Incorporating Structural Bias into Neural Networks for Natural Language Processing

Zichao Yang

CMU-CS-19-103
February 2019

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Eric Xing, co-chair
Taylor Berg-Kirkpatrick, co-chair
Alexander Smola (Amazon)
Ruslan Salakhutdinov
Li Deng (Citadel)

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

Copyright © 2019 Zichao Yang

This research was sponsored by the National Science Foundation under grant number IIS-1409802, the Microsoft Corporation under the Large Scale Computation project and the Bloomberg Philanthropies. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.
Keywords: Natural Language Processing, Neural Networks, Structure Bias, Attention Mechanism, Visual Question Answering, Document Classification, VAE, GAN
Dedicated to my parents for their unconditional love.
Abstract

Neural networks in recent years have achieved great breakthroughs in natural language processing. Though powerful, neural networks are often statistically inefficient and require large quantities of labeled data to train. One potential reason is that natural language has rich latent structure and general purpose neural architectures have difficulty learning underlying patterns from limited data. In this thesis, we aim to improve the efficiency of neural networks by exploring structural properties of natural language in designing neural model architectures. We accomplish this by embedding prior knowledge into the model itself as a type of inductive bias.

In the first half of this thesis, we explore supervised tasks related to natural language—for example, visual question answering and document classification. We find in those tasks, the inputs have salient features that provide clues to the answers. The salient regions of inputs, however, is not directly annotated and cannot be directly leveraged for training. Moreover, the salient features must be reasoned about and discovered according to context in a step by step manner. By building a specific neural network module using iterative attention mechanism, we are able to localize the most important parts from inputs gradually and use them for prediction. The resulting systems not only achieve the state-of-the-art results, but also provide interpretations for their predictions.

In the second half of this thesis, we explore several unsupervised modeling tasks related to nature language—specifically, variational auto-encoders (VAEs) [59] and generative adversarial networks (GANs) [33]. We find those model designed for continuous inputs such as images do not perform well with natural languages as inputs. The main challenges lie in that the existing neural network modules in VAEs and GANs are not good at dealing with discrete and sequential inputs. To overcome the limitations, we designed network modules with input structure taken into consideration. Specifically, we proposed to use dilated CNNs as decoders for VAEs to control the contextual capacity. For GANs, we proposed to use more structured discriminators to replace the binary classifiers to provide better feedback to generators. Altogether, we have shown that by modifying architectural properties of component modules, we can constrain unsupervised learning problems in a way that makes them more feasible and leads to improved practical results.
Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisors Alex Smola, Eric Xing and Taylor Berg-Kirkpatrick for their guidance, vision and continuing support. I am fortunate to have them as advisors and have learned extensively from them about research, writing and presentation. Their care and encouragement also helped me through some difficult situations in the past five years.

It’s my honor to have Ruslan Salakhutdinov and Li Deng in my thesis committee. They provided many insightful comments on my thesis. I also thank them for many invaluable discussion and feedback on many research projects.

I am extremely grateful to have collaborated with many intelligent and amazing people. Special thanks go to Zhiting Hu and Diyi Yang, for not only being great collaborators, but also being best friends. They are profound thinkers and are always great resources for inspirations. I learned a lot from many other collaborators: Chris Dyer, Xiaodong He, Jianfeng Gao, Andrew Wilson, Wang Ling, Nando de Freitas, Mu Li and others. Thanks for many creative discussions and insightful comments.

I am also very thankful for my former research advisor John C.S. Lui for his guidance and support during my M.Phil at Hong Kong. He is the reason why I decided to pursue a PhD at CMU. Thanks also go to the elder ANSR Lab members—Weijie Wu, Minghong Lin and Bin Fan—for their help and advice.

Many very good friends have helped and supported me throughout my PhD, including Xiao Liu, Peng Zhang, Liwei Wang, Wendy Wang and many others. Thanks for the endless hours of chatting with me when I met with difficulties. It’s your support, advice and comfort that helped me through the bad days.

My family have supported me along the way and I want to thank them deeply for this. Thanks my parents and sisters for their constant care and unconditional love. I could not have finished the PhD without you. It was you that taught me love, value and meaning of life. You protected and supported me all the way along.
II Structural Bias for Unsupervised Learning

4 Dilated CNN Decoders for VAEs

4.1 Overview ... 35
4.2 Related work .. 36
4.3 Model ... 37
 4.3.1 Background on Variational Autoencoders 37
 4.3.2 Training Collapse with Textual VAEs 38
 4.3.3 Dilated Convolutional Decoders 39
 4.3.4 Semi-supervised VAE 40
4.4 Experiments ... 41
 4.4.1 Data sets .. 41
 4.4.2 Model configurations and Training details 42
 4.4.3 Language modeling results 43
 4.4.4 Semi-supervised VAE results 44
 4.4.5 Unsupervised clustering results 47
4.5 Recent development ... 48

5 Language Model Discriminators for GANs 51

5.1 Overview .. 51
5.2 Related Work ... 52
5.3 Unsupervised Text Style Transfer 53
5.4 Language Models as Discriminators 54
5.5 Experiments ... 57
 5.5.1 Word substitution decipherment 58
 5.5.2 Sentiment Manipulation 59
 5.5.3 Related language translation 60

6 Conclusions and future work ... 64

Bibliography .. 66
List of Figures

2.1 Model architecture and visualization of stacked attention networks 8
2.2 CNN based image model for SANs 10
2.3 LSTM based question model for SANs 10
2.4 CNN based question model for SANs 11
2.5 Visualization of two attention layers 21
2.6 Examples of mistakes 21

3.1 A simple example review from Yelp 2013 that consists of five sentences, delimited by period, question mark. The first and third sentence delivers stronger meaning and inside, the word delicious, a-m-a-z-i-n-g contributes the most in defining sentiment of the two sentences. 22
3.2 Hierarchical Attention Network 25
3.3 Attention weight distribution of good. (a) — aggregate distribution on the test split; (b)-(f) stratified for reviews with ratings 1-5 respectively. We can see that the weight distribution shifts to higher end as the rating goes higher. 32
3.4 Attention weight distribution of the word bad. The setup is as above: (a) contains the aggregate distribution, while (b)-(f) contain stratifications to reviews with ratings 1-5 respectively. Contrary to before, the word bad is considered important for poor ratings and less so for good ones. 32
3.5 Documents from Yelp 2013. Label 4 means star 5, label 0 means star 1. 33
3.6 Documents from Yahoo Answers. Label 1 denotes Science and Mathematics and label 4 denotes Computers and Internet. 33

4.1 Our training and model architectures for textual VAE using a dilated CNN decoder. 39
4.2 Residual connection for dilated CNN decoders 40
4.3 NLL decomposition of Table 4.2a. Each group consists of three bars, representing LM, VAE and VAE+init. For VAE, we decompose the loss into reconstruction loss and KL divergence, shown in blue and red respectively. We subtract all loss values with 300 for better visualization. 44
4.4 Visualizations of learned latent representations 46

5.1 The overall model architecture consists of two parts: reconstruction and transfer.
For transfer, we switch the style label and sample an output sentence from the generator that is evaluated by a language model. 55
5.2 Continuous approximation of language model loss. The input is a sequence of probability distributions \(\{ \tilde{p}_x^t \}^T_{t=1} \) sampled from the generator. At each timestep, we compute a weighted embedding as input to the language model and get the sequence of output distributions from the LM as \(\{ \hat{p}_x^t \}^T_{t=1} \). The loss is the sum of cross entropies between each pair of \(\tilde{p}_x^t \) and \(\hat{p}_x^t \).
List of Tables

2.1 DAQUAR-ALL results, in percentage .. 16
2.2 DAQUAR-REDUCED results, in percentage .. 17
2.3 COCO-QA results, in percentage .. 18
2.4 COCO-QA accuracy per class, in percentage .. 18
2.5 VQA results on the official server, in percentage 19
2.6 VQA results on our partition, in percentage ... 19

3.1 Data statistics: #s denotes the number of sentences (average and maximum per document), #w denotes the number of words (average and maximum per document). ... 28
3.2 Document Classification results, in percentage 30

4.1 Data statistics for experiments of VAEs ... 42
4.2 Language modeling results on the test set. ** is from [11]. We report negative log likelihood (NLL) and perplexity (PPL) on the test set. The KL component of NLL is given in parentheses. Size indicates the effective filter size. VAE + init indicates pretraining of only the encoder using an LSTM LM. 43
4.3 Semi-supervised VAE ablation results on Yahoo. We report both the NLL and classification accuracy of the test data. Accuracy is in percentage. Number of labeled samples is fixed to be 500. .. 45
4.4 Semi-supervised VAE results on the test set, in percentage. LA-LSTM and LM-LSTM come from [21], they denotes the LSTM is initialized with a sequence autoencoder and a language model. .. 45
4.5 Unsupervised clustering results for Yahoo data set. We run each model 10 times and report the best results. LSTM+GMM means we extract the features from LSTM language model. SCNN-VAE + GMM means we use the mean of $q(z|x)$ as the feature. SCNN-VAE + init + GMM means SCNN-VAE is trained with encoder initialization. ... 47
4.6 Text generated by conditioning on sentiment label 47
4.7 Text generated by conditioning on topic label 49
4.8 Text generated by conditioning on sentiment label 50

5.1 Decipherment results measured in BLEU. Copy is directly measuring y against x. LM + adv denotes we use negative samples to train the language model. We run the code open-sourced by the authors to get the results. 58
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Results for sentiment modification. $X = \text{negative}, Y = \text{positive}$. PPL_X denotes the perplexity of sentences transferred from positive sentences evaluated by a language model trained with negative sentences and vice versa.</td>
<td>59</td>
</tr>
<tr>
<td>5.3</td>
<td>Results for sentiment modification based on the 500 human annotated sentences as ground truth from [75].</td>
<td>61</td>
</tr>
<tr>
<td>5.4</td>
<td>Related language translation results measured in BLEU. The results for sr vs bs in measured in BLEU1 while cn vs tw is measured in BLEU.</td>
<td>62</td>
</tr>
<tr>
<td>5.5</td>
<td>Sentiment transfer examples.</td>
<td>63</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Motivation

In recent years, neural networks have achieved great breakthroughs in many areas of natural language processing (NLP), including language modeling [90], machine translation [110], question answering [41], dialogues systems [120]. With neural networks, we can nowadays easily build models that translate between various pairs of languages—though, translation quality is limited by available training data for each pair. We can also build chat bots that are able to carry on conversations with humans—albeit only for a short duration before losing credibility. There are two main factors underlying the success of neural networks: the unprecedented scale of datasets, as well as unprecedented scale of model. With large scale supervised data, we can train an extremely large neural network model with billions of parameters. When given sufficient supervised training data, many such models are capable of learning the complicated structures of natural language and generalize to new examples without over-fitting. For example, the state-of-the-art neural machine translation models contain dozens of layers and billions of parameters and are trained with millions of paired sequences. With the unprecedented data and model scale, minimum human efforts are required to pre-process the natural language as inputs and neural network models are directly resorted to optimize learning the feature representations.

Though powerful, neural networks are often statistically inefficient and require many labeled examples to train. For some scenarios, it is very expensive to get large amount of supervised data. Training neural networks with limited supervised data can induce over-fitting and make the model generalize poorly on the test set. Further, for many of the most interesting tasks, fully supervised data simply cannot be collected due to the nature of the problem. Suppose we would like to build models for chat bots, it is very difficult to get high quality dialogues to train a model. Human dialogues can be dramatically different in various aspects. It can be of different types such as greeting, chit-chat, information seeking, debating, question answering and so on. For each utterance, there are numerous ways to respond to it. It is hard to get large amount of high quality training data to cover the diverse types of dialogues. Data scarcity problem is also quite common in other areas such as self-driving cars. It is easy to get human experts driving experience in normal situations while the data for emergent situations is quite rare. Training a neural network only on safe traces can be catastrophic. The model is agnostic to emergent
situations and it is unpredictable what actions the model will take in contingency. Deploying such models in self-driving cars poses serious safety concerns.

When fully supervised data can be collected, it must be collected in large quantities for current neural architectures to lead to successful results on NLP tasks. This is due to the inherent complexity of language. For example, suppose you want to build a system to translate from German to English. There are many levels of linguistic structure that are relevant for successful generalization: syntactic correspondence between the two languages, lexical correspondence and sparser phenomena such as idiomatic expressions. Suppose a system that needs to process and classify long documents, not only must it be able to process and represent individual sentences, it must capture how the sequence of sentences in the document compose to define the overall meaning. A neural network trained with limited examples can hardly capture such patterns in a way that lets it generalize successful to new data. For limited data scenarios where complex neural models are applied, over-fitting is a common outcome.

Thesis statement

In this thesis, we aim to overcome some of the statistical efficiency concerns about neural networks when applied to NLP data. Specifically, we want to improve the efficiency of neural networks for NLP with limited training data. We propose to constrain aspects of neural architectures to reflect known structural aspects of various type of natural language data. In particular, this is accomplished by embedding *prior knowledge of data structure* into the model itself as a type of inductive bias. By directly incorporating the structural properties of data into the model, we bias the model to more easily capture underlying patterns with limited training data. In some sense, we are trading variance for bias—as long as the constraints we incorporate generalize, we can reduce variance and learn from less data without hurting performance. The key to this approach is in the nature of the constraints we add. The goal is to bias the model in the right direction without making it inflexible.

For example, a common property of language data is that it is hierarchical in nature. Generic neural models might treat language data as a simple sequence, require complex parameter setting to capture any sort of generalizable hierarchy. However, as we will show in Chapter 3, it is possible to add simple attentional structures to such models in order to cause them to treat language as hierarchical data from the beginning. This is just one example—we will go on to see additional types of bias that can be added in supervised and unsupervised systems to make learning more successful.

Incorporating structural properties of natural language into designing neural network models has several advantages. First, as we will demonstrate in this thesis, it improves the modeling efficiency of neural networks. The model we designed achieved the state-of-the-art results on a series of tasks. Since the characteristic of the neural network reflects the structure of data, it is easier for the models to learn from data and generalize to new examples. Second, incorporating structural bias into neural networks make predictions more interpretable. Because such models encode certain assumptions about language structure, their learned parameters can be inspected and interpreted more easily. We will demonstrate this across several models with structural attention.
1.2 Outline and contributions

Designing the model according to structure of natural language comes with its own challenges. First of all, we have to figure out what type of structure to model. The type of inductive bias we will investigate is mainly focused on controlling to flow of information in the model. In some sense, these are structural bias, rather than low-level bias via manual feature engineering or lexical constraints. Our goal is for these constraints to be highly generalizable across domains of linguistic data, while leaving room for flexibility to fit specific aspects of data.

Part I: Supervised Learning Many supervised natural language problems require the model to learn to identify salient aspects of input text in order to predict the correct output. The salient regions of inputs, however, is not directly annotated and cannot be directly leveraged for training. Moreover, in many problems, the salient features must be reasoned and discovered according context in a step by step manner. By building a specific neural network module using iterative attention mechanism, we are able to localize the most important parts from inputs gradually and use them for prediction. The resulting systems not only achieved the state-of-the-art results, but also provided interpretations for their predictions. This part consists of the following two chapters:

Stacked Attention Networks We propose a stacked attention model to answer natural language questions based on a reference image. Previously, a commonly used approach was to extract a global image feature vector using a convolution neural network (CNN) and encode the corresponding question as a feature vector using a long short-term memory network (LSTM) and then combine them to infer the answer. Though impressive results have been reported, these models often ignore an important structure of the data—the correspondence between image object and entities names in questions. By examining the image QA data sets, we find that it is often the case that answering a question from an image requires multi-step reasoning—identifying the entities in images and then action based on the question. We propose stacked attention networks (SANs) that captures of the structure of the input image and question pairs. The SAN first uses the question vector to query the image vectors in the first attention layer, then combine the question vector and the retrieved image vectors to form a refined query vector to query the image vectors again in the second attention layer. The higher-level attention layer gives a sharper attention distribution focusing on the regions that are more relevant to the answer. In experiments, we find our model with structure into consideration improve upon previous baseline by more than 4 percent in accuracy. This chapter is largely based on previous work published in [131].

Hierarchical Attention Networks Recent approaches used deep learning, such as convolutional neural networks and recurrent neural networks based on long short-term memory (LSTM) to learn text representations. In this chapter we test the hypothesis that better representations can be obtained by incorporating knowledge of document structure in the model architecture. The intuition underlying our model is that not all parts of a document are equally relevant for answering a query and that determining the relevant sections involves modeling the interactions of the words, not just their presence in isolation. Our primary contribution is a new neural architecture, the Hierarchical Attention Network (HAN) that is designed to capture two basic insights about document structure. First, since documents have a hierarchical structure (words form sentences,
sentences form a document), we likewise construct a document representation by first building representations of sentences and then aggregating those into a document representation. Second, it is observed that different words and sentences in a document are differentially informative. We test our model with several large scale documents classification task and find our model outperforms previous state-of-the-art model by 4 percent. This chapter is largely based on previous work published in [132].

Part II: Unsupervised Learning We find unsupervised learning models—including variational auto-encoders (VAEs) [59] and generative adversarial networks (GANs) [33] —designed for continuous inputs such as images do not perform well with natural languages as inputs. The main challenges lie in that the existing neural network modules in VAEs and GANs are not good at dealing with discrete and sequential inputs. One view of these issues is that the unsupervised learning objectives are under-constrained. Because these models are so complex, many deficient local optima are available to the learning optimization. Here, we again use targeted architectural changes in order to bias and constrain the learning problem so that unsupervised learning becomes more feasible. Specifically, we proposed to use dilated CNNs as decoders for VAEs to control the contextual capacity. For GANs, we proposed to use more structured discriminators to replace the binary classifiers to provide better feedback to generators. The improved models achieved state-of-the-art results on text modeling and task of unsupervised text style transfer. This part consists of the following two chapters:

Dilated CNN Decoders for VAEs The obvious choice for decoding architecture for a textual VAE is an LSTM. However, previous work found that using an LSTM-VAE for text modeling yields higher perplexity on held-out data than using an LSTM language model. In particular, they observe that the LSTM decoder in VAE does not make effective use of the latent representation during training. We hypothesize that the contextual capacity of the decoder plays an important role in whether VAEs effectively condition on the latent representation when trained on text data. We propose the use of a dilated CNN as a decoder in VAE. In the two extremes, depending on the choice of dilation, the CNN decoder can reproduce a simple MLP using a bags of words representation of text, or can reproduce the long-range dependence of recurrent architectures (like an LSTM) by conditioning on the entire history. Thus, by choosing a dilated CNN as the decoder, we are able to conduct experiments where we vary contextual capacity, finding a sweet spot where the decoder can accurately model text but does not yet overpower the latent representation. We conduct experiments on both language modeling and semi-supervised classification and find our carefully chosen decoder architecture output perform vanilla RNN decoder. This chapter is largely based on previous work published in [133].

Language Model Discriminator for GANs In adversarial training, a binary discriminator is used to evaluate whether a generated sentence is real or fake. However, in practice, the error signal from a binary classifier is sometimes insufficient to train the generator to produce fluent language, and optimization can be unstable as a result of the adversarial training step. We propose to use an implicitly trained language model as a new type of discriminator, replacing the more conventional binary classifier. The language model calculates a sentence’s likelihood, which decomposes into a product of token-level conditional probabilities. We find empirically that when using the language model as a structured discriminator, it is possible to eliminate adversarial
training steps that use negative samples—a critical part of traditional adversarial training. We show that our approach, which uses only a language model as the discriminator, outperforms a broad set of state-of-the-art approaches on the three tasks. This chapter is largely based on previous work published in [134].
Part I

Structural Bias for Supervised Learning
Chapter 2

Stacked Attention Networks

2.1 Overview

In this chapter, we propose an attention model to answer natural language questions based on a reference image. Most of the recently proposed image QA models are based on neural networks \[4, 29, 85, 86, 98\]. A commonly used approach was to extract a global image feature vector using a convolution neural network (CNN) \[72\] and encode the corresponding question as a feature vector using a long short-term memory network (LSTM) \[42\] and then combine them to infer the answer. Though impressive results have been reported, these models often fail to give precise answers when such answers are related to a set of fine-grained regions in an image.

By examining the image QA data sets, we find that it is often the case that answering a question from an image requires multi-step reasoning. Take the question and image in Fig. 2.1 as an example. There are several objects in the image: bicycles, window, street, baskets and dogs. To answer the question what are sitting in the basket on a bicycle, we need to first locate those objects (e.g. basket, bicycle) and concepts (e.g., sitting in) referred in the question, then gradually rule out irrelevant objects, and finally pinpoint to the region that are most indicative to infer the answer (i.e., dogs in the example).

In this chapter, we propose stacked attention networks (SANs) that allow multi-step reasoning for image QA. SANs can be viewed as an extension of the attention mechanism that has been successfully applied in image captioning \[127\] and machine translation \[8\]. The overall architecture of SAN is illustrated in Fig. 2.1a. The SAN consists of three major components: (1) the image model, which uses a CNN to extract high level image representations, e.g. one vector for each region of the image; (2) the question model, which uses a CNN or a LSTM to extract a semantic vector of the question and (3) the stacked attention model, which locates, via multi-step reasoning, the image regions that are relevant to the question for answer prediction. As illustrated in Fig. 2.1a, the SAN first uses the question vector to query the image vectors in the first visual attention layer, then combine the question vector and the retrieved image vectors to form a refined query vector to query the image vectors again in the second attention layer. The higher-level attention layer gives a sharper attention distribution focusing on the regions that are more relevant to the answer. Finally, we combine the image features from the highest attention...
2.2 Related Work

Image QA is closely related to image captioning \cite{18, 26, 55, 63, 88, 122, 127}. In \cite{122}, the system first extracted a high level image feature vector from GoogleNet and then fed it into a LSTM to generate captions. The method proposed in \cite{127} went one step further to use an attention mechanism in the caption generation process. Different from \cite{122, 127}, the approach proposed in \cite{26} first used a CNN to detect words given the images, then used a maximum en-
tropy language model to generate a list of caption candidates, and finally used a deep multimodal similarity model (DMSM) to re-rank the candidates. Instead of using a RNN or a LSTM, the DMSM uses a CNN to model the semantics of captions.

Unlike image captioning, in image QA, the question is given and the task is to learn the relevant visual and text representation to infer the answer. In order to facilitate the research of image QA, several data sets have been constructed in [4, 29, 86, 98] either through automatic generation based on image caption data or by human labeling of questions and answers given images. Among them, the image QA data set in [98] is generated based on the COCO caption data set. Given a sentence that describes an image, the authors first used a parser to parse the sentence, then replaced the key word in the sentence using question words and the key word became the answer. [29] created an image QA data set through human labeling. The initial version was in Chinese and then was translated to English. [4] also created an image QA data set through human labeling. They collected questions and answers not only for real images, but also for abstract scenes.

Several image QA models were proposed in the literature. [85] used semantic parsers and image segmentation methods to predict answers based on images and questions. [29, 86] both used encoder-decoder framework to generate answers given images and questions. They first used a LSTM to encoder the images and questions and then used another LSTM to decode the answers. They both fed the image feature to every LSTM cell. [98] proposed several neural network based models, including the encoder-decoder based models that use single direction LSTMs and bi-direction LSTMs, respectively. However, the authors found the concatenation of image features and bag of words features worked the best. [4] first encoded questions with LSTMs and then combined question vectors with image vectors by element wise multiplication. [82] used a CNN for question modeling and used convolution operations to combine question vectors and image feature vectors. We compare the SAN with these models in Sec. 3.4.

2.3 Stacked Attention Networks (SANs)

The overall architecture of the SAN is shown in Fig. 2.1a. We describe the three major components of SAN in this section: the image model, the question model, and the stacked attention model.

2.3.1 Image Model

The image model uses a CNN [65, 106, 112] to get the representation of images. Specifically, the VGGNet [106] is used to extract the image feature map \(f_I \) from a raw image \(I \):

\[
f_I = \text{CNN}_{\text{vgg}}(I).
\]

Unlike previous studies [29, 82, 98] that use features from the last inner product layer, we choose the features \(f_I \) from the last pooling layer, which retains spatial information of the original images. We first rescale the images to be \(448 \times 448 \) pixels, and then take the features from the last pooling layer, which therefore have a dimension of \(512 \times 14 \times 14 \), as shown in Fig. 2.2. \(14 \times 14 \) is the number of regions in the image and \(512 \) is the dimension of the feature vector for each
region. Accordingly, each feature vector in f_I corresponds to a 32×32 pixel region of the input images. We denote by $f_i, i \in [0, 195]$ the feature vector of each image region.

Then for modeling convenience, we use a single layer perceptron to transform each feature vector to a new vector that has the same dimension as the question vector (described in Sec. 2.3.2):

$$v_I = \tanh(W_I f_I + b_I),$$

where v_I is a matrix and its i-th column v_i is the visual feature vector for the region indexed by i.

2.3.2 Question Model

As [26, 105, 110] show that LSTMs and CNNs are powerful to capture the semantic meaning of texts, we explore both models for question representations in this study.

LSTM based question model

![Figure 2.3: LSTM based question model for SANs](image)

The essential structure of a LSTM unit is a memory cell c_t which reserves the state of a sequence. At each step, the LSTM unit takes one input vector (word vector in our case) x_t and updates the memory cell c_t, then output a hidden state h_t. The update process uses the gate mechanism. A forget gate f_t controls how much information from past state c_{t-1} is preserved.
An input gate \(i_t \) controls how much the current input \(x_t \) updates the memory cell. An output gate \(o_t \) controls how much information of the memory is fed to the output as hidden state. The detailed update process is as follows:

\[
\begin{align*}
 i_t &= \sigma(W_{xi}x_t + W_{hi}h_{t-1} + b_i), \\
 f_t &= \sigma(W_{xf}x_t + W_{hf}h_{t-1} + b_f), \\
 o_t &= \sigma(W_{xo}x_t + W_{ho}h_{t-1} + b_o), \\
 c_t &= f_t c_{t-1} + i_t \tanh(W_{xc}x_t + W_{hc}h_{t-1} + b_c), \\
 h_t &= o_t \tanh(c_t),
\end{align*}
\]

(2.3) \hspace{1cm} (2.4) \hspace{1cm} (2.5) \hspace{1cm} (2.6) \hspace{1cm} (2.7)

where \(i, f, o, c \) are input gate, forget gate, output gate and memory cell, respectively. The weight matrix and bias are parameters of the LSTM and are learned on training data.

Given the question \(q = [q_1, ... q_T] \), where \(q_t \) is the one hot vector representation of word at position \(t \), we first embed the words to a vector space through an embedding matrix \(x_t = W_e q_t \). Then for every time step, we feed the embedding vector of words in the question to LSTM:

\[
\begin{align*}
 x_t &= W_e q_t, \; t \in \{1, 2, ... T\}, \\
 h_t &= \text{LSTM}(x_t), \; t \in \{1, 2, ... T\}.
\end{align*}
\]

(2.8) \hspace{1cm} (2.9)

As shown in Fig. 2.3, the question \textit{what are sitting in the basket on a bicycle} is fed into the LSTM. Then the final hidden layer is taken as the representation vector for the question, i.e., \(v_Q = h_T \).

CNN based question model

As shown in Fig. 2.4, the CNN-based question model for SANs.

In this study, we also explore to use a CNN similar to [56] for question representation. Similar to the LSTM-based question model, we first embed words to vectors \(x_t = W_e q_t \) and get the question vector by concatenating the word vectors:

\[
x_{1:T} = [x_1, x_2, ..., x_T].
\]

(2.10)
Then we apply convolution operation on the word embedding vectors. We use three convolution filters, which have the size of one (unigram), two (bigram) and three (trigram) respectively. The t-th convolution output using window size c is given by:

$$h_{c,t} = \tanh(W_c x_{t:t+c-1} + b_c).$$

(2.11)

The filter is applied only to window $t : t + c - 1$ of size c. W_c is the convolution weight and b_c is the bias. The feature map of the filter with convolution size c is given by:

$$h_c = [h_{c,1}, h_{c,2}, ..., h_{c,T-c+1}].$$

(2.12)

Then we apply max-pooling over the feature maps of the convolution size c and denote it as

$$\tilde{h}_c = \max_t[h_{c,1}, h_{c,2}, ..., h_{c,T-c+1}].$$

(2.13)

The max-pooling over these vectors is a coordinate-wise max operation. For convolution feature maps of different sizes $c = 1, 2, 3$, we concatenate them to form the feature representation vector of the whole question sentence:

$$h = [\tilde{h}_1, \tilde{h}_2, \tilde{h}_3],$$

(2.14)

hence $v_Q = h$ is the CNN based question vector.

The diagram of CNN model for question is shown in Fig. 4.1b. The convolutional and pooling layers for unigrams, bigrams and trigrams are drawn in red, blue and orange, respectively.

2.3.3 Stacked Attention Networks

Given the image feature matrix v_I and the question feature vector v_Q, SAN predicts the answer via multi-step reasoning.

In many cases, an answer only related to a small region of an image. For example, in Fig. 2.1b, although there are multiple objects in the image: bicycles, baskets, window, street and dogs and the answer to the question only relates to dogs. Therefore, using the one global image feature vector to predict the answer could lead to sub-optimal results due to the noises introduced from regions that are irrelevant to the potential answer. Instead, reasoning via multiple attention layers progressively, the SAN are able to gradually filter out noises and pinpoint the regions that are highly relevant to the answer.

Given the image feature matrix v_I and the question vector v_Q, we first feed them through a single layer neural network and then a softmax function to generate the attention distribution over the regions of the image:

$$h_A = \tanh(W_{I,A} v_I \oplus (W_{Q,A} v_Q + b_A)),$$

$$p_I = \text{softmax}(W_{P} h_A + b_P),$$

where $v_I \in \mathbb{R}^{d \times m}$, d is the image representation dimension and m is the number of image regions, $v_Q \in \mathbb{R}^d$ is a d dimensional vector. Suppose $W_{I,A}, W_{Q,A} \in \mathbb{R}^{k \times d}$ and $W_P \in \mathbb{R}^{1 \times k}$, then $p_I \in \mathbb{R}^m$ is an m dimensional vector, which corresponds to the attention probability of each
image region given v_Q. Note that we denote by \oplus the addition of a matrix and a vector. Since $W_{I,A}v_I \in \mathbb{R}^{k \times m}$ and both $W_{Q,A}v_Q, b_A \in \mathbb{R}^{k}$ are vectors, the addition between a matrix and a vector is performed by adding each column of the matrix by the vector.

Based on the attention distribution, we calculate the weighted sum of the image vectors, each from a region, \bar{v}_i as in Eq. 2.17. We then combine \bar{v}_i with the question vector v_Q to form a refined query vector u as in Eq. 2.18. u is regarded as a refined query since it encodes both question information and the visual information that is relevant to the potential answer:

\[
\bar{v}_I = \sum_i p_i v_i, \quad (2.17)
\]

\[
u = \bar{v}_I + v_Q. \quad (2.18)
\]

Compared to models that simply combine the question vector and the global image vector, attention models construct a more informative u since higher weights are put on the visual regions that are more relevant to the question. However, for complicated questions, a single attention layer is not sufficient to locate the correct region for answer prediction. For example, the question in Fig. 2.1, what are sitting in the basket on a bicycle refers to some subtle relationships among multiple objects in an image. Therefore, we iterate the above query-attention process using multiple attention layers, each extracting more fine-grained visual attention information for answer prediction. Formally, the SANs take the following formula: for the k-th attention layer, we compute:

\[
h^k_A = \tanh(W^k_{I,A}v_I \oplus (W^k_{Q,A}u^{k-1} + b^k_A)), \quad (2.19)
\]

\[
p^k_I = \text{softmax}(W^k_{P}h^k_A + b^k_p). \quad (2.20)
\]

where u^0 is initialized to be v_Q. Then the aggregated image feature vector is added to the previous query vector to form a new query vector:

\[
\bar{v}^k_I = \sum_i p^k_i v_i, \quad (2.21)
\]

\[
u^k = \bar{v}^k_I + u^{k-1}. \quad (2.22)
\]

That is, in every layer, we use the combined question and image vector u^{k-1} as the query for the image. After the image region is picked, we update the new query vector as $u^k = \bar{v}^k_I + u^{k-1}$. We repeat this K times and then use the final u^K to infer the answer:

\[
p_{\text{ans}} = \text{softmax}(W_u u^K + b_u). \quad (2.23)
\]

Fig. 2.1b illustrates the reasoning process by an example. In the first attention layer, the model identifies roughly the area that are relevant to basket, bicycle, and sitting in. In the second attention layer, the model focuses more sharply on the region that corresponds to the answer dogs. More examples can be found in Sec. 3.4.
2.4 Experiments

2.4.1 Data sets

We evaluate the SAN on four image QA data sets.

DAQUAR-ALL is proposed in [85]. There are 6,795 training questions and 5,673 test questions. These questions are generated on 795 and 654 images respectively. The images are mainly indoor scenes. The questions are categorized into three types including *Object*, *Color* and *Number*. Most of the answers are single words. Following the setting in [82, 85, 98], we exclude data samples that have multiple words answers. The remaining data set covers 90% of the original data set.

DAQUAR-REDUCED is a reduced version of DAQUAR-ALL. There are 3,876 training samples and 297 test samples. This data set is constrained to 37 object categories and uses only 25 test images. The single word answers data set covers 98% of the original data set.

COCO-QA is proposed in [98]. Based on the Microsoft COCO data set, the authors first parse the caption of the image with an off-the-shelf parser, then replace the key components in the caption with question words for form questions. There are 78736 training samples and 38948 test samples in the data set. These questions are based on 8,000 and 4,000 images respectively. There are four types of questions including *Object*, *Number*, *Color*, and *Location*. Each type takes 70%, 7%, 17%, and 6% of the whole data set, respectively. All answers in this data set are single word.

VQA is created through human labeling [4]. The data set uses images in the COCO image caption data set [78]. Unlike the other data sets, for each image, there are three questions and for each question, there are ten answers labeled by human annotators. There are 248,349 training questions and 121,512 validation questions in the data set. Following [4], we use the top 1000 most frequent answer as possible outputs and this set of answers covers 82.67% of all answers. We first studied the performance of the proposed model on the validation set. Following [26], we split the validation data set into two halves, val1 and val2. We use training set and val1 to train and validate and val2 to test locally. The results on the val2 set are reported in Table. 2.6. We also evaluated the best model, SAN(2, CNN), on the standard test server as provided in [4] and report the results in Table. 2.5.

2.4.2 Baselines and evaluation methods

We compare our models with a set of baselines proposed recently [4, 82, 85, 86, 98] on image QA. Since the results of these baselines are reported on different data sets in different literature, we present the experimental results on different data sets in different tables.

For all four data sets, we formulate image QA as a classification problem since most of answers are single words. We evaluate the model using classification accuracy as reported in [4, 86, 98]. The reference models also report the Wu-Palmer similarity (WUPS) measure [124]. The WUPS measure calculates the similarity between two words based on their longest common subsequence in the taxonomy tree. We can set a threshold for WUPS, if the similarity is less than the threshold, then it is zeroed out. Following the reference models, we use WUPS0.9 and WUPS0.0 as evaluation metrics besides the classification accuracy. The evalu-
tion on the VQA data set is different from other three data sets, since for each question there are ten answer labels that may or may not be the same. We follow [4] to use the following metric: \(\min(\# \text{ human labels that match that answer}/3, 1)\), which basically gives full credit to the answer when three or more of the ten human labels match the answer and gives partial credit if there are less matches.

2.4.3 Model configuration and training

For the image model, we use the VGGNet to extract features. When training the SAN, the parameter set of the CNN of the VGGNet is fixed. We take the output from the last pooling layer as our image feature which has a dimension of \(512 \times 14 \times 14\).

For DAQUAR and COCO-QA, we set the word embedding dimension and LSTM’s dimension to be 500 in the question model. For the CNN based question model, we set the unigram, bigram and trigram convolution filter size to be 128, 256, 256 respectively. The combination of these filters makes the question vector size to be 640. For VQA dataset, since it is larger than other data sets, we double the model size of the LSTM and the CNN to accommodate the large data set and the large number of classes. In evaluation, we experiment with SAN with one and two attention layers. We find that using three or more attention layers does not further improve the performance.

In our experiments\(^1\), all the models are trained using stochastic gradient descent with momentum 0.9. The batch size is fixed to be 100. The best learning rate is picked using grid search. Gradient clipping technique [34] and dropout [108] are used.

2.4.4 Results and analysis

The experimental results on DAQUAR-ALL, DAQUAR-REDUCED, COCO-QA and VQA are presented in Table. 2.1 to 2.6 respectively. Our model names explain their settings: SAN is short for the proposed stacked attention networks, the value 1 or 2 in the brackets refer to using one or two attention layers, respectively. The keyword LSTM or CNN refers to the question model that SANs use.

The experimental results in Table. 2.1 to 2.6 show that the two-layer SAN gives the best results across all data sets and the two kinds of question models in the SAN, LSTM and CNN, give similar performance. For example, on DAQUAR-ALL (Table. 2.1), both of the proposed two-layer SANs outperform the two best baselines, the IMG-CNN in [82] and the Ask-Your-Neuron in [86], by 5.9% and 7.6% absolute in accuracy, respectively. Similar range of improvements are observed in metrics of WUPS0.9 and WUPS0.0. We also observe significant improvements on DAQUAR-REDUCED (Table. 2.2), i.e., our SAN(2, LSTM) outperforms the IMG-CNN [82], the 2-VIS+BLSTM [98], the Ask-Your-Neurons approach [86] and the Multi-World [85] by 6.5%, 10.4%, 11.5% and 33.5% absolute in accuracy, respectively. On the larger COCO-QA data set, the proposed two-layer SANs significantly outperform the best baselines from [82] (IMG-CNN) and [98] (IMG+BOW and 2-VIS+BLSTM) by 5.1% and 6.6% in accuracy (Table. 2.3). Table. 2.5 summarizes the performance of various models on VQA, which is the largest among

\(^1\)Our code is publicly available at https://github.com/zcyang/imageqa-san
Table 2.1: DAQUAR-ALL results, in percentage

<table>
<thead>
<tr>
<th>Methods</th>
<th>Accuracy</th>
<th>WUPS0.9</th>
<th>WUPS0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-World:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-World</td>
<td>7.9</td>
<td>11.9</td>
<td>38.8</td>
</tr>
<tr>
<td>Ask-Your-Neurons:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>19.1</td>
<td>25.2</td>
<td>65.1</td>
</tr>
<tr>
<td>Language + IMG</td>
<td>21.7</td>
<td>28.0</td>
<td>65.0</td>
</tr>
<tr>
<td>CNN:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMG-CNN</td>
<td>23.4</td>
<td>29.6</td>
<td>63.0</td>
</tr>
<tr>
<td>Ours:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAN(1, LSTM)</td>
<td>28.9</td>
<td>34.7</td>
<td>68.5</td>
</tr>
<tr>
<td>SAN(1, CNN)</td>
<td>29.2</td>
<td>35.1</td>
<td>67.8</td>
</tr>
<tr>
<td>SAN(2, LSTM)</td>
<td>29.3</td>
<td>34.9</td>
<td>68.1</td>
</tr>
<tr>
<td>SAN(2, CNN)</td>
<td>29.3</td>
<td>35.1</td>
<td>68.6</td>
</tr>
<tr>
<td>Human:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>50.2</td>
<td>50.8</td>
<td>67.3</td>
</tr>
</tbody>
</table>

In order to study the strength and weakness of the SAN in detail, we report performance at the question-type level on the two large data sets, COCO-QA and VQA, in Table 2.4 and 2.5 respectively. We observe that on COCO-QA, compared to the two best baselines, IMG+BOW and 2-VIS+BLSTM, our best model SAN(2, CNN) improves 7.2% in the question type of Color, followed by 6.1% in Objects, 5.7% in Location and 4.2% in Number. We observe similar trend of improvements on VQA. As shown in Table 2.5, compared to the best baseline LSTM Q+I, the biggest improvement of SAN(2, CNN) is in the Other type, 9.7%, followed by the 1.4% improvement in Number and 0.4% improvement in Yes/No. Note that the Other type in VQA refers to questions that usually have the form of “what color, what kind, what are, what type, where” etc., which are similar to question types of Color, Objects and Location in COCO-QA. The VQA data set has a special Yes/No type of questions. The SAN only improves the performance of this type of questions slightly. This could be due to that the answer for a Yes/No question is very question dependent, so better modeling of the visual information does not provide much additional gains. This also confirms the similar observation reported in [4], e.g., using additional image information only slightly improves the performance in Yes/No, as shown in Table 2.5 Q+I vs Question, and LSTM Q+I vs LSTM Q.

Our results demonstrate clearly the positive impact of using multiple attention layers. In all four data sets, two-layer SANs always perform better than the one-layer SAN. Specifically, on COCO-QA, on average the two-layer SANs outperform the one-layer SANs by 2.2% in the type
<table>
<thead>
<tr>
<th>Methods</th>
<th>Accuracy</th>
<th>WUPS0.9</th>
<th>WUPS0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-World:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi-World</td>
<td>12.7</td>
<td>18.2</td>
<td>51.5</td>
</tr>
<tr>
<td>Ask-Your-Neurons:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language</td>
<td>31.7</td>
<td>38.4</td>
<td>80.1</td>
</tr>
<tr>
<td>Language + IMG</td>
<td>34.7</td>
<td>40.8</td>
<td>79.5</td>
</tr>
<tr>
<td>VSE:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUESS</td>
<td>18.2</td>
<td>29.7</td>
<td>77.6</td>
</tr>
<tr>
<td>BOW</td>
<td>32.7</td>
<td>43.2</td>
<td>81.3</td>
</tr>
<tr>
<td>LSTM</td>
<td>32.7</td>
<td>43.5</td>
<td>81.6</td>
</tr>
<tr>
<td>IMG+BOW</td>
<td>34.2</td>
<td>45.0</td>
<td>81.5</td>
</tr>
<tr>
<td>VIS+LSTM</td>
<td>34.4</td>
<td>46.1</td>
<td>82.2</td>
</tr>
<tr>
<td>2-VIS+BLSTM</td>
<td>35.8</td>
<td>46.8</td>
<td>82.2</td>
</tr>
<tr>
<td>CNN:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMG-CNN</td>
<td>39.7</td>
<td>44.9</td>
<td>83.1</td>
</tr>
<tr>
<td>Ours:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAN(1, LSTM)</td>
<td>45.2</td>
<td>49.6</td>
<td>84.0</td>
</tr>
<tr>
<td>SAN(1, CNN)</td>
<td>45.2</td>
<td>49.6</td>
<td>83.7</td>
</tr>
<tr>
<td>SAN(2, LSTM)</td>
<td>46.2</td>
<td>51.2</td>
<td>85.1</td>
</tr>
<tr>
<td>SAN(2, CNN)</td>
<td>45.5</td>
<td>50.2</td>
<td>83.6</td>
</tr>
<tr>
<td>Human:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human</td>
<td>60.3</td>
<td>61.0</td>
<td>79.0</td>
</tr>
</tbody>
</table>

Table 2.2: DAQUAR-REDUCED results, in percentage
Table 2.3: COCO-QA results, in percentage

<table>
<thead>
<tr>
<th>Methods</th>
<th>Accuracy</th>
<th>WUPS0.9</th>
<th>WUPS0.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSE:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUESS</td>
<td>6.7</td>
<td>17.4</td>
<td>73.4</td>
</tr>
<tr>
<td>BOW</td>
<td>37.5</td>
<td>48.5</td>
<td>82.8</td>
</tr>
<tr>
<td>LSTM</td>
<td>36.8</td>
<td>47.6</td>
<td>82.3</td>
</tr>
<tr>
<td>IMG</td>
<td>43.0</td>
<td>58.6</td>
<td>85.9</td>
</tr>
<tr>
<td>IMG+BOW</td>
<td>55.9</td>
<td>66.8</td>
<td>89.0</td>
</tr>
<tr>
<td>VIS+LSTM</td>
<td>53.3</td>
<td>63.9</td>
<td>88.3</td>
</tr>
<tr>
<td>2-VIS+BLSTM</td>
<td>55.1</td>
<td>65.3</td>
<td>88.6</td>
</tr>
<tr>
<td>CNN:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMG-CNN</td>
<td>55.0</td>
<td>65.4</td>
<td>88.6</td>
</tr>
<tr>
<td>CNN</td>
<td>32.7</td>
<td>44.3</td>
<td>80.9</td>
</tr>
<tr>
<td>Ours:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAN(1, LSTM)</td>
<td>59.6</td>
<td>69.6</td>
<td>90.1</td>
</tr>
<tr>
<td>SAN(1, CNN)</td>
<td>60.7</td>
<td>70.6</td>
<td>90.5</td>
</tr>
<tr>
<td>SAN(2, LSTM)</td>
<td>61.0</td>
<td>71.0</td>
<td>90.7</td>
</tr>
<tr>
<td>SAN(2, CNN)</td>
<td>61.6</td>
<td>71.6</td>
<td>90.9</td>
</tr>
</tbody>
</table>

Table 2.4: COCO-QA accuracy per class, in percentage

<table>
<thead>
<tr>
<th>Methods</th>
<th>Objects</th>
<th>Number</th>
<th>Color</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUESS</td>
<td>2.1</td>
<td>35.8</td>
<td>13.9</td>
<td>8.9</td>
</tr>
<tr>
<td>BOW</td>
<td>37.3</td>
<td>43.6</td>
<td>34.8</td>
<td>40.8</td>
</tr>
<tr>
<td>LSTM</td>
<td>35.9</td>
<td>45.3</td>
<td>36.3</td>
<td>38.4</td>
</tr>
<tr>
<td>IMG</td>
<td>40.4</td>
<td>29.3</td>
<td>42.7</td>
<td>44.2</td>
</tr>
<tr>
<td>IMG+BOW</td>
<td>58.7</td>
<td>44.1</td>
<td>52.0</td>
<td>49.4</td>
</tr>
<tr>
<td>VIS+LSTM</td>
<td>56.5</td>
<td>46.1</td>
<td>45.9</td>
<td>45.5</td>
</tr>
<tr>
<td>2-VIS+BLSTM</td>
<td>58.2</td>
<td>44.8</td>
<td>49.6</td>
<td>47.3</td>
</tr>
<tr>
<td>Ours:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAN(1, LSTM)</td>
<td>62.5</td>
<td>49.0</td>
<td>54.8</td>
<td>51.6</td>
</tr>
<tr>
<td>SAN(1, CNN)</td>
<td>63.6</td>
<td>48.7</td>
<td>56.7</td>
<td>52.7</td>
</tr>
<tr>
<td>SAN(2, LSTM)</td>
<td>63.6</td>
<td>49.8</td>
<td>57.9</td>
<td>52.8</td>
</tr>
<tr>
<td>SAN(2, CNN)</td>
<td>64.5</td>
<td>48.6</td>
<td>57.9</td>
<td>54.0</td>
</tr>
</tbody>
</table>

Table 2.3: COCO-QA results, in percentage

Table 2.4: COCO-QA accuracy per class, in percentage
VQA results on the official server, in percentage

<table>
<thead>
<tr>
<th>Methods</th>
<th>All</th>
<th>Yes/No</th>
<th>Number</th>
<th>Other</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>VQA: [4]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>48.1</td>
<td>75.7</td>
<td>36.7</td>
<td>27.1</td>
<td>-</td>
</tr>
<tr>
<td>Image</td>
<td>28.1</td>
<td>64.0</td>
<td>0.4</td>
<td>3.8</td>
<td>-</td>
</tr>
<tr>
<td>Q+I</td>
<td>52.6</td>
<td>75.6</td>
<td>33.7</td>
<td>37.4</td>
<td>-</td>
</tr>
<tr>
<td>LSTM Q</td>
<td>48.8</td>
<td>78.2</td>
<td>35.7</td>
<td>26.6</td>
<td>-</td>
</tr>
<tr>
<td>LSTM Q+I</td>
<td>53.7</td>
<td>78.9</td>
<td>35.2</td>
<td>36.4</td>
<td>54.1</td>
</tr>
<tr>
<td>SAN(2, CNN)</td>
<td>58.7</td>
<td>79.3</td>
<td>36.6</td>
<td>46.1</td>
<td>58.9</td>
</tr>
</tbody>
</table>

Table 2.5: VQA results on the official server, in percentage

<table>
<thead>
<tr>
<th>Methods</th>
<th>All</th>
<th>Yes/No</th>
<th>Number</th>
<th>Other</th>
<th>All</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN(1, LSTM)</td>
<td>56.6</td>
<td>78.1</td>
<td>41.6</td>
<td>44.8</td>
<td></td>
</tr>
<tr>
<td>SAN(1, CNN)</td>
<td>56.9</td>
<td>78.8</td>
<td>42.0</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>SAN(2, LSTM)</td>
<td>57.3</td>
<td>78.3</td>
<td>42.2</td>
<td>45.9</td>
<td></td>
</tr>
<tr>
<td>SAN(2, CNN)</td>
<td>57.6</td>
<td>78.6</td>
<td>41.8</td>
<td>46.4</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.6: VQA results on our partition, in percentage

of Color, followed by 1.3% and 1.0% in the Location and Objects categories, and then 0.4% in Number. This aligns to the order of the improvements of the SAN over baselines. Similar trends are observed on VQA (Table 2.6), e.g., the two-layer SAN improve over the one-layer SAN by 1.4% for the Other type of question, followed by 0.2% improvement for Number, and flat for Yes/No.

2.4.5 Visualization of attention layers

In this section, we present analysis to demonstrate that using multiple attention layers to perform multi-step reasoning leads to more fine-grained attention layer-by-layer in locating the regions that are relevant to the potential answers. We do so by visualizing the outputs of the attention layers of a sample set of images from the COCO-QA test set. Note the attention probability distribution is of size 14×14 and the original image is 448×448, we up-sample the attention probability distribution and apply a Gaussian filter to make it the same size as the original image.

Fig. 2.5 presents six examples. More examples are presented in the appendix. They cover types as broad as Object, Numbers, Color and Location. For each example, the three images from left to right are the original image, the output of the first attention layer and the output of the second attention layer, respectively. The bright part of the image is the detected attention. Across all those examples, we see that in the first attention layer, the attention is scattered on many objects in the image, largely corresponds to the objects and concepts referred in the question, whereas in the second layer, the attention is far more focused on the regions that lead
to the correct answer. For example, consider the question \textit{what is the color of the horns}, which asks the color of the horn on the woman’s head in Fig. 2.5(f). In the output of the first attention layer, the model first recognizes a woman in the image. In the output of the second attention layer, the attention is focused on the head of the woman, which leads to the answer of the question: the color of the horn is \textit{red}.

2.4.6 Errors analysis

We randomly sample 100 images from the COCO-QA test set that the SAN make mistakes. We group the errors into four categories: (i) the SANs focus the attention on the wrong regions (22%), e.g., the example in Fig. 2.6(a); (ii) the SANs focus on the right region but predict a wrong answer (42%), e.g., the examples in Fig. 2.6(b)(c)(d); (iii) the answer is ambiguous, the SANs give answers that are different from labels, but might be acceptable (31%). E.g., in Fig. 2.6(e), the answer label is \textit{pot}, but out model predicts \textit{vase}, which is also visually reasonable; (iv) the labels are clearly wrong (5%). E.g., in Fig. 2.6(f), our model gives the correct answer \textit{trains} while the label \textit{cars} is wrong.

2.5 Recent development

Since its publication, this work has attracted a lot of attention and been frequently cited and expanded upon. These works are divided into two main categories. The first category of works embedded more prior knowledge to design the attention models. [81] improved upon our work by using attention both on the image and question. [125] used dynamic memory network for this task, in which a RNN was used to model the iterative attention steps. [142] added Conditional Random Field over the attention maps as regularization to ensure attention maps in different layers are different. The other category of work used knowledge from other data and model sources. For example, [3] used semantic parsing to get the tree structure of the question. They then defined operations based on parsing tree results to build modular network for each question and then executed the network on the image input. Similarly, [2] used an object detection model to segment the objects from the images. They then applied our model on the object outputs and found significant improvement.
Figure 2.5: Visualization of two attention layers

- (a) What are pulling a man on a wagon down on dirt road?
 Answer: horses Prediction: horses

- (b) What is the color of the box?
 Answer: red Prediction: red

- (c) What next to the large umbrella attached to a table?
 Answer: trees Prediction: tree

- (d) How many people are going up the mountain with walking sticks?
 Answer: four Prediction: four

- (e) What is sitting on the handle bar of a bicycle?
 Answer: bird Prediction: bird

- (f) What is the color of the horns?
 Answer: red Prediction: red

Figure 2.6: Examples of mistakes

- (a) What swim in the ocean near two large ferries?
 Answer: ducks Prediction: boats

- (b) What is the color of the shirt?
 Answer: purple Prediction: green

- (c) What is the young woman eating?
 Answer: banana Prediction: donut

- (d) How many umbrellas with various patterns?
 Answer: three Prediction: two

- (e) The very old looking what is on display?
 Answer: pot Prediction: vase

- (f) What are passing underneath the walkway bridge?
 Answer: cars Prediction: trains
Chapter 3

Hierarchical Attention Networks

3.1 Overview

The idea from previous chapter can be generalized to many other supervised tasks, such as document classification. Documents are quite long with very rich semantic structure. However, there are some key sentences or words that deliver the main meaning of the document. The key parts have to be discovered through reasoning according to the document context. To achieve that goal, we propose an attention model for document classification in this chapter. We build a model with attention mechanism that can automatically extract the most relevant words and sentences out of documents.

Traditional approaches of text classification represent documents with sparse lexical features, such as n-grams, and then use a linear model or kernel methods on this representation \[51, 123\]. More recent approaches used deep learning, such as convolutional neural networks \[10\] and recurrent neural networks based on long short-term memory (LSTM) \[42\] to learn text representations.

Although neural-network–based approaches to text classification have been quite effective \[52, 56, 115, 139\], in this chapter we test the hypothesis that better representations can be obtained by incorporating knowledge of document structure in the model architecture. The intuition underlying our model is that not all parts of a document are equally relevant for answering a query and that determining the relevant sections involves modeling the interactions of the words, not just their presence in isolation.

Figure 3.1: A simple example review from Yelp 2013 that consists of five sentences, delimited by period, question mark. The first and third sentence delivers stronger meaning and inside, the word delicious, a-m-a-z-i-n-g contributes the most in defining sentiment of the two sentences.
Our primary contribution is a new neural architecture (§3.3), the Hierarchical Attention Network (HAN) that is designed to capture two basic insights about document structure. First, since documents have a hierarchical structure (words form sentences, sentences form a document), we likewise construct a document representation by first building representations of sentences and then aggregating those into a document representation. Second, it is observed that different words and sentences in a documents are differentially informative. Moreover, the importance of words and sentences are highly context dependent, i.e. the same word or sentence may be differentially important in different context (§3.4.5). To include sensitivity to this fact, our model includes two levels of attention mechanisms \[8, 127\] — one at the word level and one at the sentence level — that let the model to pay more or less attention to individual words and sentences when constructing the representation of the document. To illustrate, consider the example in Fig. 3.1 which is a short Yelp review where the task is to predict the rating on a scale from 1–5. Intuitively, the first and third sentence have stronger information in assisting the prediction of the rating; within these sentences, the word delicious, a-m-a-z-i-n-g contributes more in implying the positive attitude contained in this review. Attention serves two benefits: not only does it often result in better performance, but it also provides insight into which words and sentences contribute to the classification decision which can be of value in applications and analysis \[80, 105\].

The key difference to previous work is that our system uses context to discover when a sequence of tokens is relevant rather than simply filtering for (sequences of) tokens, taken out of context. To evaluate the performance of our model in comparison to other common classification architectures, we look at six data sets (§3.4). Our model outperforms previous approaches by a significant margin.

3.2 Related Work

\[56\] use neural networks for text classification. The architecture is a direct application of CNNs, as used in computer vision \[72\], albeit with NLP interpretations. \[52\] explores the case of directly using a high-dimensional one hot vector as input. They find that it performs well. Unlike word level modelings, \[139\] apply a character-level CNN for text classification and achieve competitive results. \[107\] use recursive neural networks for text classification. \[113\] explore the structure of a sentence and use a tree-structured LSTMs for classification. There are also some works that combine LSTM and CNN structure to for sentence classification \[67, 141\]. \[115\] use hierarchical structure in sentiment classification. They first use a CNN or LSTM to get a sentence vector and then a bi-directional gated recurrent neural network to compose the sentence vectors to get a document vectors. There are some other works that use hierarchical structure in sequence generation \[73\] and language modeling \[77\].

The attention mechanism was proposed by \[8\] in machine translation. The encoder decoder framework is used and an attention mechanism is used to select the reference words in original language for words in foreign language before translation. \[127\] uses the attention mechanism in image caption generation to select the relevant image regions when generating words in the captions. Further uses of the attention mechanism include parsing \[121\], natural language question answering \[41, 66, 109\], and image question answering \[130\]. Unlike these works, we explore a
hierarchical attention mechanism (to the best of our knowledge this is the first such instance).

3.3 Hierarchical Attention Networks

The overall architecture of the Hierarchical Attention Network (HAN) is shown in Fig. 3.2. It consists of several parts: a word sequence encoder, a word-level attention layer, a sentence encoder and a sentence-level attention layer. We describe the details of different components in the following sections.

3.3.1 GRU-based sequence encoder

The GRU [8] uses a gating mechanism to track the state of sequences without using separate memory cells. There are two types of gates: the reset gate \(r_t \) and the update gate \(z_t \). They together control how information is updated to the state. At time \(t \), the GRU computes the new state as

\[
h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t.
\]

(3.1)

This is a linear interpolation between the previous state \(h_{t-1} \) and the current new state \(\tilde{h}_t \) computed with new sequence information. The gate \(z_t \) decides how much past information is kept and how much new information is added. \(z_t \) is updated as:

\[
z_t = \sigma(W_z x_t + U_z h_{t-1} + b_z),
\]

(3.2)

where \(x_t \) is the sequence vector at time \(t \). The candidate state \(\tilde{h}_t \) is computed in a way similar to a traditional recurrent neural network (RNN):

\[
\tilde{h}_t = \tanh(W_h x_t + r_t \odot (U_h h_{t-1}) + b_h),
\]

(3.3)

Here \(r_t \) is the reset gate which controls how much the past state contributes to the candidate state. If \(r_t \) is zero, then it forgets the previous state. The reset gate is updated as follows:

\[
r_t = \sigma(W_r x_t + U_r h_{t-1} + b_r)
\]

(3.4)

3.3.2 Hierarchical Attention

We focus on document-level classification in this work. Assume that a document has \(L \) sentences \(s_i \) and each sentence contains \(T_i \) words. \(w_{it} \) with \(t \in [1, T] \) represents the words in the \(i \)th sentence. The proposed model projects the raw document into a vector representation, on which we build a classifier to perform document classification. In the following, we will present how we build the document level vector progressively from word vectors by using the hierarchical structure.
Figure 3.2: Hierarchical Attention Network.
Word Encoder Given a sentence with words $w_{it}, t \in [0, T]$, we first embed the words to vectors through an embedding matrix W_e, $x_{ij} = W_e w_{ij}$. We use a bidirectional GRU [3] to get annotations of words by summarizing information from both directions for words, and therefore incorporate the contextual information in the annotation. The bidirectional GRU contains the forward GRU \overrightarrow{f} which reads the sentence s_i from w_{i1} to w_{iT} and a backward GRU \overleftarrow{f} which reads from w_{iT} to w_{i1}:

$$x_{it} = W_e w_{it}, t \in [1, T],$$

$$\overrightarrow{h}_{it} = \overrightarrow{\text{GRU}}(x_{it}), t \in [1, T],$$

$$\overleftarrow{h}_{it} = \overleftarrow{\text{GRU}}(x_{it}), t \in [T, 1].$$

We obtain an annotation for a given word w_{it} by concatenating the forward hidden state \overrightarrow{h}_{it} and backward hidden state \overleftarrow{h}_{it}, i.e., $h_{it} = [\overrightarrow{h}_{it}, \overleftarrow{h}_{it}]$, which summarizes the information of the whole sentence centered around w_{it}.

Note that we directly use word embeddings. For a more complete model we could use a GRU to get word vectors directly from characters, similarly to [92]. We omitted this for simplicity.

Word Attention Not all words contribute equally to the representation of the sentence meaning. Hence, we introduce attention mechanism to extract such words that are important to the meaning of the sentence and aggregate the representation of those informative words to form a sentence vector. Specifically,

$$u_{it} = \tanh(W_wh_{it} + b_w)$$

$$\alpha_{it} = \frac{\exp(u_{it}^\top u_w)}{\sum_t \exp(u_{it}^\top u_w)}$$

$$s_i = \sum_t \alpha_{it} h_{it}. \tag{3.7}$$

That is, we first feed the word annotation h_{it} through a one-layer MLP to get u_{it} as a hidden representation of h_{it}, then we measure the importance of the word as the similarity of u_{it} with a word level context vector u_w and get a normalized importance weight α_{it} through a softmax function. After that, we compute the sentence vector s_i (we abuse the notation here) as a weighted sum of the word annotations based on the weights. The context vector u_w can be seen as a high level representation of a fixed query “what is the informative word” over the words like that used in memory networks [66, 109]. The word context vector u_w is randomly initialized and jointly learned during the training process.

Sentence Encoder Given the sentence vectors s_i, we can get a document vector in a similar way. We use a bidirectional GRU to encode the sentences:

$$\overrightarrow{h}_i = \overrightarrow{\text{GRU}}(s_i), i \in [1, L],$$

$$\overleftarrow{h}_i = \overleftarrow{\text{GRU}}(s_i), t \in [L, 1].$$
We concatenate \(\vec{h}_i \) and \(\vec{h}_j \) to get an annotation of sentence \(i \), i.e., \(h_i = [\vec{h}_i, \vec{h}_j] \). \(h_i \) summarizes the neighbor sentences around sentence \(i \) but still focus on sentence \(i \).

Sentence Attention To reward sentences that are clues to correctly classify a document, we again use attention mechanism and introduce a sentence level context vector \(u_s \) and use the vector to measure the importance of the sentences. This yields

\[
\begin{align*}
u_i &= \tanh(W_s h_i + b_s), \\
\alpha_i &= \frac{\exp(u_i^T u_s)}{\sum_i \exp(u_i^T u_s)}, \\
v &= \sum_i \alpha_i h_i,
\end{align*}
\]

where \(v \) is the document vector that summarizes all the information of sentences in a document. Similarly, the sentence level context vector can be randomly initialized and jointly learned during the training process.

3.3.3 Document Classification

The document vector \(v \) is a high level representation of the document and can be used as features for document classification:

\[
p = \text{softmax}(W_c v + b_c).
\]

We use the negative log likelihood of the correct labels as training loss:

\[
L = -\sum_d \log p_{dj},
\]

where \(j \) is the label of document \(d \).

3.4 Experiments

3.4.1 Data sets

We evaluate the effectiveness of our model on six large scale document classification data sets. These data sets can be categorized into two types of document classification tasks: sentiment estimation and topic classification. The statistics of the data sets are summarized in Table 4.1. We use 80% of the data for training, 10% for validation, and the remaining 10% for test, unless stated otherwise.

Yelp reviews are obtained from the Yelp Dataset Challenge in 2013, 2014 and 2015 [115]. There are five levels of ratings from 1 to 5 (higher is better).

IMDB reviews are obtained from [23]. The ratings range from 1 to 10.
<table>
<thead>
<tr>
<th>Data set</th>
<th>classes</th>
<th>documents</th>
<th>average #s</th>
<th>max #s</th>
<th>average #w</th>
<th>max #w</th>
<th>vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yelp 2013</td>
<td>5</td>
<td>335,018</td>
<td>8.9</td>
<td>151</td>
<td>151.6</td>
<td>1184</td>
<td>211,245</td>
</tr>
<tr>
<td>Yelp 2014</td>
<td>5</td>
<td>1,125,457</td>
<td>9.2</td>
<td>151</td>
<td>156.9</td>
<td>1199</td>
<td>476,191</td>
</tr>
<tr>
<td>Yelp 2015</td>
<td>5</td>
<td>1,569,264</td>
<td>9.0</td>
<td>151</td>
<td>151.9</td>
<td>1199</td>
<td>612,636</td>
</tr>
<tr>
<td>IMDB review</td>
<td>10</td>
<td>348,415</td>
<td>14.0</td>
<td>148</td>
<td>325.6</td>
<td>2802</td>
<td>115,831</td>
</tr>
<tr>
<td>Yahoo Answer</td>
<td>10</td>
<td>1,450,000</td>
<td>6.4</td>
<td>515</td>
<td>108.4</td>
<td>4002</td>
<td>1,554,607</td>
</tr>
<tr>
<td>Amazon review</td>
<td>5</td>
<td>3,650,000</td>
<td>4.9</td>
<td>99</td>
<td>91.9</td>
<td>596</td>
<td>1,919,336</td>
</tr>
</tbody>
</table>

Table 3.1: Data statistics: #s denotes the number of sentences (average and maximum per document), #w denotes the number of words (average and maximum per document).

Yahoo answers are obtained from [139]. This is a topic classification task with 10 classes: Society & Culture, Science & Mathematics, Health, Education & Reference, Computers & Internet, Sports, Business & Finance, Entertainment & Music, Family & Relationships and Politics & Government. The document we use includes question titles, question contexts and best answers. There are 140,000 training samples and 5000 testing samples. The original data set does not provide validation samples. We randomly select 10% of the training samples as validation.

Amazon reviews are obtained from [139]. The ratings are from 1 to 5. 3,000,000 reviews are used for training and 650,000 reviews for testing. Similarly, we use 10% of the training samples as validation.

3.4.2 Baselines

We compare HAN with several baseline methods, including traditional approaches such as linear methods, SVMs and paragraph embeddings using neural networks, LSTMs, word-based CNN, character-based CNN, and Conv-GRNN, LSTM-GRNN. These baseline methods and results are reported in [115, 139].

Linear methods

Linear methods [139] use the constructed statistics as features. A linear classifier based on multinomial logistic regression is used to classify the documents using the features.

BOW and BOW+TFIDF The 50,000 most frequent words from the training set are selected and the count of each word is used features. Bow+TFIDF, as implied by the name, uses the TFIDF of counts as features.

n-grams and n-grams+TFIDF used the most frequent 500,000 n-grams (up to 5-grams).

Bag-of-means The average word2vec embedding [91] is used as feature set.

SVMs

SVMs-based methods are reported in [115], including SVM+Unigrams, Bigrams, Text Features, AverageSG, SSWE. In detail, Unigrams and Bigrams uses bag-of-unigrams and bag-of-bigrams as features respectively.
Text Features are constructed according to [62], including word and character n-grams, sentiment lexicon features etc.

AverageSG constructs 200-dimensional word vectors using word2vec and the average word embeddings of each document are used.

SSWE uses sentiment specific word embeddings according to [114].

Neural Network methods

The neural network based methods are reported in [115] and [139].

CNN-word Word based CNN models like that of [56] are used.

CNN-char Character level CNN models are reported in [139].

LSTM takes the whole document as a single sequence and the average of the hidden states of all words is used as feature for classification.

Conv-GRNN and LSTM-GRNN were proposed by [115]. They also explore the hierarchical structure: a CNN or LSTM provides a sentence vector, and then a gated recurrent neural network (GRNN) combines the sentence vectors from a document level vector representation for classification.

3.4.3 Model configuration and training

We split documents into sentences and tokenize each sentence using Stanford’s CoreNLP [87]. We only retain words appearing more than 5 times in building the vocabulary and replace the words that appear 5 times with a special UNK token. We obtain the word embedding by training an unsupervised word2vec [91] model on the training and validation splits and then use the word embedding to initialize W.

The hyper parameters of the models are tuned on the validation set. In our experiments, we set the word embedding dimension to be 200 and the GRU dimension to be 50. In this case a combination of forward and backward GRU gives us 100 dimensions for word/sentence annotation. The word/sentence context vectors also have a dimension of 100, initialized at random.

For training, we use a mini-batch size of 64 and documents of similar length (in terms of the number of sentences in the documents) are organized to be a batch. We find that length-adjustment can accelerate training by three times. We use stochastic gradient descent to train all models with momentum of 0.9. We pick the best learning rate using grid search on the validation set.

3.4.4 Results and analysis

The experimental results on all data sets are shown in Table 3.2. We refer to our models as HN-{AVE, MAX, ATT}. Here HN stands for Hierarchical Network, AVE indicates averaging, MAX indicates max-pooling, and ATT indicates our proposed hierarchical attention model. Results show that HN-ATT gives the best performance across all data sets.

The improvement is regardless of data sizes. For smaller data sets such as Yelp 2013 and IMDB, our model outperforms the previous best baseline methods by 3.1% and 4.1% respectively. This finding is consistent across other larger data sets. Our model outperforms previous
Table 3.2: Document Classification results, in percentage

<table>
<thead>
<tr>
<th>Methods</th>
<th>Yelp’13</th>
<th>Yelp’14</th>
<th>Yelp’15</th>
<th>IMDB</th>
<th>Yahoo Answer</th>
<th>Amazon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zhang et al., 2015</td>
<td>BoW</td>
<td>-</td>
<td>58.0</td>
<td>-</td>
<td>68.9</td>
<td>54.4</td>
</tr>
<tr>
<td></td>
<td>BoW TFIDF</td>
<td>-</td>
<td>59.9</td>
<td>-</td>
<td>71.0</td>
<td>55.3</td>
</tr>
<tr>
<td></td>
<td>ngrams</td>
<td>-</td>
<td>56.3</td>
<td>-</td>
<td>68.5</td>
<td>54.3</td>
</tr>
<tr>
<td></td>
<td>ngrams TFIDF</td>
<td>-</td>
<td>54.8</td>
<td>-</td>
<td>68.5</td>
<td>52.4</td>
</tr>
<tr>
<td></td>
<td>Bag-of-means</td>
<td>-</td>
<td>52.5</td>
<td>-</td>
<td>60.5</td>
<td>44.1</td>
</tr>
<tr>
<td>Tang et al., 2015</td>
<td>Majority</td>
<td>35.6</td>
<td>36.1</td>
<td>36.9</td>
<td>17.9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SVM + Unigrams</td>
<td>58.9</td>
<td>60.0</td>
<td>61.1</td>
<td>39.9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SVM + Bigrams</td>
<td>57.6</td>
<td>61.6</td>
<td>62.4</td>
<td>40.9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SVM + TextFeatures</td>
<td>59.8</td>
<td>61.8</td>
<td>62.4</td>
<td>40.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SVM + AverageSG</td>
<td>54.3</td>
<td>55.7</td>
<td>56.8</td>
<td>31.9</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>SVM + SSWE</td>
<td>53.5</td>
<td>54.3</td>
<td>55.4</td>
<td>26.2</td>
<td>-</td>
</tr>
<tr>
<td>Zhang et al., 2015</td>
<td>LSTM</td>
<td>-</td>
<td>58.2</td>
<td>-</td>
<td>70.8</td>
<td>59.4</td>
</tr>
<tr>
<td></td>
<td>CNN-char</td>
<td>-</td>
<td>62.0</td>
<td>-</td>
<td>71.2</td>
<td>59.6</td>
</tr>
<tr>
<td></td>
<td>CNN-word</td>
<td>-</td>
<td>60.5</td>
<td>-</td>
<td>71.2</td>
<td>57.6</td>
</tr>
<tr>
<td>Tang et al., 2015</td>
<td>Paragraph Vector</td>
<td>57.7</td>
<td>59.2</td>
<td>60.5</td>
<td>34.1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>CNN-word</td>
<td>59.7</td>
<td>61.0</td>
<td>61.5</td>
<td>37.6</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Conv-GRNN</td>
<td>63.7</td>
<td>65.5</td>
<td>66.0</td>
<td>42.5</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>LSTM-GRNN</td>
<td>65.1</td>
<td>67.1</td>
<td>67.6</td>
<td>45.3</td>
<td>-</td>
</tr>
<tr>
<td>This work</td>
<td>HN-AVE</td>
<td>67.0</td>
<td>69.3</td>
<td>69.9</td>
<td>47.8</td>
<td>75.2</td>
</tr>
<tr>
<td></td>
<td>HN-MAX</td>
<td>66.9</td>
<td>69.3</td>
<td>70.1</td>
<td>48.2</td>
<td>75.2</td>
</tr>
<tr>
<td></td>
<td>HN-ATT</td>
<td>68.2</td>
<td>70.5</td>
<td>71.0</td>
<td>49.4</td>
<td>75.8</td>
</tr>
</tbody>
</table>

best models by 3.2%, 3.4%, 4.6% and 6.0% on Yelp 2014, Yelp 2015, Yahoo Answers and Amazon Reviews. The improvement also occurs regardless of the type of task: sentiment classification, which includes Yelp 2013-2014, IMDB, Amazon Reviews and topic classification for Yahoo Answers.

From Table 3.2 we can see that neural network based methods that do not explore hierarchical document structure, such as LSTM, CNN-word, CNN-char have little advantage over traditional methods for large scale (in terms of document size) text classification. E.g. SVM+TextFeatures gives performance 59.8, 61.8, 62.4, 40.5 for Yelp 2013, 2014, 2015 and IMDB respectively, while CNN-word has accuracy 59.7, 61.0, 61.5, 37.6 respectively.

Exploring the hierarchical structure only, as in HN-AVE, HN-MAX, can significantly improve over LSTM, CNN-word and CNN-char. For example, our HN-AVE outperforms CNN-word by 7.3%, 8.8%, 8.5%, 10.2% than CNN-word on Yelp 2013, 2014, 2015 and IMDB respectively. Our model HN-ATT that further utilizes attention mechanism combined with hierarchical structure improves over previous models (LSTM-GRNN) by 3.1%, 3.4%, 3.5% and 4.1% respectively. More interestingly, in the experiments, HN-AVE is equivalent to using non-informative global word/sentence context vectors (e.g., if they are all-zero vectors, then the attention weights in Eq. 3.6 and 3.9 become uniform weights). Compared to HN-AVE, the HN-ATT model gives
superior performance across the board. This clearly demonstrates the effectiveness of the proposed global word and sentence importance vectors for the HAN.

3.4.5 Context dependent attention weights

If words were inherently important or not important, models without attention mechanism might work well since the model could automatically assign low weights to irrelevant words and vice versa. However, the importance of words is highly context dependent. For example, the word good may appear in a review that has the lowest rating either because users are only happy with part of the product/service or because they use it in a negation, such as not good. To verify that our model can capture context dependent word importance, we plot the distribution of the attention weights of the words good and bad from the test split of Yelp 2013 data set as shown in Figure 3.3(a) and Figure 3.4(a). We can see that the distribution has a attention weight assigned to a word from 0 to 1. This indicates that our model captures diverse context and assign context-dependent weight to the words.

For further illustration, we plot the distribution when conditioned on the ratings of the review. Subfigures 3.3(b)-(f) in Figure 3.3 and Figure 3.4 correspond to the rating 1-5 respectively. In particular, Figure 3.3(b) shows that the weight of good concentrates on the low end in the reviews with rating 1. As the rating increases, so does the weight distribution. This means that the word good plays a more important role for reviews with higher ratings. We can observe the converse trend in Figure 3.4 for the word bad. This confirms that our model can capture the context-dependent word importance.

3.4.6 Visualization of attention

In order to validate that our model is able to select informative sentences and words in a document, we visualize the hierarchical attention layers in Figures 3.5 and 3.6 for several documents from the Yelp 2013 and Yahoo Answers data sets.

Every line is a sentence (sometimes sentences spill over several lines due to their length). Red denotes the sentence weight and blue denotes the word weight. Due to the hierarchical structure, we normalize the word weight by the sentence weight to make sure that only important words in important sentences are emphasized. For visualization purposes we display $\sqrt{p_s p_w}$. The $\sqrt{p_s}$ term displays the important words in unimportant sentences to ensure that they are not totally invisible.

Figure 3.5 shows that our model can select the words carrying strong sentiment like delicious, amazing, terrible and their corresponding sentences. Sentences containing many words like cocktails, pasta, entree are disregarded. Note that our model can not only select words carrying strong sentiment, it can also deal with complex across-sentence context. For example, there are sentences like i don’t even like scallops in the first document of Fig. 3.5 if looking purely at the single sentence, we may think this is negative comment. However, our model looks at the context of this sentence and figures out this is a positive review and chooses to ignore this sentence.

Our hierarchical attention mechanism also works well for topic classification in the Yahoo Answer data set. For example, for the left document in Figure 3.6 with label 1, which de-
Figure 3.3: Attention weight distribution of good. (a) — aggregate distribution on the test split; (b)-(f) stratified for reviews with ratings 1-5 respectively. We can see that the weight distribution shifts to higher end as the rating goes higher.

Figure 3.4: Attention weight distribution of the word bad. The setup is as above: (a) contains the aggregate distribution, while (b)-(f) contain stratifications to reviews with ratings 1-5 respectively. Contrary to before, the word bad is considered important for poor ratings and less so for good ones.

notes Science and Mathematics, our model accurately localizes the words zebra, strips, camouflage, predator and their corresponding sentences. For the right document with label 4, which denotes Computers and Internet, our model focuses on web, searches,
browsers and their corresponding sentences. Note that this happens in a multiclass setting, that is, detection happens before the selection of the topic!

GT: 4 Prediction: 4

\[
\text{pork belly} = \text{delicious} .
\]

\[
\text{scallops?}
\]

\[
\text{i don't} .
\]

\[
\text{even} .
\]

\[
\text{like} .
\]

\[
\text{scallops, and these were}
\]

\[
\text{a-m-a-z-i-n-g} .
\]

\[
\text{fun and tasty cocktails} .
\]

\[
\text{next time i'm in phoenix, i will}
\]

\[
\text{go back here} .
\]

\[
\text{highly recommend} .
\]

GT: 0 Prediction: 0

\[
\text{terrible value} .
\]

\[
\text{ordered pasta entree} .
\]

\[
\text{$16.95} \text{ good taste but size was an}
\]

\[
\text{appetizer size} .
\]

\[
\text{no salad, no bread no vegetable} .
\]

\[
\text{this was} .
\]

\[
\text{our and tasty cocktails} .
\]

\[
\text{our second visit} .
\]

\[
\text{i will not go back} .
\]

Figure 3.5: Documents from Yelp 2013. Label 4 means star 5, label 0 means star 1.

GT: 1 Prediction: 1

\[
\text{why does zebras have stripes?}
\]

\[
\text{what is the purpose or those stripes?}
\]

\[
\text{who do they serve the zebras in the}
\]

\[
\text{wild life?}
\]

\[
\text{this provides camouflage - predator}
\]

\[
\text{vision is such that it is usually}
\]

\[
\text{difficult for them to see complex}
\]

\[
\text{patterns}
\]

GT: 4 Prediction: 4

\[
\text{how do i get rid of all the old}
\]

\[
\text{web searches i have on my web}
\]

\[
\text{browser?}
\]

\[
\text{i want to clean up my web browser}
\]

\[
\text{go to tools > options} .
\]

\[
\text{then click “delete history” and “}
\]

\[
\text{clean up temporary internet files”}
\]

Figure 3.6: Documents from Yahoo Answers. Label 1 denotes Science and Mathematics and label 4 denotes Computers and Internet.

3.5 Recent development

Our work is the first to apply attention mechanism on text classification problem. Since the publication of our work, it has attracted a lot of attention and the idea of the model has been adopted and applied in many other applications. For example, [116] applied our framework to aspect level sentiment classification. [93] generalized our model to the multilingual setting. [14] introduced a context vector for each user and then used user-product attention to predict the rating from each user. [96] applied the idea of our model to time series predictions. The authors from [137] adopted our idea to the task of referring expression comprehension.
Part II

Structural Bias for Unsupervised Learning
Chapter 4

Dilated CNN Decoders for VAEs

4.1 Overview

In this part, we are going to investigate generative models for text modeling, showing better model priors and learning objective makes generative models work better. Generative models play an important role in NLP, both in their use as language models and because of their ability to effectively learn from unlabeled data. By parameterizing generative models using neural nets, recent work has proposed model classes that are particularly expressive and can potentially model a wide range of phenomena in language and other modalities. When designing generative models for NLP, there are some challenges due to its discrete and sequential structure. Hence the progress of the two classes of generative models—Variational Auto-Encoder (VAE) and Generative Adversarial Network (GAN)—on NLP is very limited. In this part of the thesis, we are going to investigate these problems and propose new models to overcome these difficulties.

In this chapter, we focus on a specific instance of this class: the variational autoencoder

The generative story behind the VAE (to be described in detail in the next section) is simple: First, a continuous latent representation is sampled from a multivariate Gaussian. Then, an output is sampled from a distribution parameterized by a neural decoder, conditioned on the latent representation. The latent representation (treated as a latent variable during training) is intended to give the model more expressive capacity when compared with simpler neural generative models—for example, conditional language models. The choice of decoding architecture and final output distribution, which connect the latent representation to output, depends on the kind of data being modeled. The VAE owes its name to an accompanying variational technique

that has been successfully used to train such models on image data

The application of VAEs to text data has been far less successful

The obvious choice for decoding architecture for a textual VAE is an LSTM, a typical workhorse in NLP. However, Bowman et al. found that using an LSTM-VAE for text modeling yields higher perplexity on held-out data than using an LSTM language model. In particular, they observe that the LSTM decoder in VAE does not make effective use of the latent representation during training and, as a result, VAE collapses into a simple language model. Related work has used simpler decoders that model text as a bag of words. Their results indicate better use of latent

The name VAE is often used to refer to both a model class and an associated inference procedure.
representations, but their decoders cannot effectively model longer-range dependencies in text and thus underperform in terms of final perplexity.

Motivated by these observations, we hypothesize that the contextual capacity of the decoder plays an important role in whether VAEs effectively condition on the latent representation when trained on text data. We propose the use of a dilated CNN as a decoder in VAE, inspired by the recent success of using CNNs for audio, image and language modeling [53, 117, 118]. In contrast with prior work where extremely large CNNs are used, we exploit the dilated CNN for its flexibility in varying the amount of conditioning context. In the two extremes, depending on the choice of dilation, the CNN decoder can reproduce a simple MLP using a bags of words representation of text, or can reproduce the long-range dependence of recurrent architectures (like an LSTM) by conditioning on the entire history. Thus, by choosing a dilated CNN as the decoder, we are able to conduct experiments where we vary contextual capacity, finding a sweet spot where the decoder can accurately model text but does not yet overpower the latent representation.

We demonstrate that when this trade-off is correctly managed, textual VAEs can perform substantially better than simple LSTM language models, a finding consistent with recent image modeling experiments using variational lossy autoencoders [17]. We go on to show that VAEs with carefully selected CNN decoders can be quite effective for semi-supervised classification and unsupervised clustering, outperforming several strong baselines (from [21]) on both text categorization and sentiment analysis.

In this chapter, we empirically evaluate several dilation architectures with different capacities, finding that reduced contextual capacity leads to stronger reliance on latent representations. By picking a decoder with suitable contextual capacity, we find our VAE performs better than LSTM language models on two data sets. We also explore the use of dilated CNN VAEs for semi-supervised classification and find they perform better than strong baselines from [21]. Finally, we verify that the same framework can be used effectively for unsupervised clustering.

4.2 Related work

Variational inference via the re-parameterization trick was initially proposed by [59, 100] and since then, VAE has been widely adopted as generative model for images [35, 36, 45, 101, 128].

Our work is in line with previous works on combining variational inferences with text modeling [11, 43, 89, 103, 138]. [11] is the first work to combine VAE with language model and they use LSTM as the decoder and find some negative results. On the other hand, [89] models text as bag of words, though improvement has been found, the model can not be used to generate text. Our work fills the gaps between them. [103, 138] applies variational inference to dialogue modeling and machine translation and found some improvement in terms of generated text quality, but no language modeling results are reported. [9, 20, 27] embedded variational units in every step of a RNN, which is different from our model in using global latent variables to learn high level features.

Our use of CNN as decoder is inspired by recent success of PixelCNN model for images [118], WaveNet for audios [117], Video Pixel Network for video modeling [54] and ByteNet for machine translation [53]. But in contrast to those works showing using a very deep architecture
leads to better performance, CNN as decoder is used in our model to control the contextual capacity, leading to better performance.

Our work is closed related the recently proposed variational lossy autoencoder [17] which is used to predict image pixels. They find that conditioning on a smaller window of a pixels leads to better results with VAE, which is similar to our finding. Much [17, 61, 99] has been done to come up more powerful prior/posterior distribution representations with techniques such as normalizing flows. We treat this as one of our future works. This work is largely orthogonal and could be potentially combined with a more effective choice of decoder to yield additional gains.

There is much previous work exploring unsupervised sentence encodings, for example skip-thought vectors [64], paragraph vectors [71], and sequence autoencoders [21]. [21] applies a pretrained model to semi-supervised classification and find significant gains, we use this as the baseline for our semi-supervised VAE.

4.3 Model

In this section, we begin by providing background on the use of variational autoencoders for language modeling. Then we introduce the dilated CNN architecture that we will use as a new decoder for VAE in experiments. Finally, we describe the generalization of VAE that we will use to conduct experiments on semi-supervised classification.

4.3.1 Background on Variational Autoencoders

Neural language models [90] typically generate each token \(x_t \) conditioned on the entire history of previously generated tokens:

\[
p(x) = \prod_t p(x_t|x_1, x_2, \ldots, x_{t-1}). \tag{4.1}
\]

State-of-the-art language models often parametrize these conditional probabilities using RNNs, which compute an evolving hidden state over the text which is used to predict each \(x_t \). This approach, though effective in modeling text, does not explicitly model variance in higher-level properties of entire utterances (e.g. topic or style) and thus can have difficulty with heterogeneous datasets.

Bowman et al. [11] propose a different approach to generative text modeling inspired by related work on vision [59]. Instead of directly modeling the joint probability \(p(x) \) as in Equation 4.1, we specify a generative process for which \(p(x) \) is a marginal distribution. Specifically, we first generate a continuous latent vector representation \(z \) from a multivariate Gaussian prior \(p_\theta(z) \), and then generate the text sequence \(x \) from a conditional distribution \(p_\theta(x|z) \) parameterized using a neural net (often called the generation model or decoder). Because this model incorporates a latent variable that modulates the entire generation of each whole utterance, it may be better able to capture high-level sources of variation in the data. Specifically, in contrast with Equation 4.1 this generating distribution conditions on latent vector representation \(z \):

\[
p_\theta(x|z) = \prod_t p_\theta(x_t|x_1, x_2, \ldots, x_{t-1}, z). \tag{4.2}
\]
To estimate model parameters θ we would ideally like to maximize the marginal probability $p_\theta(x) = \int p_\theta(z)p_\theta(x|z)dz$. However, computing this marginal is intractable for many decoder choices. Thus, the following variational lower bound is often used as an objective [59]:

$$\log p_\theta(x) = \log \int p_\theta(z)p_\theta(x|z)dz \geq \mathbb{E}_{q_\phi(z|x)}[\log p_\theta(x|z)] - KL(q_\phi(z|x)||p_\theta(z)).$$

Here, $q_\phi(z|x)$ is an approximation to the true posterior (often called the recognition model or encoder) and is parameterized by ϕ. Like the decoder, we have a choice of neural architecture to parameterize the encoder. However, unlike the decoder, the choice of encoder does not change the model class – it only changes the variational approximation used in training, which is a function of both the model parameters θ and the approximation parameters ϕ. Training seeks to optimize these parameters jointly using stochastic gradient ascent. A final wrinkle of the training procedure involves a stochastic approximation to the gradients of the variational objective (which is itself intractable). We omit details here, noting only that the final distribution of the posterior approximation $q_\phi(z|x)$ is typically assumed to be Gaussian so that a re-parametrization trick can be used, and refer readers to [59].

4.3.2 Training Collapse with Textual VAEs

Together, this combination of generative model and variational inference procedure are often referred to as a variational autoencoder (VAE). We can also view the VAE as a regularized version of the autoencoder. Note, however, that while VAEs are valid probabilistic models whose likelihood can be evaluated on held-out data, autoencoders are not valid models. If only the first term of the VAE variational bound $\mathbb{E}_{q_\phi(z|x)}[\log p_\theta(x|z)]$ is used as an objective, the variance of the posterior probability $q_\phi(z|x)$ will become small and the training procedure reduces to an autoencoder. It is the KL-divergence term, $KL(q_\phi(z|x)||p_\theta(z))$, that discourages the VAE memorizing each x as a single latent point.

While the KL term is critical for training VAEs, historically, instability on text has been evidenced by the KL term becoming vanishingly small during training, as observed by Bowman et al. [11]. When the training procedure collapses in this way, the result is an encoder that has duplicated the Gaussian prior (instead of a more interesting posterior), a decoder that completely ignores the latent variable z, and a learned model that reduces to a simpler language model. We hypothesize that this collapse condition is related to the contextual capacity of the decoder architecture. The choice encoder and decoder depends on the type of data. For images, these are typically MLPs or CNNs. LSTMs have been used for text, but have resulted in training collapse as discussed above [11]. Here, we propose to use a dilated CNN as the decoder instead. In one extreme, when the effective contextual width of a CNN is very large, it resembles the behavior of LSTM. When the width is very small, it behaves like a bag-of-words model. The architectural flexibility of dilated CNNs allows us to change the contextual capacity and conduct experiments to validate our hypothesis: decoder contextual capacity and effective use of encoding information are directly related. We next describe the details of our decoder.
4.3.3 Dilated Convolutional Decoders

The typical approach to using CNNs used for text generation [53] is similar to that used for images [40, 65], but with the convolution applied in one dimension. We take this approach here in defining our decoder.

One dimensional convolution: For a CNN to serve as a decoder for text, generation of x_t must only condition on past tokens $x_{<t}$. Applying the traditional convolution will break this assumption and use tokens $x_{\geq t}$ as inputs to predict x_t. In our decoder, we avoid this by simply shifting the input by several slots [118]. With a convolution with filter size of k and using n layers, our effective filter size (the number of past tokens to condition to in predicting x_t) would be $(k - 1) \times n + 1$. Hence, the filter size would grow linearly with the depth of the network.

Dilation: Dilated convolution [135] was introduced to greatly increase the effective receptive field size without increasing the computational cost. With dilation d, the convolution is applied so that $d - 1$ inputs are skipped each step. Causal convolution can be seen a special case with $d = 1$. With dilation, the effective receptive size grows exponentially with network depth. In Figure 4.1b, we show dilation of sizes of 1 and 2 in the first and second layer, respectively. Suppose the dilation size in the i-th layer is d_i and we use the same filter size k in all layers, then the effective filter size is $(k - 1) \sum_i d_i + 1$. The dilations are typically set to double every layer.
Figure 4.2: Residual connection for dilated CNN decoders.

$$d_{i+1} = 2d_i$$, so the effective receptive field size can grow exponentially. Hence, the contextual capacity of a CNN can be controlled across a greater range by manipulating the filter size, dilation size and network depth. We use this approach in experiments.

Residual connection: We use residual connection [40] in the decoder to speed up convergence and enable training of deeper models. We use a residual block (shown to the right) similar to that of [53]. We use three convolutional layers with filter size $1 \times 1, 1 \times k, 1 \times 1$, respectively, and ReLU activation between convolutional layers.

Overall architecture: Our VAE architecture is shown in Figure 4.1a. We use LSTM as the encoder to get the posterior probability $q(z|x)$, which we assume to be diagonal Gaussian. We parametrize the mean μ and variance σ with LSTM output. We sample z from $q(z|x)$, the decoder is conditioned on the sample by concatenating z with every word embedding of the decoder input.

4.3.4 Semi-supervised VAE

In addition to conducting language modeling experiments, we will also conduct experiments on semi-supervised classification of text using our proposed decoder. In this section, we briefly review semi-supervised VAEs of [60] that incorporate discrete labels as additional variables. Given the labeled set $(x, y) \sim D_L$ and the unlabeled set $x \sim D_U$, [60] proposed a model whose latent representation contains continuous vector z and discrete label y:

$$p(x, y, z) = p(y)p(z)p(x|y, z). \quad (4.3)$$

The semi-supervised VAE fits a discriminative network $q(y|x)$, an inference network $q(z|x, y)$ and a generative network $p(x|y, z)$ jointly as part of optimizing a variational lower bound similar that of basic VAE. For labeled data (x, y), this bound is:

$$\log p(x, y) \geq \mathbb{E}_{q(x,y)}[\log p(x, y, z)]$$

$$- \text{KL}(q(z|x,y)||p(z)) + \log p(y)$$

$$= L(x, y) + \log p(y).$$
For unlabeled data x, the label is treated as a latent variable, yielding:

$$\log p(x) \geq U(x) = \mathbb{E}_{q(y|x)} \left[\mathbb{E}_{q(z|x,y)} [\log p(x|y, z)] - \text{KL}(q(z|x, y) || p(z)) + \log p(y) - \log q(y|x) \right] = \sum_y q(y|x) L(x, y) - \text{KL}(q(y|x) || p(y)).$$

Combining the labeled and unlabeled data terms, we have the overall objective as:

$$J = \mathbb{E}_{(x, y) \sim D_L} [L(x, y)] + \mathbb{E}_{x \sim D_U} [U(x)] + \alpha \mathbb{E}_{(x, y) \sim D_L} [\log q(y|x)],$$

where α controls the trade off between generative and discriminative terms.

Gumbel-softmax: Jang et al. [50], Maddison et al. [83] propose a continuous approximation to sampling from a categorical distribution. Let u be a categorical distribution with probabilities $\pi_1, \pi_2, \ldots, \pi_c$. Samples from u can be approximated using:

$$y_i = \frac{\exp((\log(\pi_i) + g_i)/\tau)}{\sum_{j=1}^{c} \exp((\log(\pi_j) + g_j)/\tau)},$$

where g_i follows Gumbel(0, 1). The approximation is accurate when $\tau \to 0$ and smooth when $\tau > 0$. In experiments, we use Gumbel-Softmax to approximate the samples from $p(y|x)$ to reduce the computational cost. As a result, we can directly back propagate the gradients of $U(x)$ to the discriminator network. We anneal τ so that sample variance is small when training starts and then gradually decrease τ.

Unsupervised clustering: In this section we adapt the same framework for unsupervised clustering. We directly minimize the objective $U(x)$, which is consisted of two parts: reconstruction loss and KL regularization on $q(y|x)$. The first part encourages the model to assign x to label y such that the reconstruction loss is low. We find that the model can easily get stuck in two local optimum: the KL term is very small and $q(y|x)$ is close to uniform distribution or the KL term is very large and all samples collapse to one class. In order to make the model more robust, we modify the KL term by:

$$\text{KL}_y = \max(\gamma, \text{KL}(q(y|x)||p(y))).$$

That is, we only minimize the KL term when it is large enough.

4.4 Experiments

4.4.1 Data sets

Since we would like to investigate VAEs for language modeling and semi-supervised classification, the data sets should be suitable for both purposes. We use two large scale document
classification data sets: Yahoo Answer and Yelp15 review, representing topic classification and sentiment classification data sets respectively [115, 132, 139]. The original data sets contain millions of samples, of which we sample 100k as training and 10k as validation and test from the respective partitions. The detailed statistics of both data sets are in Table 4.1. Yahoo Answer contains 10 topics including Society & Culture, Science & Mathematics etc. Yelp15 contains 5 level of rating, with higher rating better.

4.4.2 Model configurations and Training details

We use an LSTM as an encoder for VAE and explore LSTMs and CNNs as decoders. For CNNs, we explore several different configurations. We set the convolution filter size to be 3 and gradually increase the depth and dilation from [1, 2, 4], [1, 2, 4, 8, 16] to [1, 2, 4, 8, 16, 1, 2, 4, 8, 16]. They represent small, medium and large model and we name them as SCNN, MCNN and LCNN. We also explore a very large model with dilations [1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16] and name it as VLCNN. The effective filter size are 15, 63, 125 and 187 respectively. We use the last hidden state of the encoder LSTM and feed it through an MLP to get the mean and variance of $q(z|x)$, from which we sample z and then feed it through an MLP to get the starting state of decoder. For the LSTM decoder, we follow [11] to use it as the initial state of LSTM and feed it to every step of LSTM. For the CNN decoder, we concatenate it with the word embedding of every decoder input.

The architecture of the Semi-supervised VAE basically follows that of the VAE. We feed the last hidden state of the encoder LSTM through a two layer MLP then a softmax to get $q(y|x)$. We use Gumbel-softmax to sample y from $q(y|x)$. We then concatenate y with the last hidden state of encoder LSTM and feed them through an MLP to get the mean and variance of $q(z|y, x)$. y and z together are used as the starting state of the decoder.

We use a vocabulary size of 20k for both data sets and set the word embedding dimension to be 512. The LSTM dimension is 1024. The number of channels for convolutions in CNN decoders is 512 internally and 1024 externally, as shown in Section 4.3.3. We select the dimension of z from [32, 64]. We find our model is not sensitive to this parameter.

We use Adam [58] to optimize all models and the learning rate is selected from [2e-3, 1e-3, 7.5e-4] and β_1 is selected from [0.5, 0.9]. Empirically, we find learning rate 1e-3 and $\beta_1 = 0.5$ to perform the best. We select drop out ratio of LSTMs (both encoder and decoder) from [0.3, 0.5]. Following [11], we also use drop word for the LSTM decoder, the drop word ratio is selected from [0, 0.3, 0.5, 0.7]. For the CNN decoder, we use a drop out ratio of 0.1 at each layer. We do not use drop word for CNN decoders. We use batch size of 32 and all model are trained for 40 epochs. We start to half the learning rate every 2 epochs after epoch 30. Following [11], we use KL cost annealing strategy. We set the initial weight of KL cost term to be 0.01 and increase it

<table>
<thead>
<tr>
<th>Data</th>
<th>classes</th>
<th>documents</th>
<th>average #w</th>
<th>vocabulary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yahoo</td>
<td>10</td>
<td>100k</td>
<td>78</td>
<td>200k</td>
</tr>
<tr>
<td>Yelp15</td>
<td>5</td>
<td>100k</td>
<td>96</td>
<td>90k</td>
</tr>
</tbody>
</table>

Table 4.1: Data statistics for experiments of VAEs
<table>
<thead>
<tr>
<th>Model</th>
<th>Size</th>
<th>NLL (KL)</th>
<th>PPL</th>
<th>Model</th>
<th>Size</th>
<th>NLL (KL)</th>
<th>PPL</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM-LM</td>
<td></td>
<td>334.9</td>
<td>66.2</td>
<td>LSTM-LM</td>
<td></td>
<td>362.7</td>
<td>42.6</td>
</tr>
<tr>
<td>LSTM-VAE**</td>
<td></td>
<td>342.1 (0.0)</td>
<td>72.5</td>
<td>LSTM-VAE**</td>
<td></td>
<td>372.2 (0.3)</td>
<td>47.0</td>
</tr>
<tr>
<td>LSTM-VAE** + init</td>
<td></td>
<td>339.2 (0.0)</td>
<td>69.9</td>
<td>LSTM-VAE** + init</td>
<td></td>
<td>368.9 (4.7)</td>
<td>46.4</td>
</tr>
<tr>
<td>SCNN-LM</td>
<td>15</td>
<td>345.3</td>
<td>75.5</td>
<td>SCNN-LM</td>
<td>15</td>
<td>371.2</td>
<td>46.6</td>
</tr>
<tr>
<td>SCNN-VAE</td>
<td>15</td>
<td>337.8 (13.3)</td>
<td>68.7</td>
<td>SCNN-VAE</td>
<td>15</td>
<td>365.6 (9.4)</td>
<td>43.9</td>
</tr>
<tr>
<td>SCNN-VAE + init</td>
<td>15</td>
<td>335.9 (13.9)</td>
<td>67.0</td>
<td>SCNN-VAE + init</td>
<td>15</td>
<td>363.7 (10.3)</td>
<td>43.1</td>
</tr>
<tr>
<td>MCNN-LM</td>
<td>63</td>
<td>338.3</td>
<td>69.1</td>
<td>MCNN-LM</td>
<td>63</td>
<td>366.5</td>
<td>44.3</td>
</tr>
<tr>
<td>MCNN-VAE</td>
<td>63</td>
<td>336.2 (11.8)</td>
<td>67.3</td>
<td>MCNN-VAE</td>
<td>63</td>
<td>363.0 (6.9)</td>
<td>42.8</td>
</tr>
<tr>
<td>MCNN-VAE + init</td>
<td>63</td>
<td>334.6 (12.6)</td>
<td>66.0</td>
<td>MCNN-VAE + init</td>
<td>63</td>
<td>360.7 (9.1)</td>
<td>41.8</td>
</tr>
<tr>
<td>LCNN-LM</td>
<td>125</td>
<td>335.4</td>
<td>66.6</td>
<td>LCNN-LM</td>
<td>125</td>
<td>363.5</td>
<td>43.0</td>
</tr>
<tr>
<td>LCNN-VAE</td>
<td>125</td>
<td>333.9 (6.7)</td>
<td>65.4</td>
<td>LCNN-VAE</td>
<td>125</td>
<td>361.9 (6.4)</td>
<td>42.3</td>
</tr>
<tr>
<td>LCNN-VAE + init</td>
<td>125</td>
<td>332.1 (10.0)</td>
<td>63.9</td>
<td>LCNN-VAE + init</td>
<td>125</td>
<td>359.1 (7.6)</td>
<td>41.1</td>
</tr>
<tr>
<td>VLCNN-LM</td>
<td>187</td>
<td>336.5</td>
<td>67.6</td>
<td>VLCNN-LM</td>
<td>187</td>
<td>364.8</td>
<td>43.7</td>
</tr>
<tr>
<td>VLCNN-VAE</td>
<td>187</td>
<td>336.5 (0.7)</td>
<td>67.6</td>
<td>VLCNN-VAE</td>
<td>187</td>
<td>364.3 (2.7)</td>
<td>43.4</td>
</tr>
<tr>
<td>VLCNN-VAE + init</td>
<td>187</td>
<td>335.8 (3.8)</td>
<td>67.0</td>
<td>VLCNN-VAE + init</td>
<td>187</td>
<td>364.7 (2.2)</td>
<td>43.5</td>
</tr>
</tbody>
</table>

(a) Yahoo

(b) Yelp

Table 4.2: Language modeling results on the test set. ** is from [11]. We report negative log likelihood (NLL) and perplexity (PPL) on the test set. The KL component of NLL is given in parentheses. Size indicates the effective filter size. V AE + init indicates pretraining of only the encoder using an LSTM LM.

linearly until a given iteration T. We treat T as a hyper parameter and select it from [10k, 40k, 80k].

4.4.3 Language modeling results

The results for language modeling are shown in Table 4.2. We report the negative log likelihood (NLL) and perplexity (PPL) of the test set. For the NLL of VAEs, we decompose it into reconstruction loss and KL divergence and report the KL divergence in the parenthesis. To better visualize these results, we plot the results of Yahoo data set (Table 4.2a) in Figure 4.3.

We first look at the LM results for Yahoo data set. As we gradually increase the effective filter size of CNN from SCNN, MCNN to LCNN, the NLL decreases from 345.3, 338.3 to 335.4. The NLL of LCNN-LM is very close to the NLL of LSTM-LM 334.9. But VLCNN-LM is a little bit worse than LCNN-LM, this indicates a little bit of over-fitting.

We can see that LSTM-VAE is worse than LSTM-LM in terms of NLL and the KL term is nearly zero, which verifies the finding of [11]. When we use CNNs as the decoders for VAEs, we can see improvement over pure CNN LMs. For SCNN, MCNN and LCNN, the VAE results improve over LM results from 345.3 to 337.8, 338.3 to 336.2, and 335.4 to 333.9 respectively. The improvement is big for small models and gradually decreases as we increase the decoder model contextual capacity. When the model is as large as VLCNN, the improvement diminishes and the
Figure 4.3: NLL decomposition of Table 4.2a. Each group consists of three bars, representing LM, VAE and VAE+init. For VAE, we decompose the loss into reconstruction loss and KL divergence, shown in blue and red respectively. We subtract all loss values with 300 for better visualization.

VAE result is almost the same with LM result. This is also reflected in the KL term, SCNN-VAE has the largest KL of 13.3 and VLCNN-VAE has the smallest KL of 0.7. When LCNN is used as the decoder, we obtain an optimal trade off between using contextual information and latent representation. LCNN-VAE achieves a NLL of 333.9, which improves over LSTM-LM with NLL of 334.9.

We find that if we initialize the parameters of LSTM encoder with parameters of LSTM language model, we can improve the VAE results further. This indicates better encoder model is also a key factor for VAEs to work well. Combined with encoder initialization, LCNN-VAE improves over LSTM-LM from 334.9 to 332.1 in NLL and from 66.2 to 63.9 in PPL. Similar results for the sentiment data set are shown in Table 4.2b. LCNN-VAE improves over LSTM-LM from 362.7 to 359.1 in NLL and from 42.6 to 41.1 in PPL.

Latent representation visualization: In order to visualize the latent representation, we set the dimension of z to be 2 and plot the mean of posterior probability $q(z|x)$, as shown in Figure 4.4. We can see distinct different characteristics of topic and sentiment representation. In Figure 4.4a, we can see that documents of different topics fall into different clusters, while in Figure 4.4b, documents of different ratings form a continuum, they lie continuously on the x-axis as the review rating increases.

4.4.4 Semi-supervised VAE results

Motivated by the success of VAEs for language modeling, we continue to explore VAEs for semi-supervised learning. Following that of [60], we set the number of labeled samples to be
<table>
<thead>
<tr>
<th>Model</th>
<th>ACCU</th>
<th>NLL (KL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM-VAE-Semi</td>
<td>51.9</td>
<td>345.5 (9.3)</td>
</tr>
<tr>
<td>SCNN-VAE-Semi</td>
<td>65.5</td>
<td>335.7 (10.4)</td>
</tr>
<tr>
<td>MCNN-VAE-Semi</td>
<td>64.6</td>
<td>332.8 (7.2)</td>
</tr>
<tr>
<td>LCNN-VAE-Semi</td>
<td>57.2</td>
<td>331.3 (2.7)</td>
</tr>
</tbody>
</table>

Table 4.3: Semi-supervised VAE ablation results on Yahoo. We report both the NLL and classification accuracy of the test data. Accuracy is in percentage. Number of labeled samples is fixed to be 500.

<table>
<thead>
<tr>
<th>Model</th>
<th>100</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM</td>
<td>10.7</td>
<td>11.9</td>
<td>14.3</td>
<td>23.1</td>
</tr>
<tr>
<td>LA-LSTM [21]</td>
<td>20.8</td>
<td>42.2</td>
<td>50.4</td>
<td>54.7</td>
</tr>
<tr>
<td>LM-LSTM [21]</td>
<td>46.9</td>
<td>61.3</td>
<td>63.9</td>
<td>65.6</td>
</tr>
<tr>
<td>SCNN-VAE-Semi</td>
<td>55.4</td>
<td>65.6</td>
<td>66.0</td>
<td>65.8</td>
</tr>
<tr>
<td>SCNN-VAE-Semi+init</td>
<td>63.8</td>
<td>65.4</td>
<td>66.6</td>
<td>67.4</td>
</tr>
</tbody>
</table>

(a) Yahoo

<table>
<thead>
<tr>
<th>Model</th>
<th>100</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM</td>
<td>22.6</td>
<td>25.4</td>
<td>27.9</td>
<td>29.9</td>
</tr>
<tr>
<td>LA-LSTM [21]</td>
<td>35.2</td>
<td>46.4</td>
<td>49.8</td>
<td>52.2</td>
</tr>
<tr>
<td>LM-LSTM [21]</td>
<td>46.9</td>
<td>54.1</td>
<td>57.2</td>
<td>57.7</td>
</tr>
<tr>
<td>SCNN-VAE-Semi</td>
<td>51.4</td>
<td>53.5</td>
<td>55.3</td>
<td>57.4</td>
</tr>
<tr>
<td>SCNN-VAE-Semi+init</td>
<td>52.6</td>
<td>57.3</td>
<td>58.9</td>
<td>59.8</td>
</tr>
</tbody>
</table>

(b) Yelp

Table 4.4: Semi-supervised VAE results on the test set, in percentage. LA-LSTM and LM-LSTM come from [21], they denotes the LSTM is initialized with a sequence autoencoder and a language model.
100, 500, 1000 and 2000 respectively.

Ablation Study: At first, we would like to explore the effect of different decoders for semi-supervised classification. We fix the number of labeled samples to be 500 and report both classification accuracy and NLL of the test set of Yahoo data set in Table 4.5. We can see that SCNN-VAE-Semi has the best classification accuracy of 65.5. The accuracy decreases as we gradually increase the decoder contextual capacity. On the other hand, LCNN-VAE-Semi has the best NLL result. This classification accuracy and NLL trade off once again verifies our conjecture: with small contextual window size, the decoder is forced to use the encoder information, hence the latent representation is better learned.

Comparing the NLL results of Table 4.5 with that of Table 4.2a, we can see the NLL improves. The NLL of semi-supervised VAE improves over simple VAE from 337.8 to 335.7 for SCNN, from 336.2 to 332.8 for MCNN, and from 333.9 to 332.8 for LCNN. The improvement mainly comes from the KL divergence part, this indicates that better latent representations decrease the KL divergence, further improving the VAE results.

Comparison with related methods: We compare Semi-supervised VAE with the methods from [21], which represent the previous state-of-the-art for semi-supervised sequence learning. Dai and Le [21] pre-trains a classifier by initializing the parameters of a classifier with that of a language model or a sequence autoencoder. They find it improves the classification accuracy significantly. Since SCNN-VAE-Semi performs the best according to Table 4.5, we fix the decoder to be SCNN in this part. The detailed comparison is in Table 4.4. We can see that semi-supervised VAE performs better than LM-LSTM and LA-LSTM from [21]. We also initialize the encoder of the VAE with parameters from LM and find classification accuracy further improves. We also see the advantage of SCNN-VAE-Semi over LM-LSTM is greater when the number of labeled sam-
amples is smaller. The advantage decreases as we increase the number of labeled samples. When we set the number of labeled samples to be 25k, the SCNN-VAE-Semi achieves an accuracy of 70.4, which is similar to LM-LSTM with an accuracy of 70.5. Also, SCNN-VAE-Semi performs better on Yahoo data set than Yelp data set. For Yelp, SCNN-VAE-Semi is a little bit worse than LM-LSTM if the number of labeled samples is greater than 100, but becomes better when we initialize the encoder. Figure 4.4b explains this observation. It shows the documents are coupled together and are harder to classify. Also, the latent representation contains information other than sentiment, which may not be useful for classification.

4.4.5 Unsupervised clustering results

<table>
<thead>
<tr>
<th>Model</th>
<th>ACCU</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM + GMM</td>
<td>25.8</td>
</tr>
<tr>
<td>SCNN-VAE + GMM</td>
<td>56.6</td>
</tr>
<tr>
<td>SCNN-VAE + init + GMM</td>
<td>57.0</td>
</tr>
<tr>
<td>SCNN-VAE-Unsup + init</td>
<td>59.9</td>
</tr>
</tbody>
</table>

Table 4.5: Unsupervised clustering results for Yahoo data set. We run each model 10 times and report the best results. LSTM+GMM means we extract the features from LSTM language model. SCNN-VAE + GMM means we use the mean of $q(z|x)$ as the feature. SCNN-VAE + init + GMM means SCNN-VAE is trained with encoder initialization.

<table>
<thead>
<tr>
<th>sentiment</th>
<th>review</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 star</td>
<td>the food was good but the service was horrible. took forever to get our food. we had to ask twice for our check after we got our food. will not return.</td>
</tr>
<tr>
<td>2 star</td>
<td>the food was good, but the service was terrible. took forever to get someone to take our drink order. had to ask 3 times to get the check. food was ok, nothing to write about.</td>
</tr>
<tr>
<td>3 star</td>
<td>came here for the first time last night. food was good. service was a little slow. food was just ok.</td>
</tr>
<tr>
<td>4 star</td>
<td>food was good, service was a little slow, but the food was pretty good. i had the grilled chicken sandwich and it was really good. will definitely be back!</td>
</tr>
<tr>
<td>5 star</td>
<td>food was very good, service was fast and friendly. food was very good as well. will be back!</td>
</tr>
</tbody>
</table>

Table 4.6: Text generated by conditioning on sentiment label.

We also explored using the same framework for unsupervised clustering. We compare with the baselines that extract the feature with existing models and then run Gaussian Mixture Model (GMM) on these features. We find empirically that simply using the features does not perform well since the features are high dimensional. We run a PCA on these features, the dimension of PCA is selected from $[8, 16, 32]$. Since GMM can easily get stuck in poor local optimum, we run each model ten times and report the best result. We find directly optimizing $U(x)$ does
not perform well for unsupervised clustering and we need to initialize the encoder with LSTM language model. The model only works well for Yahoo data set. This is potentially because Figure 4.4b shows that sentiment latent representations does not fall into clusters. γ in Equation 4.5 is a sensitive parameter, we select it from the range between 0.5 and 1.5 with an interval of 0.1. We use the following evaluation protocol [84]: after we finish training, for cluster i, we find out the validation sample x_n from cluster i that has the best $q(y|x)$ and assign the label of x_n to all samples in cluster i. We then compute the test accuracy based on this assignment. The detailed results are in Table 4.5. We can see SCNN-VAE-Unsup + init performs better than other baselines. LSTM+GMM performs very bad probably because the feature dimension is 1024 and is too high for GMM, even though we already used PCA to reduce the dimension.

Conditional text generation With the semi-supervised VAE, we are able to generate text conditional on the label. Due to space limitation, we only show one example of generated reviews conditioning on review rating in Table 4.6. For each group of generated text, we fix z and vary the label y, while picking x via beam search with a beam size of 10.

4.5 Recent development

Following our work, there are many other works that investigated this posterior collapse problem. [57] pointed out the amortized variational inference (AVI) was the potential problem and proposed to use AVI to initialize the variational parameters and run stochastic variational to refine them. With the new approach they were able to train a model without posterior collapse. [24] added a skip connection between the latent variable and the final output to enforce that the latent variables were used. [126] used von Mises-Fisher (vMF) distribution to replace the traditional Gaussian distribution and found better performance. [39] found that the encoder network was not properly trained in variational inference procedure and proposed to update the encoder network multiple times before updating the decoder network.
<table>
<thead>
<tr>
<th>Society</th>
<th>do you think there is a god?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>how many orbitals are there in outer space? how many orbitals are there in the solar system?</td>
</tr>
<tr>
<td>Health</td>
<td>what is the difference between _UNK and _UNK</td>
</tr>
<tr>
<td>Education</td>
<td>what is the difference between a computer and a _UNK?</td>
</tr>
<tr>
<td>Computers</td>
<td>how can i make flash mp3 files? i want to know how to make a flash video so i can upload it to my mp3 player?</td>
</tr>
<tr>
<td>Sports</td>
<td>who is the best soccer player in the world?</td>
</tr>
<tr>
<td>Business</td>
<td>what is the best way to make money online?</td>
</tr>
<tr>
<td>Music</td>
<td>who is the best artist of all time?</td>
</tr>
<tr>
<td>Relationships</td>
<td>how do i know if a guy likes me?</td>
</tr>
<tr>
<td>Politics</td>
<td>what do you think about Iran?</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Society</td>
<td>what is the meaning of life?</td>
</tr>
<tr>
<td>Science</td>
<td>what is the difference between kinetic energy and heat?</td>
</tr>
<tr>
<td>Health</td>
<td>what is the best way to get rid of migraine headaches?</td>
</tr>
<tr>
<td>Education</td>
<td>what is the best way to study for a good future?</td>
</tr>
<tr>
<td>Computers</td>
<td>what is the best way to install windows xp home edition?</td>
</tr>
<tr>
<td>Sports</td>
<td>who do you think will win the super bowl this year?</td>
</tr>
<tr>
<td>Business</td>
<td>i would like to know what is the best way to get a good paying job?</td>
</tr>
<tr>
<td>Entertainment</td>
<td>what do you think is the best movie ever?</td>
</tr>
<tr>
<td>Relationships</td>
<td>what is the best way to get over a broken heart?</td>
</tr>
<tr>
<td>Politics</td>
<td>what do you think about the war in iraq?</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Society</td>
<td>what would you do if you had a million dollars?</td>
</tr>
<tr>
<td>Mathematics</td>
<td>i need help with this math problem!</td>
</tr>
<tr>
<td>Health</td>
<td>what is the best way to lose weight?</td>
</tr>
<tr>
<td>Education</td>
<td>what is the best college in the world?</td>
</tr>
<tr>
<td>Computers</td>
<td>what is the best way to get a new computer?</td>
</tr>
<tr>
<td>Sports</td>
<td>who should i start?</td>
</tr>
<tr>
<td>Business</td>
<td>what is the best way to get a good paying job?</td>
</tr>
<tr>
<td>Entertainment</td>
<td>who do you think is the hottest guy in the world?</td>
</tr>
<tr>
<td>Relationships</td>
<td>what should i do?</td>
</tr>
<tr>
<td>Politics</td>
<td>who do you think will be the next president of the united states?</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Society</td>
<td>do you believe in ghosts?</td>
</tr>
<tr>
<td>Science</td>
<td>why is the sky blue?</td>
</tr>
<tr>
<td>Health</td>
<td>what is the best way to get rid of a cold?</td>
</tr>
<tr>
<td>Reference</td>
<td>what do you do when you are bored?</td>
</tr>
<tr>
<td>Computers</td>
<td>why ca n’t i watch videos on my computer? when i try to watch videos on my computer, i ca n’t get it to work on my computer. can anyone help?</td>
</tr>
<tr>
<td>Sports</td>
<td>what do you think about the _UNK game?</td>
</tr>
<tr>
<td>Business</td>
<td>what is the best way to get a job?</td>
</tr>
<tr>
<td>Entertainment</td>
<td>what is your favorite tv show?</td>
</tr>
<tr>
<td>Relationships</td>
<td>how do you know when a guy likes you?</td>
</tr>
<tr>
<td>Politics</td>
<td>what do you think about this?</td>
</tr>
</tbody>
</table>

Table 4.7: Text generated by conditioning on topic label.
1 star the food is good, but the service is terrible. i have been here three times and each time the service has been horrible. the last time we were there, we had to wait a long time for our food to come out. when we finally got our food, the food was cold and the service was terrible. i will not be back.

2 star this place used to be one of my favorite places to eat in the area.

3 star i've been here a few times, and the food has always been good.

4 star this is one of my favorite places to eat in the phoenix area. the food is good, and the service is friendly.

5 star my husband and i love this place. the food is great, the service is great, and the prices are reasonable.

1 star this is the worst hotel i have ever been to. the room was dirty, the bathroom was dirty, and the room was filthy.

2 star my husband and i decided to try this place because we had heard good things about it so we decided to give it a try. the service was good, but the food was mediocre at best.

3 star we came here on a saturday night with a group of friends. we were seated right away and the service was great. the food was good, but not great. the service was good and the atmosphere was nice.

4 star my husband and i came here for brunch on a saturday night. the place was packed so we were able to sit outside on the patio. we had a great view of the bellagio fountains and had a great view of the bellagio fountains. we sat at the bar and had a great view of the bellagio fountains.

5 star my husband and i came here for the first time last night and had a great time! the food was amazing, the service was great, and the atmosphere was perfect. we will be back!

1 star this is the worst place i have ever been to. i will never go back.

2 star i was very disappointed with the quality of the food and the service. i will not be returning.

3 star this was my first time at this location and i have to say it was a good experience.

4 star this is a great place to grab a bite to eat with friends or family.

5 star i am so happy to have found a great place to get my nails done.

1 star my wife and i have been going to this restaurant for years. the last few times i have been, the service has been terrible. the last time we were there, we had to wait a long time for our food to arrive. the food is good, but not worth the wait.

2 star the food is good, but the service leaves something to be desired.

3 star i have been here a few times. the food is consistently good, and the service is good.

4 star my wife and i have been here a few times. the food is consistently good, and the service is friendly.

5 star my husband and i have been coming here for years. the food is consistently good and the service is always great.

Table 4.8: Text generated by conditioning on sentiment label.
Chapter 5

Language Model Discriminators for GANs

5.1 Overview

In the previous chapter, we designed specific decoders for VAEs for text modeling according to the characteristics of language data to avoid the posterior collapse problem. In this chapter, we are going to investigate another type of generative model—Generative Adversarial Networks [33]—for text modeling and apply it on the task of unsupervised text style transfer. We first point out the problems of directly applying the binary classifiers as discriminators on text and then propose our solution of making the discriminator more structured. Before introducing the model in detail, we first review some background of unsupervised text style transfer task.

Unsupervised text style transfer requires learning disentangled representations of attributes (e.g., negative/positive sentiment, plaintext/ciphertext orthography) and underlying content. This is challenging because the two interact in subtle ways in natural language and it can even be hard to disentangle them with parallel data. The recent development of deep generative models like variational auto-encoders (VAEs) [59] and generative adversarial networks (GANs) [33] have made learning disentangled representations from non-parallel data possible. However, despite their rapid progress in computer vision—for example, generating photo-realistic images [97], learning interpretable representations [16], and translating images [143]—their progress on text has been more limited. For VAEs, the problem of training collapse can severely limit effectiveness [11, 133], and when applying adversarial training to natural language, the non-differentiability of discrete word tokens makes generator optimization difficult. Hence, most attempts use RE-INFORCE [111] to finetune trained models [74, 136] or uses professor forcing [68] to match hidden states of decoders.

Previous work on unsupervised text style transfer [44, 104] adopts an encoder-decoder architecture with style discriminators to learn disentangled representations. The encoder takes a sentence as an input and outputs a style-independent content representation. The style-dependent decoder takes the content representation and a style representation and generates the transferred sentence. [44] use a style classifier to directly enforce the desired style in the generated text. [104] leverage an adversarial training scheme where a binary CNN-based discriminator is used to evaluate whether a transferred sentence is real or fake, ensuring that transferred sentences match real sentences in terms of target style. However, in practice, the error signal from a bi-
nary classifier is sometimes insufficient to train the generator to produce fluent language, and optimization can be unstable as a result of the adversarial training step.

We propose to use an implicitly trained language model as a new type of discriminator, replacing the more conventional binary classifier. The language model calculates a sentence’s likelihood, which decomposes into a product of token-level conditional probabilities. In our approach, rather than training a binary classifier to distinguish real and fake sentences, we train the language model to assign a high probability to real sentences and train the generator to produce sentences with high probability under the language model. Because the language model scores sentences directly using a product of locally normalized probabilities, it may offer more stable and more useful training signal to the generator. Further, by using a continuous approximation of discrete sampling under the generator, our model can be trained using back-propagation in an end-to-end fashion.

We find empirically that when using the language model as a structured discriminator, it is possible to eliminate adversarial training steps that use negative samples—a critical part of traditional adversarial training. Language models are implicitly trained to assign a low probability to negative samples because of its normalization constant. By eliminating the adversarial training step, we found the training becomes more stable in practice.

To demonstrate the effectiveness of our new approach, we conduct experiments on three tasks: word substitution decipherment, sentiment modification, and related language translation. We show that our approach, which uses only a language model as the discriminator, outperforms a broad set of state-of-the-art approaches on the three tasks.

5.2 Related Work

Non-parallel transfer in natural language: [32, 44, 95, 104] are most relevant to our work. [44] aim to generate sentences with controllable attributes by learning disentangled representations. [104] introduce adversarial training to unsupervised text style transfer. They apply discriminators both on the encoder representation and on the hidden states of the decoders to ensure that they have the same distribution. These are the two models that we mainly compare with. [95] use the back-translation technique in their model, which is complementary to our method and can be integrated into our model to further improve performance. [32] use GAN-based approach to decipher shift ciphers. [6, 69] propose unsupervised machine translation and use adversarial training to match the encoder representation of the sentences from different languages. They also use back-translation to refine their model in an iterative way.

GANs: GANs have been widely explored recently, especially in computer vision [16, 22, 49, 97, 102, 111, 143]. The progress of GANs on text is relatively limited due to the non-differentiable discrete tokens. Lots of papers [13, 74, 129, 136] use REINFORCE [111] to fine-tune a trained model to improve the quality of samples. There is also prior work that attempts to introduce more structured discriminators, for instance, the energy-based GAN (EBGAN) [140] and RankGAN [76]. Our language model can be seen as a special energy function, but it is more complicated than the auto-encoder used in [140] since it has a recurrent structure. [46] also proposes to use structured discriminators in generative models and establishes its the connection with posterior regularization.
Computer vision style transfer: Our work is also related to unsupervised style transfer in computer vision [31, 48]. [31] directly uses the covariance matrix of the CNN features and tries to align the covariance matrix to transfer the style. [48] proposes adaptive instance normalization for an arbitrary style of images. [143] uses a cycle-consistency loss to ensure the content of the images is preserved and can be translated back to original images.

Language model for reranking: Previously, language models are used to incorporate the knowledge of monolingual data mainly by reranking the sentences generated from a base model such as [12, 37, 38]. [15, 80] use a language model as training supervision for unsupervised OCR. Our model is more advanced in using language models as discriminators in distilling the knowledge of monolingual data to a base model in an end-to-end way.

5.3 Unsupervised Text Style Transfer

We start by reviewing the current approaches for unsupervised text style transfer [44, 104], and then go on to describe our approach in Section 5.4. Assume we have two text datasets \(X = \{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\}\) and \(Y = \{y^{(1)}, y^{(2)}, \ldots, y^{(n)}\}\) with two different styles \(v_x\) and \(v_y\), respectively. For example, \(v_x\) can be the positive sentiment style and \(v_y\) can be the negative sentiment style. The datasets are non-parallel such that the data does not contain pairs of \((x^{(i)}, y^{(j)})\) that describe the same content. The goal of style transfer is to transfer data \(x\) with style \(v_x\) to style \(v_y\) and vice versa, i.e., to estimate the conditional distribution \(p(y|x)\) and \(p(x|y)\). Since text data is discrete, it is hard to learn the transfer function directly via back-propagation as in computer vision [143]. Instead, we assume the data is generated conditioned on two disentangled parts, the style \(v\) and the content \(z\) \cite{44}.

Consider the following generative process for each style: 1) the style representation \(v\) is sampled from a prior \(p(v)\); 2) the content vector \(z\) is sampled from \(p(z)\); 3) the sentence \(x\) is generated from the conditional distribution \(p(x|z, v)\). This model suggests the following parametric form for style transfer where \(q\) represents a posterior:

\[
p(y|x) = \int_{z_x} p(y|z_x, v_y)q(z_x|x, v_x)d z_x.
\]

The above equation suggests the use of an encoder-decoder framework for style transfer problems. We can first encode the sentence \(x\) to get its content vector \(z_x\), then we switch the style label from \(v_x\) to \(v_y\). Combining the content vector \(z_x\) and the style label \(v_y\), we can generate a new sentence \(\tilde{x}\) (the transferred sentences are denoted as \(\tilde{x}\) and \(\tilde{y}\)).

One unsupervised approach is to use the auto-encoder model. We first use an encoder model \(E\) to encode \(x\) and \(y\) to get the content vectors \(z_x = E(x, v_x)\) and \(z_y = E(y, v_y)\). Then we use a decoder \(G\) to generate sentences conditioned on \(z\) and \(v\). The \(E\) and \(G\) together form an auto-encoder and the reconstruction loss is:

\[
L_{rec}(\theta_E, \theta_G) = \mathbb{E}_{x \sim X}[- \log p_G(x|z_x, v_x)] + \mathbb{E}_{y \sim Y}[- \log p_G(y|z_y, v_y)],
\]

where \(v_x\) and \(v_y\) can be two learnable vectors to represent the label embedding. In order to make sure that the \(z_x\) and \(z_y\) capture the content and we can deliver accurate transfer between the

1 We drop the subscript in notations wherever the meaning is clear.
style by switching the labels, we need to guarantee that \(z_x \) and \(z_y \) follow the same distribution. We can assume \(p(z) \) follows a prior distribution and add a KL-divergence regularization on \(z_x, z_y \). The model then becomes a VAE. However, previous works \cite{11,133} found that there is a training collapse problem with the VAE for text modeling and the posterior distribution of \(z \) fails to capture the content of a sentence.

To better capture the desired styles in the generated sentences, \cite{44} additionally impose a style classifier on the generated samples, and the decoder \(G \) is trained to generate sentences that maximize the accuracy of the style classifier. Such additional supervision with a discriminative model is also adopted in \cite{104}, though in that work a binary real/fake classifier is instead used within a conventional adversarial scheme.

Adversarial Training \cite{104} use adversarial training to align the \(z \) distributions. Not only do we want to align the distribution of \(z_x \) and \(z_y \), but also we hope that the transferred sentence \(\tilde{x} \) from \(x \) to resemble \(y \) and vice versa. Several adversarial discriminators are introduced to align these distributions. Each of the discriminators is a binary classifier distinguishing between real and fake. Specifically, the discriminator \(D_x \) aims to distinguish between \(z_x \) and \(z_y \):

\[
L^{z \text{adv}}_x(\theta_E, \theta_{D_x}) = \mathbb{E}_{x \sim X}[-\log D_x(z_x)] + \mathbb{E}_{y \sim Y}[-\log(1 - D_x(z_y))].
\]

Similarly, \(D_x \) distinguish between \(x \) and \(\tilde{y} \), yielding an objective \(L^{x \text{adv}}_x \) as above; and \(D_y \) distinguish between \(y \) and \(\tilde{x} \), yielding \(L^{y \text{adv}}_y \). Since the samples of \(\tilde{x} \) and \(\tilde{y} \) are discrete and it is hard to train the generator in an end-to-end way, professor forcing \cite{68} is used to match the distributions of the hidden states of decoders. The overall training objective is a min-max game played among the encoder \(E \)/decoder \(G \) and the discriminators \(D_z, D_x, D_y \) \cite{33}:

\[
\min_{E,G} \max_{D_z, D_x, D_y} L_{\text{rec}} - \lambda (L^{z \text{adv}}_x + L^{x \text{adv}}_x + L^{y \text{adv}}_y)
\]

The model is trained in an alternating manner. In the first step, the loss of the discriminators are minimize to distinguish between the \(z_x, x, y \) and \(z_y, \tilde{x}, \tilde{y} \), respectively; and in the second step the encoder and decoder are trained to minimize the reconstruction loss while maximizing loss of the discriminators.

5.4 Language Models as Discriminators

In most past work, a classifier is used as the discriminator to distinguish whether a sentence is real or fake. We propose instead to use locally-normalized language models as discriminators. We argue that using an explicit language model with token-level locally normalized probabilities offers a more direct training signal to the generator. If a transferred sentence does not match the target style, it will have high perplexity when evaluated by a language model that was trained on target domain data. Not only does it provide an overall evaluation score for the whole sentence, but a language model can also assign a probability to each token, thus providing more information on which word is to blame if the overall perplexity is very high.

The overall model architecture is shown in Figure \ref{fig:architecture}. Suppose \(\tilde{x} \) is the output sentence from applying style transfer to input sentence \(x \), i.e., \(\tilde{x} \) is sampled from \(p_G(\tilde{x} | z_x, v_y) \) (and similary for
Figure 5.1: The overall model architecture consists of two parts: reconstruction and transfer. For transfer, we switch the style label and sample an output sentence from the generator that is evaluated by a language model.

\(\tilde{y} \) and \(y \). Let \(p_{\text{LM}}(x) \) be the probability of a sentence \(x \) evaluate against a language model, then the discriminator loss becomes:

\[
\begin{align*}
\mathcal{L}_{x_{\text{LM}}}^{x} & = \mathbb{E}_{x \sim X}[-\log p_{\text{LM}}(x)] + \gamma \mathbb{E}_{\tilde{y} \sim Y, \tilde{y} \sim p_{G}(\tilde{y} | z_{y}, v_{x})}[\log p_{\text{LM}}(\tilde{y})], \\
\mathcal{L}_{y_{\text{LM}}}^{y} & = \mathbb{E}_{y \sim Y}[-\log p_{\text{LM}}(y)] + \gamma \mathbb{E}_{\tilde{x} \sim X, \tilde{x} \sim p_{G}(\tilde{x} | z_{x}, v_{y})}[\log p_{\text{LM}}(\tilde{x})].
\end{align*}
\]

(5.1) (5.2)

Our overall objective becomes:

\[
\min_{E,G} \max_{L_{x_{\text{LM}}}, L_{y_{\text{LM}}}} \mathcal{L}_{\text{rec}} - \lambda (\mathcal{L}_{x_{\text{LM}}}^{x} + \mathcal{L}_{y_{\text{LM}}}^{y})
\]

(5.3)

Negative samples: Note that Equation [5.1] and [5.2] differs from traditional ways of training language models in that we have a term including the negative samples. We train the LM in an adversarial way by minimizing the loss of LM of real sentences and maximizing the loss of transferred sentences. However, since the LM is a structured discriminator, we would hope that a language model trained on the real sentences will automatically assign high perplexity to sentences not in the target domain, hence negative samples from the generator may not be necessary. To investigate the necessity of negative samples, we add a weight \(\gamma \) to the loss of negative samples. The weight \(\gamma \) adjusts the negative sample loss in training the language models. If \(\gamma = 0 \), we simply train the language model on real sentences and fix its parameters, avoiding potentially unstable adversarial training steps. We investigate the necessity of using negative samples in the experiment section.

Training consists of two steps alternatively. In the first step, we train the language models according to Equation [5.1] and [5.2]. In the second step, we minimize the reconstruction loss as well as the perplexity of generated samples evaluated by the language model. Since \(\tilde{x} \) is discrete, one can use the REINFORCE [111] algorithm to train the generator:

\[
\nabla_{\theta_{G}} \mathcal{L}_{y_{\text{LM}}}^{y} = \mathbb{E}_{x \sim X, \tilde{x} \sim p_{G}(\tilde{x} | z_{x}, v_{y})}[\log p_{\text{LM}}(\tilde{x})] \nabla_{\theta_{G}} \log p_{G}(\tilde{x} | z_{x}, v_{y})
\]

(5.4)

However, using a single sample to approximate the expected gradient leads to high variance in gradient estimates and thus unstable learning.
Figure 5.2: Continuous approximation of language model loss. The input is a sequence of probability distributions \(\{ \hat{\tilde{p}}^x_t \}_{t=1}^T \) sampled from the generator. At each timestep, we compute a weighted embedding as input to the language model and get the sequence of output distributions from the LM as \(\{ \hat{p}^y_t \}_{t=1}^T \). The loss is the sum of cross entropies between each pair of \(\hat{\tilde{p}}^x_t \) and \(\hat{p}^y_t \).

Continuous approximation: Instead, we propose to use a continuous approximation to the sampling process in training the generator, as demonstrated in Figure 5.2. Instead of feeding a single sampled word as input to the next timestep of the generator, we use a Gumbel-softmax distribution as a continuous approximation to sample instead. Let \(u \) be a categorical distribution with probabilities \(\pi_1, \pi_2, \ldots, \pi_c \). Samples from \(u \) can be approximated using:

\[
p_i = \frac{\exp((\log \pi_i) + g_i)/\tau}{\sum_{j=1}^c \exp((\log \pi_j + g_j)/\tau)},
\]

where the \(g_i \)'s are independent samples from Gumbel(0, 1).

Let the tokens of the transferred sentence be \(\tilde{x} = \{ \tilde{x}_t \}_{t=1}^T \). Suppose the output of the logit at timestep \(t \) is \(v^x_t \), then \(\hat{\tilde{p}}^x_t = \text{Gumbel-softmax}(v^x_t, \tau) \), where \(\tau \) is the temperature. When \(\tau \to 0 \), \(\hat{\tilde{p}}^x_t \) becomes the one hot representation of token \(\tilde{x}_t \). Using the continuous approximation, then the output of the decoder becomes a sequence of probability vectors \(\tilde{p}^x = \{ \hat{\tilde{p}}^x_t \}_{t=1}^T \).

With the continuous approximation of \(\tilde{x} \), we can calculate the loss evaluated using a language model easily, as shown in Figure 5.2. For every step, we feed \(\hat{\tilde{p}}^x_t \) to the language model of \(y \) (denoted as \(\text{LM}_y \)) using the weighted average of the embedding \(W_e \hat{\tilde{p}}^x_t \), then we get the output from the \(\text{LM}_y \) which is a probability distribution over the vocabulary of the next word \(\hat{p}^y_{t+1} \). The loss of the current step is the cross entropy loss between \(\hat{\tilde{p}}^x_{t+1} \) and \(\hat{p}^y_{t+1} \):

\[
\log \hat{p}^y_{t+1}.
\]

Note that when the decoder output distribution \(\hat{\tilde{p}}^x_{t+1} \) aligns with the language model output distribution \(\hat{p}^y_{t+1} \), the above loss achieves minimum. By summing the loss over all steps and taking the gradient, we can use standard back-propagation to train the generator:

\[
\nabla_{\theta_G} \mathcal{L}^y_{\text{LM}} \approx \mathbb{E}_{x \sim X, \tilde{x} \sim p_G(z \mid x, v_y)} [\nabla_{\theta_G} \sum_{t=1}^T (\hat{\tilde{p}}^x_t)^T \log \hat{p}^y_{t+1}].
\] (5.5)
The above Equation is a continuous approximation of Equation \[5.4\] with Gumbel softmax distribution. In experiments, we use a single sample of \(\tilde{p}^x\) to approximate the expectation.

Note that the use of the language model discriminator is a somewhat different in each of the two types of training update steps because of the continuous approximation. We use discrete samples from the generators as negative samples in training the language model discriminator step, while we use a continuous approximation in updating the generator step according to Equation \[5.5\].

Overcoming mode collapse: It is known that in adversarial training, the generator can suffer from mode collapse \([5, 45]\) where the samples from the generator only cover part of the data distribution. In preliminary experimentation, we found that the language model prefers short sentences. To overcome this length bias, we use two tricks in our experiments: 1) we normalize the loss of Equation \[5.5\] by length and 2) we fix the length of \(\tilde{x}\) to be the same of \(x\). We find these two tricks stabilize the training and avoid generating collapsed overly short outputs.

5.5 Experiments

In order to verify the effectiveness of our model, we experiment on three tasks: word substitution decipherment, sentiment modification, and related language translation. We mainly compare with the most comparable approach of \([104]\) that uses CNN classifiers as discriminators.\(^2\) Note that \([104]\) use three discriminators to align both \(z\) and decoder hidden states, while our model only uses a single language model as a discriminator directly on the output sentences \(\tilde{x}, \tilde{y}\). Moreover, we also compare with a broader set of related work \([28, 44, 75]\) for the tasks when appropriate. Our proposed model provides substantiate improvements in most of the cases. We implement our model with the Texar \([47]\) toolbox based on Tensorflow \([1]\).

Model Configurations: Similar model configuration to that of \([104]\) is used for a fair comparison. We use one-layer GRU \([19]\) as the encoder and decoder (generator). We set the word embedding size to be 100 and GRU hidden size to be 700. \(v\) is a vector of size 200. For the language model, we use the same architecture as the decoder. The parameters of the language model are not shared with parameters of other parts and are trained from scratch. We use a batch size of 128, which contains 64 samples from \(X\) and \(Y\) respectively. We use Adam \([58]\) optimization algorithm to train both the language model and the auto-encoder and the learning rate is set to be the same. Hyper-parameters are selected based on the validation set. We use grid search to pick the best parameters. The learning rate is selected from \([1e-3, 5e-4, 2e-4, 1e-4]\) and \(\lambda\), the weight of language model loss, is selected from \([1.0, 0.5, 0.1]\). Models are trained for a total of 20 epochs. We use an annealing strategy to set the temperature of \(\tau\) of the Gumbel-softmax approximation. The initial value of \(\tau\) is set to 1.0 and it decays by half every epoch until reaching the minimum value of 0.001.

Training Algorithms:

\(^2\)We use the code from https://github.com/shentianxiao/language-style-transfer
Algorithm 1 Unsupervised text style transfer.

Input: Data set of two different styles X, Y.
Parameters: weight λ and γ, temperature τ.
Initialized model parameters θ_E, θ_G, θ_{LM_x}, θ_{LM_y}.

repeat

Update θ_{LM_x} and θ_{LM_y} by minimizing $L^x_{LM}(\theta_{LM_x})$ and $L^y_{LM}(\theta_{LM_y})$ respectively.
Update θ_E, θ_G by minimizing: $L_{rec} - \lambda(L^x_{LM} + L^y_{LM})$ using Equation 5.5

until convergence

Output: A text style transfer model with parameters θ_E, θ_G.

<table>
<thead>
<tr>
<th>Model</th>
<th>20%</th>
<th>40%</th>
<th>60%</th>
<th>80%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy</td>
<td>64.3</td>
<td>39.1</td>
<td>14.4</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>[104]*</td>
<td>86.6</td>
<td>77.1</td>
<td>70.1</td>
<td>61.2</td>
<td>50.8</td>
</tr>
</tbody>
</table>

Our results:

<table>
<thead>
<tr>
<th></th>
<th>20%</th>
<th>40%</th>
<th>60%</th>
<th>80%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM</td>
<td>89.0</td>
<td>80.0</td>
<td>74.1</td>
<td>62.9</td>
<td>49.3</td>
</tr>
<tr>
<td>LM + adv</td>
<td>89.1</td>
<td>79.6</td>
<td>71.8</td>
<td>63.8</td>
<td>44.2</td>
</tr>
</tbody>
</table>

Table 5.1: Decipherment results measured in BLEU. Copy is directly measuring y against x. LM + adv denotes we use negative samples to train the language model. *We run the code open-sourced by the authors to get the results.

5.5.1 Word substitution decipherment

As the first task, we consider the word substitution decipherment task previously explored in the NLP literature [25]. We can control the amount of change to the original sentences in word substitution decipherment so as to systematically investigate how well the language model performs in a task that requires various amount of changes. In word substitution cipher, every token in the vocabulary is mapped to a cipher token and the tokens in sentences are replaced with cipher tokens according to the cipher dictionary. The task of decipherment is to recover the original text without any knowledge of the dictionary.

Data: Following [104], we sample 200K sentences from the Yelp review dataset as plain text X and sample other 200K sentences and apply word substitution cipher on these sentences to get Y. We use another 100K parallel sentences as the development and test set respectively. Sentences of length more than 15 are filtered out. We keep all words that appear more than 5 times in the training set and get a vocabulary size of about 10k. All words appearing less than 5 times are replaced with a `unk` token. We random sample words from the vocabulary and replace them with cipher tokens. The amount of ciphered words ranges from 20% to 100%. As we have ground truth plain text, we can directly measure the BLEU score to evaluate the model.

Results: The results are shown in Table 5.1. We first investigate the effect of using negative samples in training the language model, as denotes by LM + adv in Table 5.1. We can see that using adversarial training sometimes improves the results. However, we found empirically that

\(^3\)BLEU score is measured with multi-bleu.perl.
Table 5.2: Results for sentiment modification. \(X = \text{negative}, Y = \text{positive} \). PPL\(_X\) denotes the perplexity of sentences transferred from positive sentences evaluated by a language model trained with negative sentences and vice versa.

using negative samples makes the training very unstable and the model diverges easily. This is the main reason why we did not get consistently better results by incorporating adversarial training.

Comparing with [104], we can see that the language model without adversarial training is already very effective and performs much better when the amount of change is less than 100%. This is intuitive because when the change is less than 100%, a language model can use context information to predict and correct enciphered tokens. It’s surprising that even with 100% token change, our model is only 1.5 BLEU score worse than [104], when all tokens are replaced and no context information can be used by the language model. We guess our model can gradually decipher tokens from the beginning of a sentence and then use them as a bootstrap to decipher the whole sentence. We can also combine language models with the CNNs as discriminators. For example, for the 100% case, we get BLEU score of 52.1 when combing them. Given unstableness of adversarial training and effectiveness of language models, we set \(\gamma = 0 \) in Equation 5.1 and 5.2 in the rest of the experiments.

5.5.2 Sentiment Manipulation

We have demonstrated that the language model can successfully crack word substitution cipher. However, the change of substitution cipher is limited to a one-to-one mapping. As the second task, we would like to investigate whether a language model can distinguish sentences with positive and negative sentiments, thus help to transfer the sentiments of sentences while preserving the content. We compare to the model of [44] as an additional baseline, which uses a pre-trained classifier as guidance.

Data: We use the same data set as in [104]. The data set contains 250K negative sentences (denoted as \(X \)) and 380K positive sentences (denoted as \(Y \)), of which 70% are used for training, 10% are used for development and the remaining 20% are used as test set. The pre-processing steps are the same as the previous experiment. We also use similar experiment configurations.

Evaluation: Evaluating the quality of transferred sentences is a challenging problem as there are no ground truth sentences. We follow previous papers in using model-based evaluation. We measure whether transferred sentences have the correct sentiment according to a pre-trained sentiment classifier. We follow both [44] and [104] in using a CNN-based classifier. However, simply evaluating the sentiment of sentences is not enough since the model can output collapsed
output such as a single word “good” for all negative transfer and “bad” for all positive transfer. We not only would like transferred sentences to preserve the content of original sentences, but also to be smooth in terms of language quality. For these two aspects, we propose to measure the BLEU score of transferred sentences against original sentences and measure the perplexity of transferred sentences to evaluate the fluency. A good model should perform well on all three metrics.

Results: We report the results in Table 5.2. As a baseline, the original corpus has perplexity of 35.8 and 38.8 for the negative and positive sentences respectively. Comparing LM with [104], we can see that LM outperforms it in all three aspects: getting higher accuracy, preserving the content better while being more fluent. This demonstrates the effectiveness of using LM as the discriminator. [44] has the highest accuracy and BLEU score among the three models while the perplexity is very high. It is not surprising that the classifier will only modify the features of the sentences that are related to the sentiment and there is no mechanism to ensure that the modified sentence being fluent. Hence the corresponding perplexity is very high. We can manifest the best of both models by combing the loss of LM and the classifier in [44]: a classifier is good at modifying the sentiment and an LM can smooth the modification to get a fluent sentence. We find improvement of accuracy and perplexity as denoted by LM + classifier compared to classifier only [44].

Comparing with other models: Recently there are other models that are proposed specifically targeting the sentiment modification task such as [75]. Their method is feature based and consists of the following steps: (Delete) first, they use the statistics of word frequency to delete the attribute words such as “good, bad” from original sentences, (Retrieve) then they retrieve the most similar sentences from the other corpus based on nearest neighbor search, (Generate) the attribute words from retrieved sentences are combined with the content words of original sentences to generate transferred sentences. The authors provide 500 human annotated sentences as the ground truth of transferred sentences so we measure the BLEU score against those sentences. The results are shown in Table 5.3. We can see our model has similar accuracy compared with DeleteAndRetrieve, but has much better BLEU scores and slightly better perplexity.

We list some examples of transferred sentences in Table 5.5 in the appendix. We can see that [104] does not keep the content of the original sentences well and changes the meaning of the original sentences. [44] changes the sentiment but uses improper words, e.g. “maintenance is equally hilarious”. Our LM can change the change the sentiment of sentences. But sometimes there is an over-smoothing problem, changing the less frequent words to more frequent words, e.g. changing “my goodness it was so gross” to “my food it was so good.”. In general LM + classifier has the best results, it changes the sentiment, while keeps the content and the sentences are fluent.

5.5.3 Related language translation

In the final experiment, we consider a more challenging task: unsupervised related language translation [94]. Related language translation is easier than normal pair language translation since there is a close relationship between the two languages. Note here we don’t compare with other sophisticated unsupervised neural machine translation systems such as [6, 69], whose models are much more complicated and use other techniques such as back-translation, but simply
<table>
<thead>
<tr>
<th>Model</th>
<th>ACCU</th>
<th>BLEU</th>
<th>PPL_X</th>
<th>PPL_Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>[104]</td>
<td>76.2</td>
<td>6.8</td>
<td>49.4</td>
<td>45.6</td>
</tr>
<tr>
<td>[28]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>StyleEmbedding</td>
<td>9.2</td>
<td>16.65</td>
<td>97.51</td>
<td>142.6</td>
</tr>
<tr>
<td>MultiDecoder</td>
<td>50.9</td>
<td>11.24</td>
<td>111.1</td>
<td>119.1</td>
</tr>
<tr>
<td>[75]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Delete</td>
<td>87.2</td>
<td>11.5</td>
<td>75.2</td>
<td>68.7</td>
</tr>
<tr>
<td>Template</td>
<td>86.7</td>
<td>18.0</td>
<td>192.5</td>
<td>148.4</td>
</tr>
<tr>
<td>Retrieval</td>
<td>95.1</td>
<td>1.3</td>
<td>31.5</td>
<td>37.0</td>
</tr>
<tr>
<td>DeleteAndRetrieval</td>
<td>90.9</td>
<td>12.6</td>
<td>104.6</td>
<td>43.8</td>
</tr>
<tr>
<td>Our results:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM</td>
<td>85.4</td>
<td>13.4</td>
<td>32.8</td>
<td>40.5</td>
</tr>
<tr>
<td>LM + Classifier</td>
<td>90.0</td>
<td>22.3</td>
<td>48.4</td>
<td>61.6</td>
</tr>
</tbody>
</table>

Table 5.3: Results for sentiment modification based on the 500 human annotated sentences as ground truth from [75].

compare the different type of discriminators in the context of a simple model.

Data: We choose Bosnian (bs) vs Serbian (sr) and simplified Chinese (zh-CN) vs traditional Chinese (zh-TW) pair as our experiment languages. Due to the lack of parallel data for these data, we build the data ourselves. For bs and sr pair, we use the monolingual data from Leipzig Corpora Collections. We use the news data and sample about 200k sentences of length less than 20 for each language, of which 80% are used for training, 10% are used for validation and remaining 10% are used for test. For validation and test, we obtain the parallel corpus by using the Google Translation API. The vocabulary size is 25k for the sr vs bs language pair. For zh-CN and zh-TW pair, we use the monolingual data from the Chinese Gigaword corpus. We use the news headlines as our training data. 300k sentences are sampled for each language. The data is partitioned and parallel data is obtained in a similar way to that of sr vs bs pair. We directly use a character-based model and the total vocabulary size is about 5k. For evaluation, we directly measure the BLEU score using the references for both language pairs.

Note that the relationship between zh-CN and zh-TW is simple and mostly like a decipherment problem in which some simplified Chinese characters have the corresponding traditional character mapping. The relation between bs vs sr is more complicated.

Results: The results are shown in Table. 5.4. For sr–bos and bos–sr, since the vocabulary of two languages does not overlap at all, it is a very challenging task. We report the BLEU1 metric since the BLEU4 is close to 0. We can see that our language model discriminator still outperforms [104] slightly. The case for zh–tw and tw–zh is much easier. Simple copying already has a reasonable score of 32.3. Using our model, we can improve it to 81.6 for cn–tw and 85.5 for tw–cn, outperforming [104] by a large margin.

4 http://wortschatz.uni-leipzig.de/en
<table>
<thead>
<tr>
<th>Model</th>
<th>sr–bs</th>
<th>bs–sr</th>
<th>cn–tw</th>
<th>tw–cn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy</td>
<td>0</td>
<td>0</td>
<td>32.3</td>
<td>32.3</td>
</tr>
<tr>
<td></td>
<td>29.1</td>
<td>30.3</td>
<td>60.1</td>
<td>60.7</td>
</tr>
<tr>
<td>Our results:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM</td>
<td>31.0</td>
<td>31.7</td>
<td>81.6</td>
<td>85.5</td>
</tr>
</tbody>
</table>

Table 5.4: Related language translation results measured in BLEU. The results for sr vs bs in measured in BLEU1 while cn vs tw is measure in BLEU.
<table>
<thead>
<tr>
<th>Model</th>
<th>Negative to Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>it was super dry and had a weird taste to the entire slice.</td>
</tr>
<tr>
<td></td>
<td>it was super friendly and had a nice touch to the same.</td>
</tr>
<tr>
<td></td>
<td>it was super well-made and had a weird taste to the entire slice.</td>
</tr>
<tr>
<td>LM</td>
<td>it was very good, had a good taste to the food service.</td>
</tr>
<tr>
<td>LM + classifier</td>
<td>it was super fresh and had a delicious taste to the entire slice.</td>
</tr>
<tr>
<td>Original</td>
<td>my goodness it was so gross.</td>
</tr>
<tr>
<td></td>
<td>my server it was so.</td>
</tr>
<tr>
<td></td>
<td>my goodness it was so refreshing.</td>
</tr>
<tr>
<td>LM</td>
<td>my food it was so good.</td>
</tr>
<tr>
<td>LM + classifier</td>
<td>my goodness it was so great.</td>
</tr>
<tr>
<td>Original</td>
<td>maintenance is equally incompetent.</td>
</tr>
<tr>
<td></td>
<td>everything is terrific professional.</td>
</tr>
<tr>
<td></td>
<td>maintenance is equally hilarious.</td>
</tr>
<tr>
<td>LM</td>
<td>maintenance is very great.</td>
</tr>
<tr>
<td>LM + classifier</td>
<td>maintenance is equally great.</td>
</tr>
<tr>
<td>Original</td>
<td>if i could give them a zero star review i would!</td>
</tr>
<tr>
<td></td>
<td>if i will give them a breakfast star here ever!</td>
</tr>
<tr>
<td></td>
<td>if i lite give them a sweetheart star review i would!</td>
</tr>
<tr>
<td>LM</td>
<td>if i could give them a num star place i would.</td>
</tr>
<tr>
<td>LM + classifier</td>
<td>if i can give them a great star review i would!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>Positive to Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>did n’t know this type cuisine could be this great!</td>
</tr>
<tr>
<td></td>
<td>did n’t know this old food you make this same horrible!</td>
</tr>
<tr>
<td></td>
<td>did n’t know this type cuisine could be this great!</td>
</tr>
<tr>
<td>LM</td>
<td>did n’t know this type, could be this bad.</td>
</tr>
<tr>
<td>LM + classifier</td>
<td>did n’t know this type cuisine could be this horrible.</td>
</tr>
<tr>
<td>Original</td>
<td>besides that, the wine selection they have is pretty awesome as well.</td>
</tr>
<tr>
<td></td>
<td>after that, the quality prices that does n’t pretty much well as.</td>
</tr>
<tr>
<td></td>
<td>besides that, the wine selection they have is pretty borderline as atrocious.</td>
</tr>
<tr>
<td>LM</td>
<td>besides that, the food selection they have is pretty awful as well.</td>
</tr>
<tr>
<td>LM + classifier</td>
<td>besides that, the wine selection they have is pretty horrible as well.</td>
</tr>
<tr>
<td>Original</td>
<td>uncle george is very friendly to each guest.</td>
</tr>
<tr>
<td></td>
<td>if there is very rude to our cab.</td>
</tr>
<tr>
<td></td>
<td>uncle george is very lackluster to each guest.</td>
</tr>
<tr>
<td>LM</td>
<td>uncle george is very rude to each guest.</td>
</tr>
<tr>
<td>LM + classifier</td>
<td>uncle george is very rude to each guest.</td>
</tr>
<tr>
<td>Original</td>
<td>the food is fresh and the environment is good.</td>
</tr>
<tr>
<td></td>
<td>the food is bland and the food is the nightmare.</td>
</tr>
<tr>
<td></td>
<td>the food is atrocious and the environment is atrocious.</td>
</tr>
<tr>
<td>LM</td>
<td>the food is bad, the food is bad.</td>
</tr>
<tr>
<td>LM + classifier</td>
<td>the food is bland and the environment is bad.</td>
</tr>
</tbody>
</table>

Table 5.5: Sentiment transfer examples.
Chapter 6

Conclusions and future work

This thesis has investigated several models designed with new structural priors to address both supervised and unsupervised tasks. For supervised tasks, we demonstrated a model with iterative attention mechanism can effectively answer natural questions according to content of reference images. The attention maps learned in the model are not only interpretable, but also reflect the prior structures we injected into the model. We also introduced a new model to classify the documents that surpasses previous state-of-the-art. The new model has two main structural priors, the documents have a hierarchical structure and different words and sentences are differently informative. We showed the new structured model not only significantly improves accuracy, but also extracts the informative words and sentences out of documents.

For unsupervised learning, we designed specific modules for VAEs and GANs to deal with discrete and sequential inputs. We investigated the posterior collapse problems of VAEs for text modeling. By using a more structured decoder to control the contextual capacity, we are able to overcome the posterior collapse problem and make the model generate text according to desired attributes. The structured decoder can also be used in the semi-supervised learning setting and help supervised learning with large scale unsupervised data. Additionally, we introduced a structured discriminator—language model—for GAN-based unsupervised text style transfer. We find empirically a structured discriminator provides richer supervision signal to guide the generator in producing fluent and rich sentences.

There are several directions to explore in the future to further improve upon the work in this thesis. First of all, as we showed in Chapter 2 using more layers of attention (greater than two) was not helpful to improve the results. We can try to add residual connection [40] between the attention layers so that we can try deeper attention models. Other techniques such as layer normalization [7] can also be added to the current model. Combing our model with the recent self-attention mechanism [119] is another interesting direction to explore. Currently our model does not capture the relationship between the objects in the images, using self-attention from [119] may be helpful to improve the representation of images features, hence boosting the model performance.

The idea from Chapter 2 and Chapter 3 can be combined to improve our document classification model. Iterative attention mechanism can be used for word attention and sentence attention to find out the most relevant information in multiple steps. The RNN word encoders and sentence encoders can also be replaced by the Transformer encoder [119]. Our hierarchical attention
network can extract the most important information out of documents. Some quantitative experiments can be done in the future to investigate the accuracy of those attention maps. If supported by quantitative evidence, our framework has potential application in the task of extractive summarization.

We can improve our work of Chapter 4 by using more powerful decoder architectures such as the Transformer decoder [119]. The Transformer decoder is similar to a CNN which is non-recurrent hence satisfies our need for contextual capacity control. Our new variational auto-encoder model can be generalized to the setting with conditional inputs, which has very broad applications such as dialogues modeling. We can use our model to generate diverse responses to each utterance. It can also be applied in machine translation systems to generate diverse translation outputs for a given input sentence.

The model from Chapter 5 is a preliminary framework and can be made more powerful by adding multiple losses. One loss to add is the cycle-consistency constraint [143] to ensure that the content is preserved during the transfer. Our framework also has broad potential applications. One direction is to extend it to the semi-supervised setting and use it to help with many other sequence level tasks such as machine translation, summarization etc. With large amount of monolingual data, we can improve upon the state-of-the-art machine translation systems with our language model discriminators framework. It also can be applied to multi-modal settings with image, text or speech as inputs and outputs.
Bibliography

66

[26] Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh Srivastava, Li Deng, Piotr Dollár, Jianfeng Gao, Xiaodong He, Margaret Mitchell, John Platt, et al. From captions to visual concepts and back. arXiv preprint arXiv:1411.4952, 2014. 2.2 2.3.2 2.4.1

[82] Lin Ma, Zhengdong Lu, and Hang Li. Learning to answer questions from image using convolutional neural network. *arXiv preprint arXiv:1506.00333*, 2015. [2.2, 2.3.1, 2.4.1, 2.4.2, 2.4.4, 5.2]

[83] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A con-

[98] Mengye Ren, Ryan Kiros, and Richard Zemel. Exploring models and data for image question answering. arXiv preprint arXiv:1505.02074, 2015. 2.1 2.2 2.3.1 2.4.1 2.4.2 2.4.4

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. Learning sentiment-specific word embedding for twitter sentiment classification. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, volume 1, pages 1555–1565, 2014. 3.4.2

Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic memory networks for

[139] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text classification. *arXiv preprint arXiv:1509.01626*, 2015. [3.1] [3.2] [3.4.1] [3.4.2] [3.4.2]

75

