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Abstract 

Robust and Accurate Deconvolution Single-Cell, or RADs, is an algorithm for integrating bulk 

and single-cell genomic data in cancer progression studies. Methods like RADs are used to 

examine the composition of cells making up a tumor and how their behavior is perturbed in 

different tumor sites, which in turn yields insight to how cancers might be better monitored or 

treated. RADs is an algorithm that performs a technique called semi-deconvolution, which seeks 

to infer frequencies of cell types and their gene expression evolution over stages of cancer 

progression. The first efforts in this research area focused on specific use cases wherein the data 

that one has available is limited to bulk data profiling average genomic features of mixtures of 

many distinct cells.  Single-cell data has revolutionized the field by allowing one to track 

genomic behavior of individual cells in a tumor but is not always technically feasible. There are 

situations when one has samples suitable for single-cell methods, such as some recent 

metastases, but also samples only suitable for bulk methods, such as biopsies of archived primary 

tumors that may have been preserved years earlier. RADs focuses on such scenarios but can have 

poor resolution for identifying and quantifying the many different cell types that may be found in 

the bulk data. Hence, the goal of this study was to improve upon RADs by making use of 

reference single-cell RNA-seq datasets that provide models of gene expression of many known 

cell types. At present, several new combinations of data have been explored to improve the 

algorithm, using different penalty weights each time. The results were that the performance 

worsened as the penalty weight increased, at least for one of the combinations. In addition, the 

changes in cell type compositions observed across the penalty weights were somewhat consistent 

with expectations from prior biological knowledge. The results indicate that the prior reference-

free RADs method could be adapted to accommodate third-party reference data sources. More 

results are being collected. 

 

Introduction to the problem 

The goal of this study was to optimize the semi-deconvolution algorithm Robust and Accurate 

Deconvolution Single-Cell, or RADs. More specifically, this optimization would maximize the 

ability of RADs to use external reference data to interpret bulk genomic RNA data as mixtures of 

cell types and infer the clonal fractions describing the compositions of these cell types and gene 

expressions describing activity of gene networks active in each cell type. This optimization 

would reveal more about how the composition and activity of tumors change across stages of 

progression, most notably the transition from primary tumors to metastases.  This would help to 

reveal the mechanisms causing certain tumors to be more aggressive, thereby providing greater 

benefit to cancer researchers in developing treatments. 

The precise mathematical problem being solved by RADs is the constraint optimization problem 

shown in Fig. 01. This information was drawn directly from a previous study on RADs which 

introduced this algorithm (Lei et al., 2022). 
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Fig. 01. Left scheme depicts the optimization problem depicted in its constraint optimization 

problem form. Right scheme lists the meanings behind each of the terms in the optimization 

problem. Specifically, the B, S, C, and F terms are the primary terms with the B term signifying 

the bulk dataset, the S term signifying the reference single-cell dataset, the C term signifying the 

inferred gene expression profile, and the F term signifying the inferred clonal fraction profile. 

The C term is further divided based upon whether the cell types are known or not. In addition, 

there are two regularization parameters which are the scaling factor on the reference data and the 

penalty weight on the difference between the reference data and the inferred gene expression 

profile, signified by μ and λ respectively. Finally, the imposed constraints allow for the inferred 

C and F matrices to represent what they are intended to represent as they are required to be 

nonzero and, in the case of F, sum to 1. In addition, the constraints allow them to describe the 

bulk data as evidenced by their dimensions. 

 

Background 

Semi-deconvolution is a strategy for inferring how cell type compositions and their behavior 

change between different tissue samples, such as between a primary tumor and one or more 

metastases in the same patient.  Typically, the concern is in how clonal fractions and gene 

expressions evolve over stages of tumor progression. The term semi-deconvolution comes from 

the hybrid use of both bulk RNA-seq data and single-cell RNA-seq data, in contrast to purely 

deconvolution approaches in which one seeks to infer single-cell behavior from only mixed, or 

bulk, data. 

Using both bulk and single-cell data rather than solely the bulk data is expected to lead to greater 

accuracy to the deconvolution, on the assumption that some portion of the mixed data can be 

explained by observed single cells. In addition, although single-cell approaches pose several 

advantages over purely bulk data approaches for their high accuracy and low costs (Kuipers & 

Beerenwinkel, 2017; Lim et al., 2020), single-cell approaches still suffer from several pitfalls as 

single-cell data remains inaccessible for older samples and lacks the level of comprehensive 

databases seen with bulk data such as International Cancer Genome Consortium (Naxerova & 

Jain, 2015; Zhang et al., 2011). Hence, there is a need for a more hybrid approach incorporating 

both bulk and single-cell data. 
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The RADs algorithm was limited for performing only on data that comes from the same patient 

(Lei et al., 2022). Although the reference and bulk data each come from different sites 

throughout the human body, the requirement is that the data ultimately comes from the same 

patient.  However, there are now many studies of single-cell data in healthy tissues and datasets 

of such reference data on research subjects that might be used to help interpret data on other 

subjects. These reference libraries provide far more examples of cells with known cell types and 

other annotations, enabling for more comprehensive, if somewhat biased, models of these known 

cell types in a new subject. By having the reference data come from these libraries, it is hoped 

that the algorithm will be more effective in identifying the components of tumors that are well 

explained by cells of known type, better enabling the analysis of their composition and the 

resolution of the patient-specific portions of tumors that largely correspond to novel cell types 

evolving within the tumor, also known as tumor clones. 

 

Methodology 

At a high level, the work consisted of evaluating the performance of RADs on different 

combinations of bulk, single-cell, and reference data and then modifying the algorithm as needed 

for each combination. The combinations that were explored are listed in the results section and 

are herein referred to by a unique numerical identifier beginning from 01. For example, 

Combination ID01 refers to the data corresponding to the ID of 01. During pre-processing of the 

data, only the genes that overlap between the bulk and reference datasets were considered, as the 

optimization problem requires common dimensions for the matrices. 

The result produced from RADs is an inferred clonal fraction matrix named F, which describes 

the fraction of each cell type inferred to be present in each bulk sample, and an inferred gene 

expression profile matrix named C, which describes the activity level of each gene in each cell 

type. These two matrices describe the projected fraction evolution and the expression evolution 

of the bulk dataset, respectively. 

Once these results were collected, three methods were then employed to validate the results. One 

validation method was to visualize the expression profile using heatmaps which provides a way 

of assessing consistency between inferred expression values and single cell data from the 

reference or the same patient. The heatmap was then examined to determine the existence of any 

trends in expression, such as increasing in expression across two cells followed by decreasing 

across the next cell then returning to the same level across the next cells. The existence of a 

pattern is important because for any gene, the exact way it is expressed can vary depending upon 

the cell. Regardless of the way it is expressed, however, the effect should be consistent for 

similar cells, such as T-cells or cancer epithelial cells. In addition, the genes that were associated 

with high levels of expression were examined to determine if they played important roles in 

cancer, such as in cell cycle regulation. Hence, the heatmaps were analyzed to determine any 

possible clones or groups of related cells which would then be compared to the known reference 

data to check if the inferred clones matched the actual cell types. Another validation method 

was to analyze the changes in clonal fractions to determine if they could also be justified with a 

biological explanation. For example, if there was a large observed increase in clonal fractions 

from the primary site to one of the metastasis sites, then the cell type corresponding to that 

increase should require such an increase, as dictated by the pathways and biological processes to 

which that cell type contributes or the tissue type in which the metastasis occurs. 
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In the deconvolution problem, there are two regularization terms. One of the terms is a penalty 

weight associated with the difference between the computed reference matrix S and the given 

single-cell matrix C, which is used to bias the inference towards explaining the bulk data with 

cell types previously observed in single-cell data. The other term is a scaling factor of the 

reference data S, which needs to be learned due to the different technologies involved in making 

bulk versus single-cell gene expression measurements. Varying weights for the penalty weight 

were used so that the effects of the penalty weight on the resulting inference could be examined. 

From there, modifications to the algorithm can then be made, such as rearranging the penalty 

weight to another term within the optimization expression. The scaling factor is optimized during 

the RADs algorithm and is thus left alone unless the way it was optimized ever required 

changing. 

 

Results 

ID Bulk RNA-seq Dataset Single-Cell RNA-seq Reference Dataset 

01 Single cell RNA analysis of 

breast cancer bone metastases 

(GEO: GSE190772). 

A single-cell and spatially resolved atlas of 

human breast cancers (Broad Institute Single-Cell 

Portal). 

02 Simulated dataset from ID01 

Reference Dataset composed of 

415 randomly chosen genes and 

10 randomly chosen cells. 

The cells are of the following 

types, in order: T-cell, cancer 

epithelial, plasmablast, CAF, 

myeloid, plasmablast, CAF, T-

cell, cancer epithelial, T-cell. 

ID01 Reference Dataset using only the genes 

from ID02 Bulk Dataset. 

Fig. 02. Table displaying each of the datasets examined. Each pair of datasets is identified using 

a numerical identifier beginning from 01. For each pair, a bulk dataset and a single-cell reference 

dataset was used. 
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Fig. 03. Table showing the cell types present in ID01 penalty 0 and the associated changes in 

clonal fractions. The columns are the three samples present within the bulk dataset: primary is 

the primary site, BoM1 is a bone metastasis site, and BoM2 is another bone metastasis site. 

The data explored in this study are all listed in Fig. 02. Different combinations of data were used 

to provide better training to the RADs algorithm. Below, the results for each combination are 

broken down in order of the inferred clonal fractions then the inferred gene expression profile. 

For the fraction profile, the fractions are provided followed by an evaluation of the numbers to 

determine how biologically feasible they seem. For the gene expression profile, the expressions 

are provided followed by heatmaps and plots depicting the variations amongst the different 

regularization parameters, namely the penalty weight and the scaling factor. 

ID01 results 

In ID01 using a penalty weight of 0, most of the clonal fraction changes (Fig. 03) appear 

reasonable given prior biological knowledge. The trend for Normal Epithelial cells, which shows 

a substantial drop between primary tumor and metastasis, is explained by the fact that the 

metastasis is in non-epithelial tissue, namely bone marrow tissue. The trend for PVL, or 

Perivascular-Like Cells, showing an increase from primary to metastatic tumors, is explained by 

the fact that PVL are associated with angiogenesis which is blood vessel growth, since blood 

vessels line the bone marrow (Wu et al., 2020). The trend for Plasmablasts, also showing notable 

increase from primary to metastasis, is explained by the fact that plasmablasts migrate to the 

bone marrow once produced within the thymus, causing an increase in clonal frequency (Chu & 

Berek, 2013). The trend for B-cells, again showing increases in metastases relative to primary, is 

explained by the fact that many B-cells reside in the bone marrow regardless of whether an 

immune response is needed or not (Agrawal et al., 2013). The trend for CAF, or Cancer-

Associated Fibroblast, which also increase in metastases although by very different degrees in 

the two, might be explained by the fact that CAF promotes tumor progression. Initially, CAF 

represses progression by forming gap junctions between activated fibroblasts (Cirri & Chiarugi, 
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2011). Overall, however, the rate at which CAF promotes progression exceeds that at which it 

represses progression. Hence, the levels of CAF might be expected to increase in the metastasis 

sites since the cancer has progressed at that point. The increasing trend for myeloid in metastases 

versus primary is also explained by the fact that myeloid is produced in the bone marrow (Galán-

Díez, Cuesta-Domínguez, & Kousteni, 2018). 

ID02 results 

In ID02, the inferred clonal fraction profile remained constant across all the penalty weights (Fig. 

04). There seemed to be no biological reason for the trend, as the peaks and dips fail to align 

with a consistent biological pattern. For example, although Cells 2 and 4 are plasmablasts, Cell 8 

is a T-cell, raising the question of why Cells 0 and 6 failed to reach as high of a peak since they 

are both also T-cells. 

 
Fig. 04. The clonal fraction profile for each penalty weight. The profile was identical across all 

penalty weights. The cell number indicates a unique cell from the ten randomly chosen cells for 

the simulated bulk dataset. 

In ID02 using a penalty weight of 0, the inferred gene expressions were somewhat biologically 

feasible as evidenced using a heatmap (Fig. 05). The genes showing high expression within the 

randomly selected cells were often related to cell division, a process closely associated with 

cancer: PSME1, SRSF5, GPX1, DOCK7, JUN, TNFAIP3, and TMEM165 (Martin et al.). 

However, there was not a clear pattern in gene expression levels across cells as visualized within 

the two heatmaps. There were promising signs in both heatmaps, namely Genes 14 and 19 in the 

left heatmap and Genes 3 and 25 in the right heatmap. The cells corresponding to the changes in 

expression, however, lacked a consistent pattern, as in the left heatmap for example, the cells that 

were plasmablasts corresponded to the highest expression (white color) but also a much lower 

expression (orange color). The aforementioned significant genes also appeared to have no 

particularly strong relationship with the cells. In the left heatmap for example, Genes 14 and 19 

corresponded to PSME1 and SRSF5. PSME1 is a proteasome while SRSF5 is a splicing factor, 

neither of which bears a particularly strong association with the cells. Both these proteins have 

associations with fundamental biochemical processes, but neither of these processes suggests the 

strength of association implied by the high degree of gene expression displayed for these two 

genes. Hence, clones for the cells could not be determined with enough accuracy. 
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For the remaining penalty weights for ID02, the results were similar but with subtly different 

nuances in the gene expression patterns. There were still no significant gene expression patterns, 

meaning that identifying clones still could not be determined with sufficient accuracy. However, 

most of the highly significant genes themselves exhibited strong associations with biochemical 

processes pivotal to tumor aggression, suggesting that the reference data still provided at least 

some benefit to the RADs algorithm. 

  
Fig. 05. Two heatmaps depicting the two regions of the overall heatmap for ID02 penalty 0 that 

exhibit significant gene expression as evidenced by the lighter colors. The gene numerical 

identifiers lining the rows are numbered relative to the region, not the overall heatmap. The cell 

numbers correspond to the same 10 randomly chosen cells. 

  
Fig. 06. Two heatmaps depicting the two regions of the overall heatmap for ID02 penalty 0.01 

exhibiting significant gene expression as evidenced by the lighter colors. 

In ID02 penalty 0.01, the gene expressions also seemed to be only somewhat feasible as 

evidenced using heatmaps (Fig. 06). There appeared to be no significant pattern in gene 

expression levels. However, the most strongly expressed genes, namely Gene 9 in the leftmost 

heatmap and Gene 14 in the rightmost heatmap of Fig. 05, were associated with cell membrane 

regulation and immunity: ARFRP1 and MCOLN2 (Martin et al., The Uniprot Consortium). 
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Fig. 07. Two heatmaps depicting the two regions of the overall heatmap for ID02 penalty 0.1 

exhibiting significant gene expression as evidenced by the lighter colors. 

For ID02 penalty 0.1, there appeared to be no significant gene expression trends (Fig. 07). 

However, the most strongly expressed genes as indicated by the light-colored bars in the two 

heatmaps, were often highly associated with fundamental components of the cell such as the 

transmembrane or with basic biochemical pathways such as respiration and translocation, 

making these genes important to processes leading to cancer: COX7A2, SEC62, PSME1, 

SRSF5, GPX1, TMEM210 (Sayers et al.). 
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Fig. 08. Three heatmaps depicting the three regions of the overall heatmap for ID02 penalty 1 

exhibiting significant gene expression as evidenced by the lighter colors. 

For ID02 penalty 1, there seemed to be no particularly noticeable gene expression trend as well 

(Fig. 08). However, most of the highly significant genes were also significant for prior penalty 

weights and were associated with essential biochemical processes such as the processing of 

histones and transportation of amino acids. Furthermore, several genes were protooncogenes 

(JUN and FOSB). The significant genes were as follows: COX7A2, SEC62, PSME1, SRSF5, 

GPX1, SNRPG, JUN, SLC38A1, FOSB, IGHV4-59 (Sayers et al.). 
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Fig. 09. Three heatmaps depicting the three regions of the overall heatmap for ID02 penalty 10 

exhibiting significant gene expression as evidenced by the lighter colors. 

For ID02 penalty 10, there seemed to be no significant gene expression trends (Fig. 09). 

However, the highly significant genes were also significant for prior penalty weights and were 

involved with important biochemical processes, such as membrane transport, as well as gene 

regulation which is associated with cancer: COX7A2, SEC62, PSME1, SRSF5, GPX1, SNRPG, 

SMIM14, JUN, OSBPL1A, SLC38A1, FOSB, IGHV4-59. 
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Fig. 10. Three heatmaps depicting the three regions of the overall heatmap for ID02 penalty 100 

exhibiting significant gene expression as evidenced by the lighter colors. 

For ID02 penalty 100, there seemed to be no significant gene expression trends (Fig. 10). 

However, the highly significant genes were also significant for prior penalty weights and were 

involved with similarly important biochemical processes: COX7A2, SEC62, PSME1, SRSF5, 

GPX1, SNRPG, SMIM14, JUN, TNFAIP3, OSBPL1A, SLC38A1, FOSB, IGHV4-59. 

For ID02 penalty 1000, the heatmaps were virtually identical to penalty 100 and thus yielded the 

same lack of gene expression patterns and significant genes. 

As evidenced by the gene expression profiles, the penalty weight seemed to have somewhat of an 

impact at best on the inferred gene expressions. The most significant differences were from 0 to 

0.01 and from 0.01 to 0.1 while the differences in greater penalties were non-significant. The 

difference from 0 to 0.01 was notable for the loss of a visual pattern in the graph as there was a 

pattern of increasing then decreasing within penalty 0 while there was no such pattern in penalty 

0.01. The difference from 0.01 to 0.1 was notable for the proliferation of more significant genes 

as evidenced by the greater number of lighter colored regions in the left heatmap. Hence, it 

seems that the penalty weight’s influence on the inference of the gene expressions decreases as 

the weight increases in magnitude. In addition, the penalty weight seemed to have an 
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insignificant impact on the inferred fraction profile as evidenced by the fact that all the fraction 

profiles were identical (Fig. 04). 

 

Comparison with prior work 

Previous work has focused on making use of both bulk and single-cell genetic sequence data but 

under slightly different contexts, making this study unique in that regard. Prior work chose a 

similar strategy of hybrid bulk and single-cell data but with DNA-seq rather than RNA-seq (Lei 

et al., 2020; Malikic et al., 2017; Salehi et al., 2017). Some studies used bulk DNA-seq to infer 

on single-cell RNA-seq data (McCarthy et al., 2020; Shafighi et al., 2021). Closer in nature to 

this study was a prior study developing a tool called bMIND which used both bulk and single-

cell RNA-seq data rather than DNA-seq (Wang et al., 2021). The goal of bMIND, however, 

differs from the goal of RADs as the former focused on using paired data from individuals to 

identify the cell types present within that data. Another similar study developed a deep neural 

network called Scanden to infer the cellular profiles of tissues (Menden et al., 2020). 

 

Future work 

One future area to explore is to incorporate self-contained data pre-processing into RADs. This 

would further optimize the process of semi-deconvolution by transferring the responsibility of 

pre-processing a certain pairing of bulk and reference data from the user to the algorithm itself. 

The algorithm in its current incarnation requires this as a pre-condition. Another future area is to 

incorporate newer spatial transcriptomic methods which are approaches that profile how gene 

expression changes across a tissue. Finally, another promising future route is single-nucleus 

RNA sequencing as using the higher-resolution nuclei in addition to, or in lieu of, the lower-

resolution single cells may perform at least as well as single cells, which would likely make 

nucleus sequencing the better approach for its lighter cost due to the smaller size of nuclei 

relative to the entire cell. In fact, prior work seems to suggest promise in this area (Lacar et al., 

2016; Ding et al., 2020). 
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