression. It is trained to transform data into a more compact form (i.e.,, a latent rep-

resentation), and then reconstruct the original data as accurately as possible.

The example in Figure 3.1 shows only a portion of the program, for didactic purposes. To build the first

layer of the encoder, it calls the Conv2D function, creating a convolution layer for 2D images. After further

(elided) activation and convolution layers, it calls Dense to output a latent representation of the input image.

Decoding this output follows roughly the same procedure as the encoding, but using Conv2DTranspose

instead of Conv2D. The function ReLu appears in both the encoder (not shown) and decoder, is used to ensure

non-linearity of the neural network.

The example in Figure 3.1 illustrates several of the core challenges in refactoring open-source APIs, as well
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API Matching 
Model

Program 
Synthesis

…

…

Python 
Interpreter

… …

torch.nn.Linear(#0,  #1,  #2,  #3)

self.dense1 = tf.Dense(10) torch.to_dense(#0) torch.nn.Linear(in_features=10, 
out_features =-1)

AssertionError: “out_features” 
must be a positive number.

Error Message 
Understanding

…

torch.nn.Linear: #1 > 0

y = self.dense1.forward(x)
assert_close(y, expected_y) 

self.dense1 = torch.nn.Linear(
in_features=64, 
out_features=10)

Source API Call and Testcase Target API Sketches Refactor Candidates Error Messages SMT Constraints Refactored API Call

Source 
Program

One API Call 
Refactored

Fully 
Refactored 

Program

Figure 3.2: Overview of SOAR’s architecture.

as opportunities to inform an automated approach. First, the names of function calls implementing similar

functionality may be very similar or even identical (such as those in blocks A, C, and D), or completely different

(e.g., Dense versus Linear in block B). If a developer were performing this migration manually, they might

reference the API documentation. For example, TensorFlow documentation describes the Conv2D class as a

2D convolution layer (e.g., spatial convolution over images)” [16]; the corresponding PyTorch documentation

for the Conv2d call describes it similarly, as a 2D convolution over an input signal composed of several input

planes” [120]. Here, the function names map well, but when this does not happen, the documentation should

at least provide analogous descriptions for functions offering equivalent functionality.

Identifying the appropriate function is only part of the challenge in API refactoring. Even when the correct

function is known, APIs mapped for the same functionality may have parameters with different names, types,

conventions, and default values. This is evident in the majority of calls in our example (as seen in blocks A, B,

and C). For instance, theConv2D functions in both libraries take different parameters. There is some overlap —

both include kernel_size, and stride corresponds with strides— yet they may expect different types (for

example, kernel_size takes an integer in TensorFlow but a tuple in PyTorch). In some cases, new arguments

must be inferred, varying based on context. For example, the first parameter of theLinearAPI calls in block B,

mapped from Dense, require an extra argument to be dynamically computed. This makes it infeasible to write

a simple match-replace rule for Dense to Linear mapping, as arguments must be dynamically generated.

Finally, there are instances where no single function in the target API matches the semantics of a call from the

source API, necessitating a one-to-many mapping, as illustrated in the conversion of the Conv2DTranspose

call in block C.

3.2 SOAR’s Algorithm

This section describes SOAR, our approach for automatic API migration. We begin with an overview of the

method (Section 3.2.1) before providing more detail on individual components (Section 3.2.2; 3.2.3; 3.2.5).
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Algorithm 1 SOAR(I,S,T , C)
Input: I: existing program, S: source library, T : target library, C: test cases
Output: O: refactored program

1: ®𝑟 : API mapping = mapAPI(T ,S)
2: O = {}
3: for each 𝑙 ∈ I do
4: O = O ∪ refactorLine(𝑙,T , C, ®𝑟)
5: end for

Figure 3.3: Description of the program parameters in torch.nn.Conv2d documentation [120].

3.2.1 Overview

Figure 3.2 shows an overview of the SOAR architecture, while Algorithm 1 provides an algorithmic view. SOAR

takes as input a program I consisting of a sequence of API calls from a source library S, the source (S) and

target (T ) libraries and their corresponding documention, and a set of existing test cases (C). Since the user

wants to refactor code from S to T , we assume that the user already has test cases for I that can be reused

to check if the refactored code (O) has the same functional behavior has the original code (I). Refactoring

proceeds one line at a time in I, finding/constructing an equivalent snippet of code (composed by one or

more lines) that uses APIs of the target library T ; the composition of all these translated lines comprises the

output O.

For each API call in the input program, the first problem either a developer or a tool must face is to identify

methods in the target API that implement the same functionality (i.e., for a given set of input parameters, the

target API call must generate the same output). SOAR uses an API matching model to identify target API calls.

This model is built using NLP techniques that analyze the provided API documentation for each call, and

provides a mapping (®𝑟 in Algorithm 1) that computes the similarity between each target API function and

each potential source API function. SOAR uses this to find the most likely replacement methods in the target

API for each source API call in the input program. We provide additional detail in Section 3.2.2.
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Given a potential match call in the target API, the next step is to determine how to call it, in terms of

providing the correct parameters, in the correct order, of the correct type. SOAR uses program synthesis to

automatically write the refactored API call, using the provided test cases to define the expected behavior of

the synthesized code and its constituent parts. The synthesis process can be assisted with additional auto-

mated analysis of API documentation, which often provides key information about each parameter, namely

(1) whether it is required or optional, (2) its type, (3) its default value (if applicable), and (4) constraints between

arguments, input and output (e.g., input and output tensor shapes). Figure 3.3 shows a snippet of the descrip-

tions of all parameters for torch.nn.Conv2d. For example, the parameter stride is optional; it takes type

int or tuple, and its default value is 1. Analysis of this documentation can produce a specification constraint

for the stride parameter, assisting the program synthesis task. Section 3.2.3 describes the synthesis step.

Given a potential rewrite in the target API, a natural step for a developer would be to run the refactored

code on test inputs. Unsuccessful runs can be quite informative, because many APIs (especially in the deep

learning and data science domains) provide error messages that can be very helpful for debugging. SOAR

simulates the manual debugging process by first adapting the input whole-program test cases to test par-

tially refactored code, and then extracting both syntactic and semantic information from any error messages

observed when running them. SOAR uses this information to add new constraints to the iterative synthesis

process (Section 3.2.5).

After migrating all calls in the source API to the target API such that all input tests pass, SOAR outputs a

fully refactored program. Subsequent sections provide additional detail on the previously described steps.

3.2.2 API Matching using Documentation

The first step in migrating a call in a source API is to identify candidate replacement calls in the target API with

similar semantics. SOAR’s API matching model ahcieves by analyzing the prose documentation associated

with the APIs, rather than mining client projects.

At a high level, the model embeds each API method call in a source and target library into the same con-

tinuous high-dimensional space, and then computes similarity between two calls in terms of the distance

between them in that space. We explored two information retrieval approach to obtain latent API represen-

tation: TF-IDF (term frequency – inverse document frequency) [121] and pretrained word embeddings [122].

TF-IDF. TF-IDF finds the most representative words in a sentence (which are usually different from the most

frequent ones). The core idea is to discard irrelevant words when computing the API representation. For

example, words like “the" or “this" convey very little information about an API.

For our TF-IDF model, we first derive a bag-of-words representation xi from a description of an API call

after some stemming of the words with the Snowball Stemmer [123]. xi = [𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑛] where 𝑥𝑖𝑗 denotes

the frequency with which word 𝑥 𝑗 appeared in the sentence xi, and 𝑛 is the size of the vocabulary from the

descriptions of all APIs considered. A TF-IDF representation of the call is computed as Equation (3.1):
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TF-IDF(xi) =
[

𝑥𝑖1∑𝑚
𝑡=0 𝑥

𝑡
1
,

𝑥𝑖2 𝑦∑𝑚
𝑡=0 𝑥

𝑡
2
, ·, 𝑥𝑖𝑛∑𝑚

𝑡=0 𝑥
𝑡
𝑛

]
(3.1)

However, the major downside of TF-IDF is that it does not encode the similarities between words them-

selves. For example, consider two hypothetical call descriptions: (1) Remove the last item of the collection,

and (2) Delete one element from the end of the list. They are semantically similar but since they have minimal

overlapping words, a TF-IDF representation method would not recognize these two API calls as similar.

Tfidf-GloVe. We can fix this problem by adding the use of pretrained word embeddings. Specifically, we use

the GloVe embedding [122], which is trained on a very large natural language corpus and learns to embed

similar words closer in the embedding space. Since the paper was published many other embeddings models

have emerged but they are fundamentally built using the same ideas.

To obtain sentence embeddings from individual words, we perform a weighted average of the word em-

beddings and use the TF-IDF scores of individual words as weight factors. It is a simple yet effective method

to obtain sentence embedding for downstream tasks, as noted by previous work [124, 125]. This is shown in

detail as Equation 3.2, where wj is the vector encoding the GloVe embedding of word 𝑥 𝑗 :

Embedding(xi) =
𝑛∑︁
𝑖= 𝑗

𝑥𝑖𝑗 · wj∑𝑚
𝑡=0 𝑥

𝑡
𝑗

(3.2)

By including the GloVe embedding, word similarity is preserved; by including the TF-IDF terms, the influ-

ence of embeddings of common words is greatly reduced. However, GloVe is trained with Common Crawl [126]

which contains raw webpages, which is a mismatch from our domain of textual data (i.e., data science and

programming). This causes a lot of OOV (out-of-vocabulary) problems.

API matching. Given the representation of two APIs Rep(x𝑖), Rep(x 𝑗) in the same space Rep(·), we compute

their similarity with cosine distance:

sim(Rep(x𝑖), Rep(x 𝑗)) = Rep(x𝑖) · Rep(x 𝑗)
|Rep(x𝑖) | |Rep(x 𝑗) | (3.3)

For computational efficiency, we pre-compute the similarity matrix between the APIs across the source

and target library. So we will be able to query the most similar API for the synthesizer to synthesize its pa-

rameters on the fly.

3.2.3 Program Synthesis

Instead of crafting match-replace rules using the API mappings, we refactor client code directly using program

synthesis. This allows our refactoring engine to support expressive refactorings. Formally, given input test

cases and an API matching model providing a ranked list ®𝑟 of APIs in the target library, the synthesis model

automatically constructs new, equivalent code, of one or more lines, that uses APIs of the target library T .
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Algorithm 2 refactorLine(𝑙,T , C, ®𝑟)

Input: 𝑙: line of code from I, T : target library, C: test cases, ®𝑟: ranked list of API matchings
Output: R: refactored snippet

1: O = {}
2: for each 𝑙′ ∈ ®𝑟 do
3: ®𝑠 = generateSketches(𝑙′,T )
4: for each 𝑠 ∈ ®𝑠 do
5: R = fillSketch(𝑠)
6: if passTests(R, C) then
7: return R
8: end if
9: end for

10: end for

The refactored program O has the same functionality as input programI, and passes the same set of tests C.

To refactor each line of the existing program I, we use techniques of programming-by-example (PBE)

synthesis [41]. PBE is a common approach for program synthesis, where the synthesizer takes as specification

a set of input-output examples and automatically finds a program that satisfies those examples. In the context

of program refactoring, our examples correspond to the test cases for the existing code. For our experiments

we restrict ourselves to straight-line code where each line returns an object that can be tested. With these

assumptions, we can automatically generate new test cases for each line 𝑘 of program I. This can be done

by using the input of the existing tests, running them, and using the output of line 𝑘 as a new test case for

the program composed by lines 1 to 𝑘.

Our program synthesizer for refactoring of APIs is presented in Algorithm 2 and it is based on two main

ideas: (i) program sketching, and (ii) program enumeration. For each line 𝑙 in program I, we start by enu-

merating a program sketch (i.e., program with holes) using APIs from the target library T (line 3). For each

program sketch, we perform program enumeration on the possible completion of the API parameters (line 5).

For each complete program, we run the test cases for the program up to line 𝑙. If all test cases succeed, then

we found a correct mapping for line 𝑙 between librariesS and T (line 6). Otherwise, we continue until we find

a complete program that passes all test cases.

Program Sketching. Program sketching is a well-known technique for program synthesis [127] where the

programmer provides a sketch of a program and the program synthesizer automatically fills the holes in this

sketch such that it satisfies a given specification. We refactor one line of program I at each time. Our first

step is to use the ranked list of APIs to create a program sketch where the parameters are unknown. For

instance, consider the first layer from the motivating example that shows the network for an autoencoder

using TensorFlow:

tf.keras.layers.Conv2D(filters=32, kernel_size=3, strides=(2, 2))

A possible sketch for this call using PyTorch is:
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torch.nn.Conv2d(#1, #2, (#3,#4), stride=(#5, #6), padding=(#7, #8))

Where holes #i have to be filled with a specific value for the APIs to be equivalent. This approach works

for one-to-one mappings but would not support common one-to-many mappings where the parameters of-

ten need to be transformed before being used in the new API. This is the case of the previous API where a

reshaping operation must be performed before calling the PyTorch API. To support this common behavior, we

include in our program sketch one API from the target library T and common reshaping APIs (e.g., permute).

The sketch that corresponds to the refactoring solution of the Conv2D API from TensorFlow uses a reshap-

ing API before calling the Conv2d API from PyTorch:

lambda x: x.permute(#9, #10, #11, #12)
torch.nn.Conv2d(#1, #2, (#3, #4), stride=(#5, #6), padding=(#7, #8))

Using Occam’s razor principle, our program synthesizer enumerates program sketches of size 1 and iter-

atively increases the size of the synthesized program up to a specified limit.

Program Enumeration. For each program sketch P, our program synthesizer enumerates all possible com-

pletions for each hole. Since each hole has a given type, we only want to enumerate well-typed programs. We

encode the enumeration of well-typed programs into a Satisfiability Modulo Theories (SMT) problem using a

combination of Boolean logic and Linear Integer Arithmetic (LIA). This encoding is similar to other approaches

that use SMT-based enumeration for program synthesis [128] and encodes the following properties:

• Each hole contains exactly one parameter;

• Each hole only contains parameters of the correct type.

A satisfying assignment to the SMT formula can be translated into a complete program. The types for each

hole can be determined by extracting this information from documentation, by performing static analysis, or

by having this information manually annotated in the APIs. The available parameters and their respective

types can be extracted automatically from the parameters used in the 𝑘-th line of program I and by any

default parameters that can be used in the API from T that appears in the program sketch P. For instance,

for the Conv2d example presented in this section, we consider as possible values for the holes, the values

that appear in the existing code (32, 3, 2) and default values for integer parameters (-1, 0, 1, 2, 3) that are

automatically extracted from documentation.

Encoding the enumeration of well-typed programs in SMT has the advantage of making it easier to add

additional logical constraints that can prune the search space.

3.2.4 Documentating Metadata to guide Synthesis

As we described in Section 3.2.1, API documentation often provides additional useful information about pa-

rameters to function calls, including type and default values. For each considered API call, we scrape/process
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Figure 3.4: Relationship between the parameters of Conv2d API described in PyTorch documentation [120].

the associated documentation to extract these properties and encode them as SMT constraints to further

limit the synthesizer search space.

Additionally, some APIs have complex relationships between parameters which if encoded into SMT may

reduce the search space considerably. For instance, Figure 3.4 shows the relationship between the different

parameters for the Conv2d API described in PyTorch documentation. For APIs with these kinds of shape

constraints, we can encode these relationships into SMT to further prune the number of feasible completions.

When we use these relationships in our experiments, we encode them manually (a one-time cost for an actual

SOAR user or API maintainer), but we observe that in many cases they could be automatically extracted from

documentation.

3.2.5 Error Message Understanding

Besides meta-data, we can also guide the refactoring engine using the error messages provided by the Python

interpreter. The idea is to give feedback to the program synthesis engine during the refactoring process.

We use a simple natural language processing approach to extract data from compiler error messages.

Specifically, we extract hyponymy relations and use Word2vec [129] to understand run-time error messages.

We transform error messages into constraints for our synthesizer. Figure 3.5 illustrates the process.

Step 1: Extract hyponymy relation candidates from error messages. We perform an automatic extraction

of customized hyponyms on each error message. Hyponyms are specific lexical relations that are expressed

in well-known ways [130]. In encoding a set of lexico-syntactic patterns that are easily recognizable (i.e.,

hyponyms), we avoid the necessity for semantic extraction of a wide-range of error message text. We then use

the collected hyponyms to map the error message to a single faulty parameter, and output a SMT constraint

based on the faulty parameter.

We use four manually crafted lexico-syntatic patterns to identify hyponyms using noun-phrases (NP) and

regular expressions frequently appearing in machine learning API error messages.
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Trying to create tensor with negative dimension -2: [40, -2, 3, 3]

Hyponym 1

torch.nn.Conv2d(-2,40,(3,3),stride=(1,1),padding=(0,0))

POS = JJ Target ParamPOS = NN

in_channels > 0

['in_channels=-2', 'out_channels=40', 'kernel_size=(3,3)', 
'stride=(1,1)', 'padding=(0,0)']

If pass: generate SMT constraint 

Step 2. Match candidate faulty parameter with program parameters

Compile program and generate error message

Trying to create tensor with negative dimension -2: [40, -2, 3, 3]

Step 1. Collect candidate faulty parameters and fault causes

Step 3. Mutate program   

self.var5 = torch.nn.Conv2d(1,40,(3,3),stride=(1,1),padding=(0,0))

If fail

Figure 3.5: Example error message to SMT constraint pipeline using hyponym 1.

Step 2: Identify candidate faulty parameters and constraints. Step 2 uses different keywords based on

the result of step 1 to identify the faulty parameter. As shown in Figure 3.5, an error message with hyponym

1 is likely to have the POS=JJ word as a parameter constraint (i.e., word “negative"). Based on the fault cause

candidate, we then store all negative numbers as candidate faulty parameters (e.g., [40, -2, 3, 3] has -2 as the

only faulty parameter). We then vectorize the candidate faulty parameter name (i.e.,-2) and find the program

parameter name with the closest vectorized distance. As shown in Figure 3.5, the parameter “𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 =

−2" has the nearest vectorized distance to the candidate faulty parameter -2. Based on the fault cause, we

generate a candidate constraint. The example error message in Figure 3.5 has only one candidate constraint:

“𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 >= 0".

Step 3: Mutate program. To validate the candidate faulty parameters and constraints, we mutate each faulty

parameter according to each faulty parameter and constraints pair. We then re-compile the program for each

mutation. If the error message remains the same, we discard the faulty parameter and constraint pair as a

candidate. If the program passes, or if the error message changes, we store the faulty parameter and con-

straint pair as an SMT constraint. As shown in Figure 3.5, the API call mutator mutates the second parameter

(“𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = −2") to a non-negative number. The mutator first attempts “𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 0" and it encoun-

ters a different error message. From the new error message, we mutate this parameter to “𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 1"

and observe no further errors. Therefore, we refine our previous constraint to be “𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 > 0”, and

store it as the final SMT constraint for the program in Figure 3.5.
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3.3 Evaluation

We evaluate our approach by answering the following research questions:

RQ1. How effective is SOAR at migrating neural network programs between different libraries?

RQ2. How effective is API documentation to establish mappings? .

RQ3. How effective is API meta-data in guiding the refactoring process?

RQ4. How useful are error messages in guiding the refactoring proccess?

RQ5. Is SOAR generalizable to domains besides deep learning library migration?

3.3.1 Benchmarks and experimental setup

We collected 20 benchmarks for each of the two migration tasks. In particular, for the TensorFlow to Py-

Torch task, we gathered 20 neural network programs from TensorFlow tutorials [131], existing models im-

plemented with TensorFlow [132] or its model zoo [133]. This set of benchmarks includes: Autoencoders

for image and textual data, classic feed-forward image classification networks (i.e., the VGG family, AlexNet,

LeNet, etc), convolutional network for text, among others. The average number of layers in our benchmark

set is 11.80 ± 11.52, whereas the median is 8. Our largest benchmark is the VGG19 network which contains

44 layers.

For the domain of table transformations, we collected 20 benchmarks from Kaggle [134], a popular web-

site for data science. The programs in the benchmark set have an average of 3.05 ± 1.07 lines of code, and a

median of 3 lines. Although the programs considered for this task are relatively small compared to the deep

learning benchmarks, they are still relevant for data wrangling tasks as shown by previous program synthesis

approaches [135].

All results presented in this section were obtained using an Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz,

with 64GB of RAM, running Debian GNU/Linux 10, and a time limit of 3600 seconds. To evaluate the impact

of each component in SOAR, we run four versions of the tool. SOAR with TF-IDF (SOAR w/ TF-IDF) and SOAR

with tfidf-GloVe (SOAR w/ Tfidf-GloVe) to evaluate the impact of API representation learning methods. SOAR

without specification constraints (SOAR w/o Specs.) and SOAR without error message understanding (SOAR

w/o Err. Msg.) to evaluate the impact of these components on the performance of SOAR.

3.3.2 Implementation

The SOAR implementation integrates several technologies. Scrapy [136], a Python web-scraping framework,

is used to collect documentation for the four libraries in our experiments. To enumerate programs in the

synthesis step, we use the Z3 SMT solver [137]. For each target program call parameter, we extract an answer

for the four parameter questions in Section 3.2.1 and generate corresponding SMT constraints. In both API

matching model and the error message understanding model, the GloVe word embeddings [122] are used

31



Table 3.1: Execution time for the deep learning library migration task in each of the 20 benchmarks.

SOAR SOAR w/o Specs. SOAR w/o Err. Msg.

conv_pool_softmax(4L) 1.60 23.02 14.35
img_classifier(8L) 12.82 336.00 65.66
three_linear(3L) 3.18 2.34 21.07
embed_conv1d_linear(5L) 5.27 123.85 16.90
word_autoencoder(3L) 1.81 1.46 2.64
gan_discriminator(8L) 12.80 timeout 252.20
two_conv(4L) 16.69 timeout 15.09
img_autoencoder(11L) 160.97 391.09 487.54
alexnet(20L) 425.22 timeout 66.13
gan_generator(9L) 412.47 timeout timeout
lenet(13L) 280.91 timeout timeout
tutorial(10L) 6.04 timeout 58.29
conv_for_text(11L) 9.04 timeout 32.29
vgg11(28L) 40.83 timeout 132.67
vgg16(38L) 82.05 timeout 139.27
vgg19(44L) 83.99 timeout 189.90
densenet_main1(5L) timeout timeout timeout
densenet_main2(3L) timeout timeout timeout
densenet_conv_block(6L) timeout timeout timeout
densenet_trans_block(3L) timeout timeout timeout

as an off-the-shelf representation of words. For the four libraries appearing in our two evaluation migration

tasks, we use TensorFlow 2.0.0, PyTorch 1.4.0, dplyr 1.0.1 (with R 4.0.0) and pandas 1.0.1, though our

proposed method and associated implementation do not rely on specific versions.

3.3.3 Results

3.3.3.A RQ1: Overall SOAR effectiveness

Table 3.1 shows how long it takes to migrate each of the deep learning models from TensorFlow to PyTorch,

using the various approaches. Our best approach (shown as SOAR) successfully migrates 16 of the 20 DL

models with a mean run-time of 97.23±141.58 seconds, and a median of 14.76 seconds. The average number

of lines in the 16 benchmarks that we successfully migrate is 13.6 ± 12.14, whereas the average number of

lines in the output programs is 18.56±16.40. The reason the number of synthesized lines is higher than those

in the original benchmarks is that we frequently do one-to-many mappings. In fact, 15 out of the 16 require at

least one mapping that is one-to-many. In the 16 benchmarks, SOAR tests on average 4414.18±5676 refactor

candidates (i.e. program fragments tested for each mapping), and it needs to test a median 2111 candidates

before migrating each benchmark. The reason 4 benchmarks timeout is that in each of these benchmarks

there is at least one API in the benchmark that has a poor ranking (i.e., not in the top 200).

32



Table 3.2: Execution time and average API ranking for each of the 20 benchmarks using TF-IDF and GloVe models.

SOAR w/ TF-IDF SOAR w/ Tfidf-GloVe

Time(s) Avg. Ranking Time(s) Avg. Ranking

conv_pool_softmax(4L) 1.60 1.0 1.56 1.0
img_classifier(8L) 12.82 2.8 31.04 2.8
three_linear(3L) 3.18 8.0 7.70 8.0
embed_conv1d_linear(5L) 5.27 2.4 7.75 2.4
word_autoencoder(3L) 1.81 1.0 1.52 1.0
gan_discriminator(8L) 12.80 2.8 37.01 2.8
two_conv(4L) 16.69 1.0 13.75 1.0
img_autoencoder(11L) 160.97 1.9 166.34 2.0
alexnet(20L) 425.22 2.1 428.42 2.1
gan_generator(9L) 412.47 2.0 1892.86 2.0
lenet(13L) 280.91 4.3 timeout 89.1
tutorial(10L) 6.04 2.3 21.31 2.4
conv_for_text(11L) 9.04 2.3 14.08 2.3
vgg11(28L) 40.83 1.8 73.92 1.8
vgg16(38L) 82.05 1.6 114.41 1.6
vgg19(44L) 83.99 1.5 114.98 1.5
densenet_main1(5L) timeout 172.8 timeout 285.4
densenet_main2(3L) timeout 16.0 timeout 387.5
densenet_conv_block(6L) timeout 293.3 timeout 612.7
densenet_trans_block(3L) timeout 291.0 timeout 480.0

3.3.3.B RQ2: How effective is API documentation to establish mappings?

In Table 3.2, we show results of SOAR using different API representation learning methods, namely TF-IDF

and TFIDF-GloVe, as described in Section 3.2. We can see that for these tasks of TensorFlow to PyTorch

migration, using TF-IDF-based API matching model works better than adding pretrained GloVe embeddings.

We believe this is because similar APIs are often named with same words(e.g., Conv2DTranspose vs. Con-

vTranspose2d) or even identical name (e.g., the APIs of creating a Rectified Linear Unit are both named as

ReLU(...)), for TensorFlow and PyTorch. Thus simple word matching method like TF-IDF is suffice for API

matching purposes.

Another interesting result worth noticing is that although the synthesis time differs for the two approaches,

the average rankings are quite similar for most of the benchmarks. The reason is that despite the average

rankings of correct target APIs being similar, the incorrect APIs ranked by the model before the correct one

is different, and the time it takes to rule out those incorrect APIs varies greatly, determined largely by the

number of parameters required for that API.

3.3.3.C RQ3: How effective is API meta-data in guiding the refactoring process?

In Table 3.1, we also show the impact of specification constraints that describe the relationship between

different parameters of a given API (see Section 3.2.3 for details). Even though, we only have these complex
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specifications for the 7 most common APIs, the impact on performance is significant. Without these specifica-

tion we can only solve 6 out of 20 benchmarks. Relating the arguments of the APIs helps SOAR to significantly

reduce the number of argument combinations that it needs to enumerate.

3.3.3.D RQ4: How useful are error messages in guiding the refactoring proccess?

As shown in Table 3.1, SOAR performs significantly better when using the error message understanding

model. We can observe that without this component, two of the benchmarks that SOAR could solve would

timeout at the 1 hour mark. For the 14 benchmarks it still manages to solve, the synthesis time increases on

average 4.66×. The number of performed evaluations also increase substantially for each benchmark. For

the 16 benchmarks that SOAR successfully migrates, we evaluate an average of 43319.63± 61259.62 refactor

candidates without the error message understanding model. This corresponds to a 9.81× increase in the

number of necessary evaluations when compared to the full SOAR method. In summary, we can significantly

reduce the search space by interpreting error messages.

3.3.3.E RQ5: Generalizability of results

Our experiments so far concern deep learning library migration in Python. To study the generality of our

proposed SOAR, we applied SOAR to another task of migrating from dplyr, a data manipulation package for

R, to pandas, a Python library with similar functionality. Fig. 3.6b shows how the two API matching methods

perform in this domain. While with Tfidf-GloVe, 30% of the correct APIs are ranked among the top 5, saving lots

of evaluations for the synthesizer, none of the correct APIs are ranked by the TF-IDF-based matcher as its first

5 choices. Worse, nearly half of those are ranked above 100, making the synthesis time almost prohibitively

long. We believe this is because the lexical overlap between the names of similar APIs in those two libraries

is much smaller compared to the deep learning migration task. For example, dplyr’s arrange and panda’s

sort_values provide the same functionality (they both sort the rows by a given column), but the function

names are different. In this way, Tfidf-GloVe can take advantage of the pretrained embeddings to explore the

similarities between APIs beyond simple TF-IDF matching.

In Figure 3.6a, we show the time it takes to migrate each of the 20 benchmarks with a timeout of 3600

seconds when using word embeddings. We solve 18 out of 20 collected benchmarks in under 102.5 seconds.

The average run time for 18 benchmarks is 17.31±22.59 seconds and a median of 12.19 seconds. Note that for

this task we did not consider error messages, nor specifications since we wanted to test how a basic version

of SOAR would behave in a new domain. Moreover, for this domain, all the refactored benchmarks only used

one-to-one mappings since no additional reshaping was needed before invoking pandas APIs. Even with

these conditions, we show that we are able to successfully refactor code for a new domain across different

languages.
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Figure 3.6: Comparative results of dplyr-to-pandas task.

3.4 Discussion and threats to validity

Overall, we focus our design and evaluation on deep learning and data science libraries. These libraries have

properties that render them well-suited to our task in terms of common programming paradigms, and norms,

such as in the API documentation. However, we believe this is also a particularly useful domain to support,

given the field’s popularity and how quickly it moves, how often new libraries are released or updated, as well

as the wide variety of skill sets and backgrounds present in the developers who write data science or deep

learning code. Automation of migration and refactoring in this domain is very minimal, and we design SOAR

as a step towards better tool support for this diverse and highly active developer population.

Next, we discuss the main limitations of our method and possible challenges for extending SOAR’s ability

to refactor new APIs, even potentially beyond the domain of data science.

Benchmarks. Our evaluation of SOAR uses benchmarks from well-known deep learning tutorials and archi-

tectures. However, they are all feed-forward networks, effectively sequences of API calls where the output of

the current layer is the input of the next layer. There may be more applications that share this feature, but

support for more complex structure is likely necessary to adapt to other domains.

Additionally, and naturally, the APIs in the benchmarks we collected may be biased and not reflect the

set of APIs developers actually use. To assess this risk, we checked the degree to which the APIs used in our

benchmarks appear to be widely used on other open-source repositories on GitHub. To do this, we collected

the top 1015 starred repositories that have TensorFlow as a topic tag, which contains over 8 million lines of

code and over 500K TensorFlow API calls. We found that 76% of the 1000+ repositories use API calls included

in our benchmarks at least once, which validates some representativeness of our collected benchmarks.

Automatic testability. One benefit of the data science/scientific computing domain is that much of the input,

output, and underlying methods are typically well-defined. As a result, it’s particularly easy to test and verify

the correctness of individually migrated calls, which can be processed in sequence. There may be other types

of libraries that share these types of characteristics, like string manipulation or image processing libraries,

whose intermediate outputs are strings/images. We also assume user-provided tests. Given the migration
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task, it is reasonable to assume the user has tests (the code must be sufficiently mature to justify migrating,

after all), but a more general solution might benefit from automatically generating tests, which would both

alleviate the input burden on the user and, potentially, reduce the risks of overfitting. In our current imple-

mentation, we moreover use the provided tests to construct smaller test cases for each mapping. This is

particularly easy in this domain, because data science and deep learning API calls are often functional in their

paradigm. Adapting the technique to other paradigms would require more complex test slicing or generation

to support synthesis.

Correctness. Since we evaluate our migration tasks using test cases, it is always possible for our approach to

overfit to said test cases. However, this threat can be mitigated if the user provides a sufficiently robust test

suite that provides enough coverage.

Additionally, code written to different APIs may be functionally equivalent, but demonstrate different per-

formance characteristics, which we do not evaluate. However, this fact is one reason users might find SOAR

useful in the first place: a desire to migrate code from one library to another that is more performant for the

given use case.

Error message understanding. The error message understanding model is built on four domain specific

lexico-syntatic patterns, which we identify as hyponyms when they appear in an error message. We propose

the hyponyms based on the specific syntax of DL API error messages, thus take non-trivial human effort to

make it generalize to error messages that appear when calling APIs from libraries of other domains. How-

ever, we believe the idea of program mutation (Step 3 of Fig. 3.5) is still widely applicable for the purpose of

generating SMT constraints when dealing with error messages.

Synthesis. Our approach supports one-to-many mappings but it restricts the mapping to one API of the

target library and one or more reshaping APIs. However, this could be extended to include many APIs of

the target library at the cost of slower synthesis times. An additional challenge is to support many-to-one or

many-to-many mappings since this would require extending our synthesis algorithm. However, even with the

current limitations, our experimental results show that the current approach can solve a diverse number of

benchmarks.

3.5 Key Takeaways and Contributions.

In this chapter, we demonstrate that API documentation can serve as a proxy to establish API mappings for

migration. We used these mappings to guide a Synthesis approach for API Refactoring (SOAR). SOAR uses a

generate-and-test strategy, as computing mappings alone is insufficient for completing a migration; API argu-

ments and glue code also need to be mapped. Moreover, we cannot blindly trust the mappings derived from

the documentation; indeed, the correct mappings are sometimes not correct (i.e., corresponding APIs may

be apart in the embedding space, meaning they might be closer to other, non-semantically equivalent APIs).
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For these reasons, to complete migrations, we test the API mappings with multiple different combinations of

arguments using synthesis. We determine that a particular API migration is complete if the synthesized code

produces the same output on a set of auto-generated inputs. During the synthesis process, the interpreter

also outputs warnings or errors due to API usage. We leverage this information with a simple error message

understanding mode, which we use to prune the search space.

Overall, our approach successfully migrates API calls within reasonable time frames, particularly for small

programs (under 100 lines) where it is feasible to compare objects across implementations. Since we syn-

thesize code directly rather than generating migration scripts, this method is not generally applicable for

large-scale refactorings of code bases comprising millions of lines of code. We tackle this limitation in Chap-

ter 6, where we show how to synthesize migration scripts for library migrations.
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4
Mining API Refactoring Rules from the

API Development Process
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In this section, I discuss my completed and published work titled "Mining Effective Lightweight Trans-

formations from Pull Requests" (MELT) [45]. In this work, we leverage the API development process from

open-source libraries (i.e., pull requests) to mine rules for fixing breaking changes between library versions.

One core idea of MELT is to identify pull requests (PRs) between library releases that break existing APIs. Upon

identifying these PRs, we extract data from a variety of sources. First, we identify code changes to test cases

that developers made after breaking the API. Our key observation is that if a library is well-tested, developers

need to update test cases when they break an API; otherwise, the tests would fail. This data allows us to mine
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Figure 4.1: MELT takes as input a pull request (PR) and outputs a set of rules. The PR is processed in two ways: (1) the
Code change analyzer identifies relevant code changes; (2) the Code generation model generates additional
code examples. Rules are inferred from the code changes and examples, then filtered and generalized.

Figure 4.2: Code change in pull request #44539 [138] from the pandas-dev/pandas repository.

rules directly from the library instead of relying on downstream clients like the majority of state-of-the-art

methods. The migrations themselves are expressed in the comby language for broader applicability. This

means the synthesis only needs to happen once.

4.1 Motivating Example

Figure 4.1 provides a high-level overview of MELT and its main components. We delve into the specifics of

each component in Section 4.2.

Pull requests are the input of MELT, as they are the key source that informs our approach. Pull requests

generally contain all the code changes related to a given new feature. For example, Figure 4.2 shows an ex-

ample code change from a pull request [138] submitted to pandas [139] that deprecates two popular APIs:

DataFrame.append and Series.append.1 MELT identifies code changes, such as the one shown in Fig-

ure 4.2, within the pull request using its Code Change Analyzer (Section 4.2.1) and inputs them into the Rule

Inference algorithm (Section 4.2.3.A) to generate rules. The top portion of Table 4.1 shows two of the rules

MELT infers from the code changes for this specific pull request.

1Both APIs were later removed from pandas in version 2.0.0.
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Table 4.1: Top: comby rules extracted from pandas pull request #44539, deprecating DataFrame.append and Se-
ries.append. Bottom: Rules extracted from sci-py pull request #14419, including original specific (“Spec”)
and generalized (“Gen”) versions. Template variable constraints are omitted for brevity.

Match Template Rewrite Template

:[[s2]].append(:[[s1]])
where :[[s1]].type == Series and
:[[s2]].type == Series

pd.concat([:[[s2]], :[[s1]]])

:[[df]].append(:[[s]])
where :[[df]].type == DataFrame and
:[[s]].type == Series

pd.concat([:[[df]],
DataFrame(:[[s]]).T.infer_objects()])

Type Match Template Rewrite Template

Spec :[[s]].spline.cspline2d(:[[x]],:[y]) :[[s]].cspline2d(:[[x]], :[y])

Gen :[[s]].spline.cspline2d(:[args]) :[[s]].cspline2d(:[args])

The rules in Table 4.1 are expressed in comby’s domain specific language [140]. The match template (left

column) is the code structure for which comby searches. The rewrite template (right column) shows how

to transform the matched code based on the variables in the match template [23]. comby uses template

variables, i.e., placeholders that can be matched with certain language constructs. For example, a template

variable to match alphanumeric characters is represented by :[[x]], where x is the name of the template

variable. The template variables in the match template can be constrained in multiple ways using a where

clause. In particular, to prevent spurious matches, template variables can be constrained to be a certain type

(like :[[s2]].type == DataFrame). Although type information is not strictly required, it is useful when

working with common API names such as append and concat (both are part of Python’s stdlib).

Code diffs in pull requests provide valuable information, however, they do not always contain the neces-

sary code examples for rule inference. Fortunately, pull requests offer alternative sources of information that

can be used to extract further details about the changing APIs. Figure 4.3 shows an informative comment left

by a developer in a code file when deprecating namespace scipy’s [141] namespace scipy.signal.spline

in favor of scipy.signal. To leverage all available information in the pull request, MELT uses a Code Gen-

eration Model to generate additional code examples and test cases for this change (Section 4.2.2). Figure 4.4

shows a simplified version of code GPT-4 [39] (a state-of-the-art model) generates from the pull request in

Figure 4.3. The generated examples enable us to both infer and test the rules.

Since the test case executes successfully, MELT uses the code example to generate a rule by abstracting

concrete identifiers and literals. For this case, MELT generates the rule in the third row of Table 4.1. This rule

accurately reflects the deprecation made in the pull request (i.e., replaces the deprecated namespace with

the new one). Nevertheless, a closer inspection reveals that the rule is too specific: it will only match usages

where: (1) the first argument of cspline2d is an identifier (:[[s]] only matches with identifiers), and (2) the

function is called with two or more arguments. The cspline2d function can accept multiple combinations of
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Figure 4.3: Pull Request #14419 [142] from scipy/scipy. This pull request was part of SciPy 1.8, released in Feb 2022.

def old_usage1(image):
return signal.spline.cspline2d(image,

8.0)

def new_usage1(image):
return signal.cspline2d(image, 8.0)

(a) Old and new usage of cspline2d.

class TestEquiv(unittest.TestCase):
def test_assert1(self):
np.random.seed(181819142)
image = np.random.rand(71, 73)
assert np.allclose(old_usage1(image),

new_usage1(image))

(b) Test case for the transition.

Figure 4.4: Code generated by GPT-4 showcasing how to transition from the old cspline2d usage and a test case.

arguments, including keyword arguments with default values.

To guard against overly-specific rules, MELT applies Rule Generalization (Section 4.2.3.C). For example, the

template holes :[[x]] and :[y] in the rule in the first row of the bottom of Table 4.1 remain unchanged in

the match and rewrite templates, indicating that they are not relevant to the change at hand. To enhance the

rule’s applicability, MELT generalizes the specific argument combination, resulting in an updated version of

the rule (shown in the last row of Table 4.1). The revised rule uses a more permissive match template using

:[args], which can match any number of function arguments.

4.2 MELT’s Approach

In this section, we provide a brief overview of MELT’s approach.

4.2.1 Extracting Code Examples from Diffs in Pull Requests

MELT’s input is a pull request P, which contains both natural language descriptions and a set of code diffs,

each of which corresponds to changed code snippets. However, not all diffs in a pull request are relevant to

an API change, as they may encompass unrelated refactoring actions. Therefore, MELT first identifies which

changes in the pull request are relevant to the API of interest.

MELT determines which code changes are relevant using its Code Change Analyzer. MELT starts by pinpoint-

ing which public APIs are affected by the pull request by examining the scope of each code diff to identify the

affected function and its corresponding class. For example, for the code change in Figure 4.2, MELT identifies
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the function name test_datatimeindex and the class where the function comes from TestSeriesFor-

matting. MELT filters out test functions and private namespaces, to exclude API names that are not the main

focus of the change.2 On this example, the test class and method will be filtered, but other changes in the

same PR (not shown) affect the append and concat methods, so MELT considers those methods relevant.

MELT then filters the code diffs to retain only those diffs and surrounding code that contain at least one

of the relevant keywords. This produces a set of code examples to serve as inputs to rule inference. For the

pandas example, although the test method itself is not a relevant API name, the code change in that test

method does concern relevant API calls, and so these diffs will be retained for use in inference. A strength of

this approach is its generalizability across multiple libraries and languages, since it works at token level.

4.2.2 Generating Examples for Mining using Natural Language

As illustrated in Section 4.1, pull requests sometimes lack sufficient code examples to infer migration rules.

In a preliminary study, we analyzed 174 pull requests related to breaking changes and deprecations from

pandas’ release notes. We discovered that only 41 (23.6%) of these pull requests contained at least one

meaningful code example showcasing the transition from old to new usage. However, pull requests offer

other information sources about API changes, including natural language descriptions in comments, devel-

oper discussions, and documentation. Our key insight is that this additional data can also be leveraged to

generate and test more code examples. MELT uses a Code Generation Model to produce extra code examples

from this data. Generating code examples rather than the rules directly is advantageous, because we can test

and validate the generated code, enhancing confidence in the rules inferred from it. Additionally, the code

examples may enhance interpretability by demonstrating the provenance of inferred rules to MELT users.

We developed prompts and conducted experiments with GPT-4 8K [39], which is well-versed in our target

libraries’ code, to process PR information (code diffs, title, description, discussion). For each PR, we asked the

model to generate: 1. transition examples, and 2. test cases asserting that the old behavior was the same

as the new one. Full prompts and algorithmic description can be found in the paper. However, the key idea

is to check if automatically generated tests are correct according to the automatically generated test suite.

To make sure the test suite is not spurious, we sample multiple tests. If any test fails, the example is not

considered for mining.

4.2.3 Rule Mining from Examples

MELT uses the comby language [23] and toolset [140] to express refactoring match-replace rules. We intro-

duced some elements of the language in Section 4.1, with examples of comby’s syntax-driven match and

rewrite templates. Formally, a rewrite rule in comby is of the form M −→ R where c1, c2, ..., c𝑛, where

2Although our experiments do not exercise this setting, developers can also provide the names of affected APIs when submitting the
pull request, which MELT can use directly to eliminate irrelevant code changes.
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(a) Code before migration

r = pd.read_csv(f, compression=comp,
encoding=enc, index_col=0,

- squeeze=True)

(b) Code after migration

r = pd.read_csv(f, compression=comp,
encoding=enc, index_col=0).

+ squeeze()

Figure 4.5: Example code change from PR #43242 [144] in pandas

M is the match template, R is the rewrite template, and c1, c2, ..., c𝑛 are constraints in the rule language. The key

structure of comby rules are template variables, which are holes in the match and rewrite templates that can

be filled with code. Template variable types include, e.g., :[[x]] matching alphanumeric characters (similar

to \w+ in regex), and :[x] matching anything between delimiters (e.g., [],(),{}). comby also supports a

small rule language to add additional constraints, like types or regular expression matches, on the template

variables. comby’s website [140] provides the full syntax reference. Although language agnostic, comby is still

language aware, and can deal with comments and other language-specific constructs. Its rules are also close

to the underlying source, and thus typically easier to read than, e.g., transformations over ASTs.

4.2.3.A Rule Inference

Given a set of code examples, MELT infers a set of comby rules that can be used to automatically migrate

APIs in client code. First, MELT parses the code files corresponding to each code diff into an abstract syntax

tree (AST), identifying the nodes corresponding to the change before and after. MELT then uses a variation

of InferRules’s algorithm [143] (adapted to Python) that always returns a single rule, and never abstracts

away class names, method names, and keyword arguments.

To illustrate, consider the code change in Figure 4.5, where a library maintainer transforms a keyword

argument into a function call. The smallest unit MELT considers for a comby rule is a source code line. Given

the two assignment nodes corresponding to the change, rule inference then abstracts away child nodes with

template variables. When a construct has the same character representation, MELT uses the same template

variable. For the example, MELT abstracts the left-hand side and right-hand side of both assignments, yielding:

:[[a]]= :[b], and :[[a]]= :[c]. Notice that the template variable for the target of both assignments

is the same, :[[a]], because their source representation is the same. However, MELT cannot match the

right-hand side of the assignments (:[[b]], and :[[c]]). It, therefore further decomposes the AST nodes’

children:

:[[a]] = :[[i]].read_csv( [[d]],
compression=:[e], encoding=:[f], −→
index_col=[[g]], squeeze=:[[h]])

:[[a]] = :[[i]].read_csv(:[[d]],
compression=:[e], encoding=:[f],
index_col=:[[g]]).squeeze()

MELT never abstracts away class names, function names, and keyword arguments, as preserving these

details is crucial for API migration. Additionally, MELT consistently yields a single, all-encompassing rule. In

this case, MELT can match every template variable in the match template with a corresponding node in the
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rewrite template except :[[h]]. Consequently, it attempts to further decompose the nodes, but still fails to

match :[[h]], ultimately reverting it and generating the final rule:

:[[a]] = :[[i]].read_csv([[d]],
compression=:[e], encoding=:[f], −→
index_col=:[[g]], squeeze=True)

where :[[h]].type == int,
:[[i]].type == pandas

:[[a]] = :[[i]].read_csv(:[[d]],
compression=:[e], encoding=:[f],
index_col=:[[g]]).squeeze()

After inferring a rule, MELT incorporates type guards. The goal is to constrain each template hole to

its respective observed type. This step is crucial in preventing the misapplication of rules for common API

names (e.g., matching List.append when the rule targets DataFrame.append). In contrast to previous rule

synthesis approaches [143, 145], MELT directly incorporates type constraints into comby’s rule language. This

integration is possible because we extend comby to support Language Server Protocol (LSP) type inference.

MELT uses the Jedi [146] type inference language server, making it available for client usage.

4.2.3.B Rule Filtering

Occasionally, MELT infers spurious rules (e.g., rules that contain variables in the rewrite template that might

not be in scope). First, MELT discards duplicate rules within the same pull request (post generalization, as

well). A rule is considered a duplicate if all of the match, rewrite template and template variable constraints

are the same. MELT then further filters by:

API Keywords MELT discards transformation rules that do not contain the name of any affected APIs. This

can occur when a developer modifies the surrounding context of a code block, for example, by wrapping a

statement in a try-catch block (e.g., :[x]−→ try:\n:[x]). These rules are considered spurious because they

can match arbitrary code and are not specific to API migration.

Unsafe Variable and Private Namespaces MELT discards rules where a rewrite template uses either vari-

ables from private namespaces (indicated by calls with underscores, Python’s convention for private attributes/-

functions/namespaces), or variables not present in the match template. This ensures that the rules do not

rely on private or internal functionality that is not accessible to client code.

4.2.3.C Generalizing Rules

Rules inferred from single code examples may be too specific, as demonstrated in our rule for the squeeze

example so far. This change is specific to a particular argument combination. However, the read_csv function

has numerous optional arguments, and the rule should therefore be versatile. Moreover, it can only be applied

to assignments, even though the migration applies to other contexts.
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Therefore, our approach generalizes rules for broader applicability by abstracting irrelevant context and

generalizing arguments. MELT removes common context in the source and match templates unrelated to

the API. For our example, it unwraps the assignment statement and simply keeps the API call. MELT also

uses InferRules [143] algorithm to find mappings between call nodes in the match and rewrite template,

and generalizes common arguments. If there are multiple consecutive arguments between the match and

rewrite template of the call node, we replace the arguments with a generic template variable :[args]. For

our running example, the final rule is:

:[[i]].read_csv(:[args], squeeze=True) −→

where :[[i]].type == pandas
:[[i]].read_csv(:[args]).squeeze()

Generalization is crucial to ensuring broader rule applicability. The paper describes the generalization

algorithm in more detail.

4.3 Evaluation

We answer the following research questions:

RQ1. How effectively can MELT generate transformation rules from code examples in pull requests?

RQ2. How do code examples generated automatically complement code examples in pull requests?

RQ3. What is the impact of rule generalizability?

RQ4. Are the rules effective for updating client code?

4.3.1 Experimental Setup

4.3.1.A Implementation

Although our approach is largely language-agnostic, we implement it for Python libraries because: (1) Python

is one of the most popular programming languages [147], and (2) there exists a gap in migration tools for

Python [27]. We implemented rule inference using the Python abstract syntax tree (AST) module. Infer-

Rules [143] was originally implemented for Java AST; we brought native implementation to Python. We also

perform rule generalization at the Python AST level. For code generation, we used the state-of-the-art GPT-4

[39]. We extended comby to support Language Server Protocol (LSP)-based type inference over match tem-

plates [148] with Jedi [146], a state-of-the-art static analysis tool. MELT’s source code, data, and logs used

for the evaluation are available at Zenodo [149].
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Table 4.2: RQ1. Left: Pull requests per library, with mined rules and correct rules. Right: Filtered and generalized rules
mined per library, with total and correct counts.

PRs with

Library # PRs Mined Correct Mined Rules
Rules Rules Total Correct (%)

pandas 722 169 102 521 359 (68.9 %)
scipy 130 21 11 33 19 (57.6 %)
numpy 186 20 10 47 27 (57.4 %)
sklearn 141 38 21 82 56 (68.3 %)

Total 1179 248 144 683 461 (67.5 %)

4.3.1.B Methodology

We evaluated MELT using four of the most popular Python data science libraries: numpy, scipy, sklearn,

and pandas. We collected a total of 722 pull requests for pandas, 141 for sklearn, 186 for numpy, and 130

for scipy using the GitHub QL API and web crawlers over release notes. We took a convenience sampling

approach to find PRs concerning API or breaking changes, or deprecation-related PRs, moving backwards

from the version of each library (as of April 2023); this includes merged PRs intended for future library releases,

as well as those that have been released. We collected more PRs for pandas than other libraries because it

had a higher number of pull requests, and breaking changes in pandas are particularly well documented. We

then executed MELT on each pull request.

For our manual assessment of rule correctness and relevancy, two authors of this paper manually labeled

a set of rules independently. We defined a rule to be correct if (1) it correctly reflects the change in the pull

request, and (2) it is generally applicable to client code and does not overgeneralize (i.e., it will not produce

incorrect migrations even if it matches the correct APIs in some cases). This procedure requires analyzing

the pull request discussion, changes, source code, and documentation when necessary. The annotators dis-

cussed five representative examples together and then individually labeled 151 unique rules, achieving an

inter-rater reliability (IRR) with a Cohen’s kappa of 0.84 (almost perfect agreement) [150]. Due to the high

agreement, the first author labeled the remaining rules to cover all research questions.

4.3.2 Results

4.3.2.A RQ1: Mining Rules from Code Examples in PRs

Table 4.2 summarizes MELT’s rule inference algorithm on 1179 PRs (722 pandas, 130 scipy, 186 numpy, 141

sklearn). MELT’s ability to extract code examples from pull requests largely depends on the libraries’ testing

practices. Nonetheless, a significant number of pull requests contain valuable examples for rule extraction.

Previous studies [151] found that only 27.1% of migrations in a different set of libraries were potentially fully

automatable. MELT generates correct migration rules for 12.2% of analyzed pull requests, indicating room
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for improvement (further explored in RQ2).

Running MELT’s rule inference algorithm to the 1179 PRs results in 5504 rules. After filtering and gen-

eralization, we ended up with 683 rules. The right-most columns of Table 4.2 show the number of mined

rules after generalization and filtering for each library, and their correctness based on manual validation. On

67.5% of the cases, our mined rules are correct and do not overgeneralize. However, on 32.5% of the cases,

MELT derived incorrect, non-generally applicable, or over general rules. We observed three primary reasons

for incorrect rules: (1) Code change not generally applicable, such that the rule cannot capture the context

in which it is applicable. For example, in numpy PR #9475 [152], the np.rollaxis is deprecated in favor

of np.moveaxis. Migrating from one API to another depends on the actual content of the variables used

in the API, as it behaves differently depending on the variables’ content. Our rule cannot capture this, as it

only considers types, not content. (2) Overgeneralization of rule arguments. For instance, pandas PR #21954

[153] says “read_table is deprecated. Instead, use pandas.read_csv passing sep=‘t’ if needed.". However, one of

the inferred rules is read_table(:[args]) ↦→ read_csv(:[args]), because the algorithm abstracts all

arguments based on the code example. and, (3) Unrelated changes not caught by filtering.

4.3.2.B RQ2: Mining Rules from Autogenerated Code Examples

To evaluate the role example generation played in rule inference, we sampled 50 pull requests for each library

(limited by budget). We used a template to create a prompt to ask the model to generate both code examples

and test cases/inputs for the examples, per pull request. The prompt includes the title, description, discussion,

and code changes. We used OpenAI’s API to prompt GPT-4, with a (default) temperature of 0.2, and sampled

the model 5 times to generate transition examples. We then followed up with the model to ask for test cases

for each sample (in total 10 requests per PR).

The left side of Table 4.3 shows the number of unique examples generated for each library and the number

of examples that passed the test suite. MELT produced 248 unfiltered and ungeneralized rules on these ex-

amples; filtering and generalization produced 156 unique rules. We also assessed whether these rules could

have been generated from the pull request code directly, by checking (1) whether they were mined in RQ1

(Section 4.3.2.A), or (2) whether they could be directly applied to their corresponding pull request (meaning

that they could have been mined in RQ1, but may have been heuristically filtered away).

Table 4.3 summarize rule mining success using generated examples by pull request (middle columns);

the right-hand side shows the number of rule mined. We categorized correct rules into those that could

have been mined without new examples (prev), and those that are new with the generated examples. Like in

the previous RQ, MELT can generate incorrect rules in some scenarios. Consider the following example rule:

:[[aah]].shift(:[aae], fill_value=:[aaf]) −→ :[[aah]].shift(:[aae], fill_value=pd.Timestamp(:[aaf])). 3

This rule is derived from pandas pull request number #49362 [154]. The release notes for the PR state:

3Template variables are omitted for brevity.
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Table 4.3: Left: Code examples generated and passing tests per library. Middle: Pull requests with mined and correct
(“Corr.”) rules from generated examples. Right: Filtered and generalized rules per library. Note: Limited to 50
PRs per library for budgetary reasons.

Code PRs with Mined Rules
Examples Rules Correct

Library Total # pass Total Corr. Total Prev New

pandas 285 134 25 19 45 7 30
scipy 194 68 15 13 30 4 18
numpy 222 114 21 14 46 2 31
sklearn 187 63 21 13 35 5 17

Total 888 379 82 59 156 18 96

“Enforced disallowing passing an integer fill_value to DataFrame.shift and Series.shift with datetime64, timedelta64,

or period dtypes". This transformation is only valid if the series has a datetime64 dtype object, a condition

not captured by the rule. While the transformation correctly preserves behavior in this instance, it is incorrect

for general application. More diverse tests for the code example could likely increase coverage and filter more

incorrect rules.

4.3.2.C RQ3: Generalizability

Of the 156 rules we manually validated in RQ2, 41 had generalized arguments, and only 9 (22%) were

incorrect. To further evaluate the impact of generalizability with an ablation study, by disabling the general-

ization procedure. We selected 15 rules that had been generalized, along with their non-generalized coun-

terparts. Using Sourcegraph’s code search [155],4 we searched for repositories containing a given keyword

in the rule (e.g., for readcsv(..., squeeze=True), we searched for squeeze=True). We then cloned 50

random repositories for each rule, and ran the generalized and non-generalized rules on these repositories,

counting matches.

Table 4.4 shows matches for original and generalized rules, showing that generalization significantly im-

proves rules applicability. For instance, the number of matches for the set_index case increased from 2

to 370 (185x) with generalization. Generalization is important because it abstracts context unrelated to API

changes. As we focus on API migration in Python, where there can be many argument combinations (e.g.,

APIs with as many as 10 keyword arguments), generalization helps capture the essence of the change by ab-

stracting arguments. Some rules had 0 matches because comby was unable to infer types (comby does not

apply rules when it cannot infer types of a template match), or the query was poorly constructed.

4.3.2.D RQ4: Updating Client Code

To evaluate the effectiveness of our approach to updating developer code, we migrated outdated library

API usage in developer projects found on GitHub for the sklearn, pandas, and scipy libraries. Collecting
4Note SourceGraph only indexes repositories with at least two stars.
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Table 4.4: Comparison of Non-General and Generalized Rules

Library Original Rule Generalized Rule

Match Template Matches Match Template Matches

pandas

:[[x]].set_index(:[a], drop=:[[b]], inplace=True) 2 :[[x]].set_index(:[args], inplace=True) 370

:[[x]].read_csv(:[[a]], compression=:[[b]],
encoding=:[[c]], index_col=:[d], squeeze=True)

0 :[[x]].read_csv(:[args], squeeze=True) 21

:[[aai]].apply(:[a], axis=:[[b]], reduce=True) 3 :[[aai]].apply(:[args], reduce=True) 4

scipy

jaccard_similarity_score(:[[a]], :[[b]]) 94 jaccard_similarity_score(:[args]) 226

:[[x]].filters.gaussian_filter(:[a],
:[b], mode=:[[c]])

0 :[[x]].filters.gaussian_filter(:[args]) 86

:[[x]].query(:[[a]], :[[b]], n_jobs=:[c]) 0 :[[x]].query(:[args], n_jobs=:[y]) 0

:[[x]].hanning(:[[a]], :[[b]]) 0 :[[x]].hanning(:[args]) 0

numpy
:[[x]].alltrue(:[a], axis=:[b]) 7 :[[x]].alltrue(:[args]) 208

:[[x]].histogram(:[[a]], bins=:[b], range=:[c], normed=:[y]) 2 :[[x]].histogram(:[args], normed=:[y]) 66

:[[x]].complex(:[[a]], :[[b]]) 17 :[[x]].complex(:[args]) 20

sklearn

BaggingClassifier(base_estimator=:[[a]],
n_estimators=:[[b]], random_state=:[[c]])

26 BaggingClassifier(base_estimator=:[x], :[args]) 220

BaggingRegressor(base_estimator=:[[a]],
n_estimators=:[[b]], random_state=:[[c]])

7 BaggingRegressor(base_estimator=:[x], :[args]) 116

KMeans(n_clusters=:[a], init=:[[b]],
n_init=:[[c]], algorithm=’full’)

0 KMeans(:[args], algorithm=’full’) 38

AgglomerativeClustering(n_clusters=:[a],
linkage=:[b], affinity=:[c])

4 AgglomerativeClustering(:[args], affinity=:[c]) 28

OneHotEncoder(sparse=:[[aac]],
categories=:[[aan]], drop=:[[aaz]])

0 OneHotEncoder(sparse=:[x], :[args]) 66

and running client projects requires significant manual effort: many projects do not specify dependencies or

provide tests. We therefore did not evaluate numpy API usage, but we can expect similar results.

We found client projects by searching GitHub for public repositories that used outdated versions of each

library, and included code that matched to at least one of the match templates of an inferred rule from RQs 1

and 2. We applied a total of 15 unique rules across the three libraries. We provide detail on specific rules and

projects in Zenodo [149]. For each library, we identified 20 client projects that used outdated versions, and

between one and three rules applied. We cloned each project, updated its library dependencies to a version

with the breaking change, installed necessary dependencies, and ran all tests to note passing tests, failures,

errors, and warnings. We then used comby to automatically update the outdated API usage, and reran the

tests to compare results post-migration. We did this separately for each applicable rule.

Table 4.5 summarizes results. Total Projects refers to the total number of projects to which we applied

rules and tested. Affected Projects refers to the number of evaluated projects that had a change in the tests

after rule application from new or resolved warnings, passed tests, or failures. Not all of the projects had

tests affected by rule application, either because test coverage was incomplete or because persistent failing

tests in developer projects obscured the effect of rule application.
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Table 4.5: RQ4. Effects of rule application on developer projects.

Library Total
Projects

Affected
Projects

Unique
Rules

Rule
Applications

Additional
Warnings

Resolved
Warnings

Additional
Passing Tests

Additional
Failures

Resolved
Failures

sklearn 20 10 6 27 9 598 2 1 1
pandas 20 10 4 23 0 44 7 81 7
scipy 20 6 5 23 0 266 0 1 0

Total 60 26 15 73 9 908 9 83 8

For sklearn, slightly less than half the developer project tests were affected by rule application. Only two

of the projects showed a negative impact of rule application, where one project had an additional failing test

and another project had nine new warnings. The sklearn rules were applied without type information, which

is one potential cause for the negative impact. The other affected projects had warnings resolved, ranging

from 1 to 563 warnings resolved for a single project. One project had additional passing tests.

For pandas, rule application affected half of client projects. While there were 81 additional failures from

pandas rules, they were isolated to four projects and a single rule. These new failures occurred because of

a lack of type information, meaning one rule was erroneously applied to API calls unrelated to the pandas

library. In other projects, the same rule was applied correctly, even without type information, and successfully

resolved warnings. The other three unique pandas rules were applied with type information. No pandas rules

introduced new warnings.

For scipy, rules were also applied absent type information, but only one application introduced an er-

ror. All six affected scipy projects had warnings resolved by rule application, and none of the scipy rule

applications caused additional warnings.

Of the 60 evaluation repositories, 34 had no change in the tests or warnings. However, this does not

indicate that rule transformation was incorrect or unnecessary: most projects had failing tests and errors

unrelated to API usage, which can obscure the effect of rule application. Overall, the resolved warnings and

failures demonstrate MELT’s potential to help developers more easily maintain large projects.

4.4 Discussion

In this section, we address the main limitations of our approach.

4.4.1 Limitations and threats

4.4.1.A Rule correctness.

We used manual validation to assess rule correctness, with a process that entailed high IRR kappa indicating

agreement. One approach for further validation could involve upgrading client projects to newer library ver-

sions and applying the rules on projects using these libraries. In RQ4, we use this method to demonstrate that
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some rules are indeed correct. However, this process is challenging. Melt does not mine rules for all breaking

changes in a given release, so upgrading client projects may break multiple aspects in ways automatic find-

and-replace rules cannot address [151]. However, automating a large part of migration in ways that entail

minimal additional technology or effort on the part of the client developer holds promise for reducing the

challenge of upgrading library dependencies. Our rules could also potentially be validated using differential

testing techniques or by requesting more tests from the code generation model. However, it is also important

to note that we are limited by the expressiveness of the language in which we represent the changes.

4.4.1.B Code generation model.

Our approach relies on a code generation model to generate examples when none are available. We selected

GPT-4, a state-of-the-art model trained on data before September 2021. We successfully evaluated on pull

requests opened after September 2021, demonstrating the risk of data leakage in these experiments is low.

The model, however, is paid and not open-source. As AI research advances, we anticipate better models

being made public. We opt for a model-based code generation approach over generating comby rules directly

because rules can be validated with code examples (if the code does not pass, we discard the example).

Additionally, the model is not fine-tuned and has limited exposure to comby, and is likely to work better on

commonly-used languages like Python. For less popular APIs, however, fine-tuned versions of the model on

library code might be necessary.

4.4.1.C Generalization.

Our generalization procedure removes context and arguments that appear unrelated to the change, only

considering diffs. Removing too much context and type information may result in spurious rules. Conversely,

insufficient generalization can make the rule too specific. This limitation stems from the expressiveness that

comby language provides, rather than MELT’s approach. Regardless, MELT can return both kinds of rules to

the user (i.e., specific or generalized), allowing them to decide what to keep. Currently, developers must

manually validate rules to ensure they make sense. To facilitate this, we developed a CI solution on GitHub

for integrating our tool. Rules can be validated and modified, if necessary, by whoever merges the PR, or

automatically validated, as previously discussed.

4.4.2 Comparison against prior work

Few API migration tools target Python, challenging direct comparison to prior work. MELT adapts its inference

algorithm from InferRules [143], designed for type migration in Java. Consequently, MELT without gener-

alization and filtering serves as a baseline equivalent to InferRules. The most closely related approach,

PyEvolve [145], builds on InferRules using comby as an intermediate representation. PyEvolve focuses
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on general refactoring, and adapts rules to different control variants, requiring more complex client code

analysis. This is in contrast to MELT’s lightweight approach, which aims to minimize overhead on client devel-

opers. Since most of our rules are 1:1 and 1:n transformations, adapting rules for control flow variants is less

relevant. Overall, while PyEvolve is more powerful in the types of rules it can infer, fundamentally it serves a

different goal as compared to MELT.

Our evaluation differs from closely-related prior work [18, 21] in two ways. First, our manual validation

process is able to consider more information in the form of the PR and library documentation. That is, rather

than looking at rules in isolation or limiting attention to syntactic validity, we can consider whether the change

actually reflects PR intent. Second, we provide an end-to-end evaluation of automatically inferred rules on a

number of client code repositories, complementing manual rule validation.

As we discuss in Section 2.4, most prior approaches for automatic API migration (or code evolution gen-

erally) mine migration examples from client projects or their source control histories. MELT relies solely on

the changed library, looking at internal code changes to inform rule mining. This allows MELT to apply earlier

in the library update process. However, libraries do not always include sufficient changed code examples to

inform migration, which is why MELT also prompts an LLM to generate extra examples, along with tests to val-

idate those examples. Other approaches may also benefit from using LLMs this way, particularly those whose

use cases entail fewer available examples, like A3 [19] (focusing on Android API migration), or APIFix [18]

(evaluated on changes to library code, similar to MELT). APIFix in particular could likely benefit from the

LLM-generated examples and tests, because it uses edit examples in its program synthesis algorithm. Other

tools are evaluated across many more example changes to client code, like Meditor [21]. These approaches

may not require new examples, but leveraging LLMs may allow them to apply earlier in the update process, or

in scenarios where migration examples are scarce. Indeed, as models with larger context windows become

available (e.g., CLAUDE 100K token context [156]), it becomes possible to include more comprehensive data

in prompts, such as full API documentation. This suggests a promising avenue for generating higher-quality,

context-rich examples for rule mining, particularly when extant migration examples are scarce.

4.5 Key Takeaways and Contributions

In this chapter, we demonstrated that the library development process itself can be used to mine migration

rules to address simple API breaking changes. It is not necessary to rely on commit data from client projects

that have already undergone migration. This assumption had previously limited the migration approaches,

especially immediately after a library version is released. By integrating the mining process directly with the

library workflow in CI, migration rules can be provided to clients immediately after the source code is updated.

MELT represents migration rules in comby, a lightweight match-replace language for large-scale code

transformation. Since mining can result in very specific rules, we developed a generalization procedure to
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increase rule applicability. However, this approach comes with trade-offs: some rules are overly generalized

and thus may produce incorrect code, while others are too specific. Although the work was successful, some

migrations could not be expressed, primarily due to limitations of the language we used for the synthesis

(comby). In the next, we further explain and exemplify these problems, and introduce a more suitable lan-

guage to express complex API migrations.
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In this chapter, I present my published and completed work on a new code transformation language.

This language is designed to allow expressing flow, dependencies, and the composition of match-replace

rules. This effort is driven by the observation that most code changes (including library migrations) tend to

be cascading and interconnected; yet, modern languages for code transformations do not inherently offer

support for expressing sequences of changes. Indeed, we faced this problem in Chapter 4, where finding
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a balance between overgeneralization and overly specific rules was a persistent challenge, largely due to

expressiveness limitations stemming from the comby language.

5.1 Motivation

Library migrations usually result in a web of cascading and interdependent code changes that span and prop-

agate across multiple files or repositories [157]. For example, consider the library migration from Figure 5.1,

where the goal is to replace log4j (a logging library for Java) with an alternative slf4j. We divide the

migration in four steps:

1. Migrating Imports: Replace the import statement for the Logger type, org.apache.log4j.Logger,

with its slf4j equivalent, org.slf4j.Logger.

2. Migrating Instantiation: In contrast to log4j, in slf4j logger objects are instantiated using a fac-

tory method pattern (implemented in the slf4j.LoggerFactory class). Therefore, it is necessary to

replace the Logger.getLogger call with LoggerFactory.getLogger.

3. Adding Missing Import: Since getLogger is a method of a different class (slf4j.LoggerFactory),

it is also necessary to include the appropriate import statement for this class.

4. Migrating Associated Method Calls: Migrate all method calls associated with the logger to their slf4j

equivalents. In this example, it is only necessary to update the logger.info usage.

While it might be feasible to express these migration steps as individual transformation rules (for example

using comby [140]), such a strategy is suboptimal for multiple reasons.

Runtime Performance. Applying transformation rules indiscriminately to an entire code base, regardless

of the file’s relevance to the type or object in question, can lead to significant overhead and result in slow

and resource-intensive tool executions. For example, suppose our goal is to migrate a code base from log4j

to slf4j as described above. Here, we notice that despite there being multiple steps in the migration, only

files with logger objects need to be touched. One proxy for detecting such files is by looking up an import

statement, as imports typically indicate usage. This means that our migration scripts can be designed to only

attempt to migrate a file (and execute the rules corresponding to the migration), if an import statement to

log4j is present. This is particularly relevant when dealing with large-scale migrations across codebases with

millions of lines of code.

Accuracy and Precision. Match-replace rules typically provide limited control over which code should be

transformed. For example, the import statement in (Line 2, Step 3) is necessary only if the getLogger

API is migrated within the file and the import is not already present. Additionally, the migration of the

info API (Line 8, Step 4) should only affect the logger object that was migrated in (Line 5, Step 2). Calls

to other objects with an info API from another object should not be affected. Writing such constraints in
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1 - import org.apache.log4j.Logger;

2 + import org.slf4j.Logger;
3
4 class Example {
5 Logger logger = Logger.getLogger(Example.class);
6
7 void someMethod(Example example) {
8 logger.info(example);
9 logger.info(new Object());

10 logger.info(new StringBuilder("append0"));
11 }
12 }

Step 1: Migrate import

1 import org.slf4j.Logger;
2
3
4 class Example {
5 - Logger logger = Logger.getLogger(Example.class);

6 + Logger logger =

LoggerFactory.getLogger(Example.class);
7
8 void someMethod(Example example) {
9 logger.info(example);

10 logger.info(new Object());
11 logger.info(new StringBuilder("append0"));
12 }
13 }

Step 2: Migrate API for object creation

1 import org.slf4j.Logger;
2 + import org.slf4j.LoggerFactory;
3
4 class Example {
5 Logger logger =

LoggerFactory.getLogger(Example.class);
6
7 void someMethod(Example example) {
8 logger.info(example);
9 logger.info(new Object());

10 logger.info(new StringBuilder("append0"));
11 }
12 }

Step 3: Append necessary import

1 import org.slf4j.Logger;
2 import org.slf4j.LoggerFactory;
3
4 class Example {
5 Logger logger =

LoggerFactory.getLogger(Example.class);
6
7 void someMethod(Example example) {
8 - logger.info(example);

9 + logger.info("{}", example);

10 - logger.info(new Object());

11 + logger.info("{}", new Object());

12 - logger.info(new StringBuilder("append0"));

13 + logger.info("{}", new StringBuilder(...));
14 }
15 }

Step 4: Migrate other affected APIs

Figure 5.1: Migration steps to move from two popular logging libraries in java: log4j and slf4j.

the comby language would require additional scripting. An attempt at writing this rule in comby could be

:[x].info(:[args])-> :[x].info("{}", :[args]). However, such a rule would apply across the entire

codebase and not just to the previously migrated logger object. On the other hand, substituting logger for

:[x] would overly specialize the rule to this example: logger.info(:[args])-> logger.info("{}",

:[args]). This is particularly challenging to address when migrating common API names like append and

concat as discussed in Chapter 4.

Expressiveness. Current techniques cannot express complex automations as match-replace rules. Generally,

to perform complex automations, developers have to rely on imperative code transformation frameworks in-

stead. These frameworks (e.g., [74, 91]) provide APIs for manipulating code at the AST level, allowing for

arbitrary code transformations. The APIs let users control where, when, and how code should be rewritten

based on context, symbol information, and more complex analyses. However, imperative frameworks present

a twofold problem. First, imperative frameworks are typically monuments of engineering, demanding signif-
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icant time and effort to learn [158]. Second, the frameworks are typically language-specific, as they rely on

compiler and build infrastructure to be able to get meaningful information from the code. This results in

significant burdens as multiple developer experts are necessary for automating the same task in different

languages [90].

5.2 Preliminaries

5.2.1 Existing Code Transformation Languages

Frameworks for automating code transformation vary widely. At one end of the spectrum, lightweight tech-

niques [23, 75, 159] offer declarative languages to rewrite code with simple match-replace rules. The key

advantage of lightweight techniques is language agnosticism, which stems from these techniques being in-

dependent of the underlying compiler infrastructure. Moreover, match-replace rules are often syntactically

close to the target language, making them easy to write and use [23]. However, lightweight techniques are

often limited to atomic context-free code changes, lacking support for tasks requiring cascading and interde-

pendent code changes. On the other hand, imperative frameworks [160] for AST-level manipulation allow for

arbitrary code transformations. As discussed earlier, imperative frameworks provide infrastructure and finer

control over where, when, and how code should be rewritten based in analyses. These frameworks may not

be the best fit for learning migration scripts due to their large APIs, and their imperative nature. Synthesizing

arbitrary imperative programs is undecidable.

5.2.2 A novel Lightweight Language for Cascading Transformations

To address the limitations of existing lightweight match-replace tools (as described in 5.1), we have devel-

oped a new language called PolyglotPiranha. At a high level, PolyglotPiranha allows for sequencing of rule

applications as well as propagating information across rules using a directed graph of match-replace rules.

Programs in PolyglotPiranha are graphs, where the nodes represent individual transformation rules (ex-

pressed in a code transformation language of choice), and the edges determine the order for applying these

rules. Each edge is also associated with a label that defines the scope within which the target rule is ap-

plied with respect to the source rule. For example, an edge R1
class−−→ R2 reads as, "Apply rule R1 and then

apply rule R2 within the enclosing class where R1 was applied." The ability to cascade transformations using

match-replace rules makes it an ideal candidate for writing API refactoring rules.

Note that the goal of this research is not to design a new matching syntax language per se, but rather a

meta-language that allows for the combination and interleaving of existing match-replace languages, as well

as provide infrastructure to combine and sequence them. We build our approach on top of this idea of graph

of match replace-rules. In PolyglotPiranha:
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Replace Import

match org.apache.log4j.Logger

replace with org.slf4j.Logger

Update Logger Creation

match :[obj] = Logger.getLogger(:[name])

replace with :[obj] = LoggerFactory.getLogger(:[name])

Update Info

match :[obj].info(:[args])

replace with :[obj].info("{}", :[args])

using obj

Append Import if Needed

append import org.slf4j.LoggerFactory

where

enclosing (program @p)

not contains import org.slf4j.LoggerFactory

File

Class
File

Figure 5.2: Program in the DSL to described the migration for Figure 5.1. The dashed line represent a seed rule, i.e., the
rule that triggers the migration. Each edge is annotated with a scope. The scope determines where the target
rule will be applied with respect to the source.

1. We aim to allow users to express match-replace rules in any source code matching language. We pro-

vide alternative syntaxes, catering to different users and different needs. The current implementation

supports the tree-sitter query language, comby-like syntax, as well as regular expressions.

2. We enable match-replace languages to be interleaved in the graph (e.g., the first rule uses regular

expressions, while the second uses comby). Some tasks might be accomplished using simple regular

expressions, but for other comby might be a better option.

3. We support composition of match-replace rules using a set of language-agnostic filter primitives. The

goal is to enhance rule precision by leveraging the surrounding code context. Instead of writing a

match-replace rule, the idea is to write multiple rules and only transform the code if all conditions are

satisfied. In this sense, filters act as a set of pre-conditions.

5.2.2.A DSL Motivating Example

Figure 5.2 illustrates a program to automate the migration process outlined in Figure 5.1 in our proposed

language. In this example, rules are expressed in the comby syntax as explained in Chapter 4. A program in

our DSL is a graph of match-replace rules. The graph has a source/seed rule Replace Import, i.e., this rule

initiates and triggers the code transformations by replacing the log4j import. Replace Import is connected

to another rule Update Logger Creation with an edge labelled File. This means that the rule Update

Logger Creation’s application is restricted to the files affected by the Replace Import rule.

Furthermore, Update Logger Creation has two outgoing edges: (1) Update Info - for updating the

info API usage between the libraries, and (2) Append Import if Needed - for appending the import of

LoggerFactory if necessary. First, we seek to update the info API usage only for the Logger field that was pre-

viously updated. Thus, Update Info takes as input the :[obj] name from the previous rule, as indicated by

the using keyword. The value of :[obj] will be instantiated at runtime based on the previous rule. More-

over, the rule will only be applied within the same Class as indicated by the edge label. Second, the import
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<rule_graph> ::= <rule>+ <edge>*
<edge> ::= from string to (string, scope)
<scope> ::= Global | File | n-Ancestors

| Method | Class
<rule> ::= name string match match

[replace [template_variable] with <replace>]
[where <filters>]
[using <holes>]
[is_seed bool]

<replace> ::= string <replace>
| template_variable <replace> | <>

<filters> ::= enclosing match [<contains>] <filters>
| not_enclosing match <filters> | <>

<contains> ::= contains match [at_least int] [at_most int]
| not_contains match | <>

<holes> ::= template_variable <holes> | <>

Figure 5.3: Syntax of our DSL for cascading code transformations. The elements inside square brackets are optional.
The symbol match is an expression for pattern matching (e.g., comby); the symbol template_variable
represents named capture groups from the match pattern.

is appended to the File where the getLogger API was applied as indicated by the edge between Update

Logger Creation and Append Import if Needed.

Notice that the rule Append Import if Needed uses an extra clause called enclosing. Enclosing is a filter

that ensures the import is not added to the file twice. In this case, the filter is written in a combination of tree-

sitter and regular expressions. The enclosing pattern (program @p) is a tree-sitter query that matches the

entire source file. The not contains clause specifies a regular expression to check against enclosing source file.

The rule will only match if the source file does not already contain the import statement.

5.3 Language Syntax and Overview

Figure 5.3 describes the grammar of our DSL. A program in the DSL is a graph of match-replace rules. The rule

graph is captured as a list of directed and labelled edges. Each node represents an individual transformation

rule that structurally matches and rewrites code. Rules can also just match code without transforming it. The

edges between rules specify which rule to apply next and the scope where it should be applied.

5.3.1 Edges

As shown in Figure 5.3, the edges are directed and labelled. Each edge connects either two rules or a rule to a

rule group, defining the order in which they should be applied, akin to the andThen operator1. The edge label

specifies the scope of application, selecting the portion of the code base upon which the target rewrite rule is

applied, with respect to the code that the source rule matched. For example, given an edge fromR1
method−−−−→ R2,

reads as “apply R1 and then apply R2 within the enclosing method where R1 was applied”.

The DSL supports two language-agnostic predefined scopes as shown in Figure 5.3. 1. Global the target

rule is applied across the codebase, 2. File the target rule is applied in the enclosing file. It is also possible to

support other language-specific scopes that depend on the granularity of the internal representation of code

1https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html#andThen-java.util.function.Function
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within the implementation. The current implementation represents code internally with tree-sitter [93],

and supports three other scopes: 3. n-Ancestors the target rule is applied to the parent parse tree nodes of

the code fragment that the origin rule matched, 4. Method the rule is applied to the enclosing method where

the preceding rule was applied, and 5. Class scope refers to the enclosing class. Note that the language

specific scopes are set up only once per language.

5.3.2 Rules

Besides the name, a match-replace rule has 4 major components 1. match - a pattern to match source code,

2. replace - a pattern to rewrite the matched code, 3. filter - to filter out certain matches based on the sur-

rounding code, and 4. holes - variables referenced in the rule, these are filled at run time and serve as the

dynamic component of the rule. Furthermore, a rule could be a seed_rule. These seed rules are entry points

to the graph. This graph is traversed in a depth-first manner at each location where the rule was applied. A

valid rule graph contains at least one seed rule.

5.3.2.A Match.

The match expression is a declarative pattern that captures a code snippet with a specific structure or shape

(based on its parse tree). The match also labels portions of the matched parse tree like the named captured

groups [161] in regular expressions. Our DSL can support multiple structural matching languages, as long

as they support named capture groups (used to label portions of the code). The current implementation

supports concrete patterns, structural queries, and regular expressions.

Concrete Patterns: A concrete pattern is a string with template variables / holes, that is matched to concrete

syntax nodes [162] from the program’s parse tree 2. Formally, let 𝑠 be a concrete pattern containing holes

of the form :[var1], where each hole can represent syntactically valid sub-trees. A Concrete Syntax Tree

(CST) node 𝑡 matches 𝑠 if, traversing 𝑡 in depth-first order yields leaf nodes with a string representation that

aligns with 𝑠 from left to right. Each hole can represent entire sub-tree structures (i.e., multiple sequential

leaf nodes under an internal node). This paradigm of matching is supported by multiple other tools (e.g., [23,

75]). PolyglotPiranha adopts the syntax proposed by [23] in their tool Comby. However, our concrete patterns

have stricter semantics compared to Comby. In our concrete pattern, a template hole, :[x], matches whole

syntactic structures / CST nodes, whereas Comby templates can represent arbitrary strings. Figure 5.4 shows

two examples.

Structured Query Language: A query consists of one or more patterns, where each pattern is an s-expression

that matches a certain set of nodes in a parse tree. These queries capture the structure of the target pattern

in terms of AST node types and string based predicates. This paradigm is programming language agnostic,
2We use Concrete Syntax Trees (CST) over Abstract Syntax Trees (AST) because we must preserve all syntactic structures within the

source code, which are necessary for source code matching
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Rule Matched code snippet Capture Groups

match :[x].info:[args] logger.info(example) x: logger, args: example

match import org.apache.:[name] import org.org.apache.log4j.Logger name: log4j.Logger

Figure 5.4: Example rules using concrete patterns applied to motivation example in Figure 5.1.

Rule Matched code snippet Capture Groups

match (method_invocation
object: (identifier) @obj
name: (_) @m
arguments: (object_creation))

logger.info(new StringBuilder("append0")) obj: logger, m: info

match ((field_declaration
(name: (identifier) @obj
(value: (method_invocation

name: (_) @m)))
(#eq? @m "getLogger"))

Logger logger = Logger.getLogger(A.class) obj: logger, m: getLogger

Figure 5.5: Examples of rules using simplified structural queries applied to motivation example in Figure 5.1.

and is supported by systems like tree-sitter. PolyglotPiranha supports the s-expression based tree-sitter

queries [163]. Figure 5.5 shows two examples.

Each matching paradigm has distinct advantages and disadvantages. By construction structural queries

are more precise than concrete syntax because they can leverage node-types or absence of particular nodes,

and therefore leave less room for ambiguity (e.g., it is possible to differentiate between a field and a local

variable declaration). For example, matching method declarations is easier with structural query, because we

would not need to account for all its syntactic variations (e.g., modifiers like public, static, final) like in

concrete syntax. In contrast, matching API invocation pattern like logger.info(example) (from Figure 5.1)

the concrete pattern is convenient and more succinct. The structural query for this pattern is verbose, and

requires knowledge of the target language’s grammar. Regex matching is more suitable for semi-structured

documents like markdown files. Note that PolyglotPiranha is not tied to these three languages, more can

be supported.

5.3.2.B Replacement.

The replacement pattern decides on how a matched code snippet should be transformed. It is possible to ei-

ther replace the entire matched code or just segments identified by a named capture group. The replacement

expression / pattern can be seen as partial function that is instantiated at run time by substituting a refer-

enced named groups or template variables with their values from either the initial match in the rule, or inputs

to the rules declared with the using keyword (i.e., code snippets captured in previous rule applications). In

Figure 5.6, we show two examples of replacement rules. In the first one, the code is only partially rewritten.

In the second example, the matched code is completely deleted because no target node is specified.
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Rule Source Code Update

match :[object].info(:[args])
replace :[object] with other_:[name]

logger .info(new Object())

other_logger .info(new Object())

match import org.slf4j.:[rest]
replace with -

- import org.slf4j.Logger

- import org.slf4j.LoggerFactory

Figure 5.6: Examples of replacement rules using concrete syntax. Notice that in the first example, the code is only partially
rewritten. Whereas in the second example, the entire code snippet is deleted.

Rule Source Code Update

Delete unused local variable
match :[var_name] = :[rhs];
replace with -
where enclosing (method_declaration)
contains :[var_name] atmost 1

def some_python_function() {
- int unused_variable = 42

execute()
}

Add import statement if absent
match (import_declaration) @p
replace with @p \n import org.slf4j.LoggerFactory;
where enclosing_node (compilation_unit)
not_contains import org.slf4j.LoggerFactory

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

class A {
Logger logger = LoggerFactory.getLogger(A.class);

}

Figure 5.7: Example rules using filters. Note how these rules leverage both concrete pattern and structural query. In the
first example, we use a contains filter inside the enclosing method declaration. This allows us to check if a
variable is used only once. If this is true, the usage corresponds to its declaration, and thus, can be safely
deleted. In the second example, the import is added only if it is not already in the code, as indicated in the
not contains predicate. Since the import is already present, the code is not rewritten.

5.3.2.C Filters.

To make the rules more precise and context-aware, our DSL provides filters to control the application of a

rule based on the surrounding code. First, the candidate code to transform is checked against the matcher of

the rule. Then, at each matched location, the filters will check if the surrounding code of this location satisfies

certain criteria.

There are two primitive filters: 1. enclosing – checks if the primary match is enclosed by a parse tree

node that satisfies the given matcher, and 2. not_enclosing – checks if the primary match is not enclosed by

parse tree node that satisfies the given matcher. The enclosing filters can be further refined by specifying

contains and not_contains expressions. The contains (not_contains) expressions specify matchers

that should (not) match at least once inside the enclosing_node. The user can also specify the frequency of

these matches with at_least and at_most attributes.

Holes. These serve as dynamic components within a rule. They describe input variables to the rule. At

run time, their corresponding values are populated from a symbol table (which maintains the bindings from

named captured groups to code snippets from current and previous applications). The example in Figure 5.2

showcases the usage of these holes. The rule Update Info declares the hole :[obj], which will be instanti-
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ated during the transfromation based on the code matched in the previous rule Update Logger Creation.

5.4 Language Runtime

5.4.1 Algorithmic Overview

Algorithm 3 provides a high level overview for the language implementation and runtime. The core idea is to

maintain a queue of seed rules, and traverse the graph and the files in the codebase starting from each seed

rule. First, we validate the rule graph to prevent unexpected behavior using a data-flow analysis and syntactic

checks on the rules (Line 1). After the validation, we push the seed rules into a global queue and initialize an

environment / symbol table with the input substitutions (Line 4 - 5). The environment is used to store both

the initial set of substitutions as well as the captured groups of from rule executions, which can be used as

dynamic elements in subsequent rules. Each seed rule is applied across the entire codebase recursively in a

depth-first fashion (Line 6), until no rules match (Line 8 - 15). For each relevant file (e.g., a file that is likely to

contain the match template of the rule, see Section 5.4.1.C), we invoke ExecuteRuleGraph (Algorithm 4). In

this step, the tool traverses over the CSTs and transforms the source code. For each match, it explores the

rule graph and stacks the rules in a DFS-manner (Line 12), applying them exhaustively within the scope. The

function ExecuteRuleGraph is not pure, it updates the environment, transforms the source code in-place, and

pushes new rules into the queue (Q). We detail each function of the algorithm more thoroughly in subsequent

sections.

5.4.1.A Graph Validation

The first step in the core algorithm is to verify the graph (Line 1). In our implementation, PolyglotPiranha

statically validates the constructed graph to prevent unexpected behavior when the graph is applied to the

codebase. First, PolyglotPiranha checks if the individual rules’ matchers and filters are well-formed. For

example, PolyglotPiranha ensures that each regex compiles and that each s-expression parses correctly ac-

cording to the language’s grammar. It also conducts a data-flow analysis to ensure that no path in the graph

traversal leads to a rule where an input variable is not initialized correctly. This is implemented as a definite

assignment analysis [164]. If the graph is incorrect, PolyglotPiranha alerts the user to prevent panics that

could result from accessing undefined variables.

5.4.1.B Environment

The environment is a simple symbol table, which is initialized with the substitutions from the program (Fig-

ure 5.3). Rules can access symbol table variables if they have been declared. If a rule is triggered and a match

is found, the symbol table is updated by binding the matched source code to the corresponding named cap-
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Algorithm 3 Core procedure for transforming code
given a graph of rules
Input:

(R : RuleGraph, S : substitutions)
C : path to codebase

1: if ¬validate(R,S) then
2: return
3: end if
4: Q ← seedRules(R)
5: env← S
6: while notEmpty(Q) do
7: rule, _← Pop(Q)
8: loop
9: isApplied← false

10: for file in relevant(C, rule, env) do
11: isApplied ∨ =

12: executeRuleGraph(rule, file,R,Q, env)
13: end for
14: if ¬isApplied then
15: break
16: end if
17: end loop
18: end while

Algorithm 4 ExecuteRuleGraph function
1: function executeRuleGraph(rule, file, R, mut Q, mut env)
2: rulesStack← [(rule, file)]
3: isApplied← false
4: while notEmpty(rulesStack) do
5: rule, scope← pop(rulesStack)
6: rule← instantiate(rule, env)
7: while hasMatch(rule, scope) do
8: match← getMatch(rule, scope)
9: isApplied← true

10: ApplyEdits(match, rule, mut env)
11: for rule, scScope in successors(rule,R) do
12: if scScope ≡ Global then
13: Push(Q, (rule,Global))
14: else
15: scope← resolve(match, file, scScope)
16: Push(rulesStack, (rule, scope))
17: end if
18: end for
19: end while
20: end while
21: return isApplied
22: end function

tured group in the symbol table. If a variable already exists in the symbol table, its entry gets over written.

Therefore a rule always gets instantiated with the most recent binding of the referenced symbol from the

environment. This kind of dynamic variable scoping can also be observed in languages like LaTeX or Bash.

5.4.1.C Relevancy check for performance

In rewriting large code bases, repeatedly parsing the entire codebase is inefficient, especially in monorepos

with millions of lines. The goal of the function relevant is to optimize code rewriting by only parsing files

whose content matches the concrete values assigned to the holes of the global rules (Line 10). In practice,

the concrete values to the input substitutions are used to filter out files that are not relevant to the trans-

formation using string matching. This simple insight improves PolyglotPiranha’s overall performance. The

implementation of PolyglotPiranha further boosts this by parallelizing the lookup using fork-join frameworks

(like Comby). Note that, PolyglotPiranha circumvents this optimization for holes that are referenced inside

the not_contains or not_enclosing clause.

5.4.2 Rule Graph Execution

Algorithm 4 describes the procedure executeRuleGraph that applies a given rule across a file. Each time a seed

rule is triggered, we initialize a stack (ruleStack) for depth-first traversal of the rule graph (Line 2). Then, we

pop rules from stack and apply each rule exhaustively within the specified scope (until hasMatch is false as
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shown in Line 7). For each match, we update the environment with the new capture groups and transform

the source code by applying the rule (Line 10). Finally, we add the successors of the current rule in the graph

to the local stack or the global queue, and continue this until fix point (Lines 11 - 18).

5.4.2.A Optimizations.

PolyglotPiranha uses the tree-sitter [93] framework for parsing the source code. PolyglotPiranha main-

tains only one parse tree object in its memory, and updates this object sequentially leveraging the tree-

sitter’s incremental parsing feature. This eliminates the need to parse the file again from scratch after the

rewrite, thus optimizing PolyglotPiranha’s overall performance. Additionally, to minimize the impact on the

parse tree, by default our approach 1. orders the rules from inner to outer scope: starting from the parent,

to method, class, file, and finally to global scope, and 2. rewrites code bottom up. In the future, we plan to

support alternative transformation strategies.

5.5 Evaluation

Our language implementation is merged into the PolyglotPiranha repository, which is maintained on GitHub.

The tool is used internally at Uber with multiple use cases. In our evaluation, we aim to show key desirable

properties of the language for our use case. To do this, we evaluate PolyglotPiranha on three case studies

related to migration and code cleanup. In particular, we answer the following research questions:

RQ1. [Expressiveness] How expressive is the DSL for real-world code transformation tasks? We assess this

through three case studies. We highlight the complexity of each, and how to encode it in the DSL.

RQ2. [Effectiveness] How effective is our language at automating code changes? To what extent is it useful

in practice? We run the above tools across Uber’s proprietary codebase, and measure the percentage of Pull

Requests (PRs) that pass Continuous Integration (CI) and are merged without manual intervention. For PRs

with intervention, we measure the LoC changed by tools versus developer.

RQ3. [Comparison with state-of-the-art] How do tools built upon the DSL compare to similar tools built

upon state-of-the-art frameworks? We compare the PolyglotPiranha-based implementation against the

imperative variants developed upon ErrorProne [91] and OpenRewrite [92], and against its declarative

variants developed upon Comby [23] (a lightweight tool). We compare implementations in terms of size,

complexity and performance.
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Figure 5.8: Strongly connected components of the rule graphs for feature flag cleanup. The graph structure is language-
agnostic. Implementations accross languages require some adapations.

5.5.1 RQ1. Expressiveness

5.5.1.A Experimental Setup

To showcase the expressiveness of the DSL, we present three real-world case studies where we automate com-

plex code transformation tasks using PolyglotPiranha. In each case study, we highlight the complexity of

the task, and how the DSL can be used to encode it. We chose these three case studies because they are

high-impact tasks crucial to Uber’s operational needs and they are representative of the tasks that Uber or

other software companies would want to automate. Moreover, these tasks are not trivial to automate using

existing frameworks.

5.5.1.B Case study: Stale Feature Flag Cleanup

Feature flagging is a widely adopted and highly encouraged practice at Uber 3, and other major software com-

panies [165, 166]. It allows developers to modify configurations without redeploying, supporting A/B testing

in production. However, feature flags often become stale, and retaining them beyond their original purpose

can lead to technical debt. Therefore, it is important to automate their removal. Indeed, researchers [90] have

developed the Piranha tool for this purpose. Piranha is built on top of the ErrorProne [91] frameworks

for java and SwiftSyntax [167] for Swift. However, Uber’s codebase uses Kotlin and Go too. Instead of

developing two new language-specific tools, we used PolyglotPiranha to implement this transformation as

one tool supporting java, Kotlin, Swift and Go.

Figure 5.8 shows the strategy that we implemented for automating the cleanup of stale feature flags

at Uber. Each node in this figure is a strongly connected component or sub-graph of the original large

graph implementing the transformation. Here, each subgraph is a cleanup category. For instance, Simplify

boolean expressions contains rules that simplify nested boolean expressions with conjunctions, disjunctions

and negations. These rules are recursively applied until the expression cannot be further simplified. It should

be noted how the Simplify boolean expressions and Inline local variables and members call each other,

until no more simplification is possible. The Cleanup tests sub-graph is particularly interesting. In this sub-

3In fact, our motivating example is a simplified version of feature flag cleanup we performed internally.
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1 - public enum IUIModesEnum {

2 + public interface IUIModes {
3 - DARK_MODE,

4 + @Param(key="DARK_MODE")

5 + BoolParam isDarkMode();
6 - LIGHT_MODE,

7 + @Param(key="LIGHT_MODE")

8 + BoolParam isLightMode(); }

(a) Example migration from enum-based feature
flag declaration to annotations.

1 class Consumer {
2 CachedExp ce = new Experiment();
3 + IUIModes um = IUIModes.create(ce);
4 public String color() {
5 - return ce.isTreated(DARK_MODE)

6 + return um.isDarkMode().value()
7 ? "Black" : "White";
8 }
9 }

(b) Source code update after the migration of enums to interfaces
as shown in Figure 5.9a.

Find is treated Usage

match :[r].isTreated(DARK_MODE)
is_seed True

Add Experiment field (if absent)

match CachedExp :[ce];
append \n IUIModes um=IUIModes.create(:[ce]);
where

enclosing_node (class_declaration)
not contains IUIModes :[name] = :[rhs]

Populate Experiment field name

match private IUIModes :[fld_name]

Update Feature Flag Usage

match :[r].isTreated(DARK_MODE)
replace with :[fld_name].isDarkMode.value()
using fld_name

Class

Class Class

Class

(c) Part of the original rule graph that migrates usages of the isTreated API. The input substitutions in the bottom right instantiates
this graph to migrate the DARK_MODE feature flag described in this figure.

Figure 5.9: Experimentation API usage update after the migration from enum-based feature flag declarations.

graph we identify all the tests that explicitly set the feature flag to a specific Boolean value. If the set value is

the same as the status of the feature flag we elide the setter, else we delete the test case.

5.5.1.C Case Study: Experimentation API Migration

The Experimentation team at Uber developed a new feature flagging API to support its growing needs. It

was imperative for Uber to transform thousands of lines of their Android code to use this new API.

Figure 5.9 showcases the code changes required for the migration. The previous feature-flag API declared

feature flags using enum data types. To adapt the code to the new API, these enums need to be rewritten as

annotated abstract methods (as shown in Figure 5.9a). These annotations were added to specify metadata in-

formation for a feature flag such as key and namespace. After migrating the enum to an interface, this change

has to be propagated. For example, consider the feature flag usage in Figure 5.9b. Previously, the isTreated

method (Line 5) was invoked to check the status of the feature flag by passing the enum DARK_MODE, declared

in Figure 5.9a. However, with the new design clients are expected invoke the feature flag method isDark-

Mode() as shown in Line 6.

In practice, this migration has to accommodate many other caveats. To complete this migration, it is
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company_kotlin_android_module(
name = "src_release",
plugins = [

"- //libraries/compiler:processor" ,
"//libraries/utilitites",
],

+ kotlinc_plugins = [

+ "//libraries/processor-kt:processor"],
tests = [":test_release"],
visibility = ["PUBLIC"],

)

(a) Changes to the BUCK file. Here the java dependency is
replaced with the Kotlin counterpart

- import com.co.ParameterUtils
interface UIParams{

@JvmStatic
fun create(cp:CachedParams): UIParams =

- ParameterUtils.create(UIParameters::class.java,cp)

+ UIParamsProvider.create(cp)
}
}

(b) Changes in the source code illustrating the usage of the
new Kotlin-based processor

Figure 5.10: Examples of modifications in the BUCK and Kotlin files for the annotation processor migration.

necessary to also add new fields (e.g., IUIModes (Line 3, Figure 5.9b). This is handled by writing two rules as

shown in Figure 5.9c : 1. Add Experiment field - adds a field of type IUIMode (if absent), and 2. Populate

Experiment field name captures the name of the field of type IUIMode. The field name (i.e.:[fld_name])

is used in the following rule Update Feature Flag Usage, which is the actual rule used to replace the

isTreated API. Other nuances include deleting consequently unused members and imports and adapting

test cases accordingly.

5.5.1.D Case Study: Annotation Processor Migration

The goal of this migration is to transition the Android codebase from a java-based annotation processor

to a Kotlin-based system to improve overall performance. The changes required for this migration are

described in Figure 5.10. This migration requires changing all the build configurations (written in BUCK [168])

to be adapted by replacing the old processor dependency with the new one as depicted in Figure 5.10a.

Besides the build files, it is necessary to migrate all Kotlin files that initially used the java processor (shown

in Figure 5.10b). For example, Figure 5.10b shows how ParameterUtils.create is replaced with a Kotlin

equivalent method, create, and the unnecessary import statement is deleted.

5.5.2 RQ2. Effectiveness and Usefulness

5.5.2.A Experimental Setup

To evaluate the effectiveness of PolyglotPiranha’s framework, we show its effectivness on the three case

studies above by applying them to Uber’s proprietary code-bases. Specifically, the Android codebase is com-

posed of 7.5M LoC of java and 2.5M LoC of Kotlin, while the iOS codebase is composed of 7.5M LoC of

Swift. The PRs produced by our tools are reviewed by the appropriate teams, and merged if they pass the Con-

tinuous Integration checks and tests. The PRs that fail CI are expected to be manually fixed by the respective

team before merging. Note that this data represents months of company wide-effort.
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Effectiveness Usefulness

Application Language # PRs # PRs
(CI passes)

# PRs
(Accepted)

# files
updated #+/- Lines

Stale Feature
Flag Cleanup

ð Java & Kotlin 2515 1413 817 2952 +15032 /-107635 †

 Swift 2186 1309 614 1733 + 21230 /-104721 ‡

Experimentation
API migration ð Java 155 89 155 2146 +19157 /-19041 §

Annotation processor
migration ð Kotlin & Python 25 25 25 2042 +2809 /-3897 ∥

† 85.7% was automated ‡ 95.3% was automated § 73.4% was automated ∥ 100% was automated

Table 5.1: PRS created and merged by the tool, as well as the % of LOC automatically deleted for each.
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Figure 5.11: Lines deleted/updated by tool (blue) vs users (red)

5.5.2.B Results

Table 5.1 summarizes the overall results we obtained by running PolyglotPiranha based tools over our pro-

prietary corpora. For each application, it reports the number of PRs created, PRs accepted (and merged), and

PRs that pass the Continuous Integration checks and tests. At large, the three tools produced 4881 PRs in the

last six months of which 1611 have been accepted and merged into the main codebase at the time of writing

this paper. Particularly, for stale feature flag cleanup our acceptance rate is 52.5% (of PRs that pass CI) while

for the migrations it is unsurprisingly 100% (because the migrations were orchestrated centrally). These PRs

have deleted over 200k LoC of dead code and migrated over 20k LoC of old code to use the new APIs.

A – Stale feature flag cleanup The data for this experiment was collected between April and November

of 2023. PolyglotPiranha created a total of 4701 PRs, and reviewers did some kind of activity on 1727 (36.7%)

of the total number of PRs. These activities include, accepting the PR and merging it, commenting the PR, or

patching the PR before accepting it. There are still 1410 PRs that pass all CI checks and are still in queue for
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review. Further, the reviewers have marked 114 PRs as Needs Changes status indicating that the they expect

extra cleanup from the tooling. For most of these PRs, the reviewers have reported issues with new features

and bugs. The reviewers abandoned 182 PRs, to assert that the cleaned up feature flags are not stale.

We observed that 56.2% of all the Android PRs and and 59.9% of the iOS PRs passed all CI checks. Uber’s

CI not only builds and tests the change, but it also employs over a hundred linters and bug-checkers to ensure

the quality of the change meets the Uber’s high standards. These checkers ensure there are no unreachable

and unreferenced elements (e.g. UnusedMethod check [169]), no sub-optimal code (e.g. ComplexBooleanCon-

stant check [170]) and no nullability errors [171].

The tool deleted 85.7% and 95.3% of all the total deleted lines across the Android and iOS codebases

(90.4% gross) respectively across all merged PRs, as shown in Figure 5.11a. We observed that 75.9% of the

PRs that were merged required no user intervention. However when the developer did intervene, they deleted

a lot of code before merging the PR, hence the mean number of lines deleted by user is skewed (𝜇 = 21.4,

𝜂 = 0). In few outlier cases developer deleted more than 900 lines of code. Probing further into these outlier

PRs, we discovered that developers had removed a collection of top-level classes that were guarded by the

flag. Some of these scenarios will be incorporated into the next version of our tool. However, very precise and

general support for such cleanups is impractical in our lightweight approach.

B – Experimentation API For the Experimentation API migration, we observed that 89 (59.9%) PRs passed

all CI checks. The main reason migration PRs to fail was non-standardized usage of the API and usage of

some specific API patterns that were not automated. Nonetheless, the tool still automated 73.4% of all lines

deleted. The migration was driven centrally by the team, therefore the all the PRs were immediately acted

upon after creation. The team reviewed these PRs, patched them if necessary and merged them.

The tool migrated 73.4% of the total lines deleted, however we observed that more than 74.8% PRs needed

some manual intervention. In these cases developers on average updated another 92 lines upon the changes

proposed by the tool. We observed that Uber developers also made manual changes to the PRs that pass CI.

These changes include class deletions, removing unused data files, updating comments and method names.

While refining rules can resolve certain scenarios, some require symbol or type information, and others, such

as method renaming and updating documentation, are beyond the scope of traditional tools. We also ob-

served that the team knowingly used the tool to perform partial migrations even for cases where all APIs

were not supported. The small spikes towards the tail end of the chart show these scenarios.

C – Anntoation processor migration All the 25 PRs for this migration passed CI and were merged auto-

matically, without any user intervention.
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Figure 5.12: Comparative analysis of Comby, Piranha, and PolyglotPiranha for stale feature flag clean up.

5.5.3 RQ3. Comparison with state-of-the-art code rewrite frameworks

5.5.3.A Performance

A – Experimental Setup We compare PolyglotPiranha-based stale feature flag cleanup againstPiranha [90]

and an equivalent we develop based upon Comby [23]. The Comby implementation has 29 rewrite rules for

java. It was particularly easy to develop the Comby variant because PolyglotPiranha’s concrete syntax DSL is

inspired by Comby. For this evaluation, we chose 24 stale feature flags randomly from the PRs that 1. passed

CI but were not accepted (at the time of writing this paper) 2. were used in java files (because Piranha only

supports java). Note that we only chose 24 feature flags because it takes significant manual effort to inte-

grate Piranha within our infrastructure due to Piranha depending on compilation4. For each feature flag,

we noted the affected sub-targets and their sizes. We then applied the three tools across the sub-targets and

the execution time was recorded. These experiments were performed on an enterprise-class VM in Google

Cloud Platform. Note that we neither compare the quality of the cleanups nor precision because by construc-

tion Comby uses a more loose representation of code, based on Dyck-extended grammars [23] (i.e., balanced

parenthesis grammars), whereas PolyglotPiranha uses language-specific grammars from the tree-sitter

reportoire, hence PolyglotPiranha transformations are more powerful and precise. Conversely, ErrorProne

and OpenRewrite can leverage semantic information like symbol/name resolution, for higher precision and

applicability, but are not polyglot.

B – Results The line chart in Figure 5.12a shows the performance of each of the tools for the set of flags we

identified above (ordered by the size of the corresponding sub-targets, ranging from 1.2K to 1.8M LoC). Poly-

glotPiranha took an average of 9.74 ± 3.46 seconds, Comby 121.67 ± 179.03 seconds (12.32×), and Piranha

413.91 ± 521.94 seconds (42.5×). We can see Piranha’s execution increases almost linearly with the target
4While Piranha was developed and was previously integrated at Uber, however, both Uber’s feature flag API and developer infrastruc-

ture have changed since then
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Table 5.2: Comparison of PolyglotPiranha against existing tools

Bug Fixes Feature Flag Cleanup

Tool Metric CWE-338 slf4J java.security Android iOS

PolyglotPiranha LoC 68 31 23 654 1156

# rules 4 3 3 31 42

Error-Prone LoC - - - 3467 -
SwiftSyntax LoC - - - - 1316

OpenRewrite LoC 145 87 92 - -

Comby # rules - - - 29† -
† This feature flag cleanup variant was developed for the experiments.

size (due to the fact that Piranha relies on building the target). PolyglotPiranha and Comby depended on

the number of passes and files affected for the refactoring. The fact that PolyglotPiranha is faster than the

Comby-based variant is surprising because Comby has a string based matching approach with minimal over-

head. These results can be attributed to the fact that Comby has no sense of ordering between rules (nor

scope), therefore, the match-replace rules are applied across the entire subtarget. PolyglotPiranha’s perfor-

mance is also attributed to optimizations discussed in Section 5.4.1.C and 5.4.2.A.

Figure 5.12b shows the number of lines deleted by each of the tools for the same set of flags (in the same

order). PolyglotPiranha deletes more lines of code because it’s able to delete trailing commas and comments.

Note that we manually vetted that there are no over deletions in these PRs. In summary, PolyglotPiranha is

consistently faster while deleting more lines than its imperative alternative Piranha and a lightweight Comby-

based alternative.

5.5.3.B Expressiveness and Ease-of-use

A – Experimental Setup We compare the implementation of PolyglotPiranha-based tools against their

imperative variants. Specifically, we compare the PolyglotPiranha-based Stale Feature flag cleanup pro-

gram against the implementation of Piranha [90]. Further we also encode three pre-existing code trans-

formation recipes developed by professional tool builders, specifically OpenRewrite - 1. (JHipster Upgrade)

Fix CWE-338 with SecureRandom [172] 2. (Slf4j) Loggers should be named for their enclosing classes [173]

3. (java.security) Use secure temporary file creation [174]. The selected patterns are 1. related to a popular

java library 2. involve multiple interdependent changes 3. have associated test cases for validation 4. clearly

fix a bug or security vulnerability.

B – Stale feature flag cleanup. As discussed in Section 5.5.3.A, Piranha is a stale feature flag cleanup

tool with multiple implementations, one for each language supported. This is because Piranha is built upon

language-specific imperative frameworks for code analysis and rewriting. To compare the expressiveness

and conciseness of both approaches, we qualitatively and quantitatively compare the Piranhajava and Pi-

ranhaSwift variants against their PolyglotPiranha-based counterparts.
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PiranhaJava is built upon the ErrorProne [91] framework, whereas PiranhaSwift uses SwiftSyn-

tax [167]. Table 5.2 (right) shows that PolyglotPiranha based approach is significantly more concise in terms

of LoC. Moreover, rules can be re-used across languages. PolyglotPiranha-based Swift variant is more pow-

erful than PiranhaSwift (e.g., supports variable inlining and cleanup of the unused members).

In contrast, our Comby implementation for feature flag cleanup in Java comprises 29 rules. Due to Comby’s

limitations, we were unable to express 10 transformations from our PolyglotPiranha implementation, in-

cluding inlining singly-used boolean variables, deleting unused fields and variables, removing unnecessarly

nested blocks, and deleting files under certain conditions and enum blocks. Despite this, the rule count dif-

ference is minor: 31 for PolyglotPiranha versus 29 for Comby. This is because PolyglotPiranha allows for the

use of different, more powerful transformation languages. For instance, tree-sitter queries provide a syn-

tax for complex alternations. Therefore, the Comby variant ends up being more verbose, requiring additional

rules for the same task.

C – OpenRewrite OpenRewrite project is a semantic code search and transformation ecosystem. Its plat-

form allows writing code transformation recipes for common framework migration and stylistic consistency

tasks. We picked three relevant recipes written by professional developers, corresponding to high-impact

transformations. We implemented the same refactoring actions using PolyglotPiranha. Table 5.2 shows the

LoC count and number of rules for both PolyglotPiranha and OpenRewrite recipes. Our implementations

pass the tests of the OpenRewrite recipes.

5.6 Discussion

Transformation Correctness. PolyglotPiranha does not guarantee that the transformed code will compile,

be semantically correct, or precisely reflect the developer’s intent. This limitation is common to other syntax-

driven code transformation tools such as [23, 75, 159]. While our dataflow analysis verifies the rule graph’s

consistency and grammatical accuracy (Section 5.4.1.A), the effectiveness and accuracy of transformations

ultimately rely on the quality of the rule graph itself.

Syntactic Limitations. PolyglotPiranha’s purely syntactic approach limits its ability to perform transforma-

tions that require semantic information of the code. In practice, this means that code rewrites that require

type resolution, class hierarchy analysis, and/or control-flow analysis can not be expressed in the DSL today.

Specifically, PolyglotPiranha: 1. lacks precise def-use information. We designed rules conservatively to iden-

tify def-use relationships within the syntactic scope of the variable declaration. However, due to the lack of

SSA representation and dominator information PolyglotPiranha cannot reason about variable shadowing or

re-initialization. 2. lacks precise type information. We approximate type information by analyzing declarations

within a scope. This falls short when dealing with language features that obscure type information, such as
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Java’s var keyword or dynamically typed languages like Python. 3. lacks call-graph analysis. We approximate

caller-callee relationships using method names and their number of arguments, resulting in imprecision in

the presence of interfaces, class hierarchies, and method overloading. 4. cannot handle advanced language

features that require semantic analysis, such as reflection.

Despite these limitations, our evaluation showcases that PolyglotPiranha is effective at automating three

real-world code transformation tasks. Though imperfect, even in cases where it was partial, this automation

substantially alleviated developers’ load as seen in Figure 5.11a.

Supporting New Languages. PolyglotPiranha supports languages beyond the ones listed in the evaluation,

including Go, Python, Scala, Typescript, as well as protocol formats like Thrift. PolyglotPiranha uses

tree-sitter for code parsing, thus supporting a new language requires: 1. incorporating the tree-sitter

grammar within PolyglotPiranha, and 2. authoring scope-capturing rules in a configuration file (i.e., one rule

per scope such as class, method, or file). PolyglotPiranha uses these scopes when applying rules from the

rule graph. Note that tree-sitter officially supports 133 programming languages [93], including functional

languages like Haskell and Scheme. In fact, we support Scheme as a language in PolyglotPiranha, and

use it within PolyglotPiranha’s implementation for rewriting its structural queries (a subset of Scheme). The

implementation burden for this support was comparable to other languages.

Adapting PolyglotPiranha-based tools, like those for feature flag cleanup, to new languages may require

additional work. For example, a rule for simplifying a disjunction (true || :[a]) in Java needs to be

customized for Python as true or :[a]. However, we observed that some rules are reusable within a broad

family of languages (Java, Kotlin, etc).

PolyglotPiranha’s Usability. To assist users in debugging and root-causing failures due to errors in the rule

graph, PolyglotPiranha outputs detailed reports of all executed rules (in order) including their corresponding

matched LoC ranges, and runtime arguments in an easily queryable format. This allows for step-by-step

replay and analysis. Our repository contains examples that explain how to enable debugging mode. We have

also developed a playground for rule experimentation that allows users to easily experiment with rules and

rules graphs on code snippets. This playground is publicly available on our artifact.

5.7 Key Takeaways and Contributions

In this chapter, I introduced a novel code transformation language, PolyglotPiranha. The language and

toolset were designed to support complex code transformations. We demonstrated desirable properties of

the language (namely, its expressiveness, usefulness, and run-time efficiency) through three case studies. By

construction, this language is more expressive than comby, while maintaining its lightweight and declarative

nature. The goal was to enable complex code transformation to be expressed in a lightweight declarative
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language, rather than resorting to language-specific and imperative toolsets for code manipulation. In the

next chapter, I show how to leverage LLMs for synthesizing complex API migration scripts in this language.
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6
Distilling code migration knowledge

from Large Language Models
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In this chapter, I present my work on Spell, a technique for synthesizing code migration scripts using large

language models. This work is motivated by the observation that LLMs encode latent knowledge about API

mappings and their knowledge that can be extracted and systematized into reusable transformation scripts.

Whereas prior approaches to library migration depend on manually curated data or mined repository histories

(as discussed in Chapter 2), Spell leverages the generative capabilities of LLMs to create synthetic migration
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examples and validate them. It also overcomes the limitations of SOAR related to runtime performance dis-

cussed in Chapter 3 by representing the programs in the PolyglotPiranha language. This chapter introduces

the full pipeline underlying Spell, from LLM-guided data generation to agent-based script synthesis in the

PolyglotPiranha language. Finally, the tooling is evaluated across a diverse set of libraries in python.

6.1 Motivation

As described in previous chapters, most existing methods rely on mining software repositories that have al-

ready undergone migration [18–22, 44, 143, 175], which are then generalized and systematized into reusable

formats for broader application.

However, these techniques are limited due to their dependency on the availability and quality of historical

migration data. First, migration data is scarce [97]. Collecting projects that have migrated between arbitrary

pairs of libraries is challenging due to the combinatorial nature of the problem. Without this data, existing

tools cannot infer or generate migration scripts.

Second, most existing approaches rely on custom program transformation toolsets and do not leverage

available infrastructure for expressing migration logic (e.g., [19–22]). However, in recent years, several au-

tomated code transformation toolsets have emerged to support migration tasks, including tools like Open-

Rewrite [92], GritQL [176], and PolyglotPiranha [5]. These are domain-specific languages designed to

manipulate source code, and have been used for performing automated migrations.

Recently, large language models (LLMs) have also gained traction in automating various code transforma-

tion tasks, including in industrial settings (e.g., Amazon Q Transform [118]). However, directly using LLMs to

migrate or refactor code is often unreliable: models frequently introduce formatting changes, stylistic edits,

or subtle semantic bugs [177]. These migrations are also inefficient, since each one is generated from scratch

and produces no reusable artifact.

Nonetheless, despite these limitations, LLMs hold significant potential for the library migration domain.

Through pretraining on large-scale code corpora, LLMs implicitly learn joint representations of APIs and the

semantic relationships between them, including cross-library mappings [40]. While this knowledge may be

imperfect, our key insight is that it can be extracted and tested to produce meaningful migration examples

for learning migration scripts.

Thus, we introduce Spell (Synthesis of Programmatic Edits using LLMs), a novel approach to automated

code migration that leverages this key insight. Our method prompts models to generate equivalent imple-

mentations for both libraries, along with tests to verify behavioral equivalence. By generating and filtering

multiple such examples, we systematically distill migration knowledge from LLMs and encode it into reusable,

testable scripts in a source code transformation language. Unlike prior approaches, Spell does not depend

on existing migration histories or manually crafted transformation rules — though it implicitly draws on the
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(a) Code snippet using cryptography (before)

1 import hashlib
2 from cryptography.fernet import Fernet
3
4 (...)
5
6 def encrypt_document(document: str, key: bytes) ->

bytes:
7 cipher = Fernet(key)
8 encrypted = cipher.encrypt(document.encode())
9 return encrypted

10
11 (...)

(b) Code snippet using pycryptodome (after)

1 from Crypto.Cipher import AES
2 from Crypto.Util.Padding import pad
3
4 (...)
5
6 def encrypt_document(document: str, key: bytes) ->

bytes:
7 cipher = AES.new(key, AES.MODE_CBC)
8 padded_data = pad(document.encode(),

AES.block_size)
9 encrypted = iv + cipher.encrypt(padded_data)

10 return encrypted

Figure 6.1: Simplified function-level encryption logic before (using cryptography) and after (using pycryptodome),
illustrating the shift from Fernet’s built-in encryption to manual AES-CBC with padding and IV management.

replace_import

Match:

from cryptography.fernet import Fernet

Replace:

from Crypto.Cipher import AES

from Crypto.Util.Padding import pad

replace_decl

Match:

:[var] = Fernet(:[key])

Replace:

:[var] = AES.new(:[key], AES.MODE_CBC)

File

replace_encrypt

Match:

:[enc] = :[var].encrypt(:[data])

Replace:

padded_data = pad(:[data], AES.block_size)

:[enc] = iv + :[var].encrypt(:[data])

Function

Figure 6.2: Program in the PolyglotPiranha language generated from the pair of functions presented in Figure 6.1.

LLM’s training data. Rather than mining examples from real-world repositories, it produces them through a

structured prompting and validation process, enabling migrations even when curated examples are unavail-

able.

After converting the unstructured knowledge of LLMs into concrete before-and-after code pairs, we use

them to synthesize generalized transformation scripts in the PolyglotPiranha language, using an agent work-

flow. This allows us to produce reusable, testable scripts without manual intervention or large mined datasets.

Our results show that Spell can synthesize correct, reusable migration scripts across a range of Python

library migrations. For nine tasks, it generated an average of 99 validated examples per task and inferred

correct scripts for 60.9% in a single trial. Compared to MELT, Spell achieved higher success rates on every

task. Moreover, the scripts generalized to real-world projects: when applied to GitHub repositories, they

performed correct rewrites and preserved test behavior in most cases. These findings show that structured

migration knowledge can be distilled from LLMs and converted into reusable migration scripts.

6.2 Illustrative Example

Our pipeline consists of two phases: (1) data generation, where we attempt to generate code migration

pairs and tests, and (2) synthesis, where we abstract those pairs into reusable migration scripts.
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6.2.1 Data Generation

The goal of the data generation phase is to distill code migration knowledge from the LLM in the form of

migration examples.

As an illustrative example, consider the task of migrating between two Python cryptography libraries:

cryptography and pycryptodome. Given a pair of libraries (source, target), our approach uses an LLM to

generate two implementations of the same functionality, one using the source library and the other using the

target. These paired implementations form the basis for migration examples that can later be generalized.

To enable this, the first step is to define a task to be implemented. We begin by asking the LLM to generate

ideas, i.e., tasks or features that could plausibly be implemented using either library. These ideas help focus

the model on a shared functional goal and can be realized with both the source and target APIs. For example,

when asked to propose such an idea for cryptography and pycryptodome, gpt4o-mini responds:

A File Encrypting Utility can be implemented using pycryptodome or cryptography to allow users

to encrypt and decrypt textual documents. High-level behaviour and API: (...)

Using this idea, we then prompt the model to generate an implementation using the source library. For

example, Figure 6.1a shows one such implementation generated by the LLM using the cryptography library.

Subsequently, we also prompt the LLM to generate tests for each implementation. These tests help verify

that the code is functional and are used to filter out examples that do not behave as expected.

Finally, we prompt the LLM to migrate each implementation in cryptography to the alternative library

pycryptodome. Figure 6.1b shows the migration the LLM generated for the code in Figure 6.1a.

During migration, our prompt instructs the LLM to modify only the library-specific API calls while keeping

the rest of the code unchanged. This is important because we reuse the tests generated for the original

implementation and run them on the migrated version. The test results serve as a signal that the migration

was successful, that is, the migrated code behaves the same as the original on the tested inputs. The tests

act as a filter to discard examples that are not equivalent under test.

At the end of this process, we obtain triples: a source implementation using the source library, a corre-

sponding target migration, and a shared test file that both the implementation and the migration successfully

pass. Our data generation pipeline is described in more detail in Section 6.3.

6.2.2 Synthesizing Migration Scripts

The synthetic code migration pairs from the previous step are then abstracted into reusable migration pro-

grams. These programs capture structural transformation patterns, allowing the same migration logic to be

applied across similar tasks.

We express these programs in the PolyglotPiranha [5] language, our DSL for source-to-source transfor-

mations. Recall from Chapter 5 that a PolyglotPiranha program is composed of rules, each with a match
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Figure 6.3: Overview of our data extraction pipeline for generating migration examples using LLMs. Given a source–target
library pair, we first prompt the LLM to propose abstract ideas leveraging its latent knowledge of both libraries
(Step 1). For each idea, we generate multiple implementations using the source library (Step 2), followed by
corresponding test cases (Step 3). We then attempt to migrate these implementations to the target library
(Step 4). The generated data undergoes a three-stage validation process: implementation validation (a), mi-
gration validation (b), and quality filtering based on coverage, API usage, and test robustness (c). The final
output is a collection of validated migration triples (implementation, test, migration).

clause that identifies a code pattern and a replace clause that rewrites it. Template variables (e.g., :[var])

allow rules to generalize over specific names and expressions, effectively acting like regular expressions, but

for syntax-aware code patterns. Rules can be connected through labeled edges that specify how and where

follow-up transformations should be triggered. This enables cascading and context-sensitive rewrites.

Figure 6.2 shows the PolyglotPiranha program synthesized from the pair of functions in Figure 6.1. The

first rule, replace import, replaces the original import with one from the target library. This triggers the

second rule within the same file, replace decl, which rewrites the construction of the object. Finally, the

third rule, replace encrypt, updates how the encryption API is used. The template variables like :[var]

and :[data] ensure that these rules are not tied to specific variable names or concrete expressions.

In Section 6.4, we describe how our agent workflow automatically synthesizes these rules from the migra-

tion triples. The output of this step is a set of interpretable migration programs that capture the essence of

the transformation and can be adapted or extended to similar scenarios.

6.3 Migration Data Extraction

Figure 6.3 overviews the data distillation process, which extracts and validates LLM’s pre-trained knowledge

about migrating between two libraries. The process generates sets of equivalent programs using source and

target libraries, with test cases that provide evidence of their functional equivalence. This data is the input

for migration script synthesis (Section 6.4).

More precisely: given source library S and target library T , we sample migration knowledge from an LLM

as raw migration triples M̃ = {(𝑠𝑖 , 𝑡𝑖 , 𝑚̃𝑖)}𝑛𝑖=1. These triples are automatically generated and may contain

redundancy, inconsistencies, or errors. We validate and filter this set to produce a high-quality subsetM =
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(𝑠𝑖 , 𝑡𝑖 , 𝑚𝑖)𝑚𝑖=1, where 𝑚 ≤ 𝑛, and:

• 𝑠𝑖 is an implementation using S

• 𝑚𝑖 is a functionally equivalent implementation using T

• 𝑡𝑖 is a test suite that executes and passes on both 𝑠𝑖 and 𝑚𝑖

We use tilde to denote sampled triples that may or may not be valid; notation without a tilde refers to

data/triples that have been validated. We now explain knowledge extraction (Section 6.3.1) and validation

(Section 6.3.2).

6.3.1 Model Sampling

The goal in model sampling is to generate a diverse initial set of example implementations of shared func-

tionality, using S and T . A nontrivial library can usually be used in a variety of ways. Thus, our process

entails a multi-stage pipeline that first generates multiple ideas of functionality that can be implemented us-

ing S (Section 6.3.1.A), and separately generating implementations of those ideas using S (Section 6.3.1.B).

For each implementation of each idea, the pipeline generates tests (Section 6.3.1.C), and finally migrates the

implementation to use T (Section 6.3.1.D).

6.3.1.A Idea Generation

Given libraries (S,T), Spell first prompts an LLM to generate multiple ideas I (Figure 6.3, Step 1). Each idea

𝐼 𝑗 ∈ I represents a use case, program, or otherwise useful functionality that could be implemented using

either library.

Generating ideas first decouples the creative task of brainstorming migration scenarios from the technical

task of writing correct code. This serves to encourage a model to explore a wide space of API usages, beyond

common boilerplate. It also provides a clear, shared semantic goal, encouraging consistency between source

and target implementations. Finally, it allows the pipeline to retry implementation generation for promis-

ing ideas as necessary, without having to re-explore the entire conceptual space. Decoupling also allows

the model to focus on brainstorming ideas that are not complex or otherwise unsuitable, before investing

computational resources in their implementation, next.

Idea generation begins by using the model to create a small set of seed ideas that are then used for a self-

instruct loop to generate additional migration scenarios. Self-instruction, in which a model produces its own

task demonstrations using seed data, has proven effective in bootstrapping a model’s existing knowledge

in a variety of contexts [178]. We first generate 𝑝 seed ideas by prompting the model directly with a basic

instruction. Each idea describes a use case involving a source library, along with a high-level summary of its

functionality. These seed ideas are collected into a list and used as few-shot examples in subsequent prompts

to generate more.
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Prompt for Idea Generation

Generate a functionality that a developer might commonly implement using either {li-
brary_name_1} or {library_name_2} in python. Focus on operations that are well-
suited to these libraries’ strengths and typical use cases. Describe the high-level behavior
and expected outcomes, without diving into specific implementation details. The function-
ality should be simple enough. It should be easy to implement in at most 100ish LoC.

Figure 6.4: Prompt Spell uses for generating different ideas to implement in two libraries of interest.

Prompt for Implementation

Implement the functionality described above using the {library_name} library. Follow
best practices for this library, ensuring that the implementation is modular, clear, and easy
to test. The implementation should focus on achieving the high-level behavior described,
while abstracting away unnecessary complexity. Design functions that can be easily be re-
placeable by alternative implementations.

Guidelines for your implementation:

• Do NOT use classes, unless absolutely necessary. Please use functions instead.
• You may include a small main block, but please focus on API implementation.
• Everything needs to be self-contained in this python file!

Figure 6.5: Prompt Spell uses for eliciting concrete implementations from generated ideas.

The idea generation loop proceeds by randomly sampling 𝑘 prior ideas (seed or generated), to include in

a new prompt, and asking the model to propose one new idea. This repeats until it produces a target number

of ideas. This step outputs a set of 𝑛 ideas that demonstrate ways the source and target libraries can be used.

6.3.1.B Implementation Generation

For each idea 𝐼 𝑗 ∈ I, we prompt the model to generate a set of implementations 𝑆̃ 𝑗 = {𝑠 𝑗,1, 𝑠 𝑗,2, ..., 𝑠 𝑗,𝑛} using

source library S (Figure 6.3, Step 2). Ideally, these implementations are modular, with a well-defined API. This

simplifies migration to T while preserving the high-level interface, necessary to use the same tests on both.

The prompt thus instructs the model to implement the idea in a self-contained python file, subject to the

following constraints: 1. implement the API for idea 𝐼 𝑗 as a set of functions, 2. focus on API implementation;

a small main block is optional, and 3. avoid external dependencies beyond the specified library S.

We construct a multi-turn chat prompt that includes the original idea and implementation instructions.

To obtain diverse outputs and increase the chances that the model produces usable implementations, we

sample multiple completions using stochastic decoding.

The output of this step is a set of up to 𝑛 potential implementations of each 𝐼 𝑗 ∈ I.
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Prompt for Integration Tests

Now, I would like you to write some tests. Please abstract from concrete implementa-
tion details and focus on testing the actual functionality without relying on mocks or other
implementation-specific constructs (think of an integration test).

Write a set of integration tests for your implementation using either pytest or hypothe-
sis. The tests should focus on verifying the correctness of the functionality across a wide
range of inputs, including edge cases. Ensure that the tests are comprehensive and em-
phasize high-level behavior and expected outcomes, rather than specific implementation
details.

The tests should be resilient to changes in the underlying implementation, ensuring they
still pass if the API or library is replaced with an alternative.

Assume the file you generated will be under the same directory ./implementation.py
for import purposes. Use relative imports to import the implementation file.

Figure 6.6: Prompt Spell uses to generate integration tests for a previously implemented idea.

6.3.1.C Test Generation

For each idea-implementation pair (𝐼 𝑗 , 𝑠 𝑗,𝑘), we generate multiple test suites 𝑇𝑗,𝑘 = {𝑡 𝑗,𝑘,1, 𝑡 𝑗,𝑘,2, ..., 𝑡 𝑗,𝑘,𝑝} (Fig-

ure 6.3, Step 3). A test suite 𝑇𝑗,𝑘 is intended to partially verify, and build confidence in, the correctness of

implementation 𝑠 𝑗,𝑘 (and, later, the migrated implementation using target library T).

The ideal tests target an implementation’s public API and core functionality, rather than internal imple-

mentation details that may not transfer. For example, tests for a program that encrypts files should not

inspect the encrypted output directly, but should instead verify that decrypting a file restores the original

content (among other functionality). The prompt instructs the model to generate unit tests (or end-to-end

tests, if unit tests are infeasible) that validate the overall system behavior.

The prompt includes 𝐼 𝑗 , 𝑠 𝑗,𝑘, and the test generation instructions. We sample multiple test files per imple-

mentation to mitigate model hallucination as well as challenges in test generation generally, such as incorrect

assertions. Sampling increases the chances of obtaining at least one valid test file for an otherwise correct im-

plementation. Since our implementation is python-specific, the prompt instructs the model to use either the

pytest testing framework or property-based testing with hypothesis, when appropriate. This assumption

could be easily ported to other languages.

The output of this step is multiple test files per implementation.

6.3.1.D Migration

For each idea-implementation pair (𝐼 𝑗 , 𝑠 𝑗,𝑘), we prompt the model to generate multiple migrated implemen-

tations 𝑀̃𝑗,𝑘 = {𝑚̃𝑗,𝑘,1, 𝑚̃𝑗,𝑘,2, ..., 𝑚̃𝑗,𝑘,𝑞} in target libraryT (Figure 6.3, Step 4). Each 𝑚𝑗,𝑘,𝑟 represents an attempt

to migrate 𝑠 𝑗,𝑘 while preserving its public API. This entails a multi-turn chat prompt that includes the original
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Prompt for Library Migration

Migrate the following implementation from {original_library_name} to {alterna-
tive_library_name}: Please maintain the same API. Keep the same function names, ar-
guments, and class names!! The migrated code should pass the original integration tests,
confirming consistent behavior across both libraries.

Ensure that the new implementation adheres to the same modular design and high-level
behavior as the original. It should keep the API names, class names, etc. The migrated
code should pass the original integration tests, confirming consistent behavior across
both libraries. Replace any references to {original_library_name} with {alterna-
tive_library_name} in the code. Please generate the entire file except with this par-
ticular function migrated to the new library.

Figure 6.7: Prompt Spell uses to perform a library migration while preserving the original API and integration behavior.

idea 𝐼 𝑗 and implementation 𝑠 𝑗,𝑘, and instructions asking the model to migrate the source implementation

to use the target library. The prompt further instructs the model to keep the same structure and function

signatures, and only update the internal logic and API calls to use the target library.

The output of this step is the set of raw migration triples M̃ =
⋃

𝑗,𝑘{𝑠 𝑗,𝑘} × 𝑇𝑗,𝑘 × 𝑀̃𝑗,𝑘, where the union is

taken over all ideas 𝐼 𝑗 ∈ I and their implementations. These may include incorrect or only partially migrated

examples, so they are validated and filtered as described in Section 6.3.2.

6.3.2 Validation

Not all sampled migration examples are valid. Initial or migrated implementations may be spurious or in-

complete, tests may not run, etc. Thus, the validation step filters M̃ to produce a set of valid migration triples

M = {(𝑠𝑖 , 𝑡𝑖 , 𝑚𝑖)}𝑚𝑖=1. In a valid triple, both source and migrated implementations expose desired APIs, pass

the same tests, and are exercised with sufficient test coverage.

Implementation Validation. First, we validate initial idea implementations. For each (𝑠 𝑗,𝑘, 𝑡 𝑗,𝑘,ℓ) ∈ 𝑆̃ 𝑗×𝑇𝑗,𝑘, we

execute tests 𝑇𝑗,𝑘 against 𝑠̃ 𝑗,𝑘, retaining pairs where all tests pass. Recall that we generate multiple potential

test suites per implementation (Section 6.3.1.C; this step can therefore produce multiple pairs containing a

given 𝑠 𝑗,𝑘. We run each test file 𝑡 𝑗,𝑘,ℓ independently using pytest inside a docker container that includes a

pinned python version and a large set of python libraries, including S and its dependencies.

Migration Validation. For each valid (𝑠 𝑗,𝑘, 𝑡 𝑗,𝑘,ℓ) pair and associated migration attempt 𝑚̃𝑗,𝑘,𝑟 ∈ 𝑀̃𝑗,𝑘, we

improve confidence in equivalence by confirming that 𝑚̃𝑗,𝑘,𝑟 also passes tests 𝑡 𝑗,𝑘,ℓ (dropping those that do

not). Because the migrated code is expected to preserve the original API, the same test suite is expected to

apply (and those that do not, are dropped).

To construct the final setM, we select a single triple per implementation. Specifically, for each imple-

mentation 𝑠 𝑗,𝑘 with multiple valid test–migration pairs, we retain the triple (𝑠𝑖 , 𝑡𝑖 , 𝑚𝑖) with the highest post-
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Figure 6.8: Agentic workflow of Spell’s approach to migration script synthesis. Our pipeline leverages MELT for creating
an initial set of rules, which is then fed to an LLM agent for PolyglotPiranha script generation.

migration coverage. This ensures that each source program maps to exactly one migration.

Test-based Filtering. Finally, we also collect line-level coverage metrics for each run to build confidence that

the test suites meaningfully exercise core logic. We simultaneously collect information on API usage, for later

analysis. We retain triples where shared tests achieve at least 60% line coverage on both implementations.

To construct the final validatedM: for each implementation 𝑠 𝑗,𝑘 of idea 𝐼 𝑗 part of more than one valid

triple, we select the one with the highest post-migration test coverage. We include implementations part

of only a single valid triple directly. These selected triples become (𝑠𝑖 , 𝑡𝑖 , 𝑚𝑖) ∈ M. Thus, each validated

implementation contributes at most one triple toM, ensuring high-quality examples while maintaining idea

implementation diversity.

6.4 Migration Script Synthesis

Spell converts migration triplesM = {(𝑠𝑖 , 𝑡𝑖 , 𝑚𝑖)}𝑛𝑖=1 (Section 6.3) into executable rewrite scripts in Polyglot-

Piranha, a state-of-the-art DSL and toolset for code transformation (Section 5.1). Our novel approach for

script inference combines classical anti-unification with an agentic LLMs strategy. This hybrid is motivated by

the structure of PolyglotPiranha programs: local rewrite rules (graph nodes) connected by a high-level strat-

egy (labeled edges). Classical anti-unification excels at inferring precise local rules from concrete examples,

but cannot infer the orchestration strategy, scope, or cascading effects. We therefore complement the tradi-

tional synthesis with an LLM-based technique to organize mechanically-inferred atomic rules into a coherent

transformation strategy.

For each migration triple (𝑠, 𝑡, 𝑚) ∈ M script synthesis entails: (1) Rule Inference: Automatically gener-

ate initial low-level transformation rules from source-target diff hunks (Section 6.4.2), and (2) Agent-based

Orchestration: Use LLMs to refine and orchestrate the inferred rules into a rule graph (Section 6.4.3). This

overall produces a migration program per successfully-processed triple inM.
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6.4.1 PolyglotPiranha

We infer migration scripts in PolyglotPiranha, a domain-specific language for source-to-source introduced

in Section 5.1. PolyglotPiranha exemplifies a growing class of modern transformation DSLs [75, 92, 176]

designed to support industrial-scale automated refactoring. These tools offer a structured, declarative alter-

native to ad hoc migration scripts.

Recall some of the key language constructs introduced in Section 5.1: PolyglotPiranha programs consist

of local syntactic rewrite rules organized into a directed graph encoding application order, scoping constraints,

and inter-rule dependencies. Each node defines a rule with a match and an optional rewrite clause; edges

model control flow using scoped labels. I.e., an edge R1
Function−−−−→ R2 reads as, “apply rule R1 and then apply

rule R2 within the enclosing function where R1 was applied”. Rules themselves are written as concrete syntax

patterns (that closely resemble the target language’s surface syntax). The concrete patterns are composed of

strings and abstractions that match directly against concrete code. These abstractions are expressed via tem-

plate variables (e.g., :[x]), which bind to concrete sub-expressions. For example, the rule foo(:[args+])

↦→ bar(:[args]) rewrites foo(1,2,3) as bar(1,2,3), where :[args] binds to (1,2,3) during the trans-

formation.

PolyglotPiranha programs run as depth-first traversal of the rule graph. The runtime begins with a queue

of seed global rules and applies them depth-first until reaching a fixpoint. We refer interested readers to

associated materials and documentation for full syntax and semantics [179].

Thus, for each migration triple (𝑠, 𝑡, 𝑚) ∈ M, we aim to synthesize a PolyglotPiranha script P = (R, E)

where:

• R = {𝑟1, 𝑟2, ..., 𝑟𝑘} is a set of transformation rules

• E ⊆ R × L × R is a set of directed edges with labels from L = {File, Function, Class, ...}

Each rule 𝑟𝑖 ∈ R is a tuple (𝑝𝑖 , 𝑞𝑖) where 𝑝𝑖 is a match pattern, and 𝑞𝑖 is a replacement pattern. An edge

(𝑟𝑖 , ℓ, 𝑟 𝑗) ∈ E indicates that after applying rule 𝑟𝑖 , rule 𝑟 𝑗 should be applied within scope ℓ.

6.4.2 Atomic Rule Inference

Let Δ(𝑠, 𝑚) denote the set of diff hunks between source implementation 𝑠 and migration 𝑚. For each diff

hunk ℎ ∈ Δ(𝑠, 𝑚), let ℎ− and ℎ+ denote the deleted and added lines, respectively.

We use an anti-unification algorithm to abstract these hunks into reusable rewrite rules. Anti-unification

computes the most specific generalization of two expressions—deriving a pattern that captures common

structure while abstracting over differences using placeholders—making it ideal for synthesizing migration

rules that preserve structural essence while enabling generalization. We adapt an existing anti-unification
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algorithmA (from MELT [45]) to infer an initial rule set:

R0 = {𝑟 : 𝑟 = A(ℎ− , ℎ+) for ℎ ∈ Δ(𝑠, 𝑚) where ℎ− ≠ ∅}

. Each rule abstracts shared elements in the before and after hunk.

For example, given the following hunk from a larger migration of cryptography to pycryptodome:

- encrypted_data = fernet.encrypt(data)
+ padded_data = pad(data, AES.block_size)
+ encrypted_data = iv + fernet.encrypt(padded_data)

Anti-unification, including heuristics to avoid overgeneralizing, produces: :[x1]= :[x2].encrypt(:[x3])

↦→ padded_data = pad(:[x3], AES.block_size)

:[x1]= iv + :[x2].encrypt(padded_data)

Note that the algorithm we adapt does not support rule generation for hunks in which code is only added

without deletion [45]; we discuss this limitation in Section 4.4.

6.4.3 Script synthesis

Rule inference provides initial rulesetR0, but no composition strategy. Agentic script synthesis constructs the

full script P = (R, E) through iterative refinement. This refinement also allows Spell to correct initial rules 𝑟

that overgeneralize or are incorrect. An agentic approach for software tasks uses an LLM to iteratively take

action, and observe its effects to refine a strategy for decomposing and solving a complex problem.

Figure 6.8 illustrates the workflow. It takes as input a migration triple (𝑠, 𝑡, 𝑚) ∈ M and the initial rule set

R0 inferred from diff Δ(𝑠, 𝑚) between the source and target implementations. The model’s task is to develop

the overarching strategy comprising the full script while disambiguating conflicting rules and deciding on

scopes and application order; and improving the transformation rules as necessary by, for example, resolving

naming problems. The rest of this Section details key components of the approach.

System prompt. We assume a model is unfamiliar with the relatively new PolyglotPiranha language. The

system prompt explains language syntax, semantics, and runtime behavior, via: (1) examples of simple rules,

explanations of concrete syntax, and guidance on matching/rewriting; (2) an explanation of rule graph, rule

application strategies, scoping, and constructs for propagating template variables across rules; (3) examples

of source code before and after migration, with detailed explanations of how PolyglotPiranha performs mi-

gration, and runtime traces, and finally (4) other guidelines, common pitfalls, and best practices.

Agentic Loop. For each migration tripleM = {(𝑠𝑖 , 𝑡𝑖 , 𝑚𝑖)} and initial ruleset, Spell’s agentic loop iteratively

takes actions and observes their effects until it produces a PolyglotPiranha program that transforms the

source 𝑠𝑖 into a migration 𝑚̂𝑖 that passes the original test suite 𝑡𝑖 , or until it completes 10 iterations.

88



The first iteration takes a partially-complete task template containing the migration triple and initial Spell-

inferred rules. We prompt the model to generate a PolyglotPiranha program that transforms 𝑠𝑖 into 𝑚𝑖 ,

following system guidelines. The prompt specifies that the produced program need not produce an exact

token-level match with 𝑚𝑖 , but should capture the intended semantic transformation. We (and the agent)

verify correctness by running code produced by the eventual program on test suite 𝑡𝑖 .

Each iteration, the model selects an action and executes it in a controlled environment, with result returned

as feedback:

• Refine / Create an Atomic Rule. The model can create a new match-replace rule, or refine an existing

one, and apply it to 𝑠𝑖 in isolation to observe an atomic rule’s behavior independently of other transfor-

mations.

• Add a Rule to the Graph. The model can add one or more new rules to the (initially empty). The action

specifies rule order and scope.

• Revise the Current Rule Graph. A model can revise the graph beyond atomic rule refinement by mod-

ifying portions of the graph, or regenerating it, enabling high-level restructuring of the transformation

strategy.

• Test Migration. The model can use tests 𝑡𝑖 to validate the current rule graph by applying it to 𝑠𝑖 and

running tests 𝑡𝑖 against the result. If the tests pass, the loop terminates.

Environment. Spell executes actions within a structured environment and provides results back to the model

to guide the next agentic step. For rule refinement and integration, and rule graph revision, Spell applies gen-

erated 𝑃 to 𝑠𝑖 using the PolyglotPiranha interpreter and returns the resulting migrated program as feedback.

Spell provides additional feedback when available, e.g., if applying 𝑃 fails due to a syntax or PolyglotPiranha

runtime error, Spell returns the error message with a set of likely causes and correction suggestions. These

are derived from common failure modes and known pitfalls in the language engine, akin to compiler diagnos-

tic messages. If the script executes but does not change 𝑠𝑖 , Spell provides a set of potential reasons, again

with common pitfalls. For testing, Spell applies the script and runs the transformed code inside a container-

ized test environment. If all tests pass, Spell records the migration as successful; Otherwise, it returns the

test failures and error messages for the next iteration.

6.5 Evaluation

We answer four research questions:

RQ1. (End-to-end-effectiveness): How effectively does Spell generatePolyglotPiranhamigration scripts?

We evaluate the extent to which the entire pipeline produces working PolyglotPiranha scripts.
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Table 6.1: Overview of migration tasks with synthesis results. Valid Triples: generated migration triples with >60% cover-
age. Success: percentage of migration triples for which each tool successfully generated a validated Polyglot-
Piranha script. Sibling Success: sibling implementations that at least one synthesized PolyglotPiranha script
migrates successfully out of the total number of potentially-migratable sibling implementations.

Migration Task Valid Success (%) Sibling
Source Target Domain Stars (S / T) Triples Spell MELT Success

argparse click CLI N/A / 16.4k 215 44.2 17.2 91/170
jinja2 mako Templating engines 10.9k / 389 15 13.3 0.0 0/3
json orjson JSON Serialization N/A / 6.9k 269 96.7 57.6 258/291
logging loguru Logging N/A / 21.7k 114 85.1 72.8 64/93
lxml BeautifulSoup HTML/XML parsing 2.8k / N/A 32 59.4 0.0 0/21
pandas polars Data analysis 45.5k / 33.8k 0 - - -
pathlib pyfilesystem2 Filesystem abstraction N/A / 2.0k 21 52.4 28.6 1/15
cryptography pycryptodome Cryptography 7.0k / 3.0k 79 48.1 6.3 3/46
requests httpx HTTP clients (async, sync) 52.9k / 14.1k 65 76.9 12.3 39/63
time pendulum Date/time N/A / 6.4k 60 78.3 11.7 35/73

RQ2. (Real-world applicability): How useful are Spell’s scripts for migrating real-world client code?

We test whether the Spell-produced PolyglotPiranha scripts, learned from synthetic examples, suc-

cessfully migrate real open-source projects, to evaluate practical utility.

RQ3. (Comparison with prior work): How does Spell compare to MELT, a prior tool for automated refac-

toring? We compare Spell to MELT, the most-closely-comparable prior approach for migration rule

inference in Python.

RQ4. (Data quality): What is the quality of the synthetic migration examples from the data generation

pipeline? A core novelty of Spell is its bootstrapping via synthetic examples. We assess the extent to

which these examples are valid and diverse, and provide sufficient coverage of both source and target

APIs and implementations.

6.5.1 Experimental Setup

Implementation. We implement Spell in python. Both synthetic data generation and agentic synthesis are

model-agnostic and use the OpenAI Chat Completion API [180] (adopted by most major LLM API providers).

For data generation, we use gpt-4o-mini (a small model) due to its cost effectiveness, drawing on prior

results suggesting that more attempts offset the limitations of smaller models [181]. For synthesis, we use

gpt-4.1 [182], a current state-of-the-art model with more advanced capabilities and larger context window

(1M tokens), required for our large system prompt and chained interactions.

Migration tasks. We evaluate on 10 migration tasks across 20 python libraries; the left-hand-side of Table 6.1

summarizes. These tasks span a diverse range of popular libraries and their alternatives across multiple

domains, which prior work has also targeted [44, 45, 116, 145]. We focus on python because there is a well-

documented lack of refactoring tools for python [27], despite the fact that it is among the most popular

programming languages [147]; this also makes it a good target for LLM-based tooling [183].

90

https://docs.python.org/3/library/argparse.html
https://github.com/pallets/click
https://github.com/pallets/jinja
https://github.com/sqlalchemy/mako
https://docs.python.org/3/library/json.html
https://github.com/ijl/orjson
https://docs.python.org/3/library/logging.html
https://github.com/Delgan/loguru
https://github.com/lxml/lxml
https://www.crummy.com/software/BeautifulSoup/
https://github.com/pandas-dev/pandas
https://github.com/pola-rs/polars
https://github.com/PyFilesystem/pyfilesystem2
https://github.com/pyca/cryptography
https://github.com/dlitz/pycrypto
https://github.com/psf/requests
https://github.com/encode/httpx
https://docs.python.org/3/library/time.html
https://github.com/sdispater/pendulum


Settings. We generate 100 ideas per migration task (S,T). We generated 5 source implementations 𝑠 𝑗,𝑘 for

each idea 𝐼 𝑗 ∈ I; 5 test tests 𝑡 𝑗,𝑘,ℓ per source implementation 𝑠 𝑗,𝑘; and 5 migration attempts 𝑚̃𝑗,𝑘,ℓ per source

implementation 𝑠 𝑗,𝑘. This initially yields 500 implementations, 2,500 test files, and 2,500 migration attempts

per task; these are validated and filtered as described in Section 6.3.2. We run our synthesis pipeline on each

validated triple to attempt to generate a PolyglotPiranha script P = (R, E). We allow the agent up to 10

iterations to produce the script.

We chose these numbers (10, 5) to balance cost and coverage: based on model pricing, this setup allowed

us to stay within a $50 total budget while still producing meaningful results. We generated more migration

attempts because migration is a harder problem; multiple attempts increase the chance of success [181].

A synthesis attempt is considered successful if the script replaces all source library API calls (APIs(P(𝑠),S) =

∅) and, if when applied to 𝑠 𝑗 , the migrated code passes the same tests as 𝑚𝑗,𝑘 (P(𝑠) ≡𝑡 𝑚).

6.5.2 RQ1: End-to-end effectiveness

Methodology. We first evaluate our synthesis pipeline end-to-end. We report, for each migration task, the

number of valid triples generated over all ideas (Table 6.1, 5th column, “Valid triples”); this is the output of

data generation (Section 6.3). Success rate (for Spell, Table 6.1 column 6) reports the percentage of valid

examples on which script synthesis produce a successful PolyglotPiranha program. We investigate synthetic

data quality and diversity in Section 6.5.5. To evaluate script generalizability, we test each P𝑗,𝑘 (from triple

(𝑠 𝑗,𝑘, 𝑡 𝑗,𝑘,ℓ , 𝑚𝑗,𝑘,𝑟)) on sibling implementations {𝑠 𝑗,𝑖 : 𝑖 ≠ 𝑘} of the same idea 𝐼 𝑗 . We report how many siblings

are successfully migrated by the generated scripts, per the tests.

Results. Table 6.1 shows results. Spell successfully generated valid migration triples for nine of ten tasks,

producing an average of 87 filtered, valid triples per task (the pandas → polars exception is discussed in

Section 6.5.5). Using these validated examples, Spell’s migration synthesis script succeeded, on average,

61.6% of the time, using a single trial. This rate could likely improve further with test-time scaling [181]; we

leave this to future work, given cost.

The last column of Table 6.1 shows that the scripts migrated 63.3% of sibling implementations (491/774,

last column of Table 6.1). Performance was particularly strong for simple, one-to-one API replacements like

json → orjson (88.6 %) while migrations involving embedded DSLs (jinja2 → mako, lxml → beautiful-

soup) generalize less well. These libraries support dynamic webpage generation and embed a templating

languages within python string literals, which the PolyglotPiranha engine cannot transform; this is a limi-

tation of the PolyglotPiranha language itself [184]. Despite this constraint, our synthesized rules effectively

capture common usage patterns across most migration tasks.
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Table 6.2: Inferred migration scripts applied to real-world repositories. Each row represents the application of a migra-
tion script to a repository that uses the source library. Stars and KLoC refer to the GitHub popularity and
codebase size. Rewrites is the number of times a PolyglotPiranha rule triggered in the project. Passing Tests
(Before/After) test cases passing pre- and post- migration, a basic signal of functionality preservation.

Passing Tests
Migration Task Repository Stars KLoC Rewrites Before After

json → orjson
BIM2SIM/bim2sim 57 33.8 46 173 149
kaapana/kaapana 196 69.8 317 45 43
SoCo/SoCo 1500 17.4 7 233 233

logging → loguru
fastqe/fastqe 172 0.7 16 2 2
mie-lab/trackintel 229 11.2 14 411 411
pywbem/pywbem 42 171.7 16 2499 0

lxml → BeautifulSoup
acl-org/acl-anthology 528 19.4 111 433 433
pyxnat/pyxnat 73 7.7 8 62 62
w3af/w3af 43 201.8 10 2547 2547

cryptography → pycryptodome
aomail-ai/aomail-app 134 2.0 1 13 11
BM/qpylib 32 2.0 4 139 127
DMcP89/harambot 32 1.6 8 8 0

requests → httpx
Kildrese/scholarBibTex 33 0.1 5 1 1
wjohnson/pyapacheatlas 175 13.9 22 128 128
databricks/databricks-sdk-py 433 108.6 23 157 157

time → pendulum
clld/clld 57 9.1 4 308 308
fbpic/fbpic 192 25.5 43 6 5
qutip/qutip 1800 41.2 29 1585 147

6.5.3 RQ2: Real-world applicability

Methodology. To evaluate whether our inferred migration scripts generalize beyond synthetic examples,

we applied them to 18 Python projects hosted on GitHub. We used Sourcegraph [155] to collect a conve-

nience sample of codebases containing API calls present in our generated scripts, prioritizing codebases with

test suites. We manually reviewed each project to identify the most-relevant generated migration script that

best matched observed API usage patterns. We containerized execution using Dockerfiles based on each

project’s documented setup, ran tests to establish baseline functionality, then applied the selected PolyglotPi-

ranha script and re-ran tests. We updated requirements.txt to include target dependencies, but retained

source dependencies, because our scripts do not usually cover all API usages within a library. We did not

measure transformation time, as PolyglotPiranha’s engine executes near-instantaneously. These non-trivial

codebases typically span hundreds of files and thousands of lines of code.

Results. Table 6.2 reports the number of rewrites (i.e., the number of times a particular PolyglotPiranha

rule was triggered to transform code) per project, as well as the number of passing tests before and af-

ter migration. In many cases, all tests continued to pass post-migration, despite the scripts being inferred

from synthetic examples. For example, for the logging → loguru migration, the inferred script preserved

test behavior in both the trackintel and fastqe projects and triggered a substantial number of rewrites.

Similarly, Spell’s scripts for json → orjson and requests → httpx applied dozens to hundreds of edits
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rule_0

Match:

import requests

Replace:

import httpx

rule_1

Match:

:[resp] = requests.:[bv](:[bn])

Replace:

with httpx.Client() as client_instance:

:[bh] = client_instance.:[bv](:[bn])

rule_2

Match:

if not :[j].ok:

:[c]

Replace:

if not :[j].is_success

:[c]

migrate_requests_import

Match:

import requests

Replace:

import httpx

migrate_requests_request_statement

Match:

:[resp] = requests.request(:[args])

Replace:

with httpx.Client() as instance:

:[resp] = instance.request(:[args])

File

migrate_ok_to_is_success

Match:

:[resp].ok

Replace:

:[resp].is_success

Function

Figure 6.9: A program generated by MELT (top) and Spell (bottom) from a migration example for requests → httpx.
MELT’s rules contain generic placeholder names and overabstracts; Spell’s script includes scoped application
and semantically meaningful names.

across real-world projects while preserving functional behavior. Upon manual inspection, we found that test

failures were typically due to incomplete migrations: the scripts handled part of the migration correctly but re-

quired further refinement or additional transformations. In other cases, particularly for jinja2 → mako and

lxml → beautifulsoup, the transformations involved rewriting code inside string templates or HTML/XML

fragments embedded in strings. These constructs require capabilities beyond what the PolyglotPiranha lan-

guage currently supports.

6.5.4 RQ3: Comparison with prior work

Methodology. We compare our synthesis approach with MELT [45], a state-of-the-art tool for automated

python refactoring. MELT because it is one of the few tools that target python and builds on well-established

transformation DSL (comby [23, 140]). MELT infers synthesis scripts from migration pairs mined from devel-

oper pull requests on updated libraries, rather than generated or synthetic examples as Spell does. To enable

a fair comparison (not all of our migrations are associated with such pull requests) that more effectively iso-

lates the hybrid synthesis in Spell, we run MELT on the generated migration examples.

Results. Table 6.1, columns 6 and 7, compares the two approaches. Spell outperforms MELT on all tasks for

which valid triples are available, often by a large margin. It achieves a 61.6% (average) success rate com-
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Table 6.3: Quality of generated migration examples: idea success rates, API diversity, and test coverage

Migration Task Ideas (out of 100) Distinct APIs Avg. Coverage Validated

Implemented Migrated Source Target Source Target Examples

argparse → click 74 72 11 16 0.89 0.93 215
jinja2 → mako 24 14 9 4 0.86 0.86 15
json → orjson 96 96 4 3 0.70 0.70 269
logging → loguru 58 52 12 6 0.79 0.79 114
lxml → beautifulsoup 59 23 11 9 0.75 0.75 32
pandas → polars 58 2 5 4 0.43 0.43 0
pathlib → pyfilesystem2 64 23 10 17 0.71 0.70 21
cryptography → pycryptodome 72 52 59 25 0.73 0.72 79
requests → httpx 64 60 8 10 0.66 0.64 65
time → pendulum 81 55 9 34 0.61 0.61 60

Average 65.0 44.9 13.8 12.8 0.71 0.71 87.0

x

pared to MELT’s 22.9%, despite both tools starting from the same validated examples. The fact that MELT

can extract transformation rule from many of the synthetic examples provides additional evidence of their

quality, and suggests the data generation pipeline may enhance other migration inference tools. However,

MELT’s rules are created in isolation. Spell’s agentic pipeline, by contrast, orchestrates these kinds of rules into

coherent transformation strategies, effectively taking advantage of the expressive power of the PolyglotPi-

ranha language. Figure 6.9 illustrates this difference: Spell synthesizes interconnected rules with explicit

scoping (per-function, per-file) that enable cascading transformations without overgeneralization; MELT pro-

duces disconnected global rules with generic placeholders, which can prove especially problematic on large

codebases [184].

These results validate that (1) the generated synthetic examples provide a useful independent signal for

migration inference, (2) the agentic approach to rule composition meaningfully improves over the current

state-of-the-art, with intelligent orchestration of inferred rules importantly contributing to migration synthe-

sis.

6.5.5 RQ4: Data Quality

Methodology We characterize the quality of the synthetically generated data across several dimensions:

1. Idea implementation: the number of the 100 generated ideas 𝐼 𝑗 ∈ I that yields at least one imple-

mentation 𝑠 𝑗,𝑘 that passes at least one generated test harness.

2. Idea migration: the number of implemented ideas that are migrated to the target library (how many

ideas have at least one 𝑠𝑖 that is associated with a success 𝑚𝑖).

3. API diversity: number of distinct API methods used from both S and T .1 We compute this using the

Jedi static analyzer [146] on validated triples (𝑠, 𝑡, 𝑚) ∈ M.

1Note that this is heuristic (due to Python ’s dynamic typing), so it should be considered a lower bound.
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4. Test coverage: via line-level coverage of the generated tests on both source and target implementa-

tions (coverage must be at least 0.6, per our definition of validity).

5. Validated examples: The total number of validated examples from all generated examples, post-

filtering; this determines the training data available for script synthesis.

Together, these metrics characterizes the quality of the generated synthetic data, in terms of how well

they cover or represent a migration task, and the degree to which they are adequately tested.

Results. Table 6.3 shows results across all data quality metrics. Spell successfully implemented the majority

of generated ideas, with an average of 65 out of 100 ideas yielding at least one working implementation.

Success rates ranged from 24 (jinja2 → mako) to 96 (json → orjson). Upon manual inspection of jinja2

→ mako, we found that most generated code could not run standalone, as a simple python script.

From the pool of ideas implemented at least once, Spell successfully migrated an average of 44.9 ideas

while maintaining functional equivalence per the generated tests. The outlier is pandas → polars with only

2 successful migrations despite 58 successful implementations. Manual inspection revealed that generated

test harnesses relied on pandas-specific constructs (e.g., DataFrames) that were incompatible with polars.

Our analysis of API diversity using Jedi identified an average of 13.8 distinct source library APIs and 12.8

target library APIs per migration task. These likely correspond to the most frequently used APIs that the

underlying LLM encountered during pre-training [183]. The cryptography → pycryptodome task showed

the highest diversity (59 source, 25 target APIs), while simple tasks like json → orjson used fewer APIs (4

source, 3 target).

The generated tests achieved an average coverage of 71% for both source and target implementations,

well above our 60% filtering threshold. Coverage ranged from 61% (time → pendulum) to 89%/93% (argparse

→ click). This suggests that tests meaningfully exercise implementation logic, while leaving room to im-

prove; LLMs are known to struggle with unit test generation [185].

After applying all filtering criteria, Spell produced an average of 87 validated migration triples per task (ex-

cluding pandas → polars). Overall, these examples are testable and diverse (covering an average of 13–14

distinct APIs per library), but also exhibit strong coverage (71% on average) on both source and migrated

code. This supports their use as input for downstream synthesis.

6.6 Discussion and Limitations

Quality and Representativeness of Synthetic Data. Our pipeline relies on synthetic examples generated

by a comparatively small model (gpt4o-mini) to keep the cost of data generation manageable; as the cost

of more capable models decreases, we expect the generated examples to improve in quality.

Programs generated by LLMs are also biased toward the parts of each API that the model learned well.
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Corner-case behaviours, error-handling paths, and rarely used configuration parameters are therefore under-

represented. As larger models trained on more data become cheaper, we expect both the breadth of API

usage and the semantic and syntactic correctness of the generated programs to improve. A complementary

direction is to augment the idea–implementation prompts with retrieval over real code repositories.

Transformation Expressiveness. We represent our migration in the PolyglotPiranha language because of

its expressive and concise rule-graph abstraction, as well as high performance. Nonetheless, PolyglotPiranha

still has some limitations, in particular, it cannot yet rewrite code inside string literals, formatted templates

(for example, jinja2), or dynamically generated constructs. This limitation was the main reason for the low

success rate on the jinja2→mako task. Integrating multi-language parsing in PolyglotPiranha, or switching

to a hybrid transformation engine that supports embedded DSLs could improve performance on this task.

Section 6.5 shows that the technique is promising in some cases and inadequate in others. One of the

main limitations in real-world usage is the many variations of code found in the open source. The code trans-

formation rules inferred capture concrete diff hunks faithfully but can be either too specific, failing to match

slight syntactic variations, or too general, introducing false positives. Spell’s agentic loop alleviates some of

these issues by refining and testing rules, yet it remains fundamentally example-bound: if a usage pattern

does not appear in any migration triple, the resulting script will not handle it. Pycraft [186]’s technique on

rule generalization using LLMs could be integrated into our workflow to generate further equivalent script

variations for a broader application.

Tests. A core pillar of Spell’s validation process is the use of automatically generated tests to assess the cor-

rectness of both implementations and their migrated counterparts. While this enables large-scale validation

without manual effort, it introduces some limitations. First, the quality of the tests is inherently tied to the

generative model’s ability to produce robust and meaningful test harnesses. Although we mitigate this by

sampling multiple test files per implementation and applying filtering based on coverage, the tests may still

be shallow or fail to exercise edge-case behavior. In particular, the tests are designed to confirm functional

equivalence at a coarse granularity (e.g., returning the same output for a given input) but may miss subtle

behavioral divergences, side effects, etc. Second, our approach assumes that passing the same test suite

is a sufficient proxy for semantic equivalence. While this assumption is reasonable for many cases, it is not

formally guaranteed. The test suites may lack completeness or specificity. Third, our coverage-based filtering

helps ensure that the tests exercise a non-trivial portion of the implementation logic, but it does not guar-

antee semantic soundness. For instance, tests that exercise a large portion of the code but contain weak

assertions (e.g., asserting only that no exceptions are raised) may still pass despite incorrect behavior. Other

validation techniques (such as mutation testing [187]) could improve test quality and better capture subtle

correctness issues.

Data Leakage. Unlike prior approaches, Spell does not depend on curated migration datasets or mined ver-
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sion histories. Instead, it leverages the latent knowledge encoded in LLMs during pretraining. In practice,

this means that Spell’s effectiveness depends on the extent to which the underlying model has been exposed

to the source and target libraries, and potentially to migration examples between them during training. It is

therefore possible that the model’s outputs indirectly benefit from having “seen” real migrations in the wild,

whether through public codebases, version histories, tutorials, or documentation. This raises a potential risk

of data leakage [117] in evaluation: the model may be reproducing previously observed migration patterns

rather than synthesizing them from first principles. However, unlike repository mining methods, Spell does

not require any explicit curation of migration examples, nor direct access to historical migration data. Ver-

ifying the degree of leakage would require inspecting the model’s training corpus to identify overlapping

migration examples, which is not feasible with current open-weight models.

6.7 Key Takeaways and Contributions

This chapter presented my work on Spell, a technique for synthesizing library migration scripts using LLMs.

The goal of this work is to show that, rather than relying on repository mining or manually curated examples,

it is possible to systematically extract migration knowledge directly from LLMs and formalize it into reusable

and testable migration scripts. The core idea is to treat LLMs as generators of aligned migration examples

and to use test-based validation as a filter for correctness. This is possible because during pretraining LLMs

implicitly learn how to map APIs across libraries by generalizing from a series of natural language constructs

present in the code.

Beyond example generation, I also introduce an agentic strategy to generalize concrete examples into

reusable migration scripts in the PolyglotPiranha language, which can then be automatically applied to other

library clients. I show that Spell can synthesize reusable and effective scripts for multiple python migrations.

Finally, I discuss the limitations of this approach and outline avenues for future work in this area.
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7.1 Contributions

Refactoring is an important but laborious task. It ensures that code is better structured, easier to maintain,

and more robust to future changes. However, most developers do not refactor as often as they should. In

practice, companies incentivize feature delivery, not maintenance, and as a result, codebases grow in com-

plexity and technical debt accumulates. To help developers refactor more efficiently, this thesis proposes a

modern language and toolset for automating large-scale code transformations. On top of that, we present

three approaches for automated API refactoring that do not rely on traditional sources of training data, which

have limited general applicability over the years. Together, these contributions advance the state of the art

in three ways. First, they show that it is possible to automate complex migrations without relying on mined

client examples. Second, the transformations are expressed in a concise and human-readable format, allow-
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ing developers to review and modify them. Third, our tools are scalable and fast, and can be applied to real

codebases in realistic settings.

7.2 Open Challenges and Future Work

Ultimately, the impact of automated code migration will be measured by its adoption in practice. Although

research prototypes are abundant, industry adoption has historically been limited [66]. This is now beginning

to change as companies start to deploy LLM-based migration tools and report some success (although in very

limited domains, such as migrating int data types [119]). To accelerate this trend, multiple open challenges

must be addressed.

7.2.1 Correctness and Trust

Despite the progress made in automated software engineering technology, significant technical challenges

remain before tools can reach their full potential. In case of refactoring, one major technical hurdle is ensuring

correctness and behavior preservation of transformed code. Developers will not adopt tools they do not trust,

especially for large-scale changes [58]. Thus, automated refactoring tooling must convincingly demonstrate

that it has not broken the original code. Several approaches can contribute to increasing trust, including

rigorous validation of correctness, explainability of transformations, and mechanisms that help developers

assess the confidence of the tool’s suggestions.

Most automated refactoring techniques use test-driven validation to verify correctness, which provides

reasonable confidence that the behavior is unchanged. However, for this to work, test suites must be exhaus-

tive; otherwise gaps in test coverage can allow subtle bugs to slip through. Future migration tools can explore

deep integration with testing infrastructure, that is, instead of treating tests only as a final check, the tools

could use tests to guide the migration itself. For instance, the tool might generate targeted inputs for the

test suite to increase coverage of the code regions being refactored and prevent regressions. Another idea

is differential testing: run both the old and new versions of the software on the same inputs (perhaps using

recorded production traffic, if available) to ensure they behave equivalently. This could catch differences that

the original test suite might miss.

Beyond traditional testing, static analysis can provide another layer of assurance. Although full formal

verification of arbitrary code transformations is unrealistic, targeted verification of certain properties could

be useful. For example, in security-sensitive migrations (like changing cryptography libraries), the tooling

could verify that the new code respects the same security invariants (no weaker cipher, proper error han-

dling, etc). Refactoring tools could incorporate model check or symbolic reasoning for specific known-critical

properties [188].

Explainability is another crucial ingredient for trust. Developers are more likely to trust a change if they
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understand why it was made and how [189]. Automated migration systems of the future should thus explain

their actions and make sure changes can be reviewed in digestible chunks. This could mean linking each

change to a rationale, such as “Replaced this function call because the older API is deprecated and the documen-

tation recommends using the new API”. By providing these explanations in-line or in commit messages, the tool

can help human reviewers quickly gain confidence that the change is legitimate. Ensuring these explanations

are accurate (and not hallucinated) will require careful design, possibly having the explanations validated

against the same documentation sources.

In the near future, as researchers and practitioners pursue partial automation of migration processes, it

will be useful to define the scope of tasks and break them down into chunks that can be automated. This

means the tool should defer to human judgment when the situation is ambiguous or when policy decisions

are involved (for example, choosing whether a migration is safe if behavior is not always preserved). Con-

versely, the tool should take over mundane tasks and only bother humans for review or approval. Achieving

this balance requires UI and workflow design that gives developers control, as we further discuss in Sec-

tion 7.2.4. One approach is to provide confidence indicators: the tool can indicate its confidence level in each

change. Another approach is a trust calibration framework, as suggested by recent work [190], which cate-

gorizes the tool’s outputs (e.g., correct suggestions, incorrect suggestions, partial edits) and helps train users

to understand how to handle each category. For example, if a suggestion is labeled as “low confidence,” a

developer might double-check it more thoroughly.

7.2.2 Stateful and Complex Transformations

Automated code migration is poised to benefit from several emerging research trends in artificial intelligence

for software engineering (AI4SE). In particular, LLMs have demonstrated strong automation capabilities and

have already been applied to assist in code transformation tasks. There are clear opportunities to extend

and better leverage these models to build tooling for automating migrations. This thesis shows that even

without curated migration datasets, it is possible to extract migration knowledge from models, formalize it

into reusable refactoring scripts, and verify that knowledge before applying it. Future systems can build on

this insight, making use of the implicit knowledge encoded in LLMs.

Emerging research is also exploring agent-based approaches that treat code migration as a search or

game, where an AI agent plans and performs iterative transformations to achieve the end goal. While most

current work focuses on leveraging generalist models for automated migration, there is potential to extend

these ideas into more general reinforcement learning or planning frameworks specifically designed for this

task. An agent could, for example, learn a policy for applying a sequence of small refactorings to achieve a

larger migration goal, guided by rewards such as passing all tests. This would shift the problem from simple

prompting approaches to more principled, stepwise optimization processes capable of handling complex

migrations through decomposition. This is particularly relevant because, although agentic approaches with
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preprocessing steps have potential, practitioners have noted that with current technology, planning might

even be harmful in some cases [191]. Nevertheless, this area remains largely unexplored and presents a rich

research opportunity at the intersection of software engineering and AI planning.

On the infrastructure and language support side, handling complex, stateful transformations remains a

significant challenge. Many API migrations are not simple one-to-one method renames: they may involve

reordering calls, managing additional state, or updating types and invariants. Existing rule-based systems

struggle with this, as they tend to focus on localized code changes. Enhancing tools to deal with non-local

or context-dependent migrations is therefore a priority. Combining structured transformations with more ad

hoc edits using LLMs may be the most practical path forward. For instance, migrating a library might require

adding initialization code in one part of the application and cleanup code elsewhere, or splitting a single call

into multiple calls. Future migration DSLs and engines need to represent such multi-step transformations

more cleanly. One promising direction is to incorporate temporal logic or graph transformations to capture

sequences of code edits that must occur together [86].

7.2.3 Performance and Scalability

Performance and scalability are critical for automated refactoring tools. As codebases grow to millions of lines

of code and span hundreds of services or repositories, migration tools must be able to operate efficiently at

this scale. The techniques proposed in this thesis were designed with scalability in mind and have demon-

strated that performant, large-scale transformations are possible. Future work should continue to optimize

and leverage production ready tooling to support real-world migration scenarios.

A related challenge is multi-language support. Large systems often consist of multiple programming

languages and frameworks, and real-world migrations may need to modify code across languages. For ex-

ample, updating both backend Java code and frontend TypeScript, or synchronizing code and configuration

file changes. While this thesis introduced mechanisms to express multi-language transformations, there is

room for further development. Future tools will need to handle heterogeneous codebases, either by unifying

syntax and semantics in a common representation or by leveraging LLMs to fill gaps in language-agnostic

tooling.

Finally, applying changes at scale requires orchestration beyond generating the patch itself. This includes

managing rollouts, coordinating changes across repositories, running CI pipelines, and handling code reviews

and merges. Future migration frameworks could integrate orchestration layers that automate these tasks, for

example by creating branches across multiple repositories, applying patches, running tests, and submitting

pull requests or merging changes if all checks pass.
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7.2.4 Usability and Workflow Integration

Usability is a key factor in the adoption of automated refactoring tools. Prior work and our own findings sug-

gest that poor usability is one of the main reasons developers avoid or abandon such tools. A common issue

is that tool-generated edits can be hard to review, especially when they come as large, monolithic patches

that touch hundreds or thousands of files. These changes can overwhelm reviewers, disrupt version control

history, and make code reviews unmanageable.

Finally, there is a growing need to manage the volume of auto-generated changes. Although modern tools

can generate more refactoring suggestions than ever, developers still need to review them, and generating

too much code might be counterproductive. Future work should explore ways to filter, prioritize, and present

only the most relevant changes to human reviewers. Finding better ways to present information to humans

will be critical for making automated migration tooling usable in practice.

7.3 Final Remarks

While automated refactoring has seen decades of research, its industry adoption has remained limited [66].

This is slowly starting to change. We are now seeing major companies integrate refactoring automation

into their workflows, in particular through the use of LLMs. Commercial tools like Amazon Q [118], Google’s

LLM-integrated infrastructure [119], and startups like Cursor [192] are using these models to handle library

upgrades and API migrations at scale.

This thesis provides further evidence that the traditional reliance on mined migration examples is not

strictly necessary. Instead, drawing from documentation, internal library evolution, and the implicit knowl-

edge of large models, we can build systems that generalize more broadly for refactoring. These findings align

with what is already being observed in practice. What this work offers is a principled way to formalize and

validate that process, with a stronger emphasis on testability, script synthesis, and correctness.

With emerging capabilities of LLM’s and agentic approaches, we expect interest in the automated migra-

tion space to continue to grow. However, automated refactoring technology is not yet mature enough to

be universally adopted. Limited support for complex stateful transformations, as well as LLM hallucinations

and integration with developer workflows remain open challenges. As more robust combinations of symbolic

and generative tools emerge, we expect the next few years to be a particularly exciting time for automated

refactoring, both in research and in practice.
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